Energy-Efficient Time Series Analysis using Transprecision Computing

<u>Ivan Fernandez</u> Ricardo Quislant Eladio Gutierrez Oscar Plata

Department of Computer Architecture University of Malaga (Spain) ivanfy@uma.es

IEEE 32nd SBAC-PAD, September 2020

About me

- 3rd-year PhD Student at University of Malaga (Spain)
- Advisors: Oscar Plata and Eladio Gutierrez
- Research topic: Acceleration of time series analysis

- Introduction
 - Time Series Analysis
 - Motivation
- 2 Transprecision Matrix Profile
 - SCRIMPff
 - SCAMPff
- Top-K Accuracy Metric
- Evaluation
 - Accuracy
 - Energy
- 5 Conclusions and Future Work

- Introduction
 - Time Series Analysis
 - Motivation
- Transprecision Matrix Profile
 - SCRIMPff
 - SCAMPff
- 3 Top-K Accuracy Metric
- Evaluation
 - Accuracy
 - Energy
- 6 Conclusions and Future Work

Time Series Analysis

Time series analysis has a huge interest in many fields

Climate change

Signal processing

Matrix Profile

https://www.cs.ucr.edu/~eamonn/MatrixProfile.html

- Open source tool intended for motif (similarity) and discord (anomaly) discovery
- Implemented in several languages: C++, Python, CUDA, R, MATLAB
- No need for similarity threshold

Motifs and Discords

Synthetic **similarity** (motif) example

Synthetic **anomaly** (discord) example

Profile Calculation

The profile *P* and its index *I* are calculated on the fly using a matrix:

Those (Euclidean) distance values are calculated using the following:

$$d_{i,j} = \sqrt{2m\left(1 - rac{Q_{i,j} - m\mu_i\mu_j}{m\sigma_i\sigma_j}
ight)}$$

where $Q_{i,j}$ is the dot product between the subsequences of length m, and μ_i , μ_i , σ_i σ_j are their respective means and standard deviations,

Motivation

 Matrix Profile is usually based on double-precision floating point arithmetic

Analysing a time series of 130,000 elements using a subsequence length of 1,000 elements requires

- 2.4 Billion subtractions (-)
- 2.7 Billion multiplications (*)
- 2.9 Billion divisions (/)
- 2.8 Billion multiply-accumulations (FMA)
- 2.8 Billion comparisons (<)

13.6 Billion operations !!!

Observation

The number of operations increases **exponentially** with the time series length and the subsequence size, being a **major contributor** (\approx **50%**) **to energy consumption** in modern computing platforms

Motivation

- Transprecision Computing has emerged as a promising technique to boost energy efficiency and performance by reducing the number of bits in floating point operations
- There are already transprecision-enabled FPUs that can be implemented in RISC-V, FPGAs or ASICs (e.g., FPNew*)

Available data types in FPNew. 32-bit, 16-bit and 8-bit operations can be performed in a SIMD approach

* https://github.com/pulp-platform/fpnew

Motivation

- **Problem**: Time series analysis, and particularly Matrix Profile, calculations involves a huge number of floating-point operations
- Goal: Enable energy-efficient and high performance time series analysis suitable for low power and embedded devices
- **Key Idea**: Use a transprecision computing approach, adjusting the precision to the needs of the application
- Key Mechanism: Study the accuracy of Matrix Profile algorithms using a transprecision emulation library. Provide guidelines to computer architects to design devices with required precision
- **Results**: Energy consumption reduced up to 3.3× with respect to double precision approaches

- Introduction
 - Time Series Analysis
 - Motivation
- 2 Transprecision Matrix Profile
 - SCRIMPff
 - SCAMPff
- Top-K Accuracy Metric
- Evaluation
 - Accuracy
 - Energy
- Conclusions and Future Work

Transprecision Matrix Profile

- In this work, we develop two transprecision benckmarks of Matrix Profile, based on state-of-the-art implementations: SCRIMP and SCAMP
- We use FlexFloat* transprecision emulation library to enable arbitrary exponent and mantissa combinations in the calculations
- Both benchmarks are freely available to community, providing accuracy exploration for time series applications

* https://github.com/oprecomp/flexfloat

SCRIMPff

Our SCRIMPff benchmark is based on a parallel and vectorized implementation of SCRIMP. It is developed using a **configurable mixed precision** approach and its computation comprises the following steps:

- Calculation of the dot product using high precision
- Calculation of the Euclidean distance using low precision
- Update the distance profile and index using low precision if needed

SCAMPff

SCAMPff follows a similar computation scheme than SCRIMPff, but replaces the dot product with a mean-centered-sum-of-products in order to reduce the floating-point rounding errors and the number of operations required:

$$df_i = rac{T_{i+m-1} - T_{i-1}}{2}$$
 $dg_i = T_{i+m-1} - \mu_i + T_{i-1} - \mu_{i-1}$

Additionaly, SCAMPff uses the Pearson correlation coefficient that can be computed in fewer operations and it is more robust than the Euclidean distance used by SCRIMPff:

$$D_{i,j} = \sqrt{2m(1-P_{i,j})}$$

- Introduction
 - Time Series Analysis
 - Motivation
- 2 Transprecision Matrix Profile
 - SCRIMPff
 - SCAMPff
- Top-K Accuracy Metric
- 4 Evaluation
 - Accuracy
 - Energy
- Conclusions and Future Work

Top-K Accuracy Metric

- Time series motifs and discords have been used for more than 15 years in the field of data mining for their capacity to find time series **subsequences with special significance**
- We provide defitions to these special subsequences and propose a metric to measure the accuracy in the detection of motifs and discords from two time series subsequences

Definitions I

Definition

The **motif** M_1 of a time series T is the unordered pair of subsequences $\{T_{i,m}, T_{j,m}\}$ which is the most similar among all possible pairs:

$$M_1 = \{T_{i,m}, T_{j,m}\} \iff dist(T_{i,m}, T_{j,m}) \leq dist(T_{u,m}, T_{v,m})$$
$$\forall i, j, u, v; \ i \neq j, u \neq v.$$

Definition

The **Top-K motifs** $M_{1,K}$ of a time series T is the set of the first K motifs:

$$M_{1,K} = egin{cases} M_K \cup M_{1,K-1}, & K > 1 \\ M_1, & K = 1 \end{cases}$$

being M_K the motif (M_1) of the time series $T \setminus M_{1,K-1}, \forall K > 1$.

