
Optimizing DSP Circuits by a New Family of
Arithmetic Operators

Javier Hormigo, and Julio Villalba
Dept. Computer Architecture

Universidad de Malaga
Malaga, Spain, E-29071

E-mail: fjhormigo@uma.es

Abstract—This paper presents a new family of arithmetic
operators to optimize the implementation of circuits for digital
signal processing. They are based on using a new fixed-point
format which allows performing rounding to nearest as the
same cost as truncation. Thanks to the use of rounding, the
word-length optimization may improve significantly respect to
using conventional units and truncation. That reduction means
a simultaneous improvement of area, delay, and, consequently,
power consumption. As an example, several FIR filters have
been tested, and an area reduction up to 50% along with a
speed improvement up to 42% has been obtained.

Index Terms—Digital Signal Processing, fixed-point data-
path, word-length optimization, real-number representation,
round-to-nearest.

I. INTRODUCTION

The selection of an adequate representation format for
each variable on a digital signal processing circuit is one
of the most important task to achieve an optimal trade-off
between cost parameters (area, energy,. . .) and functionality
constrains (delay, quantization error,. . .). For a cheaper
implementation, fixed-point formats are usually preferred
over floating-point ones, since the latter involve much more
complicated operators. One of the main tasks needed to
optimize fixed-point implementations of a DSP algorithm
is the word-length optimization [1][2].

Said word-length optimization requires finding the word-
length combination for the signal within the circuit which
presents the minimum cost but, at the same time, it sat-
isfies the required accuracy (i.e., maximum quantization
rounding error) and dynamic range (i.e., it does not produce
overflow). Using signals with less bit-width implies to use
simpler operators which means less area, delay and power
consumption. However, this simplification is obtained at the
cost of introducing larger quantization error. This error is
introduced when an intermediate or final value have to be
rounded to meet the corresponding bit-width.

Several rounding modes could be used to perform said
rounding, such as round-to-nearest which is the preferred
mode for floating point format [3]. However, due to the
relatively huge complexity incrementation required to im-
plement these rounding modes under fixed-point format,
a simple truncation is the rounding mode used generally
in these cases. There is plenty of literature addressing

worth-length optimization considering truncation as round-
ing mode, whereas the other modes has been practically
discarded for years [4][5][6][7][8][9][10]. However, a re-
cent work [1] has demonstrated the beneficial of using other
rounding modes in certain designs. In the work presented
in [1], the optimization of several representative kernels
for digital signal processing were analyzed considering, not
only truncation but round-to-nearest (biased and not biased
version), along with the additional hardware involved for a
single operation. They found that, despite the complexity
introduced for each single rounding operation, the over-
all implementation area may be reduced by utilizing the
optimal quantization mode combination instead of only
truncation.

In this work, we present a new representation number
format to implement rounding to nearest for fixed-point
arithmetic at the similar cost of truncation. To operate
numbers under said new format, new arithmetic units have
to be designed. However a slight modification of the con-
ventional circuits is enough to achieve this goal. Therefore,
the expected performance gain should largely improve the
results of the previous work in [1], since the hardware cost
of implementing the same rounding is much lower.

This paper is organized as follows: Section II gives a
brief analysis of different conventional rounding modes.
In Section III, we present the new proposed fixed-point
format, and we show how truncation produces round-to-
nearest rounding when targeting a number under this rep-
resentation. Section IV provides a guideline to implement a
fixed-point DSP data-path using the proposed approach. In
Section V, the results and comparison corresponding to the
hardware implementation of several FIR filters under the
new approach are presented as a proof of concept. Finally,
Section VI provides the conclusion of this work.

