A new Dependence Test based on Shape
Analysis for Pointer-based Codes*

A. Navarro, F. Corbera, R. Asenjo, A. Tineo, O. Plata and E.L. Zapata

Dpt. of Computer Architecture, University of Mdlaga,
Campus de Teatinos, PB: 4114, E-29080. Malaga, Spain.

{angeles ,corbera,asenjo,tineo, oscar,ezapata}@ac .uma.es

Abstract. The approach presented in this paper focus on detecting data
dependences induced by heap-directed pointers on loops that access dy-
namic data structures. Knowledge about the shape of the data structure
accessible from a heap-directed pointer, provides critical information for
disambiguating heap accesses originating from it. Our approach is based
on a previously developed shape analysis that maintains topological in-
formation of the connections among the different nodes (memory loca-
tions) in the data structure. Basically, the novelty is that our approach
carries out abstract interpretation of the statements being analyzed, and
let us annotate the memory locations reached by each statement with
read/write information. This information will be later used in order to
find dependences in a very accurate dependence test which we introduce
in this paper.

1 Introduction

Optimizing and parallelizing compilers rely upon accurate static disambiguation
of memory references, i.e. determining at compiling time if two given memory
references always access disjoint memory locations. Unfortunately the presence
of alias in pointer-based codes makes memory disambiguation a non-trivial issue.
An alias arises in a program when there are two or more distinct ways to refer to
the same memory location. Program constructs that introduce aliases are arrays,
pointers and pointer-based dynamic data structures.

Over the past twenty years powerful data dependence analysis have been
developed to resolve the problem of array aliases. The problem of calculating
pointer-induced aliases, called pointer analysis, has also received significant at-
tention over the past few years [12], [10], [2]. Pointer analysis can be divided into
two distinct subproblems: stack-directed analysis and heap-directed analysis. We
focus our research in the latter, which deals with objects dynamically allocated
in the heap. An important body of work has been conducted lately on this kind
of analysis. A promising approach to deal with dynamically allocated structures
consists in explicitly abstracting the dynamic store in the form of a bounded

* This work was supported in part by the Ministry of Education of Spain under con-
tract TIC2003-06623.

graph. In other words, the heap is represented as a storage shape graph and the
analysis tries to capture some shape properties of the heap data structures. This
type of analysis is called shape analysis and in this context, our research group
has developed a powerful shape analysis framework [1].

The approach presented in this paper focus on detecting data dependences
induced by heap-directed pointers on loops that access pointer-based dynamic
data structures. Particularly, we are interested in the detection of the loop-
carried dependences (henceforth referred as LCDs) that may arise between the
statements in two iterations of the loop. Knowledge about the shape of the data
structure accessible from heap-directed pointers, provides critical information
for disambiguating heap accesses originating from them, in different iterations
of a loop, and hence to provide that there are not data dependences between
iterations.

Until now, the majority of LCDs detection techniques based on shape analysis
[3], [8], use as shape information a coarse characterization of the data structure
being traversed (Tree, DAG, Cycle). One advantage of this type of analysis is that
it enables faster data flow merge operations and reduces the storage requirements
for the analysis. However, it also causes a loss of accuracy in the detection of
the data dependences, specially when the data structure being visited is not a
“clean” tree, contain cycles or is modified along the traverse.

Our approach, on the contrary, is based on a shape analysis that maintains
topological information of the connections among the different nodes (memory
locations) in the data structure. In fact, our representation of the data structure
provides us a more accurate description of the memory locations reached when a
statement is executed inside a loop. Moreover, as we will see in the next sections,
our shape analysis is based on the symbolic execution of the program statements
over the graphs that represent the data structure at each program point. In other
words, our approach does not relies on a generic characterization of the data
structure shape in order to prove the presence of data dependences. The novelty
is that our approach symbolically executes, at compile time, the statements of
the loop being analyzed, and let us annotate the real memory locations reached
by each statement with read/write information. This information will be later
used in order to find LCDs in a very accurate dependence test which we introduce
in this paper.

Summarizing, the goal of this paper is to present our compilation algorithms
which are able to detect LCDs in loops that operate with pointer-based dynamic
data structures, using as a key tool a powerful shape analysis framework. The
rest of the paper is organized as follows: Section 2 briefly describes the key
ideas under our shape analysis framework. With this background, in Section
3 we present our compiler techniques to automatically identify LCDs in codes
based on dynamic data structures. Next, in Section 4 we summarize some of
the previous works in the topic of data dependences detection in pointer-based
codes. Finally, in Section 5 we conclude with the main contributions and future
works.

