
Calculations for Redundant Floating-point Decimal

CORDIC Algorithm∗

Álvaro Vázquez, Julio Villalba∗∗, Elisardo Antelo and Emilio L. Zapata∗∗

University of Santiago, SPAIN

∗∗University of Málaga, SPAIN

alvaro.vazquez@usc.es, jvillalba@uma.es, elisardo.antelo@usc.es,zapata@uma.es

Abstract

This report includes some calculations used as additional material of the paper “Redundant Floating-

point Decimal CORDIC Algorithm”.

1 Minimum overlap and number of fractional digits

The overlap between anglei and the addition of the remaining angles plus the bound of the final

error is:

V [i] =




4m∑

j=i+1

αj,1 + α4m,1


− αi,1

To obtain the number of bits of the estimation we need a lower bound of the scaled overlap, that is

10−t ≤ min(10d
i
4
eV [i])

∗This work has been partially supported by the Ministry of Science and Innovation of Spain under projects

TIN2007-67537-C03-01 and TIN2006-01078.

1

We have the following possible cases for the overlap:

• i mod 4 =1 (i = 4k − 3)

V [4k − 3] = − tan−1(5 10−k) + 2 tan−1(2 10−k) + tan−1(10−k) + R[k]

• i mod 4 =2 (i = 4k − 2)

V [4k − 2] = − tan−1(2 10−k) + tan−1(2 10−k) + tan−1(10−k) + R[k]

• i mod 4 =3 (i = 4k − 1)

V [4k − 1] = − tan−1(2 10−k) + tan−1(10−k) + R[k]

• i mod 4 =0 (i = 4k)

V [4k] = − tan−1(10−k) + R[k]

with

R[k] =




m∑

j=k+1

tan−1(5 10−j) + 2 tan−1(2 10−j) + tan−1(10−j)


 + α4m

We use the propertiestan−1(u v 10−k) < u tan−1(v 10−k) for u ≥ 1 and tan−1(u v 10−k) >

u tan−1(v 10−k) for u ≤ 1, to demonstrate the following inequalities:

tan−1(2 10−k)− tan−1(10−k) < 2 tan−1(10−k)− tan−1(10−k) = tan−1(10−k)

and

tan−1(5 10−k)− 2 tan−1(2 10−k)− tan−1(10−k) <

tan−1(5 10−k)− 2 tan−1(2 10−k)− 0.5 tan−1(2 10−k) <

tan−1(5 10−k)− 2.5 tan−1(2 10−k) < 0

Taking into account these inequalities results in

2

• i mod 4 =1

V [4k − 3]−R[k + 1] > 0

• i mod 4 =2

V [4k − 2]−R[k + 1] = tan−1(10−k)

• i mod 4 =3

V [4k − 1]−R[k + 1] > − tan−1(10−k)

• i mod 4 =0

V [4k]−R[k + 1] = − tan−1(10−k)

Thus

min(V [4k − 3], V [4k − 2], V [4k − 1], V [4k]) = V [4k]

Therefore, the minimum overlap is fori mod 4 =0. We show below that among the possible values

of i that verifies this condition, the worst case for convergence is fori = 4m − 4. (that is for

k = m − 1). To demonstrate this, we take into account the following properties (true in our

domain, that isu 10−k ≤ 0.5):

u 10−k − 1

3
u3 10−3k < tan−1(u 10−k) < u 10−k − 1

4
u3 10−3k

Therefore, a bound forV [4k] is

V [4k] ≥
m∑

j=k+1

(10 10−j − 142

3
10−3j) + 10−m − 1

3
10−3m − 10−k +

1

4
10−3k

This results in

V [4k] ≥ 1

9
10−k +

2

10
10−3k − 1

9
10−m − 1

3
10−3m

Note that fork = m this bound gives a negative overlap of−(2/15)10−3m instead0 due to the

bounds used.

3

We use the above bound ofV [4k] to determine the number of truncation bits. Specifically, we need

the scaled bound

10kV [4k] ≥ 1

9
+

2

10
10−2k − 1

9
10−m+k − 1

3
10−3m+k

The worst case is obtained for the minimum value of the bound. This minimum is achieved for the

maximum value ofk, i.e. k = m. However the casek = m does not allow to obtain information

for convergence, since this is in fact the last elementary rotation. The only constraint for this case

is that the final error due to a wrong estimation of the sign in the last iteration should be within the

bound of the final error. Therefore, to findt we use the bound of the overlap fork = m− 1.

