
1

Decimal Multiformat and Multioperand Online
Addition

Carlos Garcia-Vega, Sonia Gonzalez-Navarro, Julio Villalba, Emilio L. Zapata Universidad de Málaga, Andalucı́a
Tech, Departamento de Arquitectura de Computadores

Campus de Teatinos s/n, 29071 Málaga, España
E-mail: cgarcia@ac.uma.es, sonia@ac.uma.es, julio@ac.uma.es, zapata@uma.es

Abstract—This paper presents and analyzes two different
strategies for designing multiformat online decimal adders
(olDFAMformat). The first strategy uses a code conversion stage plus
an online Decimal Full Adder (olDFA); the second one involves
designing specific adders by modifying the architecture of the
olDFA. Moreover, this paper presents the design of multioperand
and multiformat adders using olDFAs and olDFAMformats. We use
synthesis results to verify the theoretical aspects of the designs
and to analyze the robustness and lacks of the strategies. The
guidelines presented in the paper are valuable to designers of
online multiformat and multioperand-based solutions.

I. INTRODUCTION

Computers represent, store, and manipulate numeric data
in binary format. Many commercial applications, such as
financial analysis, banking, fee calculation, and accounting
operations are performed using binary arithmetic, which in-
troduces a certain precision error when converting a decimal
number to binary and vice versa [1], [2]. Therefore, decimal
arithmetic is an alternative to counteract the loss of accuracy.

The recent demand for and growth in decimal arithmetic
applications have been addressed by researchers from the point
of view of both hardware and software. In terms of software,
programming languages, such as COBOL, XML, Visual Basic,
Java, and C provide support for decimal arithmetic. In the
1950s and 1960s, hardware solutions were represented by the
early digital computers, such as ENIAC and UNIVAC [3]. A
few years ago, the increasing demand for decimal technology
led the IEEE society to issue the IEEE 754-2008 standard to
deal with floating point decimal arithmetic. As a consequence,
recent architectures, such as Power6, Power7, IBM z9, IBM
z10, Fujitsu SparcX [4], [5], [6], [7], [8], decimal IP cores
[9] and hardware designs [10], [11] have included decimal
floating-point arithmetic.

On the other hand, online arithmetic defines algorithms for
serial arithmetic operators that receive the input and generate
the output starting from the most-significant digit (MSD first).
The serial approach is advantageous because of the simplicity
of the hardware required and the reduction in number and
length of connections among modules. Moreover, MSD first
can implement operations, such as division and square root,
which are difficult to implement using least-significant digit
first. This approach is advantageous even for multiplication

This research was supported by the Spanish grant CICYT TIN2013-42253-
P

and comparison because the relevant digits are produced first
[12][13]. The drawback of this technique is the number of
cycles required, which can be compensated by overlapping
the execution of dependent operations. Given of all these
characteristics, online arithmetic is used in a wide variety
of applications in fields such as digital filtering [14], signal
processing [15], [16], wireless communication systems [17],
and neural networks [18].

Decimal parallel addition has efficient implementations
[10], [19], [20], [21], [22]. However, to date, the literature on
decimal online addition remains scarce, if not absent, except
for the study [23]. In that paper, the authors present an online
decimal adder, called olDFA, which operates with decimal
digits represented with RBCD encoding [22].

Both multioperand and multiformat online addition for
radix2 representation was analyzed in [24]. The corresponding
radix-10 counterpart has not been addressed yet and is the
main goal of this work. On one hand, decimal online mul-
tioperand addition was studied in [25]. On the other hand,
to our knowledge, decimal multiformat online addition has
never been addressed. Nevertheless, decimal format other than
the classic BCD (with weight 8421 for the corresponding 4
bits) allows optimizing decimal algorithms. For example, for
decimal CORDIC weights 5221 and 5421 are used in [26]
and 5211 in [27]. For high performance decimal multipliers
the codes 4221 and 5421 are used in [11] and in [28]. Thus,
since the use of different formats can be useful for decimal
algorithms, in this paper we deal with the multiformat case.

The main contribution of this paper is to propose techniques
for designing customized architectures of decimal multiformat
and multioperand online adders and to present their implemen-
tation. In this way, the theoretical aspects are corroborated
by the actual implementation results. We base our designs on
the use of the olDFA [23] and the adder trees presented in
[25]. Nevertheless, the adaptation of the multiformat radix-2
online of [24] to the decimal case is not straightforward due
to the complexity of the decimal codes, forcing us to use a
completely different strategy to that proposed in [24].

The paper is organized as follows: background information
on the olDFA is provided in section II; section III reviews
several online decimal multioperand adders; section IV de-
scribes the strategies used to build online decimal multiformat
adders, which are extended to build multioperand and multi-
format adders in section V; section VI presents the synthesis
results for some of the proposed architectures; and section VII

2

presents the conclusions.

II. ONLINE DECIMAL ADDERS

This section describes the online decimal full adder (olDFA)
and its pipelined version (olDFAp), both presented in [23].

The most-frequent representation used in online arithmetic
is signed-digit (SD), with both symmetric {−a, ..., a} and
asymmetric {b, ..., c} digit sets. There are three popular rep-
resentations in signed-digit: the Svoboda code [19], the pos-
itive/negative component representation [10], [20], [21], and
the two’s complement representation. The left to right mode of
the online computation requires flexibility, which is achieved
by the use of redundant representation. For the decimal case,
consider the general case of having a 4-bit decimal code. Let
[−α, ..., β] denote the different values corresponding to this
code. The condition for this code to have sufficient redundancy
to prevent a carry propagation is 11 ≤ α + β ≤ 15 [10]. The
Redundant Binary Coded Decimal (RBCD) representation is
composed by a 4-bit code that is described in [22]. This repre-
sentation is signed-digit with symmetric digit set {−7, . . . , 7},
and meets the previous condition. Each digit of the symmetric
set is represented in two’s complement using 4 bits and is
shown in Table I.

Digit RBCD Digit RBCD
0 0000
1 0001 -1 1111
2 0010 -2 1110
3 0011 -3 1101
4 0100 -4 1100
5 0101 -5 1011
6 0110 -6 1010
7 0111 -7 1001

TABLE I
RBCD DIGITS

The olDFA is obtained from the serialization of the parallel
RBCD adder introduced in [10] and follows the concept of the
radix–2 online full adder proposed in [29]. Fig. 1 depicts the
top-level design of the olDFA. It has two RBCD digits as input
operands, xi, yi, that are fed into a decomposition block. The
outputs of this block, zi and vi, are stored in registers, whereas
output ti+1 (current transfer bit) is added with the previously
stored information in the registers, (zi+1, vi+1); this addition
gives the value of the digit sum, si+1.

Fig. 1. olDFA adder.

Fig. 2. olDFA structure and delay (bit level).

Fig. 2 shows, in bit-level detail, the structure of the olDFA
and its critical path. The decomposition block performs the
equations (1), which involves a rearrangement and partial
addition of the bits of the RBCD operands. These operations
are depicted in Fig. 3 in the upper part (rearrangement of the
operand bits) and middle part (partial addition of the operand
bits).

t0i+1 = X3
i + Y 3

i

T 0
i+1 = X3

i · Y 3
i · (x2

i + x1
i · y2

i)+

(x2
i + y2

i) · (x1
i · (X3

i + Y 3
i))

Z2
i = X3

i · Y 3
i · (x2

i · x1
i + y2

i) + X3
i · Y 3

i · x1
i · y

2
i +

(X3
i + Y 3

i)⊕ x1
i · y2

i + (X3
i + Y 3

i) · x2
i · y2

i

z2
i = X3

i · Y 3
i · (x2

i + y2
i · x1

i + x2
i · y2

i)+
X3

i · x2
i · (x1

i ⊕ Y 3
i) + (1)

y2
i · (X3

i + Y 3
i · x2

i + x2
i · x1

i · Y 3
i)

Z1
i = (x2

i + y2
i + x1

i) · (X3
i ⊕ Y 3

i)+

X3
i · (x2

i + y2
i · x

1
i + x1

i · Y 3
i · (y2

i + x2
i)) +

Y 3
i · (x2

i · x1
i · y2

i + X3
i · x1

i)
V 0

i = x0
i ⊕ y0

i

v1
i = y1

i ⊕ (x0
i + y0

i)
v2

i = y1
i · (x0

i + y0
i)

In Fig. 2, registers rZ2, rZ1, rz2, rV0, rv1 and rv2 store
all the outputs of the decomposition block, except the transfer
bits. These transfer bits, consisting of the pair (T 0

i+1, t0i+1),
and the information previously stored in the registers are added
using a network of full-adders (FAs) and half-adders (HAs).
This addition is in the critical path of the olDFA, highlighted
in Fig. 2. Therefore, the clock cycle (CC) of the olDFA is
CColDFA = Tdecom +2 ·TFA +2 ·THA +Treg , where Tdecom

is the delay of the decomposition block, TFA is the delay of
a FA, THA is the delay of a HA, and Treg is the delay of a
register load.