2 Shape Analysis Framework

The algorithms presented in this paper are designed to analyze programs with
dynamic data structures that are connected through pointers defined in lan-
guages like C or C++. The programs have to be normalized in such a way that
each statement dealing with pointers contains only simple access paths. This is,
we consider six simple instructions that deal with pointers:

x = NULL; x = malloc; x = y; x->field = NULL; x->field = y; x = y->field;

where x and y are pointer variables and field is a field name of a given data
structure. More complex pointer instructions can be built upon these simple
ones and temporal variables. We have used and extended the ANTLR tool [11]
in order to automatically normalize and pre-process the C codes before the shape
analysis.

Basically, our analysis is based on approximating by graphs (Reference Shape
Graphs, RSGs) all possible memory configurations that can appear after the exe-
cution of a statement in the code. By memory configuration we mean a collection
of dynamic structures. These structures comprise several memory chunks, that
we call memory locations, which are linked by references. Inside these memory
locations there may be several fields (data or pointers to other memory loca-
tions). The pointer fields of the data structure are called selectors. In Fig. 1
we can see a particular memory configuration which corresponds with a single
linked list. Each memory location in the list comprises the val data field and the
nxt selector (or pointer field). In the same figure, we can see the corresponding
RSG which capture the essential properties of the memory configuration by a
bounded size graph. In this graph, the node nl represent the first memory lo-
cation of the list, n2 all the middle memory locations, and n3 the last memory
location of the list.

ﬁ’ Memory Configuration
i (5 (el
\ pd

_ P

- DS @®

Reference Shape Graph (RSG)

Fig. 1. Working example data structure and the corresponding RSG.

Basically, each RSG is a graph in which nodes represent memory locations
which have similar reference patterns. To determine whether or not two memory
locations should be represented by a single node, each one is annotated with a
set of properties. Now, if several memory locations share the same properties,
then all of them will be represented (or summarized) by the same node (n2 in

our example). These properties are described in [1], but two of them are sketched
here because they are necessary in the following sections: (i) the Share Infor-
mation can tell whether at least one of the locations represented by a node is
referenced more than once from other memory locations. We use two kinds of
attributes for each node: (1) SHARED(n) states if any of the locations repre-
sented by the node n can be referenced by other locations by different selectors
(e.g. SHARED(n2)=FALSE in the previous figure); (2) SHSEL(n, sel) points
out if any of the locations represented by n can be referenced more than once by
following the same selector sel from other locations. For instance, SHSEL(n2,
nxt)= FALSE captures the fact that following selector nzt you always reach
a different memory location; and (ii) the Touch Information is taken into
account only inside loop bodies to avoid the summarization of already visited
locations with non-visited ones. The touch information will be also the key tool
in order to automatically annotate the nodes of the data structure which are
written and/or read by the pointer statements inside loops.

Each statement of the code may have associated a set of RSGs, in order
to represent all the possible memory configuration at each particular program
point. In order to generate the set of RSGs associated with each statement (or
in other words, to move from the “memory domain” to the “graph domain”
in Fig. 1), a symbolic execution of the program over the graphs is carried
out. In this way, each program statement transforms the graphs to reflect the
changes in memory configurations derived from statement execution. The ab-
stract semantic of each statement states how the analysis of this statement
must transform the graphs [1]. The abstract interpretation is carried out iter-
atively for each statement until we reach a fixed point in which the resulting
RSGs associated with the statement does not change any more. All this can be
illustrated by the example of Fig. 2, where we can see how the statements of
the code which builds a single linked list are symbolically executed until a fixed
point is reached.

1
S1l: l=malloc()

@
s2: p=1 1%

hil
while () Iteration 1 Iteration 2 Iteration 3 Iteration 4

a a a 1 @
s3: a:malloc():l% > Noo o oo b oo d
s pomtes o0t Nl | oo | oSe-d
N R 5. Fixedpoint a

T S eS| oSBT oy

Fig. 2. Building an RSG for each statement of an example code.

3 Loop-Carried Dependence Detection

As we have mentioned, we focus on detecting the presence of LCDs on loops that
traverse heap-based dynamic data structures. Two statements in a loop induce
a LCD, if a memory location accessed by one statement in a given iteration, is
accessed by the other statement in a future iteration, with one of the accesses
being a write access.