II. CONVENTIONAL ROUNDING MODES

The word-length optimization is a key tool to reduce the
cost of fixed-point DSP implementations. Its use implies
that each signal is reduced to the minimum feasible number
of bits. Therefore, rounding is required almost after each
operation and the type of rounding (rounding mode) used
influences in two different ways: statistical characteristics
of the rounding error generated and hardware complexity

Javier
Texto escrito a máquina
Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Javier
Texto escrito a máquina

Javier
Texto escrito a máquina

Javier
Texto escrito a máquina

Javier
Texto escrito a máquina

Javier
Texto escrito a máquina

Javier
Texto escrito a máquina

Javier
Texto escrito a máquina

Javier
Texto escrito a máquina

Javier
Texto escrito a máquina

Javier
Texto escrito a máquina

Javier
Texto escrito a máquina

Javier
Texto escrito a máquina

Javier
Texto escrito a máquina
This is the author's version of an article that has been published by IEEE. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/ACSSC.2014.7094576

Javier
Texto escrito a máquina

Javier
Texto escrito a máquina

Javier
Texto escrito a máquina

Javier
Texto escrito a máquina

Javier
Texto escrito a máquina

Javier
Texto escrito a máquina

Javier
Texto escrito a máquina

Javier
Texto escrito a máquina

Javier
Texto escrito a máquina

Javier
Texto escrito a máquina

Javier
Texto escrito a máquina

of its implementation. Generally, having better statistical
characteristics requires greater hardware complexity.

The rounding mode associated to the simplest hardware
implementation is truncation. Given two fixed-point for-
mats, A and B, with n and m bits, respectively, being
n > m, the rounding of a number represented using A
to format B by truncation is performed just by taking the
m Most Significant Bits (MSBs) of the original number.
This operation is trivial, and it has no hardware cost, but
its rounding error may be up to one Unit-in-the-Last-Place
(ULP), i.e. the weight of the Least Significant Bit (LSB).
Furthermore, it is very biased since it is always positive (for
numbers with the same sign). Despite of those problems,
it is the rounding mode generally used for fixed-point DSP
hardware implementations.

Another rounding mode with a simple hardware imple-
mentation is von Neumann’s rounding or jamming. In this
case, the rounding is performed by selecting the m − 1
MSBs of the original number and setting the LSB of the
final number to one, if the discarded bits are not all zero.
This operation produces an unbiased rounding since the
error may be either positive or negative, but the magnitude
of the error is still up to one ULP. Its implementation needs
some logic to compute the sticky bit, but this is relatively
simply. However, it is not commonly used, since indeed it
duplicates the range of values represented for one number,
as we will see later.

The round-to-nearest is the rounding mode which pro-
duces the lowest magnitude of the rounding error. Again,
the m MSBs are selected but, in this case, if the MSB of
the discarded bits is one, one ULP is added to get the result.
Thus, the implementation of this rounding requires using an
incrementer to perform said addition. This rounding mode
produces a rounding error up to 0.5 ULPs and may be
positive or negative. In spite of the fact that round-to-nearest
produces the lowest rounding error, it is not generally used
in fixed-point DSP application due to its relative complexity
compared to fixed-point operations itself.

Fig. 1 summarizes how the values on a real line are
rounded according to these three rounding modes. The
Exactly Represented Numbers (ERNs) of the target format
is represented, along with the range of inexact values
represented by each ERN for each rounding mode. It is
clearly seen that von Neumann’s rounding duplicates the
range of values represented by an ERN and truncation is
very biased. These provokes that the quantization rounding
error produced by round-to-nearest mode was significantly
lower. In [1], word-length optimization have been studied
considering different combination of rounding modes, and
it has been demonstrate that the utilization of round-to-
nearest may reduce the overall hardware cost, despite of the
individual cost increment of using said rounding mode. This
cost reduction is achieved because the lower rounding error
produces a greater reduction of bit-width which overcomes
the cost of implementing the rounding.

ERN

...

...

...

.

non ERN.

...

.... .

.... . .

1.010 1.011 1.100

1.010

1.010

1.011

1.011

Rounded to 1.010

a) Truncation

b) Roundin to nearest

1.100

1.100

Rounded to 1.011

Rounded to 1.011

Rounded to 1.011

Rounded to 1.011

. . .

c) von Neumann’s rounding

..