Due to the row of registers in Fig. 2 (grey blocks), the online

3

Fig. 3. Grouping scheme and sum of the bits of the RBCD operands [10].

Decomposition

rZ2 rz2 rv2 rZ1 rv1 rV0

FA 1
HA 1 FA 2

HA 2

FA 3

HA 3

+ +
v + +

+

+

+ ++-

-

--

- -

- --
-

Z z v Z v V t Ti+1 i+1
00

i i i i i i
2 2 2 11 0

Z z v Z v Vi+1 i+1 i+1 i+1 i+1 i+1
2 2 2 11 0

S i+1
3

s i+1
2

s i+1
1

s i+1
0

X
3

x
2

x
1

x
0

Y
3

y
2

y
1

y
0

rZ2 rz2 rv2 rZ1 rv1 rV0

rti+1 rTi+1

t Ti+2 i+2
00

Z VZi+2 z
i+2 vi+2 i+2 i+2 i+2

2 2 2 11 0

rCp3 rSp2 rCp2 rC2 rSp1 rSp0

' ' ' ' ' '

Fig. 4. olDFAp module: the pipelined version of the olDFA.

delay of the olDFA is δolDFA = 1.
Therefore, the total execution time for adding two n-digit

RBCD data is TolDFA = (1 + n) · CColDFA.
The pipelined version of the olDFA (called olDFAp) is

presented in Fig. 4. To obtain well-balanced stage, two levels
of registers have been included because the delay of the
decomposition block is close to that of a FA plus a HA
(Tdecom ' TFA + THA).

The clock cycle of the olDFAp is CColDFAp =
max{Tdecom, TFA + THA}+ Treg .

Although CColDFAp
is less than CColDFA, the online

delay of the olDFAp is δolDFAp = 3.
Therefore, the total execution time for adding two n-digit

RBCD data using an olDFAp is TolDFAp
= (3 + n) ·

CColDFAp .
In order to reduce the initiation interval between successive

computations for data streaming, a hardware modification to
both olDFA and olDFAp was introduced in [23]. Fig. 5 shows
this modification in the olDFA. It consists of two AND-gates
whose inputs are connected to the transfer bits (T 0

i+1, t0i+1)
and a control signal referred as Control. This control signal
is forced to be zero only when the most significant digit of
the next two n-digit operands enter the olDFA (or olDFAp).

This modification makes it no necessary to insert separation
cycles between the processing of two consecutive data streams;
i.e. there is no penalty when it has to be processed a stream
of data. It was proved in [23] that this modification neither
increases area nor delay in both olDFA and olDFAp.

The adder trees described in the next section were built
using olDFA and olDFAp modules with this modification. In
this way, the throughput of the adder trees is similar to that
of the standard serial case.

III. ONLINE DECIMAL MULTIOPERAND ADDITION

Several architectures for performing online decimal mul-
tioperand addition have been described in [25]. These mul-
tioperand adders are designed by following a method which
minimizes hardware resources, and therefore, power consump-
tion. This method was proposed in [24] and consists of
building adder trees in which the maximum possible olDFA
(or olDFAp) modules are placed in each level. The resulting
architectures have the same delay as other possible configura-
tions, but with fewer external registers. Hence, this is the best
configuration option in terms of saving hardware and power
consumption. The design of the multiformat and multioperand
adder trees presented in section IV follows this method as well.

A. olDFA-based and olDFAp-based adder trees

Fig. 6 shows two examples of olDFA-based adder trees.
With m being equal to the number of operands of the
multioperand adder tree, and taking into account the level
enumeration shown in the figure, the closed-form expressions
of the following parameters can be derived:
• k, the total number of olDFAs in the adder tree:

k = m− 1
• L, the total number of levels in the adder tree:

L = dlog2me
• ml, the number of operands at level l:

ml = dml−1/2e starting with m1 = m

Decomposition

rZ2 rz2 rv2 rZ1 rv1 rV0

FA 1
HA 1 FA 2

HA 2

FA 3

HA 3

+ +
+ +

+

+

+ ++
-

-

--

- -

- --
-

Z z v Z v V t Ti+1 i+1
00

i i i i i i
2 2 2 11 0

Z z v Z v Vi+1 i+1 i+1 i+1 i+1 i+1
2 2 2 11 0

S i+1
3 s i+1

2
s i+1

1
s i+1

0

Control

X i
3

x i
2

x i
1

x i
0

Y i
3

y i
2

y i
1

y i
0

Fig. 5. olDFA with control of the input transfers.

4

• kl, the number of olDFAs at level l:
kl = bml/2c

• Rl, the number of external register at level l:
Rl = ml mod 2

These expressions can be useful in the process of designing
an olDFA-based adder tree.

All the previous parameters depend on m and the expres-
sions ml, kl, and Rl are only valid for the adder trees built
according to the method mentioned at the beginning of this
section. More details about the derivation of these parameters
can be found in [25].

Another parameter derived in [25] is the clock cycle of an
olDFA-based adder tree for m operands, CColDFAm , which
is expressed as:

CColDFAm = dlog2me · CColDFA (2)

Note that the clock cycle CColDFAm depends on the
number of levels of the tree, and therefore, depends on m.

The online delay of a generic olDFA-based adder tree also
depends on m since its expression is:

δolDFAm
= L = dlog2me

and the total execution time for adding m n-digit RBCD
operands is:

TolDFAm = (L + n) · CColDFAm

Due to the fact that the online delay of an olDFAp adder
is equal to three, then the number of external registers in
the olDFAp-based adder trees is three times as much as that
needed for the olDFA-based architectures. As a consequence,
the parameter Rl (number of registers at level l) of an olDFAp-
based adder tree is Rl = 3 · (ml mod 2). The remaining
parameters k, L, ml and kl have the same expressions as those
of olDFA-based adder trees.

The clock cycle expression of an olDFAp-based adder tree
for m operands is:

CColDFApm = Tdecom + TFA + THA + Treg (3)

that is, the clock cycle is equal to the last stage of an olDFAp
plus the first stage of the next olDFAp in the tree. CColDFApm

is smaller than CColDFAm , and in contrast to the latter, does

Fig. 6. Two olDFA-based architectures for 6 operands.

Fig. 7. Pipelined olDFA-based and olDFAp-based architectures for 6
operands.

not depend on m. The online delay expression of an olDFAp-
based adder tree is δolDFApm = 3 ·L, and the total execution
time for adding m n-digit RBCD operands is:

TolDFApm = (3 · L + n) · CColDFAm

B. Pipelining adder trees

Since the clock cycle of an olDFAp-based adder tree is the
sum of the first and last stages of two consecutive olDFAp
modules, placing pipeline registers at every level of the tree
gives the best performance in terms of delay and, at the same
time, provides well-balanced stages.

Fig. 7(a) and Fig. 7(b) show pipelined versions of olDFA-
based and olDFAp-based adder trees for m = 6 operands, re-
spectively. By placing the pipeline registers (colored in black)
at each level of the trees, the clock cycle of a pipelined olDFA-
based adder tree for m operands , CCP−olDFAm , matches the
clock cycle of an olDFA. Thus, CCP−olDFAm = CColDFA.

In the same way, the clock cycle of a pipelined olDFAp-
based adder tree for m operands, CCP−olDFApm , is the same
as the clock cycle of an olDFAp. Thus, CCP−olDFApm =
CColDFAp .

If the clock cycle expressions of all architectures reviewed
in this section are analyzed, it can be seen that the pipelined
olDFAp-based ones have the lowest clock cycle. A side effect
of pipelining is that the online delay of the adder trees
increases. The online delay of a pipelined olDFA-based adder
tree is δP−olDFAm = 2 ·L− 1, whereas the online delay of a
pipelined olDFAp-based adder tree is: δP−olDFApm = 4·L−1.

