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Abstract

While powerful optimization techniques are currently available for limited automatic com-
pilation domains, such as dense array-based scientific and engineering numerical codes, a
similar level of success has eluded general-purpose programs, specially symbolic and pointer-
based codes. Current compilers are not able to successfullydeal with parallelism in those
codes. Based on our previously developed shape analysis techniques, we have designed
preliminary methods to tackle the parallelism detection inthose types of codes. As with
parallelism, contemporary compilers cannot either successfully exploit locality exhibited in
pointer-based programs. The locality problem comprises several aspects. In this paper we
address two of the main aspects: data locality in cache hierarchy, and hiding of the processor-
memory latency gap.

1 Introduction

Optimizing and parallelizing compilers rely upon accuratestatic disambiguation of memory ref-
erences, i.e. determining at compiling time if two given memory references always access disjoint
memory locations. Unfortunately the presence of alias in pointer-based codes makes memory dis-
ambiguation a non-trivial issue. An alias arises in a program when there are two or more distinct
ways to refer to the same memory location. Program constructs that introduce aliases are arrays,
pointers and pointer-based dynamic data structures.

Over the past twenty years powerful data dependence analysis have been developed to resolve
the problem of array aliases. The problem of calculating pointer-induced aliases, called pointer
analysis, has also received significant attention over the past few years [1], [2], [3]. Pointer analysis
can be divided into two distinct subproblems: stack-directed analysis and heap-directed analysis.
We focus our research in the later, which deals with objects dynamically allocated in the heap. An
important body of work has been conducted lately on this kindof analysis. A promising approach
to deal with dynamically allocated structures consists in explicitly abstracting the dynamic store
in the form of a bounded graph. In other words, the heap is represented as a storage shape graph
and the analysis tries to estimate some shape properties of the heap data structures. This type of
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analysis is calledshape analysisand our research group has developed a powerful shape analysis
framework [4] .

Basically, the goal of this paper is to use our shape analysisframework to develop advanced
compiling techniques for parallelism detection and exploiting locality in programs that operate
with pointer-based data structures.

The rest of the paper is organized as follows: Section II briefly describes the key ideas under
our shape analysis framework. With this background, in Section III we present our compiler
techniques to automatically identify the parallel loops incodes based on dynamic data structures.
On the other hand, in Section IV we focus in our preliminary work in order to exploit locality with
the support of our shape analysis. Finally, in Section V we conclude with the main contributions
and future work.

2 Shape Analysis Framework

Basically, our method is based on approximating by graphs all possible memory configurations
that can appear after the execution of a statement in the code. We call a collection of dynamic
structures amemory configuration. These structures comprise several memory chunks, that we
call memory locations, which are linked by references. Inside these memory locations there is
room for data and for pointers to other memory locations. These pointers are calledselectors.

Note that due to the control flow of the program, a statement could be reached by following several
paths in the control flow. Each “control path” has an associated memory configuration which is
modified by each statement in the path. Therefore, a single statement in the code modifies all the
memory configurations associated with all the control pathsreaching this statement. Each memory
configuration is approximated by a graph we callReference Shape Graph(RSG). So, taking all
this into account, we conclude that each statement in the code will have a set of RSGs associated
with it.

2.1 RSGs and node properties

The RSGs are graphs in which nodes represent memory locations which have similar reference
patterns. To determine whether or not two memory locations should be represented by a single
node, each one is annotated with a set of properties. Now, if several memory locations share the
same properties, then all of them will be represented by the same node. This way, a possibly
unlimited memory configuration can be represented by a limited size RSG, because the number of
different nodes is limited by the number of properties of each node. These properties are related
to the “reference pattern” used to access the memory locations represented by the node. Hence
the nameReference Shape Graph. These properties are described in [4], but two of them are
summarized here because they are necessary in the followingsections:

Share Information: This property can tell whether at least one of the locationsrepresented by a
node is referenced more than once from other memory locations. We use two kinds of attributes for
each node:SHARED(n)states if any of the locations represented by the noden can be referenced
by other locations by different selectors, andSHSEL(n, sel)points out if any of the locations
represented byn can be referenced more than once by following the same selector sel from other
locations.



