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SUMMARY

Different parallelization methods for irregular reductions on shared memory
multiprocessors have been proposed in the literature in recent years. We have classified
all these methods and analyzed them in terms of a set of properties: data locality, memory
overhead, exploited parallelism, and workload balancing. In this paper we propose
several techniques to increase the amount of exploited parallelism and to introduce load
balancing into an important class of these methods. Regarding parallelism, the proposed
solution is based on the partial expansion of the reduction array. Load balancing is
discussed in terms of two techniques. The first technique is a generic one, as it deals with
any kind of load imbalance present in the problem domain. The second technique handles
a special case of load imbalance which occurs whenever a large number of write operations
are concentrated on small regions of the reduction arrays. Efficient implementations of
the proposed optimizing solutions for a particular method are presented, experimentally
tested on static and dynamic kernel codes, and compared with other parallel reduction
methods.

KEY WORDS: Irregular reductions; Data locality; Workload balancing; Shared-memory multiproces-
sor; NUMA machines

1. INTRODUCTION

In recent years much research effort has been devoted to developing language and compiler
technologies for parallel computers. Parallel language technology has evolved with the aim
of enabling users to program parallel computers using methods similar to those used in
conventional computers. For instance, two established standards, High Performance Fortran
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(HPF) [10, 17] and OpenMP [19], are defined as extensions of conventional languages, Fortran
or C, that implement data-parallel or task-parallel programming models. Research in compiler
technology for multiprocessors, on the other hand, is usually associated with advances in
parallel languages, because powerful translators are needed to produce effective parallel
machine codes from explicitly parallelized programs (using HPF or OpenMP, for instance). A
step forward, however, is taken if the compiler is capable of carrying out full parallelization.
Numerical applications are usually based on complex data structures that introduce irregular
memory access patterns. In general, automatic parallelizers obtain suboptimal parallel codes
from these applications, because traditional data dependence analysis and optimization
techniques are precluded. In order to increase the efficiency of these automatically generated
parallel codes, run-time techniques have been proposed, such as those based on the inspector-
executor paradigm [20], or the speculative execution of loops in parallel [21].

Reduction operations represent an example of a computational structure frequently found
in the core of many irregular numerical applications. The importance of these operations
to the overall performance of the application has involved much attention from compiler
researchers. In fact, numerous techniques have been developed and, some of them implemented
in contemporary parallelizers, to detect and transform into efficient parallel code those
operations. Reduction operations are defined from associative and commutative operators
acting on simple variables (scalar reductions) or array elements inside a loop (histogram
reductions). If there are no other dependencies but those caused by reductions, the loop can
be transformed to be executed fully parallel.

Different specific solutions to parallelize irregular reductions on shared memory
multiprocessors have been proposed in the literature. We may classify them into two
broad categories: loop partitioning-oriented techniques (LPO) and data partitioning-oriented
techniques (DPO). The LPO class includes those methods based on the partitioning of the
reduction loop and further execution of the resulting iteration blocks on different parallel
threads. A DPO technique, on the other hand, is based on the (usually block) partitioning
of the reduction array, assigning to each parallel thread preferably those loop iterations that
issue write operations on a particular data block (then it is said that the thread owns that
block).

A set of properties may be defined such that the above classes of methods can be analyzed
and classified. We have included in this set properties such as the exploitation of data locality
(inter-iteration and intra-iteration), memory overhead, exploited parallelism, and workload
balancing. All these properties have a clear influence on the overall performance of the
parallelization method.

As we will see, DPO methods obtain better performance from mainly exploiting inter-
iteration data locality with a reduced extra memory overhead (which improves the scalability
of the method). However, depending on the application, the above is accomplished at the
expense of losing a fraction of the exploitable parallelism (due to additional synchronizations
or computation replication). In order to reduce this unwanted effect, we have developed various
optimizations. One optimization, named partial array ezpansion, exploits parallelism more
while increasing memory overhead. On the other hand, another two optimizations, named
generic load balancing and local expansion, improve workload balancing in order to overall
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reduce execution time, while trying to minimize the extra memory needed. One of the goals is
to avoid losing the good scalability properties of DPO methods.

The rest of the paper continues with a discussion and classification of the most important
methods for irregular reduction parallelization (LPO and DPO classes) on shared memory
multiprocessors. Using such a classification, the methods are analyzed in terms of a
set of relevant properties. Next, we highlight the problems of exploited parallelism and
workload balancing that DPO methods suffer, and propose our solutions, as well as efficient
implementations. Finally, experimental results that validate our analysis and optimizations
are presented and discussed.

