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Abstract

While powerful optimization techniques are currently daalie for limited automatic com-
pilation domains, such as dense array-based scientific angiheering numerical codes, a
similar level of success has eluded general-purpose pragrapecially symbolic and pointer-
based codes. Current compilers are not able to successfaly with parallelism in those
codes. Based on our previously developed shape analysigiteres, we have designed
preliminary methods to tackle the parallelism detectiorthnse types of codes. As with
parallelism, contemporary compilers cannot either sustilly exploit locality exhibited in
pointer-based programs. The locality problem comprise®isd aspects. In this paper we
address two of the main aspects: data locality in cache hatrg and hiding of the processor-
memory latency gap.

1 Introduction

Optimizing and parallelizing compilers rely upon accursti&ic disambiguation of memory ref-
erences, i.e. determining at compiling time if two given noeprreferences always access disjoint
memory locations. Unfortunately the presence of alias intpobased codes makes memory dis-
ambiguation a non-trivial issue. An alias arises in a progvéhen there are two or more distinct
ways to refer to the same memory location. Program constthet introduce aliases are arrays,
pointers and pointer-based dynamic data structures.

Over the past twenty years powerful data dependence amdigse been developed to resolve
the problem of array aliases. The problem of calculatingiepiinduced aliases, called pointer
analysis, has also received significant attention overaisefpw years [1], [2], [3]. Pointer analysis
can be divided into two distinct subproblems: stack-dedcinalysis and heap-directed analysis.
We focus our research in the later, which deals with objegtanhically allocated in the heap. An
important body of work has been conducted lately on this kifahalysis. A promising approach
to deal with dynamically allocated structures consistsxiplieitly abstracting the dynamic store
in the form of a bounded graph. In other words, the heap isssmted as a storage shape graph
and the analysis tries to estimate some shape propertibg tieap data structures. This type of
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analysis is calledhape analysiand our research group has developed a powerful shape ignalys
framework [4] .

Basically, the goal of this paper is to use our shape anafyaimework to develop advanced
compiling techniques for parallelism detection and expigilocality in programs that operate
with pointer-based data structures.

The rest of the paper is organized as follows: Section IIflyridescribes the key ideas under
our shape analysis framework. With this background, iniSedil we present our compiler
techniques to automatically identify the parallel loopsaues based on dynamic data structures.
On the other hand, in Section IV we focus in our preliminarykia order to exploit locality with
the support of our shape analysis. Finally, in Section V wectale with the main contributions
and future work.

2 Shape Analysis Framework

Basically, our method is based on approximating by graphgaaisible memory configurations
that can appear after the execution of a statement in the ddtdecall a collection of dynamic
structures anemory configuration These structures comprise several memory chunks, that we
call memory locationswhich are linked by references. Inside these memory locatthere is
room for data and for pointers to other memory locations.s€hminters are callezklectors

Note that due to the control flow of the program, a statemeumddee reached by following several
paths in the control flow. Each “control path” has an assediaemory configuration which is
modified by each statement in the path. Therefore, a singtersent in the code modifies all the
memory configurations associated with all the control pegashing this statement. Each memory
configuration is approximated by a graph we ddiference Shape GrafRSG). So, taking all
this into account, we conclude that each statement in the wiltthave a set of RSGs associated
with it.

2.1 RSGs and node properties

The RSGs are graphs in which nodes represent memory losatibith have similar reference
patterns. To determine whether or not two memory locatitraailsl be represented by a single
node, each one is annotated with a set of properties. Nowyéral memory locations share the
same properties, then all of them will be represented by dimeesnode. This way, a possibly
unlimited memory configuration can be represented by adisize RSG, because the number of
different nodes is limited by the number of properties ofreacde. These properties are related
to the “reference pattern” used to access the memory latatiepresented by the node. Hence
the nameReference Shape GraplhThese properties are described in [4], but two of them are
summarized here because they are necessary in the folleeaimpns:

Share Information: This property can tell whether at least one of the locatiepsesented by a
node is referenced more than once from other memory locatie use two kinds of attributes for
each nodeSHARED(n}kstates if any of the locations represented by the nodan be referenced
by other locations by different selectors, aBHISEL(n, selpoints out if any of the locations
represented by can be referenced more than once by following the same selaeé¢tfrom other
locations.
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Figure 1: Building an RSRSG for each statement of an exangule c

Touch Information: This property is taken into account only inside loop bodiesvoid the
summarization of already visited locations with non-éditones. The touch information will be
also the key tool in order to automatically annotate the sad¢he data structure which are written
and/or read by the pointer statements inside loops.

