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Abstract

A mathematical model for the simulation of three-dimensional bursting phenomena and its parallel implementation are presented. The model
consists of four nonlinearly coupled partial differential equations that include fast and slow variables, and exhibits bursting in the absence of
diffusion. The differential equations have been discretized by means of a second-order accurate in both space and time, linearly-implicit finite
difference method in equally-spaced grids. The resulting system of linear algebraic equations at each time level has been solved by means of
the Preconditioned Conjugate Gradient (PCG) method. Three different parallel implementations of the proposed mathematical model have been
developed; two of these implementations, i.e., the MPI and the PETSc codes, are based on a message passing paradigm, while the third one, i.e.,
the OpenMP code, is based on a shared space address paradigm. These three implementations are evaluated on two current high performance
parallel architectures, i.e., a dual-processor cluster and a Shared Distributed Memory (SDM) system. A novel representation of the results that
emphasizes the most relevant factors that affect the performance of the paralled implementations, is proposed. The comparative analysis of the
computational results shows that the MPI and the OpenMP implementations are about twice more efficient than the PETSc code on the SDM
system. It is also shown that, for the conditions reported here, the nonlinear dynamics of the three-dimensional bursting phenomena exhibits three
stages characterized by asynchronous, synchronous and then asynchronous oscillations, before a quiescent state is reached. It is also shown that
the fast system reaches steady state in much less time than the slow variables.

PACS: 82.40.Ck; 02.60.Lj; 07.05.Tp

Keywords: Reaction–diffusion equations; Bursting; Three-dimensional model; MPI; OpenMP; PETSc; Performance representation
1. Introduction

Many processes in nature are characterized by transitions be-
tween different modes of activity, such as quiescent, periodic,
quasiperiodic and chaotic states. Bursting [1] is a common phe-
nomenon in many natural systems that arises in many fields,
e.g., boundary layers and turbulence in hydrodynamics [2], free
and forced convection [3], magnetohydrodynamics [4], plasma
confinement [5], X-ray pulsar emission [6], neuronal process-
ing [7], physiology [8], biology [9], electronics [10], optics,
lasers [11], nonlinear mechanics, chemical reactions/kinetics
[12], control [13], etc.

* Corresponding author. Tel.: +34 95 2131402; fax: +34 95 2132816.
E-mail address: jirs@lcc.uma.es (J.I. Ramos).
Bursting events are usually characterized by sudden, short-
lived, high-amplitude deviations of a nonlinear dynamical sys-
tem from its otherwise quiescent state; in neuroscience and
physiology, these events are called spikes and the term burst is
usually employed for repetitive spiking. For example, neurons
in the brain communicate with each other by firing and trans-
mitting sequences of electrical spikes or action potentials. Usu-
ally, action potentials occur in a periodic fashion, as in response
to a constant applied current of sufficiently large magnitude. In
addition, many cell types, e.g., pancreatic β-cells, exhibit more
complex behavior characterized by brief bursts of oscillatory
activity interspersed with quiescent periods during which the
cell membrane potential changes slowly.

One of the major challenges in neuroscience is to understand
the basic physiological mechanisms underlying the complex
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spatio-temporal patterns of spiking activity observed during
normal brain functioning, and to determine the origins of patho-
logical dynamical states such as epileptic seizures and Parkin-
sonian tremors. A second major challenge is to understand how
the patterns of spiking activity provide a substrate for the en-
coding and transmission of information, that is, how do neurons
compute with spikes? It is likely that an important element of
both the dynamical and computational properties of neurons is
that they can exhibit bursting, which is a relatively slow rhyth-
mic alternation between an active phase of rapid spiking and a
quiescent phase without spiking.

Due to its ubiquity and importance, understanding the mech-
anisms that give rise to bursting is a research topic of significant
current interest. Indeed there have been many analytical and nu-
merical studies of the nonlinear dynamics of models governed
by nonlinear ordinary differential equations that exhibit burst-
ing phenomena. For example, models of bursting electrical ac-
tivity in physiology can be classified into two main groups. The
first and earliest one was based on the assumption that bursting
was caused by an underlying slow oscillation in the intracel-
lular Ca2+ concentration [14,15]; however, recent experiments
indicate that this assumption is not entirely correct and, as a
consequence, models relying on alternative mechanisms have
been developed [16].

The different known bursting mechanisms can be classified
into three main groups. In type I, bursts arise from hystere-
sis and bistability as in the pancreatic β-cell model. In type
II, bursts arise from an underlying slow oscillation, while, in
type III, bursting arises from a subcritical Hopf bifurcation [8,
14,15,17]. This classification is by no means complete [18], for
it is based on both knowledge acquired with nonlinear ordinary
differential equations that usually consist of slow and fast vari-
ables, and the analysis of their local bifurcations by means of,
for example, singular perturbation methods. Thus, for exam-
ple, Rinzel and Troy [19] employed a simplified three-equation
model of the Belousov–Zhabotinskii reaction in a continuous
flow, stirred tank reactor (CSTR) with a steady-state assumption
for one of the dependent variables and deduced the existence of
a periodic solution from the Poincaré–Bendixson theorem; they
also determined the bursts of oxidation pulses and the periods
of quiescence. These authors also showed that the solution al-
ternates between the model’s stable periodic solution during the
oscillatory phase and the model’s stable steady state of low ox-
idation during the quiescence intervals.

Periodic bursting in slow-fast systems governed by nonlinear
ordinary differential equations can be viewed as closed paths
through the unfolding parameters of degenerate singularities.
Using this approach, it can be shown that Hopf–Hopf mode
interactions can lead to bursting between in-phase and out-of-
phase periodic solutions, and Takens–Bogdanov singularities
can lead to bursting that randomly chooses between two sym-
metrically related limit cycles.

