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Abstract

This report includes some calculations used as additional material of the paper “Redundant Floating-

point Decimal CORDIC Algorithm”.

1 Minimum overlap and number of fractional digits

The overlap between angleand the addition of the remaining angles plus the bound of the final

error is:

4m
V[Z] = ( Z a1 + Ck4m71) — 045

j=i+1
To obtain the number of bits of the estimation we need a lower bound of the scaled overlap, that is

107" < min(103 1V [))
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We have the following possible cases for the overlap:
e imod4=1¢(=4k — 3)

V[4k — 3] = —tan~ (5 107%) + 2 tan™'(2 107%) + tan "' (107) + R[]

e imod4=2(=4k—2)

V[4k — 2] = —tan~ (2 107%) 4+ tan "' (2 107%) + tan"*(107%) + R[k]

e imod4=3¢(=4k —1)

V[4k — 1] = —tan" (2 107%) 4 tan~* (107%) + R[K]

e i mod 4 =0 ( = 4k)
V[4k] = —tan"*(107%) + R[k]

with
Rlk] = ( Z tan (5 1077) + 2 tan"*(2 1077) + tan_l(l()_j)) + aum
j=k+1

We use the propertiesin ! (u v 107%) < utan=t(v 107%) for v > 1 andtan=*(u v 107%) >

utan~!(v 107%) for u < 1, to demonstrate the following inequalities:
tan~'(2 107%) — tan ™' (107%) < 2tan"*(107%) — tan™*(107%) = tan"*(107%)
and

tan™'(5 107%) — 2tan*(2 107") — tan~'(107%) <
tan~"'(5107") — 2tan~'(2107%) — 0.5 tan ' (2107%) <

tan~'(5 107%) — 2.5tan"1(2 107%) < 0

Taking into account these inequalities results in



e imod4 =1

V[dk — 3] — Rlk+1] > 0

e imod4 =2
V[4k — 2] — Rk + 1] = tan"'(107%)
e :mod 4 =3
V[4k — 1] — R[k 4+ 1] > —tan"'(107%)
e imod 4 =0
V[4k] — R[k + 1] = —tan"'(107%)
Thus

min(V[4k — 3], V[4k — 2|, V[4k — 1], V[4k]) = V [4k]
Therefore, the minimum overlap is fomod 4 =0. We show below that among the possible values
of ¢ that verifies this condition, the worst case for convergence is fer4m — 4. (that is for
k = m — 1). To demonstrate this, we take into account the following properties (true in our
domain, that is: 10~% < 0.5):

1 1
uw107F — §u3 1073 < tan H(u 107%) < w 107 — Zu?’ 1073

Therefore, a bound for'[4k] is

m 142 1. 1.
Vi4k] > Y (10107 — —=107%) +107" — =107*" — 107" + ~10~°*
j=k+1 3 3 4

This results in

1 2 1 1
VI4k] > =107F + = 107% — Z107™ — =107°™
[4k] > 9 10 9 3

Note that fork = m this bound gives a negative overlap-6f2/15)10~*" instead0 due to the

bounds used.



We use the above bound bf4k] to determine the number of truncation bits. Specifically, we need

the scaled bound

1 2 1 1
10°V4k] > = + — 1072k — Z107™mtk — Z103mtk
[4k] 2 9 * 10 9 3

The worst case is obtained for the minimum value of the bound. This minimum is achieved for the

maximum value ok, i.e. £k = m. However the cask = m does not allow to obtain information

for convergence, since this is in fact the last elementary rotation. The only constraint for this case
is that the final error due to a wrong estimation of the sign in the last iteration should be within the

bound of the final error. Therefore, to findve use the bound of the overlap for= m — 1.

Thus,

107" <0.1+ 295 1072 < 10™ 'V [4(m — 1)] < min(10*V[4k])

2 Number of digits of the integer part

The number of digits of the integer part of the estimation is obtained from the upper bopidi of

We have the following possible cases:
e imod4=1(=4k —3)
[r[i]] < 10* (tan™'(5107%) + 2 tan™"(2 107%) + tan "' (107) + R[k + 1])
e imod4=2(=4k—2)
rld]] < 10* (2 tan~ (2 107%) + tan~1(107%) + R[k + 1])
e imod4=3(=4k—1)
[ri]| < 10* (tan~"(2107%) + tan "' (107%) + R[k + 1))

e i mod 4 =0 ( = 4k)

[r(i]| < 10* (tan~"(107") + R[k + 1])
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The worst case is farmod 4=1. A simple bound is obtained using the inequality ! (u 107) <

u 10~%, which results in

m : 100 1 100
rli]] < 10" 10107+ | > 101077 | +107" | < — — = 10" < — = 11.111...
J=k+1 9 9 9