As we have said, all possible memory configurations which erége after the execution of a
statement are approximated by a set of RSGs. We call thiResdticed Set of Reference Shape
Graphs(RSRSG), since not all the different RSGs arising in eactestant will be kept. On
the contrary, several RSGs related to different memory gardiions will be fused when they
represent memory locations with similar reference pagtern

2.2 Generating the RSRSGs

To move from the “memory domain” to the “graph domain”, thécatation of the RSRSGs asso-
ciated with a statement is carried out by #yenbolic executionof the program over the graphs.
In this way, each program statement transforms the grapteslext the changes in memory con-
figurations derived from statement execution. 8bstract semanticof each statement states how
the analysis of this statement must transform the graphs.

Let us illustrate all this with an example. In Figure 1 we caa a simple code with seven pointer
statements. Our analyzer symbolically executes eachnstateto build the RSRSG associated
with them. Actually, after the execution of the third statamwe obtain an RSRSG with a single
RSG which represents three different memory locations tBetimodes; all of them of the same
type, with the sameaxt selector, but pointed to by different pointer variablesafjgy. Now, this
RSRSG is madified in three different ways because there age tfifferent paths in the control
flow graph, each one with a different pointer statement. idise paths join in statement 7, and
after the execution of this statement we obtain an RSRSG twithRSGs. This is because the
RSGs coming from statements 4 and 5 are compatible and cambearized into a single one.
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Figure 2: Schematic description of the symbolic executiba statement.

The whole symbolic execution process can be seen by lookiR@ya2. For each statement in the
code we have an inpitS RSG; and the corresponding outpBiS RSG,, representing the memory
configurations after statement execution. During the syimlexecution of the statement all the
rsg;; belonging toRSRSG; are going to be updated. The first step comprises graph afivisi
to better focus on the several memory configurations reptedeby the RSG. Pruning removes
redundant or nonexistent nodes or links that may appear thi¢edivision operation. Then the
abstract interpretation of the statement takes place arallyshe complexity of the RSGs grows.
In order to counter this effect, the analysis carries out mpression operation. In this phase
each RSG is simplified by the summarization of compatibleespdo obtain the‘sg;‘jk graphs.
Furthermore, some of thesg;, can be fused into a singtesg,, if they represent similar memory
configurations. This operation greatly reduces the numbBISEs in the resulting RSRSG.

The abstract interpretation is carried out iterativelydach statement until we reach a fixed point
in which the resulting sg,;'s associated with the statement does not change any moisswal,

for each statement that modifies dynamic structures, wedhefised the abstract semantics which
describe how these statements modifysthe ;. We consider six simple instructions that deal with
pointers:

X = NULL;x = malloc;x = y;x->sel = NULL;x->sel = y;x = y->sel;

More complex pointer instructions can be built upon thesepte ones and temporal variables.
Due to space constraints we cannot formally describe theaabsemantics of each one of these
statements (this can be found in [4]).

3 Parallelism Detection

We focus on detecting parallelism on loops that travers@-heaed recursive data structures. In
general, for finding loop parallelism we need to detect thes@nce ofoop-carried dependences
(henceforth referred as LCDs). Two statements in a loop hav€D, if a memory location ac-
cessed by one statement in a given iteration, is accesséa lojtter statement in a future iteration,
with one of the accesses being a write accesses. The foljdaap in Figure 3, illustrates a LCD.
This loop traverses a linked list and the referepeenext - >i in the current iteration writes to
the memory location, read by the referenee>i in the next iteration, thereby inducing a LCD
between statements S1 and S2. The presence of LCDs in a ldicptis that its iterations are not
independent, and hence cannot be executed in parallel.