The total execution time to operate m n-digit RBCD
operands using a pipelined olDFA-based adder tree is:

TP−olDFAm = (2 · L− 1 + n) · CColDFA

and the total execution using a pipelined olDFAp-based adder
tree is:

TP−olDFApm = (4 · L− 1 + n) · CColDFAp

IV. ONLINE DECIMAL MULTIFORMAT ADDITION
(OLDFAMFORMAT)

As shown in section I, the use of different formats can
optimize decimal algorithms. This section describes the design

5

of online decimal full adders which support input operands
encoded with different formats (multiformat) and provides the
result in RBCD. As mentioned in section II, the supported
decimal formats have to fulfill the condition 11 ≤ α+β ≤ 15
in order to have sufficient redundancy to prevent a carry
propagation.

Apart from the RBCD, there are many other 4-bit codes
that meet this condition. Nevertheless, we limit the study
of redundant decimal codes to the cases in which the most
significant bit has negative weight and the remaining bits
have positive weight (similar to the RBCD). In this way, the
delay and area of the corresponding adders are similar to the
case of the pure RBCD adders (other codes involve a high
hardware cost which makes them non-competitive). Table II
shows the redundant decimal codes that are discussed in this
paper. In the first column, we present the weight of each
bit of the code as a function of its relative position. The
second column provides the digit set of each code, and the
third and fourth columns show some examples of each code.
The first code of the table (with weight -8421) corresponds
to RBCD. For the sake of clarity, from this point on we
refer to RBCD−7421, RBCD−7321... as the RBCD code with
weight -7421, -7321 ... , and keep the RBCD notation for the
RBCD−8421 code (i.e., RBCD = RBCD−8421).

TABLE II
RBCD CODES FOR ONLINE DECIMAL MULTIFORMAT ADDITION

Code (weight) Digit set Example (digit 4) Example (digit -4)
-8421* {-7,..,7} 0100 1100
-7421 {-7,..,7} 0100 1011
-7321 {-7,..,6} 0101 1011—1100
-6421 {-6,..,7} 0100 1010
-6321 {-6,..,6} 0101 1010
-6221 {-6,..,5} 0110 1010—1100
-5421 {-5,..,7} 0100 1001
-5321 {-5,..,6} 0101 1001
-4421 {-4,..,7} 0100 1000
* Standard RBCD

Let olDFAMformat denote a general two-operands online
decimal multiformat adder. There are two ways to approach
the design of multiformat adders: i) by using the existing
olDFA adder with a pre-code conversion stage to RBCD; and
ii) by designing tailored adders for the specific associated
codes. These cases are addressed separately, and then, their
advantages and disadvantages are discussed.

A. Multiformat by code conversion stage

The olDFA described in previous sections works with
RBCD encoded operands. One way to design an online
decimal multiformat adder is by using an olDFA that has
undergone a previous conversion stage from a non-RBCD code
shown in Table II to RBCD code. The delay and area of the
conversion depend on the specific code conversion functions.

For example, the conversion functions from RBCD−5421

code (X3
i ,x2

i , x1
i , x0

i) to RBCD code (X
′3
i ,x

′2
i , x

′1
i , x

′0
i) are:

X
′3
i = X3

i · (x2
i + x1

i · x0
i)

x
′2
i = X3

i · x
2
i + X3

i · ((x1
i + x0

i)⊕ x2
i)

x
′1
i = X3

i · x
1
i + X3

i · (x1
i ⊕ x0

i) (4)

x
′0
i = x0

i ⊕X3
i

As an example of the above conversion expression, the
number 1101−5421 is equal to 0000RBCD since:

X
′3
i = 1 · (1 + 0 · 1) = 1 · 0 = 0

x
′2
i = 1 · 1 + 1 · ((0 + 1)⊕ 1) = 0 + 1 · (0) = 0

x
′1
i = 1 · 0 + 1 · (0⊕ 1) = 0 + 1 · (1) = 0

x
′0
i = 1⊕ 1 = 0

Note that the critical path of these equations (x
′2
i) goes

through four logic levels (a logic level corresponds to a gate
of three inputs; this model was used in [10] and we follow it
as a rough approximation. It is corroborated with the actual
implementation results presented in section VI). Therefore, in
order to add RBCD−5421 and RBCD numbers, we need to
convert RBCD−5421 encoded operands to RBCD, and then
add two RBCD operands by using an olDFA.

We have calculated the conversion functions of all the codes
shown in Table II to RBCD (see Appendix I). Table III
shows the number of logic levels required for those conversion
functions.

TABLE III
DELAY FOR THE CONVERSION TO RBCD

Code Logic Levels
RBCD 0

RBCD-7421 4
RBCD-7321 4
RBCD-6421 3
RBCD-6321 4
RBCD-6221 2
RBCD-5421 4
RBCD-5321 3
RBCD-4421 1

The architecture of a general olDFAMformat by code con-
version is shown in Fig. 8, where each 4-bit input (X,Y) has
a signal (f1, f2) that represents the format of the incoming
number. The area and delay of the Code Conversion module
depend on the specific associated codes of the input operands,
as well as, the number of different formats to be supported at
each input.

As an example, the simplest olDFAMformat by code con-
version is that one that supports two formats for each input,
one with RBCD and the other with RBCD-4421 (see Fig. 9),
whereas the most complex olDFAMformat by code conversion
is that one that covers all the codes of Table II (see Fig.
10). In any case, the online delay of an olDFAMformat by
code conversion is δolDFAMformat

= 1, which remains the
same as that of the olDFA. However, the clock cycle of an
olDFAMformat is:

CColDFAMformat
= CColDFA + ∆ (5)

6

Code Conversion

4

4 4
RBCD RBCD

olDFA

S

4

X Y

RBCD

f2f1
4

nn

Fig. 8. olDFAMformat by code conversion.

where ∆ varies and depends on the number of supported
formats at the input of the olDFAMformat.

Returning to the above examples, if the olDFAMformat

supports the simplest case (RBCD and RBCD-4421), ∆ =
Tmux2−1 + 1ll, where Tmux2−1 is the delay of a 2-1 mul-
tiplexor and ll the delay of one logic level (see Fig. 9 and
Table III); if the olDFAMformat supports the most complex
case, then ∆ = Tmux9−1 + 4ll, where Tmux9−1 is the delay
of a 9-1 multiplexor (see Fig. 10 and Table III).

B. Multiformat by specific design

This subsection shows the design of an olDFAMformat

that supports two different codes in both inputs of the adder
without a code conversion module. The goal is to reduce the
overhead due to the conversion stage of the previous proposal
by designing tailored adders for each possible pair of codes of
Table II. More than two codes per input is discussed in section
IV-D. From this point on, we refer to these tailored adders as
multiformat adders by specific design.

To design these tailored adders with RBCD output, the
efficiency in the delay of the decimal adder proposed in [10]
for RBCD operands has been taken into account. Thus, we

-4421
to

RBCD

4

4
RBCD

olDFA

4

RBCD

S

Y

MUX 2-1

4

-4421
to

RBCD

4

4
RBCD

X

4

MUX 2-1

f1 f2

Code
Conversion

4 4

44

Fig. 9. The simplest case: olDFAMformat supporting two codes (RBCD
and RBCD-4421)

RBCD-7421
To

RBCD

RBCD-7321
To

RBCD

RBCD-6421
To

RBCD

RBCD-6321
To

RBCD

RBCD-6221
To

RBCD

RBCD-5421
To

RBCD

RBCD-5321
To

RBCD

RBCD-4421
To

RBCD

fMUX 9 to 1

RBCD-xxxx

4

RBCD

4

Code conversion n

f

n

Fig. 10. The most complex case: Conversion stage covering all the codes
of Table II.

decided to keep the basic decomposition scheme proposed in
that paper (and depicted in Fig. 3 in this paper) in order to
minimize the computation time for the new multiformat online
decimal adders.

An example of this decomposition scheme for the multi-
format case is shown in the upper part of Fig. 11, where
the white circles denote bits with a negative weight (called
negabits) and the black circles denote bits with a positive
weight (called posibits); groups Zi and Vi and ti+1 are
calculated following equations (1) (shown in section II). Codes
RBCD and RBCD−5421 are considered in this example. We
can see in Fig. 11 that the same binary data (1110 plus 1110)
at input are interpreted in a different way as a function of the
format of the operands. Note that three different results are
obtained while maintaining the same decomposition scheme.
Thus, three different functions are involved, and three different
hardware submodules are required.

The olDFAMformat proposed in this section is based on a
modification of the internal architecture of the olDFA. Fig.
12 shows the block diagram of the olDFA and the new
olDFAMformat for comparison. It can be seen that there is
a new module for format selection and a new decomposi-
tion module (Mformat decomposition module). Next, we
present in detail the architecture of both the new Mformat

decomposition module and the format selection module of
Fig. 12(b).