if (cond1)

if (cond2)

3. z = malloc();

1. x = malloc();
2. y = malloc();

4. x.nxt := z

5. y.nxt := z

6. z = NULL

7. h = malloc();
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Figure 1: Building an RSRSG for each statement of an example code

Touch Information : This property is taken into account only inside loop bodiesto avoid the
summarization of already visited locations with non-visited ones. The touch information will be
also the key tool in order to automatically annotate the nodes of the data structure which are written
and/or read by the pointer statements inside loops.

As we have said, all possible memory configurations which mayarise after the execution of a
statement are approximated by a set of RSGs. We call this setReduced Set of Reference Shape
Graphs(RSRSG), since not all the different RSGs arising in each statement will be kept. On
the contrary, several RSGs related to different memory configurations will be fused when they
represent memory locations with similar reference patterns.

2.2 Generating the RSRSGs

To move from the “memory domain” to the “graph domain”, the calculation of the RSRSGs asso-
ciated with a statement is carried out by thesymbolic executionof the program over the graphs.
In this way, each program statement transforms the graphs toreflect the changes in memory con-
figurations derived from statement execution. Theabstract semanticof each statement states how
the analysis of this statement must transform the graphs.

Let us illustrate all this with an example. In Figure 1 we can see a simple code with seven pointer
statements. Our analyzer symbolically executes each statement to build the RSRSG associated
with them. Actually, after the execution of the third statement we obtain an RSRSG with a single
RSG which represents three different memory locations by three nodes; all of them of the same
type, with the samenxt selector, but pointed to by different pointer variables (pvars). Now, this
RSRSG is modified in three different ways because there are three different paths in the control
flow graph, each one with a different pointer statement. All these paths join in statement 7, and
after the execution of this statement we obtain an RSRSG withtwo RSGs. This is because the
RSGs coming from statements 4 and 5 are compatible and can be summarized into a single one.
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Figure 2: Schematic description of the symbolic execution of a statement.

The whole symbolic execution process can be seen by looking at Fig. 2. For each statement in the
code we have an inputRSRSGi and the corresponding outputRSRSGo representing the memory
configurations after statement execution. During the symbolic execution of the statement all the
rsgij belonging toRSRSGi are going to be updated. The first step comprises graph division
to better focus on the several memory configurations represented by the RSG. Pruning removes
redundant or nonexistent nodes or links that may appear after the division operation. Then the
abstract interpretation of the statement takes place and usually the complexity of the RSGs grows.
In order to counter this effect, the analysis carries out a compression operation. In this phase
each RSG is simplified by the summarization of compatible nodes, to obtain thersg∗ijk graphs.
Furthermore, some of thersg∗ijk can be fused into a singlersgok if they represent similar memory
configurations. This operation greatly reduces the number of RSGs in the resulting RSRSG.

The abstract interpretation is carried out iteratively foreach statement until we reach a fixed point
in which the resultingrsgok’s associated with the statement does not change any more. This way,
for each statement that modifies dynamic structures, we havedefined the abstract semantics which
describe how these statements modify thersgij. We consider six simple instructions that deal with
pointers:

x = NULL; x = malloc; x = y; x->sel = NULL; x->sel = y; x = y->sel;

More complex pointer instructions can be built upon these simple ones and temporal variables.
Due to space constraints we cannot formally describe the abstract semantics of each one of these
statements (this can be found in [4]).

3 Parallelism Detection

We focus on detecting parallelism on loops that traverse heap-based recursive data structures. In
general, for finding loop parallelism we need to detect the presence ofloop-carried dependences
(henceforth referred as LCDs). Two statements in a loop havea LCD, if a memory location ac-
cessed by one statement in a given iteration, is accessed by the other statement in a future iteration,
with one of the accesses being a write accesses. The following loop in Figure 3, illustrates a LCD.
This loop traverses a linked list and the referencep->next->i in the current iteration writes to
the memory location, read by the referencep->i in the next iteration, thereby inducing a LCD
between statements S1 and S2. The presence of LCDs in a loop indicates that its iterations are not
independent, and hence cannot be executed in parallel.

