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HUB-Floating-Point for improving FPGA
implementations of DSP Applications
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Abstract—The increasing complexity of new digital signal-
processing applications is forcing the use of floating-point num-
bers in their hardware implementations. In this brief, we inves-
tigate the advantages of using HUB formats to implement these
floating-point applications on FPGAs. These new floating-point
formats allow for the effective elimination of the rounding logic on
floating-point arithmetic units. Firstly, we experimentally show
that HUB and standard formats provide equivalent SNR on DSP
application implementations. We then present a detailed study
of the improvement achieved when implementing floating-point
adders and multipliers on FPGAs by using HUB numbers. In
most of the cases studied, the HUB approach reduces resource use
and increases the speed of these FP units, while always providing
statistically equivalent accuracy as that of conventional formats.
However, for some specific sizes, HUB multipliers require far
more resources than the corresponding conventional approach.

Index Terms—FPGA, floating-point, DSP applications, HUB-
format

I. INTRODUCTION

OWADAYS, many Digital Signal Processing (DSP) ap-

plications, such as graphics, wireless communications,
industrial control, and medical imaging require the use of lin-
ear algebra or other complex algorithms. The use of Floating-
Point (FP) arithmetic is quickly becoming a requirement in
these applications due to its extended dynamic range and
precision. For this reason, FP arithmetic is being introduced
on FPGA implementations, as a soft-core [1] [2], or even as
a hardware block in the newest Altera devices [3]. Although
these embedded hardware blocks are more efficient and cost
effective than their equivalent soft-core designs, the latter are
still very useful. Firstly, low-cost devices do not offer these FP
embedded blocks and it is not clear that other FPGA brands
are going to include something similar in their devices in
the near future. Secondly, up to now, only single precision
has been directly supported in DSP blocks [4]. Therefore,
improvements to the soft-core implementations are of great
value.

Some of these solutions are being designed to follow
the IEEE754 standard [S]. However, in many applications,
compliance with this standard is sacrificed to obtain more
efficient implementations regarding area and performance. In
relation to FPGAs, much more efficient designs are obtained
by using more flexible implementations of FP numbers and
ensuring the fulfillment of certain quality parameters at the
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output. These flexible implementations could utilize word-
length optimization [6] [7], high-radix representation [8], and
fused datapath synthesis [9], or avoid the implementation of
unnecessary rounding modes [2], exceptions, or subnormals
support [1].

Generally, both hard and soft cores only support the round-
to-nearest-even (RNE) mode, since this is the most useful of
the rounding modes. In these FP cores, a significant amount of
resource use and delay is due to the rounding logic. However,
two new families of formats, HUB (Half-Unit biased) [10]
and Round-to-Nearest [11] representations, allow RNE to be
performed simply by truncation, which could make rounding
logic negligible. Here, we focus on HUB formats. HUB
Fixed-point formats were used in [12] and [13] to improve
DSP implementations, since they allow better word-length
optimization. The ASIC implementation of HUB-FP units
has been studied for binaryl6 (half), binary32 (single), and
binary64 (double) [5], and important improvements have been
achieved [14] [15]. In this brief communication, we extend
this analysis to FPGAs over a wide range of sizes. Compared
to previous articles, we provide:

o An experimental error analysis of the implementation of
FIR filters, which shows that the HUB approach provides
similar statistical parameters to those of standard FP
implementations, including the SNR.

e The results of FPGA implementation of a basic FP adder
and multiplier for a wide range of exponent and mantissa
bit-widths under HUB and conventional approaches and
their comparison.

In most of the cases studied, the HUB format reduces
resource use and increases the speed of these FP units.
Furthermore, due to its simplicity, any existing soft or hard
core could be easily enhanced by using the proposed approach.
Therefore, based on basic architectures, our aim is to encour-
age researchers to improve their optimized FP cores or DSP
applications by using HUB-FP formats.

II. HUB-FP NUMBERS AND ASSOCIATED CIRCUITS

Firstly, we summarize the main characteristics of the HUB-
FP formats and circuits presented in [10] [15]. For demonstra-
tions or further explanations, please refer to these papers.