Our method tries to identify if there is any LCD in the loop following the
algorithm that we outline in Fig. 3. Let’s recall that our programs have been
normalized such that the statements dealing with pointers contain only simple
access paths. Let’s assume that statements have been labeled. The set of the loop
body simple statements (named SIMPLESTMT) is the input to this algorithm.

fun LCDs_Detection (SIMPLESTMT)
1. V S; € SIMPLESTMT that accesses the heap
Attach(S;, DepTouch(AccPointer,AccAttS;,AccField));
2. DEPGROUP = Create_Dependence_Groups (DEPTOUCH) ;
V DepGroupy € DEPGROUP
AccessPairsGroupy = 0 ;
3. ACCESSPAIRSGROUP = Shape_Analysis(SIMPLESTMT, DEPTOUCH, DEPGROUP);
4. YV AccessPairsGroupy; € ACCESSPAIRSGROUP
Dep, = LCD_Test(AccessPairsGroupy) ;
if V g, Depy, == NoDep then
return (NoLCD) ;
else
return(Depy) ;
endif;
end

Fig. 3. Our dependences detection algorithm.
Summarizing, our algorithm can be divided into the following steps:

1. Only the simple pointer statements, S;, that access the heap inside the
loop are annotated with a Dependence Touch, DepTouch, directive. A De-
pendence Touch directive is defined as DepTouch(AccPointer, AccAttrS;,
AccField). It comprises three important pieces of information regarding the
access to the heap in statement S;: i) The access pointer, AccPointer: is
the stack declared pointer which access to the heap in the statement; ii)
The access attribute, AccAttS;: identifies the type of access in the state-
ment (ReadS; or WriteS;); and iii) The access field, AccField: is the field
of the data structure pointed to by the access pointer which is read or writ-
ten. For instance, an S1: aux = p->nxt statement should be annotated with
DepTouch(p, ReadS1, nxt), whereas the S4: aux3->val = tmp statement
should be annotated with DepTouch (aux3, WriteS4, val).

2. The Dependence Groups, are created. A Dependence Group, DepGroup,,
is a set of access attributes fulfilling two conditions:

— all the access attributes belong to Dependence Touchs with the same
access field (g) and access pointers of the same data type, and

— at least one of these access attributes is a WriteS;.
In other words, a DepGroup, is related to a set of statements in the loop that
may potentially lead to a LCD, which happens if: i) the analyzed statement
makes a write access (WriteS;) or ii) there are other statements accessing to
the same field (g) and one of the accesses is a write. We outline in Fig. 4 the
function Create Dependence _Groups. It creates Dependence Groups, using
as an input the set of Dependence Touch directives, DEPTOUCH. Note that
it is possible to create a Dependence Group with just one WriteS; attribute.
This Dependence Group will help us to check the output dependences for the
execution of S; in different loop iterations. As we see in Fig. 4 the output of
the function is the set of all the Dependence Groups, named DEPGROUP.

fun Create_Dependence_Groups (DEPTOUCH)
DEPGROUP = {);
V DepTouch(AccPointer; ,AccAttS;,AccField;) € DEPTOUCH
if [(AccAttS; == WriteS;) or
3 DepTouch(AccPointer; ,AccAttS;,AccField;) being j #i /
(AccField; == AccField;) and (TYPE(AccPointer;) == TYPE(AccPointer;)) and
(AccAttS; == WriteS; or AccAttS; == WriteS;)] then
g = AccField;;
if A DepGroup, € DEPGROUP then
DepGroupy = {AccAttS;}; DEPGROUP = DEPGROUP U {DepGroupgy};
else
DepGroupy = DepGroupy U {AccAttS;};
endif;
endif;
return (DEPGROUP) ;

Fig. 4. Create_Dependence_Groups function.

Associated with each DepGroup,, our algorithm initializes a set called
AccessPairsGroup, (see Fig. 3). This set is initially empty but during the
analysis process it may be filled with the pairs named access pairs. An ac-
cess pair comprises two ordered access attributes. For instance, a DepGroup,
= {ReadS;, WriteS;, WriteS;} with an AccessPairsGroup, comprising
the pair <ReadS;,WriteS;> means that during the analysis the same field,
g, of the same memory location may have been first read by the statement S;
and then written by statement S;, clearly leading to an anti-dependence. The
order inside each access pairs is significant for the sake of discriminating be-
tween flow, anti or output dependences. The set of all AccessPairsGroup’s
is named ACCESSPAIRSGROUP.

