
Digit Recurrence Floating-point Division under HUB
Format

Abstract—Half-Unit-Biased format is based on shifting the
representation line of the binary numbers by half Unit in the
Last Place. The main feature of this format is that the round-
to-nearest is carried out by a simple truncation, preventing any
carry propagation and saving time and area. Algorithms and
architectures have been defined for addition/substraction and
multiplication operations under this format. Nevertheless, the
division operation has not been confronted yet. In this paper we
deal with the floating-point division under HUB format, studying
the architecture for the digit recurrence method, including the
on-the-fly conversion of the signed digit quotient.

Keywords—division by digit recurrence, HUB format, on-the-fly
conversion

I. INTRODUCTION

Rounding-to-nearest is the most extended rounding mode
in computer arithmetic for processors, compilers and standards
(in fact, it is the default mode of the IEEE754-2008 [1]).
The round to nearest mode involves a final addition, which
slows down the system (it usually leads the critical path). The
implementation of this rounding mode is relatively complex
and it involves an increase in both delay and area. Thus, it is
usually implemented in floating-point circuits.

Many efforts have been devoted by the researchers to
reduce the rounding overhead. Recently some works have been
proposed which reduce the hardware requirement and the delay
by performing the round-to-nearest by simple truncation. In
[2][3][4] RN-Representation is presented and analyzed (the
RN standing for round-to-nearest), which allows performing
unbiased round-to-nearest by truncation for the four basic
operations. On the other hand, in [5] a new family of formats
for computing with real-numbers under round to nearest is
presented, which also carry out the round-to-nearest by trunca-
tion. This new representation is called Half-Unit Biased (HUB)
format. Although some architectures under HUB formats have
been presented for addition/substraction and multiplication, to
the best of our knowledge, the division operation has not
been confronted yet. In this paper, we deal with the division
operation under HUB format, in such a way that the four basic
operations are covered under this new format.

The efficiency of using HUB formats for fixed-point rep-
resentation has been demonstrated in [6] and [7] and for
floating-point in [8] and [9]. By reducing bit-width while
maintaining the same accuracy, the area cost and delay of
FIR filter implementations has been dramatically reduced
in [6], and similarly for the QR decomposition in [7]. In
[9] a half-precision floating-point HUB unit is used for high
dynamic range image and video systems (based on additions
and multiplications). In [8] the authors analyze the benefits
of using HUB format for floating point adders, multipliers

and converters from a quantitative point of view. Experimental
analysis demonstrate that HUB format maintains the same
accuracy as conventional format for the aforementioned units,
simultaneously improving area, speed and power consumption
(14% speed-up, 38% less area and 26% less power for single
precision floating point adder, 17% speed-up, 22% less area
and slightly less power for the floating point multiplier) .

On the other hand, in the division by digit recurrence the
quotient is represented in a radix–r from and one digit of it is
obtained per iteration. Fast implementation are obtained if the
residual recurrence is carried out in redundant representation
and the final conversion of the quotient from signed-digit
representation to conventional representation is carried out on-
the-fly.

In this paper we adapt the algorithm of the division by
digit recurrence to deal with HUB numbers. We carry out
the conversion from redundant representation to conventional
representation on-the-fly. In comparison with the counterpart
conventional division by digit recurrence with on-the-fly con-
version we prove that the number of iterations and delay are
kept whereas the hardware requirements are reduced.

The rest of the paper is organized as follows: in section
II we present the fundamental of the HUB representation. In
section III we show the adaptation of algorithm of the division
by digit recurrence to the HUB format. Next we deal with the
number of iterations and calculation of bits required for the
data path. The on-the-fly conversion and rounding is presented
in section IV, including the analysis of the tie case. Finally, in
the last section we give the summary and conclusion.

II. HUB FORMAT FOR FLOATING-POINT

The mathematical fundamentals and a deep analysis of
the HUB format as well as the addition and multiplication
operations under this format can be found in [5]. In this section
we summarize the HUB format defined in [5] and particularize
it for the floating-point normalized HUB numbers, which are
used for the division algorithm in the next sections.