A dependence analysis assisted by pointer analysis or simaesis is key to identify the presence
of LCDs in programs with pointers and dynamic recursive datactures. Next, we summarize



while (p->next !'= NULL)

{
S1: tnp = p->i
S2:  p->next->i = tnp;
S3: p = p->next;

}

Figure 3: Example of a LCD between S1 and S2.

some of the most relevant works in this research area.

3.1 Related work

Some of previous works combine dependence analysis tagmsigith pointer analysis [5, 6, 7,

8, 9, 10]. Horwitz et al. [6] developed an algorithm to deterendependence by detecting inter-
ferences in reaching stores. Larus and Hilfinger [7] propgosdentify access conflicts on alias
graphs using path expressions to name locations. HendceNianlau [5] use path matrices to

record connection information among pointers and preséthaique to recognize interferences
between computations for programs with acyclic structundse focus of these techniques is on
identifying parallelism at the function-call level and yhdo not consider the detection of loop
parallelism, which is the focus in our approach.

More recently, some authors [9, 10] have proposed deperdaralysis tests based on shape anal-
ysis in the context of loops that traverse dynamic recurdata structures, and these approaches
are more related to our work. The mentioned authors basedhape analysis framework in a
storeless abstraction that is computed for each progran. pitieir shape analysis consider three
possible shape attributes: Tree, DAG or Cycle [9]. Theshasathave observed that knowledge
about the shape of the data structure accessible from adiesgbed pointer, provides critical in-
formation for disambiguating heap accesses originatiogn fit. The techniques based on this kind
of shape information may be useful to provide that there atelata dependences between itera-
tions and that the loop can be executed in parallel. Howélverscope of applicability is limited

to some particular cases (basically they are tree-oricietelthiques). Let’s see these approaches
in more detail.

Ghiya and Hendren [9] propose a test for identifying LCD4 tiedies on the shape of the data
structure being traversed, as well as on the detection ofdkigatorof the loop (the pointer used
to traverse the data structure). Their approach used ttifig&Ds follows the next steps:

(1) Once a navigator is identified, the access paths for timgye in the statements being analyzed
is constructed. These access paths are constructed wittctds the navigator.

(2) Using the shape information of the data structure anddneputed access paths, the authors
propose the following test to detect LCDs: (@) If the shapsgbate is Tree, a dependence is
reported if any of the access paths uses a nhavigator field @istpfield (or selector). Otherwise,
the analyzed statements with the Tree attribute does ndttteany dependence; (b) else, if the
shape attribute is DAG or Cycle and the loop has been asseytéite programmer as acyclic,
then a dependence is signaled when any of the access pathseswne or more pointer fields.
Otherwise, the analyzed statements in the asserted looparesponsible of any LCD; (c) in any
other case, the test return dependence.

This technigue identifies parallelism in programs with like data structure or loops that traverse



DAG or Cycle structures and have been asserted by the progeaas acyclic. Note that the man-
ual assertion of loops traversing cyclic data structuresnsust in order to enable any automatic
detection of parallelism. Another limitation is that dateustures must remain static during the
data traversal inside the analyzed loops.

In order to solve some of the previous limitations, Hwang 8adtz propose a new technique to
identify LCDs in programs that traverse cyclic data streesy10]. This approach automatically
identifies acyclic traversal patterns even in cyclic (Cyskeuctures. For this purpose, the compi-
lation algorithm isolates the traversal patterns from therall data structure, and next, it deduces
the shape of these traversal patterns. The novelty is irthlegtpresent a technique that perform
traversal-pattern sensitive shape analysis. Once they &wvacted the traversal-pattern shape
information, dependence analysis is applied to detecllpksan.

In more detail, their approach to identify LCDs from proggathat traverse dynamic data struc-
tures can be divided into the following steps:

(1) Traversal patterns inside loops are identified. Theestahts that construct the links of that
traversal patterns are identified. Definition-use chainthefstatements that define the traverse
links in the data structure are constructed.