3. The shape analyzer is fed with the instrumented code. As we have men-
tioned, the shape analyzer is described in detail in [1] and briefly introduced
in Section 2. However, with regard to the LCD test implementation the most

important idea to emphasize here is that our analyzer is able to precisely
identify at compile time the memory locations that are going to be pointed
to by the pointers of the code. Basically, the task of the analyzer is to sym-
bolically execute each statement updating the graphs. At the same time,
with the information provided by the DepTouch directive, the node pointed
to by the access pointer of the statement, is “touched”. This means, that
the memory location is going to be marked with the access attribute of the
corresponding DepTouch directive. In that way, we annotate in the memory
location, that a given statement has read or written in a given field comprised
in the location. In this step, our algorithm call to the Shape Analysis func-
tion whose inputs are the set of simple statements SIMPLESTMT, the set
of DepTouch directives, DEPTOUCH, and the set of Dependence Groups,
DEPGROUP. The output of this function is the final set ACCESSPAIRS-
GROUP. In Fig. 5 we outline the necessary extension to our shape analysis
presented in [1] in order to deal with the dependence analysis.

fun Shape_Analysis(SIMPLESTMT, DEPTOUCH, DEPGROUP)
V S; € SIMPLESTMT
if DepTouch(AccPointer,AccAttS;,AccField) attached to S; then
AccessPairsGroupy = TOUCH_Updating(TOUCH,, AccAttS;, DepGroupy) ;

endif;

return (ACCESSPAIRSGROUP) ;

Fig. 5. Shape_Analysis function extension.

Let’s see more precisely how the Shape_Analysis function works. The simple
statements of the loop body are executed according to the program control
flow, and each execution takes the graphs from the previous statement and
modifies it (producing a a new set of graphs). When a statement S;, belong-
ing to the analyzed loop and annotated with a DepTouch directive, is sym-
bolically executed the access pointer of the statement, AccPointer, points
to a node, n, that has to represent a single memory location. Each node
n of an S;’s RSG graph, has a Touch Set associated with it, TOUCH,,.
The DepTouch directive is also interpreted by the analyzer leading to the
updating of that TOUCH,, set.

This TOUCH set updating process can be formalized as follows. Let be
DepTouch=(AccPointer,AccAttS;,AccField) the Dependence Touch directive
attached to sentence S;. Let’s assume that AccAttS; belongs to a Depen-
dence Group, DepGroup,. Let n be the RSG node pointed to by the access
pointer, AccPointer, in the symbolic execution of the statement S;. Let be
{AccAttSy} the set of access attributes which belongs to the TOUCH,, set,
where k represents all the statements Sy, which have previously touched the

node. TOUC H,, could be an empty set. Then, when this node is going to be
touched by the above mentioned DepTouch directive, the updating process
that we show in Fig. 6 takes place.

fun TOUCH_Updating(TOUCH,, AccAttS;, DepGroupy)
if TOUCH, == () then /* The Touch set was originally empty */
TOUCH,, = {AccAttS;}; /* just append the new access attribute */
else /* The Touch set was not empty */
AccessPairsGroupy = AccessPairsGroup_Updating(TOUCH, , AccAttS;, DepGroup,) ;
/* update the access pairs group set */
TOUCH, = TOUCH, U {AccAttS;}; /* append the new access attribute */
endif;
return (AccessPairsGroupy) ;

fun AccessPairsGroup_Updating(TOUCH,, AccAttS;, DepGroupy)
V AccAttS; € TOUCH,
if AccAttS, € DepGroupy then /* AccAttS;, and AccAttS; € DepGroupg */
AccessPairsGroupy = AccessPairsGroupy U {<AccAttSy,AccAttS;>};
/* A new ordered pair is appended */
endif;
return (AccessPairsGroupy) ;

Fig. 6. TOUCH and AccessPairsGroup updating functions.

As we note in Fig. 6, if the Touch set was originally empty we just append
the new access attribute AccAttS; of the DepTouch directive. However, if the
Touch set does already contains other access attributes, {AccAttSy}, two
actions take place: first, an updating of the AccessPairsGroup, associated
with the DepGroup, happens; secondly, the access attribute AccAttS; is ap-
pended to the Touch set of the node, TOUCH,, = TOUCH,, U { AccAttS;}.
The algorithm for updating the AccessPairsGroup, is shown in Fig. 6. Here
we check all the access attributes of the statements that have touched pre-
viously the node n. If there is any access attribute, AccAttS; which belongs
to the same DepGroup, that AccAttS; (the current statement), then a new
access pair is appended to the AccessPairsGroup,. The new pair is an or-
dered pair <AccAttSy, AccAttS;> which indicates that the memory location
represented by node n has been first accessed by statement S and later by
statement S;, being S, and S; two statements associated with the same
dependence group, and so a conflict may occur. Note that in the implemen-
tation of an AccessPairsGroup, there will be no redundancies in the sense
that a given access pair can not be stored twice in the group.