3 Convergence for hyperbolic vectoring mode

The residual angle for vectoring is bounded by

10~¢ i 1 1073 i
—— 107 S | 1073
0.4369... T3 ((0.4369...)3> T

Thus, for convergence in hyperbolic coordinates it is necessary that

10~ 1 107 a1 am, 1
m 10712l + 5 <(04369)3> 10 4l 4+ Q1 < ‘Z—H Oy 1 + Ay, —1 (1)
j=i

Fort = 1 (the number of fractional digits used for the sign estimation in circular coordinates)

101 i 1 1073 i i
—— 1071l 4 [ ————— ] 10714l < 0.25 10714
0.4369... 3 <(0.4369...)3>

and then, expression (1) results in the following condition of convergence:
) ) 4m,—1
0.25 < 10111V = 100 | 37 a1 + qum, 1 — i1 2)
j=i+1
We have checked that, for hyperbolic coordinates, with the angles derived from the 5221 decimal
code, it is not possible to assure the convergence of the algorithm with an estimation with one

decimal digit, as it is done for circular coordinates.

The alternative, for hyperbolic coordinates, is to use angles derived from the decimal code 5421,
which has more redundancy. Specifically, we show in following subsections that convergence is

achieved using the following scheme for hyperbolic coordinates:

e To use angles derived from the code 5221ifer 4, that is, to use the following sequence of
angles for the leading four iterationsinh ™" (5 10~1), tanh~*(2 107!), tanh~*(2 10~') and

tanh™'(1071)



e To use the code 5421 far > 4, that is angles of the formanh'(S[i]), with S[i] =

Cli] 107141, andC[i] = R[i mod4] with R[0 : 3] = {1,5,4,2}

Convergence for the 5421 code anfl> 4
V'[i] is the overlap between angland the addition of the remaining angles plus the bound of the

final error:

4m
Vi = ( Z a; 1+ 044m,1) — ;1

j=i+1
We show below that the worst case for convergence (minimum overlap) for hyperbolic coordinates

corresponds tomod 4 =2.

We have the following possible cases for the overlap:
e imod4=1(=4k —3)
V]dk — 3] = —tanh™' (5 107%) + tanh ™' (4 107%) + tanh™'(2 107%) + tanh ' (107%) + R[k] (3)
e imod4=2(=4k —2)
V[4k — 2] = —tanh™'(4 107%) 4 tanh (2 107%) + tanh(107) + R[k] (4)
e imod4=3(=4k—1)
V[4k — 1] = —tanh (2 107%) + tanh ™' (107%) + R[K] (5)
e ;mod 4 =0 ( = 4k)
V[4k] = — tanh ™ (107%) + R[k] (6)
with

R[k] = ( > tanh™'(51077) + tanh~'(4107/) + tanh~ ' (2 107) —i—tanhl(lo_j)) + Q1 (7)

j=k+1



In what follows we use the properties:

tanh ™' (©107%) > wtanh ' (107%) if w>1 (8)
tanh ' (u107%) < wtanh '(107%) if w<1 9)
tanh ™' (u107%) > ulO_’"’+;u310_3k (10)
tanh ™' (u107%) < u10k+;u3103k (11)

to look for bounds folV [4k — 3], V[4k — 2|, V[4k — 1] andV [4]:
e imod4=1(=4k — 3)

V[4k — 3] — R[k] =
—tanh™'(5107%) 4+ tanh (4 107%) + tanh (2 107) 4 tanh ' (107%) > (Fq¢.8)
—tanh ™' (5 107%) + 4 tanh ™' (107%) + 2tanh ™' (107%) + tanh ' (107%) =
—tanh (5 107%) + 7tanh 1 (107%) > (Eq.11 & 10)

1 7 361
—5107%F — 55310—% + 7107 + 510—3’*“ =2107" - ?10—% > 0(k>2)

e imod4=2(=4k —2)

V[4k — 2] — R[k] =
—tanh (4 107%) + tanh™"(2 107") + tanh ' (107%) < (Eq.9)
—tanh™ (4 107%) 4 ;tanh_l(él 107%) + itanh_l(él 107%) =
—i tanh™ (4 107%) < (FEq.8)

—tanh™*( 107")
e imod4=3(=4k—1)

V[4k —1] — R[k] =
—tanh (2 107%) 4+ tanh ' (107%) < (Eq.8)

—2tanh™'(107%) + tanh~'(107") = — tanh~*( 107%)
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o imod 4 =0 ( = 4k)

V[4k] — R[k] = —tanh™'(107")

Thus, the worst cases alg4k — 2] andV[4K — 1]. We subtract both expressions to find the

smallest:
V[dk — 2] — V[dk — 1] = —tanh (4 107%) + 2tanh " (2107%) < (Eq.8)
—2tanh™ (2 107%) + 2tanh ' (2107%) = 0
Thus,V[4k — 2] < V[4k — 1] and thus
min(V[4k — 3], V[4k — 2], V[4k — 1], V[4k]) = V[4k — 2]
Therefore, the minimum overlap is fomod4 = 2.

