
An Analytical Model of Locality-Based

Parallel Irregular Reductions

Eladio Gutiérrez, Oscar Plata and Emilio L. Zapata

Department of Computer Architecture, University of Málaga
29071 Málaga, Spain

E-Mail: {eladio,oscar,ezapata}@ac.uma.es

Abstract

This paper deals with the analysis of the parallelization of irregular reductions, a
frequent operation found in many irregular applications, in the context of a shared
memory model. Locality exploitation is a classical problem in computer architec-
ture and compiler design that presently still plays a fundamental role due to the
growing gap between memory and processor speeds. This work contributes a for-
mal description of the design space of locality-based parallel irregular reductions,
which is used to achieve a quantitative analysis of them. The model allows to de-
termine behavioural aspects in the methods that may influence their performance.
Several parallel compiler techniques for irregular reductions are placed and exam-
ined within this model. Experimental evaluation is also presented, under various
locality conditions, and the results were compared to those derived from the model.

Key words: Irregular reductions, Parallelism, Locality, Compiler techniques

1 Introduction

For the last decades locality exploitation has been one of the main goals for
increasing the performance of applications, giving rise to a wide range of soft-
ware optimizations. Nowadays two locality-related trends can be observed.
On the one hand, applications process larger and larger data sets, and, on
the other hand, the known processor-memory gap problem is more and more
significant, that is, main memory speed is improving at a slower pace than
processor speed. Both trends cause application performance to be increas-
ingly dependent on the observed memory latency. At present, most of the
strategies designed to minimize the impact of the observed memory latency
is focused on hiding it. Well known architectural and compiler techniques for
latency hiding are multithreading, multi-core processors, data and instruction
speculation, prefetching, and others. However, the processor-memory gap is

Preprint submitted to Elsevier Science 13 June 2007

increasingly more difficult and expensive to hide. On this subject, locality
exploitation plays a fundamental role.

An important class of applications for which the minimization of the negative
impact of the memory latency is very difficult to accomplish is made up of
irregular applications. These applications are characterized by presenting non-
regular accesses to memory that are, in general, derived from the utilization of
indirections in the code, such as subscripted subscripts or reference pointers.

Reduction operations represent an example of a computational structure fre-
quently found in the core of many irregular applications. The importance of
these operations in the overall performance of the application has involved
much attention from the compiler development community. In many cases,
most of the application computing time is spent on these irregular reduction
operations. Therefore, when these applications are parallelized in order to
speed them up, it is a matter of great importance optimizing such operations.
This paper deals with the analysis of the parallelization of irregular reductions,
considering automatic solutions that can be implemented in a parallelizing
compiler. However, it is out of the scope of this work those techniques that
require semantic knowledge of the application, like those based on reordering,
packing, partitioning ... of the input data which used to be carried out in
previous stages prior to the execution of the application [1,4,19,20,24].

Our analysis of the automatic parallelization techniques for irregular reduc-
tions is based on a shared memory model. This model has been implemented
in the last years in a wide spectrum of multiprocessor architectures, symmetric
or non-symmetric, with uniform or non-uniform memory accesses. The impor-
tance of these architectures and programming model has been expressed in the
design of standards, like OpenMP [23], and shared memory software layers.
More recently, the shared memory model continue to be valid, as the current
trend of processor architectures, like multithreaded multi-core processors, ap-
pear to be an SMP of a number of virtual cores, from the viewpoint of the
operating system and compiler [3].

The main contribution of this paper is a formal description of the design
space of methods for shared-memory, locality-based parallelization of irregu-
lar reductions. These methods try to optimize the utilization of the memory
hierarchy. The proposed model may be useful in some ways. It allows to de-
termine behavioural aspects in the methods that may degrade their perfor-
mance. Many of these aspects emerge from the exploitation of data locality via
data partitioning. Examples are parallelism loss, load imbalance, computation
replication, and so on. As a consequence of this evaluation, weak points of
the methods can be identified and, as a result, improvements can be designed.
The model, besides, establishes a framework to compare the performance be-
haviour of the different methods. This way, for a given locality features of

2

REAL A(1:ADim)
INTEGER f1(1:fDim1, 1:fDim2,... ,fDimnLoops)
INTEGER f2(1:fDim1, 1:fDim2,... ,fDimnLoops)

...
INTEGER fnInd(1:fDim1, 1:fDim2,... ,fDimnLoops)

do i1 = 1,fDim1

do i2 = 1,fDim2

...
do inLoops = 1,fDimnLoops

Compute ξ1, ξ2, ... ξnInd

A(f1(i1, i2, ... inLoops)) = A(f1(i1, i2, ... inLoops)) ⊕ ξ1

A(f2(i1, i2, ... inLoops)) = A(f2(i1, i2, ... inLoops)) ⊕ ξ2

...
A(fnInd(i1, i2, ... inLoops)) = A(fnInd(i1, i2, ... inLoops)) ⊕ ξnInd

enddo
...

enddo

enddo

Fig. 1. Multiple nested reduction loop with several indirections

the input data set, the model can provide the necessary information to decide
which method performs better according to the performance aspects we desire
to strengthen.

The next section introduces the irregular reductions together with a general
discussion about performance. Next, an analytical model to evaluate locality-
based parallelizations is presented, from which several compiler implementa-
tions and improvements are derived. In Section 6, a performance analysis of all
these implementations is introduced, that is supported with the experimental
results in Section 7. Finally, we draw some conclusions.

2 Parallel Irregular Reductions: A Performance Perspective

Reduction operations are characterized by the application of a commutative
and associative operator to a set of values, in such a way that they can be
grouped or reordered without changing the result. A general example of these
kind of operations is shown in Fig. 1, where a reduction operator (⊕) is applied
to the elements of an array inside a multiply nested loop. In this piece of code,
the array A() is modified several times in each iteration by, exclusively, the
reduction operator, and hence it is called the reduction array. The irregular
nature of this code lies in the use of multiple subscript arrays, f1(), f2(), ...,
fn(), to access to the elements of A(). We will refer to these arrays as indirec-
tion arrays. Due to the existence of these subscripted subscripts, loop-carried
dependencies may be present. These indirections must be the only source of
dependencies in order the whole loop to be considered a reduction.

Due to the associativity and commutativity properties, iterations of a reduc-
tion loop can be reordered and thus the loop is parallelizable provided that
all possible dependencies are overcome. In the context of a shared memory
model, a variety of solutions has been proposed in the literature to solve this

3

parallelization. We may classify these methods into three categories. The first
class includes the simplest solution which consists in enclosing each access
to the reduction array in a critical section. This way the reduction loop is
executed fully parallel without breaking any dependence. The second class
tries to minimize synchronizations by privatizing the reduction array and dis-
tributing loop iterations among parallel threads. Each thread carries out its
assigned computations on a private copy of the reduction array, obtaining the
final result by combining partial values across threads. Two representative
examples in this class are Replicated Buffer [13] and Array Expansion [6,2].
Methods in the third class try to avoid the privatization of the reduction ar-
ray by partitioning it and distributing it among threads. In order to determine
which loop iterations each thread should execute, an inspector is introduced
at runtime whose net effect is the reordering of the iterations (through the
reordering of the subscript arrays). The resulting reordering must avoid write
conflicts in order to preserve dependencies. We can find methods in this class
both for distributed-memory and shared-memory architectures. For example,
in [27], a parallel irregular reduction algorithm for multithreaded architectures
is proposed. However, since the focus of this work is on shared-memory imple-
mentations, methods like LocalWrite [14,15] and SynchWrite [11] will
be the subject of study in this paper.

Many factors influence overall performance of the parallel irregular reduction
methods. Such factors affect in different ways the various categories described
previously. A first factor is synchronization overhead, that results in thread
execution delays due to critical sections or barriers. This factor has an im-
portant effect on performance of the first class of methods, based on critical
sections. The high cost of synchronization in typical shared memory multi-
processors makes unfeasible the use of these methods in practice. A second
factor is memory overhead, associated to the extra memory required by the
parallelization method. This extra memory come from either auxiliary data
structures or privatized variables replicated in each thread. This last source
of overhead is specially important for methods in the second class, based on
the privatization of the reduction array, and limits their scalability, as mem-
ory requirements grow linearly with the number of threads. A third factor is
locality exploitation that, in a reduction loop, may exist between iterations
(inter–iteration locality) or inside a same iteration (intra–iteration locality).
Only the third class of methods, based on the partitioning of the reduction
array, takes into consideration data locality, in particular, inter–iteration lo-
cality. Nevertheless, depending on the way the reduction array is distributed,
intra–iteration locality may give rise to harmful side effects in this class of
methods. Among these effects we find parallelism loss, computation replica-
tion and workload imbalance, and are very related to the input data access
patterns. All these effects, that will be discussed in detail in a later section, may
be mitigated by means of a preprocessing reordering of the input data [4,24,16],
that can have a high computational cost. As these preprocessing stages usually

4

Based on mutual
exclusion

(Critical sections)

Based on reduction
array privatization

(Array Expansion, Replicated

Buffers)

Based on reduction
array partitioning

(LocalWrite, SynchWrite)

Advantages Simple implementation
Simple implementation

High concurrency
Able to exploit locality

Low memory requirements

Disadvantages

High synchronization cost
and potential serialization
No locality exploitation

High memory overhead
Low scalability

No locality exploitation

Potential parallelism loss,
computation replication
and workload imbalance

Table 1
Typical performance properties for parallel reduction methods

require external knowledge about data, they are out of scope of this work.

In the literature different efforts for improving the performance of the ba-
sic parallelization methods can be found. In the case of privatization-based
methods, work is mainly aimed at reducing the memory overhead. This way,
techniques like Reduction Table [18] and Selective Privatization [18,26] try to
minimize the number of replicated elements of the reduction array, but at
the cost of introducing a new source of overhead through an inspection stage.
Also, heuristic adaptive solutions for deciding which method will perform best
for a given input data set has been proposed [26], as well as other improved
strategies based on critical sections [17]. Table 1 summarizes the discussion
made in this section.

3 Evaluating Methods that Exploit Locality

This section presents a formal model to guide the analysis of irregular reduc-
tion parallelization methods that exploit inter–iteration data locality. With
this aim a suitable distribution function of the reduction array onto threads
must be defined: Ψ : {A(1), A(2), ...A(ADim)} → P , where A(1:ADim) is
the reduction array and P = {1, 2, ...nThreads} is the set of thread identi-
fiers cooperating in the computation. At this point some definitions that link
the distribution function and the iteration space of the reduction loop (each
iteration is represented by ~ı = (i1, i2, ...inLoops)) are needed.