There have been very few studies on the effect of diffusion
on mathematical models that exhibit bursting under homoge-
neous conditions. Exception is made to the paper by Carpen-
ter [20] who, using singular perturbation methods in phase
space, studied the traveling wave solutions of a generalized
Please cite this article in press as: S. Tabik et al., On a model of three-dimensional
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Hodgkin–Huxley model governed by a one-dimensional non-
linear reaction–diffusion equation and three nonlinear ordinary
differential equations, and presented a simple classification that
determines whether a system exhibits finite wave trains and
periodic bursting behavior or only single pulse and regular pe-
riodic behavior. However, Carpenter’s study as well as other
studies which have considered diffusion have been concerned
with traveling waves in one-dimensional systems. In extended
two- and three-dimensional systems subject to homogeneous
boundary conditions, the geometry of the domain and the dif-
fusion introduce new time scales that may result in new bifur-
cations and completely different dynamics than that observed
under homogeneous conditions.

The objective of this paper is several-fold. First, a three-
dimensional reaction–diffusion model consisting of four non-
linearly coupled partial differential equations is presented. The
model exhibits bursting under homogeneous conditions, and
both bursting and extinction/quiescence in two dimensions pro-
vided that the initial conditions are not homogeneous. The
source or reaction terms of these partial differential equations
can be classified into two subsystems exhibiting fast and slow
behavior. The accurate simulation of the fast processes demands
the use of small time steps, while the extended system consid-
ered here requires the use of sufficiently small spatial step sizes
in order to accurately resolve the steep gradients of the depen-
dent variables. The finite difference equations resulting from
the discretization of the three-dimensional bursting model equa-
tions is solved by means of the Preconditioned Conjugate Gra-
dient (PCG) method. Second, three parallel implementations
of the discretized bursting model are presented; two of these
implementations, i.e., the MPI code and the PETSc code, are
based on a message passing paradigm, while the third one, i.e.,
the OpenMP code, is based on a shared space address paradigm.
The three implementations are then evaluated on two parallel
architectures, a dual-processor cluster and a Shared Distributed
Memory (SMD) system. Third, the representation of the per-
formance results is usually given in terms of runtimes, speedup
or efficiency but lacks information about the communication,
load unbalance and cache effect factors. In this work, we pro-
pose a novel and clear way to present the performance results
that comprises all the important factors that affect the parallel
efficiency.

This paper is organized as follows. In Section 2, the pro-
posed mathematical model and its finite difference discretiza-
tion in equally-spaced grids are described. In Section 3, we
present two sequential implementations of the model in order to
illustrate the storage of the matrix that will be used in the par-
allel implementations. Section 4 presents a detailed description
of the three parallel implementations developed in this paper.
In Section 5, a comparative analysis of the three parallel imple-
mentations in terms of their performance is presented, while,
in Section 6, some sample results illustrating the nonlinear dy-
namics of three-dimensional bursting phenomena are shown.
A final section on conclusions summarizes the most important
findings of the paper.
bursting and its parallel implementation, Computer Physics Communications
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2. Mathematical model and discretization

In this paper, bursting in extended, i.e., spatio-temporal, sys-
tems has been simulated by means of the following nonlinearly
coupled system of partial differential equations of the reaction–
diffusion type

(1)
∂U
∂t

= D
(

∂2U
∂x2

+ ∂2U
∂y2

+ ∂2U
∂z2

)
+ S(U),

where U = (u, v,w,p)T, the superscript T denotes transpose,
D is a diagonal matrix with components equal to Du, Dv ,
Dw and Dp , t is time, x, y and z are Cartesian coordinates,
S = (Su, Sv, Sw,Sp)T is the vector of the source/reaction terms
given by

(2)

⎧⎪⎪⎨
⎪⎪⎩

Su = f (u) − v − gw(u − u0),

Sv = 1
5 (v∞(u) − v),

Sw = fw(w) + αw(p − 0.3),

Sp = βp((1 − p)H(u) − p),

and

(3)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (u) = 1.35u(1 − u2

3 ),

fw(w) = −0.2(w − 0.2)(w − 0.135)(w − 0.21),

v∞(u) = tanh(5u),

H(u) = 3
2 (1 + tanh(5u − 2.5)).

The functions f (u) and fw(w) have three different zeros
each, whereas v∞(u) and H(u) are monotonically increasing
functions of their arguments, and u0, αw , βp and g are con-
stants.

Eq. (1) may be considered as a very simplified model of
bursting electrical activity in cells, where u and v represent the
currents of activated and voltage-dependent channels, respec-
tively, and are the fast system, whereas w and p represent a
current and its activation, respectively, and constitute the slow
subsystem.

For D = 0, i.e., in the absence of diffusion, Eq. (1) exhibits
bursting phenomena provided that the values of the u0, αw , βp

and g are properly chosen, and simulations performed in the
absence of diffusion indicate that u and v are fast variables,
while w and p are slow ones. Computations carried out in one
and two dimensions with Eq. (1) and homogeneous Neumann
conditions indicate that, depending on the values of u0, αw , βp

and g, the initial conditions, the diffusion coefficients and the
size of the domain, the solution of Eq. (1) exhibits a rich dy-
namic behavior including periodicity, quasiperiodicity, chaos,
bursting and extinction, where the latter is used here to denote
quiescence.