4. In the last step, our LCD_Test function will check each one of the
AccessPairGroup, updated in step 3. This function is detailed in the code
of Fig. 7. If an AccessPairGroup, is empty, the statements associated with
the corresponding DepGroup, does not provoke any LCD. On the contrary,
depending on the pairs comprised by the AccessPairsGroup, we can raise
some of the dependence patterns provided in Fig. 7, thus LCD is reported.

fun LCD_Test (AccessPairGroupy)
if <WriteS;,ReadS;> € AccessPairGroup,
then return(FlowDep); /* Flow dep. detected between S; and S; */
if <ReadS;,WriteS;> € AccessPairGroupg
then return(AntiDep); /* Anti dep. detected between S; and S; */
if <WriteS;,WriteS;> € AccessPairGroup,
then return(OutputDep); /* Output dep. detected between S; and S; */
if <WriteS;,WriteS;> € AccessPairGroup,
then return(OutputDep); /#* Output dep. detected between S; and S; */
endif
return(NoDep) ; /* no LCD detected */

Fig. 7. LCD test.

We note that the LCD_Test function must be performed for all the
AccessPairGroups updated in step 3. When we verify for all the
AccessPairGroups, that none of the dependence patterns is found, then our
algorithm informs that the loop does not contain LCD dependences (NoLCD)
due to heap-based pointers.

3.1 An example

Let’s illustrate via a simple example how our approach works. Fig. 8(a) represents
a loop that traverses the data structure of Fig. 1. This is, this loop is going to
be executed after the building of the linked list data structure due to the code
of Fig. 2. In the loop, the statement tmp = p->val read a memory location that
has been written by p->nxt->val = tmp in a previous iteration, so there is a
LCD between both statements.

p = list; p = list;

» . - 1=
while (p->nxt != NULL) }’hlle (p -> nxt != NULL)
{

S1: tmp = p->val; DepTouch(p, ReadS1, val);
S2: aux = p->nxt; DepTouch(p, ReadS2, nxt);
S3: aux->val = tmp; DepTouch(aux, WriteS3, val);
S4: p = p->nxt; DepTouch(p, ReadS4, nxt);
}
(a) (b)
Fig. 8. (a) Loop traversal of a dynamic data structure; (b) Instrumented code used to
feed our shape analyzer.

tmp = p->val;
p~>nxt->val = tmp;
P = p—>nxt;

}

In order to automatically detect this LCD, we use an ANTLR-based prepro-
cessing tool that atomizes the complex pointer expressions into several simple
pointer statements which are labeled, as we can see in Fig. 8(b). For instance,
the statement p->nxt->val = tmp; has been decomposed into two simple state-
ments: S2 and S3. After this step, the SIMPLESTMT set will comprise four
simple statements.

Next, by applying the first step of our algorithm to find LCDs, the DepTouch
directive is attached to each simple statement in the loop that accesses the heap,
as we can also appreciate in Fig. 8(b). For example, the statement S2: aux =
p->nxt has been annotated with the DepTouch(p, ReadS2, nxt), stating that
the access pointer is p, the access attribute is ReadS2 (which means that the S2
statement makes a read access to the heap) and finally, that the read access field
is nxt. This first step of our method have been also implemented with the help
of ANTLR.

Next we move on to the second step in which we point out that statements
S1 and S3 in our code example meet the requirements to be associated with
a dependence group: both of them access the same access field (val) with
pointers of the same type (p and aux), being S3 a write access. We will de-
fine this dependence group as DepGroup,,={ReadS1, WriteS3}. Besides, the
associated AccessPairsGroup,q set will be, at this point, empty. Therefore,
after this step, DEPGROUP = {DepGroupy,q } and ACCESSPAIRSGROUP =
{AccessPairsGroupy,a }-

Let’s see now how step 3 of our algorithm proceeds. As we have mentioned,
Fig. 1 represents the only RSG graph of the RSGs set at the loop entry point.
Remember that our analyzer is going to symbolically execute each of the state-
ments of the loop iteratively until a fixed point is reached. This is, all the RSG
graphs in the RSGs set associated with the statements will be updated at each
symbolic execution and the loop analysis will finish when all the graphs in the
RSGs do not change any more.