A dependence analysis assisted by pointer analysis or shapeanalysis is key to identify the presence
of LCDs in programs with pointers and dynamic recursive datastructures. Next, we summarize



while (p->next != NULL)
{
S1: tmp = p->i;
S2: p->next->i = tmp;
S3: p = p->next;

}

Figure 3: Example of a LCD between S1 and S2.

some of the most relevant works in this research area.

3.1 Related work

Some of previous works combine dependence analysis techniques with pointer analysis [5, 6, 7,
8, 9, 10]. Horwitz et al. [6] developed an algorithm to determine dependence by detecting inter-
ferences in reaching stores. Larus and Hilfinger [7] proposeto identify access conflicts on alias
graphs using path expressions to name locations. Hendren and Nicolau [5] use path matrices to
record connection information among pointers and present atechnique to recognize interferences
between computations for programs with acyclic structures. The focus of these techniques is on
identifying parallelism at the function-call level and they do not consider the detection of loop
parallelism, which is the focus in our approach.

More recently, some authors [9, 10] have proposed dependence analysis tests based on shape anal-
ysis in the context of loops that traverse dynamic recursivedata structures, and these approaches
are more related to our work. The mentioned authors base their shape analysis framework in a
storeless abstraction that is computed for each program point. Their shape analysis consider three
possible shape attributes: Tree, DAG or Cycle [9]. These authors have observed that knowledge
about the shape of the data structure accessible from a heap-directed pointer, provides critical in-
formation for disambiguating heap accesses originating from it. The techniques based on this kind
of shape information may be useful to provide that there are not data dependences between itera-
tions and that the loop can be executed in parallel. However,the scope of applicability is limited
to some particular cases (basically they are tree-orientedtechniques). Let’s see these approaches
in more detail.

Ghiya and Hendren [9] propose a test for identifying LCDs that relies on the shape of the data
structure being traversed, as well as on the detection of thenavigatorof the loop (the pointer used
to traverse the data structure). Their approach used to identify LCDs follows the next steps:

(1) Once a navigator is identified, the access paths for the pointers in the statements being analyzed
is constructed. These access paths are constructed with respect to the navigator.

(2) Using the shape information of the data structure and thecomputed access paths, the authors
propose the following test to detect LCDs: (a) If the shape attribute is Tree, a dependence is
reported if any of the access paths uses a navigator field as a pointer field (or selector). Otherwise,
the analyzed statements with the Tree attribute does not lead to any dependence; (b) else, if the
shape attribute is DAG or Cycle and the loop has been assertedby the programmer as acyclic,
then a dependence is signaled when any of the access paths involves one or more pointer fields.
Otherwise, the analyzed statements in the asserted loop arenot responsible of any LCD; (c) in any
other case, the test return dependence.

This technique identifies parallelism in programs with tree-like data structure or loops that traverse



DAG or Cycle structures and have been asserted by the programmer as acyclic. Note that the man-
ual assertion of loops traversing cyclic data structures isa must in order to enable any automatic
detection of parallelism. Another limitation is that data structures must remain static during the
data traversal inside the analyzed loops.

In order to solve some of the previous limitations, Hwang andSaltz propose a new technique to
identify LCDs in programs that traverse cyclic data structures [10]. This approach automatically
identifies acyclic traversal patterns even in cyclic (Cycle) structures. For this purpose, the compi-
lation algorithm isolates the traversal patterns from the overall data structure, and next, it deduces
the shape of these traversal patterns. The novelty is in thatthey present a technique that perform
traversal-pattern sensitive shape analysis. Once they have extracted the traversal-pattern shape
information, dependence analysis is applied to detect parallelism.

In more detail, their approach to identify LCDs from programs that traverse dynamic data struc-
tures can be divided into the following steps:

(1) Traversal patterns inside loops are identified. The statements that construct the links of that
traversal patterns are identified. Definition-use chains ofthe statements that define the traverse
links in the data structure are constructed.