Fig. 11. Example of multiformat decomposition scheme (upper part of the
figure)

7

1) Mformat Decomposition module: In an olDFA, two
RBCD numbers are added and the decomposition module
performs the equations (1).

In the olDFAMformat the new decomposition module is
more complex and the associated equations depend on the
specific codes supported at the inputs. In fact, equations (1)
are a particular case of having two RBCD inputs for the new
olDFAMformat.

Let us assume an olDFAMformat with inputs i1 and i2,
which supports codes with format A and B in each input. Let
f1 (f2) denote a bit to sign the format at the input i1 (i2). The
four possible code combinations at the input are as follows:

i1 i2 <-- inputs

A A
B B <-- Code combinations
A B
B A

The equations to deal with each code combination are different
and require different hardware submodules for their imple-
mentation. Nevertheless, the equations for AB and BA are
very similar and can be unified and integrated in a single
hardware submodule (of similar complexity to that of the
AA and BB combination). The general architecture of the
Mformat decomposition module for online multiformat
addition by specific design is shown in Fig. 13, where three
different hardware submodules are devoted to dealing with
the code combinations AA, BB, and AB&BA. Signal f2 in
the submodule AB&BA is used to identify the actual code
combination at the input (that is either AB or BA).

Taking into account the nine codes of Table II, there are
36 pairs of two different codes, and therefore, 36 different
olDFAMformat designs. We have designed and implemented
some of these olDFAMformat. Although we have not designed
all the 36 different possible adders, based on our study we
can deduce that the area and delay are similar for all of them.
In fact, in Appendix II, we analyze how to build a tailored
olDFAMformat that supports a RBCD encoded input plus any
input encoded with any code of Table II.

In the following, as an example and without any loss
of generality, we present a concrete design which involves
RBCD and RBCD−5421 codes (RBCD−5421 is used in [11]
for decimal multipliers to improve the area and latency for
certain operations, as the decimal partial product reduction).

(RBCD)

FA&HA

f1 f2
4 4

FA&HA

Decomposition module

4

i2 i1 i2

Format selection

Mformat decomp. module

(a) Regular olDFA (b) olDFAMformat

i1

4

(any format)

(RBCD)
4

4
(RBCD)

Fig. 12. Block diagram of the olDFA and the olDFAMformat by specific
design

to format selection module (see Fig. 12b)

f2

i1 i2

4 4
f1

f2L R

i1 i2

Eq. AB&BA

L R

i1 i2

Eq. AA

L R

i1 i2

Eq. BB

module

Mformat decomposition

Fig. 13. Mformat Decomposition module for olDFAMformat by specific
design

Table IV shows the equivalence between the RBCD and the
RBCD−5421 codes.

The proposed olDFAMformat can add two operands, both
being RBCD encoded or both RBCD−5421 or one being
RBCD and the other RBCD−5421. Let us study the three cases
separately.

• Both operands are RBCD encoded (case of Fig. 11(a)
and Eq. AA in Fig. 13). This is the case of the olDFA
reviewed in section II, where equations (1) are imple-
mented in the decomposition module. The critical path
delay of these equations goes through four logic levels
(linked to z2

i).
• Both operands are RBCD−5421 encoded (case of Fig.

11(b) and Eq. BB in Fig. 13). The equations implemented
in the decomposition module are as follows:

t05421i+1
= (X3

i · Y 3
i) + (X3

i ⊕ Y 3
i) · x2

i · y2
i

T 0
5421i+1

= (X3
i ⊕ Y 3

i) · (x2
i · y2

i)

Z2
5421i

= X3
i · Y 3

i · (x2
i · x1

i · y2
i)

+X3
i ⊕ Y 3

i · (x2
i · x1

i + x1
i · y2

i)
+X3

i · Y 3
i · (x2

i ⊕ y2
i)

z2
5421i

= X3
i · Y 3

i · (x2
i ⊕ y2

i)

+X3
i · Y 3

i · (x2
i · x

1
i · y2

i)

+(X3
i ⊕ Y 3

i) · (x2
i · y2

i + x2
i · x

1
i · y2

i)

Z1
5421i

= (X3
i ⊕ Y 3

i) · (x2
i · (x

1
i ⊕ y2

i) + x2
i · x1

i)

+(X3
i ⊕ Y 3

i) · (x2
i (x

1
i ⊕ y2

i) + x2
i · x

1
i)

V 0
5421i

= (X3
i ⊕ Y 3

i)⊕ (x0
i ⊕ y0

i) (6)

v1
5421i

= (X3
i ⊕ Y 3

i) · (y1
i ⊕ (y0

i + x0
i))

+(X3
i ⊕ Y 3

i) · (y1
i ⊕ (x0

i · y0
i))

v2
5421i

= (X3
i ⊕ Y 3

i) · (y1
i · (y0

i + x0
i))

+y1
i · x0

i · y0
i

The critical path goes through four logic levels (due to
Z1

5421i
). Note that the delay for two RBCD−5421 inputs

is the same as that of two RBCD inputs.
• One operand is RBCD encoded and the other one is

RBCD−5421 encoded (case of Fig. 11(c), Eq. AB&BA
in Fig. 13). In this case, the decomposition is performed
in two steps: i) computation in parallel of equations (6)

8

TABLE IV
RBCD VERSUS RBCD−5421 CODES

RBCD RBCD−5421

-7 1001 -
-6 1010 -
-5 1011 1000
-4 1100 1001
-3 1101 10101
-2 1110 1011
-1 1111 1100
0 0000 0000—1101
1 0001 0001—1110
2 0010 0010—1111
3 0011 0011
4 0100 0100
5 0101 0101
6 0110 0110
7 0111 0111

and the following equations:

t0negi+1
= (X3

i · Y 3
i · f2 + X3

i · Y
3
i · f2) · x2

i · y2
i

T 0
negi+1

= (X3
i · Y 3

i · f2 + X3
i · Y

3
i · f2) · x2

i · x1
i · y2

i

+X3
i · Y 3

i · x1
i · (x

2
i ⊕ y2

i)

Z2
negi

= (X3
i · Y 3

i · f2 + X3
i · Y

3
i · f2) · (x2

i + x2
i · y2

i)

+X3
i · Y 3

i · x1
i · (x

2
i + y2

i)

z2
negi

= X3
i · Y 3

i · (y2
i · (x

2
i ⊕ x1

i)) (7)

+(X3
i · Y 3

i · f2 + X3
i · Y

3
i · f2) · (x2

i · x1
i + x1

i · y2
i)

Z1
negi

= X3
i · Y 3

i · (x2
i · x1

i · y2
i)

+(X3
i · Y 3

i · f2 + X3
i · Y

3
i · f2) · x1

i · (x2
i ⊕ y2

i)
V 0

negi
= X3

i · f2 + Y 3
i · f2

v1
negi

= (X3
i · f2 + Y 3

i · f2) · (y0
i ⊕ x0

i)

v2
negi

= (X3
i · f2 + Y 3

i · f2) · y1
i · (y0

i ⊕ x0
i)

and ii) XOR operation between them, that is,

t0mixi+1
= t0negi+1

⊕ t05421i+1

T 0
mixi+1

= T 0
negi+1

⊕ T 0
5421i+1

Z2
mixi

= Z2
negi

⊕ Z2
5421i

z2
mixi

= z2
negi

⊕ z2
5421i

Z1
mixi

= Z1
negi

⊕ Z1
5421i

(8)

V 0
mixi

= V 0
negi

⊕ V 0
5421i

v1
mixi

= v1
negi

⊕ v1
5421i

v2
mixi

= v2
negi

⊕ v2
5421i

Note that equations (7) include bit f2 which signs the
code at the right input. Equations (6) and (7) are per-
formed in the Mformat decomposition module. On
the other hand, equations (8) are performed outside this
module, in the format selection module, as explained in
the next subsection.

2) Format selection module: Fig. 14 shows in detail the
global architecture of the olDFAMformat by specific design.
Since the delay of equations (1), (6), and (7) is four logic
levels and they work in parallel, the delay of the decomposition
module of the olDFAMformat is the same as that of the olDFA

(which only implements equations (1)). Thus, from the point
of view of computation time, the overhead for multiformat
support compared to the regular olDFA is only due to the
format selection modules of Fig. 14.