Fig. 1. Some conventional rounding modes

III. NEW PROPOSED FIXED-POINT FORMAT

In this section, we present a new binary fixed-point
format which allows performing round-to-nearest in the
same way (and cost) as truncation. Thus, utilizing this
proposed format should produce a reduction on the word-
length similar to the one achieved when round-to-nearest is
used under conventional format, but the overall reduction
should be greater since the rounding is implemented much
more easily.

Based on the same idea as von Neumann’s rounding,
instead of forcing the LSB to one when it is required, we
define a new number representation format which includes
an implicit LSB which is constant and equal to one. This
new implicit bit provokes that the ERNs represented by
a bit vector under a conventional format were shifted by
half-ULP when the same bit-vector represents a number
under the new format. Fig. 2 shows an example of a
three fractional bits fixed-point format. The ERNs under
the proposed format are always on the middle point of
two ERNs under its corresponding conventional format.
The distance between consecutive ERNs is the same under
both formats, i.e. one ULP. Thus, the precision of both
formats is the same. Moreover, the number of bits required
to represent both formats are also the same, since the new
bit is implicit and it is not needed to storage or transmit
it. Therefore, both conventional and the proposed formats
have equivalent characteristics but their ERNs are different.

−3
2

−3
2

1.0101

Conventional ERN

1.010 1.011 1.100 1.101

1.0111 1.1001 1.1011

new ERN

Fig. 2. ERNs for both conventional and proposed format

...

...

ERN nonERN.

1.01111

...

1.10001 1.100111.01101

...

Rounded to 1.01111
Rounded to 1.10001

. . .

1.0111 1.1000 1.1001

a) Rounding by truncation (conventional)

Rounded to 1.0111 Rounded to 1.1000

b) Rounding to nearest (new format)

Fig. 3. Truncation for both conventional and proposed format

This new location of the ERNs produces that truncation
(i.e., discarding the LSBs of a number to reduce the number
of significant bits) to obtain a number under the new
proposed format is actually a rounding to the nearest ERN.
This fact is easily observed graphically as it is shown
in Fig. 3. When only the 5 MSBs remains, the nonERN
values selected for each bit-vector are the same under both
the conventional and the proposed formats, but the ERN
which represents those values are different. Given a range
of nonERN values, the ERN representing said values under
the conventional format always means an effective rounding
down, whereas under the new format it always means an
effective round-to-nearest. Therefore, using the proposed
approach, rounding operation may produce the statistical
characteristic of round-to-nearest but at the cost of the
simple implementation of truncation.

IV. FIXED-POINT DATA-PATH IMPLEMENTATION USING
THE NEW FORMAT

In the previous section, we have seen how the use of
a new format facilitates the hardware implementation of

round-to-nearest rounding. However, the implementation of
fixed-point DSP data-path requires using other arithmetic
units which may be different under the new format. In this
section, we study fixed-point arithmetic units for operands
under the proposed format and conversion, since they are
the key building-blocks to design a fixed-point data-path
for DSP applications.

First, the input data may be introduced into the digi-
tal data-path. Ideally the input data should be converted
directly from the real world to a digital number under
the proposed format. In many applications, this requires to
tune in the analog-to-digital converters to give their output
number under the proposed format, which should not be a
real problem.

If the input values are already digital numbers under a
conventional format, a conversion is required. This conver-
sion may be performed just by truncating those numbers
to the amount of bits desired. This operation produces a
round-to-nearest rounding, since we are targeting a number
under the new proposed format. But, this initial conversion
may introduce additional rounding errors, due to double
rounding problems. On the contrary, for this last case,
another option is to operate using conventional formats
as long as a rounding operation is not required. At the
point a rounding is needed, this rounding is performed
by truncation and it generates a number under the new
proposed format. In this way, the amount of rounding error
introduced is minimized.