(2) Shape analysis is performed on the previously identifieddefinition statements. This shape anal-
ysis gives the possible shapes of the traversal patterns. The authors consider only three possible
shapes: Tree, DAG and Cycle.

(3) The shape information of the traversal patterns (but notof the global data structure) is used to
determine if access conflicts occur between the sets of read and write references and facilitate the
dependence analysis.

This technique identifies parallelism in programs that navigate cyclic data structures in a “clean”
tree-like traverse. However the analysis can overestimatethe shape of the traverse when the data
structure is modified along the traverse, and in these situations, the shape algorithm detect DAG
or Cycle traversal patterns, in which case dependence is reported.

3.2 Our approach

As we see, the previous data dependence tests based on shape analysis use as shape information a
coarse characterization of the data structured being traversed (Tree, DAG, Cycle). One advantage
of this type of analysis is that enables faster data flow mergeoperations and reduces the storage
requirements for the analysis. However, it also means a lossof accuracy that prevent the paral-
lelization of loops, specially when the data structure being visited is not a ”clean” tree or may
contain cycles. Our approach, on the contrary, is based on a shape analysis that maintains topo-
logical information of the connections among the differentnodes (memory locations) in the data
structure. In fact, our representation of the data structure provides us a more accurate description
of the memory locations reached when a statement is executedinside a loop.

Moreover, as we have seen in section 2.2, our shape analysis is based on the symbolic execution of
the program statements over the graphs that represent the data structure at each program point. In
other words, our approach does not extract the traversal paths (or navigator paths) and relies on a
generic characterization of the data structure shape in order to prove the presence of LCDs. As we
will see in this section, the novelty is that our approach symbolically executes the statements of the
loop being analyzed, and let us to annotate the real memory locations reached by that statement



with read/write information. This information will be usedin order to find LCDs in a very accurate
dependence test.

Our approach for finding parallelism focus in loops that traverse dynamic data structures. Sum-
marizing, our algorithm to identify if there is any LCD in a loop proceeds as follows:

1. The simple pointer statements,Si, that access the heap inside the loop are annotated with
a Dependence Touch, DepTouch, directive. The Dependence Touch directive comprises
three important pieces of information regarding the accessto the heap: theaccess pointer,
the access attribute(ReadSi or WriteSi, due to the type of access in theSi statement)
and theaccess field(the field of the data structure pointed to by the access pointer which
is read or written). For instance, theS1: aux = p->nxt statement would have as
Dependence Touch directiveDepTouch(p,ReadS1,nxt). Note that the Dependence
Touch is also identifying the statement in the access attribute.

2. TheDependence Groupsare created. A Dependence Group,DepGroupg, is a set of access
attributes fulfilling two conditions: (a) all the access attributes belong to Dependence Touchs
with the same access field, and (b) at least one of these accessattributes is a WriteSi.

In other words, aDepGroupg states the set of statements in the loop that may potentially
lead to a LCD, which happens if they access to the same field of the same memory location
in different iterations, and one of the accesses is a write.

Associated to eachDepGroupg, our algorithm initializes a set calledAccessPairsGroupg.
This set is initially empty but during the analysis process it may be filled with the pairs
namedaccess pairs. An access pair comprises two ordered access attributes. For instance,
aDepGroupg = {ReadSi,WriteSj,WriteSk} with anAccessPairsGroupg compris-
ing the pair<ReadSi,WriteSj> means that during the analysis the same field of the same
memory location may have been first read by the statementSi and then written by statement
Sj , clearly leading to an anti-dependence. The order inside each access pairs is significant
for the sake of discriminating between flow, anti or output dependences.