The HUB format is based on shifting the numbers that can
be exactly represented under conventional format by adding
a bias. The bias is just half unit-in-the-last-place (ULP). Let
X denote a HUB number represented by a digit-vector X =
(Xn−1, Xn−2, · · ·X1, X0, X−1, · · ·, X−f) in a radix β. The
value of this HUB number is

X =

 n−1∑
i=−f

Xi · βi

+
β

2
· β−f−1 (1)

where the term β
2 · β−f−1 represents the bias.

This is the author's version of an article that has been published in ARITH23 conferece. Changes were made to this version by the publisher prior to
publication. The final version of record is available at http://dx.doi.org/10.1109/ARITH.2016.17

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing
pubs-permissions@ieee.org.

Conventional ERN

−32

−32

1.000

1.0101

1.001 1.010 1.011 1.100 1.101

1.0011 1.0101 1.0111 1.1001 1.1011

HUB ERN

Fig. 1. Example of conventional 4-bit ERNs and their counterpart HUB

A floating-point HUB number is similar to a regular one
but its significand follows the HUB format. Thus, the only
difference is the format of the significand. In this paper we
use floating-point HUBs operands with normalized signifi-
cand in radix-2. Let us define x as a floating-point HUB
number, which is represented by the triple (Sx,Mx, Ex) such
that x = (−1)SxMx2

Ex , where the significand Mx is a
HUB magnitude. A normalized HUB significand fulfills that
1 < Mx < 2. Thus, for radix-2 the digit-vector has the form
Mx = (Mx0 ,Mx−1 ,Mx−2 , ···,Mx−f

), where each digit is now
a bit, and so it is composed by f + 1 bits. Let representative
form denote the digit-vector. For a radix–2 HUB significand,
expression (1) becomes

Mx =

[
f∑

i=0

Mxi · 2−i

]
+ 2−f−1 (2)

where 2−f−1 is the bias. Thus, although the normalized HUB
significand is represented by f+1 bits, according to expression
(2) the binary version of a normalized HUB significand is
composed by f + 2 bits:

Mx = 1.Mx−1
Mx−2

· · ·Mx−f
1 (3)

The binary version is required to operate with HUB numbers.
Thus, let operational form denote the binary version. We can
see that the least significant bit (LSB) of the operational form
of a HUB number is always equal to 1, and it is implicit in
the format (similar situation takes place for the most significant
bit (MSB) of the significand in the IEEE normalized floating-
point numbers). Let ILSB denote the implicit LSB of a HUB
number.

Let us call ERN (Exactly Represented Number) to a real
number which is exactly represented for a specific floating-
point system. Given a standard floating-point system with a
normalized significand, its HUB version is obtained by shifting
the ERN by half ULP. Figure 1 shows a simple example
of ERNs for a conventional floating-point system of 4-bit
significand and its HUB operational form. Notice that both
formats have the same number of ERNs and the distance
between to consecutive ERN is also the same, keeping the
same accuracy [5].

Although the operative version of the HUB format requires
one bit more than its equivalent conventional one, the ILSB
does not have to be stored or transmitted since it is a constant.
Thus, both the HUB and the conventional formats are stored
with the same number of bits. Only to operate with numbers
in HUB format, the ILSB is required explicitly (operational
form). For example, the HUB operational form with the same
precision as the IEEE-754 simple precision (SP), has 25 bits
for the significand, where the first and last bits are implicit and

Stored (for both)
0 10101111 1.00001111010111001010010
0 10101111 1.000011110101110010100101

81 25

S E 1. F 1
SP HUB format

Example

Operational form

ILSB

S E F
SP IEEE 754

&

81 24

S E 1. F

2381

32

33

34

SP HUB format

Operational form

Stored

SP IEEE 754

SP IEEE 754 (Operat.)
SP HUB format (Operat.)

0 10101111 00001111010111001010010

Fig. 2. Single precision (SP) IEEE-754 and its shifted version

only 23 bits are stored, as in the conventional representation.
Figure 2 shows the different sizes for storage, the operational
form of the conventional SP IEEE-754 and the operational
form of HUB, as well as the position of the ILSB.