Decomposition

rZ2 rz2 rv2 rZ1 rv1 rV0

FA 1
HA 1 FA 2

HA 2

FA 3

HA 3

+ +
+ +

+

+

+ ++
-

-

--

- -

- --
-

Z z v Z v V t Ti+1 i+1
00

i i i i i i
2 2 2 11 0

Z z v Z v Vi+1 i+1 i+1 i+1 i+1 i+1
2 2 2 11 0

S i+1
3 s i+1

2
s i+1

1
s i+1

0

Control

i2

Format
Selection

Format
Selection

Format
Selection

Format
Selection

Format
Selection

Format
Selection

Format
Selection

Format
Selection

f2
f1

i1
4

Eq. 1 Eq. 6

i1 i2 i2

Eq. 7

4

i1 i1 i2

L L LR R R
f2

f2f1

Fig. 14. Global architecture of the olDFAMformat by specific design

Fig. 15 shows the internal structure of the format selection
module for signal Z1 (the same hardware is required for the
remaining seven signals t0, T 0, Z2, ..., in Fig. 14). The logic of
this module is in charge of executing equations (8). To switch
between the four cases, we use two format signals f1 and f2,
selecting the codes of the operands as shown in Fig. 15.

According to Fig. 15, the delay of the format selection
module (and thus the time overhead for multiformat support)
is that of a 2-1 multiplexor plus an XOR gate (note that the
OR and XOR logic gates with inputs f1, f2 work in parallel

1 0

10

RBCD RBCD 0 0

-5421 -5421 1 1

RBCD -5421 0 1

-5421 RBCD 1 0

. 6 . 6 . 6. 7 . 7. 1 . 1

Fig. 15. Format Selection for Z1 (similar HW for the remaining signals
coming from the Mformat decomposition module)

9

with the Mformat decomposition module and, thus, they
are not in the critical path of the format selection module).

C. Pipelined architectures for multiformat adders

1) Multiformat by code conversion stage: To pipeline the
olDFAMformat by code conversion with well-balanced stages,
we have to take into account the complexity of the code
conversion module. For the case of dealing with only two
formats, since the delays of the conversion codes of Table III
go from 1 to 4 logic levels and the decomposition module
has a delay of 4 logic levels, the best option is to insert
the corresponding registers just at the output of the code
conversion stage and to replace the olDFA by an olDFAp. The
resulting architecture is presented in Fig. 16. This pipelined
architecture has the same CC as that of the olDFAp and the
online delay is δolDFAp +1 (due to the row of registers at the
output of the Code Conversion module).

p

RegReg

4

4

4 4 RBCDRBCD

i1 i2

4

Conversion
Code

RBCD−xxxxRBCD −xxxx

RBCD

olDFA

Fig. 16. Architecture of the Pipelined olDFAMformat by code conversion

In the case of having a more complex code conversion
module (thus, the olDFAMformat supports more than two
formats at the input), and to maintain a CC similar to that
of olDFAp, fine tuning may be performed by inserting a new
level of pipeline registers just before the final multiplexor of
the code conversion module (see Fig. 10).

2) Multiformat by specific design: To pipeline the
olDFAMformat by specific design, we have taken into account
that the delay of the decomposition module is 4 logic levels
and the delay of the format selection module is less than 4.
Therefore, in order to maintain a CC similar to that of the
olDFAp, we insert pipeline registers between the decomposi-
tion module and the format selection modules, as shown in Fig.
17. In this case, the online delay of this pipelined architecture
is δolDFAp

, i.e., it has the same online delay as an olDFAp.
Section VI presents and analyzes the experimental results of
different pipelined architectures.

D. Code Conversion vs Specific Design

This section discusses the advantages and disadvantages of
the proposed olDFAMformat designs. The first case is that
of olDFAMformat supporting just two different formats. The
overhead of olDFAMformat by code conversion is due to the
delays arising from the code conversion and a 2-1 multiplexor

Decomposition

rZ2 rz2 rv2 rZ1 rv1 rV0

FA 1
HA 1 FA 2

HA 2

FA 3

HA 3

+ +
+ +

+

+ ++
-

-

--

-

- --
-

Z z v Z v V t Ti+1 i+1
00

i i i i i i
2 2 2 11 0

Z z v Z v Vi+1 i+1 i+1 i+1 i+1 i+1
2 2 2 11 0

S i+1

3
s i+1

2
s i+1

1
s i+1

0

Control

i2

Format
Selection

Format
Selection

Format
Selection

Format
Selection

Format
Selection

Format
Selection

Format
Selection

Format
Selection

f2
f1

i1
4

Eq. 1 Eq. 6

i1 i2 i2

Eq. 7

4

i1 i1 i2

L L LR R R
f2

f2f1

r r

rCp3 rSp2 rCp2 rC2 rSp1 rSp0
+ -

-

-

+

+ +
+

Fig. 17. Architecture of the pipelined olDFAMformat by specific design

(to select one of the two formats at the input) shown in Fig.
9. On the other hand, the overhead of a olDFAMformat by
specific design is equal to the delay of a 2-1 multiplexor plus
the delay of one XOR gate (see Fig. 15). Thus, from the point
of view of time efficiency, the olDFAMformat by specific
design is the best, as expected. Nevertheless, the hardware
cost of the first implementation is less than that of the second
due to the complexity of the decomposition module of the
olDFAMformat by specific design.

For the case of an olDFAMformat with three or more sup-
ported formats at each input, the corresponding decomposition
module for a specific design becomes extremely complex,
which makes an actual implementation impractical. Thus, for
these cases, the olDFAMformat by code conversion alternative
is a reasonable choice since the code conversion module has a
reduced hardware cost (see conversion functions in Appendix
I), and the time penalty is due only to the final multiplexor
(logarithmic increase). This is because all the conversion
function elements work in parallel inside the code conversion
module. In conclusion, for two operands the specific design
approach is a good choice whereas for three or more operands
the code conversion design seems more suitable.

V. DECIMAL MULTIOPERAND AND MULTIFORMAT
ADDITION

If an application needs to deal with multioperands with
different formats (multiformat), it is possible to design a
tree by following the design strategies of the online decimal
multioperand adder presented in [25]. The first level of the tree
has to be composed by online decimal full adders supporting
multiformat operands (olDFAMformat), whereas the remain-
ing levels are composed by regular olDFAs. This is due to

10

the fact that the output of the olDFAMformat is an RBCD
encoded number. Thus, the second and following levels of the
tree deal with pure RBCD numbers, which can be managed
by regular olDFAs. Fig. 18 shows a general tree architecture,
where the inputs support different formats, whereas the second
and successive levels of the tree support the RBCD format
alone.

olDFA
Mformat

olDFA

RBCD
−xxxx

RBCD
−xxxx

RBCD
−xxxx

RBCD
−xxxx

RBCD
−xxxx

RBCD
−xxxx

RBCD
−xxxx

RBCD
−xxxx

RBCD
−xxxx

RBCD
−xxxx

... ...

...

...

... ...

olDFA

Mformat
olDFA

olDFA olDFA olDFA

olDFA olDFA

olDFA olDFA

olDFA

RBCD RBCD RBCD

RBCDRBCD

RBCD

RBCD RBCD

RBCDRBCD

RBCD RBCD

RBCD
RBCD

RBCD

Mformat

RBCD

olDFA
Mformat

olDFA
Mformat

Fig. 18. Multiformat and multioperand tree architecture

The complexity of the different olDFAMformat units of the
first level of the tree depends on the format supported by each
application. The analysis of the different configurations, time,
and online delay presented in [25] are valid for the decimal
multioperand and multiformat trees.

For a pipeline tree, all the alternatives proposed in [25] can
be used (just replacing the olDFAMformat and olDFA units
of Fig. 18 by the corresponding pipelined versions). Section
VI presents and analyzes in depth the experimental results of
different pipelined architectures.

VI. EXPERIMENTAL RESULTS

This section analyzes the performance of the architectures
proposed in this study. These architectures were modeled
in Verilog-HDL and the building blocks of the architectures
(both olDFAMformats by code conversion and by specific
design) were verified using Mentor Graphics ModelSim SE-
64 6.1e tool for all the 225 different input combinations
(variations with repetition of 15 elements taken two at a
time). We also synthesized the designs using Synopsys De-
sign Compiler (DC) and the TSMC’s tcbn65gplus 65 nm
CMOS standard cell library. With this aim, we set up two
different simulation scenarios by activating or deactivating
the dont touch attribute on the designs. In the first scenario
(denoted as S1), we activated the dont touch attribute to
avoid modifying the structure of the olDFAs, olDFAps and
olDFAMformats in the trees. In this way, the structures are
maintained and can be analyzed from a theoretical/analytical
point of view. In the second simulation scenario (denoted as
S2), we deactivated the dont touch attribute to allow Synopsis
DC to perform a balanced optimization between area and delay
of the architectures.