3. The shape analyzer is fed with the instrumented code. As wehave mentioned, the shape
analyzer is described in detail in [4] and briefly introducedin Section 2. However, with
regard to the LCD test implementation the most important idea to emphasize here is that our
analyzer is able to precisely identify at compile time the memory locations that are going to
be pointed to by the pointers of the code. With this and with theDepTouch directive, the
task of the analyzer is to symbolically execute each statement updating the graphs and at
the same time, the node pointed to by the access pointer of thestatement which is identified
in the correspondingDepTouch, is “touched”. This means, that the memory location is
going to be marked with the access attribute of theDepTouch directive. In that way, we
annotate in the memory location, that a given statement has been read or written in a given
field comprised in the location.

Let’s see more precisely how this step works. Each noden of a graph in the RSRSG, has a
Touch Setassociated with it,TOUCHn. When a statementSj is symbolically executed the
access pointer of the statement is going to point to a node,n, that has to represent a single
memory location Besides, the associatedDepTouch directive is also interpreted by the
analyzer leading to the updating of theTOUCHn set. If the Touch set was originally empty



fun LCD Test(AccessPairGroupg)
if <WriteSi,ReadSj> ∈ AccessPairGroupg

then return(FlowDep); /* Flow dependence detected between Si and Sj */
if <ReadSi,Writej> ∈ AccessPairGroupg

then return(AntiDep); /* Anti dependence detected between Si and Sj */
if <WriteSi,WriteSj> ∈ AccessPairGroupg

then return(OutputDep); /* Output dependence detected between Si and Sj */
if <WriteSi,WriteSi> ∈ AccessPairGroupg

then return(OutputDep); /* Output dependence detected between Si and Si */
endif

return(NoDep); /* no LCD detected */

Figure 4: LCD test

we just append the new access attribute AccAttSj of theDepTouch directive. However,
if the Touch set does already contains other access attributes, {AccAttSk}, two actions
take place: first, an updating of theAccessPairsGroupg associated with theDepGroupg,
happens; secondly, the access attribute AccAttSj is appended to the Touch set of the node,
TOUCHn = TOUCHn ∪ {AccAttSj}.

When updating theAccessPairsGroupg, we check all the access attributes of the state-
ments that have touched previously the node n, i.e., those intheTOUCHn set. If there is
any access attribute, AccAttSk which belongs to the sameDepGroupg that AccAttSj (the
current statement), then a new access pair is appended to theAccessPairsGroupg. The
new pair is an ordered pair<AccAttSk, AccAttSj> which indicates that the memory loca-
tion represented by node n has been first accessed by statement Sk and later by statement
Sj , beingSk andSj two statements associated to the same dependence group, andtherefore
a conflict may occur.

4. In the last step, ourLCD Test function will check each one of theAccessPairGroupg

updated in step 3. Depending on the pairs comprised by theAccessPairGroupg we can
raise some of the LCDs provide in Fig. 4.

We note that theLCD Test function must be performed for all theAccessPairGroups
created in step 2. When any of the dependence patterns that our test checks, is found on
any AccessPairGroupg, then the loop does not contain LCD dependences and can be
parallelized.

Our approach improves the scope of applicability of the previously proposed dependence tests to
loops that traverse Cycle data structures, even in presenceof cyclic traversal patterns. Besides, our
method is also able to successfully deal with loops in which the data structures are being modified
during the data structure traversal.

4 Locality Analysis

Reference locality is a well-known property that all programs exhibit to some extent. This property
states that only a few memory positions are used or reused during a short interval of time, and
consequently we could predict which memory locations are going to be accessed in the future.



Precisely assuming this property is the basis of common computer hardware design such as cache
memory. The goal of such designs is to lessen the growing speed gap existing between the memory
system and the processors.

Locality exploitation has become a major issue to deal when obtaining a good efficiency in the
execution of a code. In case of regular problems, data is organized as static structures like matrices
or arrays, that, in general, generate memory access patterns perfectly known at compile time.
Thus the compiler can automatically analyze dependencies and find efficient reordering of data
and computations without altering the program semantics.

A more complex case is represented by the named irregular codes. Although these codes work on
static data structures like arrays, however content is referenced through indirections. In general,
indirect references are unknown at compile time, so they should be fixed at run time. Indirect ref-
erences may cause loop carried dependences difficult to analyze by the compiler, making locality
exploitation a complex task.