Thus,

10−t ≤ 0.1 +
599

30
10−2m ≤ 10m−1V [4(m− 1)] ≤ min(10kV [4k])

2 Number of digits of the integer part

The number of digits of the integer part of the estimation is obtained from the upper bound of|r[i]|.
We have the following possible cases:

• i mod 4 =1 (i = 4k − 3)

|r[i]| ≤ 10k
(
tan−1(5 10−k) + 2 tan−1(2 10−k) + tan−1(10−k) + R[k + 1]

)

• i mod 4 =2 (i = 4k − 2)

|r[i]| ≤ 10k
(
2 tan−1(2 10−k) + tan−1(10−k) + R[k + 1]

)

• i mod 4 =3 (i = 4k − 1)

|r[i]| ≤ 10k
(
tan−1(2 10−k) + tan−1(10−k) + R[k + 1]

)

• i mod 4 =0 (i = 4k)

|r[i]| ≤ 10k
(
tan−1(10−k) + R[k + 1]

)

4

The worst case is fori mod 4=1. A simple bound is obtained using the inequalitytan−1(u 10−k) <

u 10−k, which results in

|r[i]| < 10k


10 10−k +




m∑

j=k+1

10 10−j


 + 10−m


 <

100

9
− 1

9
10k−m <

100

9
= 11.111...

3 Convergence for hyperbolic vectoring mode

The residual angle for vectoring is bounded by

10−t

0.4369...
10−d

i
4
e +

1

2

(
10−3t

(0.4369...)3

)
10−3d i

4
e + αi,−1

Thus, for convergence in hyperbolic coordinates it is necessary that

10−t

0.4369...
10−d

i
4
e +

1

2

(
10−3t

(0.4369...)3

)
10−3d i

4
e + αi,−1 ≤




4m,−1∑

j=i+1

αj,−1 + α4m,−1


 (1)

For t = 1 (the number of fractional digits used for the sign estimation in circular coordinates)

10−1

0.4369...
10−d

i
4
e +

1

2

(
10−3

(0.4369...)3

)
10−3d i

4
e < 0.25 10−d

i
4
e

and then, expression (1) results in the following condition of convergence:

0.25 < 10d
i
4
eV [i] = 10d

i
4
e



4m,−1∑

j=i+1

αj,−1 + α4m,−1 − αi,−1


 (2)

We have checked that, for hyperbolic coordinates, with the angles derived from the 5221 decimal

code, it is not possible to assure the convergence of the algorithm with an estimation with one

decimal digit, as it is done for circular coordinates.

The alternative, for hyperbolic coordinates, is to use angles derived from the decimal code 5421,

which has more redundancy. Specifically, we show in following subsections that convergence is

achieved using the following scheme for hyperbolic coordinates:

• To use angles derived from the code 5221 fori ≤ 4, that is, to use the following sequence of

angles for the leading four iterations:tanh−1(5 10−1), tanh−1(2 10−1), tanh−1(2 10−1) and

tanh−1(10−1)

5

• To use the code 5421 fori > 4, that is angles of the formtanh−1(S[i]), with S[i] =

C[i] 10−d
i
4
e, andC[i] = R[i mod4] with R[0 : 3] = {1, 5, 4, 2}

Convergence for the 5421 code andi > 4

V [i] is the overlap between anglei and the addition of the remaining angles plus the bound of the

final error:

V [i] =




4m∑

j=i+1

αj,−1 + α4m,−1


− αi,−1

We show below that the worst case for convergence (minimum overlap) for hyperbolic coordinates

corresponds toi mod 4 =2.

We have the following possible cases for the overlap:

• i mod 4 =1 (i = 4k − 3)

V [4k − 3] = − tanh−1(5 10−k) + tanh−1(4 10−k) + tanh−1(2 10−k) + tanh−1(10−k) + R[k] (3)

• i mod 4 =2 (i = 4k − 2)

V [4k − 2] = − tanh−1(4 10−k) + tanh−1(2 10−k) + tanh−1(10−k) + R[k] (4)

• i mod 4 =3 (i = 4k − 1)

V [4k − 1] = − tanh−1(2 10−k) + tanh−1(10−k) + R[k] (5)

• i mod 4 =0 (i = 4k)

V [4k] = − tanh−1(10−k) + R[k] (6)

with

R[k] =




m∑

j=k+1

tanh−1(5 10−j) + tanh−1(4 10−j) + tanh−1(2 10−j) + tanh−1(10−j)


 + α4m,−1 (7)