(2) Shape analysis is performed on the previously identifefthition statements. This shape anal-
ysis gives the possible shapes of the traversal patterns.atitihors consider only three possible
shapes: Tree, DAG and Cycle.

(3) The shape information of the traversal patterns (bubhtite global data structure) is used to
determine if access conflicts occur between the sets of rhavete references and facilitate the
dependence analysis.

This technique identifies parallelism in programs that gaté cyclic data structures in a “clean”
tree-like traverse. However the analysis can overestith@ashape of the traverse when the data
structure is modified along the traverse, and in these sngtthe shape algorithm detect DAG
or Cycle traversal patterns, in which case dependence astezh

3.2 Our approach

As we see, the previous data dependence tests based on shbsisaise as shape information a
coarse characterization of the data structured beingrgesidTree, DAG, Cycle). One advantage
of this type of analysis is that enables faster data flow mepgzations and reduces the storage
requirements for the analysis. However, it also means adbascuracy that prevent the paral-
lelization of loops, specially when the data structure feiisited is not a "clean” tree or may
contain cycles. Our approach, on the contrary, is based ba@esanalysis that maintains topo-
logical information of the connections among the differeaties (memory locations) in the data
structure. In fact, our representation of the data stregwovides us a more accurate description
of the memory locations reached when a statement is exeirigiglé a loop.

Moreover, as we have seen in section 2.2, our shape anaymséd on the symbolic execution of
the program statements over the graphs that representtdnstdzcture at each program point. In
other words, our approach does not extract the traversas gat navigator paths) and relies on a
generic characterization of the data structure shape &rdodorove the presence of LCDs. As we
will see in this section, the novelty is that our approachisgiically executes the statements of the
loop being analyzed, and let us to annotate the real memoafitms reached by that statement



with read/write information. This information will be usédorder to find LCDs in a very accurate
dependence test.

Our approach for finding parallelism focus in loops thatdérae dynamic data structures. Sum-
marizing, our algorithm to identify if there is any LCD in adjo proceeds as follows:

1. The simple pointer statementis,, that access the heap inside the loop are annotated with
a Dependence TouchDepTouch, directive. The Dependence Touch directive comprises
three important pieces of information regarding the actedise heap: thaccess pointer
the access attribute(Read$ or WriteS, due to the type of access in tits statement)
and theaccess fieldthe field of the data structure pointed to by the access @oimhich
is read or written). For instance, tif#l: aux = p->nxt statement would have as
Dependence Touch directileepTouch( p, ReadSl, nxt) . Note that the Dependence
Touch is also identifying the statement in the access atgib

2. TheDependence Groupsire created. A Dependence GrolfxpGroup,, is a set of access
attributes fulfilling two conditions: (a) all the accesgiatites belong to Dependence Touchs
with the same access field, and (b) at least one of these aattiiisstes is a WriteS

In other words, aDepGroup, states the set of statements in the loop that may potentially
lead to a LCD, which happens if they access to the same fielteac§dme memory location
in different iterations, and one of the accesses is a write.

Associated to eacPepGroup,, our algorithm initializes a set callediccess PairsGroupg.

This set is initially empty but during the analysis procesmay be filled with the pairs
namedaccess pairs An access pair comprises two ordered access attributesndtance,
aDepGroupy = {ReadS;, Wit eS;, Wit eS,} with an Access PairsGroup, compris-

ing the pair<Read$,WriteS;> means that during the analysis the same field of the same
memory location may have been first read by the stateieamd then written by statement
S;, clearly leading to an anti-dependence. The order insidb aecess pairs is significant
for the sake of discriminating between flow, anti or outpytetedences.

3. The shape analyzer is fed with the instrumented code. Abave mentioned, the shape
analyzer is described in detail in [4] and briefly introdudedSection 2. However, with
regard to the LCD test implementation the most importarda ideemphasize here is that our
analyzer is able to precisely identify at compile time thenmey locations that are going to
be pointed to by the pointers of the code. With this and withDbpTouch directive, the
task of the analyzer is to symbolically execute each statemedating the graphs and at
the same time, the node pointed to by the access pointer sfdtement which is identified
in the correspondin@epTouch, is “touched”. This means, that the memory location is
going to be marked with the access attribute of e Touch directive. In that way, we
annotate in the memory location, that a given statement &éas tead or written in a given
field comprised in the location.

