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Reducing Cache Misses by L oop Reordering

E. Herruzo?®, G. Bandera®, E.L. Zapata®, O. Plata”

2Department of Electronics, University of Cordoba, Spain
PDepartment of Computer Architecture, University of Malaga, Spain

This paper presents a novel method to determine the best loop reordering of a perfect loop nest
with the aim of maximizing the resulting cache set occupation. The method is based on a simplified
analytical model of the cache, reducing the cache behaviour of interest by a small number of param-
eters. These parameters contain the meaning of the probability of self-interference in the cache due
to memory references to a particular array. Based in such parameters, we have designed a fast and
effective algorithm to reorder (permute) the loops in the nest so that self-interferences in cache due
to references to a particular array is minimized. An evaluation of the method is also presented.

1. Introduction

During the last decades speed of processors has been widely improved, however memory speed
could not keep pace. Memory hierarchies, and specifically cache memories, were introduced to
solve the performance penalty related to the speed gap. Memory hierarchy introduces the latency
problem to access data. The memory latency has been attacked from two different fronts. On the one
hand, by means of hardware solutions, like lockup-free caches, prefetching, out-of-order execution,
and so on. On the other hand, compiler techniques have been developed to fully make use of the
available hardware structures. The efficiency of architectural improvements depends on the ability
of the compiler to change the structure of programs for taking full advantage of them. The most
important compiler optimizations are basically loop and data layout transformations.

We present in this paper a new method to determine the best loop permutation of a perfect loop nest
which tries to maximize the cache set occupation. There are several algorithms for loop permutation
in the literature [2,6,9,11], being the Loopcost algorithm [4,1] one of the best known. Our loop
permutation method is based on a simplified analytical cache model, resulting in a small set of
parameters to determine the cache behaviour we are interested in. Loopcost shares some similar
basic principles, but our method has significant differences both in the implementation and in the
cache model, so as it provides a better optimization of the cache use for many important cases.

The rest of the paper is organized as follows. Section 2 presents the simplified analytical cache
model. The algorithm we propose for loop permutation is introduced in Section 3. Section 4 presents
some related work, and Section 5 shows the experimental evaluation of our method, compared to
Loopcost (and a commercial compiler). Finally, section 6 draws some conclusions.

2. Modelling the Cache Behaviour

We present in this section a simplified model of the cache behaviour when specific data access
patterns to memory originate from the execution of a loop nest. The aim is to define a number of
parameters that characterize such a cache behaviour and could be used to determine the most suitable
loop reordering, so as cache set occupation is maximized.

In order to state the model, we will consider a k—way set-associative cache, of size C' x L x W
(C'is the number of cache sets, L is the number of blocks per set, and 17 is the block size in words).
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We also consider a M —dimensional array X, stored in a column-major order, which is referenced
within a perfectly nested loop.

Without loss of generality, we assume that array references are made inside a M —depth nested
loop with iteration vector I = (I1, I, ..., I). Expressions in the array dimensions are of the form
fex Iy, k=1,..., M, butany general affine expression is perfectly valid.

When the multidimensional array X is allocated in memory, it is linearized and laid out in some
order. We can obtain the reference in memory to X for each iteration of the loop nest by means of
a LMAD (Linear Memory Access Descriptor) [14]. So, the memory reference due to the access to

X in some iteration I = (I1, I, ..., 1)) of the nested loop is as shown (a column-major order is
assumed),

- k-1 M-1
MemRef(X,I)=fixL+...4 fuxLex [[ Di+ ...+ fu*xIn x [[ D, (1)

i=1 i=1

where D; is the size of the :—dimension of X.
The stride of array X on loop index I, is defined as the distance in memory of array entries
referenced by consecutive iterations of loop £, that is,

k—1 k—1
Stride(X, Iy) = fi* I« [[ Di — fu x It + [[ D, @
=1 =1

where I} represents the [—th iteration of the loop .

To simplify the explanation, we restrict the analysis of the cache behaviour to a single array
X inside a perfectly nested loop. However this analysis can be easily extended to several arrays
appearing in the same loop and to not-perfectly nested loops. The goal of our analysis is to describe
and represent array self-interferences in cache due to the execution of the loop nest. That is, to
determine how memory blocks with data from X are located in the cache and may replace other
previously placed blocks with data from the same array.