Now, we look for a lower bound fov' [4k — 2|, by obtaining a bound for the different terms of

Equation (4).

—tanh™ (4 107%) 4 tanh™"(2 107") + tanh ™' (10™") > (eq. 10 & 11)
—4107%F — ; 43107%F 4 2107% + :1,) 231073% + 107% + ;103’“ (12)
For R[k] we have (see Eq. (7) and (10) ):

m 1 1 1 1
Rkl > Y 510"+ 3 521073 +4107% + 3 431073 +2107F + 3 251073 +107% + §10-3k +
Jj=k+1

1 4 4 292 292 1
107"+ =107 = ~107" - 2100+ —107%* + —107*" 4+ 107"+ =107°" (13
+ + 3 3 3 + 333 + 333 * + 3 (13)

From (12) and (13) we have:
1 —k -3k 1 —-m —3m
V[dk — 2] > 510 —28.94 107" — 510 4+ 0.26 10
To determine the number of truncation digits we need the scaled overlap:

1 1
108 V[4k — 2] > 5 — 2894 1072% — g10’9—7“ +0.26 10F73™ >

:1)) — max(28.94 1072%) — max(;)l()km) (14)
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The highest contribution of tern8.94 10-2* and 510" is for k = 2 andk = m — 1 respec-

tively!. Taking into account this, Expression (14) becomes:
k 1 VR S
10" V]dk — 2] > 3~ 28.94 107" — 510 = 0.297 (15)

Therefore, the value of the overlap is higher than 0.25 (see (2)), which is the bound of the error in
the angle, and then the convergence of the algorithm is assured.
Convergence for the 5221 and < 4

For the casé = 1 and the angles derived from the 5221 code, the four bounds are
e ;=1
V[1] = R[1] = —tanh*(5107") + 2tanh™ (2 107") 4 tanh ' (107') = —0.0435 (16)
o1 =2

V[2] = R[1] = —tanh™*(2 107!) + tanh~'(2 107") 4 tanh*(107!) = 0.1003  (17)

«i=3
VI[3] — R[1] = —tanh™"(2107") + tanh~'(107") = —0.1024 (18)
ei=4
V[k] — R[1] = —tanh™'(10™") = —0.1003 (19)
with

R[1] = (Z tanh ™' (5 1077) + tanh ™' (4 1077) + tanh ™' (2 1077) + tanh_l(lO_j)) + Qg1
j=2

Thus,

min(V[1], V[2], V]3], V[4]) = V[3]

IFor k = m there is not overlap, but the additional er@g5 10~™ can be accommodated with the other sources

of error (truncation errors).



Therefore, the minimum overlap is for= 3. Now we look for a lower bound of [3]. From Eq.

(18) and (13) we have:

V[3] = —tanh ' (2107") + tanh ' (107") + R[1] >

0,10239 + 4 410—’” + 22 + 22 1073 +107™ + 110—3m
’ 30 3 333000 ' 333 3

For all practical purposes > 16. Thus, tanking into account this value we conclude that:
V3] > 0.031

The scaled overlap is

10 V[3] > 0.31

The value of the overlap is higher than 0.25 (see (2)), which is the bound of the error in the angle,

and then the convergence of the algorithm is assured also for this case.

4 High-Level Range Reduction Methods for Floating-Point

We consider the computation of the following transcendental functien$f”), sin(F'), tan ' (F/G),
sinh(F), cosh(F), tanh™' (F/G), eF, 107, In(F), log,,(F) andvF whereF = S, A 10%4 and

G = Sp B 10%5, with, S4, Sp the sign bits,A, B € [1,10) coded in BCD and¥4, Ep the
exponents. Although, according to the IEEE-754 2008 standard, the input operands may not be
normalized, for transcendental functions the preferred exponent is the minimum possible, so a

normalization stage is necessary.

For range reduction we consider the methods described in [1] [2]. The operations performed are

dependent on the function computed:

[sin(F)/cos(F)} the angle is decomposed ds104 = N 7/2 + z;,, with N an integer,z;, =

M, 107 E=in € [—7/4 — v, m/4 + ] andw /4 + v < 1.069.... The parametey allows certain
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redundancy that may simplify the range reduction implementation [1]. The functions are computed
in the circular rotation mode with input arguments (no scale factor compensation is necessary since
we use scaled input argumenis) = K1, y;,, = 0.0 andz;, = M., 10~ F=in with |M_;,,| € [1, 10)

andF.;, > 0. After computing the sine or cosine of, (the final result of the or x iteration), the

sine or cosine of the input angle may be obtained by simple trigonometric identities [1].

