On Workload Balancing of Parallel Irregular
Reductions®

E. Gutiérrez

Abstract— Much effort has been devoted recently to
efficiently parallelize irregular reductions. Different
parallelization techniques have been proposed else-
where, that we have classified in this paper into two
classes: LPO (Loop Partitioning Oriented techniques)
and DPO (Data Partitioning Oriented techniques). We
have analyzed both classes in terms of a set of per-
formance aspects: data locality, memory overhead,
parallelism and workload balancing. Load balancing
is not an aspect sufficiently analyzed in the litera-
ture in parallel reduction methods, specially those in
the DPO class, which are very sensitive to that as-
pect. In this paper we propose two techniques to
introduce load balancing into a DPO method. Effi-
cient implementations of the proposed solutions for
theDWA-LIP DPO method are presented, and exper-
imentally tested on static and dynamic kernel codes
and compared with other parallel reduction methods.

Key words— Irregular reduction, workload balanc-
ing, locality exploitation

I. INTRODUCTION

ANY scientific/engineering applications are
based on complex data structures that intro-
duce irregular memory access patterns. Run-time
techniques have been proposed in the literature to
support the parallelization of irregular codes, like
those based on the inspector-executor paradigm [14],
or the speculative execution of loops in parallel [15].
Run-time techniques are general enough to be ap-
plied to many different classes of irregular computa-
tions. However, due in part to their generality, the ef-
ficiency of the parallelized codes is usually poor. Sig-
nificantly better performance may be obtained from
techniques tailor-made for specific irregular opera-
tions, computational structures and/or data access
patterns [1], [10]. Reduction operations represent an
example of such computational structures, frequently
found in the core of many irregular numerical appli-
cations.

In this paper we classify the most important ir-
regular reduction parallelization techniques into two
main classes. Further, both classes are analyzed in
terms of a set of performance aspects: data locality
(inter-loop and intra-loop), memory overhead, paral-
lelism and workload balancing. These aspects have a
strong influence in the overall performance and scal-
ability of the parallel reduction code.

Load balancing is not an aspect sufficiently dis-
cussed and analyzed in the considered parallel re-
duction methods. In this paper we propose two tech-
niques to introduce load balancing. The first tech-

*This work was supported by Ministry of Education and
Culture (CICYT), Spain, through grant TIC2000-1658

Department of Computer Architecture. University of
Maélaga. Campus de Teatinos. E-29071 Mdlaga, Spain. E-
mail: {eladio,oscar,ezapata}Qac.uma.es

O. Plata

E.L. Zapata

integer f1(fDim), f2(fDim),
..., fn(fDim
real A(ADim)

do i = 1,fDim
Calculate &1,&2,...,&n
A(fL()=A(fL(i)) HE1
A(f2(i))=A(f2(i)) &2

A(fn(i))=A(fn(i)) ®¢n
enddo

Fig. 1. A loop with multiple reductions with an irregular
memory access pattern

nique, based on the subblocking of the reduction ar-
rays, is generic, as it can deal with any kind of load
unbalancing present in the problem domain. The
second technique handles a special case of load un-
balancing, present when there are a large number of
write operations on small regions of the reduction ar-
rays. The proposed solution for these cases is based
on the privatization of the blocks making up those
regions.

II. METHODS FOR REDUCTION PARALLELIZATION

We may classify specific solutions to parallelize ir-
regular reductions into two broad categories: loop
partitioning oriented techniques (LPO) and data par-
titioning oriented techniques (DPO). The LPO class
includes those methods based on the partitioning of
the reduction loop and further execution of the re-
sulting iteration blocks on different parallel threads.
A DPO technique, on the other hand, is based on
the (usually block) partitioning of the reduction ar-
ray, assigning to each parallel thread preferably those
loop iterations that issue write operations on a par-
ticular data block (then it is say that the thread owns
that block).

We consider in the rest of the paper the general
case of a loop with multiple reductions, as shown in
Fig. 1. A() represents the reduction array (that could
be multidimensional), which is updated through mul-
tiple subscript arrays, f1(), f2(), ..., fn(). Due to
the loop-variant nature of the subscript arrays, loop-
carried dependences may be present, and can only be
detected at run-time. Taking into account this loop,
Fig. 2 shows a graphical representation of techniques
LPO and DPO.