As a first step of our study we must define a number of cache parameters. They will be used
afterwards to define the proposed reordering method. During the execution of the loop, blocks of
data from main memory are located in the cache. These blocks are mapped to the cache sets as
shown in the following equation,

Set(X, I = {MemRVer(X, I)

J mod C. 3)

The execution of consecutive iterations of loop £ generates memory references separated a dis-
tance of Stride(X, I;). The distance (in cache sets) of the blocks containing these referenced data,
once they are placed in cache, is a some sort of a cache set stride, defined as,

SetStride(X, I) = S ) 4)
W

There is no module operation in the above expression because we are considering only the linear

placement of cache blocks (from the beginning to the end of the cache). From this point on, the

rest of blocks are placed starting again from the beginning of the cache and may produce self-

replacement (that is, replacement of blocks containing X data previously placed). And this process
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may be repeated several times (until all iterations of loop % are exhausted). Note also that during this
first linear placement of cache blocks, each block is allocated in a different cache set.

Now, we can calculate the total number of memory blocks that can be placed in the cache with
no opportunity of self-replacement (by dividing the total number of sets in the cache by the cache
set stride). After that, the rest of the iterations of loop &£ may produce self-replacement. On the
other hand, we can easily calculate the total number of memory blocks occupied by all the array
entries of X that are referenced during the whole execution of loop .. All these blocks must be
placed in the cache. Dividing this value by the number of blocks that fits the cache in a linear
placement, we obtain a parameter which approximates the number of linear block placements in
the cache due to references to X during the execution of the loop k. This parameter is denoted by
CacheTurns(X, Iy) and is calculated as follows,

Ny = Stride(X, Iy,) * SetStride(X, I})
C+«W ’

CacheTurns(X, Iy) = 5)

where N, is the number of iterations of loop k. CacheTurns(X, I)) depends on the stride in mem-
ory of array X in loop k, the number of iterations of such loop, and the cache properties. It can
be seen that if CacheTurns(X, Ix) is less or equal to one, then all the references to array X in
loop £ fit the cache with no self-replacements. Otherwise, if such parameter is greater than 1, a
probability of self-replacement exists. In fact, higher values of it represent higher opportunities of
self-replacement.

The CacheTurns() parameter gives some rough information about the miss behaviour of the
cache for some specific memory access patterns. We show in this paper that this information is
enough to decide how to arrange the loops in the nest in order to reduce the probability of cache
misses due to self-interferences.

In order to obtain a simple reordering algorithm, we disregarded two important issues that, how-
ever, do not influence much the effectiveness of our method. On the one hand, the fact of not taking
into account the possible interference with other arrays used in the same loop nest. On the other
hand, the fact that there is not always a self-replacement on the array elements already contained in
the cache (set associativity).

3. Loop Permutation

We present in this section an algorithm to decide the loop arrangement (permutation) that min-
imizes the cache miss rate due to array self-interferences. As explained previously, a high value
of CacheTurns() implies a high probability of cache block replacement due to self-interference.
Taking this fact into account, our permutation algorithm looks for loops obtaining higher values of
CacheTurns() and places them in the outermost position of the loop nest. As a result, loops with
small values of CacheTurns() will be placed in the innermost positions. This way, cache blocks
are re-used before having the opportunity to be replaced by self-interference. Fig. 1 outlines the
permutation algorithm, that we call TCacheTurns.

In contrast to other authors, our permutation algorithm relates not only the number of loop itera-
tions to the characteristic parameters of the cache but it also takes into account how the data inside
the nested loop is referenced (stride). Note also that our algorithm agrees with the fact that, in gen-
eral, it is better to have the stride-1 array references in the innermost loop of the nest in order to
exploit spatial locality [3,1,4].



for (each array X) do
for (each loop 1) do
Compute Stride(X, I;) and SetStride(X, I,).
if (I isin MemRef(X,I))then Compute CacheTurns(X, Iy).
else CacheTurns(X, Ii) = 0.
end for
end for
for (each I;) do
for (each array X) do
Add CacheT'urns(X, Ij) to TotalCacheTurns(Iy).
end for
endfor
Place loops in the nest in decreasing order of T'otalCacheTurns(1,).

Figure 1. Loop permutation algorithm (TCacheTurns)

4. Related Work

Some authors attempt to unify loop and data layout transformations. Kandemir et al. [10] present a
method that uses ILP (Integer Linear Programming) to calculate optimal solutions for data transfor-
mations. Their paper describes an approach to detect the data layout of different arrays in memory,
together with the best loop permutation for each loop nest in the source code. Although they include
an iterative method to calculate memory layout transformations, they do not indicate any precise
algorithm for loop permutation. We have found other works describing an heuristic solution to both
data layout and loop transformations [13], but neither of them present algorithms to determine the
code transformation.

Ghosh et al. [8] describe an approach to calculate the Cache Miss Equations (CME). Their al-
gorithm uses the reference reuse vector, instead of using the stride. One of the main problems of
this approach is the expensive process to calculate the miss equations. D’Alberto et al. [7] present
a static analysis of parameterized loop nests. It is based on CMEs and on static cache parameters.
They use this analysis to detect the interferences or cache block replacements of the same/distinct
array references.