Definition 1 The write access set of the iteration ~ı is defined as the set of
subscripts for which A is written in such iteration, that is, Acc~ı(A) = {m ∈
[1, ADim] |A(m) is written in iteration ~ı }.

Definition 2 Two iterations,~ı and ~, are write affine if their write access sets
are mapped to the same subset of threads, that is, Ψ(Acc~ı(A)) = Ψ(Acc~(A)).

Definition 3 Two iterations,~ı and ~, are write dissimilar if their write access
sets are mapped to disjoint subsets of threads: Ψ(Acc~ı(A))∩Ψ(Acc~(A)) = ∅.

Lemma 1 The binary relation between iterations stated in Definition 2 satis-
fies the reflexive, symmetric and transitive laws, and hence is an equivalence
relation, which will be named affinity relation.

5

The affinity relation allows us to divide the set of iterations (denoted by S)
into equivalence classes. Each class is made up of those iterations that write
to array reduction elements mapped to the same subset of threads. That is,
for each Q ⊂ P , there exists an associated affinity equivalence class given by
CQ = {~ı ∈ S |Ψ(Acc~ı(A)) = Q}. We will denote S/aff the affinity quotient set,
the set of all affinity equivalence classes.

Definition 4 Two affinity equivalence classes, CQ and CR, are defined dis-

similar if for each pair of iterations, ~ı ∈ CQ and ~ ∈ CR, are write dissimilar.

Lemma 2 Two classes, CQ and CR, are dissimilar if and only if Q ∩ R = ∅.

From the locality viewpoint, we will exploit better the memory hierarchy if
the iterations in a certain affinity class write in array reduction elements close
to each other. Selecting a block distribution for Ψ lead us to this situation.
From the parallelism viewpoint, we have to look for equivalence classes that
update non overlapping sets of reduction array elements, as the only true data
dependencies are caused by writes in the reduction array. These classes are
precisely the dissimilar classes defined previously. Hence, iterations from dif-
ferent dissimilar classes can be executed directly in parallel. Ideally, to obtain
maximum parallelism with minimum overhead, we need as many dissimilar
classes as the wanted number of threads, and with similar cardinality (for
a balanced execution). In order to design a method to establish such set of
dissimilar classes, the following definition is introduced.

Definition 5 The dissimilarity graph, denoted as DG(S/aff) = (NDG, EDG),
is defined as an undirected graph whose vertices are affinity equivalence classes
(NDG = S/aff), and there exists an edge between two vertices in the graph if
such vertices correspond to not dissimilar classes.

The potential data dependencies between iterations for a particular distri-
bution function are captured in the dissimilarity graph. To extract this in-
formation a vertex-coloring algorithm can be applied. After that, vertices
with the same color are not connected and thus they correspond to dissim-
ilar classes. For example let us consider a 2-indirection reduction loop to be
executed on four threads. The largest quotient set that can be given rise
is, S/aff = {C{1}, C{2}, C{3}, C{4}, C{1,2}, C{1,3}, C{1,4}, C{2,3}, C{2,4}, C{3,4}}. Its dis-
similarity graph is shown in Fig. 3 (a). After applying a vertex-coloring al-
gorithm we obtain gangs of dissimilar classes, represented by vertices of the
same color (non connected). Hence, denoting by V ertexColoring() the set of
gangs of classes of the same color, we have, V ertexColoring(DG(S/aff)) =
{

{C{1}, C{2}, C{3}, C{4}}, {C{1,2}, C{3,4}}, {C{1,3}, C{2,4}}, {C{1,4}, C{3,2}}
}

.

From this last result emerges the parallel execution schedule of the reduction
loop. The dissimilar classes of a gang associated to a given color are exe-
cuted in parallel. However, the different gangs of classes have to be executed

6

inspection phase:
DIS(S/aff) = V ertexColoring(DG(S/aff))

...
computation phase:

for gang ∈ DIS(S/aff)
forall CQ ∈ gang

Execute iterations ∈ CQ

end

#pragma barrier
end

Fig. 2. Affinity-based parallelization of a reduction loop

(a)

{1,4}

C{2}

{2,3}C

C{2,4}

C{3}

C{3,4}

C{4}

C{1}

C{1,2}

C{1,3}

C

(b)

C{3} C{4}

C{2}

C{1}

C{5}

{2,3}C

C{1,3} C{1,4}

C{4,5}

C{3,5}

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

C

C

C

C{1,2}

{2,4}

{1,5}

{2,5}

C{3,4}

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

C{2,3}

C{1,3}

C{4,5}

C{1,4}

C{3} C{4}

C{5}C{2}

C{1}

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

C

C

C{1,2}

{2,4}

{2,5}

{1,5}C

{3,4}C

{3,5}C

����
����
����
����

����
����
����
����

Fig. 3. For a 2-indirection reduction loop: (a) Optimum vertex coloring of dissimi-
larity graph for all possible non-empty classes with 4 threads; (b) different (non-op-
timum) colorings with 5 threads

in sequence. Therefore, in order to approach an ideal case, we should try to
fulfill three conditions: minimizing the number of colors (minimum synchro-
nization overhead), approaching the cardinality of the gangs to the number of
threads (maximum concurrency), and having a similar size for the classes in
the same gang (workload balancing). This execution schedule may be imple-
mented following an inspector/executor paradigm, as shown in Fig. 2, where
the equivalence classes and their coloring are carried out by the inspector.

In practice, the inspector phase of this approach suffers from important limi-
tations. Minimizing the number of colors involves the calculation of the vertex
chromatic index of the dissimilarity graph (Chrom(DG(S/aff))) that is known
as a NP-hard problem, although different near-optimal colorings may be ob-
tained with heuristics of polynomial complexity [9]. Actually, the process is not
so easy because such heuristics may provide different solutions depending on
some input parameters. The selection of the best solution (in terms of execu-
tion time) is difficult due to the workload balancing condition. An example of
this situation is depicted in Fig. 3(b) where the same graph with two different
colorings are shown. Determining which is the best depends on the cardinal-
ity of the classes. Other problem of the inspector is its low scalability, as the
maximum number of vertices of the dissimilarity graph is

∑nInd
p=1

(

nThreads
p

)

. It

grows very quickly with the number of threads (nThreads) and indirections
(nInd). This size has effect in the coloring time and memory requirements.
Finally, topological properties of the dissimilarity graph limit the exploitable
parallelism. Note that, in the worst case, there always exist a totally-connected
subgraph of nThreads vertices embedded in the dissimilarity graph. As the

7

λ()Q

card(Q)=1
card(Q)=2
card(Q)=3
card(Q)=4
card(Q)=5
card(Q)=6

2
4

8
10

Fig. 4. Relative latency factor, λ(Q), for affinity classes CQ, as a function of Q,
which takes into account the effect of the memory hierarchy

vertex chromatic index of a complete graph is equals to its number of vertices,
then Chrom(DG(S/aff)) ≥ nThreads. This introduces a lower bound to the
number of barriers in the method. It is significant that for a number of threads
power of two and for a 2-indirection loop an optimum coloring can be found
with Chrom(DG(S/aff)) = nThreads (see an example in Fig. 3(a)).

From the pseudocode in Fig. 2 we can derive the following expression for the
parallel execution time of the computation phase:

T PAR = T SEQ
iter

∑

gang∈V ertexColoring(DG(S/aff))

max
CQ∈gang

{

Card(CQ)λ(Q)
}

. (1)

Here T SEQ
iter represents the mean execution time per iteration of the original

(sequential) reduction loop without the effect of the memory hierarchy, that
is, the mean effective computational payload per iteration. The effect of the
memory hierarchy is considered apart by means of the factor λ(Q), that repre-
sents the average memory access latency per iteration for a given affinity class.
This factor takes into account the exploited intra–iteration locality. This local-
ity generally depends on the relative positions of the reduction array elements
that a given iteration writes in. For this reason, we have established λ as a
function of the set Q that defines the affinity class. If the locality influence
was negligible then λ would be 1. In order to achieve a good parallel execution
time, the coloring must not only pursue a minimum number of colors but it
must also try to balance gangs of classes and build gangs with classes of similar
λ(Q). As we discussed, these objectives are hard to achieve in practice.

This relative latency factor per iteration, λ(Q), could be determined experi-
mentally. By way of illustration, a measurement of this parameter is shown
in the polar plot in Fig. 4, for the platform described in section 7 and over
different subsets Q. For Q with higher cardinality, only a sampling has been
considered, due to the large number of possible subsets (remember that this

number grows according to the combinatorial expression
(

nThreads
card(Q)

)

). This la-
tency factor is a relative measurement that takes as reference a base affinity

8

class for which all iterations write into a reduction array that fits completely
in the memory level closest to the processor (L1 cache). The experiment was
conducted for nThreads = 16 and nInd = 6, with a reduction array of 5 · 106

coefficients and for a reduction loop where the reduction operations are pre-
dominant (which is a very frequent case in real codes). We can observe that
this latency factor depends on the number of blocks written by a given iter-
ation, that is, on the Card(Q) defining the affinity class CQ. Note also that
this factor saturates from certain value of Q. In general, for more scattered
accesses, a higher latency factor is expected.

4 Compiler Implementations

In order to find a practical implementation of the write affinity paralleliza-
tion, some simplifications need to be introduced. Mainly the computational
cost and memory overhead of the inspector must be lightened. For this purpose
two approaches may be followed. The first approach is based on transform-
ing the whole reduction loop into a set of one-indirection reduction loops.
For these loops, the affinity classes are of the form CQ with Card(Q) = 1,
being thus S/aff = {C{1}, C{2}, ... C{nThreads}}. All these classes are dissimi-
lar and thus can be executed fully parallel. The second approach is based
on the simplification of the affinity relation in such a way that inspector
costs are reduced whereas the amount of parallelism is kept high. Essen-
tially, both approaches involves a reordering of the original iterations increas-
ing the exploitation of intra–iteration locality. Having in mind locality ex-
ploitation and according to previous discussions, a block distribution function
(ΨBLOCK(k) =

⌊

(k−1)nThreads
ADim

⌋

+ 1) is considered from now on.