The simplest solution in the LPO class is based on
critical sections that enclose the accesses to the re-
duction array. This method exhibits a very high syn-
chronization overhead and, consequently, a very low
efficiency. The synchronization pressure can be re-
duced (or even eliminated) by privatizing the reduc-

| Loop
! iterations

I
o
n write operations
per iteration
(fk(i), k=1,2,....n)
~— ‘
‘ synchronized
writes ?

__ 1 reduction array
=3 privatization ?
i

LPO
reordering of iterations
(mspector%

fDim
Loop
« o o /() iterations

n write operations
per iteration
(K(), k=1,2,...1)
AT e e e T
12,3 | ADIm computation
" ' 1+ replication ?

thread 1 thread 2 thread p

DPO

synchronized
writes ?

Fig. 2. General schematic representation of the LPO and
DPO classes of reduction parallelization techniques

tion array, as it is done by the replicated buffer and
array expansion techniques. The replicated buffer
method replicates private copies of the full reduc-
tion array on all threads. Each thread accumulates
partial results on its private copy, and finally the
global result is obtained by accumulating the par-
tial results across threads on the global reduction
array (this last step needs synchronization to ensure
mutual exclusion). The other method, (array ezpan-
sion), expands the reduction arrays by the number
of parallel threads instead of using private copies of
them.

These two methods transform the reduction loop
into a fully parallel one, removing the data depen-
dencies as a result of the privatization of the reduc-
tion array. However the memory overhead increases
in proportion to the number of parallel threads.

Methods in the DPO class avoid the privatization
of the reduction array, as it is partitioned and as-
signed to the parallel threads. In order to deter-
mine which loop iterations each thread should exe-
cute (mostly those that write in its assigned block),
an inspector is introduced at runtime.

Two methods has been proposed in the literature
in the DPO class. One method was termed LOCAL-
WRITE [7], [9], and is based on the owner—computes
rule. Each thread owns a portion of the reduction
array (block partitioning). The inspector has re-
ordered the subscript arrays in such a way that, in
the execution phase, the set of iterations assigned
to that thread only updates array elements of the
owned block. Note, however, that, in order to ful-
fill the computes rule, those iterations that updates
more than one block of the reduction array must be
replicated across the owner threads. This compu-
tation replication introduces a performance penalty
(parallelism loss).

An alternative method that avoids computation
replication is DWA-LIP [4], [5], [6]. Consider that
the blocks of the reduction array are indexed by the
natural numbers. The inspector (named loop-index
prefetching phase, or LIP) now sorts all the itera-
tions of the reduction loop into sets characterized
by the pair (Buin, AB), where Byin (Bmaz) is the
minimum (maximum) index of all blocks touched by
the iterations in that set, and AB is the difference
Byaz — Bmin- The execution phase (or computation
phase) of the method is organized as a synchronized
sequence of non-conflicting (parallel) stages. In the
first stage, all sets of iterations of the form (B,in,0)
are executed in parallel because they are all data
flow independent (optimal utilization of the threads).
The second stage is split into two sub-stages. In the
first one, all sets (Bpin, 1) with an odd value of By
are executed fully parallel, followed by the second
sub-stage where the rest of sets are executed in par-
allel. A similar scheme is followed in the subsequent
stages, until all iterations are exhausted

A. Performance Characteristics

Methods in the LPO and DPO classes have, in
some sense, complementary performance character-
istics. Methods in the first class exhibit optimal par-
allelism exploitation (the reduction loop is fully par-
allel), but no data locality is taken into account and
lack scalability (memory overhead is proportional to
the number of threads). However, as the reduction
loop is uniformly partitioned, these methods usually
exhibit balanced workload.

Methods in the second class, however, exploit
data locality and exhibit usually much lower memory
overhead, and it is not dependent on the number of
threads (the inspector may need some extra buffer-
ing to store subscript re-orderings, independently on
the number of threads). However, either the method
introduces some computation replication or is orga-
nized in a number of synchronized phases. In any
case, this fact represents loss of parallelism. In ad-
dition, there is the risk that the number of the loop
iterations that write some specific block is much dif-
ferent from the same in another block (workload un-
balance).