The work presented by Clauss and Meister [5] is mainly focused on spatial locality optimization.
Their method consists in providing a new array reference function to the compiler. This is a pa-
rameterized cost function based on polytopes and Ehrhart polynomials from the iteration space of a
loop nest. Clauss et al. [6] and Loechner et al. [12] use the same framework to define optimization
techniques for the TLB. In this paper, we also work with the polyhedron defined by the iteration
space of a loop nest. We need to know the data access layout (or polyhedron structure) to determine
the cache memory occupation for each loop.

The Data Relation Vectors are defined by Kandemir and Ramanujam [11] to describe a frame-
work to establish some compiler optimizations to improve data reuse. Weikle et al. [15] use these
vectors and a mathematical model of the cache to establish a formal notation that enables compiler
optimizations.

Carr et al. [4] define the loopcost algorithm, that is used by Allen and Kennedy [1] to develop
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Table 1
L2 data cache misses for different loop counts (multiplication of 800 x 800 matrices)
| M | N | P | Algorittm | Loop Arrangement | L2 Misses |

400 | 400 | 400 Loopcost J, K, i 6925
TCacheTurns jok i 6925
400 | 800 | 800 Loopcost j, K, i 33910
TCacheTurns jo K, i 33910
400 | 400 | 800 Loopcost J ki 28870
TCacheTurns K, j, i 16180
400 | 800 | 400 Loopcost J ki 9570
TCacheTurns jo K, i 9570
800 | 400 | 800 Loopcost Jo ki 110520
TCacheTurns K, j, i 24270
800 | 400 | 400 Loopcost J ki 11210
TCacheTurns jok i 11210
800 | 400 | 200 Loopcost J, K, i 5610
TCacheTurns jok i 5610
800 | 200 | 400 Loopcost J, K, i 8070
TCacheTurns K, j, i 6510

a loop permutation technique which, in a particular way, is similar to the one described here but
with some important differences. Usually the loop permutation resulted from both algorithms is the
same, but we obtain a different one when the array is multi-dimensional and there are several loop
indices in the non-contiguous dimension. The result is also different when the loops in the nest have
different sizes. The main difference between both algorithms lies in how is calculated the cost for
every reference within the innermost loop. The goal of the loopcost algorithm is to set the loop that
occupies less cache sets as the innermost loop. The loopcost approach classifies array references
into groups that exhibit temporal or spatial reuse. In our case, we take into account the stride defined
by the LMAD of every reference, and we only join references when they exhibit spatial-group reuse.
In the section about experimental results we compare both algorithms.

5. Experimental Results

This section evaluates our permutation algorithm TCacheTurns and compare it with loopcost and
a real commercial compiler. Our experiments were conducted in a platform with a R10k processor
running in an exclusive mode. We have used the MIPSPro Fortran90 compiler (version 7.30) with
—0O0 compiler optimization option. The hardware counters of the processor have been tested using
Perfex functions. We carried out two sets of experiments, comparing L2 data cache misses. The first
set of tests is based in the matrix-matrix multiplication problem, while the second one compares the
different solutions for several benchmarks extracted from NAS, PerfectB and SPEC2000.

5.1. The matrix-matrix multiplication problem

We accomplished two different types of tests: the first one analyzes the effect in L2 cache miss
rate of different loop counts in the matrix multiplication problem with fixed-size input matrices (all
three matrices are of size 800 x 800). The second one changes the size of the input matrices but
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Table 2
L2 data cache misses for different matrix dimensions (loop counts M/ = N = P = 1000)
| X matrix dim. | Y matrix dim. [ Z matrix dim. | Algorithm | Loop Arrangement | L2 Misses |

1000,1000 1000,1000 1000,1000 Loopcost j ki 1.2 Mill
TCacheTurns Jh ki 1.2 Mill
1000,1000 1000,1000 3000,3000 Loopcost j ki 1.3 Mill
TCacheTurns j K, i 1.3 Mill
1000,1000 3000,3000 1000,1000 Loopcost J ki 1.5 Mill
TCacheTurns j K, i 1.5 Mill
1000,1000 3000,3000 3000,3000 Loopcost J ki 1.6 Mill
TCacheTurns j K, i 1.6 Mill
3000,3000 1000,1000 1000,1000 Loopcost J ki 9.6 Mill
TCacheTurns K, j, i 4.2 Mill
3000,3000 1000,1000 3000,3000 Loopcost J ki 9.6 Mill
TCacheTurns Jh ki 9.6 Mill
3000,3000 3000,3000 1000,1000 Loopcost j ki 9.7 Mill
TCacheTurns jo ki 9.7 Mill

keeping the loop counts. Table 1 shows the experimental results for the first type of tests. There
are three cases where the loop arrangement resulted from loopcost and TCacheTurns algorithms are
different. That occurs when the number of iterations of loop % is much larger than that of loop j. In
all cases our algorithm obtains a lower number of L2 data cache misses.

