On Automatic Parallelization of Irregular
Reductions on Scalable Shared Memory
Systems*

E. Gutiérrez, O. Plata, and E.L. Zapata

Department of Computer Architecture, University of Mélaga,
P.O. Box 4114, E-29080 Mélaga, Spain

{eladio,oscar,ezapata}@ac.uma.es

Abstract. This paper presents a new parallelization method for reduc-
tions of arrays with subscripted subscripts on scalable shared-memory
multiprocessors. The mapping of computations is based on the conflict-
free write distribution of the reduction vector across the processors. The
proposed method is general, scalable, and easy to implement on a com-
piler. A performance evaluation and comparison with other existing tech-
niques is presented. From the experimental results, the proposed method
is a clear alternative to the array expansion and privatized buffer meth-
ods, usual on state-of-the-art parallelizing compilers, like Polaris or SUIF.

1 Introduction and Background

Irregular reduction operations are frequently found in the core of many large sci-
entific and engineering applications. Figure 1 shows simple examples of reduction
loops (histogram reduction [10]), with a single reduction vector, A(), updated
through single or multiple subscript arrays, f1(), f2(). Due to the loop-variant
nature of the subscript array/s, loop-carried dependences may be present. It is
usual that this reduction loop is executed many times, in an iterative process.
The subscript array/s may be static (unmodified) during all the computation,
or may change, usually slowly, through the iterative process.

A general approach to parallelize irregular codes, including reductions, is
based on the inspector-executor model [9]. However, this strategy is usually highly
inefficient as introduces significant overheads due to its generality. A more spe-
cific and efficient method may be developed if data affinity is exploited, as in
the (LOCALWRITE) technique [5] (although it is not reported as a clear good
alternative to parallelize irregular reductions).

In a shared-memory context, academic parallelizers like Polaris [2] and SUIF [4],
recognize and parallelize irregular reductions. A number of techniques are avail-
able [7,1]: critical sections, data affinity, privatized buffer (SUIF), array ex-
pansion (Polaris) and reduction table. The most efficient techniques, privatized

* This work was supported by the Ministry of Education and Science (CICYT) of
Spain (TIC96-1125-C03)

real A(1:ADim)

real A(1:ADim) integer f1(1:fDim), f2(L:fDim)

integer f(1:fDim)

doi— 1. fDi doi=1, fDim
® ¢ function(i(i)) VA(:ﬂf(L})f')ctionA((if{l(_()i%,ff(i))
A(f(i) = A(f(i r)= ! r
end @(,0()) = A(f0) + endAc(iff(.)) — A(R2(1)) - r
(a) (b)

Fig. 1. A single (a) and a multiple (b) irregular histogram reduction

buffer and array expansion, however have scalability problems due to the high
memory overhead they exhibit.

Contemporary commercial compilers do not recognize irregular reductions,
although, in some cases, they allow to parallelize them, for instance, using data
affinity (as in SGI Fortran90 compiler [11]). A similar approach may also be ex-
ploited into HPF [6] (for example, using ON HOME) or OpenMP [8]. However,
when multiple reduction arrays occur, conditional sentences usually appear in-
side the reduction loop in order to fulfill the owner compute rule (which may
introduce also computation replication). These implementations reduce drasti-
cally the performance of the parallel code and compromise its scalability.

We present here a method to parallelize irregular reductions on scalable
shared-memory machines (although may be adapted to a message-passing ma-
chine), whose efficiency clearly overcomes that of all the previously mentioned
techniques. The mapping of computations is based on the conflict-free write dis-
tribution of the reduction vector across the processors. The proposed method is
general, scalable, and easy to implement on a compiler.