Table in Fig. 3 shows typical characteristics of
methods in LPO and DPO classes considering four
relevant performance aspects: data locality, memory
overhead, parallelism and workload balance. Data
locality is in turn split into inter-loop and intra-loop
localities. Inter-loop locality refers to the data local-
ity among different reduction loop iterations. Intra-
loop locality, on the other hand, corresponds to data
locality inside one reduction loop iteration.

LPO methods basically exploit maximum paral-
lelism in a very balanced way. Regarding mem-
ory overhead, they are very eager. Different solu-
tions has been proposed recently to reduce this high
memory overhead, based on the array expansion and
replicated buffer basic methods. The reduction table
method [10] assigns a private buffer to each thread

Inter-Loop Intra-Loop Memory Workload
Locality Locality Overhead Parallelism Balance
LPO extrinsic extrinsic High/Medium/Low High High
DPO High extrinsic Low High/Medium/Low extrinsic

Fig. 3.

Typical performance characteristics for the LPO and DPO classes of parallel irregular reduction methods. The term

extrinsic means that the property is not intrinsically exploited by the method, but it depends on input data

of a fixed size (lower than the size of the reduction
array). Then, each thread works on its private buffer
indexed by using a fast hash formula. Other method
is selective privatization [16], where the replication
include only those elements referenced by various
threads. It first determine (inspector phase) which
are those elements and then allocate for them pri-
vate storage space. Each thread, then, works on its
private buffer when updating conflicting elements.
Some sort of combination of the above both tech-
niques has been also proposed in the literature [16].

Data locality is not exploited by a LPO method.
This situation could be relieved by adding an exter-
nal preprocessing that reorders the input data [8],
[3]. However, these techniques have a high algorith-
mic complexity.

DPO methods, on the other hand, are designed to
exploit, at runtime, data locality, specially inter-loop
locality, at the cost of reducing a fraction of paral-
lelism (including computation replication). Other in-
teresting characteristic is that usually memory over-
head is much lower than in basic LPO methods.

An important drawback of DPO methods is that
they may exhibit workload unbalancing depending
on input data. This problem could be reduced, at
least partially, by an external renumbering of input
data [8], [3]. A different solution would be to intro-
duce some load balancing support inside the DPO
method. This approach is discussed in the next sec-
tion.

III. BALANCING WORKLOAD IN DPO METHODS

Generically, methods in the DPO class are based
on an uniform block partitioning of the reduction
array, as this way data locality may be exploited.
However, as loop iterations are assigned to the paral-
lel threads depending on the block they write in, this
may introduce workload unbalance, although this sit-
uation is not usual concerning typical numerical ap-
plications,

In this section we present two approaches to im-
prove the workload balancing of DPO methods. The
first approach is oriented to balance generic non uni-
form load distributions. It is based on the subparti-
tioning of the reduction array blocks into subblocks
of the same size. The second approach, on the other
hand, is oriented to special cases where the load un-
balance is due to a high number of write operations
on small regions of the reduction array (these were
called regions of high degree of contention in [16]).
The solution proposed consists of the local replica-
tion of some of these regions. The DWA-LIP tech-
nique has been modified in an easy an efficient way
to support these solutions.

AB=0 [(1,0) (2,0) (3.0) (40) (5.0) ...

sync
@y Gy 61 @1 ..
AB=1 sync
| @) @) 61 @1 ...
sync
[12 42 (7.2 102 ...
sync
AB=2 | (22) (5.2) (82) (112) ...
sync
| 32 62 02 (122) .

: (i.)): (Bmin , AB)

Fig. 4. Parallel flow computation in the original DWA-LIP
method

A. Generic Load Balancing Approach

To balance the workload among the threads while
keeping exploited data locality, a good approach
would be to partition the reduction array into blocks
of different size, with the aim of minimizing execu-
tion time. However, the inspector cost for such solu-
tion would be presumably excessively high. A much
simpler approach would be to partition the reduction
array into small subblocks, in a number multiple of
the number of parallel threads. This way, blocks of
different sizes may be built by grouping, in a suitable
way, certain number of contiguous subblocks.