[tan~}(F/G)]: if F' > G the algorithm computeisin— (G /F) and then by trigonometric identities
tan~!(F/G) is obtained. In this way we assure that the angle to be computed is within the range
of convergence of the algorithm, which is larger thaid. The function is computed in the circular
vectoring mode with(z;,,, yi,,) = (A, B 10~Fvin) if F > G or (B, A 10~Fwn) in other case, with

E,n = |Ea — Eg| > 0. The final result is obtained in thecoordinate.

[sinh(F)/cosh(F)} the following decomposition is performety A 1054 = N In(10) + 2;,, with

N anintegerz;, = M.;, 10~ %=n € [—1n(10)/2 —v,1n(10)/2 ++], and|In(10) /2 + | < 1.166...

As before,y provides some redundancy to simplify the range reduction. Following the method
of [2], the functions are computed in the hyperbolic rotation mode ith, v;,) = (0.5 (1 +
1072Y) K_1,0.5 (1 —1072Y) K_,) andz;, = M.;, 10~ %= with |M.,,| € [1,10) and E.;, > 0.

The result is obtained in theor y coordinate and does not require scale factor compensation (due
to the initialization of ther andy input arguments already scaledN should be added to the

exponent of the result.

[eF]: the same range reduction as for sinh/cosh is performed. The function is computed in the
hyperbolic rotation mode with;,, = y;, = K_; andz;, = M.,;, 10~F=i»_ Since the initial values

of x andy are the same, for the hyperbolic rotation the resultant final values of both coordinates
are also the same (both theandy iterations perform the same effective addition or subtraction

operation). Therefore it is only necessary to implement one of the iteratiars;.

[10F]: the following decomposition is performeiSs 4 1074 — 1gN+r = 10N ¢r (10) | with
—0.5—7/In(10) <r < 0.54+v/In(10) and|0.5+~/1n(10)| < 1.166... Then a base exponential

is computed.
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[tanh—1(F/G)]: The domain of the function is defined foF| < |G|. Sincetanh(1.166..) =
0.8229..., we may perform the direct computation of the function (/|G| < 0.8229.... We use
the range reduction method proposed in [2]. For the casEs iX Ez — 2, orii) A 104~ Fs <
0.5 BwhenE, = Egor £, = Ep — 1, the function is computed directly in the hyperbolic
vectoring mode withz,, yin) = (B, A 10%v») with E,;,, = EA — EB. For A 10%4~F5 > 0.5 B

with £, — Egp =0 or — 1 the following transformation is performed:

B — A) 1074~Fs 10~ E
tanh ™ (1 ! ) 10 ) = tanh™! <1 _5 ; ) = tanh ™ (T") + 78 In(10)

B

with T = Egig‘g;ggjg 182 = Yo, This transformation assures tHat< 0.8229.... Then the

function is computed in the hyperbolic vectoring mode With,, y;,) = (X*, Y*).

[In(F)]: we use the transformatidn(A 10%4) = E,4 In(10) + In(A). Then the following com-
putation is performedin(4) = 2 tanh™'((A — 1)/(A + 1)). SinceA < 10 we have that
(A—-1)/(A+1) < 0.8229.. and the function is computed directly in the hyperbolic vectoring
mode with(z,, yin) = (A+1,A —1) = (A+ 1, My, 10-Fvn) (note thatd > 1 and that4d — 1
may have leading zeros, which we express as a normalized significand and an exponent).
[log1o(F)]: the following transformation is usedg,,(A 10%4) = log,y(e) In(A) + E4. Then

In(A) is computed as in the previous case.

[Square root]: we compute/A for even exponent, anglA/lO for odd exponent. The square root
is computed using the hyperbolic vectoring mode that allows the computati\(jmfgf— v /K 4

(obtained in the final value of the coordinate). Specifically, for even exponent we compute

\/(A + K2,)2 — (A — K2?,)2/K_, = 2y/A (the final result have to be multiplied By5). To avoid

an overflow in ther coordinate we usér;,, vi,) = (A, A), perform the first CORDIC iteration to
obtain(x[2], y[2]) and add tar[2] (subtract tay[2]) the constant correction terii?, (1+0.5 K2,).

For odd exponent we use;,, vi,) = ((A/10+ K2, /4), (A/10—K?,/4)), which results in/A in

the rangé€+/0.1, 1), so that a final decimal left shift is needed. The hyperbolic modulus is computed
with the required accuracy in about half of the iterations required for the other functions. Therefore,

about2m hyperbolic rotations are necessary.
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The most complex part of the range reduction is the accurate computation of the remainder given
by the difference between the input argument and the highest integer multiple of a caristant
(C = m/2 for the circular functions, and’ = In(10) for the hyperbolic functions) lower than

the input argument. For gdigit format (significand), this remainder should be computed with

an accuracy op digits. Methods used for binary floating point such as those presented in [3] [4],

among others, might be adapted for decimal floating point.
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