Nevertheless an important work has been done with a certain class of irregular patterns commonly
found in numerical and scientific codes, as those associatedwith commutative and associative
operators [11, 12], like reductions. Techniques developedin this context prove that it is possible
to design effective compiler transformations that exploitlocality with no need of solving such
indirections at compilation time.

Programs handling pointer-based data structures mean a harder challenge from the point of view of
locality exploitation. Usually programmers use pointers when data structures are going to be built
and modified during execution. In contrast to regular codes it is not possible to know the memory
reference pattern nor the shape of the data structure at compile time, as it is given by the pointer
links created at runtime. In addition, data structure components are dynamically allocated as they
are needed, and therefore their memory locations may be found scattered over the memory space.
The degree of scattering will depend on the allocation policy of new memory locations, which,
in general, is not under the programmer’s control. Also thisfact avoids the possibility of making
assumptions about the memory area where data are placed because two different executions of the
same program with the same data may generate different memory reference patterns.

The effective reordering of data and computations represents also a difficult task in codes handling
pointer-based structures. The computation reorganization is limited by the dependence test since
if dependences are unknown the order of sentences can not be changed in a safe way. Addition-
aly, a memory location that is referenced by multiple pointers (aliasing) makes data reordering a
complex task because different paths in the data structure may meet in this location.

In this section we analyze the locality exploitation problem in codes using pointer-based data
structures. It has been organized as follows. First, we classify this kind of codes regarding several
issues to take into account when developing locality exploiting techniques. Next, an overview
of different existing approaches exploiting locality in pointer-based programs is presented. Fi-
nally, we discuss how shape analysis may be helpful in order to design techniques that are able to
improve reference locality in these programs.

4.1 Features of pointer-based codes

Locality exploitation is given to a great extent by the suitable order used to traverse the elements
of data structures. Thus, in general, saying that a code exhibit good locality means that the order in



which data is placed in memory shows certain affinity with theorder data is traversed. In regular
codes working on vectors and matrices, this order is determined by the packing used when storing
such structures, and the traversing pattern which is generally linear. However, the situation is
not so simple in pointer-based codes. In this section we analyze several features related to data
ordering and how they influence the strategies to follow.

In a typical code handling pointer-based structures we can distinguish two phases in execution.
The first one involves the building of the data structure, andthe second one its use. In the process
of building the data structure two important components areset, its entry point location in heap
memory and the graph that represents the different paths in the structure (given by pointer fields).

One major factor that can determine the strategy to follow isthe way that data structure changes
dynamically during the program execution. A simple case corresponds to a static structure, that
does not change once created. In this situation we can suggest to follow a strategy based on the
inspector/executor paradigm. The inspector extract data structure characteristics in runtime, and
it carry out transformations oriented to improve locality.However if we are dealing with dynamic
structures, that is, structures whose shape is modified, theinspector/executor approach may be not
so appropriate. Calling an inspector every time the data structures are modified could cause a high
overhead. Nevertheless the inspector approach may be used if inspector is invoked only few times
when some modification threshold is surpassed.

The way the data structure is traversed is another factor to be considered. Initial data locations
in memory are determined during the structure creation. We note two facts regarding this initial
situation. First, the order in which data is traversed may bedifferent to the order in which it
was allocated. Second, the pointer graph may represent various paths to follow but only some of
them will be taken when the program runs. A well known exampleis a tree where we have several
typical possibilities to visit the structure elements (preorder, postorder, ...). Traversing information
is a major aspect in locality exploitation and hence we need to extract not only information about
the structure itself but also additional information aboutthe path followed when the structure is
traversed.

In the handling of pointer-based data structures we have, onthe one hand, the traversing of the
structure until reaching a specific element data and, on the other hand, the computation that is
carried out once the above element is located. If most of the time is spent in traversing the data
structure, it would be difficult to hide memory latency. The reason is the chain of successive
pointers we need to follow to located the target element. If the processing time is small, we can
not easily overlap the computation with the prefetching of other elements to be visited, as several
indirect references may be involved. Additionally, in problems where computation dominates, the
overhead of data structure transformations, like re-layouts, will be less significant, so they can be
carried out frequently in the case of dynamic codes.