The problem is how we can implement such an ap-
proach in a DPO method without losing its beneficial
properties and keeping at most its original computa-
tional structure. We will explain next the specific
case of DWA-LIP. Fig. 4 shows the parallel com-
putational structure of the DWA-LIP method (that
is, the execution phase), with no load balancing sup-
port. The inspector was in charge of assigning the
reduction array to the parallel threads by blocks of
the same size. As explained in the previous Section,
the computation proceeds with synchronized stages,
each one composed of sets of iterations (of the form
(Bmin, AB)) that are executed in parallel.

A seamlessly modification of the DWA-LIP
method to support generic load balancing is shown
graphically in Fig. 5. The inspector now operates as
before but considering subblocks instead of blocks.
It builds the synchronized iteration sets as if the
number of parallel threads is equal to the number
of subblocks. As the number of actual threads is
much lower (a fraction) then those may be grouped
into balanced supersets of different size. In Fig. 5
we have called (i', AB) to the i—th balanced group
of iteration sets, that is, the i—th balanced superset
for a certain value AB. We observe each (i', AB)
is an aggregation of sets of the form (k, AB), and

10 (2’0 (3.0 _ — supersets

s (a0 069 &
sync i
@1 @1 6.1 (7.2 ...
AB=1 sync
(2,1) 4,1 (6,1 (8.1 ...
sync
wple2) (72) (10,2) ...
sync ',2)
AB=2 (82) (11,2) ...
6,2) (9,2) (12,2) ...

: (i"): (B, AB)

Fig. 5. Parallel flow computation in the DWA-LIP method af-
ter including generic load balancing support. The indices
¢ of the iteration sets (7, j) correspond to subblocks.The
indices i’ of the pairs (i',j) corresponds to the balanced
iteration supersets. In any case, index j is AB

so the iterations in that superset write in adjacent
reduction array subblocks.

The execution phase of the modified DWA-LIP
handles the supersets into synchronized stages in the
same way as the original DWA-LIP. In order to do
that we will execute in parallel stages of supersets.
In the original DWA-LIP, we have iterations sets of
the form (i + k(AB +1),AB), k= 0,1, ..., that are
executed in parallel (they constitute a stage) because
they issue conflict-free write operations. As a conse-
quence, in the modified DWA-LIP, if we assure that
the supersets of the form (i', AB) have at least r sets
then all supersets of the form (i’ +kALB AB), where
ALB = |AB=1 4 1| issue also conflict-free writes,
and thus may be executed fully parallel. It can be
proven the best value that maximizes parallelism is
r = min (AB M) With this value, we have

> nThreads

LB _ nThreads
A [AB nSubBlocks]

B. Local Ezpansion Load Balancing Approach

There are situations that suffer from load unbal-
ancing that deserves to be considered as a special
case. This situation arises when we find that many
loop iterations write on specific and small regions of
the reduction array (regions of high contention).

This contention problem can be easily detected by
adding to the inspector of the DPO method a stage of
histogram analysis. Indeed, in the case of the DWA-
LIP technique, this information is contained in the
actual inspector data structure.

It can be observed that as smaller is the size of
a contention region lower number of threads can ex-
ecute the high number of iterations writing in such
region (and thus, generating unbalancing). A easy
way of relieving this problem consists of the repli-
cation on the threads of the block(s) containing the
contention region. This way, write conflicts on that
region disappear and thus the iterations can be re-
distributed on a greater number of threads.

With this approach, the data locality exploitation
property of the DPO method is maintained without
requiring the large amount of extra memory needed
by a LPO method like array expansion or replicated

Nit(Bi)yN

04 05 06 07
Bi/ nThreads

Fig. 6. Histogram of the reduction array access pattern for
the sparse matrix av/1092 (from the Univ. of Florida Col-
lection). B; is the reduction array block index, nThreads
is the total number of threads, Nit(B;) is the number
of iterations that write in block B;, and N is the total
number of loop iterations

No. of locally expanded
blocks:

0.8

mEEEOC00

061

Tnorm

0.4r

0.2

1 2 3 4 5 6 7 8
nThreads

©

Fig. 7. Evaluation of the parallel execution time of the ex-
ecution phase of the locally expanded DWA-LIP for the
same sparse matrix than in Fig. 6

buffer. Selective privatization also tries to replicate
extra memory as low as possible, but no data locality
is considered at all.