The first approach corresponds to splitting the reduction loop. Associative
and commutative properties of reduction operations allow the safe splitting of
a multiple-indirection loop, like the one of Fig. 1, into nInd one-indirection
loops. A full loop splitting means computation replication, increasing signif-
icantly the execution time. However, it is feasible to reduce the impact of
this replication by using solutions such as LocalWrite [14,15]. This solu-
tion divides the reduction loop iterations into two spaces according to the
owner–computes rule. The first space includes all the iterations that refer-
ence reduction array elements mapped to the same thread by ΨBLOCK (local
iterations). The second space contains the remainder iterations (boundary it-
erations). All classes CQ for the local iterations have Card(Q) = 1, and thus,
they are dissimilar. In turn, only the boundary iterations are split. Hence,
LocalWrite replicates computations for only those terms involved in the
boundary iterations, although the associated overhead would be important if
the number of boundaries is high. A pseudocode of LocalWrite for a two-
indirection reduction loop is shown in Fig. 5(a), where SLOCAL represents the
local iteration space and SBOUND

1 , SBOUND
2 the two boundary iteration spaces

after splitting. S(k) denotes the affinity class C{k} of an iteration space S.

9

DIMENSION A(1:ADim)
DIMENSION f1(1:N),f2(1:N)

C$OMP PARALLEL

id=omp get thread num()

do i ∈ S
LOCAL(id)

Compute ξ1,ξ2

A(ind1(i))=A(ind1(i)) ⊗ ξ1

A(ind2(i))=A(ind2(i)) ⊗ ξ2

enddo

C$OMP BARRIER

do i ∈ S
BOUND
1 (id)

Compute ξ1

A(ind1(i))=A(ind1(i)) ⊗ ξ1

enddo

C$OMP BARRIER
do i ∈ S

BOUND
2 (id)

Compute ξ2

A(ind2(i))=A(ind2(i)) ⊗ ξ2

enddo
C$OMP END PARALLEL

INTEGER f1(1:fDim), f2(1:fDim)
REAL A(1:ADim)

INTEGER init−local(1:nThreads),
init −bound1(1:nThreads),
init −bound2(1:nThreads)

INTEGER count−local(1:nThreads),
count−bound1(1:nThreads),
count−bound2(1:nThreads)

INTEGER next(1:fDim),
next1(1:fDim), next2(1:fDim)

C$OMP PARALLEL DO

do p=1, nThreads
i=init−local(p)
do ii =1, count−local(p)

Compute ξ1, ξ2

A(f1(i))=A(f1(i)) ⊕ ξ1

A(f2(i))=A(f2(i)) ⊕ ξ2

i=next(i)
enddo

C$OMP BARRIER
i=init−b1(p)
do ii =1, count−bound1(p)

Compute ξ1

A(f1(i))=A(f1(i)) ⊕ ξ1

i=next(i)
enddo

C$OMP BARRIER
i=init−b2(p)
do ii =1, count−bound2(p)

Compute ξ2

A(f2(i))=A(f2(i)) ⊕ ξ2

i=next(i)
enddo

C$OMP BARRIER

enddo
C$OMP END PARALLEL DO

INTEGER f1(1:fDim), f2(1:fDim)
REAL A(1:ADim)

INTEGER init(1:nThreads,
0:nThreads−1)

INTEGER count(1:nThreads,
0:nThreads−1)

INTEGER next(1:fDim)

C$OMP PARALLEL

do dB=0,nThreads−1
do is=1,dB+1

C$OMP PDO

do Bi=is,nThreads−dB,dB+1
i=init(Bi,dB)
do ii =1,count(Bi,dB)

Compute ξ1, ξ2

A(f1(i))=A(f1(i)) ⊕ ξ1

A(f2(i))=A(f2(i)) ⊕ ξ2

i=next(i)
enddo

enddo

C$OMP END DO
enddo

enddo

C$OMP END PARALLEL

(a) (b) (c)

Fig. 5. Computation phase for the parallelization of a two-indirection reduction
loop: (a) LocalWrite, (b) DWA-LIP, (c) SynchWrite

An implementation of the LocalWrite solution, called Data Write Affinity
with Loop Index Prefetching (DWA-LIP) [10], is shown in Fig. 5(b). Inspec-
tion phase (LIP) builds loop-index prefetching arrays, containing information
about iteration spaces. In this figure, three loop-index prefetching arrays are
defined for each iteration space: init(), count() and next(). The dimension of the
first two arrays is nThreads, while the last array has at most the same size as
the subscript array f(). These three arrays are used to implement linked lists
that represent the affinity classes (see Fig. 6). In the case of two indirections
three linked lists are needed, one for the local iteration space and two for each
split boundary spaces. Each thread has its associated entry in arrays init() and
count(). Each entry in init() points to the first entry in next() that corresponds
to the first iteration in the affinity class to be executed by such a thread.
In turn, each entry in next() points to the next iteration in the same affinity
class, belonging to such a thread. The array count() contains for each thread
the cardinality of the corresponding affinity class for a given iteration space.

The second approach, based on simplifying the affinity relation, gives rise to
the SynchWrite solution [11]. The new affinity relation is defined as follows,

10

(a)

...
..

...
..

...
..

...
..

...
..

...
..

12

1

6

15

2

6

1

1

3

12

4

15

4

1

15

12

init−b3

B
lo

c
k

 1

A
f3

f2

count−b3

count−b2

count−b1

count−local

f1

next−b3

next−b2

next−b1

init−local

init−b1

init−b2

next−local (b)

...
..

...
..

min

∆B=1

∆B

B

∆B

B
min

6

20 1

1

2

3

4

3

15

12
12

15

20 1

1

2

3

4

3

6
6

3

15

12

B
lo

c
k

 3
B

lo
c
k

 2

next

A

f1

f2

f3

Fig. 6. Inspector data structure for (a) LocalWrite (implemented as DWA-LIP)
and (b) SynchWrite solutions

Definition 6 Two iterations, ~ı and ~, are write affine if (Bmin(~ı), ∆B(~ı)) =
(Bmin(~), ∆B(~)), being Bmin(~ı) = min(ΨBLOCK(Acc(~ı)(A))) and ∆B(~ı) =
max(ΨBLOCK(Acc(~ı)(A))) − min(ΨBLOCK(Acc(~ı)(A))).

This restricted affinity relation is defined from the vector (Bmin, ∆B). The
first term, Bmin, corresponds to the first block written by a given iteration.
The second term, ∆B, is the span between the first and the last block written
by such iteration. This vector summarizes the access set Acc(~ı)(A), informing
about the area of the reduction array accessed. Therefore iterations with the
same pair (Bmin, ∆B) are expected to have similar locality features.

This new affinity relation is also an equivalence relation and thus equivalence
classes can be defined. Compared with the general method described in sec-
tion 3, the new restricted affinity classes can be computed more easily. We
denote C(Bmin,∆B) the equivalence class associated to a pair (Bmin, ∆B). Ob-
serve that two affine iterations according to Def. 2 are affine according Def. 6,
while the opposite may not be true. On the other hand, the dissimilarity be-
tween classes can be also re-formulated as follows,

Lemma 3 It is a sufficient condition for two iterations ~ı, ~ to be dissimilar
according to Def. 6, that Bmin(~ı) + ∆B(~ı) < Bmin(~) where 1 ≤ Bmin(~ı) ≤
Bmin(~) ≤ nThreads.

Lemma 3 expresses the dissimilarity between iterations that write in non-
overlapped areas of the reduction array. Note that the proposed restriction of
the affinity relation allows to check the dissimilarity property with a simple
condition. This fact results in a simpler parallel execution scheme. The inspec-
tor of SynchWrite builds the classes C(Bmin,∆B). Similarly to the DWA-LIP

technique this stage can be implemented by using some prefetching arrays (see
Fig. 5(b)). A linked list defined by the arrays init, count and next represents a
given class C(Bmin,∆B). Unlike the DWA-LIP method, only one array next is
needed independently on the number of indirections (see Fig. 6(b)).

The SynchWrite computation phase is shown in Fig. 5(c). It runs over all
affinity classes executing in parallel those that are dissimilar, according to
lemma 3. Locality is exploited by traversing the classes having similar local-

11

ity features. The outermost loop in Fig. 5(c) runs over all values of ∆B. For
each ∆B, a gang of dissimilar classes are executed in parallel, with a bar-
rier synchronization between gangs. For a given ∆B, such gangs are of the
form C(is,∆B), C(is+(∆B+1),∆B), C(is+2(∆B+1),∆B), ..., with at most ∆B+1 gangs of
dissimilar classes. The innermost loop in Fig. 5(c) traverses the linked lists
of the SynchWrite data structure. The body of this loop just includes the
computational payload of the original loop.

5 Implementation Improvements

Affinity-based parallelization solutions are sensitive to reference patterns ex-
hibited by the input data set, that may introduce performance inefficiencies
in the execution. In this section we analyze some improvements to solve three
of these cases: workload balancing, low intra–iteration locality and high con-
tention imbalance. Although the following proposals could be applied generally
the study is focused on SynchWrite [12].

5.1 Computational workload balancing

The affinity-based methods based on a uniform block data distribution may
exhibit workload imbalance. In order to minimize the impact on the original
inspector, we propose to define a variable-size block partitioning, where each
block is made up of a composition of small contiguous subblocks. This can
be seen as a finer discrete block partition of the reduction array in nBlocks
subblocks (nBlocks > nThreads). We will apply this procedure for each exe-
cution gang (each value of ∆B), by grouping together affinity classes C(Bmin,∆B)

that write in contiguous subblocks. The aim is a similar cardinality for such
groups. The inspector needs to be slightly changed in order to support this
modification. We can compute the statistical distribution function for each
∆B from this matrix count. This statistical function informs us about how
affinity classes must be grouped. The inspector is thus modified as follows:

(1) SynchWrite data structure is built, as in section 4, but with the dis-

tribution function Ψ(k) =
⌊

(k−1)nBlocks
ADim

⌋

+ 1, using nBlocks > nThreads.

(2) For each ∆B, the statistical distribution function is computed as F∆B(i) =
i

∑

Bmin=1

count(Bmin, ∆B), with ∆B, i ∈ {1, 2, ...nBlocks}. This function,

F∆B(i), is monotonically increasing with a maximum in F∆B(nBlocks).
(3) For each ∆B, affinity classes C(Bmin,∆B) writing in adjacent subblocks are

grouped, following the functionF∆B(i). Workload balancing is achieved

by locating the points where F∆B(i) is a multiple of F∆B(nBlocks)
nThreads

. We
need a new array blockSz(), in such a way that blockSz(p, ∆B) stores
the starting index p ∈ {1, 2, ..., nThreads − 1} for the p-th balanced
group of classes. For operating reasons, we define blockSz(0, ∆B) = 1
and blockSz(nThreads, ∆B) = nBlocks + 1.