2 Data Write Affinity with Loop-Index Prefetching

2.1 Single Reductions

Array expansion is based on the domain decomposition of the histogram reduc-
tion loop (that is, the [1:fDim] domain). This way, and due to the irregular data
access pattern to the reduction vector through f() (see Fig. 2 (a)), private copies
of such vector are needed (high memory overhead for large domains, and cache
locality problem). Such private buffers can be avoided if the domain decomposi-
tion of the loop is substituted for a data decomposition of the reduction vector.
The reduction vector may be, for instance, block distributed across the proces-
sors. Afterwards, the computations of the histogram loop are arranged in such
a way that each processor only computes those iterations that update owned re-
duction vector entries. Data distribution of the reduction vector may be carried
out at compile time (using some compiler or language directive), or at runtime,
as a consequence of the arrangement of the loop iterations.

A simple form to implement this computation arrangement is called data
affiliated loop in [7]. Each processor traverses all the iterations in the reduction

A init next f A

=
=

(e) (b)

Fig. 2. Graphical depiction for irregular data accesses to the reduction vector (a), and
the write data affinity-based access to it by using a loop-index prefetching array (b)

L=
L

i
-
Il

count

p[5]
L]
[
L]

~
<
N
S

L
3
S

N
&

loop and checks whether it owns the reduction vector element referenced in the
current iteration. If such case, the iteration is executed; otherwise, the iteration
is skipped. The above implementation is not efficient for large iteration domains.
A better approach consists in building a loop-index prefetching array, that con-
tains, for each processor, the set of iterations that writes those reduction vector
elements assigned to it. In the code in Fig. 3 (a), the loop-index prefetching
array is implemented using three arrays, init(), count() and next(), that actually
represents a linked list that reorders the subscript array f() (see Fig. 2 (b)). Each
processor (thread) has an associated entry in both arrays, init() and count(). The
entry in init() points to the first entry in next() owned by that processor (that is,
whose index corresponds to a reduction loop iteration that writes in an owned
reduction vector element). That entry in next() contains a pointer to the next
element that is also owned by the same processor. The process is repeated the
number of times stored in count().

In Fig. 3 (b) a simple code that implements the loop-index prefetching array
is presented. The second loop in this code contains a histogram reduction on the
count() array. As the reduction vector has a size given by the number of threads
computing the code, it may be parallelized using array expansion without a
significant memory overhead.

In a large class of scientific/engineering problems, the subscript array f() is
static, that is, it is not modified during the whole execution of the program. In
such codes, the loop-index prefetching array is computed only once and reused
without modification in all the reduction loops of the program. Some other prob-
lems, on the other hand, have a dynamic nature, which is showed in the periodic
updating of f(). The prefetching array has to be recalculated periodically, at
least, partially. However, as it is usual that the dynamic nature of the problem
changes slowly, the overhead of recalculating that array is partially compensated
for its reuse in a number of executions of the reduction loop.

real A(1:ADim) integer prev(1:NumThreads)

integer f(1:fDim)
integer init(1:NumThreads)
integer count(1:NumThreads)

BlockSz = floor(ADim/NumThreads) + 1
do p = 1, NumThreads

integer next(1:fDim) endC(:il:)nt(p) =0
_ doi =1, fDim
doall p -;tt')N“mThreads block = (f(i)-1)/BlockSz + 1
I nt e nt(p) if (count(block) .eq. 0) then
gnt = countip init(block) = i
do k =1, cnt else
r = function(i,f(i)) .
A(F(i)) = A(F(i) + endn;:fxt(prev(block)) =i
end do 0 prev(block) = i
end doall count(block) = count(block) + 1
end do
(a) (b)

Fig. 3. Parallel single histogram reduction using data write affinity on the reduction
vector with loop-index prefetching (a), and the sequential computation of the prefetch-
ing array (b)

2.2 Multiple Reductions

Many real codes include irregular reduction loops containing multiple subscript
arrays indexing the same reduction vector, as shown in Fig. 1 (b). Our approach
can also be applied to this case, but with some modifications. As the reduction
vector A() is block distributed among the processors, there can be some iterations
in the reduction loop that evaluate the subscript arrays f1() and f2() pointing
to two different partitions. As each processor only writes on its partition, then
such iterations have to be replicated on both processors.