2. OVERVIEW OF IRREGULAR REDUCTION PARALLELIZATION

As mentioned, methods for the parallelization of irregular reductions on shared memory
multiprocessors may be classified into two broad categories: LPO and DPO methods. DPO
methods are based on the partition of data, so presumably it would be best to use them in
NUMA machines. LPO methods, on the other hand, partition reduction loops, so the most
appropriate thing would be to use them in uniform memory access multiprocessors. To facilitate
the analysis of these classes, in the rest of the paper we will consider the general case of a loop
with multiple reductions, as shown in Fig. 1 (the case of multiple nested loops is not relevant
to our discussion). A() represents the reduction array (that could be multidimensional), which
is updated through multiple subscript arrays, f1(), f2(), ..., fn() (also known as indirection
arrays). The symbol @ is used as the reduction operator (associative and commutative).

As the contents of the subscript arrays are unkonwn during compilation, loop-carried
dependencies may be present and can only be detected at run-time. Subscript arrays are
usually computed before executing the reduction and, in some cases, they may be modified
during different executions of the reduction loop (for example, in an outer time-step loop).
Nevertheless, to preserve the associative and commutative properties, subscript arrays must
remain unmodified during the entire execution of one instance of the reduction loop.

Taking the above example irregular reduction loop into account, Fig. 2 shows a graphical
representation of generic techniques in the LPO and DPO classes.

2.1. Loop Partitioning-Oriented (LPO) methods

The first solutions proposed to parallelize reductions fall in the LPO class. The simplest
solution is based on critical sections, where the reduction loop is executed in a fully parallel
manner by just placing the accesses to the reduction array inside a critical section. This method
exhibits a very high synchronization overhead and, consequently, very low efficiency.

The synchronization pressure can be reduced (or even eliminated) by privatizing the
reduction array, as carried out by the use of replicated buffer [9, 8] and array ezpansion [3, 1]
techniques. The replicated buffer method defines private copies of the full reduction array in
each thread. Each thread accumulates partial results on its private copy, and finally the global
result is obtained by accumulating the partial results across threads on the global reduction
array (this last step needs synchronization to ensure mutual exclusion). The other method,
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Figure 1. A loop with multiple reductions and a schematic representation of the irregular memory
access pattern
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Figure 2. General schematic representation of the LPO (loop partitioning) and DPO (data
partitioning) classes of reduction parallelization methods

(array expansion), expands the reduction array by the number of parallel threads. Each thread
accumulates partial results on its own section of the expanded array. This approach allows us
to obtain the final result in a similar way to the first method, but without needing the final
synchronization.

Note that these two methods transform the reduction loop into a fully parallel one,
as possible loop-carried dependencies disappear as a result of the privatization of the
reduction array. However, they encounter scalability problems for large data sets because the
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privatization affects the whole reduction array (the memory overhead increases in proportion
to the number of parallel threads).

2.2. Data Partitioning-Oriented (DPO) methods

Methods in the DPO class avoid the privatization of the reduction array. In order to determine
which loop iterations each thread should execute, an inspector is introduced at runtime whose
net effect is the reordering of the reduction loop iterations (through the reordering of the
subscript arrays). The selected reordering tries to minimize write conflicts, and, in addition, to
exploit data (reference) locality. For this latter reason the reduction array is usually block
partitioned, with the goal of assigning to each thread those loop iterations that write in
only one of these blocks (as far as possible). This way, the use of the memory hierarchy is
optimized. If the multiprocessor has a NUMA organization, these blocks will be distributed
across local memories, so that each node of the machine executes a thread and stores the
block written by that thread. This is the case considered in this paper. Methods in this class
are LOCALWRITE [11, 12, 14] and DWA-LIP [5, 6, 7] (Data Write Affinity with Loop Index
Prefetching).

The LOCALWRITE method is based on the owner-computes rule. Considering an uniform
block partitioning, the above rule implies that each thread owns a portion of the reduction
array. The inspector classifies the iterations into two groups: local iterations and boundary
iterations. Consider, for instance, a loop with two reductions, A(f1(i)) = ... and A(f2(i)) = ....
Given iteration i, let T3 (i) and T5(i) be the threads that own the block written by the first
and the second reduction, respectively. If both owners are the same thread the iteration i is
local. Otherwise, it is a boundary iteration. In the execution phase local iterations are assigned
to the threads that own the block written by them. However, boundary iterations are split in
two, distributing the two reductions between them. Afterwards each one of the two iterations is
assigned to the thread that own the corresponding block that is updated. The disadvantage of
the splitting process is the replication of computations (computation of one original iteration
is carried out by two split iterations). This fact introduces a performance penalty (parallelism
loss). Note that a synchronization event is needed to separate all the loops, the local one and
each one of the split boundary loops.