12

F (nBlocks)

2F (nBlocks)

3F (nBlocks)

∆Β) blockSz(p,

∆Β

 p

∆Β

Bmin

∆Β count(Bmin,)

 nThreads
∆Β=2

 nThreads
∆Β=2

 nThreads
∆Β=2

 i

 F (i)∆Β=2

 1

 3

 7
 8

 2
 1

 3

 7
 8

 nThreads=4

 0
 1
 2
 3

 0 2
 1
 3
 7
 8

 1

 2
 2

 1

 1
 4

 2
 2

 1
 1

 nBlocks=12

(a)

(b)

INTEGER f1(1:fDim), f2(1:fDim), ...
REAL A(1:ADim)

INTEGER init(1:nBlocks,0:nBlocks−1)
INTEGER count(1:nBlocks,0:nBlocks−1)
INTEGER next(1:fDim)
INTEGER blockSz(0:nThreads−1,0:nBlocks−1)

C$OMP PARALLEL

do ∆B=0,nBlocks−1
∆LB=ceil(∆B∗nThreads/nBlocks)

do is=1,∆LB + 1
C$OMP PDO

do Bi=is,nThreads,∆LB
∆B + 1

Execute C
LB
(Bi,∆B)

enddo

C$OMP END DO

enddo
enddo

C$OMP END PARALLEL

Fig. 7. (a) Load balancing approach using the information in matrix count; (b)
Balanced SynchWrite computation phase.

(4) For each ∆B, the balanced group is CLB
(p,∆B) =

blockSz(p,∆B)−1
⋃

blockSz(p−1,∆B)

{C(k,∆B)}.

An example of this balancing procedure is shown in Fig. 7(a), where 12 sub-
blocks and 4 threads are used. For ∆B = 2 the statistical distribution function
and the values for the array blockSz() are plotted.

With the goal of keeping the computation phase similar to that of the original
method, we impose that blockSz(p, ∆B) is strictly monotonically increasing in
p. This condition is fulfilled by enforcing the restriction of having a minimum
number (that we call r) of affinity classes in each balanced group. We can
schedule the execution of the balanced groups in a similar way to the original
method. For that, we say that, just like classes, two balanced group of classes
are dissimilar when their iterations are dissimilar. The following lemma states
a condition to determine the dissimilarity of balanced groups of classes from
the information stored in blockSz().

Lemma 4 A sufficient condition for two balanced groups of affinity classes,
CLB

(b1,∆B), CLB
(b2,∆B), with b2 > b1, to be dissimilar is: b2 − b1 > ∆LB, being

∆LB =
⌊

∆B − 1

r
+ 1

⌋

, and r ≥ 1, where r is the minimum number of classes

in each balanced group.

Hence, if a minimum number of classes, r, for each balanced group is guar-
anteed, the dissimilarity condition stated in lemma 4 is very close to that of
lemma 3. Thus, the balanced computation phase can follow the same schedule
as the original one, but using balanced groups and ∆LB instead of ∆B. The
amount of exploitable parallelism depends on the value of r chosen. It can be
proven that a good trade-off value is r∆B = min

(

∆B, nBlocks
nThreads

)

, which gives

∆LB
∆B =

⌈

∆B nThreads
nBlocks

⌉

. So, the computation phase of balanced SynchWrite

is concisely shown in Fig. 7(b). The code resembles the original SynchWrite

13

of Fig. 5(c), but using ∆LB to traverse gangs of dissimilar balanced groups.

5.2 Approaching low intra–iteration locality

For those memory access patterns exhibiting low intra–iteration locality, the
cardinality of affinity classes C(Bmin,∆B) with high ∆B is large. As ∆B is higher
the number of dissimilar classes is lower, causing SynchWrite to lose per-
formance due to an effective parallelism loss. This parallelism loss may be
mitigated by replicating the reduction array. This fact allows to execute in
parallel non dissimilar affinity classes, if each one works on a different re-
duction array copy. In order to keep the locality exploitation properties of
SynchWrite and to reduce the impact in memory overhead, it is convenient
to replicate the reduction array a number of times less than nThreads. We
will name this improvement as partially expanded SynchWrite, in contrast
to the full replication of methods like Array Expansion. We denote ρ (partial
expansion index) the number of replicas of the reduction array. This basic
idea gives rise to a new scheduling of reduction iterations as explained in the
following lemma.

Lemma 5 Let ρ be the number of available copies of the reduction array. It is
sufficient for two affinity classes C(b1,∆B), C(b2,∆B), with b1 < b2, to be executed

in parallel that b2 − b1 is a multiple of ∆EXP , where ∆EXP =
⌊

∆B
ρ

+ 1
⌋

.

Lemma 5 resembles lemma 3, so the computation phase of partially expanded
SynchWrite schedules affinity classes in a similar way as the original but us-
ing the new parameter ∆EXP instead of ∆B+1. Thus, classes can be scheduled
safely in parallel in gangs of the form C(is,∆B), C(is+∆EXP ,∆B), C(is+2∆EXP ,∆B),
C(is+3∆EXP ,∆B), ..., if we assume a cyclic assignment of reduction array replicas

to classes. Note that the number of classes in each gang is nThreads−∆B
∆EXP , and

because ∆EXP ≤ ∆B + 1 the amount of parallelism is thus increased.

Note however that for values of ∆B with gangs of less than ρ classes (that is,
nThreads−∆B

∆EXP < ρ), certain amount of parallelism is still lost because the number
of array reduction replicas is larger than the number of classes in the gang. In
such cases, which correspond to ∆B > nThreads−1

2
, it would be more efficient

to execute gangs of exactly ρ classes, following a block based scheduling, in
gangs of the form, C(is,∆B), C(is+1,∆B), C(is+2,∆B), ..., C(is+(ρ−1),∆B). For the rest
of cases (∆B ≤ nThreads−1

2
) the scheduling remains as explained in the previous

paragraph. With all these considerations, Fig. 8 shows the partially expanded
SynchWrite computation phase. In addition to the new scheduling of classes
we have to include an initialization and final reduction stages associate to the
ρ reduction array replicas. As ρ increases ∆EXP decreases, making gangs to
have more classes. Nevertheless, the partially expanded method reaches the
maximum exploitable parallelism when ρ = nThreads−1

2
. This corresponds to a

saturation value, ρsat, above which the amount of parallelism will not increase
despite spending more memory.

14

5.3 Dealing with contention imbalance

There is a special situation that suffers from computational workload imbal-
ance that deserves to be considered specifically. Such a situation takes place
when high number of iterations write in small particular regions of the reduc-
tion array. These areas are known as high contention regions [26]. Although we
may handle this situation using the approach in section 5.1, a specific solution
would be more effective. Fig. 9(a) depicts a simple example of such a situation.
The edges of the graph represent reduction iterations, whereas each vertex cor-
responds to one entry of the reduction array where each iteration writes in.
Because every iteration carries out a reduction on one particular entry (vertex
4), this entry of the reduction array becomes a high contention region. This
fact results in a matrix count, of the SynchWrite data structure, with a
workload imbalance pattern, as shown with shadowed boxes in Fig. 9(a).

Our proposal to solve this problem is the replication of the blocks that take
part in the contention regions. This way write conflicts in those regions dis-
appear and, hence, some affinity classes that were non dissimilar may now be
executed in parallel. We will refer to this solution as locally expanded Synch-

Write. All the blocks selected to be replicated are expanded nThreads times,
resulting in a memory overhead smaller than a full privatization.

The high contention problem can be easily detected by adding to the prefetch-
ing phase of SynchWrite a histogram analysis stage. Indeed this information
is stored in the actual inspector data structure (matrix count). We can define
an histogram function that returns for each block Bi (1 ≤ Bi ≤ nThreads)
the number of iterations included in affinity classes C(Bmin,∆B) involved in
such a block (that is Bi ∈ [Bmin, Bmin + ∆B]). This function is computed as,

Nit(Bi) =
nThreads−Bi

∑

∆B=0

Card(C(Bi,∆B)) +
Bi−1
∑

∆B=1

Card(C(Bi−∆B,∆B)). For instance,

Fig. 9(b) shows the evaluation of this histogram function Nit(Bi), normal-
ized to the total number of iterations, for the access pattern of the sparse
matrix av41092 [7]. Note that high contention regions result in peaks in the
plot (statistical modal values). These peaks determine which blocks need to
be replicated, and our memory limits will give how many of these blocks are
replicated. After selecting these blocks, the inspector data structure must be
recomputed to take into account the dependencies that disappear due to the
local replication. A pseudocode of the locally expanded SynchWrite com-
putation phase is shown in Fig. 9, in which only the reduction array block
A(kp : kq) is locally replicated.

6 Performance Evaluation

This section is devoted to present a quantitative analysis of the different issues
that have influence on the performance of affinity based parallel reduction

15

INTEGER init(1:nThreads,0:nThreads−1)
INTEGER count(1:nThreads,0:nThreads−1)
INTEGER next(1:fDim)
REAL A e(1:ADim,ρ)

C$OMP PARALLEL

A e=init()

do ∆B=0,nThreads−1
if (∆B . le .((nThreads−1)/2)) then

∆EXP =floor(∆B/ρ)+1

is end=∆EXP

is step =1
else

∆EXP =1
is end=nThreads−∆B
is step =ρ

endif

do is=1, is end , is step
if (∆B . le .((nThreads−1)/2)) then

Bi end=nThreads−∆B
else

Bi end=min(is+ρ−1,nThreads−∆B)
end

C$OMP PDO

do Bi=is , Bi end , ∆EXP

ir=mod((Bi−is)/∆EXP ,ρ)+1
i=init(Bi,∆B)
do ii =1,count(Bi,∆B)

Compute ξ1, ξ2

A e(f1(i), ir)=A e(f1(i), ir)⊕ξ1

A e(f2(i), ir)=A e(f2(i), ir)⊕ξ2

i=next(i)
enddo

enddo
C$OMP END DO

enddo

enddo

A=final reduction (A e)

C$OMP END PARALLEL

Fig. 8. Partially expanded SynchWrite computation phase for a 2-indirection re-
duction loop (omitted the initialization of expanded array (A e) and final reduction)

∆ B

Bmin

0 1

1

3

2

6

5

4

2 3 4 5

3 4 51 2 6

1

3

24

6

5

count

A

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

N
it
(B

i)
/N

Bi / nThreads

nThreads=8
nThreads=12
nThreads=16
nThreads=24
nThreads=32

(b)

REAL A e(kp:kq , nThreads)
INTEGER init(1:nThreads,0:nThreads−1)
INTEGER count(1:nThreads,0:nThreads−1)
INTEGER next(1:fDim)

C$OMP PARALLEL
do ∆B=0,nThreads−1

do is=1, ∆B+1
C$OMP PDO

do Bi=is , nThreads−∆B, ∆B+1
i=init(Bi,∆B)
do ii =1,count(Bi,∆B)

Compute ξ1, ξ2

if (f1(i). le .kq).and.(f1(i).gt .kp) then

A e(f1(i),Bi)=A e(f1(i),Bi) ⊕ ξ1

else

A(f1(i))=A(f1(i)) ⊕ ξ2

endif

if (f2(i). le .kq).and.(f2(i).gt .kp) then

A e(f2(i),Bi)=A e(f2(i),Bi) ⊕ ξ1

else
A(f2(i))=A(f2(i)) ⊕ ξ2

endif

i=next(i)
enddo

enddo

C$OMP END DO

enddo

enddo
C$OMP END DO

C$OMP END PARALLEL

(c)

Fig. 9. High contention regions: (a) Simple example; (b) Histogram function for the
access pattern of the sparse matrix av41092; (c) Locally expanded SynchWrite

computation phase for a 2-indirection loop (omitted the expanded array A e initial-
ization and final reduction stages)

16

solutions. Essentially, performance is determined by the ability of the solution
to exploit locality with the minimum possible effective parallelism loss.