A. Round-to-nearest for HUB numbers

Let us deal with round-to-nearest for HUB format for
floating-point numbers. Let m denote the number of bits of
the operational form of a normalized HUB number (that is,
including the ILSB). Consider a normalized non-HUB number
M which is composed by p bits (M [0 : p−1]) with m−1 < p.
We want to round this number to a HUB number. The biased
rounded normalized HUB number M ′ is given by the m − 1
MSB of M (representative form):

M ′[0 : m− 2] = M [0 : m− 2] (4)

Thus, the rounded HUB number M ′ is achieved by simple
truncation of the m−1 MSB of M . Due to the definition of a
HUB number (see equation (2) with f = m−2) this truncation
produces a round-to-nearest number, as proved in [5].

III. DIVISION BY DIGIT RECURRENCE FOR HUB
NUMBERS

In this paper we follow the digit recurrence algorithm that
can be found in [10]. We describe the parts of the algorithms
needed for the calculations related to HUB numbers, and what
is similar to the standard case is not described but referenced
(for example, the selection function does not change for HUB
numbers and it is not described in this paper).

Let x and d denote the floating-point HUB operands of a
division, such as x and d are represented by (Sx,Mx, Ex) and
(Sd,Md, Ed) respectively, with Mx and Md magnitude and
normalized HUB significands. The result

q =
x

q
(5)

is a floating-point HUB number represented by (Sq,Mq, Eq),
with Mq magnitude and normalized. The operational form of a

This is the author's version of an article that has been published in ARITH23 conferece. Changes were made to this version by the publisher prior to
publication. The final version of record is available at http://dx.doi.org/10.1109/ARITH.2016.17

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing
pubs-permissions@ieee.org.

normalized floating-point HUB number is 1.xxx...xxx1, with
a total of m bits. To carry out the division, the exponents
are subtracted, the significands are divided and the resulting
quotient is normalized and rounded.

Let us deal with the division of the significands. Since
the significant of the operands are HUB normalized numbers
(1 < Mx < 2 & 1 < Md < 2) the resulting significand
is in the range (12 , 2). Consequently, normalization is required
when the quotient is less than 1. In this case, a left shift of one
position is required as well as a decrement of the exponent.
The digit recurrence algorithm for division consists of N
iterations of a recurrence, in which each iteration produces
one digit of the quotient [10] (the value of N is discussed
later). This is preceded by an initialization step and followed
by a termination step.

Following we show the digit recurrence step for division for
HUB numbers (see [10] for a detailed description for regular
numbers). Let q(i) denote the value of the quotient after i
iterations:

q(i) = q(0) +

i∑
j=1

qjr
−j (6)

where q(0) is calculated in the initiation step, r is the radix
of the quotient and qj is the j-th digit of the quotient. We use
a symmetric signed-digit set of consecutive integers for the
quotient q such as qi ∈ [−a, a], where a ≥ ⌈r/2⌉ to keep a
redundant representation. The redundancy factor is defined as

ρ =
a

r − 1
,

1

2
< ρ ≤ 1 (7)

The digit recurrence algorithm is based on keeping a partial
remainder (residual) inside a convergence bound in each iter-
ation. The residual w is defined as

w(i) = ri(x− dq(i)) (8)

The bound to be kept is

|w(i)| ≤ ρ · d (9)

and the final recurrence is

w(i+ 1) = rw(i)− dqi+1 (10)

The initial value of w(0) is

w(0) = x− dq(0) (11)

The recurrence is carried out in such a way that w(i) is
bounded by equation (9). The value of qi+1 is selected accord-
ing to the quotient-digit selection function, which is obtained
as a function of a truncated version of rw(i) and d (see [10]
for details). If the final residual is negative, a correction step
is required (by substracting one ulp to the quotient).