As the second method will be wused throughout the rest of the paper, we
will explain it in detail (DWA-LIP). Let us consider a regular block distribu-
tion of the reduction array A() into blocks B, By, .. Bp. Spatially consec-
utive blocks are indexed with consecutive natural numbers. For each iteration ¢
of the reduction loop two parameters, B,,;,(i) and AB(i), are defined, where
B,,in(1) = min{l < k < N| block By, is referenced by i} and AB(i) = Bpaz (i) — Bmin(i)
being Bee(i) = max{l < k < N| block By, is referenced by i}. Note that By, (i) is the
minimum index of all blocks updated by iteration i. The inspector (called the loop-index
prefetching phase, or LIP) is in charge of distributing the iterations of the reduction loop
among (B,in, AB)-sets. Two iterations ¢ and j belongs to the same (B,in, AB)-set if
B,in(i) = Buin(j) and AB(i) = AB(j). All iterations in the same (B, AB)-set share
at least one referenced block, and thus should be executed by the same thread.
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During the execution phase (called the data write affinity phase, or DWA) of the method,
iterations are organized as a synchronized sequence of non-conflicting (parallel) stages. Each
stage considers all (Bin, AB)—sets sharing the same value for AB. That is, all iterations
i1,%2,... such that AB(iy) = AB(iz) = .... It is easy to see that two iterations, i and j,
such that AB(i) = AB(j), can be executed concurrently if By,in(i) + AB(i) < Bnin(j).
The reason is that these two iterations write in non-overlapping areas of the reduction array.
Therefore, in each synchronized stage, all sets of the form (Bp,in, AB), (Bmin+ (AB+1), AB),
(Bmin + 2(AB + 1), AB), ..., fulfill the above condition and thus can be executed in parallel.
Specifically, in the first stage, all (By,in,0)—sets are executed in parallel. The second stage
is split into two sub-stages. In the first sub-stage, the sets (1,1), (3,1), ... are executed in a
fully parallel way, followed (after a synchronization point) by the second sub-stage, where sets
(2,1), (4,1), ... are executed in parallel. A similar scheme is followed in the subsequent stages,
until all iterations are exhausted.

Fig. 3 (a) shows the code of the execution phase for nThreads threads. As shown, each
stage is characterized by a value of AB, ranging from 0 to nThreads — 1. For each stage, a
total of AB + 1 sub-stages are executed, where iterations from independent (B, AB)-sets
are computed in parallel. The behaviour of the parallel-do OpenMP primitive introduces the
synchronization point needed between stages. Fig. 3 (b) shows the data structures built during
the LIP phase. The count matrix stores the number of iterations of each (B,in, AB)—set. The
list of iterations belonging to (By,in, AB)-set is stored in the next array as a linked list, using
the init matrix to point to the first iteration in each set. In the figure the sample (2,1)-set
with 4 iterations is shown. A graphical representation of the execution flow of the iteration
sets is depicted in Fig. 4 (a).

2.3. Properties of the reduction methods

Methods in the LPO and DPO classes have, in some sense, complementary performance
characteristics. Methods in the former class exhibit optimal parallelism exploitation (the
reduction loop is fully parallel), but data locality is not taken into account and the method
lacks memory scalability. In addition, as the reduction loop is uniformly partitioned, these
methods usually exhibit a balanced workload.

Methods in the second class, however, exploit data locality (write affinity), usually exhibit
much lower memory overhead, and are not dependent on the number of threads (the inspector
may need some extra buffering to store subscript re-orderings, but always not dependent on
the number of threads). However, either the method introduces some computation replication
or is organized in a sequence of synchronized phases. That is, the exploitable parallelism is
reduced by some fraction, depending on the application and its input data set. In any case,
this represents a loss of parallelism. In addition, there is the risk that the number of loop
iterations that write in a specific block is very different from the number of iterations writing
in another block (workload imbalance).

Table I shows typical characteristics of methods in the LPO and DPO classes taking
into account four relevant properties: data locality exploitation, memory overhead, exploited
parallelism, and workload balance. Data locality is in turn split into inter-iteration and intra-
iteration localities. Inter-iteration locality refers to data locality across different reduction loop

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Ezrper. 2003; 0:1-20
Prepared using cpeauth.cls



% IRREGULAR REDUCTIONS 7
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Figure 3. Execution phase of DWA-LIP (a) and its associated data structure (b) (for two subscript
arrays)

Table I. Typical performance properties for the LPO and DPO classes of parallel
irregular reduction methods. The term extrinsic means that the property is not
intrinsically exploited by the method, but it depends on input data

Inter-iteration Intra-iteration Memory Workload
Locality Locality Overhead Parallelism Balance
LPO extrinsic extrinsic High/Medium/Low High High
DPO High extrinsic Low High/Medium/Low  extrinsic

iterations. Intra-iteration locality, on the other hand, corresponds to data locality inside one
reduction loop iteration.