Eq. (1) has been solved in a parallelepiped � ≡ [−Lx,Lx]×
[−Ly,Ly]× [−Lz,Lz], and homogeneous Neumann boundary
conditions have been used on all the boundaries. The initial con-
ditions used in the computations are

(4)

{
u = −2.5, v = −0.2,ω = −0.5,p = 0.5 in �,

u = 2.5, v = −0.2,ω = 0.5,p = −0.5 in � − �,
Please cite this article in press as: S. Tabik et al., On a model of three-dimensional
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where � = [−Lx

2 , Lx

2 ] × [−Ly

2 ,
Ly

2 ] × [−Lz

2 ,
Lz

2 ]. These initial
conditions were selected so that, under homogeneous condi-
tions, Eq. (1) exhibits bursting oscillations for u0 = 2, αw =
0.002, βp = 0.00025 and g = 0.73.

By discretizing only the time variable in Eq. (1) by means
of the (second-order accurate) Crank–Nicolson technique, one
can obtain a system of nonlinear elliptic equations at each time
step. These elliptic equations can be linearized with respect to
time in order to obtain a system of linear elliptic equations at
each time level [21], i.e., the nonlinear terms Sn+1 are approxi-
mated by means of the second-order accurate terms Sn +Jn�U,
where J ≡ ∂J

∂U denotes the Jacobian of the source terms, the
superscript n denotes the nth time level, i.e., tn = n�t , n =
0,1,2,3, . . . ,�t , is the time step, and �U ≡ Un+1 − Un. The
resulting system of linear elliptic equations was discretized by
means of second-order accurate central finite difference formu-
lae in an equally-spaced grid of Nx × Ny × Nz points, and the
resulting system of linear algebraic equations can be written as(

I − k

2
Jn
i,j,k

)
�Ui,j,k

− αx(�Ui+1,j,k − 2�Ui,j,k + �Ui−1,j,k)

− αy(�Ui,j+1,k − 2�Ui,j,k + �Ui,j−1,k)

(5)− αz(�Ui,j,k+1 − 2�Ui,j,k + �Ui,j,k−1) = Tn
i,j,k,

where I is the identity or unit matrix, αx = k

2�x2 D, αy =
k

2�y2 D, αz = k

2�z2 D, �x, �y and �z are the grid spacings in
the x, y and z directions, respectively, and

Ti,j,k = 2αx(Ui+1,j,k − 2Ui,j,k + Ui−1,j,k)

+ 2αy(Ui,j+1,k − 2Ui,j,k + Ui,j−1,k)

(6)+ 2αz(Ui,j,k+1 − 2Ui,j,k + Ui,j,k−1) + Si,j,k.

In this paper, a natural ordering of the grid points and block-
ing of nodal variables have been chosen to obtain both a well
structured matrix and a good cache behavior. For this ordering,
Eq. (5) can be expressed in matrix form as A�U = b, where
A is an heptadiagonal block matrix consisting of (Nx × Ny ×
Nz) 4 × 4 blocks. Fig. 1 shows the pattern of the matrix A for
an equally-spaced mesh of 5 × 5 × 5 points.

3. Sequential implementations

The sequential algorithm for the solution of the system of
linear algebraic equations A�U = b can be described as fol-
lows:

1—Initialize the source/reaction terms according to Eqs. (2)
and (3).
2—Initialize the solution U0 according to the initial condi-
tions considered.
3—t = t0 = 0
do while (t < tend)

– Update the matrix A and right-hand side b according to
Eqs. (5) and (6), respectively.

– Solve the system of equations A�U = b.
– Update the solution Un+1 = Un + �U.
bursting and its parallel implementation, Computer Physics Communications
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Fig. 1. Matrix pattern corresponding to a 5 × 5 × 5-point mesh, where the grey
squares represent nonzero time-independent elements and the black squares
represent nonzero elements that have to be updated at each time level.

In this paper, two different sequential implementations have
been developed; both implementations employ the conjugate
gradient (CG) method with Jacobi preconditioner. In the first
one, the system of linear algebraic equations at each time level
has been solved by means of an optimized Preconditioned Con-
jugate Gradient (PCG) method for banded matrices [22] based
on a maximum exploitation of the data locality. Furthermore,
the matrix has been stored using a compressed diagonal format
which takes into account the sparsity pattern of the Jacobian
term, and the implementation of the sparse matrix–vector prod-
uct includes a consequent hand-unrolled product which exploits
the pipelined floating point units [23].

In the second sequential implementation, the system of equa-
tions is solved by the Conjugate Gradient solver preconditioned
by the Jacobi method; both the solver and the preconditioner
are included in the free portable extensible toolkit for scien-
tific computation (PETSc) library [24]. PETSc is a suite of data
structures and routines for the scalable solution of scientific
applications modeled by partial differential equations. Some
PETSc routines have been adapted to the characteristics of the
problem in order to optimize their efficiency. In addition, the
matrix A has been stored in Compressed Sparse Row (CSR)
format.

These two types of storing the matrix A have also been used
in the parallel implementations described in the next section.

4. Parallel implementations

With the availability of (1) a wide range of parallel platforms
(from clusters of workstations to Shared Distributed Memory
platforms), (2) several parallel paradigms, i.e., shared-address
space paradigms and message-passing paradigms, and (3) a
Please cite this article in press as: S. Tabik et al., On a model of three-dimensional
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wide variety of software, from low-level to high-level software,
the physicist/programmer is faced with the selection of portable
paradigms and software which will provide the best perfor-
mance, since both the time and the effort that should be spent
in developing and tuning a parallel implementation using one
of the above mentioned paradigms is approximately the same.
Note that the use of high level software usually requires less
programming effort.