6

In what follows we use the properties:

tanh−1(u10−k) > u tanh−1(10−k) if u > 1 (8)

tanh−1(u10−k) < u tanh−1(10−k) if u < 1 (9)

tanh−1(u10−k) > u10−k +
1

3
u310−3k (10)

tanh−1(u10−k) < u10−k +
1

2
u310−3k (11)

to look for bounds forV [4k − 3], V [4k − 2], V [4k − 1] andV [4]:

• i mod 4 =1 (i = 4k − 3)

V [4k − 3]−R[k] =

− tanh−1(5 10−k) + tanh−1(4 10−k) + tanh−1(2 10−k) + tanh−1(10−k) > (Eq.8)

− tanh−1(5 10−k) + 4 tanh−1(10−k) + 2 tanh−1(10−k) + tanh−1(10−k) =

− tanh−1(5 10−k) + 7 tanh−1(10−k) > (Eq.11 & 10)

−5 10−k − 1

2
5310−3k + 7 10−k +

7

3
10−3k = 2 10−k − 361

6
10−3k > 0 (k ≥ 2)

• i mod 4 =2 (i = 4k − 2)

V [4k − 2]−R[k] =

− tanh−1(4 10−k) + tanh−1(2 10−k) + tanh−1(10−k) < (Eq. 9)

− tanh−1(4 10−k) +
1

2
tanh−1(4 10−k) +

1

4
tanh−1(4 10−k) =

−1

4
tanh−1(4 10−k) < (Eq. 8)

− tanh−1(10−k)

• i mod 4 =3 (i = 4k − 1)

V [4k − 1]−R[k] =

− tanh−1(2 10−k) + tanh−1(10−k) < (Eq. 8)

−2 tanh−1(10−k) + tanh−1(10−k) = − tanh−1(10−k)

7

• i mod 4 =0 (i = 4k)

V [4k]−R[k] = − tanh−1(10−k)

Thus, the worst cases areV [4k − 2] andV [4K − 1]. We subtract both expressions to find the

smallest:

V [4k − 2]− V [4k − 1] = − tanh−1(4 10−k) + 2 tanh−1(2 10−k) < (Eq. 8)

−2 tanh−1(2 10−k) + 2 tanh−1(2 10−k) = 0

Thus,V [4k − 2] < V [4k − 1] and thus

min(V [4k − 3], V [4k − 2], V [4k − 1], V [4k]) = V [4k − 2]

Therefore, the minimum overlap is fori mod4 = 2.

Now, we look for a lower bound forV [4k − 2], by obtaining a bound for the different terms of

Equation (4).

− tanh−1(4 10−k) + tanh−1(2 10−k) + tanh−1(10−k) > (eq. 10 & 11)

−4 10−k − 1

2
4310−3k + 2 10−k +

1

3
2310−3k + 10−k +

1

3
10−3k (12)

ForR[k] we have (see Eq. (7) and (10)):

R[k] >
m∑

j=k+1

5 10−k +
1

3
5310−3k + 4 10−k +

1

3
4310−3k + 2 10−k +

1

3
2310−3k + 10−k +

1

3
10−3k +

+10−m +
1

3
10−3m =

4

3
10−k − 4

3
10−m +

22

333
10−3k +

22

333
10−3m + 10−m +

1

3
10−3m (13)

From (12) and (13) we have:

V [4k − 2] >
1

3
10−k − 28.94 10−3k − 1

3
10−m + 0.26 10−3m

To determine the number of truncation digits we need the scaled overlap:

10k V [4k − 2] >
1

3
− 28.94 10−2k − 1

3
10k−m + 0.26 10k−3m >

1

3
−max(28.94 10−2k)−max(

1

3
10k−m) (14)

8

The highest contribution of terms28.94 10−2k and 1
3
10k−m is for k = 2 andk = m − 1 respec-

tively1. Taking into account this, Expression (14) becomes:

10k V [4k − 2] >
1

3
− 28.94 10−4 − 1

3
10−1 = 0.297 (15)

Therefore, the value of the overlap is higher than 0.25 (see (2)), which is the bound of the error in

the angle, and then the convergence of the algorithm is assured.