Figure 3 shows the basic modules and the timing of
division by digit recurrence. The residual w(i) can be repre-
sented in non redundant (i.e. conventional two’s complement)
or redundant form (carry-save or signed-digit). Normally a
redundant representation is preferred since it results in a faster
iteration and that is what we assume in this paper (the substrac-
tion rw(i) − dqi+1 belongs to the critical path, see timing in
figure 3). A sign detection of the last residual is needed to carry
out a possible correction, and the zero-remainder condition

w(i+1)

Subtractor

Divisor Multiple

Selection
function

Divisor
multiple

Subtraction

On−the−fly
conversion

qi+1

conversion
On−the−fly

qi+1

d

rw(i) dq

w(i)

rw(i)

Selection
function

d

q(i+1)

i+1

Fig. 3. Basic modules and timing of division by digit recurrence

may be also required. In a redundant representation of the
residual (i.e a carry save implementation w = wc+ ws) both
the zero and sign detection of the last residual are difficult
since it involves the conversion from redundant to conventional
representation. To solve this problem a sign and zero detection
lookahead network for the carry-save representation of the
residual is proposed in [10] which avoid the slow conversion.

To update the quotient q(i) to q(i + 1) we use the on-
the-fly conversion proposed in [10], which produces at each
recurrence step the corresponding quotient value in a non
redundant form, as shown below. The on-the-fly conversion is
performed in parallel with the recurrence and it does not belong
to the critical path (see figure 3). Before dealing with on-the-
fly conversion for HUB numbers, let us see the initialization
and termination steps.

A. Initialization steps

The initial value w(0) of the recurrence equation (10) have
to fulfill the bound given by equation (9), that is |w(0)| ≤ ρ·d.
Let us study the case of ρ = 1 and (1/2) < ρ < 1 separately.

• ρ = 1. Since d is a HUB normalized number 1 < d <
2 and then

1 < ρd (12)

On the other hand, we select w(0) = x/2. Since x is
a HUB normalized number 1 < x < 2, and dividing
by 2 we have:

1

2
< w(0) < 1 (13)

From expressions (12) and (13) we conclude that

|w(0)| < ρd (14)

• 1
2 < ρ < 1. Since d is a HUB normalized number
1 < d < 2 and then

1

2
< ρd (15)

This is the author's version of an article that has been published in ARITH23 conferece. Changes were made to this version by the publisher prior to
publication. The final version of record is available at http://dx.doi.org/10.1109/ARITH.2016.17

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing
pubs-permissions@ieee.org.

On the other hand, we select w(0) = x/4. Since x is
a HUB normalized number 1 < x < 2, and dividing
by 4 we have:

1

4
< w(0) <

1

2
(16)

From expressions (15) and (16) we we conclude that

|w(0)| < ρd (17)

As consequence, to initialize w the value of x has to be left
shifted either one position (w(0) = x/2 if the selected digit
set has maximum redundancy) or two positions (w(0) = x/4
digit set without maximum redundancy).

B. Termination step

For the termination step, we have to take into account
several issues.

• Since there is a initial shift of one or two positions,
the quotient has to be shifted correspondingly.

• The recurrence can produce a negative final residue.
In this case, the quotient has to be corrected by
subtracting one ulp (correction step).

• After the shifting and correction the final quotient is in
the range (12 , 2) so that to obtain a normalized HUB
number another left shift is required if the quotient
is less that one, and the exponent has to be updated
(normalization step).

• Rounding-to-nearest: for HUB it is carried out by
simple truncation after normalization. Thus, rounding
after normalization never involves an overflow (see
section IV).

• If we want to know if the quotient is exact, we have
to check the zero condition of the last residual.

C. Number of iterations and data path width

The number of bits to be computed by the iterations (h)
is the number of bits of the normalized HUB significand (m)
(operational form) plus some extra bits, namely:

• One guard bit due to normalization. Since q ∈ (12 , 2),
if q < 1 a left shift of one position is required for
normalization

• One bit if ρ = 1 or two bits is ρ ∈ (12 , 1). This can
be denoted by the function (1 + ⌊ρ⌋).