Once there are numbers represented under the proposed
format, the design of arithmetic units to operate with these
numbers is required. Taking into account the definition of
the new format, it is easily seen that the conversion of a
number under the new format to a conventional one could
be easily obtained by explicitly extending its bit-vector
with its implicit LSD. Therefore, arithmetic units to operate
numbers under the proposed format could be design just
by extend each input operand by a constant LSB set to
one. After this trivial conversion, the extended operands
may be operated using a conventional arithmetic logic. The
conversion of the result back to the input format could
be performed also trivially by truncating it to the desired
number of bits. An arithmetic unit designed in this way
produces the results rounded to the nearest. This is a general
procedure which is valid for any operation. Nevertheless,
taking into account that this new LSB is a constant value,
a more optimal design could be obtained by studying each
operation in detail.

On the other hand, the equivalent arithmetic unit for
conventional format has input operands with one bit less,
but it requires a rounding unit at the end to perform the
round-to-nearest of the result. Therefore, each concrete
arithmetic operation has to be studied particularly to de-
termine whether the new arithmetic units are most costly
than its equivalent conventional one. However, although
one particular operation may result less efficient under the
proposed format, the important matter is whether or not,

the overall efficiency of the data-path is improved under
the new format.

Regarding the computed result, again, ideally the DSP
circuit should deliver the obtained results under the new
proposed format. However, sometimes a conversion to
conventional format may be required. Similarly to the
arithmetic unit, a simple conversion could be performed
by explicitly extending its bit-vector with its implicit LSD.
Then, if more bits of precision are required for the final
result, a zero extension is carried out. On the other way,
if fewer bits are required, then a conventional rounding to
get the desired number of bits is performed.

V. RESULTS AND COMPARISON

To test the performance of the proposed formats and
circuits, several FIR filter examples have been designed,
word–length optimized and implemented on FPGA. This
process has been performed using both the new proposed
arithmetic with round-to-nearest and the conventional one
with truncation. The main results of these FPGA imple-
mentations have given in this section.

Let us give more details about the process we have
followed. First, using Matlab, we have computed the co-
efficients of several low–pass and high–pass FIR filters for
different number of taps. Then, the floating-point version of
each filter, considering the direct-form structure, has been
optimized for fixed-point computation using ”Floating-
Point to Fixed-Point Transformation Toolbox” [11]. For
a given error threshold, this Matlab toolbox optimizes
the worth–length combination of the given DSP data-path
to minimize the estimated area cost of the circuit when
implemented it on FPGA. It uses a well-known gradient
based method to achieve this goal, although this method
does not guarantee to obtain the global minimum.

For each filter, the optimum combination word-length
has been computed for both versions, the one using our
proposed arithmetic units and round-to-nearest as rounding
mode and standard arithmetic circuits with truncation. The
range of sizes utilized to look for the optimum word-
length combination goes from 1 bit to 16 bits for each
signal within the filter data-path. These signals include all
coefficients of the filter and all input, output and internal
signals.

In Table I, the results of this word-length optimization
are summarized. We have grouped together all signal word-
lengths within the same filter and then, their statistical
parameters have been calculated. Table I shows the quartile
values for the word-length (in bits) of all signals within
each filter. For all cases, it is clearly observed a significant
reduction of the number of bits when round-to-nearest
is used instead of truncation. For example, according to
Table I, in the High-pass filter with 5 taps, a 25% of
signals have 4 bits or less for both versions. But, for the
conventional approach, half of the signals have less than
10 bits whereas they have 6 bits or less for the proposed
version. Similarly, for the conventional approach, a 25 %

TABLE I
STATISTICAL PARAMETERS OF WORD-LENGTH OPTIMIZATION

Filtro Q1 Q2 (MED) Q3
New std New std New std

LFIR3 2 4.5 5.5 7 7 11
HFIR3 4 3.5 5 6 7 8.75
LFIR5 3 4 6 7 6.75 12.75
HFIR5 4 4 6 9.5 7.75 13
LFIR8 2.25 4 5 7 7 10
HFIR8 3.25 4 5 7 8 10

LFIR10 2 4 4.5 6 6 8.75
HFIR10 2.25 4 5 9 7 12

of signals has 13 or more bits but they have only more than
7 bits for the proposed version. Looking at the Table I, it is
seen that the amount of reduction depends on the concrete
filter observed, and apparently it does not show any pattern.