In this work, three parallel implementations based on MPI,
PETSc and OpenMP have been evaluated, analyzed and com-
pared on two parallel architectures, i.e., a dual-Xeon cluster and
a SGI Altix 3700 Bx2 system. Hereon, these implementations
are also referred to as the MPI-code, the PETSc-code and the
OpenMP-code, respectively.

From a parallel computational point of view, this paper
makes three contributions. First, it describes the different com-
putational strategies that have been used to obtain the best
performance for each implementation. Second, it provides
an exhaustive comparison of the performance of the three
codes/implementations. And, finally, it proposes a novel and
clear way to represent the performance of each implementation
as a function of the three most important factors that affect it,
i.e., communications, load unbalance and cache effect.

In the three parallel implementations, at each time step, each
processor updates its local sub-matrix and local right-hand side.
Then, the system of equations is solved in parallel using the
PCG method. In the following subsections, a brief description
of the three parallel implementations/codes is given. In addi-
tion, a block distribution of the grid in the z-direction and,
therefore, block distributions of the matrix rows and vectors,
have been used in the parallel implementations.

4.1. The MPI implementation

In this implementation, the parallel solution of the system
A�U = b is performed by the PCG solver as in [22]. Using
a Jacobi preconditioner, each iteration of the PCG method in-
cludes two inner products and one sparse matrix–vector prod-
uct; therefore, three communications and their corresponding
synchronizations are needed. In the MPI implementation, com-
putations and communications are overlapped using asynchro-
nous messages in order to minimize the communications over-
head, specially in the matrix–vector product. In this manner,
after the iterations of the PCG are completed, a message with
the boundary values of U is sent to the neighboring processors
and this is overlapped with the last update of �U.

4.2. The PETSc implementation

In this implementation/code, structures of the free Paral-
lel Extensible Toolkit for scientific computing (PETSc) library
have been used. The solution of the linear system of algebraic
equations has been carried out in parallel using the parallel
solver CG, which employs the MPI standard for all message
passing communications. In order to accelerate the convergence
of the CG method, the Jacobi preconditioner has been used.
Both the parallel solver and the preconditioner are included in
bursting and its parallel implementation, Computer Physics Communications
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PETSc. The PETSc routines employed here have been adapted
to the characteristics of the problem by eliminating all the sub-
routines arguments that could penalize their performance. After
solving the system of linear algebraic equations, each proces-
sor communicates to its adjacent ones its local boundaries by
explicit MPI communications.

4.3. The OpenMP implementation

In this implementation, we have chosen the SPMD style in-
stead of the loop level one because it reduces overhead and
results in better scalability [27]. In addition, in this implemen-
tation, only one parallel section covers the whole dynamic ex-
tent of the code and, therefore, only OpenMP synchronization
directives have been used. The ordering of the computations
employed in the MPI implementation to minimize the commu-
nication overhead is also employed here to reduce the waiting
times at the synchronization points.

For the inner products, the synchronization events have been
implemented by using counters protected by lock variables. Ad-
ditional flags have been included in order to grant permission
for accessing shared data. As soon as a processor has com-
puted the data on its borders, it enables a flag. If other processor
requires these data, it waits for this flag to be enabled. Reset
of both counters and flags has been carefully implemented by
means of odd and even sense-reversing flags to enhance perfor-
mance and avoid data race conditions.

In both, the MPI and the OpenMP implementations, global
barriers have been avoided in order to minimize waiting times.

5. Comparison of the three parallel implementations

In this section, the performance of the three parallel imple-
mentations described in the previous section is assessed.

5.1. Architectures

We have assessed the performance of the three implemen-
tations/codes with Lx = Ly = Lz = 15, D = 0.001I where I
denotes the 4 × 4 unit matrix, and a time step equal to 0.001
(a.u.), on the following computer architectures

• A dual-Xeon(TM) cluster at 3.06 GHz with 2 GB RAM and
512 KB cache per processor. The nodes of the cluster are
interconnected via two gigabit Ethernet networks; one for
input–output and the other for computation.

• An SGI Altix 3700 Bx2 system with Intel Itanium 2 proces-
sors running at 1600 MHz with 32 KB, 256 KB and 6 MB
of L1, L2 and L3 cache, respectively, and 2 GB per proces-
sor and a total RAM of 128 GB. The Altix 3700 computer
system is based on a Distributed Shared Memory (DSM)
architecture [25] and uses a cache-coherent Non-Uniform
Memory Access (NUMA) where the latency of the proces-
sors to access the local memory is lower than the latency to
access the global (or remote) memory [26].
Please cite this article in press as: S. Tabik et al., On a model of three-dimensional
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5.2. Evaluation decisions

In order to compare the three implementations on an equal
ground, some decisions had to be made as described below.

In the parallel algorithm, after the initialization of all the
parameters, the solution process includes four stages per time
step: (1) the update of both the local matrix A and the right-
hand side b, (2) the solution of the (local) system of equations
A�U = b, (3) the update of the solution �U, and (4) inter-
changing the boundary values of U. In addition, a complete
simulation of bursting phenomena in the spatio-temporal sys-
tems considered here requires well over 2 × 106 time steps to
simulate only one bursting cycle.

In this paper, the performance of the codes was based on that
per time step. To this end, the codes were executed 100 time
steps to determine the average execution time per time step.

The number of iterations required by the PCG method to
converge within each time step is about ten; therefore, we have
fixed the number of the iterations of the PCG method to ten for
the evaluation of the three parallel implementations. Note that,
as it will be shown in the next section, the solution of Eq. (1)
exhibits rapid oscillations, and the number of iterations required
by the CG method depends on the amplitude and frequency of
these oscillations. When the solution has a smooth behavior in
time, the number of iterations decreases drastically.