Thus, the width (number of bits) of the datapath (h) is

h = m+ 2 + ⌊ρ⌋ (18)

Notice that no any bit is required for rounding since in HUB
number the rounding is carried out by simple truncation.
In a conventional floating-point representation with the same
precision as its counterpart HUB, the number of bits of
the normalized significand is m − 1, one bit is needed for
normalization (guard bit G), one bit is required for rounding
(rounding bit R) and (1 + ⌊ρ⌋) bits for scaling [10]. This
results in h = m + 2 + ⌊ρ⌋, that is, the same number as
its counterpart HUB (see equation (18)). As a conclusion,

for the same precision both the HUB and the conventional
representation require the same number of bits to be computed
by the iterations and the data path for the recurrence has the
same width. This is an interesting feature of the HUB division
since for HUB multiplication the data path are one bit larger
than their conventional representation counterpart [5].

The number of iterations N depends on the number of
bits to be computed by the iterations (h) and on the radix
as follows:

N =

⌈
h

log2 r

⌉
(19)

Since the value of h is the same for both conventional
and HUB representations, the number of iterations is the same
(which is consistent since both representation have the same
precision). As a conclusion, the HUB representation and its
conventional counterpart have the same precision, the same
number of iterations and the same data path width for the
residual recurrence.

IV. ON-THE-FLY CONVERSION AND ROUNDING

The on-the-fly conversion prevents the final addition to
convert from signed-digit representation to conventional rep-
resentation. Furthermore, in [10] the rounding is integrated
in the on-the-fly conversion of the last digit as well as the
correction and normalization, such that no any extra cycles
are required to carry out these steps. First we present the on-
the-fly algorithm for the conventional format and then we deal
with the algorithm for the HUB case.

Consider a normalized conventional significand of m-1 bits.
Let Q(i) denote the digit vector of the converted quotient
consisting of the i most significant digits

Q(i) =
i∑

j=1

qir
−i (20)

To avoid carry propagation a new form QD(i) (Decremented
form) is defined as

QD(i) = Q(i)− r−i (21)

The on-the-fly conversion algorithm is based on performing
concatenations of digits instead of addition of digits, in such a
way that carry propagation is prevented. In terms of concate-
nations the algorithm is

Q(i+ 1) =

{
(Q(i) ∥ qi+1) if qi+1 ≥ 0
(QD(i) ∥ (r − |qi+1|)) if qi+1 < 0

(22)

QD(i+ 1) =

{
(Q(i) ∥ qi+1 − 1) if qi+1 > 0
(QD(i) ∥ (r − 1− |qi+1|)) if qi+1 ≤ 0

(23)

where the symbol ∥ means concatenation and Q(0) =
QD(0) = 0. Basically what this algorithm does is, from
certain iteration, to keep the binary value of QD(i) with the
decremented binary value of Q(i) (QD(i) = Q(i)− 1).

Round-to-nearest involves the addition of one after the
regular iterations which can take the last digit out of range
of the digit set [-a,a]. A new form QR(i) (Rounding form)1 is

1This form is only required when a ≥ r/2

This is the author's version of an article that has been published in ARITH23 conferece. Changes were made to this version by the publisher prior to
publication. The final version of record is available at http://dx.doi.org/10.1109/ARITH.2016.17

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing
pubs-permissions@ieee.org.

defined to combine the correction, normalization and rounding
in one cycle, together with the on-the-fly conversion of the last
digit:

QR(i) = Q(i) + r−i (24)

The updating of this expression is done according to the
following expression (by concatenation):

QR(i+ 1) =

=

{
(QR(i) ∥ 0) if qi+1 = r − 1
(Q(i) ∥ qi+1 + 1) if − 1 ≤ qi+1 ≤ r − 2
(QD(i) ∥ (r + 1− |qi+1|)) if qi+1 < −1

(25)

The rounded significand before normalization and truncation
is

MMq =

{
(QR(N − 1) ∥ u) if q∗N ≥ r
(Q(N − 1) ∥ u) if 0 ≤ q∗N ≤ r − 1
(QD(N − 1) ∥ u) if q∗N < r

(26)

with q∗N ∈ {−a, a + 1} and u = q∗Nmod r. The final
normalized significand is

Mq[0 : m− 2] =

{
MMq[0 : m− 2] if MMq[0] = 1
MMq[1 : m− 1] if MMq[0] = 0

(27)

In the case of the HUB format, the round to nearest is
carried out by simple truncation of the normalized number.
This simplify the correction, rounding and normalization steps.