Let's see more precisely how this step works. Each nodéa graph in the RSRSG, has a
Touch Setassociated with it’ OUC H,,. When a statemefl; is symbolically executed the

access pointer of the statement is going to point to a nedéat has to represent a single
memory location Besides, the associai®pTouch directive is also interpreted by the
analyzer leading to the updating of the)U C H,, set. If the Touch set was originally empty



fun LCD_Test (AccessPai r Groupy)
if <WiteS;, ReadS;> € AccessPai r G oupy
t hen return( Fl owDep); /* Fl ow dependence detected between S; and S; */
i f <ReadS;, Wite;> € AccessPair G oupy
then return(Anti Dep); /* Anti dependence detected between S; and S; */
if <WiteS;, WiteS;> € AccessPai r G oup,
t hen return( Qut put Dep); /* Qutput dependence detected between S; and S; */
if <WiteS;, WiteS;> € AccessPai r G oup,
t hen return(Qut put Dep); /* CQutput dependence detected between S, and S; */
endi f
return (NoDep); /* no LCD detected */

Figure 4: LCD test

we just append the new access attribute AccAtfthe DepTouch directive. However,

if the Touch set does already contains other access aétsipliiccAttSy}, two actions
take place: first, an updating of the-cess PairsGroup, associated with th®epGroupg,
happens; secondly, the access attribute AccASippended to the Touch set of the node,
TOUCH, =TOUCH, U {AccAttS;}.

When updating thedccessPairsGroup,, we check all the access attributes of the state-
ments that have touched previously the node n, i.e., thodeiOUCH,, set. If there is
any access attribute, AccAtSvhich belongs to the samBepGroup, that AccAttS (the
current statement), then a new access pair is appended tocthes PairsGroup,. The
new pair is an ordered paitACCALtS;,, ACCALtS;> which indicates that the memory loca-
tion represented by node n has been first accessed by stat8mand later by statement
S;, beingS), andS; two statements associated to the same dependence groupeegfdre

a conflict may occur.

4. In the last step, ourCD_Test function will check each one of thdccessPairGroupg
updated in step 3. Depending on the pairs comprised byltaess PairGroup, we can
raise some of the LCDs provide in Fig. 4.

We note that the.CD Test function must be performed for all théccessPair Groups
created in step 2. When any of the dependence patterns th&égstichecks, is found on
any AccessPairGroupy, then the loop does not contain LCD dependences and can be
parallelized.

Our approach improves the scope of applicability of the iosly proposed dependence tests to
loops that traverse Cycle data structures, even in pres#mgelic traversal patterns. Besides, our
method is also able to successfully deal with loops in whithdata structures are being modified
during the data structure traversal.

4 Locality Analysis

Reference locality is a well-known property that all pragsaexhibit to some extent. This property
states that only a few memory positions are used or reusadgdarshort interval of time, and
consequently we could predict which memory locations aiagyto be accessed in the future.



Precisely assuming this property is the basis of common atenppardware design such as cache
memory. The goal of such designs is to lessen the growingisysgeexisting between the memaory
system and the processors.

Locality exploitation has become a major issue to deal whHenining a good efficiency in the
execution of a code. In case of regular problems, data is\trgd as static structures like matrices
or arrays, that, in general, generate memory access paenfectly known at compile time.
Thus the compiler can automatically analyze dependencidgiad efficient reordering of data
and computations without altering the program semantics.

A more complex case is represented by the named irregulascédthough these codes work on
static data structures like arrays, however content igeated through indirections. In general,
indirect references are unknown at compile time, so theulghioe fixed at run time. Indirect ref-
erences may cause loop carried dependences difficult tgzenby the compiler, making locality
exploitation a complex task.