LPO methods basically exploit maximum parallelism in a very balanced way. Regarding
memory overhead, they are very eager. Different solutions have been proposed recently to
reduce this high memory overhead, based on the array expansion and replicated buffer methods.
The reduction table method [15] assigns a private buffer to each thread of a fixed size (less
than the size of the reduction array). Then, each thread works on its private buffer which
is indexed by using a fast hash formula. When the hash table is full, any new operation
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will work directly on the global reduction array within a critical section. Another method
is selective privatization [22], where the replication includes only those elements referenced
by various threads. It first determines (inspector phase) which elements these are and then
allocates private storage space for them. Each thread works on its private buffer when updating
conflicting elements, while it works on the global reduction array otherwise. This execution
behavior implies a replication of each subscript array in order to store the new indexing scheme.
Some sort of combination of these two techniques has been also proposed in the literature [22].

Data locality is not exploited by LPO methods. This situation could be helped by adding
an external preprocessing stage before executing the irregular code. This stage is in charge
of reordering the input data (that will fill the subscript arrays) with the aim of optimizing
locality [13, 2]. However, these techniques have high algorithmic complexity and normally are
difficult to use in dynamic codes.

On the other hand, DPO methods are designed to exploit data locality, at runtime, —
especially inter-iteration locality — at the cost of reducing a fraction of parallelism (by means of
extra synchronizations or computation replication). Additionally, intra-iteration locality could
be exploited externally by means of a preprocessing reordering algorithm. Another interesting
characteristic is that memory overhead is usually much lower than in basic LPO methods,
significantly improving the scalability of the methods.

The important drawbacks of DPO methods are, on the one hand, the fraction of exploitable
parallelism lost due to possible extra synchronizations or computation replication, and, on the
other hand, the workload imbalance that they may exhibit (this depends on how the input
data set is structured). This last problem may be reduced, at least partially, by an external
renumbering of input data [13, 2], but these methods are usually computationally expensive. In
the rest of the paper, we discuss optimizing the DPO methods to tackle all these performance
problems.

3. IMPROVING THE PERFORMANCE OF DPO METHODS

In some cases DPO methods may perform suboptimally, either due to loss of parallelism (many
conflicting interblock writes) or to workload imbalance. In this section we propose solutions to
these problems, thereby increasing the overall performance of the method. Although the main
ideas described in this section could be applied to any DPO method, we take DWA-LIP as
the basic method to be improved to simplify the discussion.

3.1. Solution to the loss of parallelism

In DPO methods we can always trade memory overhead for parallelism exploitation, as
privatization helps to eliminate write conflicts. In the case of DWA-LIP, write conflicts are
represented by non-null entries in the second and successive columns of the init triangular
matrix (see Fig. 3 (b)). The execution of the loop iterations associated with these entries is
accomplished in synchronized phases (to avoid write conflicts), each time using a fraction of
the total number of available threads, and thereby losing parallelism.
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Figure 4. Model of the execution phase of DWA-LIP (a), and of the partially expanded
DWA-LIP (b) with p = 2. The shadowed (4, j)-sets write in a different copy of the reduction
array to that of unshadowed ones
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Thus, parallelism may be increased if the reduction array is partially replicated (a fixed
number of times, less than the number of threads). This improved method is called partial
array expansion, or partially expanded DWA-LIP. The number of copies of the reduction array
will be the partial expansion factor (p). This replication increases the parallelism exploitable by
DWA-LIP because, for a particular AB value (that is, a column in init, Fig. 3 (b)), conflicting
iteration sets may now be non-conflicting since they have the possibility of updating different
private copies of the reduction array. In other words, as p private copies of the reduction array
are available, there is always the opportunity of having at least p threads working in parallel.

The hard problem here is how to schedule the iteration sets so as to achieve maximum
benefit from this extra parallelism. Fig. 4 (a) depicts the dataflow of the execution phase
of the original DWA-LIP method. Each column represents the sub-stages of non-conflicting
iteration sets that can be executed in parallel. For each value of AB we have a total of AB+1
sub-stages, and in each of them non-conflicting iteration sets are executed in parallel. If the
reduction array is replicated p times, then, for each column, p sets cease to be in conflict
because each one may work on a different private copy. Bearing this fact in mind, it can be
proved that the partially expanded method can be arranged with the same execution model
as the original method but with a lower number of conflicting sub-stages. For each AB that

number is AP = [ATB + 1J (instead of AB +1).

There are different possibilities regarding assigning private copies of the reduction array to
the new non-conflicting iterations sets. A simple one, that results in a compact code, consists
in cyclically assigning each one of these sets to each private buffer, from top to bottom in the
corresponding column. This execution model results in a parallelism exploitation less than p
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from columns where AB > %. To avoid this loss of parallelism, for these columns

the iteration sets are grouped into stages of at most p elements. All sets in each stage can be
executed in parallel, working on different private arrays.

When p = % the method achieves the maximum exploitable parallelism, and
although an extra amount of memory is used, the parallelism will not be improved by making p
greater than this value (this value will be denoted as psq:). For access patterns exhibiting high
reference locality, the maximum parallelism of the method could be achieved with a value of
p below pg,:. For these patterns, partially expanded DWA-LIP performs as well as or better
than array expansion but with a much lower memory overhead. An access pattern is found
in this class when the number of iterations in (B, AB)-sets is 0 for all AB > By, where
B; < psat- This condition can be easily checked on the count matrix of the DWA-LIP data
structure.