A HUB-FP number is an FP number such that its mantissa
(or significand) has an Implicit Least Significant Bit (ILSB)
which equals one. Compared with a standard format, it has
the same number of explicit bits and precision, but the same
bit-vector represents a value biased half Unit-in-the-Last-
Place (ulp) [10]. For example, using an m-bit HUB number
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Fig. 1. Basic HUB-FP arithmetic architecture

normalized between (1, 2) for the mantissa (M), a sign bit
(Sz), and an exponent FE,, the HUB-FP X’= (S,, E,, M,)’
represents

0
d>oXp2t g2 |2
i=—m-+1
6]

where X, are the m bits of the mantissa M,. Now, let us
consider m = 4: the mantissa 1.001 represents 1.125 under
conventional format, but 1.1875 under the HUB format, both
with an error bound of +0.0625. Therefore, an exact real value
is represented for different numbers under each approach, and
a different rounding error is also produced, but both errors are
within the £0.5ulp bound.

The main advantages of using the HUB format are that
two’s complement is computed by only bit-wise inversion, the
truncation of a value to obtain a HUB number produces an
equivalent RNE, and a sticky-bit computation is not required
for most operations. Moreover, the conversion to a conven-
tional format only requires explicitly appending the ILSB to
the original number. Therefore, HUB numbers could be easily
operated by conventional arithmetic circuits, while practically
eliminating the rounding logic. Furthermore, the impact of the
inclusion of the ILSB is limited since it is constant.

(Sirv E:Ev MI)I = (_]-)SJ— .

A basic general architecture to operate HUB-FP numbers is
shown in Fig. 1, where a conventional FP arithmetic unit has
been conveniently modified. Firstly, the ILSBs are appended
to the mantissas of the input operands before using them.
As consequence they are converted to conventional format.
Next, a conventional datapath is used, but at first the mantissa
data-path has to be one-bit wider. Since the final result is in
HUB format, a simple truncation is performed for rounding.
Thus, after the arithmetic operation itself, a conventional
normalization logic is utilized, but no guard bit is provided at
the output. The rounding logic of the conventional architecture
is simply eliminated (crossed out in Fig. 1).

Taking into account that the ILSB is a constant, this general
architecture could be further optimized depending on the
specific architecture. A detailed architecture for addition and
multiplication is provided in [15].
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Fig. 2. Absolute error of the output of 150-tap FIR filter when using single
instead of double precision

TABLE I

STATISTICAL PARAMETERS OF THE ROUNDING ERROR DISTRIBUTION.

IEEE HUB | IEEE HUB | IEEE HUB | I[EEE HUB
Taps minao—7) mean(10~9) maxo—7) o108
FIR100 -5.25  -5.17 | 0.036 -0.32 | 4.83 4.39 0.86 0.87
FIR125 -532 498 | -1.84 -1.61 6.02 5.30 1.02 1.00
FIR150 -5.51  -6.11 | -0.54  -1.90 5.88 5.88 1.05 1.04
FIR175 =747  -71.35 1.33 0.38 5.31 6.10 1.20 1.18
FIR200 <795 -8.08 | -2.01 -1.55 7.17 7.03 1.22 1.20

III. ROUNDING ERROR OF HUB-FP COMPUTATION

The equivalence between truncation under HUB formats
and RNE under conventional formats has been theoretically
demonstrated in [10] and experimentally demonstrated for iso-
lated operations in [15]. In this section, we show that although
the specific error for each output value is always different,
the statistical error performance of the HUB approach is very
similar to the conventional one for DSP applications.

Specifically, several FIR filters have been implemented
using IEEE double-precision as reference designs. Similarly,
the output of the same filters was computed using single-
precision for both the IEEE-754 standard and the correspond-
ing HUB format. Conventional computation was performed
using MATLAB in a PC, whereas the results of the HUB
approach were obtained through VHDL simulation. Next,
we analyze the error observed between double- and single-
precision implementations.