The compilation of the three codes and the library PETSc
on both computer architectures was carried out with the Intel
Fortran compiler ifort, 8-byte precision arithmetic and some
optimizations (−O3 −ipo). Optimized BLAS and Lapack li-
braries for each architecture have been employed; in particular,
the Mathematical Kernel Library (MKL) in the cluster and the
Scientific Computing Software Library (SCSL) for the Altix
3700 Bx2 system were used.

The comparison of the three codes is based on two analy-
ses; the first analysis employs a new method (described below)
to represent the efficiency and all the factors that affect the
performance, for two problem sizes, i.e., a coarse 51×51×51-
point grid and a fine 101 × 101 × 101-point grid; hereon, we
shall refer to these grids as simply the coarse and fine grids,
respectively. The second analysis deals with the scalability
of the codes, and the evaluation in this case includes a third
75×75×75-point grid, hereon, referred to as the medium grid.

The codes were evaluated on, at most, 16 processors of the
dual-Xeon cluster and only 8 processors on the Altix 3700 Bx2
system which were available/allowed to the authors.

The performance of a given parallel implementation on a
given parallel computer is influenced mainly by three factors:
(1) the cost of the communications, (2) the load unbalance and
(3) the cache effect. In this paper, a novel and clear represen-
tation of the performance results of the three parallel codes is
described as illustrated in Figs. 2–6 where the thicker curve rep-
resents the real efficiency of the parallel implementation, the
green region presents the benefit from the cache effect, the or-
ange region represents the load unbalance effect and the red
region represents the communications effect.

In Figs. 2–6, reading from the bottom to the top, the first
curve represents the efficiency of the parallel system that would
bursting and its parallel implementation, Computer Physics Communications
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Fig. 2. Efficiency of the MPI-code on the dual-Xeon cluster versus the number of processors for the coarse (a) and fine (b) grids.

Fig. 3. Efficiency of the PETSc-code on the dual-Xeon cluster versus the number of processors for the coarse (a) and fine (b) grids.

Fig. 4. Efficiency of the MPI-code on the SG Altix 3700 Bx2 system versus the number of processors for the coarse (a) and fine (b) grids.

Fig. 5. Efficiency of the OpenMP-code on the SG Altix 3700 Bx2 system versus the number of processors for the coarse (a) and fine (b) grids.
result from eliminating the cache effect; the second curve rep-
resents the real efficiency including the cache effect; the third
curve represents the efficiency that could be obtained without
load unbalance; and, finally, the last curve represents the ef-
ficiency that could be obtained by eliminating both the load
unbalance and the communication cost. The cache effect which
indeed includes any other intraprocessor optimization related
with the problem size, has been calculated by using as a ref-
erence the runtime of the sequential implementations (cf. Sec-
Please cite this article in press as: S. Tabik et al., On a model of three-dimensional
(2007), doi:10.1016/j.cpc.2007.10.005
tion 3) with the fine grid, i.e., the 101 × 101 × 101-point grid,
determining the number of floating point operations in each
processor, and employing a proportionality rule for determining
the time that the most loaded processor would take to perform
its allocated work.

The load unbalance in this problem is due to the distribution
of the matrix A and vector b amongst the processors (recall
that a z-distribution was employed), and has been determined
analytically by extrapolation from an unbalanced computation
bursting and its parallel implementation, Computer Physics Communications
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Fig. 6. Efficiency of the PETSc code on the SG Altix 3700 Bx2 system versus the number of processors for the coarse (a) and fine (b) grids.
to a balanced or equilibrated one, because assigning the same
workload to each processor would interfere with the other ef-
fects mentioned above. It must, however, be pointed out that an
analytical determination of the load unbalance may not be fea-
sible if the data from the same z-plane is assigned to different
processors, for this would require slight changes in the codes
and would result in a slightly higher cost and, most importantly,
a greater interference amongst data interchanges which would,
in turn, result in a narrower band for the load unbalance effect
illustrated in Figs. 2–6, but which would not affect the width of
the communications effect. In our case, the interest in the load
balance is merely informative.

The elimination of the communication cost has been achieved
by suppressing the inter-processor communications; in this
case, the simulation has been executed using outdated or old
values, which do affect the solution accuracy but do not affect
the performance measurement, since the number of the CG it-
erations was fixed to ten, as discussed above.

The comparative analysis of the performance of the MPI,
OpenMP and PETSc implementations has been carried out on
the dual-Xeon cluster and on the Altix 3700 Bx2 system as de-
scribed in the next two sections.

5.3. Results on the dual-Xeon cluster

Figs. 2 and 3 show the efficiency of the MPI and PETSc im-
plementations, respectively, on the dual-Xeon cluster versus the
number of processors for the coarse (a) and fine (b) grids. These
figures show that the efficiency of the MPI-code is, in general,
higher than that of the PETSc implementation for both grids,
with better behavior for the fine grid, especially when the num-
ber of processors is larger than 8. This is due to the fact that the
influence of the communications and load unbalance decreases
as the number of mesh points is increased. In addition, there is
a remarkable benefit from the cache effect when the number of
processors increases, and this benefit is more considerable for
the coarse grid, even in the sequential implementation.