To solve this problem, we have split the set of iterations of the reduction
loop into two subsets. The first subset contains all iterations (local iterations)
that reference reduction vector entries belonging to the same partition. The
second subset contains the rest of iterations (boundary iterations). This way, all
local iterations are executed only once in some processor, while the boundary
iterations have to be replicated into two processors.

Figure 4 (a) shows this parallelization strategy applied to the reduction loop
of Fig. 1 (b). Two loop-index prefetching arrays have been built, one referencing
local iterations (init-I(), count-l() and next1()), and the other referencing bound-
ary iterations. The second prefetching array is further split into two subarrays.
The first one, init-b1(), count-b1() and next1(), reorders the subscript array f1()
but restricted to boundary iterations. The other subarray is similar but reorder-
ing subscript array f2().

To compute those prefetching arrays, we can use a similar code than for single
reductions, as shown in Fig. 4 (b). This code also can be parallelized using the
expansion array technique (applied to init*() and count*()). Note that, in order
to save memory overhead, the first boundary iteration prefetching subarray uses
the same nextl() array than the local iteration prefetching array. This way, we
need only two copies of this large array instead of three (nextl() and next2()).

integer prev(1:NumThreads)
real A(1:ADim)
integer f(1:fDim)
integer init-I(1:NumThreads)
integer init-b1(1:NumThreads)
integer init-b2(1:NumThreads) count-bl(p) =0
integer count-I(1:NumThreads) count-b2(p) = 0
integer count-b1(1:NumThreads) end do
integer count-b2(1:NumThreads) doi=1,N
integer next1(fDim), next2(fDim) blockl = (f1(i)-1)/BlockSz + 1
block2 = (f2(i)-1)/BlockSz + 1
if (blockl .eq. block2) then

BlockSz = floor(ADim/NumThreads) + 1
do p = 1, NumThreads
count-I(p) = 0

doall p = 1, NumThreads

i = init-1(p) if (count-i(blockl) .eq. 0) then
cnt = count-I(p) init-I(blockl) = i
dok =1, cnt else
r = function(i,f1(i),f2(i)) nextl(prev(blockl)) =i
A(f1(i)) = A(FL()) + r end if

AR2(1)) = A(R2(i)) - r
i = nextl(i)

end do

i = init-b1(p)

cnt = count-b1(p)

do k =1, cnt
r = function(i,f1(i),f2(i))
AFL(D) = A(FL(D)) + ¢

prev(blockl) =i
count-l(blockl) = count-I(blockl) + 1
else

if (count-b(1,blockl) .eq. 0) then
init-b1(blockl) =i

else
nextl(prev(blockl)) =i

end if

i = nextl(i) prev(blockl) =i
end do count-b1(blockl) = count-b(1,blockl) + 1
i = init-b2(p) if (count-b(2,block2) .eq. 0) then
cnt = count-b2(p) init-b2(block2) =i
do k =1, cnt else

r = function(i,f1(i),f2(i)) next2(prev(block2)) =i

A(f2(i)) = A(f2(i)) - r end if

i = next2(i) prev(block2) =i
end do count-b2(block2) = count-b(2,block2) + 1

end doall end if
end do
(a) (b)

Fig. 4. Parallel multiple histogram reduction using data write affinity on the reduc-
tion vector with loop-index prefetching (a), and the sequential computation of the
prefetching arrays (b)

The replication of the boundary iterations introduces an additional compu-
tational overhead, which is represented by the third loop inside the doall loop
in Fig. 4 (a) and the else section of the main if in Fig. 4 (b). However, in many
realistic applications, there are many more local iterations than boundary ones,
and hence, this additional computation overhead is very small.