As an example, Fig. 2 shows the absolute error of the output
samples for both approaches, corresponding to a 150-tap low-
pass FIR filter when a chirp signal is introduced. As expected,
the error corresponding to conventional and HUB approaches
is always different. Since the exactly-represented numbers
of both approaches are different, the rounding error cannot
coincide. However, they are distributed in the practically same
way. To measure this outcome, similar experiments were
performed for several low-pass filters, using a chirp input
signal with 10000 samples. Table I shows some statistical
parameters of the error for these experiments, including the
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Fig. 3. Input/output signals of a 150-tap low-pass FIR filter example

bounds, the bias (mean), and the standard deviation. It can
be seen that, in general, the values corresponding to both
approaches are very similar for all parameters. Nevertheless,
depending on the specific filter used, the results are slightly
better for the IEEE standard or for the HUB format. We
found that this behavior depends on how well the coefficients
of the filter are represented under each approach, i.e., the
amount of rounding error produced when representing the
coefficients on each format. This depends on the values of
the coefficients themselves and the mantissa bit-width. Thus,
it happens in arbitrary manner and should not be considered to
be a difference between both approaches. The same behavior
is observed for the relative error measured by their SN Ry,
as shown in the first column of Table II.

On the other hand, Fig.2 clearly shows two different areas:
the magnitude of the error is greater for the first half of the
samples than for the second half. To explain this, we refer
to the input signal and the output signal of the mentioned
FIR filter in Fig.3. The magnitude of the absolute error
decreases because the output signal goes down to nearly zero
when the frequency of the input signal goes above the cutoff
frequency. However, the relative error increases, since many
catastrophic cancellations (i.e., subtraction of numbers with
similar magnitudes) take place in the computation to produce
this attenuated output.

To estimate the accuracy of the HUB-FP computation when
many cancellations occur, the second and third columns of
Table II show the SNR when only taking into account the
first and the last 30% of output signal samples, respectively.
Clearly, the relative error increases when the output signal
approaches zero, but the behavior is the same for both ap-
proaches. The small differences in the SNR values again arise
from the error of the representation of the coefficients for
each specific filter. Therefore, taking into account these results
and the previous ones, we conclude that the accuracy of both
approaches is statistically equivalent.

TABLE II
SIGNAL TO ERROR NOISE RATIO (dBs) (SNRyB)

IEEE HUB IEEE HUB IEEE HUB
Taps Full signal Low Freq. High Freq.
FIR100 || 136.24 136.21 | 136.56 136.37 | 107.70  107.31
FIR125 13484 13494 | 13508 135.10 | 97.63 98.90
FIR150 13456 134.66 | 134.82 13496 | 93.09 92.88
FIR175 13347 133.58 | 133.58 133.70 | 90.60 90.50
FIR200 13332 13344 | 133.62 133.57 | 88.61 88.11

IV. IMPLEMENTATION RESULTS ANALYSIS

We now analyse and compare the main results of the FPGA
implementation of a HUB-FP adder and multiplier to the
results of the corresponding conventional ones. Since these
are the main operations involved in DSP applications, this
approach allows us to estimate the benefits of using HUB
formats to implement FP computation in DSP applications. In
order to measure the impact of the HUB approach alone, and
to keep the implementation as flexible and general as possible,
our implementations allow any bit-width, but do not support
special cases, subnormal cases, or any optimization of the data-
path. Therefore, the results obtained in this study should be
considered to be an estimation of the improvement that can be
achieved by using HUB-FP formats and to encourage further
investigation using optimized cores and specific applications.

To perform this study, the basic architectures of the adders
and multipliers presented in [15] for conventional and HUB-FP
numbers were described in VHDL, such that the bit-width of
the mantissa and exponent were configurable. Moreover, to fa-
cilitate comparisons, all the designs were fully combinational,
although in future research, we will try to confirm that similar
behavior occurs for pipeline implementations. The adders and
multipliers for both approaches were synthesized using Xilinx
ISE 14.3 and targeting Xilinx Virtex-6 FPGA xc6v1x240t-1 for
a wide range of formats. Specifically, we used all FP formats
with mantissa sizes ranging from 10 to 60 bits and exponent
sizes ranging from 6 to 12 bits.