For the on-the-fly conversion for the HUB format, we
follow a similar strategy, such that equations (22) and (23) are
performed. Nevertheless, equation (25) is not required due to
the fact that the round-to-nearest for HUB format (truncation)
does not involve a final addition of one ULP, and then, unlike
the conventional format, the last digit is never out of digit set
range.

After the iterations, we have to select the value of quotient
Q(N) if the residual w es positive, or Q(N)−1 if the residual
is negative (correction step). Let sign denote the sign of the
final remainder w(N), such as sign = 0 if the remainder is
positive, and sign = 1 if the remainder is negative. In this
last case, the decremented value Q(N)− 1 can be taken from
QD(N) directly since QD(N) = Q(N)− 1. Thus, the value
of the quotient after Correction (QC) is:

QC =

{
Q(N) if sign = 0
QD(N) if sign = 1

(28)

Finally, the normalized and rounded-to-nearest final HUB
quotient (q) is given by (representative form)

q[0 : m− 2] =

{
QC[0 : m− 2] if QC[0] = 1
QC[1 : m− 1] if QC[0] = 0

(29)

For the HUB format the round to nearest is carried out by
simple truncation, as shown in equation (29). Figure 4 shows
a simple architecture to carry out the on-the-fly conversion for
HUB quotient. In this figure we can see that the correction step
is carried out by an output 2-1 multiplexor, the normalization
by a left shift of one position if the MSB is zero and the
rounding by simple truncation of the m− 1 MSBs.

The architecture proposed in figure 4 carries out the correc-
tion, normalization and rounding after the last digit has been
converted (Q(N)), whereas for the conventional representation

q

qin

&
(N

or
m

al
iz

at
io

n

R
ou

nd
in

g)

Q(i)

QD(i)

Q(N)

QD(N)

sign

m+1

(Correction)

Q register

q’in

QD register

2−1 MUX

2−1 MUX

2−
1 M

U
X

m−1

HUB significand 1.xxxxxxxxxx

m−1

MSB

load select

load select

Load and S
hift C

ontrol

Shift & Truncate

(representative version)

QC

Fig. 4. A possible architecture for the on-the-fly conversion for HUB

the rounded significand before normalization and truncation
is obtained from Q(N − 1), QD(N − 1), QR(N − 1) (see
equations (26)). Following we prove that this strategy is
also possible for the HUB case, and show that an important
reduction in the hardware requirements is achieved.

The rounded significand before normalization and trun-
cation for conventional representation (MMq, see equation
(26)) is determined from the already converted parts Q(N −
1), QD(N − 1), QR(N − 1) and the incoming digit q∗N , and
the digit q∗N depends on the sign of the remainder (sign)
[10]2. Similarly, for the HUB format we have to determine
the quotient after correction QC from the already converted
parts Q(N −1), QD(N −1), the sign of the remainder (sign)
and the digit qN . Let u denote the LSD. For HUB, in the last
cycle, according to equations (22), Q(N) is

Q(N) =

{
(Q(N − 1) ∥ qN) if qN ≥ 0
(QD(N − 1) ∥ (r − |qi+1|)) if qN < 0

(30)

Now, consider the correction step. If the remainder is positive
(sign = 0), the quotient after correction is given by (30)
directly QC = Q(N). If the remainder is negative (sign = 1),
then we have to subtract one to Q(N), that is we select the
decremented form QC = QD(N), as shown in expression
(28). Let analyze the value of QD(N) by taking i = N − 1
in expression (23)

QD(N) =

{
(Q(N − 1) ∥ qN − 1) if qN > 0
(QD(N − 1) ∥ (r − 1− |qN |)) if qN ≤ 0

(31)