4.2 Related work

Diverse approaches to improve the locality exploitation and hide memory latency have been ex-
plored in the literature in the context of codes handling pointer structures. A complete view of the
different locality enhancement issues is discussed in [13]. They propose several locality oriented
techniques with the goal of improving the cache memory behavior, based on some reorganization
of the dynamic data structures. This can be done at four levels: data structure definition, mem-
ory allocation, pointer structure reorganization in runtime and data rearrangement during garbage



collection.

Focusing on the three first levels, we find three different strategies: clustering, coloring and com-
pression.Clusteringmeans the data structure is packed in such a way that the most likely accessed
data elements are placed in the same cache block. For example, in a tree the father and direct de-
scendants can be packed together in the same block. Of course, the final behavior will depend on
how the structure is traversed and modified. The aim ofcoloring is avoiding cache conflicts due
to the limited associativity of the cache. For this purpose the data elements accessed more often
are placed in non-conflicting cache blocks, and those accessed less frequently in the remaining
blocks. Finally,compressionmeans the data structure is transformed so as several data elements
are placed in the same cache block. Now those elements are accessed in a different way, that is,
we need to uncompress them to get the original data. For example, a linked list can be compressed
in a linear array. In this case, data elements will be referenced by means of an offset instead of
following the original chain of pointers.

Placement in memory of the dynamic data structure when created has also an important effect
on locality. In [13] acache conscious allocator(ccmalloc) is proposed, that allows to allocate
memory locations near those that are probably accessed. Since the dynamic data structure may
be traversed in different ways, and also it can be modified in runtime, cache conscious alloca-
tion techniques can be reinforced by reorganizing the structure layout. A cache conscious layout
reorganizer (ccmorph) is also described in [13], based on clustering and coloringstrategies.

A technique widely used in regular codes (array-based) to tolerate memory latency is data prefetch-
ing. Some works analyze this strategy in the context of pointer-based codes [14, 15]. The aim is
to solve the knownpointer chasingproblem. In a dynamic data structure elements are accessed
after traversing several pointer links. The idea is to determine the location of a data element before
needed, trying to hide memory latency. However, this prefetching usually needs several successive
indirect accesses to memory. To overcome this problem some auxiliary pointers (jump-pointers)
may be introduced in order to anticipate future elements of the linked structure. In [14] several
prefetching jump pointer based approaches are introduced,as thehistory prefetchingor greedy
prefetching. In the first one artificial links are created over the structure by using an historical
queue of visited locations. The second one carries out the prefetching of data elements directly
linked to an specific element one, not using any artificial jump pointers. In [15] prefetching is
done by means of an auxiliary array associated with each dataelement, containing the location of
other data elements that will be visited starting from that particular element.

A limitation of prefetching based methods is the inability of predicting which is the next element
of the structure to be visited. In this respect some works [16, 17] try to discover certain regular-
ities in the dynamic reference patterns. Statistical techniques applied to the reference trace can
provide these regularity features. After profiling the codeand obtaining such features the code
can be transformed using this regularity information. Prefetching instructions can be added to the
code taking into account which locations have more probability of being referenced in the future.
This technique is used in [16] to identify strides in the memory reference pattern, based on the
identification of indirect load instructions. In [17] is described an efficient representation of the
data reference locality, which is several orders of magnitude smaller than a whole execution trace.
It is based on a hierarchical compression algorithm, used todiscover regularities in access pat-
terns, calledhot data streams. After locating these hot data streams, techniques of clustering and
prefetching can be applied.

Together with the software techniques to exploit locality,some hardware proposals are found in the
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{
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  struct List *list, *aux;
S1: list=S;
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Figure 5: Adding a node at the end of a single linked list

literature. In [18, 19] a specific hardware is described thattries to find pairs of load instructions,
loads that produce a memory address and loads that consume such an address. These load pairs
may correspond with indirect accesses, like those that appear on traversing linked data structures.
Load pairs are identified in execution windows and their associated program counter is stored in
a table. This correlation table keeps consumer/producer load pairs more recently found. This
information is used to prefetch consumer loads.