Nevertheless an important work has been done with a ceitss of irregular patterns commonly
found in numerical and scientific codes, as those assocwithdcommutative and associative
operators [11, 12], like reductions. Techniques develdpdtis context prove that it is possible
to design effective compiler transformations that explodality with no need of solving such
indirections at compilation time.

Programs handling pointer-based data structures meadert@rallenge from the point of view of
locality exploitation. Usually programmers use pointetsew data structures are going to be built
and modified during execution. In contrast to regular cotlissriot possible to know the memory
reference pattern nor the shape of the data structure atileotimpe, as it is given by the pointer
links created at runtime. In addition, data structure congods are dynamically allocated as they
are needed, and therefore their memory locations may belfecattered over the memory space.
The degree of scattering will depend on the allocation galithew memory locations, which,
in general, is not under the programmer’s control. Also thit avoids the possibility of making
assumptions about the memory area where data are placagsbeawos different executions of the
same program with the same data may generate different rggaference patterns.

The effective reordering of data and computations reptesdso a difficult task in codes handling
pointer-based structures. The computation reorganizaitimited by the dependence test since
if dependences are unknown the order of sentences can nbahgead in a safe way. Addition-
aly, a memory location that is referenced by multiple pami@liasing) makes data reordering a
complex task because different paths in the data structayemeet in this location.

In this section we analyze the locality exploitation problin codes using pointer-based data
structures. It has been organized as follows. First, wesiflathis kind of codes regarding several

issues to take into account when developing locality exiplpitechniques. Next, an overview

of different existing approaches exploiting locality inipr-based programs is presented. Fi-
nally, we discuss how shape analysis may be helpful in omldesign techniques that are able to
improve reference locality in these programs.

4.1 Features of pointer-based codes

Locality exploitation is given to a great extent by the dbigaorder used to traverse the elements
of data structures. Thus, in general, saying that a coddiexjuod locality means that the order in



which data is placed in memory shows certain affinity with dhéer data is traversed. In regular
codes working on vectors and matrices, this order is deterthby the packing used when storing
such structures, and the traversing pattern which is giydireear. However, the situation is
not so simple in pointer-based codes. In this section weyaeaeveral features related to data
ordering and how they influence the strategies to follow.

In a typical code handling pointer-based structures we @stinduish two phases in execution.
The first one involves the building of the data structure, taedsecond one its use. In the process
of building the data structure two important componentssate its entry point location in heap
memory and the graph that represents the different patteisttucture (given by pointer fields).

One major factor that can determine the strategy to follothésway that data structure changes
dynamically during the program execution. A simple caseasponds to a static structure, that
does not change once created. In this situation we can duggidlow a strategy based on the
inspector/executor paradigm. The inspector extract datatare characteristics in runtime, and
it carry out transformations oriented to improve localldowever if we are dealing with dynamic
structures, that is, structures whose shape is modifiedhspector/executor approach may be not
so appropriate. Calling an inspector every time the datetres are modified could cause a high
overhead. Nevertheless the inspector approach may befussgéctor is invoked only few times
when some modification threshold is surpassed.

The way the data structure is traversed is another factoe tcobsidered. Initial data locations
in memory are determined during the structure creation. @¥e two facts regarding this initial
situation. First, the order in which data is traversed maydifferent to the order in which it
was allocated. Second, the pointer graph may represemuggpiaths to follow but only some of
them will be taken when the program runs. A well known exanigpetree where we have several
typical possibilities to visit the structure elements (poer, postorder, ...). Traversing information
is a major aspect in locality exploitation and hence we neezktract not only information about
the structure itself but also additional information abthé path followed when the structure is
traversed.

In the handling of pointer-based data structures we havéh@mne hand, the traversing of the
structure until reaching a specific element data and, on tier d®hand, the computation that is
carried out once the above element is located. If most ofithe is spent in traversing the data
structure, it would be difficult to hide memory latency. Theason is the chain of successive
pointers we need to follow to located the target elementhdfggrocessing time is small, we can
not easily overlap the computation with the prefetching tbieo elements to be visited, as several
indirect references may be involved. Additionally, in piesas where computation dominates, the
overhead of data structure transformations, like re-l&gjauill be less significant, so they can be
carried out frequently in the case of dynamic codes.