Convergence for the 5221 andi ≤ 4

For the casek = 1 and the angles derived from the 5221 code, the four bounds are

• i = 1

V [1]−R[1] = − tanh−1(5 10−1) + 2 tanh−1(2 10−1) + tanh−1(10−1) = −0.0435 (16)

• i = 2

V [2]−R[1] = − tanh−1(2 10−1) + tanh−1(2 10−1) + tanh−1(10−1) = 0.1003 (17)

• i = 3

V [3]−R[1] = − tanh−1(2 10−1) + tanh−1(10−1) = −0.1024 (18)

• i = 4

V [k]−R[1] = − tanh−1(10−1) = −0.1003 (19)

with

R[1] =




m∑

j=2

tanh−1(5 10−j) + tanh−1(4 10−j) + tanh−1(2 10−j) + tanh−1(10−j)


 + α4m,−1

Thus,

min(V [1], V [2], V [3], V [4]) = V [3]

1Fork = m there is not overlap, but the additional error,0.25 10−m can be accommodated with the other sources

of error (truncation errors).

9

Therefore, the minimum overlap is fori = 3. Now we look for a lower bound ofV [3]. From Eq.

(18) and (13) we have:

V [3] = − tanh−1(2 10−1) + tanh−1(10−1) + R[1] >

−0, 10239 +
4

30
− 4

3
10−m +

22

333000
+

22

333
10−3m + 10−m +

1

3
10−3m

For all practical purposesm ≥ 16. Thus, tanking into account this value we conclude that:

V [3] > 0.031

The scaled overlap is

10 V [3] > 0.31

The value of the overlap is higher than 0.25 (see (2)), which is the bound of the error in the angle,

and then the convergence of the algorithm is assured also for this case.

4 High-Level Range Reduction Methods for Floating-Point

We consider the computation of the following transcendental functions:cos(F), sin(F), tan−1(F/G),

sinh(F), cosh(F), tanh−1(F/G), eF , 10F , ln(F), log10(F) and
√

F whereF = SA A 10EA and

G = SB B 10EB , with, SA, SB the sign bits,A, B ∈ [1, 10) coded in BCD andEA, EB the

exponents. Although, according to the IEEE-754 2008 standard, the input operands may not be

normalized, for transcendental functions the preferred exponent is the minimum possible, so a

normalization stage is necessary.

For range reduction we consider the methods described in [1] [2]. The operations performed are

dependent on the function computed:

[sin(F)/cos(F)]: the angle is decomposed asA 10EA = N π/2 + zin, with N an integer,zin =

Mzin 10−Ezin ∈ [−π/4 − γ, π/4 + γ] andπ/4 + γ ≤ 1.069.... The parameterγ allows certain

10

redundancy that may simplify the range reduction implementation [1]. The functions are computed

in the circular rotation mode with input arguments (no scale factor compensation is necessary since

we use scaled input arguments)xin = K1, yin = 0.0 andzin = Mzin 10−Ezin with |Mzin| ∈ [1, 10)

andEzin ≥ 0. After computing the sine or cosine ofzin (the final result of they or x iteration), the

sine or cosine of the input angle may be obtained by simple trigonometric identities [1].

[tan−1(F/G)]: if F ≥ G the algorithm computestan−1(G/F) and then by trigonometric identities

tan−1(F/G) is obtained. In this way we assure that the angle to be computed is within the range

of convergence of the algorithm, which is larger thanπ/4. The function is computed in the circular

vectoring mode with(xin, yin) = (A,B 10−Eyin) if F ≥ G or (B, A 10−Eyin) in other case, with

Eyin = |EA − EB| ≥ 0. The final result is obtained in thez coordinate.

[sinh(F)/cosh(F)]: the following decomposition is performedSA A 10EA = N ln(10) + zin, with

N an integer,zin = Mzin 10−Ezin ∈ [− ln(10)/2−γ, ln(10)/2+γ], and| ln(10)/2+γ| ≤ 1.166...

As before,γ provides some redundancy to simplify the range reduction. Following the method

of [2], the functions are computed in the hyperbolic rotation mode with(xin, yin) = (0.5 (1 +

10−2N) K−1, 0.5 (1 − 10−2N) K−1) andzin = Mzin 10−Ezin with |Mzin| ∈ [1, 10) andEzin ≥ 0.

The result is obtained in thex or y coordinate and does not require scale factor compensation (due

to the initialization of thex andy input arguments already scaled).N should be added to the

exponent of the result.

[eF]: the same range reduction as for sinh/cosh is performed. The function is computed in the

hyperbolic rotation mode withxin = yin = K−1 andzin = Mzin 10−Ezin. Since the initial values

of x andy are the same, for the hyperbolic rotation the resultant final values of both coordinates

are also the same (both thex andy iterations perform the same effective addition or subtraction

operation). Therefore it is only necessary to implement one of the iterations,x or y.