Fig. 4 (b) depicts the new execution model, for p = 2. For the four leftmost columns,
the execution model is similar to the original DWA-LIP (but assuming A¢*?). In general,
comparing this execution flow with that in Fig. 4 (a), we note a significant parallelism
improvement,.

The use of partial replication introduces a certain overhead to the basic DWA-LIP scheme
due to the initialization of reduction array private copies and the final reduction of private
copies into the global reduction array. As the number of private replicas is less than the
number of threads, this overhead is not as considerable as in array expansion. Nevertheless,
experimental results show that this overhead is not significant in relation to the improvement
in parallelism.

The partial expansion technique can also be applied to other DPO methods, such as
LOoCALWRITE. In this case the goal is to increase the number of local iterations (that is,
decreasing the number of boundary iterations) by using a number of copies, p < nThreads,
of the reduction arrays. In this way we have less computation replication due to splitting
the boundary iterations. To apply partial expansion to LOCALWRITE we can extend the
definition of local iteration as follows (assuming two indirections): one iteration i writing
elements A(f1(3)), A(f2(i)), — whose owners are T} (i), T2(i), respectively — is local if either
Ty (i) = T»(7) (as in the original version) or 0 < T5(i) — T1(i) < p. In the latter case, although
references are owned by different threads, it is possible that a thread executes the complete
(not split) iteration if these two references write in different private copies. Partially expanded
LOCALWRITE, as defined, will require an initialization and a final reduction phase. However,
as the number of boundary iterations is reduced, the computation replication overhead will be
lower too.

3.2. Solutions to workload imbalance

Generically, methods in the DPO class are based on a uniform block partitioning of the
reduction array, as data locality may be exploited in this way. However, as loop iterations
are assigned to the parallel threads depending on the block they write in, this may introduce
workload imbalance. In this section we present two approaches to improve workload balancing
in DPO methods.
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Figure 5. (a) Parallel flow computation in the DWA-LIP method, and (b) after
including generic load balancing support (pairs (4,5) correspond to subblocks, while
pairs (i, j) correspond to the balanced iteration supersets)

3.2.1. Generic approach

A generic approach to workload balancing could be partitioning the reduction array into
contiguous blocks of different size, such that the parallel execution time is minimized. Note
that changing the array distribution modifies the number of iterations in each (B, AB)-set
and so it can balance iterations for certain values of AB, but at the expense of increasing the
number of iterations with a greater value for AB. This will produce loss of parallelism. This
fact leads us to the problem of selecting an optimal block partition that minimizes the parallel
execution time.

The minimization process has a high computational cost because it must find the partition
that provides the optimal distribution of iterations into (Byin, AB)—sets. To do this, parallel
time must be evaluated iteratively during the optimization process for as long as different
block sizes (and thus their iteration distribution) are tested. A simplification of this approach
could be to partition the reduction array into small subblocks of the same size, by a multiple
of the number of parallel threads. This way, blocks of different sizes may be built by grouping,
in a suitable way, a certain number of contiguous subblocks.

The problem now is how to implement such an approach in a DPO method without losing
its good properties. It is also desirable keeping the computational structure of the original
method. We now decribe the specific case of DWA-LIP. A seamless modification of the
DWA-LIP method to support the proposed generic load balancing is shown graphically in
Fig. 5. The execution phase is practically unmodified, as the inspector is in charge of all the
work. The inspector now operates as before but considering subblocks instead of blocks (see
Fig. 5 (a)). It builds the synchronized iteration sets as if the number of parallel threads is
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equal to the number of subblocks. As the number of actual threads is much lower (a fraction)
than the number of subblocks, then these subblocks may be grouped into balanced supersets of
different size. In Fig. 5 (b) we have called (i', AB) to the i—th balanced group of iteration sets,
that is, the i—th balanced superset for a certain value of AB. We observe that each (i', AB)
is an aggregation of sets of the form (k, AB), and so the iterations in that superset write in
adjacent reduction array subblocks.

The execution phase of the balanced DWA-LIP handles the supersets in synchronized
stages in the same way as the original DWA-LIP. In order to do this, the execution
proceeds in parallel stages of supersets. In DWA-LIP we have iterations sets of the form
(it + k(AB + 1),AB), k = 0,1, ..., that are executed in parallel (they constitute a stage)
because they issue conflict-free write operations. In consequence, in the balanced DWA-LIP,
if make sure that the supersets of the form (i, AB) have at least r sets then all supersets of the
form (i’ + kALE, AB), where ALB = | 2B=1 4 1| also issue conflict-free writes, and thus may
be executed in a fully parallel manner. It can be proven that the best value that maximizes
parallelism is r = min (AB, %), where nSubBlocks is the number of subblocks and
nThreads is the number of threads. With this value, we have AL = [Ap_tlhreads 7

The final number of supersets in each parallel stage should not be greater than the number
of actual threads. The new execution phase works in a similar way to the original one but
operates on supersets.