3 Analysis and Performance Evaluation

The proposed technique has been applied to the code EULER (HPF-2 [3] mo-
tivating applications suite), which solves the differential Euler equations on an
irregular mesh. In order to avoid other effects, we have selected in our experi-
ments only one of the loops in the code, computing an irregular reduction inside
a time-step loop (Fig. 5). The experiments have been conducted on a SGI Ori-
gin2000 (32 250MHz R10000 processors with 4 MB L2 cache and 8192 MB main

real vel_delta(1:3,numNodes)
integer edge(1:2,numEdges)
real edgeData(1:3,numEdges)
real velocity(1:3,numNodes)

do i = 1, numEdges
nl = edge(1,i)
n2 = edge(2,i)
rl = functl(edgeData(:,i), velocity(:,n1), velocity(:,n2))
r2 = funct2(edgeData(:,i), velocity(:,n1), velocity(:,n2))
r3 = funct3(edgeData(:,i), velocity(:,nl), velocity(:,n2))
vel_delta(1,n1) = vel_delta(1,n1) + rl
vel_delta(2,n1) = vel_delta(2,n1) + r2
vel_delta(3,n1) = vel_delta(3,n1) + r3
vel_delta(1,n2) = vel_delta(1,n2) - r1
vel_delta(2,n2) = vel_delta(2,n2) - r2
vel_delta(3,n2) = vel_delta(3,n2) - r3
end do

Fig. 5. An irregular reduction loop from the EULER code

memory), and implemented using the MIPSpro Fortran90 shared-memory di-
rectives [11]. The array expansion parallel code was obtained using the Polaris
compiler. Parallel codes were compiled using the MIPSpro compiler with opti-
mization level 2.

Test irregular meshes have been obtained using the mesh generator included
with the EULER code (sizes 783K and 1161K nodes, with connectivity of 8).
Two versions of each mesh has been tested: colored and sorted. In the first
version, an edge-coloring algorithm has been applied, and the edges of the same
color have been placed consecutively in the indirection array. In this case, a low
locality in accesses to reduction array would be expected. In the second version,
the list of edges has been sorted, improving the access locality.

Fig. 6 depicts the performance for the colored and sorted versions of the
mesh of size 1161K nodes. Part (a) shows the execution time (5 iterations of the
time-step loop) of both methods, the array expansion and the proposed data
write affinity with loop-index prefetching (DWA-LIP). These times excludes the
calculation of the prefetching array, as this is done only once, before entering into
the iterative loop. Part (b) shows speedups with respect to the sequential code
(sequential time is 103.5 sec. and 15.3 sec. for the colored and sorted meshes,
respectively). DWA-LIP obtains a significant performance improvement because
it exploits efficiently locality when writing in the reduction array.

Fig. 7 shows the efficiencies for the colored (a) and sorted (b) meshes us-
ing DWA-LIP. For each class, results from two different mesh sizes show good
scalability. The sequential times for the small colored and sorted meshes of sizes
783K nodes are 51.8 sec. and 11.8 sec., respectively. The sequential time costs
of computing the loop-index prefetching for both mesh sizes are 2.3 sec. (small
mesh) and 3.0 sec. (large mesh). These times are a small fraction of the total
reduction time, that can be further reduced parallelizing the code (see Fig. 8).

Array expansion has a significant memory overhead due to the replication of
the reduction vector in all the processors (O(Q * NumNodes x NumT hreads),

1000

100

Time (sec.)

10

o——e DWA-LIP (colored)
&= Array Exp. (colored)
& - - DWA-LIP (sorted)
&--= Array Exp. (sorted)

Threads

(¢)

20 |

15 -

-
s

s

o——e DWA-LIP (colored)
&—2 Array Exp. (colored)
o - - o DWA-LIP (sorted)
& --4 Array Exp. (sorted)

//
// _ - —e-71
s e
. -
~ .
7
// _e
7 ,'// P A’**f
o
<A
PrA
. .
8 12 16 20
Threads

Fig. 6. Parallel execution times (a) and speedups (b) for DWA-LIP and array expansion
using colored and sorted meshes with 1161K nodes

2.0

Efficiency
-
o

05 |

0.0

©o— 1161 Knodes
&——e 783 Knodes

4 8 12 16 20
Threads

(a)