[10F]: the following decomposition is performed10SA A 10EA = 10N+r = 10N er ln(10), with

−0.5−γ/ ln(10) ≤ r ≤ 0.5+γ/ ln(10) and|0.5+γ/ ln(10)| ≤ 1.166... Then a basee exponential

is computed.

11

[tanh−1(F/G)]: The domain of the function is defined for|F | < |G|. Sincetanh(1.166..) =

0.8229..., we may perform the direct computation of the function for|F |/|G| ≤ 0.8229.... We use

the range reduction method proposed in [2]. For the cases i)EA ≤ EB − 2, or ii) A 10EA−EB <

0.5 B whenEA = EB or EA = EB − 1, the function is computed directly in the hyperbolic

vectoring mode with(xin, yin) = (B,A 10Eyin) with Eyin = EA− EB. ForA 10EA−EB ≥ 0.5 B

with EA − EB = 0 or − 1 the following transformation is performed:

tanh−1

(
1− (B − A) 10EA−EB

B

)
= tanh−1

(
1− S 10−Es

B

)
= tanh−1(T) +

Es

2
ln(10)

with T = (B+A)−(B−A) 10Es

(B+A)+(B−A) 10Es = Y ∗
X∗ . This transformation assures thatT < 0.8229.... Then the

function is computed in the hyperbolic vectoring mode with(xin, yin) = (X∗, Y ∗).

[ln(F)] : we use the transformationln(A 10EA) = EA ln(10) + ln(A). Then the following com-

putation is performed:ln(A) = 2 tanh−1((A − 1)/(A + 1)). SinceA < 10 we have that

(A − 1)/(A + 1) < 0.8229.. and the function is computed directly in the hyperbolic vectoring

mode with(xin, yin) = (A + 1, A− 1) = (A + 1,Myin 10−Eyin) (note thatA ≥ 1 and thatA− 1

may have leading zeros, which we express as a normalized significand and an exponent).

[log10(F)]: the following transformation is usedlog10(A 10EA) = log10(e) ln(A) + EA. Then

ln(A) is computed as in the previous case.

[Square root]: we compute
√

A for even exponent, and
√

A/10 for odd exponent. The square root

is computed using the hyperbolic vectoring mode that allows the computation of
√

x2
in − y2

in/K−1

(obtained in the final value of thex coordinate). Specifically, for even exponent we compute
√

(A + K2−1)
2 − (A−K2−1)

2/K−1 = 2
√

A (the final result have to be multiplied by0.5). To avoid

an overflow in thex coordinate we use(xin, yin) = (A,A), perform the first CORDIC iteration to

obtain(x[2], y[2]) and add tox[2] (subtract toy[2]) the constant correction termK2
−1 (1+0.5 K2

−1).

For odd exponent we use(xin, yin) = ((A/10+K2
−1/4), (A/10−K2

−1/4)), which results in
√

A in

the range[
√

0.1, 1), so that a final decimal left shift is needed. The hyperbolic modulus is computed

with the required accuracy in about half of the iterations required for the other functions. Therefore,

about2m hyperbolic rotations are necessary.

12

The most complex part of the range reduction is the accurate computation of the remainder given

by the difference between the input argument and the highest integer multiple of a constantC

(C = π/2 for the circular functions, andC = ln(10) for the hyperbolic functions) lower than

the input argument. For ap–digit format (significand), this remainder should be computed with

an accuracy ofp digits. Methods used for binary floating point such as those presented in [3] [4],

among others, might be adapted for decimal floating point.

References

[1] J.M. Muller, “Elementary Functions: Algorithms and Implementation”. Birkhauser Verlag AG, second edition,

2007.

[2] H. Hahn, D. Timmermann, B.J. Hosticka, B. Rix, ”A Unified and Division-Free CORDIC Argument Reduction

Method with Unlimited Convergence Domain Including Inverse Hyperbolic Functions,” IEEE Transactions on

Computers, vol. 43, no. 11, pp. 1339-1344, Nov., 1994.

[3] M. Payne and R. Hanek, Radian Reduction for Trigonometric Functions, SIGNUM Newsletter, vol. 18, pp.

19-24, 1983.

[4] N. Brisebarre, D. Defour, P. Kornerup, J.-M.Muller and N. Revol, ”A New Range-Reduction Algorithm,” IEEE

Transactions on Computers, vol. 54, no. 3, pp. 331-339, Mar. 2005

13