4.2 Related work

Diverse approaches to improve the locality exploitatiod hile memory latency have been ex-
plored in the literature in the context of codes handlinghpai structures. A complete view of the
different locality enhancement issues is discussed in [IBgy propose several locality oriented
techniques with the goal of improving the cache memory bienavased on some reorganization
of the dynamic data structures. This can be done at fourdewsta structure definition, mem-
ory allocation, pointer structure reorganization in rargiand data rearrangement during garbage



collection.

Focusing on the three first levels, we find three differerategies: clustering, coloring and com-
pression. Clusteringmeans the data structure is packed in such a way that the ikedgtdccessed
data elements are placed in the same cache block. For exampl&ee the father and direct de-
scendants can be packed together in the same block. Of cthedinal behavior will depend on
how the structure is traversed and modified. The airoabbring is avoiding cache conflicts due
to the limited associativity of the cache. For this purpdsedata elements accessed more often
are placed in non-conflicting cache blocks, and those aeddsss frequently in the remaining
blocks. Finally,compressiormeans the data structure is transformed so as several datardk
are placed in the same cache block. Now those elements assaccin a different way, that is,
we need to uncompress them to get the original data. For dgamlinked list can be compressed
in a linear array. In this case, data elements will be referdrby means of an offset instead of
following the original chain of pointers.

Placement in memory of the dynamic data structure wheneauidaas also an important effect
on locality. In [13] acache conscious allocatdccnal | oc) is proposed, that allows to allocate
memory locations near those that are probably accessede 8ia dynamic data structure may
be traversed in different ways, and also it can be modifieduimiime, cache conscious alloca-
tion techniques can be reinforced by reorganizing the stradayout. A cache conscious layout
reorganizer¢cnor ph) is also described in [13], based on clustering and colosingtegies.

Atechnique widely used in regular codes (array-based)dodte memory latency is data prefetch-
ing. Some works analyze this strategy in the context of poibaised codes [14, 15]. The aim is
to solve the knowrmpointer chasingoroblem. In a dynamic data structure elements are accessed
after traversing several pointer links. The idea is to detee the location of a data element before
needed, trying to hide memory latency. However, this pesiaty usually needs several successive
indirect accesses to memory. To overcome this problem soxiagy pointers jump-pointer$
may be introduced in order to anticipate future elementheflinked structure. In [14] several
prefetching jump pointer based approaches are introduaethehistory prefetchingor greedy
prefetching In the first one artificial links are created over the streetly using an historical
queue of visited locations. The second one carries out thketehing of data elements directly
linked to an specific element one, not using any artificial gunointers. In [15] prefetching is
done by means of an auxiliary array associated with eachelleti@ent, containing the location of
other data elements that will be visited starting from treatipular element.

A limitation of prefetching based methods is the inabilifypoedicting which is the next element
of the structure to be visited. In this respect some works ¥ try to discover certain regular-
ities in the dynamic reference patterns. Statistical teghes applied to the reference trace can
provide these regularity features. After profiling the caohel obtaining such features the code
can be transformed using this regularity information. &efing instructions can be added to the
code taking into account which locations have more proltatuf being referenced in the future.
This technique is used in [16] to identify strides in the meyneference pattern, based on the
identification of indirect load instructions. In [17] is detbed an efficient representation of the
data reference locality, which is several orders of magieitsmaller than a whole execution trace.
It is based on a hierarchical compression algorithm, usedisiwover regularities in access pat-
terns, callechot data streamsAfter locating these hot data streams, techniques ofeingt and
prefetching can be applied.

Together with the software techniques to exploit locatityne hardware proposals are found in the
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Figure 5: Adding a node at the end of a single linked list
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literature. In [18, 19] a specific hardware is described thas to find pairs of load instructions,
loads that produce a memory address and loads that consuimeswaddress. These load pairs
may correspond with indirect accesses, like those thateappetraversing linked data structures.
Load pairs are identified in execution windows and their eissed program counter is stored in
a table. This correlation table keeps consumer/producat pairs more recently found. This
information is used to prefetch consumer loads.