Efficiency

1.00

0.80 -

o
o
S

0.40 -

0.20
0

©o— 1161 Knodes
&——e 783 Knodes

4 8 12 16 20

Threads

(b)

Fig. 7. Parallel efficiencies for colored (a) and sorted (b) meshes using DWA-LIP

where () is the number of reduction vectors). DWA-LIP also has memory over-
head due to the prefetching array (O(K * NumEdges + NumT hreads?), where
K is the number of subscript arrays). In the EULER reduction loop, @ = 3 and
K = 2, being numFEdges ~ 8 * numNodes. Hence memory overhead in array
expansion is greater than in DWA-LIP when more than 5 threads are used. In
the EULER code, there are reduction loops with () = 5 and K = 4.

4 Conclusions

The method proposed in this work parallelizes an irregular reduction loop ex-
ploiting write locality, similar to [5]. In our approach, the accesses to the sub-
script arrays are reordered using a linked list, instead of a general inspector-
executor mechanism. This fact justifies the better performance and scalability
of our method.

10 T T T T T T T T T 10

T T T T 7T T T T T
.
©—— 783 Knodes // o—= 1161 Knodes
o—» 1161 Knodes , ©o— 783 Knodes
,
K

Time (sec.)
-
Speed-Up
o

Threads Threads

(¢) (b)

Fig. 8. Parallel execution times (a) and speedups (b) for the loop-index prefetching

Compared with array expansion, our method does not need to replicate the
reduction vector and exploits better data locality. Thus it has better performance
and scalability. Despite the overhead of building the prefetching array, however
it is computed only once and reused through the whole program. In dynamic
systems the prefetching array must be recomputed periodically.

References

1. R. Asenjo, E. Gutierrez, Y. Lin, D. Padua, B. Pottengerg and E. Zapata, On the
Automatic Parallelization of Sparse and Irreqular Fortran Codes, TR—1512, Univ.
of Illinois at Urbana-Champaign, Ctr. for Supercomputing R&D., Dec. 1996.

2. W. Blume, R. Doallo, R. Eigemann, et. al., Parallel Programming with Polaris,
IEEE Computer, 29(12):78-82, Dec. 1996.

3. I. Foster, R. Schreiber and P. Havlak, HPF-2, Scope of Activities and Motivating
Applications, Tech. Rep. CRPC-TR94492, Rice Univ., Nov. 1994.

4. M.W. Hall, J.M. Anderson, S.P. Amarasinghe, et. al., Mazimizing Multiprocessor
Performance with the SUIF Compiler IEEE Computer, 29(12), Dec. 1996.

5. H. Han and C.-W. Tseng, Improving Compiler and Run-Time Support for Irregu-
lar Reductions, 11th Workshop on Languages and Compilers for Parallel
Computing, Chapel Hill, NC, Aug. 1998.

6. High Performance Fortran Language Specification, Version 2.0. High Performance
Fortran Forum, Oct. 1996

7. Y. Lin and D. Padua, On the Automatic Parallelization of Sparse and Irregular
Fortran Programs, 4th Workshop on Languages, Compilers and Runtime
Systems for Scalable Computers, Pittsburgh, PA, May 1998.

8. OpenMP: A Proposed Industry Standard API for Shared Memory Programming,
OpenMP Architecture Review Board, http://www.openmp.org), 1997.

9. R. Ponnusamy, J. Saltz, A. Choudhary, S. Hwang and G. Fox, Runtime Support
and Compilation Methods for User-Specified Data Distributions, IEEE Trans. on
Parallel and Distributed Systems, 6(8):815-831, Jun. 1995.

10. B. Pottenger and R. Eigenmann, Idiom Recognition in the Polaris Parallelizing
Compiler, 9th ACM Int’l Conf. on Supercomputing, Barcelona, Spain, pp.
444448, Jul. 1995.

11. Silicon Graphics, Inc. MIPSpro Automatic Parallelization. SGI, Inc. 1998