The performance of the PETSc-code is also good for the
fine grid, with super-linear efficiency from two to eight proces-
sors. This is a consequence of the improvement in the memory
management, as it can be clearly observed in Fig. 3(b). For the
coarse grid, the decrease in the efficiency starts earlier when the
communications and load unbalance become important, since
the improvement in the cache exploitation does not compensate
them. The OpenMP-code cannot be evaluated on the dual-Xeon
Please cite this article in press as: S. Tabik et al., On a model of three-dimensional
(2007), doi:10.1016/j.cpc.2007.10.005
Table 1
Runtimes and speedup (SPU) of the MPI and PETSc implementations per time
step on the dual-Xeon cluster for three grid sizes N = Nx = Ny = Nz

N MPI-code PETSc-code

1 proc. 8 proc. SPU 1 proc. 8 proc. SPU

51 6.23 0.787 7.904 8.71 1.383 6.695
75 20.55 2.466 8.331 28.38 3.391 8.370

101 56.65 6.663 8.501 68.76 8.029 8.564

Table 2
Runtimes and speedup (SPU) of the MPI and PETSc implementations on the
SGI Altix 3700 Bx2 system for the three grid sizes N = Nx = Ny = Nz

N MPI-code PETSc-code OpenMP-code

1 proc. 8 proc. SPU 1 proc. 8 proc. SPU 1 proc. 8 proc. SPU

51 2.57 0.345 7.465 5.77 0.815 7.079 2.58 0.346 7.446
75 8.18 1.215 6.730 18.85 2.415 7.802 8.42 1.208 6.965

101 19.87 3.151 6.960 46.19 6.245 7.280 20.11 2.762 7.281

cluster due to the limitations of this platform as a shared mem-
ory device.

Table 1 shows the runtimes of the MPI and the PETSc imple-
mentations on one and eight processors, and their correspond-
ing speedups, for the coarse, medium and fine grids. This table
shows that both codes scale very well on the dual-Xeon clus-
ter, showing super-linear speedup for the fine grids. However,
in terms of runtimes, the MPI code is about 130% better than
the PETSc one; this is due to the fact that the communications
and load unbalance are very optimized in the MPI-code; in ad-
dition, there is an improvement in the cache factor. It must be
noted that the CRS storage for the sparse matrix in PETSc does
not take into account the sparsity pattern of the 4×4 blocks (cf.
Section 2) which can penalize even further the performance of
the PETSc-code.

5.4. Results on the Altix 3700 Bx2 system

Figs. 4, 5 and 6 show the performance of the MPI, OpenMP
and PETSc implementations, respectively, on the SGI Altix
3700 Bx2 system for the coarse (a) and fine (b) grids. Good
efficiencies have been obtained for both the MPI and OpenMP
implementations, with a very slight decrease due to the eventual
increase in the communications and load unbalance factors. The
efficiency of the PETSc-code is also good, especially for the
bursting and its parallel implementation, Computer Physics Communications
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Fig. 7. u, v, w and p as functions of t (a.u.) at the monitoring locations. The red, green, blue and black curves correspond to the monitoring locations 1 and 2, 3, 4
and 5, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
fine grid due to the decrease of the influence of the communi-
cations and load unbalance factors.

Table 2 shows the runtimes of the MPI, PETSc and OpenMP
implementations on the Altix 3700 Bx2 system for one and
eight processors and their corresponding speedups for the
coarse, medium and fine grids. This table shows that the scala-
bility of all the codes is good and similar, independently of the
grid size. However, in terms of runtimes, the PETSc-code is ap-
proximately 230% slower than both the MPI and the OpenMP
implementations. This can be explained mainly by the bad be-
havior of the CSR storage on Itanium for matrices of small
rows [23].

6. Presentation of results

As stated above, calculations were performed on the coarse
and fine grids mentioned above with Lx = Ly = Lz = 15, D =
0.001I where I denotes the 4 × 4 unit matrix, and a time step
equal to 0.001 (a.u.). The coarse mesh represents the largest
spatial step size for which accurate results could be obtained
for the problem considered here, and, therefore, the results pre-
sented in this section were obtained with the fine grid. The
calculations were performed up to t = 5000 which corresponds
to 5 × 106 time steps in order to capture the bursting as well as
the extinction or quiescence of the solution.
Please cite this article in press as: S. Tabik et al., On a model of three-dimensional
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Before proceeding with the presentation of some sample re-
sults, it is worth mentioning that a huge amount of data was
generated and, therefore, the results presented here only show
some of the most important features of the computations. Even
though, only time histories of the four dependent variables at
five monitoring points and some snapshots of the solutions are
presented at selected times and selected z-planes in this section,
the discussion that follows is also based on three-dimensional,
time-dependent visualizations of the isocontours of the depen-
dent variables.

For the initial conditions described above, the time his-
tories of the four dependent variables at five monitoring
points exhibit the trends illustrated in Fig. 7. The moni-
toring points are numbered 1–5 and their locations corre-
spond to (x, y, z) = (−14.4,−14.4,−14.4), (13.8,13.8,13.8),
(6,−6,6), (−6,−6,0) and (−3,0,0), respectively; therefore,
the monitoring points 1 and 2 which are identified with the red
color in the figures are located in � − �, whereas the moni-
toring points 3, 4 and 5 which are identified with red, blue and
black, respectively, are located in � (cf. Section 2).

Fig. 7 indicates that the time history of u shows oscilla-
tions characterized by steep temporal gradients at the moni-
toring points 3–5, and that these oscillations are not in-phase
for most of the integration time considered in this paper. Fig. 7
also shows that, at the location of the monitoring points 1 and
2, u first decreases from its initial value in a smooth manner
bursting and its parallel implementation, Computer Physics Communications
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Fig. 8. u, v, w and p as functions of t (a.u.) in the first regime at the monitoring locations. The red, green, blue and black curves correspond to the monitoring
locations 1 and 2, 3, 4 and 5, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
prior to oscillating in a vigorous fashion; a similar behavior
can be observed in the time history of v which shows that the
time histories at the monitoring locations 3–5 exhibit oscilla-
tions from t = 0, whereas those at the locations 1 and 2 first
increase rapidly and then reach an almost constant value before
they start oscillating in a fast manner.