6.1 Performance analysis of the computation phase

Expression 1 can be adapted to the practical implementations introduced
in section 4. In the case of LocalWrite (DWA-LIP implementation in
Fig. 5(b)), the parallel execution time can be expressed as:

T PAR =TLOCAL
iter max

1≤p≤nThreads

{

Card(CLOCAL
{p})

}

+

+ TBOUND
iter

nInd
∑

idx=1

max
1≤p≤nThreads

{

Card(CBOUNDidx

{p})
}

.
(2)

This expression contains two terms, the first corresponding to the local it-
eration space (affinity classes CLOCAL

Q), and the second corresponding to the

boundary iteration spaces (affinity classes CBOUNDidx
Q for the idx-th indirec-

tion). Remember that for all spaces the classes are of the form CQ with
Card(Q)=1. Although the mean time per iteration of local (TLOCAL

iter) and
boundary iterations (TBOUND

iter) may be in general different, in practice, they
are all similar because most of the computational payload is common for
all kind of iterations. This fact was considered in expression 2 only for the
boundary iterations. This expression shows how computation replication has
a negative influence on the parallel time, which increases when the number of
boundary iterations or the number of indirections are larger.

For SynchWrite, (code in Fig. 5(c)), the parallel execution time can be
expressed in terms of the cardinality of affinity classes C(Bmin,∆B), as follows:

T PAR = T SEQ
iter

nThreads−1
∑

∆B=0

∆B+1
∑

ig=1

max
Bmin≤nThreads−∆B
Bmin=ig+k(∆B+1),

with k∈N

{

Card(C(Bmin,∆B))
}

.
(3)

Under conditions of perfect workload balancing, iterations are uniformly dis-
tributed across classes with the same value of ∆B.

Calling N∆B =
∑nThreads−∆B

Bmin=1 Card(C(Bmin,∆B)) the total number of iterations
of all classes C(Bmin,∆B) we can obtain from expression 3 the following bounds:

T SEQ
iter

nThreads−1
∑

∆B=0

N∆B
⌈

nThreads−∆B
∆B+1

⌉

 ≤ T PAR

T PAR ≤ T SEQ
iter

nThreads−1
∑

∆B=0

N∆B
⌈

nThreads−∆B−min(∆B+1,nThreads−∆B)+1
∆B+1

⌉

.

(4)

17

10
0

10
1

10
−2

10
−1

10
0

nThreads

T
n
o
rm

ideal
Tpar
Tlow
Tupp

10
0

10
1

10
−2

10
−1

10
0

nThreads

T
n

o
rm

ideal
Tpar
Tlow
Tupp

(a) (b)

Fig. 10. Basic SynchWrite performance anal-
ysis: (a) dense pattern, (b) sparse pattern

10

1 2 4 168

-1

10
0

nThreads

T
n
o
rm

Tnorm
Tnorm (LB)
Tupp
Tlow

Fig. 11. Workload balanced
SynchWrite performance
evaluation for the access
pattern of the sparse matrix
sherman3

In expression 4 we can observe more clearly a possible parallelism loss. The
denominators in the two bounds decrease when ∆B grows and, therefore, the
parallelism decreases. Fig. 10 shows the normalized times corresponding to
the three terms of the two inequalities in expression 4, that is, T PAR and the
two bounds (Tupp: upper bound, Tlow: lower bound), for two different input
patterns. The dense pattern corresponds to a 2-indirection reduction loop
where all possible pairs are traversed, like in an all-to-all N-body problem.
The sparse pattern, on the other hand, is shown in the inset of the plot 10(b).
In this case, due to the high intra–iteration locality, the parallelism loss is
much lower. Observe that for a high number of threads some load imbalance
occurs because exact values of T PAR go out of the bounds.

In the special case of a 1-indirection reduction loop, all affinity classes are of
the form C(Bmin,0), and consequently all of them can be executed in parallel. So,
there is no parallelism loss and the parallel execution time can be expressed
as T PAR ≈ T SEQ

iter
Nit∆B=0

nThreads
.

In a similar way to expression 1 the memory hierarchy effect can also be
taken into account in expression 3. As iterations in a class C(Bmin,∆B) write
into a larger reduction array area as ∆B grows, the expected intra-iteration
locality decreases correspondingly. This effect can be included in expression 3
by introducing a latency factor λ(∆B), that increases the effective time of
iterations with larger ∆B:

T PAR = T SEQ
iter

nThreads−1
∑

∆B=0

∆B+1
∑

is=1

max
Bmin≤nThreads−∆B
Bmin=is+k(∆B+1),

with k∈N

{

Card(C(Bmin,∆B)) · λ(∆B)
}

.

(5)

Following a similar approach we proceed to analyze the performance of the
three improved SynchWrite solutions, introduced in section 5.

18

Workload balancing approach. From the balanced SynchWrite code shown
in Fig. 7 we can state an expression analogous to 3 but considering balanced
groups of classes instead of affinity classes and the parameter ∆LB

∆B instead of
∆B:

T PAR = T SEQ
iter

nBlocks−1
∑

∆B=0

∆LB
∆B+1
∑

ig=1

max
p≤nThreads,

p=ig+k(∆LB
∆B+1),

with k∈N

{

Card(CLB
(p,∆B))

}

.
(6)

This expression has been evaluated in Fig. 11 for the pattern of the sparse
matrix sherman3 from the Harwell-Boeing collection [5], shown in the in-
set. The normalized parallel time has been plotted for the basic Synch-

Write method (Tpar) together with bounds in expression 4 (Tupp, Tlow) and
the workload balancing approach (Tpar(LB)). Times have been calculated for
nBlocks = 8 nThreads. Note that the load balancing improvement makes the
parallel time to be closer to the bounds (that means better balance).

Partial expansion approach. From the code of the partially expanded Synch-

Write (Fig. 8), the parallel execution time can be expressed as (without
considering the initialization and global reduction):

T PAR = T SEQ
iter

⌈nThreads−1
2 ⌉

∑

∆B=0

∆EXP
∑

ig=1

max
Bmin≤nThreads−∆B
Bmin=ig+k ∆EXP ,

k∈N

{

Card(C(Bmin,∆B))
}

+

+
nThreads−1

∑

∆B=⌈nThreads−1
2 ⌉+1

∑

ig=1+nρ, n∈N

ig≤nThreads−∆B

max
Bmin≤nThreads−∆B

Bmin=ig+k,
k∈[1,ρ]⊂N

{

Card(C(Bmin,∆B))
}

 ,

(7)

that, after further analysis and under perfect load balancing, it can be bounded
as shown next:

⌈nThreads−1
2 ⌉

∑

∆B=0

N∆B
⌈

nThreads−∆B
∆EXP

⌉ +
nThreads−1

∑

∆B=⌈nThreads−1
2 ⌉+1

N∆B

min(ρ, nThreads − ∆B)

≤

≤
T PAR

T SEQ
iter

≤

⌈nThreads−1
2 ⌉

∑

∆B=0

N∆B
⌈

nThreads−∆B−∆EXP +1
∆EXP

⌉ +
nThreads−1

∑

∆B=⌈nThreads−1
2 ⌉+1

N∆B

.

(8)

19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
n
o
rm

nThreads

Tideal
 ρ=1
 ρ=2
 ρ=3
 ρ=4
 ρ=5
 ρ=6
 ρ=7
 ρ=8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
n
o
rm

nThreads

Tideal
 ρ=1
 ρ=2
 ρ=3
 ρ=4
 ρ=5
 ρ=6
 ρ=7
 ρ=8

(a) (b)

Fig. 12. Partially expanded SynchWrite per-
formance evaluation: (a) dense pattern, (b) fi-
dapm11 sparse matrix pattern

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

T
n
o
rm

nThreads

0
1
2
3
4
5
6
7

No. of blocks locally
 expanded:

Fig. 13. Locally expanded
SynchWrite performance
evaluation for the sparse
matrix av41092 pattern

Expression 7 consists of two terms. The first one is associated with the classes
C(Bmin,∆B), with ∆B ≤ nThreads−1

2
, that are executed concurrently in gangs of

the form C(s,∆B), C(s+∆EXP ,∆B), C(s+2∆EXP ,∆B),... The second term corresponds
to the remaining classes, that are executed concurrently in gangs of the form
C(s,∆B), C(s+1,∆B), C(s+2,∆B),... As parameter ∆EXP =

⌊

∆B
ρ

+ 1
⌋

decreases when
the partial expansion index, ρ, increases, denominators in the above inequal-
ities are smaller and, hence, more parallelism is exploited. The first term in
both bounds in expression 8 shows that the parallel execution time does not
decrease for values of ρ greater than a certain threshold. This is the case when
∆EXP = 1 that leads to ρ = nThreads−1

2
. Making ρ greater than this value

increases the amount of extra memory but with no benefit of greater paral-
lelism. This value was called ρsat in section 5.2. For access patterns exhibiting
high intra–iteration locality, the maximum parallelism of the method could
be reached with a value of ρ below ρsat. For this kind of patterns, partially
expanded SynchWrite could perform as well as or better than full array
expansion but with a much lower memory overhead.

Fig. 12 shows the evaluation of expression 7 for two different memory access
patterns, 16 threads and a 2-indirection reduction loop. The normalized par-
allel time of the computation phase has been represented for several values
of ρ. The plot (a) in Fig. 12 displays the evaluation of the above equation
for an all-to-all dense memory access pattern. Plot (b) shows the results for
the pattern defined by the sparse matrix fidapm11 [25]. For the dense pattern
case all affinity classes have the same cardinality, causing a poor parallelism
exploitation for the basic SynchWrite. For this reason, as ρ increases the
parallelism loss is reduced, obtaining a much faster parallel code, as noted in
the Fig. 12(a). Nevertheless, in the case of the sparse pattern, better intra–
iteration locality exists. Hence a larger amount of parallelism is exploited by
using a smaller partial expansion index, as observed in Fig. 12 (b). In fact, for
a value as small as ρ = 5 (ρsat = 8), parallel expanded SynchWrite reaches
maximum parallelism.