In the case of the DWA—-LIP method, the replica-
tion of a reduction array block implies that the loop
iterations in the affected sets (Byin, AB) are moved
to sets with lower AB. This fact increases the par-
allelism available. In addition, the iterations of sets
with AB = 0 that write in the replicated block can
be assigned to any thread, allowing this way a better
balancing of the workload.

The extra memory overhead that the local repli-
cation introduce is equal to the size of the reduction
array multiplied by the number of replicated blocks.
If the problem is very unbalanced, this last number
is much lower than the total number of blocks, and
thus the total extra memory cost would be much
lower than in LPO methods, like array expansion or
replicated buffer.

Fig. 6 depicts the access pattern histogram for the
sparse matrix avf1092 [2], showing that for differ-
ent numbers of threads there always exist regions
of high contention. Fig. 7 shows the theoretical
performance for the execution phase of the locally
expanded DWA-LIP for the access pattern of the
sparse matrix av{1092 [2] for different values of num-
ber of expanded blocks, chosen from those that ex-
hibit higher contention. In the figure, Tnorm repre-
sents the evaluated parallel reduction execution time
normalized to the execution on one thread.

8
O DWA-LIP+LB (K=4)
7 DWA-LIP+LB (K=8)
[DWA-LIP/LocaWrite
s 6 B Array Expansion
< [/
1 /
7
s 7
g 3 9 7
z |
2 7 Y
7
1 7
7
0 7| i

8
#Threads

Fig. 8. Speedup of the generic load balancing approach imple-
mented in the DWA-LIP method (DWA-LIP+LB) com-
pared to the original DWA-LIP, LOCALWRITE and array
expansion for the Legendre transformation (Spec Code)

IV. EXPERIMENTAL EVALUATION

We have experimentally evaluated the proposed
load balancing solutions and compared with other
parallel irregular reduction methods on a SGI Ori-
gin2000 multiprocessor, with 250-MHz R10000 pro-
cessors (4 MB L2 cache) and 12 GB main memory,
using IRIX 6.5. All parallel codes were implemented
in Fortran 77 with OpenMP [13] directives.

The generic load balancing approach were imple-
mented and tested using the Spec Code [12], a kernel
for Legendre transforms used in numerical weather
prediction. The experimental results corresponds to
the routine (LTI) which has an irregular reduction in-
side a nested loop. The indices of the innermost loop
also are indirections. Because there is only one sub-
script array, DPO methods should work efficiently
because neither loose of parallelism (DWA-LIP) nor
computation replication (LOCALWRITE) is expected.

Fig. 8 shows the resulting speedup for the exe-
cution phase of several methods on the LTI proce-
dure. Pure DPO methods shows suboptimal perfor-
mance, which is due mainly to the workload unbal-
ance. When introducing the generic load balancing
solution into DWA-LIP, the performance is signifi-
cantly improved. The K factor represents the ration
between the number of reduction array subblocks
and the total number of threads. When increasing K,
the speedup improves slightly, although there is no
additional improvement for values beyond 8.

Array expansion performs poorly, as only the out-
ermost loop of the irregular reduction is parallelized.
In this code the innermost loop is irregular and con-
sequently array expansion exhibits high load unbal-
ance.

For this code, the indirection array appearing in
the innermost loop and the reduction subscript ar-
ray are computed only once in a initialization rou-
tine. Thus the inspector phase should be executed
only once also. For the tested code, the sequential
irregular reduction time was 19 sec. while the in-
spector took 0.18 sec.

The local expansion load balancing approach, on
the other hand, was experimented on a simple
2D short-range molecular dynamics simulation [11]
(MD2). This application simulates an ensemble of
particles subject to a Lennard-Jones short-range po-
tential. In the core of this code there is an irregular
reduction nested loop due to the use of a neighbour

DWA-LIP
DWA-LIP + LE (1 block) 7B
DWA-LIP + LE (2 blocks)
Array Expansion
Selective Privatization

NEESO

Reduction Speed-Up

DWA-LIP
DWA-LIP+LE (1 block)

DWA-LIP+ LE (2 blocks)

Array Expansion
Selective Privatization ﬂ

6 |

@
NEENO

Reduction Speed-Up

8 12 16
Threads

(b)