Definitions II

Definition

The **discord** D_1 of a time series T is the unordered pair of subsequences $\{T_{i,m}, T_{j,m}\}$ which is the most dissimilar among all possible pairs:

$$D_1 = \{T_{i,m}, T_{j,m}\} \iff dist(T_{i,m}, T_{j,m}) \ge dist(T_{u,m}, T_{v,m})$$
$$\forall i, j, u, v; \ i \ne j, u \ne v.$$

Definition

The **Top-K discords** $D_{1,K}$ of a time series T is the set of the first K discords:

$$D_{1,K} = \begin{cases} D_K \cup D_{1,K-1}, & K > 1 \\ D_1, & K = 1 \end{cases}$$

being D_K the discord (D_1) of the time series $T \setminus D_{1,K-1}, \forall K > 1$.

- Introduction
 - Time Series Analysis
 - Motivation
- Transprecision Matrix Profile
 - SCR.TMPff
 - SCAMPff
- Top-K Accuracy Metric
- 4 Evaluation
 - Accuracy
 - Energy
- **5** Conclusions and Future Work

Evaluation Methodology

- We use an **Intel Xeon Phi** 7210 to perform our experiments
- We compute both SCRIMP and SCAMP using double and single precision as reference
- We use FlexFloat library to explore precisions lower than single
- We provide energy results using an available transprecision FPU and the FlexFloat operation breakdown statistics

Time series	n	m	Max	Min	Scale
Audio	20234	200 (2s)	6.69	-56.48	1
ECG	180000	500 (2s)	2.6	0.32	1
Power	180000	1325 (8h)	14.0	0	0.1
Seismology	180000	50 (2.5s)	6.96	-1.86	0.01
Human Activity	7997	120 (12s)	2.51	-1.9	1
Penguin Behavior	109842	800	0.52	-0.21	1

Analyzed time series in this work

SCRIMP Accuracy

Observation

In most cases **single precision provides 100% accuracy** w.r.t. double. Accuracy decreases dramatically after a given combination

SCAMP Accuracy

Observation

SCAMP is more robust and presents a better numeric stability than SCRIMP for all analyzed datasets

SCRIMP versus SCAMP Accuracy

			SCRIMPff		SCAMPff	
Т	High Exp/Man	Low Exp/Man	Accuracy Mot/Disc	Accuracy ±10 Mot/Disc	Accuracy Mot/Disc	Accuracy ±10 Mot/Disc
Audio	8/23	8/7 5/10 5/2	14/9 38/0 0/0	16/31 99/0 0/0	54/86 95/99 1/0	100/97 100/100 1/0
ECG	8/23	8/7 5/10 5/2	0/1 10/57 0/0	0/1 10/60 0/0	0/51 25/99 0/0	0/56 30/100 0/0
Power	8/23	8/7 5/10 5/2	47/31 68/92 0/0	67/95 96/100 0/0	39/25 81/65 0/0	78/99 100/100 0/0
Seis.	8/23	8/7 5/10 5/2	3/17 7/68 0/0	55/21 86/70 0/0	0/3 12/40 0/0	0/6 15/45 0/0
Hum.	8/23	8/7 5/10 5/2	72/24 100/85 0/3	80/63 100/97 0/4	91/84 100/98 0/0	99/92 100/99 0/1
Peng.	8/23	8/7 5/10 5/2	0/0 0/0 0/0	0/0 0/0 0/0	15/89 81/99 0/0	85/98 100/99 0/0

Observation

A mixed precision of 8/23 and 5/10 provides more than 98% accuracy for most datasets when using SCAMP

Energy

Observation

Using single instead of double precision, energy consumption of the FPU can be **reduced by 60%**. Using mixed precision, it can **be further reduced between 25% and 50%**, depending on the algorithm

- Introduction
 - Time Series Analysis
 - Motivation
- 2 Transprecision Matrix Profile
 - SCRIMPff
 - SCAMPff
- Top-K Accuracy Metric
- Evaluation
 - Accuracy
 - Energy
- Conclusions and Future Work

Conclusions and Future Work

- This work studies the benefits from using a transprecision approach for time series analysis
- We develop SCRIMPff and SCAMPff implementations that will help the community to design energy-efficient time series analysis solutions
- Our analysis reveals that the energy consumption of a transprecision FPU is reduced up to 3.3× compared with double precision when computing Matrix Profile algorithms
- An interesting future work would be the evaluation of the transprecision analysis of time series in complete implementations of RISC-V processors and FPGA-based devices

Thanks for your attention!

Energy-Efficient Time Series Analysis using Transprecision Computing

<u>Ivan Fernandez</u> Ricardo Quislant Eladio Gutierrez Oscar Plata

Department of Computer Architecture University of Malaga (Spain) ivanfy@uma.es

IEEE 32nd SBAC-PAD, September 2020