In addition, a similar generic load balancing approach can be used with LOCALWRITE. In
this case the subblock grouping must try to balance, independently, the execution of local
and boundary iteration loops. A simple heuristic could be to independently obtain a simple
histogram-based balancing for the local iterations and for each split boundary iteration.

3.2.2.  Local expansion approach

There are situations in which load imbalance occurs that deserve to be considered as a special
case. One of these situations arises when we find that many loop iterations write on specific
and small regions of the reduction array (regions of high contention). We may deal with this
case using the approach proposed in the previous section, but it is not difficult to design a
more effective solution.

This contention problem can be easily detected by adding a histogram analysis stage to the
DPO method inspector. Indeed, in the case of the DWA-LIP technique, this information is
contained in the actual inspector data structure (to be precise, in the count matrix (Fig. 3(b))).
It should be noted that the smaller the size of a contention region the fewer the number
of threads that can cooperate in the execution of the high number of iterations writing in
such regions (and thus, generating imbalance). An easy way to solve this problem consists in
replicating the blocks in the contention region among all the threads. This way, write conflicts
in that region are removed and thus the iterations can be redistributed on a greater number
of threads.

With this approach, the DPO method continues to exploit data locality without requiring
a large amount of extra memory, as in an LPO method, such as array expansion or replicated
buffer. Selective privatization also tries to carry out the fewest possible number of replications
of the reduction array elements, but it does not consider data locality whatsoever.

Copyright © 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Ezrper. 2003; 0:1-20
Prepared using cpeauth.cls



% IRREGULAR REDUCTIONS 13

In the case of the DWA-LIP method, the replication of a reduction array block implies
that the loop iterations in the corresponding (Bjin, AB)-sets are moved to sets with lower
AB. This increases the available parallelism. In addition, the iterations of sets with AB =0
that write in the replicated block can be assigned to any thread, in this way enabling better
workload balancing.

The extra memory overhead that local replication introduces is equal to the size of the
reduction array multiplied by the number of replicated blocks. If the contention region is very
narrow, this latter number is much lower than the total number of blocks, and thus the total
extra memory cost would be much lower than in a typical LPO method.

The LOoCALWRITE method could also benefit from local expansion when high contention
regions exist. Because the local expanded blocks can be written in parallel by several threads,
the boundary iterations that write in these blocks will become local iterations. Thus, better
performance would be expected.

4. EXPERIMENTAL RESULTS

We have experimentally evaluated the solutions discussed for improving the performance of
DPO methods (specificallyy, DWA-LIP) and compared them with other parallel irregular
reduction methods on an SGI Origin 2000 multiprocessor, with 250-MHz R10000 processors (4
MB L2 cache) and 12 GB main memory, using IRIX 6.5. All parallel codes were implemented in
Fortran 77 with OpenMP directives, and compiled using the SGI MIPSpro Fortran 77 compiler
(with optimization level O2).

We have parallelized three representative irregular codes and their data sets for which
the basic DWA-LIP method exhibits some inefficiency, and which can be solved with the
optimization techniques discussed . These three codes are: a differential equation resolution
code (EULER) for the partially expanded DWA-LIP; the Legendre transform code (Spec) for
the generic load balance approach; and a two-dimensional molecular dynamics code (MD2) for
the local expansion approach. Pseudocodes for the reduction kernels in these applications are
depicted in Figure 6.

The partially expanded DWA-LIP method has been tested on the EULER code (from the
motivating application suite of HPF-2 [4]). This code solves the differential Euler equation on
an irregular grid, computing some physical magnitudes (such as velocities or forces) on the
nodes described by a mesh. The tested data set — that is, the description of the mesh — has
a relatively low intra-iteration locality, and thus loss of parallelism appears when the basic
DWA-LIP method is used. The code includes a single loop with two subscripted reductions
on one array with three dimensions, which is placed inside an outer time-step loop. The
subscript arrays are read from an external file and they are never modified in the time-step loop.
Therefore, the inspector phase is computed only once just after the values of subscript arrays
are known. The parallel EULER kernel has been executed using a 1161K nodes mesh with a
connectivity of 8 (ratio between edges and nodes). Thus, we have a 1161-K-sized reduction
array and 8x1161K iterations in the reduction loop. In order to compare the performance
impact of the inter-iteration locality, two versions of the mesh have been used. One mesh
was obtained after applying a coloring algorithm to the edges. In this way the content of
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Read subscript arrays : Compute subscript arrays: do ihop=1, nHops
edge (1,x), edge(2,x) m(x), Update subscripts : B1(x),B2(x)
mbeg(x), do itime=1,nTimes
do itime=1,nTimes mend () do ih=1, nParticles
do i=1,nEdges i=B1(ih)
nl = edge(1,i) do irow=1, nRows j=B2(ih)
n2 = edge(2,i) do i=1,jdt+1
im =m(i) Compute ¢ = ((i,j)
Compute (1, (2, (3 imb=mbeg(i) Compute r = 7(i,j)
ime=mend(i)
vel (1,n1)=vel(1,n1)+(1 do is=imb,ime,2 if (r .It. CutOff) then
vel (2,n1)=vel(2,n1)+(> Compute (1, (2... AX(i)=AX(i) + ¢
vel (3,n1)=vel(3,n1)+(3 do ilev=1,2xjdlev AX(j)=AX(j) — ¢
f1(ilev ,im)=fl(ilev,im)+(i AY(1)=AY(i) + ¢
vel (1,n2)=vel(1,n2)—¢ f2(ilev ,im)=f2(ilev,im)+(o AY(j)=AY(j) — ¢
vel (2,n2)=vel(2,n2)-¢ ... endif
vel (3,n2)=vel(3,n2)—¢ enddo enddo
enddo enddko
.......... enddo
enddo enddo enddo