If we analyze equations (28), (30) and (31) and we can rewrite
expression (28) as:

QC =

{
(Q(N − 1) ∥ qN − sign) if qN ≥ 0
(QD(N − 1) ∥ r − |qN | − sign) if qN < 0

(32)

For a better comparison with the conventional format (expres-
sion (26)) let us rewrite expression (32) as

QC =

{
(Q(N − 1) ∥ u if qN ≥ 0
(QD(N − 1) ∥ u if qN < 0

(33)

2In [10] it is assumed that the sign of w(N) is anticipated in the last
cycle in such a way that it can be used for the calculation of the LSD in the
same cycle. Since the residue recurrence is the same for HUB, we keep this
assumption in this paper

This is the author's version of an article that has been published in ARITH23 conferece. Changes were made to this version by the publisher prior to
publication. The final version of record is available at http://dx.doi.org/10.1109/ARITH.2016.17

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing
pubs-permissions@ieee.org.

where u = qN − sign if qN ≥ 0 and u = r − |qN | − sign if
qN < 0.

Expression (33) shows that it is possible to obtain the
quotient after correction QC in the cycle of the conversion
of the last digit, as happens with the conventional format by
expression (26). Moreover, the calculation of the incoming
digit u is simpler for HUB format.

Figure 5.a shows the architecture required for the on-
the-fly conversion for HUB format and figure 5.b shows the
architecture for the conventional format, where the differences
between both architectures have been highlighted in grey color.
For both the HUB and the conventional formats equations (22)
and (23) are carried out by two 2-1 multiplexors, two shifters
and registers Q and QD and the corresponding load and
shift control. In addition to these equations, the conventional
format requires the implementation of equation (25), which
involves one extra 3-1 multiplexor, a shifter, the register QR
and a more complex control of the incoming concatenated digit
(comparison of qi+1 with r − 1, r − 2 and −1), as shown in
figure 5.b. On the other hand in the conversion of the last
digit, the incoming least significant digit (LSD) u is obtained
as a function of sign and qN for HUB whereas it depends
on sing, qN and the MSB of Q(N − 1) and QD(N − 1) for
the conventional representation (see the bottom of Figure 5).
Therefore, we conclude that there is an important reduction
in the hardware of the on-the-fly conversion for the HUB
representation.

A. The tie case

In floating-point division for IEEE standard representation
and round to nearest mode, the tie case never happens, as
shown in [10]. Nevertheless, for HUB numbers the tie case
occurs if the remainder is zero and the LSB of the quotient is
also 0 (before rounding). If this situation takes place, the final
quotient is just in the middle of two ERNs.

In a biased implementation the tie case is always rounded
up (the ILSB is always one). To obtain an unbiased imple-
mentation the rounding has to be random for the tie case.
Let KL and L′K ′ denote the two LSBs of the normalized
quotient (operational form) before rounding and after rounding
respectively, and let z denote the zero-remainder condition
(z = 1 means w(N) = 0). We propose the next algorithm:

z KL --> K’L’
0 xy x 1 (not tie)
1 00 0 1 (tie, rounding up)
1 10 0 1 (tie, rounding down)

In the proposed algorithm, for the tie case, if KL=00, the re-
sulting rounded value is K’L’=01 that is, rounded up, whereas
if KL=10 the resulting rounding is K’L’=01 that is, rounding
down. Since the value of K is random, the up or down
rounding is also random (note that L’ is the ILSB and its value
is always 1 for a HUB number). The function for K ′ is

K ′ = K ∨ (z ∧ L) (34)

where the symbols ∨ and ∧ mean the logic operations OR
and AND respectively. As a conclusion, an unbiased imple-
mentation is possible by a simple logic operation on the bit
K.