20

Local expansion approach. The performance analysis of the locally expanded
SynchWrite, (section 5.3), is analogous to that of the basic version. In this
way, the parallel time can be evaluated as in expression 3 adding some small
overhead due to the initialization and final reduction stages of local private
buffers. Nevertheless the time of the parallel computation phase is expected
to be smaller because local expansion allows to avoid write conflicts for a cer-
tain set of iterations. This fact leads to the promotion of these iterations from
their native affinity classes towards classes C(Bmin,∆B) with lower ∆B. Conse-
quently the parallel execution time will decrease according to expression 3.
For instance, Fig. 13 displays the evaluation of the normalized parallel time
for the access pattern of sparse matrix av41092 [7]. We observe a decrease in
the execution time when more blocks are locality replicated.

6.2 Inspector overhead and memory requirements

Other relevant aspects of the performance analysis are the overhead caused by
the inspection phase and the memory requirements for auxiliary data struc-
tures. Both aspects are discussed in this subsection.

The number of times that the inspection phase is executed and the computa-
tional cost of each execution determine the inspector overhead. The inspector
has to be executed every time that the indirection arrays are modified. Typ-
ically, in real codes this happens either once before the reduction loop (for
instance, a static mesh) or each certain number of reduction loop executions
(for instance, in dynamic codes). We denote ηc/i the ratio between the time of
one computation phase iteration and one inspection phase iteration, and ηreuse

the number of times that the inspection phase is executed per each whole re-
duction loop execution. High values of ηc/i and ηreuse involve low computational
weight of the inspector in the global performance. Both LocalWrite and
SynchWrite solutions have similar inspector overheads. Basically, for both
methods, the inspector traverses all the iterations, reading only the indirection
entries and determining the prefetching data structures. No payload computa-
tion is carried out, so ηc/i is mainly given by the reading time of the subscripted
subscripts. The time overhead of the inspector can be considered in the to-

tal time according to the expression: Ttotal = Tcomputation phase

(

1 + 1
ηc/i ηreuse

)

.

Hence, we can use the factor
(

1 + 1
ηc/i ηreuse

)

as a measure of the inspector

overhead. Note that, for affinity based solutions, the inspection phase can be
fully parallelized by privatization.

Improvements discussed in section 5 can involve a small additional computa-
tional cost to the inspector. In the case of the workload balancing approach
this cost is due to the building of the balanced groups, and it is very low
because only matrix count needs to be examined (its size is O(nBlocks2)).
In the case of the partial expansion approach, inspection phase remains un-
changed and, so, the additional cost is null. Finally, in the case of the local

21

Privatization Inspector Data Structure

Array Expansion O(ADim · nThreads) —

Local Write (DWA-LIP) — O(nInd · N + 2 · nInd · nThreads) ≈ O(nInd · N)

SynchWrite — O(N + 2 · nThreads2) ≈ O(N)

Load Balanced SynchWrite — O(N + 2 · nBlocks2 + nBlocks · nThreads)

Partially Expanded SynchWrite O(ρ · ADim) O(N + 2 · nThreads2) ≈ O(N)

Locally Expanded SynchWrite O(nPeaks · ADim) O(N + 2 · nThreads2) ≈ O(N)
∗ ADim: size of the reduction array, nInd: no. of indirections, N : no. of iterations, nThreads: no. of
threads, nBlocks: no. of subblocks in load balanced SynchWrite, ρ: partial expansion index, nPeaks:
no. of peaks considered in histogram function for local expansion.

Table 2
Memory overhead: Components due to privatization of reduction arrays and inspec-
tion data structures

expansion approach, after the computation of matrix count, the inspector must
locate high contention regions and recompute the matrix count according to
this information.

Regarding memory requirements it is usual to take as reference the priva-
tization based parallelizations. Note that an important disadvantage of such
techniques is the high requirements of memory. Methods like Array Expansion
replicate the reduction arrays in each thread. Consequently the memory over-
head is of the order of O(nThreads · ADim). Although some optimizations
has been proposed [18,26], in the worst case they spend as much storage space
as the full privatization.

Table 2 summarizes the memory overhead of different affinity based solutions.
The main source of memory overhead comes from the inspector data struc-
tures, although certain degree of privatization has been added for some of the
improved solutions. For LocalWrite, implemented as DWA-LIP, the first
term in the memory overhead expression corresponds to arrays next for local
and boundary iterations (as many as possible indirections). The second term
corresponds to the size of matrices count and init for the worst case where all
the iterations are boundaries. Typically, we can assume that N ≫ nThreads
that leads to the approximation shown in the table. The SynchWrite mem-
ory requirements are potentially lower because the boundary iterations are not
split and thus only one prefetching array is needed. In this case only an array
next is needed. Improved versions of SynchWrite increase lightly these basic
memory requirements. In the case of the balanced version, the array next keeps
unmodified, but the arrays init, count are larger and the new array blockSz is
introduced. The ratio nBlocks/nThreads represents the discretization gran-
ularity of balancing. Increasing nBlocks a better balancing may result but at
expense of an increase in memory overhead. Hence, a trade-off between time
and space should be found. For the partially expanded SynchWrite the ad-
ditional memory is due to the private copies of the reduction arrays. Unlike
full array expansion the additional memory can be bound by selecting ρ. A
similar additional memory is required for the locally expanded SynchWrite.

22

#Edges #Faces

(2 indirections) (3 & 4 indirections)

Connectivity: 8 18 8 18

#Nodes: 800K 7038K 13900K 740K 1463K

1000K 8836K 14490K 892K 1766K

Table 3
Features of the meshes tested for the Euler code.

In this case, this extra memory depends on the number of blocks expanded,
which are given by the number of peaks in the histogram distribution function.

7 Results

We have experimentally evaluated the discussed solutions for locality-based
parallelization of irregular reduction loops. In this evaluation we compared
such solutions with other methods and the theoretical results derived from
our model. The target computing platform was a SGI Origin3000 ccNUMA
multiprocessor, with 400-MHz R12000 processors (8 MB L2 cache) and 2 GB
main memory per node. All parallel codes were implemented in Fortran 77
with OpenMP directives, and compiled using the SGI MIPSpro.

A first batch of tests has considered only the basic versions of the techniques,
and has used as benchmark the kernel of the EULER code [8]. In this kernel,
several reduction loops appear inside an outer time-step loop. The reductions
are carried out on three-dimensional arrays. One of them traverses the edges
of an input mesh resulting in a two-indirection reduction loop. Other two
loops visit the faces of the input mesh involving three and four indirections,
respectively. In order to analyze the effect of different locality sources several
input meshes have been tested. The intra–iteration locality has been taken into
account by generating meshes with different connectivity (ratio between edges
and nodes). Two values have been chosen for this parameter: 8 and 18. Note
that the number of indirections may have also influence on the intra–iteration
locality, as a bigger number of indirections will decrease the probability of
issuing nearby references inside the same iteration. The effect of inter–iteration
locality is captured by reordering the edges and faces in the input mesh. With
this purpose, two versions of the mesh have been generated. A lower inter–
iteration locality version is synthesized by applying a coloring algorithm to
the edges and faces. A higher inter–iteration locality version is obtained by
sorting lexicographically the list of edges and faces. All these variety of tested
meshes are summarized in table 3. In table 4 the sequential execution times for
the different tested meshes are shown. Observe how the performance depends
on the locality features of the input data, taking more time those executions
whose input exhibits lower intra– or inter–iteration locality.

In Figs. 14, 15 and 16 speedups for the parallel computation phase of different
reduction techniques, number of indirections and input data sets are shown.

23

Sorted version

Indirections: 2 3 4

Connectivity: 8 18 8 18 8 18

Mesh size: 800Knodes 37.80 76.45 9.40 17.25 7.95 16.10

1000Knodes 53.10 86.20 11.25 21.15 10.40 19.50

Colored version

2 3 4

8 18 8 18 8 18

157.60 308.40 16.75 36.05 11.95 28.35

216.75 342.40 18.45 68.15 13.95 58.20

Table 4
Sequential execution time (sec.) for the Euler reduction loops (20 timesteps)

1 4 8 16

Threads

0

2

4

6

8

10

12

S
p
e
e
d
-u

p

C$OMP Atomic
Array Expansion
Selective Privatization
LocalWrite/DWA-LIP
SynchWrite

800 Knodes, 2 indirections, connectivity= 8, colored mesh

1 4 8 16

Threads

0

2

4

6

8

10

12

S
p
e
e
d
-u

p

C$OMP Atomic
Array Expansion
Selective Privatization
LocalWrite/DWA-LIP
SynchWrite

800 Knodes, 2 indirections, connectivity= 8, sorted mesh

1 4 8 16

Threads

0

2

4

6

8

10

12

S
p

e
e

d
-u

p

C$OMP Atomic
Array Expansion
Selective Privatization
LocalWrite/DWA-LIP
SynchWrite

800 Knodes, 2 indirections, connectivity= 18, colored mesh

1 4 8 16

Threads

0

2

4

6

8

10

12

S
p
e
e
d
-u

p

C$OMP Atomic
Array Expansion
Selective Privatization
LocalWrite/DWA-LIP
SynchWrite

800 Knodes, 2 indirections, connectivity= 18, sorted mesh

1 4 8 16

Threads

0

2

4

6

8

10

12

S
p

e
e

d
-u

p

C$OMP Atomic
Array Expansion
Selective Privatization
LocalWrite/DWA-LIP
SynchWrite

1000 Knodes, 2 indirections, connectivity= 8, colored mesh

1 4 8 16

Threads

0

2

4

6

8

10

12

S
p
e
e
d
-u

p

C$OMP Atomic
Array Expansion
Selective Privatization
LocalWrite/DWA-LIP
SynchWrite

1000 Knodes, 2 indirections, connectivity= 8, sorted mesh

1 4 8 16

Threads

0

2

4

6

8

10

12

S
p
e
e
d
-u

p

C$OMP Atomic
Array Expansion
Selective Privatization
LocalWrite/DWA-LIP
SynchWrite

1000 Knodes, 2 indirections, connectivity=18, colored mesh

1 4 8 16

Threads

0

2

4

6

8

10

12

S
p
e
e
d
-u

p

C$OMP Atomic
Array Expansion
Selective Privatization
LocalWrite/DWA-LIP
SynchWrite

1000 Knodes, 2 indirections, connectivity= 18, sorted mesh

Fig. 14. Speedup for a 2-indirection parallel reduction loop in the EULER code

LocalWrite (implemented as DWA-LIP), SynchWrite as well as three
other techniques (critical sections, Array Expansion and Selective Privatiza-
tion), that are used as references, have been tested. Critical sections have been
implemented using the OpenMP clause C$OMP Atomic. Whereas Array Expan-
sion performs a full replication of the reduction arrays, Selective Privatization
tries to save memory by replicating only those entries of the reduction arrays
written by several threads. Experiments in Figs. 14,15 and 16 show the ability
of LocalWrite and SynchWrite to exploit data locality. For this reason
these techniques work better for those cases where the inter–iteration locality
is low (colored meshes). On the other hand, a low intra–iteration locality has
a negative effect over all the techniques (high connectivity, high number of in-
directions). Moreover, a high number of indirections reduces the performance
of LocalWrite due to a higher replication of computations. Also we can ob-
serve that Selective Privatization outperforms Array Expansion for cases with
high locality (good reordering of input data and low connectivity or num-
ber of indirections) because there is a low interference in accessing privatized
portions of the reduction arrays.