Figure 6. Pseudocodes for the reduction kernels tested: EULER (a); Legendre
transform (b); and 2D Molecular dynamics (c).

subscripted arrays is reordered in batches (colors) of values that are not repeated. Thus, a
low inter-iteration locality should be expected in the reduction loop as consecutive iterations
update different and distant reduction array elements. In the second mesh, the list of edges
has been lexically sorted, resulting in an expected higher inter-iteration locality.

In Fig. 7 we have plotted the speedup (with respect to the sequential execution time) for
the computation phase of the basic DWA-LIP, its partially expanded version, LOCALWRITE,
array expansion, and selective privatization. Observe that the basic DWA-LIP method (p = 1)
has lower performance than array expansion. The reason for this is the loss of parallelism due
to iteration sets with a high AB parameter, resulting from the input data set used.

Due to the low inter-iteration locality we expect the array expansion in the colored mesh
to behave badly. When the number of processors is larger than 8, a lower execution time is
achieved with the partially expanded method using p = 4. For 16 threads and p = 8, partially
expanded DWA-LIP outperforms array expansion.

In the sorted mesh case, the main limitation is the parallelism loss caused by the low intra-
iteration locality. Nevertheless, we observe that for a given number of threads the parallel
execution time of DWA-LIP decreases if the p factor is increased. This effect is more significant
for a higher number of threads, so that both partially expanded DWA-LIP and array expansion
provide almost the same speedup for 16 threads and p = 8. In both cases, the overhead of the
prefetching phase is not significant (it represents about 5% of the computation phase time).

As the intra-iteration locality of the tested mesh is low, the selective privatization method
will replicate a high number of elements of the reduction array, due to the fact that these
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Figure 7. Speedup for the parallel EULER code using DWA-LIP, its partially expanded version
(+PE), array expansion, selective privatization, and LOCALWRITE methods (colored mesh at the
left and sorted mesh at the right)

elements will be modified by several threads, and even more for the colored mesh. This is the
reason for the low performance of this method. LOCALWRITE suffers from loss of parallelism
due to the computation replication in boundary iterations. In the tested code the reduction
loop has two indirection arrays, thus half of the parallelism in the boundary iterations is lost.
As the tested data has low intra-iteration locality, the number of these iterations is relatively
high.

The generic load balancing approach was implemented and tested using the Spec Code [16],
a kernel for Legendre transforms used in numerical weather prediction. The irregular reduction
is inside a nested loop, the indices of the innermost loop also being indirections (see Fig. 6 (b)).
For this reason workload imbalance is present because some outer loop iterations carry out
more reduction operations than others.

Fig. 8 shows the resulting speedup for the execution phase of several reduction methods.
Pure DPO methods show suboptimal performance, which is mainly due to workload imbalance.
When the generic load balancing solution is introduced into DWA-LIP, the performance is
significantly improved. The K factor represents the ratio between the number of reduction array
subblocks and the total number of threads. By increasing K, the speedup improves slightly.
However, there is no additional improvement for values beyond 8. Array expansion performs
poorly, as only the outermost loop of the irregular reduction is parallelized. In this code the
innermost loop is irregular and, consequently, array expansion exhibits high load imbalance.
Finally, the overhead of the inspector phase is negligible (less than 1% of the reduction time),
as it is executed only once.
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Figure 8. Speedup of the generic load-balanced DWA-LIP method (DWA-LIP+LB) compared to
the original DWA-LIP, LOCALWRITE, and array expansion for the Legendre transformation