Fig. 7 also shows that there is an interval of time from about
t = 1200 to 1450 when the time histories of u and v at the five
monitoring locations are nearly identical. At larger times, the
time histories differ from each other, and, about t = 1900, both
u and v reach stationary values that correspond to a steady state
or quiescence. On the other hand, the time histories of w and p

initially decrease and increase, respectively, at the monitoring
locations 1 and 2, increase and decrease, respectively, at the
monitoring locations 3–5, and asymptotically tend to each other
in a slightly increasing fashion.

Fig. 7 also illustrates that there are very few differences be-
tween the time histories of the four dependent variables at the
monitoring location 1 and those at the location 2.

The results illustrated in Fig. 7 indicate that one can clearly
distinguish four main regimes in the solution. These regimes
correspond to roughly 0 � t < 250, 250 � t < 800, 800 � t <

1850, and t � 1850. The first corresponds to the initial response
and its time history is illustrated in Fig. 8 which clearly illus-
trates the initially smooth decreasing and increasing, respec-
tively, behavior of w and p at the monitoring locations 1 and 2
Please cite this article in press as: S. Tabik et al., On a model of three-dimensional
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and the smoothly increasing and decreasing, respectively, char-
acter of these two variables at the monitoring locations in �.
This figure also illustrates the initial complex behavior of both
u and v and, in particular, the fact that the time histories of
these two variables at the monitoring points located in � − �

decrease and increase smoothly before they start oscillating in
an analogous manner to those of the other three monitoring lo-
cations, i.e., those located in �. It is worthy stating that it takes
about t = 200 for the monitoring points located in � − � to
begin oscillating in a similar manner to those in �.

The results of the time histories presented in Fig. 8 as well
as of those based on the visualization of the time-dependent
isocontours of the four dependent variables indicate that, until
about t = 200, most of the interesting dynamics takes place in
�. This can be appreciated in a better manner in the snapshots
of the solutions presented in Figs. 9 and 10 that correspond to
z = 0 and indicate that u and v oscillate in � as illustrated in
Fig. 9 at t = 47.5 and 57.5; on the other hand, the results pre-
sented in Fig. 10 indicate that w and p evolve smoothly without
oscillations as indicated previously in Fig. 8. Figs. 9 and 10 also
indicate that the values of u and v at (x, y) = (−15,15) are 1.00
and 1.00, respectively, at both t = 47.5 and 57.5, whereas the
values of w and p at the same location are equal to about 0.33
and −0.42, respectively, at t = 47.5, and 0.30 and −0.45, re-
spectively, at t = 57.5.
bursting and its parallel implementation, Computer Physics Communications
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Fig. 9. u (left) and v (right) as functions of x and y at z = 0 in the first regime at t = 47.5 (top) and 57.5 (bottom).

Fig. 10. w (left) and p (right) as functions of x and y at z = 0 in the first regime at t = 47.5 (top) and 57.5 (bottom).
In the second regime, the time histories of u and v at the
five monitoring locations illustrated in Fig. 11 indicate that the
monitoring points located in � and � − � exhibit oscillations
of the same characteristics. The phase difference between these
oscillations decreases as time increases. On the other hand, w

and p show a slight decrease and a slight increase, respectively,
as functions of time. The differences in w at the five monitoring
locations are much smaller than the differences in p.

The fact that, in the second regime, the monitoring points
located in � − � exhibit an oscillatory pattern can also be
observed in Figs. 12 and 13 that correspond to two different
times and clearly indicate that there is propagation from � to
�−� and then from �−� to �. This behavior is analogous to
breathing or heat waves. On the other hand, w and p exhibit an
uninteresting result, for the evolution of these variables is very
slow in the second regime as shown in Fig. 13, in agreement
with the time histories illustrated in Fig. 11.

Figs. 12 and 13 also indicate that the values of u and v at
(x, y) = (−15,15) are 0.80 and 0.90, respectively, at t = 685,
and −1.40 and 0.47, respectively, at 695, whereas the values
of w and p at the same location are equal to about 0.33 and
0.26, respectively, at t = 685, and 0.32 and 0.26, respectively,
Please cite this article in press as: S. Tabik et al., On a model of three-dimensional
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at t = 695. Therefore, u and v exhibit a translational breathing
motion.

In the third regime, the phase differences between the time
histories of u and w measured in � and � − � first decrease,
then become nil, and then increase as time increases as illus-
trated in Fig. 14, whereas the time histories of w and p indicate
that w increases extremely slowly with time and p increases in
an almost linear manner with t .

The oscillatory behavior of u and v in the third regime is
shown in the snapshots presented in Fig. 15 that once again
have the same characteristics as those of a translational breath-
ing motion. Note that even though the nonuniformities of u and
v are relatively small at the times shown in Fig. 15, the val-
ues of these two variables at (x, y) = (−15,15) are about 0.75
and 1.00, respectively, at t = 1002.5, and −1.35 and −0.25, re-
spectively, at t = 1012.5. On the other hand, w and p exhibit
the snapshots illustrated in Fig. 16; although these two variables
are non-homogeneous in z = 0, the level of non-homogeneity is
very small.

In the fourth regime, the difference in phase between the
time histories of u and v in � and � − � increase, while the
amplitude of these two variables decreases until they reach con-
bursting and its parallel implementation, Computer Physics Communications
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Fig. 11. u, v, w and p ≡ z as functions of t (a.u.) in the second regime at the monitoring locations. The red, green, blue and black curves correspond to the monitoring
locations 1 and 2, 3, 4 and 5, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. u (left) and v (right) as functions of x and y at z = 0 in the second regime at t = 685 (top) and 695 (bottom).
stant values as illustrated in Fig. 17. On the other hand, w

increases very slightly with time and p does so at a slightly
faster pace.