Table 5 summarizes the speedup values predicted by the analytical model for
locality-based methods. Such values are close to the speedups observed exper-
imentally, mainly for 2 and 3-indirection loops. In the case of the 4-indirection
loop the high cost of the synchronization makes the model to behave a little
worse. Even so, the measured values follow relatively the theoretical trends.
Also we observe that the computation replication causes the efficiency of Lo-

calWrite to decrease for a high number of indirections with regards to
SynchWrite.

24

1 4 8 16

Threads

0

2

4

6

8

10

12

S
p

e
e

d
-u

p

C$OMP Atomic
Array Expansion
Selective Privatization
LocalWrite/DWA-LIP
SynchWrite

800 Knodes, 3 indirections, connectivity=8, colored mesh

1 4 8 16

Threads

0

2

4

6

8

10

12

S
p
e
e
d
-u

p

C$OMP Atomic
Array Expansion
Selective Privatization
LocalWrite/DWA-LIP
SynchWrite

800 Knodes, 3 indirections, connectivity=8, sorted mesh

1 4 8 16

Threads

0

2

4

6

8

10

12

S
p

e
e

d
-u

p

C$OMP Atomic
Array Expansion
Selective Privatization
LocalWrite/DWA-LIP
SynchWrite

800 Knodes, 3 indirections, connectivity= 18, colored mesh

1 4 8 16

Threads

0

2

4

6

8

10

12

S
p
e
e
d
-u

p

C$OMP Atomic
Array Expansion
Selective Privatization
LocalWrite/DWA-LIP
SynchWrite

800 Knodes, 3 indirections, connectivity= 18, sorted mesh

1 4 8 16

Threads

0

2

4

6

8

10

12

S
p

e
e

d
-u

p

C$OMP Atomic
Array Expansion
Selective Privatization
LocalWrite/DWA-LIP
SynchWrite

1000 Knodes, 3 indirections, connectivity= 8, colored mesh

1 4 8 16

Threads

0

2

4

6

8

10

12

S
p
e
e
d
-u

p

C$OMP Atomic
Array Expansion
Selective Privatization
LocalWrite/DWA-LIP
SynchWrite

1000 Knodes, 3 indirections, connectivity= 8, sorted mesh

1 4 8 16

Threads

0

2

4

6

8

10

12

S
p
e
e
d
-u

p

C$OMP Atomic
Array Expansion
Selective Privatization
LocalWrite/DWA-LIP
SynchWrite

1000 Knodes, 3 indirections, connectivity= 18, colored mesh

1 4 8 16

Threads

0

2

4

6

8

10

12

S
p
e
e
d
-u

p

C$OMP Atomic
Array Expansion
Selective Privatization
LocalWrite/DWA-LIP
SynchWrite

1000 Knodes, 3 indirections, connectivity= 18, sorted mesh

Fig. 15. Speedup for a 3-indirection parallel reduction loop in the EULER code

1 4 8 16

Threads

0

2

4

6

8

10

12

S
p

e
e

d
-u

p

C$OMP Atomic
Array Expansion
Selective Privatization
LocalWrite/DWA-LIP
SynchWrite

800 Knodes, 4 indirections, connectivity=8, colored mesh

1 4 8 16

Threads

0

2

4

6

8

10

12

S
p
e
e
d
-u

p

C$OMP Atomic
Array Expansion
Selective Privatization
LocalWrite/DWA-LIP
SynchWrite

800 Knodes, 4 indirections, connectivity=8, sorted mesh

1 4 8 16

Threads

0

2

4

6

8

10

12

S
p
e
e
d
-u

p

C$OMP Atomic
Array Expansion
Selective Privatization
LocalWrite/DWA-LIP
SynchWrite

800 Knodes, 4 indirections, connectivity=18, colored mesh

1 4 8 16

Threads

0

2

4

6

8

10

12

S
p
e
e
d
-u

p

C$OMP Atomic
Array Expansion
Selective Privatization
LocalWrite/DWA-LIP
SynchWrite

800 Knodes, 4 indirections, connectivity=18, sorted mesh

1 4 8 16

Threads

0

2

4

6

8

10

12

S
p

e
e

d
-u

p

C$OMP Atomic
Array Expansion
Selective Privatization
LocalWrite/DWA-LIP
SynchWrite

1000 Knodes, 4 indirections, connectivity= 8, colored mesh

1 4 8 16

Threads

0

2

4

6

8

10

12

S
p
e
e
d
-u

p

C$OMP Atomic
Array Expansion
Selective Privatization
LocalWrite/DWA-LIP
SynchWrite

1000 Knodes, 4 indirections, connectivity=8, sorted mesh

1 4 8 16

Threads

0

2

4

6

8

10

12

S
p
e
e
d
-u

p

C$OMP Atomic
Array Expansion
Selective Privatization
LocalWrite/DWA-LIP
SynchWrite

1000 Knodes, 4 indirections, connectivity= 18, colored mesh

1 4 8 16

Threads

0

2

4

6

8

10

12

S
p
e
e
d
-u

p

C$OMP Atomic
Array Expansion
Selective Privatization
LocalWrite/DWA-LIP
SynchWrite

1000 Knodes, 4 indirections, connectivity= 18, sorted mesh

Fig. 16. Speedup for a 4-indirection parallel reduction loop in the EULER code

Table 6 shows the inspector overhead for LocalWrite and SynchWrite.
Both implementations exhibit a similar inspector overhead as it depends basi-
cally on the number of times the inspector is executed and the reduction loop
count (data structures are similar). The EULER code is static as the indirec-
tions remain unchanged during the whole computation. Hence, the inspector
is executed once, so as its cost is spread over the total number of iterations
(table 6 considers 20 time-steps). Although the inspector overhead grows with
the number of indirections, note that for the colored mesh the executor is rela-
tively slower and consequently the ratio ηc/i decreases. Remember that neither
critical section technique nor Array Expansion need an inspection phase. Nev-
ertheless the Selective Privatization inspector overhead can be between two
and three times larger than LocalWrite and SynchWrite inspectors.

The rest of the section is devoted to evaluate the improved versions of the
locality-based solutions. First the partially expanded SynchWrite is consid-
ered. For its evaluation, only the 2-indirection reduction loops of the EULER
code have been taken into account, and an input mesh with low intra–iteration
locality has been built by means of a randomized renumbering of its nodes.
The input mesh was of 1000 Knodes with a connectivity of 8. Likewise both

25

LocalWrite (as DWA-LIP)

Indirections: 2 3 4

Connectivity: 8 18 8 18 8 18

Mesh size: 800Knodes 14.6 14.0 11.1 10.4 6.7 6.2

1000Knodes 14.6 13.8 10.9 10.2 6.2 6.2

SynchWrite

2 3 4

8 18 8 18 8 18

14.6 14.0 11.9 11.5 9.8 9.5

14.6 13.8 11.7 11.3 9.0 9.2

Table 5
Theoretical speedup for the Euler reduction loops according to section 6.1 consid-
ering 16 threads

Sorted version

Indirections: 2 3 4

Connectivity: 8 18 8 18 8 18

Mesh size: 800Knodes 0.8% 0.9% 1.4% 1.3% 2.4% 2.3%

1000Knodes 0.8% 0.9% 1.5% 1.5% 2.2% 2.5%

Colored version

2 3 4

8 18 8 18 8 18

0.3% 0.4% 0.5% 0.4% 1.8% 1.9%

0.3% 0.4% 0.5% 0.3% 2.1% 1.1%

Table 6
Inspector overhead factor 1

ηc/iηreuse
for the Euler reduction loops (20 time-steps)

versions with different inter–iteration locality (colored and sorted) have been
used. In Fig. 17(a) the speedup of the computation phase is shown for the ba-
sic and partially expanded SynchWrite and compared to Array Expansion
and Selective Privatization. Also maximum theoretical values obtained from
the expressions in section 6.1 are displayed. For the colored input mesh, the
basic SynchWrite shows a parallelism loss due to the low intra–iteration
locality. Array Expansion takes advantage of this situation. However, a par-
tial expansion of the reduction arrays can help SynchWrite to achieve a
similar performance as Array Expansion but with a lower memory overhead.
The reason is that the parallelism loss is mitigated but it takes advantage of
the low inter–iteration locality of the colored mesh. This way, for ρ = 8 the
partially expanded SynchWrite performance exceeds that of Array Expan-
sion (with half of the memory overhead of Array Expansion). For the sorted
mesh case, there is still a parallelism loss caused by the low intra–iteration
locality but partially expanded SynchWrite no longer outperforms Array
Expansion due to the higher inter–iteration locality. Nevertheless, for large
number of threads, partially expanded SynchWrite reaches similar speedup
as Array Expansion with only half of extra memory (16 threads, ρ = 8). In the
case of Selective Privatization the low intra–iteration locality causes a repli-
cation of a high number of reduction array entries because they are accessed
by several threads, even more for the colored mesh. So, Selective Privatiza-
tion barely save extra memory compared to the full privatization. We observe
that the achieved speedups for LocalWrite and SynchWrite get closer to
the maximum expected, particularly for the colored mesh, for which a higher
speedup is obtained compared to the sequential execution.