4.3 Locality exploitation using shape information

In this section we discuss how the shape analysis descrilfged. 2 may become a helpful tool to
get useful information for locality exploitation in dynaenilata structures. This work is currently
in progress and we set out here some key ideas. We focus entiaitt on data placement in mem-
ory, in order to get better use of memory hierarchy. Spedlificavo of the previously described
approaches are considered: data allocation and datasguerrangement.

Regarding data allocation we assume that a hierarchy aarsseillocator is available. This al-
locator is able to provide a memory area on demand followigain locality policy, like the
proximity to a certain location. The proximity factor depisron the data structure and how ele-
ments are inserted in the structure during its creatiors it ithis point when the shape analysis
may be useful. Let us consider a hierarchy conscious atosanilar to the one described in [13].
This allocator is invoked asc- mal | oc(si ze, *p), indicating the request size and a pointer
to define the proximity. We desire that the allocated mem®asinear as possible the poirper

When we convert conventional allocations into hierarchysoious ones, some knowledge of the
structure and code semantics is needed, in order to seléch ywhinter we want to be near to.
However this conversion can be easier with shape analyst.us consider adding an element
at the end of a single linked list as an example. In figure 5 duedor this operation and some
illustrative possible shape graphs for different stateane shown. In this figure, RSG1 is the
entry RSG to theddl i st () function. RSG2 is one of the graphs associated with stateS&im
one of the iterations of the loop. Finally, RSG3 is assodiatéh statement S5. Through auxiliary
pointers the insertion point is located, adding the new el@min this simple case we desire the
new node to be near to the last one. So the hierarchy consallogator will need as parameter the
position of this last node. We can observe how the shape gnapiides this nearness information,
and how we can select the pointer to use as argument of therttigrconscious allocator.

Regarding the second approach, reorganization of the datetige, the information of shape
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Figure 6: Back jump pointers for shared nodes

analysis may also be useful. Let us consider a hierarchycamurss structure reorganizer as it is
introduced in [13]. Some of topological parameters reguierearrange the data structure can
be obtained from the shape graph. First, we can establishdim of the code where the data
structure is completely defined to insert there the call erdorganizer. Second, it allows us to
know if the transformation is applicable, because someicdshs may exist (e.g. valid only for
trees). Third, the shape graph can provided some paranmsteessary for the reorganizer: entry
point to the data structure, maximum number of descenddrtsiode and the access function to
descendants from their father.

An important drawback of data reorganization is due to elgmpointed by several other pointers.
On transforming the structure if one of these elements akitg original position in memory, all
the pointers pointing to must also be changed suitably, deroto hold the structure shape. Pre-
cisely the limitations of the reorganizer proposed in [11&] derived from this fact (only one entry
point and tree-like restrictions). On analyzing the datacttire shape some attributes Iileared
give us just information about nodes potentially referrgdséveral pointers. We can enhance the
structure reorganizer to be applicable to a wide range gftgrand not only trees. For this purpose
we can associate a pointer list to each element classifiebasds Each pointer in this list act as
aback jump pointeto the father nodes of this shared element.

In figure. 6 an example is shown. If we take a binary tree ite@ated shape (a) does not contain
any shared node. However if leaf nodes are referenced byaddather nodes, then the shape is
the same but the attribute shared is asserted for leavein(the case (a) the reorganizer can be
easily applied but in (b) several paths can end in a node, ngakie reorganization difficult or
impossible. Shape analysis suggests not only the nodeswhaek jump pointers can be added
but the statements of the code where their values must berdeésl.

5 Conclusions

The optimization of pointer-based codes is a key issue whashnot fully addressed due to the
high complexity involved in the process. We believe thapghanalysis of dynamic data structures
is a powerful tool to help the development of optimizing teiclues for this kind of codes. In this
paper we have presented how shape analysis may be used twitleblo important topics in
high-performance computing, parallelism and locality.
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