A. olDFAMformat Performance

Table V and Table VI show the area, delay, online de-
lay (δ), initiation interval (I.I.), and throughput (THR.) of
the olDFAMformats described in section IV. More specifi-
cally, these tables show the results of the most representa-
tive olDFAMformats: the simplest one by code conversion
(that supports RBCD and RBCD-4421 encoded operands, de-
noted as RBCD+RBCD-4421 CodeConv), the most complex
olDFAMformat by code conversion (that supports the nine
codes of Table III and denoted as 9 codes CodeConv),
and two olDFAMformats managing RBCD and RBCD-5421
encoded operands, one designed following the code conver-
sion scheme (denoted as RBCD+RBCD-5421 CodeConv) and
the other following the specific design scheme (denoted as
RBCD+RBCD-5421 SpecD). Note that CodeConv and SpecD
stand for Code Conversion and Specific Design, respectively.

Table V shows the results of the designs under S1 and Table
VI shows them under S2. We have shown the results under
S1 and S2 of the olDFA and olDFAp adders for purposes
of comparison in Table VII. Table V shows that all the
results are consistent with the theory. That is, the 9 codes
CodeConv olDFAMformat is the one with the worst perfor-
mance, whereas the RBCD+RBCD-5421 SpecD is the best in
terms of delay, throughput, and initiation interval. In fact,
the overhead in the delay of the RBCD+RBCD-5421 SpecD
compared to the delay of the olDFA under S1 (see Table
VII) is due to the Format Selection module (see Fig. 15). The
area of the RBCD+RBCD-5421 SpecD is higher than the area
of the RBCD+RBCD-5421 CodeConv, which is also consistent
with the theory (due to the complex decomposition module).
Regarding the pipelined version of the olDFAMformats, the
trend in their performance is similar to that of the non-
pipelined versions. The results show that an optimization of
39% is achieved in the delay of the RBCD+RBCD-5421 SpecD
at the cost of an 8% increment in the area respect to the non-
pipelined version. Note that the delay of the pipelined versions
of the olDFAMformats presented is practically the same (ex-
cept for the 9 codes CodeConv design) and that this matches
the delay of the olDFAp, which again is consistent with the
theory (the critical path of the pipelined olDFAMformats is in
the decomposition module of their olDFAps).

The results obtained under S2 are shown in Table VI. As
mentioned, the goal of this scenario is to balance area and de-
lay in the designs. Under this scenario, the RBCD+RBCD-4421
CodeConv achieves the best results in terms of area and delay
for both the non-pipelined and pipelined versions. In fact, the
delays of both pipelined and non-pipelined RBCD+RBCD-4421
CodeConv are practically the same as the delay of the olDFA
and olDFAp under S2 (see Table VII).

Although there is no any other proposed decimal multi-
format and multioperand online adder in the literature, for
comparison purposes, we synthesized the RBCD parallel adder
presented in [10]. Specifically, we synthesized two RBCD
parallel adders: a 16-digit RBCD adder and a 32-digit RBCD
adder (these figures correspond to the significand digits of a
decimal64 and decimal128 DFP number, respectively). The
delay and area of a 16-digit RBCD parallel adder are 0.365

11

TABLE V
RESULTS OF OLDFAMformat IN THE FIRST SIMULATION SCENARIO (S1)

olDFAMformat

Non pipelined Pipelined
delay area δ I.I.(decimal64) THR. (decimal64) delay area δ I.I.(decimal64) THR. (decimal64)

ns um2 ns mill. operat. per s ns um2 ns mill. operat. per s
RBCD+RBCD-4421 CodeConv 0.387 530 1 6.58 161 0.218 649 4 4.36 286

9 codes CodeConv 0.493 1999 1 8.38 126 0.236 2073 4 4.72 264
RBCD+RBCD-5421 CodeConv 0.412 747 1 7.00 151 0.218 797 4 4.36 286

RBCD+RBCD-5421 SpecD 0.342 1046 1 5.81 182 0.21 1124 3 3.99 297
I.I.=Initiation Interval, THR.=Throughput, δ=online delay, CodeConv= Code Conversion, SpecD= Specific Design

TABLE VI
RESULTS OF OLDFAMformat IN THE SECOND SIMULATION SCENARIO (S2)

olDFAMformat

Non pipelined Pipelined
delay area δ I.I.(decimal64) THR. (decimal64) delay area δ I.I.(decimal64) THR. (decimal64)

ns um2 ns mill. operat. per s ns um2 ns mill. operat. per s
RBCD+RBCD-4421 CodeConv 0.309 522 1 5.25 202 0.247 520 4 4.94 253

9 codes CodeConv 0.43 1366 1 7.31 145 0.273 1117 4 5.46 228
RBCD+RBCD-5421 CodeConv 0.34 610 1 5.78 183 0.264 510 4 5.28 236

RBCD+RBCD-5421 SpecD 0.341 896 1 5.79 183 0.271 990 3 5.15 230
I.I.=Initiation Interval, THR.=Throughput, δ=online delay, CodeConv= Code Conversion, SpecD= Specific Design

TABLE VII
RESULTS OF OLDFA AND OLDFAp IN BOTH SCENARIOS OF SIMULATION (S1 AND S2)

Scenarios of Simulation
olDFA (Non pipelined) olDFAp (Pipelined)

delay area δ I.I.(decimal64) THR. (decimal64) delay area δ I.I.(decimal64) THR. (decimal64)
ns um2 ns mill. operat. per s ns um2 ns mill. operat. per s

Scenario 1 0.297 479 1 5.05 210 0.218 549 3 4.14 286
Scenario 2 0.28 486 1 4.76 223 0.252 439 3 4.78 248

I.I.=Initiation Interval, THR.=Throughput, δ=online delay, CodeConv= Code Conversion, SpecD= Specific Design

0.6 0.6

0.86 0.88 0.85 0.87

1.11 1.15 1.11 1.15

0.681 0.673

0.948 0.948 0.948 0.941

1.217 1.217 1.217 1.217

0

0.2

0.4

0.6

0.8

1

1.2

1.4

3 4 5 6 7 8 9 10 11 12

n
s

number of operands

RBCD+RBCD-5421 SpecD S1 RBCD+RBCD-5421 CodeConv S1

Fig. 19. Delay of RBCD+RBCD−5421-based adder trees by SpecD and
CodeConv under simulation scenario 1 (NON-PIPELINED VERSION)

ns and 5671 µm2, whereas the delay and area of a 32-digit
RBCD parallel adder are 0.42 ns and 9348 µm2. Comparing
the results with those obtained for a RBCD+RBCD−5421 by
SpecD (see Table VI), we conclude that our online approach
needs 80% (90%) less area than the counterpart parallel adder
for 16 digits (32 digits), with a similar time to obtain the
MSD. As conclusion, these figures are consistent with those
expected for an online system: similar delay (for the MSD)
and an important hardware cost reduction.

B. Performance of Multiformat and Multioperand Adder Trees

As in the previous section, the results shown below were
obtained by running S1 and S2.

3 4 5 6 7 8 9 10 11 12

RBCD+RBCD-5421 SpecD S1 1277 2076 2624 3456 3850 4708 5177 6010 6383 7216

RBCD+RBCD-5421 CodeConv S1 1252 1838 2385 2824 3431 3980 4537 4976 5447 5890

800

1800

2800

3800

4800

5800

6800

7800

A
re

a

 (
µ

m
²)

number of operands

Fig. 20. Area of RBCD+RBCD−5421-based adder trees by SpecD and
CodeConv under simulation scenario 1 (NON-PIPELINED VERSION)

Recall that the olDFAMformats (SpecD or CodeConv) are
placed in the first level of the adder trees (see Fig. 18) and the
remaining levels are composed of olDFAs (or olDFAps in the
pipelined trees). Fig. 19 and Fig. 20 depict the delay and area
of the non-pipelined multiformat and multioperand adder trees
by running S1. As expected, the delay of the non-pipelined
trees with olDFAMformats by SpecD is less (around 4%-
10%) than that of the delay of the trees with olDFAMformats
by CodeConv. Similarly, the results obtained regarding the
area are the expected ones, i.e., the area of the trees with
olDFAMformats by SpecD is greater (around 15%-23%) than
the area of the trees with olDFAMformats by CodeConv.
This is due to the number of equations implemented in the
decomposition module in the olDFAMformats by SpecD.