Using these optimum combinations of different signal
sizes calculated for each filter and rounding method, the
corresponding VHDL circuits have been designed. Then,
they have been synthesized for a XILINX Virtex-6 family
FPGA, using ISE v14.3 software. The area and delay results
obtained for all different filters are shown in Table II. We
should clarify several important points about these FPGA
implementations. To isolate the delay caused by the filter
itself by the one caused by communications, all input and
output signal have been registered. In contrast, the data-
path of the filters is fully combinational (except the delays
lines, for the input signal that have to be stored). Thus,
the delay presented in Table II refers to whole computation
time needed to compute a new output value since a new
input sample arrives.

On the other hand, the embedded multipliers presented
on the FPGAs have not been utilized to implement multipli-
cations. In other case, it may difficult a precise comparison,
especially due to the small sizes of multipliers required.
Thus, regular slice logic has been used to implement the
multipliers. This implementation may be in two different
forms: standard multiplier o multiplier to a constant. The
synthesis software only uses dedicated implementation of
multiplication to a constant for unsigned operators. Then,
a conversion from signed to unsigned number is required
to take advantage of the optimization due to constant
coefficients. This conversion may introduce a cost which
overcomes the advantage of using multipliers to a constant.
Thus, the overall result depends on the constant value
itself and the sizes of the operands. For this reason, we
have implemented the two versions, i.e. using standard
multipliers logic and using canonical signed digit multiplier
with conversion. Since the conversion between unsigned
and signed numbers is very easy for the proposed format,
the multiplier to a constant version is always better for
our proposal. However, it depends on the case for the
conventional version and, thus both results are shown.
Between these two versions, the one with the minimum area
and delay has been taken for comparing it to the proposed

TABLE II
IMPLEMENTATION RESULTS FOR VIRTEX-6 FPGA

Filter Area (LUTs)
New std(KCM) std min(std) %

LFIR3 82 184 129 129 57
HFIR3 75 207 116 116 55
LFIR5 123 240 381 240 95
HFIR5 149 383 247 247 66
LFIR8 168 269 431 269 60
HFIR8 178 219 369 219 23

LFIR10 153 488 312 312 104
HFIR10 233 569 299 299 28

Filter Delay (ns)
New std(KCM) std min (std) speedup

LFIR3 4.694 6.695 6.648 6.648 1.42
HFIR3 5.953 8.752 6.715 6.715 1.13
LFIR5 7.728 8.67 9.859 8.67 1.12
HFIR5 7.716 10.64 8.597 8.597 1.11
LFIR8 8.592 11.692 11.7 11.692 1.36
HFIR8 8.698 9.693 12.268 9.693 1.11

LFIR10 10.153 12.235 11.546 11.546 1.14
HFIR10 10.888 12.693 11.598 11.598 1.07

approach.
Regarding to Table II, it is observed that the proposed

implementation clearly outperforms the one implemented
in a conventional way, especially when a occupied area is
considered. The area increment, when using the conven-
tional implementation instead of the proposed one, ranges
from 23 % to 104% (more than double), and the mean
for these examples is 61%. While, they reduce the cost in
area, the same circuits also improve speed. The speedup for
the proposed implementation respect to the conventional
one ranges from 1.07 to 1.42, and the mean is 1.18.
Therefore, for these examples, the average FIR filter using
our approach are 18% faster and 38% smaller than the
conventional approach.