Load and S
hift C

ontrol

qin

QD(i)

q’in

QD register

2−1 MUX load select

qin

log2 r

Q(N−1) QR(N−1)

log2 r

Q(i)

Q register

2−1 MUX
load select

QR(i)

q’’in

QR register

3−1 MUX load select

Q(i)

Load and S
hift C

ontrol

2−1 MUX

m

m−1

HUB significand 1.xxxxxxxxxx

m−1

Shift & Truncate

q

MSB

Q(N−1) QD(N−1)

sign

QC

u

Q(i)

Q register

2−1 MUX
load select

QD(i)

q’in

QD register

2−1 MUX load select

a) Architecture for HUB format

Differences
between

architectures

q

b) Architecture for standard format

m−1

1.xxxxxxxxxx

q

MSB

QC

3−1 MUX

QD(N−1)

u

QD(N−1)

Standard significand

m−1

sign
Q(N−1)

qN

MSB

MSB

m

LS
D

 control

LS
D

 control

N

Shift & Truncate

Fig. 5. On-the-fly conversion for HUB (a) and for conventional (b)

V. SUMMARY AND CONCLUSION

In this paper we have presented the division of two HUB
numbers using the digit-recurrence algorithm and on-the-fly
conversion of the quotient with rounding to nearest. We have
proved that, for the same precision, the HUB representation
and its conventional counterpart have the same number of iter-
ations and the same data path width for the residue recurrence.
Thus, the conventional architecture for the residue recurrence
can be used without modification. For the on-the-fly conversion
we have designed an architecture that reduces the hardware
requirements since one of the three ways used in conventional
on-the-fly converters is not required, as well as the logic for the
last digit is simplified (see figure 5 to see the differences). This
simplification of the hardware is due to the fact that the HUB
numbers are rounded to nearest by simple truncation. Finally,
the unbiased rounding is also proposed, which only involves
a simple logic operation on the LSB (no carry propagation).

REFERENCES

[1] “IEEE standard for binary floating-point arithmetic,” ANSI/IEEE Std
754-1985, 1985.

This is the author's version of an article that has been published in ARITH23 conferece. Changes were made to this version by the publisher prior to
publication. The final version of record is available at http://dx.doi.org/10.1109/ARITH.2016.17

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing
pubs-permissions@ieee.org.

[2] P. Kornerup and J.-M. Muller, “RN-coding of numbers: Definition
and some properties,” in Proc. Intl Meeting on Automated Compliance
Systems (IMACS 05), Jul 2005.

[3] J.-L. Beuchat and J.-M. Muller, “Multiplication algorithms for radix-
2 RN-codings and two’s complement numbers,” in Int. Conf. on
Application-Specific Systems, Architectures and Processors, 2005, pp.
303–308.

[4] P. Kornerup and D. W. Matula, Finite Precision Number Systems and
Arithmetic. Cambridge University Press, 2010.

[5] J. Hormigo and J. Villalba, “New formats for computing with real-
numbers under round-to-nearest,” Computers, IEEE Transactions on,
vol. PP, no. 99, 2015.

[6] J. Hormigo and J. Villalba-Moreno, “Optimizing DSP circuits by a new
family of arithmetic operators,” in Signals, Systems and Computers,
2014 Asilomar Conference on, Nov 2014, pp. 871–875.

[7] S. D. Muñoz and J. Hormigo, “Improving fixed-point implementation
of QR decomposition by rounding-to-nearest,” in Consumer Electronics
(ISCE 2015), 19th IEEE International Symposium on, June 2015, pp.
1–2.

[8] “Measuring the improvement when using HUB formats to implement
floating-point systems under round-to-nearest,” Very Large Scale Inte-
gration (VLSI) Systems, IEEE Transactions on, pp. –, 2015, in press.

[9] J. Hormigo and J. Villalba, “Simplified floating-point units for high
dynamic range image and video systems,” in Consumer Electronics
(ISCE 2015), 19th IEEE International Symposium on, June 2015, pp.
1–2.

[10] M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann,
San Francisco, 2004.

This is the author's version of an article that has been published in ARITH23 conferece. Changes were made to this version by the publisher prior to
publication. The final version of record is available at http://dx.doi.org/10.1109/ARITH.2016.17

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing
pubs-permissions@ieee.org.