As stated before, the computations were performed until t =
5000, but very few differences were found between the results
presented in Fig. 17 and those at t = 5000, thus indicating that,
for the initial conditions considered in this paper, the fate of the
solution is a state of quiescence, at least, until t = 5000, despite
Please cite this article in press as: S. Tabik et al., On a model of three-dimensional
(2007), doi:10.1016/j.cpc.2007.10.005
the fact that the results shown in Fig. 17 indicate that p seems
to increase very slowly with time, for this variable is a slow one.
In fact, Ui (t = 2000)−Ui (t = 1999) = (0,0,2.5×10−5,3.9×
10−5)T, for i = 1,2, and (0,0,2.3 × 10−5,3.8 × 10−5)T, for
i = 3,4,5, where i denotes the monitoring locations.

Calculations not reported here were also performed in the
fine grid with a time step equal to 0.002 until t = 25000
and their results indicate that a quiescence state is eventually
bursting and its parallel implementation, Computer Physics Communications
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Fig. 13. w (left) and p (right) as functions of x and y at z = 0 in the second regime at t = 685 (top) and 695 (bottom).

Fig. 14. u, v, w and p ≡ z as functions of t (a.u.) in the third regime at the monitoring locations. The red, green, blue and black curves correspond to the monitoring
locations 1 and 2, 3, 4 and 5, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
reached, for there were differences only in the sixth decimal
digit for all the four components of U between the results at
t = 25000 and those at t = 5000. These calculations also indi-
cate that w and p evolve very slowly towards their final equi-
librium or steady state values as indicated in Fig. 17.

It must be emphasized that the four regimes describe above
and which include asynchronous, then synchronous and fi-
nally synchronous oscillations before a finally quiescent state
is reached, have only been observed for the initial conditions,
diffusion coefficients and domain considered in this paper. In
Please cite this article in press as: S. Tabik et al., On a model of three-dimensional
(2007), doi:10.1016/j.cpc.2007.10.005
two dimensions, results not shown here indicate that the dy-
namics of the four-equation model considered here exhibit a
rich dynamic behavior including quiescent, periodicity, quasi-
periodicity and chaos depending on the values of u0, αw , βp

and g (cf. Section 2).

7. Conclusions

A mathematical model of three-dimensional bursting phe-
nomena and three different parallel implementations of it have
bursting and its parallel implementation, Computer Physics Communications
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Fig. 15. u (left) and v (right) as functions of x and y at z = 0 in the third regime at t = 1002.5 (top) and 1012.5 (bottom).

Fig. 16. w (left) and p (right) as functions function of x and y at z = 0 in the third regime at t = 1002.5 (top) and 1012.5 (bottom).
been presented. The model is described by four, nonlinearly
coupled partial differential equations which have been dis-
cretized by means of a second-order accurate, linearly-implicit
finite difference method in equally-spaced grids. The result-
ing system of linear algebraic equations at each time level has
been solved by means of the Preconditioned Conjugate Gradi-
ent technique.

Three different parallel implementations of the proposed
mathematical model have been developed. Two of these im-
plementations, i.e., the MPI and the PETSc codes, are based
on a message passing paradigm, while the third one, i.e., the
OpenMP code, is based on a shared space address paradigm.
These three codes have been evaluated on two parallel archi-
tectures, i.e., a cluster of dual-processor nodes and a Shared
Distributed Memory system. The efficiency results of these im-
plementations have been represented by means of a new method
that clearly illustrates the effects of the communications, load
unbalance and cache on the parallel performance.

It has been shown that the use of PETSc on symmetric
multiprocessor (SMP) clusters can be a good choice, for it
requires low programming effort. However, on Shared Dis-
tributed Memory systems, more time and programming ef-
Please cite this article in press as: S. Tabik et al., On a model of three-dimensional
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fort should be spent to reach good performance. It has also
been shown that, on the SDM system, the proposed MPI and
OpenMP codes are about 230% more efficient than the PETSc
code; on the cluster of dual-processor nodes, the MPI code
is about 130% more efficient than the PETSc code. These re-
sults can be extrapolated to other scientific applications that are
based on the numerical solution of partial differential equations
where the discretization yields a banded matrix.

In terms of the physics of the bursting problem considered
in the paper, it has been shown by means of visualization stud-
ies, time histories at five monitoring locations, and snapshots of
three-dimensional isosurfaces at selected times that, for the ini-
tial conditions, diffusion coefficients, nonlinear reaction terms
and geometry considered here, the nonlinear dynamics exhibits
four clearly different regimes. In the first regime, the main ac-
tivity takes place initially in the inner cube and the variables in
the outer one exhibit initially very small variations. After some
time, waves propagate from the inner to the outer cube and this
results in a decreasing phase difference between the time his-
tories of the fast system in the inner and outer cubes, in the
second regime. In the third regime, the phase difference first
decreases, then becomes zero and then increases as a function
bursting and its parallel implementation, Computer Physics Communications
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Fig. 17. u, v, w and p ≡ z as functions of t (a.u.) in the fourth regime at the monitoring locations. The red, green, blue and black curves correspond to the monitoring
locations 1 and 2, 3, 4 and 5, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
of time, and the dynamics of the fast variables is characterized
by a translational breathing motion associated with the propa-
gation of reacting waves from the inner to the outer cube and
vice versa. In the fourth regime, the fast variables settle to a
steady state whereas the slow ones increase very slightly with
time before complete quiescence is achieved through the do-
main.
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