Fig. 4 shows the area (LUTs) occupied by the conventional
adders and the proposed FP adders. The mantissa bit-width
is represented in the x-axis, and the exponent bit-width is
represented by different coloured lines. It can be seen that
the exponent bit-width has very little impact on the area,
which rises slightly when it increases. The proposed adder
requires significantly less area than the conventional one. To
quantitatively indicate the improvement obtained by using
HUB formats, Fig. 5 shows the area of the new HUB adders
divided by the area of their corresponding conventional adders.
The area savings range from 6% to 18% with a mean of about
11%.

Similarly, the delay of the critical path corresponding to
the FP adders is shown in Fig 6. It can be seen that the
lines are more irregular than in the case of the area and are
particularly irregular in the conventional approach. However,
in general, the proposed HUB approach is faster than the
conventional one. This is more clearly seen in Fig 7, which
shows the speedup achieved in each case. Except for one case
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(specifically, for a 30-bit mantissa and 10-bit exponent), the
HUB FP adder is faster than the equivalent conventional one,
achieving an acceleration of up to 40% and a mean speedup
of 20%.

Fig. 8 presents the area used to implement the FP multi-
pliers, and includes the number of LUTs and the number of
built-in multipliers (DSP48 blocks). Note that the number of
DSP48 blocks used is automatically selected by the synthesis
software. It can be observed that the influence of the exponent
bit-width is practically negligible and the number of LUTSs
dramatically increases just before the new DSP48 blocks are
occupied. The number of DSP48 blocks is the same under
both approaches, but this number increases one bit earlier
under the HUB approach (i.e., both red lines are identical, but
shifted by one position). The number of LUTs undergoes a
similar shift, but in this case the number is lower for the HUB
multipliers. This fact is better observed in Fig. 9 in which the
number of LUTs is represented as a ratio. In a few cases, the
HUB multipliers require up to 75% more LUTs than under the
conventional approach, whereas the reduction in the remaining
cases ranges from 70% to 5%.
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On the other hand, Fig. 10 shows the delay of the FP
multipliers. Since the delay is independent of the exponent
bit-width for the conventional multipliers, both approaches
are presented in the same graph. In most cases, the HUB
multipliers are considerably faster than their equivalent con-
ventional multipliers. This speedup is presented in Fig. 11. It
can be observed that the speedup reaches up to 40% for short
mantissas, whereas it is greater than 10% for long mantissas;
however, the HUB approach is around 5% slower for 26 and
34 mantissa bit-widths.

In general, significant improvements are achieved on the
FPGA implementation of both FP adders and multipliers when
using HUB formats. It is important to highlight that these
improvements are simultaneously obtained in both area and
delay, although these two characteristics are inversely propor-
tional. These enhancements are more noticeable for the FP
adders and for the FP multipliers when the mantissa bit-width
is less than 30 bits. Since these improvements are achieved
due to the simplification of the operations, a reduction in the
power consumption of the HUB unit is also expected. We will
try to confirm this prediction in a future study.
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V. CONCLUSIONS

In this brief, we investigated the use of HUB-FP formats to
enhance the implementation of DSP applications on FPGA.
Firstly, the statistical equivalence of the accuracy of HUB
and standard FP computations was empirically verified by the
implementation of FIR filters. It was shown that although the
values of the results are different, the SNR of both approaches
was practically the same. The advantages of implementing
HUB-FP arithmetic units on FPGA instead of standard ones
were measured for addition and multiplication, which are the
key operations on most DSP applications. The elimination of
the rounding logic can significantly reduce both area and delay.
We studied this improvement for a wide range of mantissa
and exponent bit-widths and showed that that HUB units were
clearly superior in most of the cases analyzed. Furthermore,
due to the nature of the improvement, most current soft or
hard cores could be easily enhanced by using the proposed
approach. We should also note that several patent applications
have been filed regarding several HUB circuits.
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