FIRST nxt
ITERATION list

S1: tmp = p->val; —
. Y~ P

nxt
list

4+~ ReadSt
\

p aux

S2: aux = p->nxt;

list—>

3 - 4~ ReadSt,
o aux->val = tmp; ReadS2
\p‘ eal aux

list—

ReadS1 WriteS3
4+ Reads2

S4: p = p->nxt;
p
list—>
SECOND
ITERATION /Reads1 WriteS3
ReadS2

S1: tmp = p->val; ReadS4
aux

ReadS1
ReadS2
ReadS4

Fig. 9. Initial RSG at the loop entry and the resultant RSG graphs when executing
S1, S2, S3 and S4 in the first loop iteration, and when S1 is executed in the second
loop iteration.

Now, in the first loop iteration, the statements S1, S2, S3 and S4 are executed
by the shape analyzer. The resultant RSG graphs when these statements are
symbolically executed, taking into account the attached DepTouch directives,
are shown in Fig. 9. Executing S1 will produce that the node pointed to by
p (n1) is touched by ReadS1. When executing S2, aux = p->nxt will produce
the materialization of a new node (the node n4), and the node pointed to by p
will be touched by ReadS2. Next, the execution of S3 will touch with a WriteS3
attribute, the node pointed to by aux (n4). Finally, the execution of S4 will touch
with a ReadS4 attribute the node n;, and then p will point to node ny.

In the second loop iteration, when executing S1 over the RSG graph that
results from the previous symbolic execution of S4, we find that the nodes pointed
to by p (now node n4) is touched by ReadS1. When touching this node, the
TOUCH_.Updating function detects that the node has been previously touched
because TOUCH,,4 ={WriteS3}. Since the set is not empty, the function will
call to the AccessPairsGroup Updating function. Now, this function will check
each access attribute in the TOUCH 4 set, and it will look for a dependence
group for such access attribute. In our example, WriteS3 is in the DepGroupyq;.
In this case, since the new access attribute that is touching the node (ReadS1)
belongs to the same dependence group, a new access pair is appended to the
AccessPairsGroupyqa= {<WriteS3, ReadS1>}. This fact is indicating that the
same memory location (in this case the field val in node n4) has been reached
by a write access from statement S3, followed by a read access from statement
S1.

The shape analyzer follows, iteratively, the symbolic execution of statements
in the loop until a fixed point is reached. The resultant RSG graph is shown
in Fig.10. We also get at the end of the analysis that AccessPairsGroup,q,=
{<WriteS3, ReadS1>}.

A paux ‘

ReadS1 WriteS3 WriteS3
ReadS2 ReadS1
ReadS4 ReadS2

ReadS4

Fig. 10. Resultant RSG when the fixed point is reached.

Our algorithm applies now the fourth step: the LCD test (Fig. 7). Our LCD
test reports a FlowDep (flow dependence), because the only access pair group,
AccessPairGroupyq in the ACCESSPAIRSGROUP set, contains a <WriteS3,
ReadS1> pair. As we see, our dependences detection algorithm accurately cap-
tures the LCD that appears in the loop.

3.2 Some preliminary results

We have applied our dependences detection algorithm to some sample codes,
which we show in Fig. 11. The goal of these preliminary experiments is to illus-
trate the accuracy of our method in the detection of data dependences in codes

that traverse (and/or modify) complex data structures. In each code, the sen-
tences have been atomized and annotated with the corresponding directives (for
simplicity, we do not display them) in step 1. The code from Fig. 11(a) traverses
a DAG data structure, which is shown in Fig. 12(a) and whose RSG at the loop
entry is shown in the same figure. Note that in the RSG, the dotted edges reach-
ing n4 means that SHSEL(n4,ch)=true, which captures the fact that a memory
location represented by n4 can be reached from different memory locations by
following the ch selector. We assume that there is only one RSG graph in the
RSGs set at this program point. The write statement that may induce an LCD
is S3 (S1 access the same “i” field but using an access pointer of a different data
type). Therefore a dependence group is created: DepGroup;={<WriteS3>}. The
associated AccessPairsGroup; is empty at this point. At the end of step 3, our
algorithm returns AccessPairsGroup;={WriteS3, WriteS3}. This is due to the
fact that we can write the same p->ch->i location in several iterations of the
loop. Applying the step 4, our LCD test function reports an output dependence
(OutputDep) for such access pair group.