Secondly, the workload balancing problem is evaluated. With this aim, a code
with this problem was chosen. It is a kernel for the Legendre transform used
in numerical weather prediction [22]. In this code, irregular reductions are car-

26

Colored Sorted Max.
0

2

4

6

8

10

S
p
e
e
d
-u

p

Array Expansion
Selective Privatization
Basic SynchWrite (ρ=1)
SynchWrite ρ=2
SynchWrite ρ=4
SynchWrite ρ=8

EULER (1000 Knodes), 16 threads

Observed Max.
0

2

4

6

8

10

12

S
p
e
e
d
-u

p

Array Expansion
LocalWrite (as DWA-LIP)
Basic SynchWrite (K=1)
Load Balance SynchWrite (K=4)
Load Balanced SynchWrite (K=8)

Legendre transform, 16 threads

Original Randomized Max.
0

2

4

6

8

10

12

S
p
e
e
d
-u

p

Array Expansion
Selective Privatization
Basic SynchWrite
SynchWrite (1-block locally expanded)
SynchWrite (2-block locally expanded)

MD2, 16 threads

(a) (b) (c)

Fig. 17. (a) Speedup for a 2-indirection reduction loop of the EULER code with a
low intra–iteration locality (partially expanded SynchWrite and other techniques)
(b) Speedup for the balanced SynchWrite and other techniques for the Legendre
transform (c) Speedup of locally expanded SynchWrite and other techniques for
the MD2 simulation code

ried out inside a multiply nested loop, where the innermost loop bounds are
determined by subscripted subscripts, resulting in a potential workload im-
balance. Fig. 17(b) shows the experimental results compared to the maximum
theoretical achievable. We observe that the computational imbalance affects
negatively Array Expansion because it partitions the outermost loop. This im-
balance effect can be fixed in load balanced SynchWrite. For this improved
solution, the granularity of the subblock partitioning (nBlocks) determines the
effectiveness of the balancing procedure, given by K = nBlocks/nThreads.
Note that as K is higher a better balancing is obtained for SynchWrite

and consequently performance is better. The balancing procedure obtains a
maximum improvement with a granularity of K = 8, although with K = 4
the maximum is very close. In this case, the divergence between the theo-
retical and observed values falls in an operative reason: it was necessary to
flatten the nested loop in order to apply the locality based transformations
(LocalWrite and SynchWrite). This loop flattening involves, in practice,
an execution overhead.

Finally, with the aim of evaluating the local expansion approach we have
selected a 2D short-range molecular dynamics simulation code [21] (MD2).
A high contention region has been artificially introduced in the particle do-
main composed of 640K particles. This application simulates an ensemble of
particles subject to a Lennard-Jones short-range potential. The use of a neigh-
bour list results in an 2-indirection reduction nested loop. Two versions of the
neighbour list were used, a sorted one (high inter–iteration locality) and a
randomized one (low inter–iteration locality). Fig. 17(c) shows the speedup
of the computation phase for locally expanded SynchWrite compared to
other techniques and the maximum provided by our model. The high inter–
iteration locality of the sorted neighbour list favors Selective Privatization both
in performance and memory overhead. Basic LocalWrite (DWA–LIP) and
SynchWrite suffers from load imbalance caused by the high contention re-
gions. However, a local expansion of such regions improves the performance

27

of SynchWrite. For the randomized neighbour list, on the other hand, Se-
lective Privatization performs worse because the number of conflicting regions
increases drastically. However, in this case, LocalWrite and SynchWrite

are able to exploit the inter–iteration locality maintaining their performance.
Moreover, locally expanded SynchWrite can improve the efficiency with a
lower memory overhead than full expansion. Both the overheads due to the
initialization and final reduction stage of the expanded blocks and the condi-
tional processing of them cause the observed speedup not to reach the values
predicted by the model.

In all these experiments, the overhead of the prefetching phase (1
ηc/iηreuse

) for the

locality based methods was not significant: less than 5% for the experiments in
Fig. 17(a) (static, 20 timesteps) , about 1% for the experiments in Fig. 17(b)
and below 1% for the experiments in Fig. 17(c) (dynamic, update each 10
time-steps).

8 Conclusions

In this paper, a general framework for the parallelization of irregular reduc-
tions is introduced in the context of shared memory multiprocessors. This
framework is based on the definition of equivalence classes that considers
write affinity. This affinity reveals the two sources of memory reference lo-
cality that exist in this kind of codes using indirections: intra–iteration and
inter–iteration localities. Let us mention that the locality exploitation takes
on special significance in the contemporary architectures due to the increasing
gap between processor and memory latencies.

Although the framework is not directly usable in practice, it is a good starting
point for the analysis of locality-based solutions. Likewise, existing techniques
can be included and classified on the basis of this framework, as well as their
performance limitations can be found. On the other hand, the framework can
be useful to propose solutions to mitigate such potential limitations.

From this viewpoint, we have developed a formal performance model for the
locality-based techniques, both existing ones and others proposed by the au-
thors. The analysis is not only limited to the basic techniques but also it has
been extended to some improved versions. The model allows to determine all
aspects that have an influence, positive or negative, on the performance of
the solutions. It also permits to establish the working conditions for which
the performance is diminished, in order to apply the corresponding improved
solution.

Finally, all discussed locality-based techniques have been implemented and
evaluated experimentally, being compared to the theoretical results derived
from our model. In addition, they were compared to other methods that were

28

used as reference. These experiments allow to verify the ability of the solutions
to exploit locality as well as to overcome the performance problems through
the improved versions. They have also allowed to validate the analytical model.

References

[1] I. Al-Furaih and S. Ranka, “Memory hierarchy management for iterative graph
structures” Int’l Parallel Processing Symposium, Orlando, FL, Mar. 1998.

[2] W. Blume, R. Doallo , R. Eigenmann, J. Grout , J. Hoeflinger , T. Lawrence ,
J. Lee , D. Padua, Y. Paek, B. Pottenger, L. Rauchwerger and P. Tu, “Parallel
programming with Polaris”, IEEE Computer, 29(12):78–82, 1996.

[3] S. Chaudhry, P. Caprioli, S. Yip and M. Tremblay, “High-performance
throughput computing”, IEEE Micro, 25(3):32–45, 2005.

[4] C. Ding and K. Kennedy, “Improving cache performance in dynamic applications
through data and computation reorganization at run time”, ACM SIGPLAN
Conference on Programming Language Design and Implementation, Atlanta, GA,
May 1999.

[5] I.S. Duff, R.G. Grimes, and J.G. Lewis, “Users’ guide for the Harwell-Boeing
sparse matrix collection”, Technical Report TR/PA/92/86, CERFACS, France,
Oct. 1992.

[6] P. Feautrier, “Array expansion”, 2nd International Conference on
Supercomputing, St. Malo, France, Jun. 1988.

[7] T. Davis, “University of Florida sparse matrix collection”, NA Digest, 97(23),
Jun. 1997.

[8] I. Foster, R. Schreiber and P. Havlak, “HPF-2, Scope of activities and motivating
applications”, Technical Report CRPC-TR94492, Rice University, Nov. 1994.

[9] A. Gibbons, Algorithmic Graph Theory, Cambridge University Press, 1999.

[10] E. Gutiérrez, O. Plata and E.L. Zapata, “An automatic parallelization
of irregular reductions on scalable shared memory multiprocessors”, 5th
International Euro-Par Conference, Tolouse, France, Sep. 1999.

[11] E. Gutiérrez, O. Plata and E.L. Zapata, “A compiler method for the parallel
execution of irregular reductions in scalable shared memory multiprocessors”,
14th ACM International Conference on Supercomputing, Santa Fe, NM, May
2000.

[12] E. Gutiérrez, O. Plata and E.L. Zapata, “Data-partitioning based parallel
irregular reductions”, Concurrency and Computation: Practice and Experience,
16(2–3):155-172, 2004.

[13] M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S.W.Liao, E. Bugnion, and
M.S. Lam, “Maximizing multiprocessor performance with the SUIF compiler”,
IEEE Computer, 29(12):84–89, 1996.

29

[14] H. Han and C.W. Tseng, “Efficient compiler and run-time support for parallel
irregular reductions”, Parallel Computing, 26(13–14):1861–1887, 2000.

[15] H. Han and C.W. Tseng, “A comparison of parallelization techniques
for irregular reductions”, 15th IEEE International Parallel and Distributed
Processing Symposium, San Francisco, CA, Apr. 2001.

[16] H. Han and C.W. Tseng, “Exploiting Locality for Irregular Scientific Codes”,
IEEE Transactions on Parallel and Distributed Systems, 17(7):606–618, 2006.

[17] R. Jin, G. Yang and G. Agrawal, “Shared memory parallelization of data
mining algorithms: Techniques, programming interface, and performance ”, IEEE
Transactions on Knowledge and Data Engineering, 17(1):71–89, 2005.

[18] Y. Lin and D Padua, “On the automatic parallelization of sparse and irregular
Fortran programs”, 4th Workshop on Languages, Compilers and Runtime
Systems for Scalable Computers, Pittsburgh, PA, May 1998.

[19] D.J. Mavriplis, R. Das, J. Saltz and R.E. Vermeland, “Implementation
of a parallel unstructured Euler solver on shared and distributed memory
architectures” The Journal of Supercomputing, 8(4):329–344, 1995.

[20] J.M. Mellor-Crummey, D.B. Whalley and K. Kennedy, “Improving memory
hierarchy performance for irregular applications”, 13th ACM International
Conference on Supercomputing, Rhodes, Greece, Jun. 1999.

[21] J. Morales and S. Toxvaerd, “The cell-neighbour table method in molecular
dynamics simulations”, Computer Physics Communications, 71:71–76, 1992.

[22] N. Mukherjee and J.R. Gurd, “A comparative analysis of four parallelisation
schemes”, 13th ACM International Conference on Supercomputing, Rhodes,
Greece, Jun. 1999.

[23] OpenMP Architecture Review Board, “OpenMP API Version 2.5”, URL:
www.openmp.org, May 2005.

[24] N.M. Strout, L. Carter and J. Ferrante, “Compile-time composition of run-time
data and iteration reorderings”, ACM SIGPLAN Conference on Programming
Language Design and Implementation, San Diego, CA, Jun. 2003.

[25] Y. Saad, “Sparskit: A basic tool kit for sparse matrix computations”, Technical
report, University of Minnesota, MN, 1994.

[26] H. Yu and L. Rauchwerger, “An adaptive algorithm selection framework
for reduction parallelization”, IEEE Transactions on Parallel and Distributed
Systems, 17(10):1084–1096, 2006.

[27] G.M. Zoppetti, G. Agrawal and R. Kumar, “Compiler and runtime support
for irregular reductions on a multithreaded architecture”, IEEE International
Parallel and Distributed Processing Symposium”, Fort Lauderdale, FL, Apr.
2002.

30