4.3 Locality exploitation using shape information

In this section we discuss how the shape analysis described in Sec. 2 may become a helpful tool to
get useful information for locality exploitation in dynamic data structures. This work is currently
in progress and we set out here some key ideas. We focus our attention on data placement in mem-
ory, in order to get better use of memory hierarchy. Specifically, two of the previously described
approaches are considered: data allocation and data structure rearrangement.

Regarding data allocation we assume that a hierarchy conscious allocator is available. This al-
locator is able to provide a memory area on demand following certain locality policy, like the
proximity to a certain location. The proximity factor depends on the data structure and how ele-
ments are inserted in the structure during its creation. It is in this point when the shape analysis
may be useful. Let us consider a hierarchy conscious allocator similar to the one described in [13].
This allocator is invoked ashc-malloc(size, *p), indicating the request size and a pointer
to define the proximity. We desire that the allocated memory is as near as possible the pointerp.

When we convert conventional allocations into hierarchy conscious ones, some knowledge of the
structure and code semantics is needed, in order to select which pointer we want to be near to.
However this conversion can be easier with shape analysis. Let us consider adding an element
at the end of a single linked list as an example. In figure 5 the code for this operation and some
illustrative possible shape graphs for different statements are shown. In this figure, RSG1 is the
entry RSG to theaddlist() function. RSG2 is one of the graphs associated with statement S3 in
one of the iterations of the loop. Finally, RSG3 is associated with statement S5. Through auxiliary
pointers the insertion point is located, adding the new element. In this simple case we desire the
new node to be near to the last one. So the hierarchy consciousallocator will need as parameter the
position of this last node. We can observe how the shape graphprovides this nearness information,
and how we can select the pointer to use as argument of the hierarchy conscious allocator.

Regarding the second approach, reorganization of the data structure, the information of shape
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Figure 6: Back jump pointers for shared nodes

analysis may also be useful. Let us consider a hierarchy conscious structure reorganizer as it is
introduced in [13]. Some of topological parameters required to rearrange the data structure can
be obtained from the shape graph. First, we can establish thepoint of the code where the data
structure is completely defined to insert there the call to the reorganizer. Second, it allows us to
know if the transformation is applicable, because some restrictions may exist (e.g. valid only for
trees). Third, the shape graph can provided some parametersnecessary for the reorganizer: entry
point to the data structure, maximum number of descendants of a node and the access function to
descendants from their father.

An important drawback of data reorganization is due to elements pointed by several other pointers.
On transforming the structure if one of these elements changes its original position in memory, all
the pointers pointing to must also be changed suitably, in order to hold the structure shape. Pre-
cisely the limitations of the reorganizer proposed in [13] are derived from this fact (only one entry
point and tree-like restrictions). On analyzing the data structure shape some attributes likeshared
give us just information about nodes potentially referred by several pointers. We can enhance the
structure reorganizer to be applicable to a wide range of graphs and not only trees. For this purpose
we can associate a pointer list to each element classified as shared. Each pointer in this list act as
aback jump pointerto the father nodes of this shared element.

In figure. 6 an example is shown. If we take a binary tree its associated shape (a) does not contain
any shared node. However if leaf nodes are referenced by several father nodes, then the shape is
the same but the attribute shared is asserted for leaves (b).In the case (a) the reorganizer can be
easily applied but in (b) several paths can end in a node, making the reorganization difficult or
impossible. Shape analysis suggests not only the nodes where back jump pointers can be added
but the statements of the code where their values must be determined.

5 Conclusions

The optimization of pointer-based codes is a key issue whichhas not fully addressed due to the
high complexity involved in the process. We believe that shape analysis of dynamic data structures
is a powerful tool to help the development of optimizing techniques for this kind of codes. In this
paper we have presented how shape analysis may be used to dealwith two important topics in
high-performance computing, parallelism and locality.
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