p = list;
p = list; while (p->nxt != NULL)
p = list; while (p != NULL) {
while (p->nxt != NULL) { S1: tmp = p->num;
{ Si: tmp = p->val; if (cond){
S1: tmp = p->i; if (p->prv != NULL){ S2: aux4 = p->nxt;
S2: auxl = p->ch; S2: aux2 = p->prv; S3: aux4->num = tmp;}
S3: auxl->i = tmp; S3: aux3 = aux2->ch; elseq{
S4: p = p->nxt; S54: aux3->i = tmp;} S54: auxb = p->prv;
} S5: p = p->nxt; S5: auxb->num = tmp;}
} S6: p = p->nxt;
}
(a) (b) ()
Fig.11. (a) Traversal of a DAG data structure; (b) Cyclic access in a Cyclic data

a
structure; (c) Conditional cyclic access in a Cyclic data structure.

Another case is illustrated in the code of Fig. 11(b). The cyclic data structure
and the corresponding RSG at the loop entry are shown in Fig. 12(b). Although
this RSG is similar to the one of the previous example, now SHSEL(n4,ch)=false,
accurately capturing the new topology of this data structure. In the step 2 of
our algorithm, a dependence group DepGroup;={WriteS4} is created and the
associated AccessPairsGroup; is initially set to the empty set. At the end of step
3, our algorithm reports that AccessPairsGroupyq is still empty because our
shape analysis does not touch twice the same node with the WriteS4 attribute.
Thus now, the LCD test function in step 4 reports a no dependence (NoDep). As
there is not another access pair group, our test informs that there is not LCDs
due to heap-based pointers (NoLCD).

p

AT e
(C) "S_t’ nxt || nxt || nxt [:> prv

L ey M L ey M L) v MRS WriteS3,Re§dS1
ReadS1, WriteS5
WriteS3,WriteS5

Fig. 12. Data structures and the corresponding RSG: (a) DAG; (b) Cyclic; (c) Cyclic.

Finally, a new case is illustrated in the code of Fig. 11(c). The data structure
and the corresponding RSG at the loop entry are shown in Fig. 12(c). In this case,
the statement S1 read a field memory location (given by num) that may be writ-
ten conditionally by statements S3 or S5. Thus some dependence may arise. Now,
some traversal of the data structure may contain a cycle (due to the (nzt, prv) se-
lectors). In step 2 the dependence group is defined as DepGrouppym={ReadS1,
WriteS3, WriteS5}. At the end of step 3, our algorithm reports that the pairs
<WriteS3, ReadS1>, <ReadS1, WriteS5> and <WriteS3, WriteS5> are in the
AccessPairsGrouppym. Thus, our LCD test function accurately detects a flow
dependence (FlowDep), an anti-dependence (AntiDep) and an output depen-
dence (OutDep).

4 Related works

Some of the previous works on dependences detection on pointer-based codes,
combine dependence analysis techniques with pointer analysis [4], [5], [9], [6], [3],
[7]. Horwitz et al. [5] developed an algorithm to determine dependences by de-
tecting interferences in reaching stores. Larus and Hilfinger [9] propose to identify
access conflicts on alias graphs using path expressions to name locations. Hen-
dren and Nicolau [4] use path matrices to record connection information among
pointers and present a technique to recognize interferences between computa-
tions for programs with acyclic structures. The focus of these techniques is on
identifying dependences at the function-call level and they do not consider the
detection in the loop context, which is the focus in our approach.

More recently, some authors [3], [7], [8] have proposed dependence analysis
tests based on shape analysis in the context of loops that traverse dynamic data
structures, and these approaches are more related to our work. For instance,
Ghiya and Hendren [3] proposed a test for identifying LCDs that relies on the
shape of the data structure being traversed (Tree, DAG or Cycle), as well as
on the computation of the access paths for the pointers in the statements being
analyzed. In short, their test identifies dependences in programs with Tree-like
data structure or loops that traverse DAG/Cycle structures that have been as-
serted by the programmer as acyclic and where the access paths do not contain
pointer fields. Note that the manual assertion of loops traversing DAG or cyclic
data structures is a must in order to enable any automatic detection of LCDs.
For instance, even asserting as acyclic the loop example from Fig.11(b), this
method would have detected a LCD in the code (due to the prv and ch pointer
fields in the access path of statement S4), while our method can successfully
proves that there is no dependences. Another limitation of this approach is that
data structures must remain static during the data traversal inside the analyzed
loops.