Fig. 9. Speedup of the local expansion load balancing ap-
proach implemented in the DWA-LIP method (DWA-
LIP4+LE) compared to the original method, array expan-
sion and selective privatization for the MD2 simulation
code. (a) corresponds to the original code, while in (b)
the loop that runs over the neighbour list of particles was
randomized

list technique to update force contributions. Thus
we have two reduction arrays and two subscript ar-
rays. In addition, the subscript array is dynamically
updated every 10 time steps. The number of parti-
cles simulated is 640K, and it has been introduced
artificially a high contention region in the particle
domain. To test the impact of the inter-loop local-
ity, the iteration order of the original loop that runs
over the neighbour list was randomized.

Fig. 9 the speedup for the execution phase of
the local expanded load balancing technique imple-
mented in the DWA-LIP method, compared to ar-
ray expansion and selective privatization techniques.
Part (a) in the figure corresponds to the original code
(sorted neighbour list) while part (b) corresponds to
the randomized code. As the inter-loop locality of
the original code is relatively high, and the fraction of
conflicting reduction array elements (elements writ-
ten by more than one thread) is very low, then tech-
niques like selective privatization performs very well.
DWA-LIP works poorly due to the high unbalance
of the load. When introducing local expansion, the
situation improves significantly but it does not reach
the level of selective privatization due to the cost of
handling replicated blocks (while selective privatiza-
tion works directly on the original reduction array
most of the time). Array expansion performs worse
due to the high overhead of operating on expanded
arrays and the final collective operation.

When the neighbour list is randomized, the origi-
nal inter-loop locality is lost. That produces a hard
impact on the performance of selective privatization,
as the number of conflicting elements increases dras-
tically. However, DWA-LIP and its variants main-

i
=)

Array Expansion

Selective Privatization (sorted)
Selective Privatization (random)
DWA-LIP+ LE (1 block)
DWA-LIP + LE (2 blocks)

i
=

HEEOSO

)

B oe
15

Memory Overhead

o N b O @
g |

|| 4]

2 4

8 12 16
Threads

(a)

Array Expansion

Selective Privatization (sorted)
Selective Privatization (random)
DWA-LIP+ LE (1 block)
DWA-LIP + LE (2 blocks)

HEEOSO

Memory Overhead

|

2
s

e

%

2%

o
NNNNNN

>
S

%

2
225

E

Fig. 10. Memory overhead for different reduction paralleliza-
tion methods for the MD2 code (units are normalized to
the total size of the reduction arrays): (a) concerning
only replicated reduction arrays, and (b) including also
the inspector data structures

tain their performance at similar levels than before,
as these methods exploit at runtime inter-loop local-
ity.

Regarding the cost of the inspector phase, the to-
tal sequential reduction time was 10 sec. (original)
and 19 sec. (randomized). The inspector execution
time for DWA-LIP was 1.25 sec. for all cases and
variants, while the same for the selective privatiza-
tion was 2.4 sec.

Finally, Fig. 10 depicts the extra memory overhead
that the tested reduction methods exhibit. Note that
selective privatization is very sensitive to the inter-
loop locality of the original code, either in perfor-
mance and in extra memory, while the DPO methods
succeed to exploit it at runtime. In part (b) of the fig-
ure, the memory overhead due to the inspector data
structures has been included. The main overhead in
DWA-LIP corresponds to the size of the subscript
array (in MD2, this size is three times larger than
the size of the reduction arrays). In selective priva-
tization, a copy of each subscript array is needed to
translate the indices to the selective private replicas
of the reduction arrays. In MD2, this overhead is
twice than in DWA-LIP.

V. CONCLUSIONS

The load balancing performance aspect was not
sufficiently analyzed in parallel reduction methods,
specially those in the DPO class, which are very sen-
sitive to that aspect. In this paper we have proposed
two new techniques to introduce load balancing into
a DPO method. The first technique, based on the
subblocking of the reduction arrays, is generic, as it
can deal with any kind of load unbalancing present in
the problem domain. The second technique handles a
special case of load unbalance, appearing when there

are a large number of write operations on small re-
gions of the reduction arrays. The proposed solution
is based on the privatization of the blocks making up
those regions.