The local expansion load balancing approach, on the other hand, was tested on a simple 2D
short-range molecular dynamics simulation [18] (MD2). This application simulates an ensemble
of particles subject to a Lennard-Jones short-range potential. In the core of this code there is
an irregular reduction nested loop due to the use of a neighbour list technique to update force
contributions. This list stores the index of its neighbouring particles (interacting particles)
for each particle. Two subscript arrays are used to implement the list (Fig. 6 (c)). As a 2D
magnitude (force) is computed, two reduction arrays are present in the reduction loop. A
time-step loop surrounds the reduction loop in order to compute the evolution of the particle
system. In addition, the subscript array is dynamically updated every given number of time
steps because the neighbours of each particle change slowly in time when particle positions
are modified. In our experiments, the neighbour list was updated every 10 time steps. This
fact involves the re-execution of the inspector every time the neighbour list is updated. The
number of particles simulated was 640K. A high contention region in the particle domain has
been introduced artificially. To test the impact of the inter-iteration locality, the iteration the
order of the original loop that runs over the neighbour list was randomized.

Fig. 9 shows the speedup for the execution phase of the locally expanded load balancing
technique implemented in the DWA-LIP method, compared to array expansion and selective
privatization. The left part in the figure corresponds to the original code (sorted neighbour
list) while the right part corresponds to the randomized code. As the inter-iteration locality of
the original code is relatively high, and the fraction of conflicting reduction array elements
(elements written by more than one thread) is very low, techniques such as selective
privatization perform very well. DWA-LIP works badly due to the high imbalance of the
load. When introducing local expansion, the situation improves significantly but it does not
reach the level of selective privatization due to the cost of handling replicated blocks (whereas
selective privatization works directly on the original reduction array most of the time). Array
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Figure 9. Speedup of the locally expanded DWA-LIP method (DWA-LIP+LE) compared to the

original one and other methods for the MD2 simulation code. The left part corresponds to the

original code, while in the right part the loop that runs over the neighbour list of particles was
randomized

expansion performs worse due to the high overhead of operating on expanded arrays and the
final collective operation.

When the neighbour list is randomized, the original inter-iteration locality is lost. This
implies a strong impact on selective privatization performance as the number of conflicting
elements increases drastically. However, DWA-LIP and its variants maintain their performance
at similar levels, as these methods exploit inter-iteration locality at runtime. The impact of
the inspector phase, in both cases, is around 1% for locally expanded DWA-LIP and 2.5% for
selective privatization.

The extra memory needed by the optimized methods is another important overhead issue, as
shown in Fig. 10 (EULER) and 11 (MD2). Memory overhead is measured taking the size of the
reduction arrays in the sequential code as the unit. In array expansion the only overhead source
is the replication of the reduction arrays in all threads, while in LOCALWRITE and DWA-LIP
this source corresponds only to the inspector data structures. For the other methods, both
overhead sources are present. In these latter cases, the lower part in the plot bars in the above
figures represents the fraction of extra memory due to the first overhead source. The upper
part, on the other hand, corresponds to the second source.

For the tested EULER code, and considering a parallel execution on 16 threads, the partially
expanded DWA-LIP method with p = M provides a similar or better speedup than
the quickest of the other methods. In this case, the relatively low intra-iteration locality of the
input data set is the reason that selective privatization exhibits higher memory overhead than
array expansion.

In the MD2 code, the impact of inter-iteration locality is stronger. In the case of the original
version of MD2, selective privatization performs best because the fraction of the number of
replicated elements is very low due to the good intra-iteration locality of input data. However,
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Figure 10. Memory overhead for parallel EULER. code using DWA-LIP, its partially expanded version
(+PE), array expansion selective privatization, and LOCALWRITE methods (colored mesh at the left
and sorted mesh at the right)
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Figure 11. Memory overhead of the locally expanded DWA-LIP method (DWA-LIP+LE)

compared to the original one and other methods for the MD2 simulation code. The left part

corresponds to the original code, while in the right part the loop that runs over the neighbour
list of particles was randomized
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for the randomized version, DWA-LIP achieves better speed-up, needing less extra memory
than the other methods.

5. CONCLUSIONS

In this paper we classify and analyze in terms of important performance properties methods for
parallelizing irregular reductions in the context of shared memory multiprocessors. From this
study, we identify possible performance problems in an important class of methods, specifically,
those related to exploited parallelism and workload balancing.

Solutions to these problems are proposed, discussing specific implementations for the DWA-
LIP (Data Write Affinity with Loop Index Prefetching) method. In its basic version, this
technique can suffer from loss of parallelism and workload imbalance in some specific cases.
An important fact is that the inspector phase of the method can reveal whether we are dealing
with such a case. Thus, it is possible to automate the process of selecting the appropriate
optimization technique. In addition, the proposed techniques introduce minor changes in the
original parallel computation structure.

The experimental results allow us to conclude that it is possible to improve the performance
of data partitioning-based methods with no significant loss of data locality and no substantial
increment in extra memory overhead and algorithmic complexity.
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