Table 2 shows a comparison between loopcost and TCacheTurns for the second type of tests. All
loops are of the same size, a total of 1000 iterations each one. This set of experiments shows that
normally the loop arrangement and the number of L2 cache misses resulting from applying both
algorithms is the same. However, our approach obtains a different loop reordering with a lower
number of cache misses for some cases. This occurs when the size of the first matrix (X) is greater
than the size of the other two. In this situation, as the & loop iterates over the non-contiguous
dimension of the X matrix, the corresponding stride (Stride(X, k)) will be greater than for the
other two matrices Y and Z. The size of X is large enough to produce a different loop arrangement
and, consequently, a better performance.

5.2. NAS, PerfectB and SPEC2000 benchmarks

A comparison of the different considered solutions using a selection of various benchmarks is
shown in Table 3. It can be seen that, for multidimensional arrays, our algorithm outperforms the
other two approaches. In the rest of cases, the number of L2 cache misses obtained is the same.
The reason for this behaviour comes from the use of the stride parameter in the determination of
the best loop permutation. Loopcost only uses the number of iterations and considers the same cost
for loops traversing non-contiguous dimensions. However, this different way of compute the best
loop arrangement does not make any difference for 2D arrays with the same number of iterations,
as it is the case of £ftpde and swim. Some cases in which TCacheTurns obtains a better loop
permutation than loopcost occur when the nest contains loops accessing non-contiguous dimensions
of multi-dimensional arrays. Together with the above two algorithms we include in this table the
results obtained with the native compiler with the loop permutation option switched on (—LNO).
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Table 3
Benchmark subroutines, running conditions and L2 data cache misses
PerfectB B. | Subrout. | Loop counts | Array dim. Algorithm Loop Arrangem. | L2 Misses
adm hyd 100,100,100 | 100,100,100 Loopcost oK 64.680
TCacheTurns K,j,i 19.260
Compiler compiler selection | 64.680
flo52 collc 200,200,200 | 200,200,200 Loopcost j,n,i 351.660
TCacheTurns n,j,i 3.450
Compiler compiler selection | 351.660
dyfesm mnlbyx | 500,500,500 500,500 Loopcost j,n,i 203.524
TCacheTurns n,j,i 37.080
Compiler compiler selection | 162.668
migration migrat | 200,200,200 | 200,200,2,200 Loopcost jk,i 358.920
TCacheTurns K,j,i 4.100
Compiler compiler selection | 358.920
NAS Benchm.
appbt 12norm 48,48,48,5 5,50,50,50 Loopcost ij,k,m 2.550
TCacheTurns K.j,i,m 34
Compiler compiler selection 2.560
appsp spentax3 | 30,30,600 660,33,33 Loopcost JoK,i 89.850
TCacheTurns K,j,i 3.340
Compiler compiler selection 89.230
fftpde transx 500,500 1000,1000 Loopcost i 4.500
TCacheTurns i 4.500
Compiler compiler selection 4.500
SPEC2000 B.
gangel polnel 80,80,80 100,100,100 Loopcost j,Li 158.270
TCacheTurns Lj,i 73.970
Compiler compiler selection | 158.270
applu rhs 45,45,45,5 5,50,50,50 Loopcost jk il 30.100
TCacheTurns Kyj,i,l 3.250
Compiler compiler selection | 30.100
mgrid psinv 150,150,150 | 150,150,150 Loopcost Kij,i 302.340
TCacheTurns jKi 4.150
Compiler compiler selection | 302.340
swim calc3 1000,1000 1335,1335 Loopcost Jii 29.600
TCacheTurns jii 29.600
Compiler compiler selection | 29.600

The results with the native compiler are also worse, in many cases, than our algorithm.

6. Conclusions

In this paper we presented an algorithm to determine how to arrange the loops in a nest so as the
number of cache misses is minimized due to array self-interferences. It is based on a novel model of
the cache, where parameters were defined to give information about the cache memory occupation
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when affine array references to main memory are issued from a nested loop. Our algorithm (TCa-
cheTurns) was compared with the well-known loopcost algorithm, obtaining similar or better results.
We have shown how a simple model of a cache allows to determine a very effective arrangement of
loops in a nest that optimizes the occupation of the cache. As a future work we will study how to
define a general formal framework to apply a set of important compiler optimization techniques, like
padding, tiling, loop reversal, and so on.
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