In this paper we show efficient implementations
of the proposed solutions to load balancing for the
DWA-LIP DPO method. Experimental results al-
low us to conclude that it is possible to improve
the performance of DWA-LIP for very unbalanced
problems with no significant loss of data locality and
no substantial increment in extra memory overhead
and algorithmic complexity.

REFERENCES

[1] R. Asenjo, E. Gutiérrez, Y. Lin, D. Padua, B. Pot-
tengerg, and E. Zapata. On the Automatic Paralleliza-
tion of Sparse and Irregular Fortran Codes. Tech. Rep.
1512, Univ. of Illinois at Urbana-Champaign, CSRD, De-
cember 1996.

[2] T. Davis, The University of Florida Sparse Matrix Col-
lection. NA Digest, 97(23), June 1997.

[3] C. Ding and K. Kennedy, Improving Cache Performance
of Dynamic Applications with Computation and Data
Layout Transformations. ACM Int’l. Conf. on Program-
ming Language Design and Implementation, pp. 229—
241, Atlanta, GA, May 1999.

[4] E. Gutiérrez, O. Plata, and E.L. Zapata. An Auto-
matic Parallelization of Irregular Reductions on Scalable
Shared Memory Multiprocessors. 5th International Euro-
Par Conference , pp. 422-429, Tolouse, France, August-
September 1999.

[5] E. Gutiérrez, O. Plata, and E.L. Zapata. A Compiler
Method for the Parallel Execution of Irregular Reduc-
tions in Scalable Shared Memory Multiprocessors. 14th
ACM Int’l. Conf. on Supercomputing, pp. 78-87, Santa
Fe, NM, May 2000.

[6] E. Gutiérrez, R. Asenjo, O. Plata, and E.L. Zapata. Au-
tomatic Parallelization of Irregular Applications. J. Par-
allel Computing, 26(13-14):1709-1738, December 2000.

[7] H. Han and C.-W. Tseng, Efficient Compiler and Run—
Time Support for Parallel Irregular Reductions. J. Par-
allel Computing, 26(13-14):1709-1738, December 2000.

[8] H. Han and C.-W. Tseng, Improving Locality for Adap-
tive Irregular Scientific Codes. 13th Workshop on Lan-
guages and Compilers for Parallel Computing, Yorktown
Heights, NY, August 2000.

[9] H. Han and C.-W. Tseng, A Comparison of Paralleliza-
tion Techniques for Irregular Reductions. 15th IEEE
Int’l. Parallel and Distributed Processing Symp. , San
Francisco, CA, April 2001.

[10] Y.Lin and D. Padua, On the Automatic Parallelization of
Sparse and Irregular Fortran Programs. 4th Workshop on
Languages, Compilers and Runtime Systems for Scalable
Computers, Pittsburgh, PA, May 1998.

[11] J. Morales and S. Toxvaerd. The Cell-Neighbour Table
Method in Molecular Dynamics Simulations. Computer
Physics Communication, 71:71-76, 1992.

[12] N. Mukherjee and J.R. Gurd, A Comparative Analysis
of Four Parallelisation Schemes. 13th ACM Int’l. Conf.
on Supercomputing, pp. 278-285, Rhodes, Greece, June
1999.

[13] OpenMP Architecture Review Board. OpenMP: A Pro-
posed Industry Standard API for Shared Memory Pro-
gramming. http://www.openmp.org, 1997.

[14] R. Ponnusamy, J. Saltz, A. Choudhary, S. Hwang, and
G. Fox. Runtime Support and Compilation Methods for
User-Specified Data Distributions. IEEE Trans. on Par-
allel and Distributed Systems, 6(8):815-831, June 1995.

[15] L. Rauchwerger and D. Padua. The LRPD Test: Spec-
ulative Run-Time Parallelization of Loops with Privati-
zation and Reduction Parallelization. ACM SIGPLAN
Conf. on Programming Language Design and Implemen-
tation, pp. 218-232, La Jolla, CA, June 1995.

[16] H. Yu and L. Rauchwerger. Adaptive Reduction Paral-
lelization Techniques. 14th ACM Int’l. Conf. on Super-
compuling, pp. 66—77, Santa Fe, NM, May 2000.