Fig. 21 and Fig. 22 show the results obtained by running

12

0.512 0.512

0.7 0.7
0.74

0.7

0.9 0.92 0.9 0.88

0.495 0.526

0.7 0.71 0.7 0.735

0.9
0.91 0.925 0.92

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

3 4 5 6 7 8 9 10 11 12

n
s

number of operands

RBCD+RBCD-5421 SpecD S2 RBCD+RBCD-5421 CodeConv S2

Fig. 21. Delay of RBCD+RBCD−5421-based adder trees by SpecD and
CodeConv under simulation scenario 2 (NON-PIPELINED VERSION)

3 4 5 6 7 8 9 10 11 12

RBCD+RBCD-5421 SpecD S2 1192 1803 2292 2766 3195 4081 4354 4428 4993 5546

RBCD+RBCD-5421 CodeConv S2 1027 1656 2363 2299 3200 3466 4062 4273 4758 4912

800

1300

1800

2300

2800

3300

3800

4300

4800

5300

5800

A
re

a

(µ
m

²)

number of operands

Fig. 22. Area of RBCD+RBCD−5421-based adder trees by SpecD and
CodeConv under simulation scenario 2 (NON-PIPELINED VERSION)

S2 for the non-pipelined architectures. The delay and area
are practically the same for both the SpecD and CodeConv
schemes. In this case, the tool not only obtains a balance
between area and delay, but also reduces the delay and area
compared to the data obtained under S1 (see subsection VI-C).

Fig. 23, Fig. 24, Fig. 25, and Fig. 26 show the delay and area
of the pipelined adder trees by setting S1 and S2, respectively.
Under S1, the delay of the pipelined trees is equal for both
SpecD and CodeConv schemes (Fig. 23). The reason for this
is that the critical path is located in the same place: the
decomposition module of the olDFAps placed from the second
level of the trees onwards.

In fact, the delay is practically the same as that of the

0.219

0.226 0.226 0.226 0.226 0.226 0.226 0.226 0.226 0.226

0.22

0.226 0.226 0.226 0.226 0.226 0.226 0.226 0.226 0.226

0.214

0.216

0.218

0.22

0.222

0.224

0.226

0.228

3 4 5 6 7 8 9 10 11 12

n
s

number of operands

RBCD+RBCD-5421 SpecD Pipelined S1 RBCD+RBCD-5421 CodeConv Pipelined S1

Fig. 23. Delay of RBCD+RBCD−5421-based pipelined adder trees by SpecD
and CodeConv under simulation scenario 1 (PIPELINED VERSION)

3 4 5 6 7 8 9 10 11 12

RBCD+RBCD-5421 SpecD Pipelined

S1
1751 2739 3463 4376 4959 5951 6784 7780 8311 9277

RBCD+RBCD-5421 CodeConv

Pipelined S1
1485 2056 2797 3377 4006 4583 5379 5959 6591 7168

800

1800

2800

3800

4800

5800

6800

7800

8800

9800

A
re

a

(µ
m

²)

number of operands

Fig. 24. Area of RBCD+RBCD−5421-based pipelined adder trees by SpecD
and CodeConv under simulation scenario 1 (PIPELINED VERSION)

0.271 0.271 0.271 0.271
0.273 0.273

0.275 0.275 0.275 0.275

0.262

0.265 0.265 0.265 0.265 0.265

0.27 0.27 0.27 0.27

0.255

0.26

0.265

0.27

0.275

0.28

3 4 5 6 7 8 9 10 11 12

n
s

number of operands

RBCD+RBCD-5421 SpecD Pipelined S2 RBCD+RBCD-5421 CodeConv Pipelined S2

Fig. 25. Delay of RBCD+RBCD−5421-based pipelined adder trees by SpecD
and CodeConv under simulation scenario 2 (PIPELINED VERSION)

olDFAp under S1 (see Table VII). Note out that as the online
delay of the olDFAMformats by SpecD (δ = 3) is one less
than that of the olDFAMformats by CodeConv (δ = 4), it
is obvious that the performance in terms of throughput is
better in the case of the pipelined adder trees by SpecD.
The area of the pipelined RBCD+RBCD−5421 adder trees by
SpecD is around 17%-33% greater than that of the pipelined
trees by CodeConv (Fig. 24) due to the extra area of the
olDFAMformats decomposition modules.

Under S2, the difference in delay in both schemes is around
2%-3% (see Fig. 25), whereas the difference in area is around

3 4 5 6 7 8 9 10 11 12

RBCD+RBCD-5421 SpecD Pipelined

S2
1529 2403 2959 3724 4145 5082 5716 6562 7082 7806

RBCD+RBCD-5421 CodeConv

Pipelined S2
984 1329 1833 2185 2646 2973 3543 3839 4247 4584

800

1800

2800

3800

4800

5800

6800

7800

8800

A
re

a

 (
µ

m
2

)

number of operands

Fig. 26. Area of RBCD+RBCD−5421-based pipelined adder trees by SpecD
and CodeConv under simulation scenario 2 (PIPELINED VERSION)

13

55%-80% (see Fig. 26).

C. Comparison between Scenario 1 and Scenario 2 (S1 and
S2)

As mentioned, under S1, the tool maintains the structures
and the results can be analyzed from a theorical/analytical
point of view. On the other hand, under S2, the tool balances
area and delay in the architectures. This subsection analyzes
the increase/decrease rate (in %) of the delay and area obtained
under scenario S2 compared to the results obtained under S1.
The operation performed for each parameter is (S1-S2)/S1,
which means that a positive value corresponds to a decrease
and a negative value corresponds to an increase.

A comparison of the results obtained for olDFAMformat

under both scenarios, depicted on Fig. 27 and Fig. 28, shows
that the delay and area obtained under S2 have decreased for
non-pipelined architectures. The delay is practically the same
for RBCD+RBCD−5421 by SpecD, whereas the area has de-
creased by around 14%. However, for pipelined architectures
the delay under S2 has increased and the area has decreased.
In particular, the delay of pipelined RBCD+RBCD−5421 by
CodeConv has increased by 21% and the area has de-
creased by 36%. On the other hand, the delay of pipelined
RBCD+RBCD−5421 by SpecD has increased by 29% and the
area has decreased by 11%.

17.48 %

0.29 %

-21.10 %

-29.05 %
-40 %

-30 %

-20 %

-10 %

0 %

10 %

20 %

SpecDCodeConv

Pipelined

CodeConv

Pipelined

SpecD

Fig. 27. Increase (decrease) rate for the delay under scenarios S1 and S2 of
olDFAMformats

18 %
14 %

36 %

12 %

0 %

5 %

10 %

15 %

20 %

25 %

30 %

35 %

40 %

SpecDCodeConv Pipelined

CodeConv

Pipelined

SpecD

Fig. 28. Increase (decrease) rate for the area under scenarios S1 and S2 of
olDFAMformats

21.84 %

12.94 %

-17.26 %
-19.91 %

-30 %

-20 %

-10 %

0 %

10 %

20 %

30 % 27.31 %

23.47 %

-19.46 %

-23.74 %

CodeConv SpecD

Pipelined

CodeConv

Pipelined

SpecD

Fig. 29. Range of the increase (decrease) rate for the delay under scenarios
S1 and S2 of trees based on olDFAMformats

6.66 %

33.74 %

12.27 %

18.59 %

26.32 %

36.04 %

16.41 %

0 %

5 %

10 %

15 %

20 %

25 %

30 %

35 %

40 %

0.92 %

CodeConv

Pipelined

SpecDSpecD

Pipelined

CodeConv

Fig. 30. Range of the increase (decrease) rate for the area under scenarios
S1 and S2 of trees based on olDFAMformats

For non-pipelined trees (see Fig. 29 and Fig. 30), the
reduction of the delay obtained under S2 of the olDFAMformat

by SpecD trees (around 13%-23%) is less than the reduction of
the delay of the olDFAMformats by CodeConv trees (around
21%-27%). This is due to the fact that the olDFAMformat by
SpecD has more area than the area by CodeConv. Thus, the
balance obtained by the tool is more effective regarding the
area of the trees by SpecD (6%-26%) than the area of the trees
by CodeConv (1%-18%).

A comparison of the results obtained for pipelined trees
under S2 compared to S1 (see Fig. 29 and Fig. 30) shows that
the area of the pipelined trees by CodeConv and by SpecD
decreases by 33%-36% and 12%-16%, respectively. However,
the delay of pipelined trees by CodeConv and by SpecD
increases by 17%-19% and 19%-23%, respectively. Thus, the
balance obtained under S2 is more effective regarding area
and delay for pipelined trees by CodeConv.

Therefore, for non-pipelined architectures, the best scenario
is S2 due to the fact that the tool decreases the delay and area
compared to S1. However, for pipelined architectures the best
scenario for delay is S1 and the best scenario for area is S2.