According to the work in [1], the maximum cost reduc-
tion achievable for 16-tap FIR filters using round-to-nearest
rounding with conventional formats instead of truncation
were up to 8.9% with a mean of 5.5%. Thus, as we
expected, the improvement achieved using our approach is
largely greater than the one reported in [1].

Summarizing, although only a few examples have been
studied and then we should not extrapolate these results
as sure, taking into account that all these results obtained
goes in the same direction, we could say that the use of
the proposed arithmetic circuits and format may produce,
in general (at least for FIR filter implementation), a very
significant reduction on the area occupied along with a
moderate speed improvement. However, each particular
case should be studied thoroughly.

VI. CONCLUSION

A new family of arithmetic operators to optimize the
implementation of circuits for digital signal processing has
been presented. They are based on the use of a new fixed-
point format for real numbers, which allow performing
round to the nearest in a very simple way. Using rounding
instead of truncation, as it is generally do it, allows reducing

the overall bit-width of the DSP circuit when performing
word-length optimization for a given error threshold. In
contrast, arithmetic operations using the new format may
require extending the operands with a constant extra-bit.
However, the benefits of using the new format clearly out-
perform the cost of this extra-bit, as it has been demonstrate
using FIR filter examples. In average, an area reduction of
38% and speed increase of 18% is achieved simultaneously.
The general ideas presented in this paper may be also
applied to floating-point numbers. A few patent applications
have been filed for different issues regarding to the circuits
to operate under the new format.

ACKNOWLEDGMENT

This work was supported in part by the Ministry of
Education and Science of Spain under contract TIN2010-
16144.

REFERENCES

[1] D. Menard, D. Novo, R. Rocher, F. Catthoor, and O. Sentiey,
“Quantization mode opportunities in fixed-point system design,”
European Signal Processing Conference, pp. 542–546, 2010.

[2] W. Sung and K.-I. Kum, “Simulation-based word-length optimiza-
tion method for fixed-point digital signal processing systems,” Signal
Processing, IEEE Transactions on, vol. 43, no. 12, pp. 3087–3090,
Dec 1995.

[3] M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan
Kaufmann Publishers, 2004.

[4] Y. C. Lim, Y. J. Yu, K. L. Teo, and T. Saramaki, “FRM-based
FIR filters with optimum finite word-length performance,” Signal
Processing, IEEE Transactions on, vol. 55, no. 6, pp. 2914–2924,
June 2007.

[5] G. Caffarena, G. Constantinides, P. Cheung, C. Carreras, and
O. Nieto-Taladriz, “Optimal combined word-length allocation and
architectural synthesis of digital signal processing circuits,” Circuits
and Systems II: Express Briefs, IEEE Transactions on, vol. 53, no. 5,
pp. 339–343, May 2006.

[6] O. Sarbishei, K. Radecka, and Z. Zilic, “Analytical optimization of
bit-widths in fixed-point LTI systems,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, vol. 31,
no. 3, pp. 343–355, March 2012.

[7] S. Kim and W. Sung, “Fixed-point error analysis and word length
optimization of 8x8 IDCT architectures,” Circuits and Systems for
Video Technology, IEEE Transactions on, vol. 8, no. 8, pp. 935–940,
Dec 1998.

[8] K.-I. Kum and W. Sung, “Combined word-length optimization and
high-level synthesis of digital signal processing systems,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, vol. 20, no. 8, pp. 921–930, Aug 2001.

[9] O. Sarbishei and K. Radecka, “On the fixed-point accuracy analysis
and optimization of polynomial specifications,” Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on,
vol. 32, no. 6, pp. 831–844, June 2013.

[10] S. Vakili, J. Langlois, and G. Bois, “Enhanced precision analysis
for accuracy-aware bit-width optimization using affine arithmetic,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 32, no. 12, pp. 1853–1865, Dec 2013.

[11] K. Han and B. L. Evans. (2006) Floating-point
to fixed-point transformation toolbox. [Online]. Available:
http://users.ece.utexas.edu/ bevans/projects/wordlength/converter/