In order to solve some of the previous limitations, Hwang and Saltz proposed
a new technique to identify LCDs in programs that traverse cyclic data structures
[7], [8]. This approach automatically identifies acyclic traversal patterns even in
cyclic (Cycle) structures. For this purpose, the compilation algorithm isolates
the traversal patterns from the overall data structure, and next, it deduces the
shape of these traversal patterns (Tree, DAG or Cycle). Once they have extracted
the traversal-pattern shape information, dependence analysis is applied to detect
LCDs. Summarizing, their technique identifies LCDs in programs that navigate
cyclic data structures in a “clean” tree-like traverse. For instance, in the code
example from Fig.11(b), this method would detect a LCD due to a cycle in the
traversal pattern (due to the prv and nxt selectors). On the other hand, their
analysis can overestimate the shape of the traverse when the data structure is
modified along the traverse, and in these situations, the shape algorithm detect
DAG or Cycle traversal patterns, in which case dependence is reported.

We differ from previous works in that our technique let us annotate the
memory locations reached by each heap-directed pointer with read/write in-
formation. This feature let us analyze quite accurately loops that traverse and
modify generic heap-based dynamic data structures. Our algorithm is able to
identify accurately the dependences that appears even in loops that navigate
(and modify) cyclic structures in traversals that contain cycles, as we have seen
in the code examples from Fig. 11. Besides we can successfully discriminate
among flow, anti and output dependences.

5 Conclusions and Future Works

We have presented a compilation technique that is able to identify LCDs in pro-
grams which work with general pointer-based dynamic data structures. We base
our algorithms in a powerful shape analysis framework that let us analyze quite

accurately loops that traverse and modify heap-based dynamic data structures.
Our algorithm is able to identify precisely dependences even in loops that navi-
gate (and modify) cyclic structures in traversals that contain cycles. Our main
contribution is that we have designed a LCD test that let us extend the scope
of applicability to any program that handle any kind of dynamic data structure.
Moreover, our dependence test let us discern accurately the type of dependence:
flow, anti, output.

We have a preliminary implementation of our compilation algorithms and we
have checked the success in the LCDs detection in several synthetic small codes.
We are planning to conduct a large set of experiments based on C benchmarks,
in order to demonstrate the effectiveness of our method in real applications.

References

1. F. Corbera, R. Asenjo, and E.L. Zapata. A framework to capture dynamic data
structures in pointer-based codes. Transactions on Parallel and Distributed System,
15(2):151-166, 2004.

2. R. Ghiya and L. J. Hendren. Putting pointer analysis to work. In Proc. 25th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 121-133, San Diego, California, January 1998.

3. R. Ghiya, L. J. Hendren, and Y. Zhu. Detecting parallelism in ¢ programs with
recursive data strucutures. In Proc. 1998 International Conference on Compiler
Construction, pages 159-173, March 1998.

4. L. J. Hendren and A. Nicolau. Parallelizing programs with recursive data struc-
tures. IEEE Transactions on Parallel and Distributed Systems, 1:35-47, January
1990.

5. S. Hortwitz, P. Pfeiffer, and T. Repps. Dependence analysis for pointer variables.
In Proc. ACM SIGPLAN’89 Conference on Programming Language Design and
Implementation), pages 28-40, July 1989.

6. J. Hummel, L. J. Hendren, and A. Nicolau. A general data dependence test for
dynamic, pointer-based data structures. In Proc. ACM SIGPLAN’94 Conference
on Programming Language Design and Implementation), pages 218-229, June 1994.

7. Y. S. Hwang and J. Saltz. Identifying parallelism in programs with cyclic graphs.
In Proc. 2000 International Conference on Parallel Processing, pages 201-208,
Toronto, Canada, August 2000.

8. Y. S. Hwang and J. Saltz. Identifying parallelism in programs with cyclic graphs.
Journal of Parallel and Distributed Computing, 63(3):337-355, 2003.

9. J. R. Larus and P. N. Hilfinger. Detecting conflicts between structure accesses.
In Proc. ACM SIGPLAN’88 Conference on Programming Language Design and
Implementation), pages 21-34, July 1988.

10. M. Shapiro and S. Horwitz. Fast and accurate flow-insensitive points-to analy-
sis. In Proc. 24th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 1-14, Paris, France, January 1997.

11. T.J.Parr and R.W. Quong. ANTLR: A predicated-LL(k) parser generator. Journal
of Software Practice and Ezperience, 25(7):789-810, July 1995.

12. R. P. Wilson and M. S. Lam. Efficient context-sensitive pointer analysis for C
programs. In Proc. ACM SIGPLAN’95 Conference on Programming Language
Design and Implementation, pages 1-12, La Jolla, California, June 1995.