VII. SUMMARY AND CONCLUSIONS

It is known that the use of specific representation formats al-
lows optimization of decimal algorithms and tree architectures
minimize the computation time when many operands have

14

to be operated together. In this paper we present a method
for designing decimal multiformat and multioperand online
adders. First, the issue of the decimal multiformat online adder
(olDFAMformat) is addressed in which two different design
strategies are presented: the first is based on using an olDFA
with a pre-code conversion stage; and the second one is a
specific design based on modifying the internal architecture
of the olDFA. A comparison of the strategies shows that the
first is best when more than two codes are involved at each
input of the adder, whereas if only two codes are possible at
the inputs the second strategy results in decreased delay.

The decimal multiformat online adder is extended to the
multioperand case and a general architecture of the corre-
sponding tree is presented. In these trees, the first level is com-
posed by olDFAMformat units whereas the remaining levels
are built with standard olDFA. Pipelined and non-pipelined
architectures are analyzed for all the proposed multiformat
adders.

Finally, a detailed study of the main proposed architecture
implementations under two different simulation scenarios is
presented. Under the first scenario S1, the theoretical result
is corroborated by the experimental result. Under the second
scenario S2, we let the synthesis tool optimize the design to
obtain a balanced optimization between area and delay. On
the basis of these experimental results, it can be concluded
that for non-pipelined architectures S2 is the best scenario,
whereas for pipelined architectures S1 is the best scenario.

In summary, we have presented a guideline for designing
decimal multiformat and multioperand online adders. This
guideline may help designers to decide what option is best
for their application.

REFERENCES

[1] M. Cowlishaw, “Decimal floating-point: algorism for computers,” in
Computer Arithmetic, 2003. ARITH 2003. 16th IEEE Symposium on,
2003, pp. 104–111.

[2] A. Aswal, M. Perumal, and G. Srinivasa Prasanna, “On basic financial
decimal operations on binary machines,” Computers, IEEE Transactions
on, vol. 61, no. 8, pp. 1084–1096, 2012.

[3] H. H. Goldstine and A. Goldstine, “The electronic numerical integrator
and computer (eniac),” Annals of the History of Computing, IEEE,
vol. 18, no. 1, pp. 10–16, 1996.

[4] L. Eisen, J. W. Ward, H.-W. Tast, N. Mading, J. Leenstra, S. M.
Mueller, C. Jacobi, J. Preiss, E. M. Schwarz, and S. R. Carlough, “IBM
POWER6 accelerators: VMX and DFU,” IBM Journal of Research and
Development, vol. 51, no. 6, pp. 1 –21, nov. 2007.

[5] R. Kalla et al., “Power7: IBM’s next-generation server,” Processor. IEEE
Micro 30, p. 715, 2010.

[6] A. Y. Duale, M. H. Decker, H.-G. Zipperer, M. Aharoni, and T. J.
Bohizic, “Decimal floating-point in z9: An implementation and testing
perspective,” IBM Journal of Research and Development, vol. 51, no.
1/2, 2007.

[7] E. M. Schwarz, J. S. Kapernick, and M. F. Cowlishaw, “Decimal
floating-point support on the IBM system z10 processor,” IBM Journal
of Research and Development, vol. 53, no. 1, pp. 4:1 –4:10, january
2009.

[8] T. Yoshida, T. Maruyama, Y. Akizuki, R. Kan, N. Kiyota, K. Iken-
ishi, S. Itou, T. Watahiki, and H. Okano, “Sparc64 X: Fujitsu’s new-
generation 16-core processor for unix servers,” Micro, IEEE, vol. 33,
no. 6, pp. 16–24, Nov 2013.

[9] SilMinds. (2015, April) DFP Unit (DFPU). [Online]. Available:
http://www.silminds.com/ip-products/dfp-unit

[10] S. Gorgin and G. Jaberipur, “Fully redundant decimal arithmetic,” in
Computer Arithmetic, 2009. ARITH 2009. 19th IEEE Symposium on,
June 2009, pp. 145–152.

[11] A. Vazquez, E. Antelo, and P. Montuschi, “A new family of high-
performance parallel decimal multipliers,” in Computer Arithmetic,
2007. ARITH 2007. 18th IEEE Symposium on, June 2007, pp. 195–204.

[12] M. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann,
2004.

[13] J. Olivares, J. Hormigo, J. Villalba, and I. Benavides, “Minimum sum
of absolute differences implementation in a single fpga device,” in Field
Programmable Logic and Application, FPL 2004, LNCS. Springer,
2004, pp. 986–990.

[14] S. Singh, S. hyun Pan, and M. Ercegovac, “Accelerating the photon map-
ping algorithm and its hardware implementation,” in Application-Specific
Systems, Architectures and Processors (ASAP 2011), Proceedings of the
22nd IEEE International Conference on, sept. 2011, pp. 149 –157.

[15] M. Ercegovac and T. Lang, “On-line arithmetic for DSP applications,”
in Circuits and Systems, 1989., Proceedings of the 32nd Midwest
Symposium on, aug 1989, pp. 365 –368 vol.1.

[16] W. Natter and B. Nowrouzian, “Digit-serial online arithmetic for high-
speed digital signal processing applications,” in Signals, Systems and
Computers (ASILOMAR), 2001. Conference Record of the Thirty-Fifth
Asilomar Conference on, vol. 1, nov. 2001, pp. 171 –176 vol.1.

[17] S. Rajagopal and J. Cavallaro, “Truncated online arithmetic with appli-
cations to communication systems,” Computers, IEEE Transactions on,
vol. 55, no. 10, pp. 1240 –12 529, oct. 2006.

[18] B. Girau and A. Tisserand, “On-line arithmetic-based reprogrammable
hardware implementation of multilayer perceptron back-propagation,”
in Microelectronics for Neural Networks, 1996., Proceedings of Fifth
International Conference on, feb 1996, pp. 168 –175.

[19] A. Svoboda, “Decimal adder with signed digit arithmetic,” Computers,
IEEE Transactions on, vol. C-18, no. 3, pp. 212–215, 1969.

[20] J. Moskal, E. Oruklu, and J. Saniie, “Design and synthesis of a carry-
free signed-digit decimal adder,” in Circuits and Systems, 2007. ISCAS
2007. IEEE International Symposium on, may 2007, pp. 1089 –1092.

[21] H. Nikmehr, B. Phillips, and C. C. Lim, “A decimal carry-free adder,”
in in Proceedings of the SPIE Symposium on Smart Materials, Nano-,
and Micro-Smart Systems, vol. 5649, February 28 2005, pp. 786–797.

[22] B. Shirazi, D. Yun, and C. Zhang, “RBCD: redundant binary coded
decimal adder,” Computers and Digital Techniques, IEE Proceedings E,
vol. 136, no. 2, pp. 156 – 160, Mar. 1989.

[23] C. Garcia, S. Gonzalez-Navarro, J. Villalba, and E. Zapata, “On-
line decimal adder with RBCD representation,” in Application-Specific
Systems, Architectures and Processors (ASAP 2012), Proceedings of the
23rd IEEE International Conference on, July 2012, pp. 53–60.

[24] J. Moreno, T. Lang, and J. Hormigo, “Radix-2 multioperand and
multiformat streaming online addition,” Computers, IEEE Transactions
on, vol. 61, no. 6, pp. 790–803, June 2012.

[25] C. Garcia-Vega, S. Gonzalez-Navarro, J. Villalba, and E. Zapata, “Dec-
imal online multioperand addition,” in Signals, Systems and Computers
(ASILOMAR), 2012. Conference Record of the Forty Sixth Asilomar
Conference on, 2012, pp. 350–354.

[26] A. Vazquez, J. Villalba-Moreno, E. Antelo, and E. Zapata, “Redundant
floating-point decimal cordic algorithm,” Computers, IEEE Transactions
on, vol. 61, no. 11, pp. 1551–1562, Nov 2012.

[27] A. Vazquez, J. Villalba, and E. Antelo, “Computation of decimal
transcendental functions using the cordic algorithm,” in Computer Arith-
metic, 2009. ARITH 2009. 19th IEEE Symposium on, June 2009, pp.
179–186.

[28] A. Vazquez, E. Antelo, and P. Montuschi, “Improved design of high-
performance parallel decimal multipliers,” Computers, IEEE Transac-
tions on, vol. 59, no. 5, pp. 679–693, May 2010.

[29] J. Villalba, J. Hormigo, and E. Zapata, “Improving the throughput
of on-line addition for data streams,” in Application-Specific Systems,
Architectures and Processors (ASAP 2007), Proceedings of the 18th
IEEE International Conference on, July 2007, pp. 272–277.

