
UNIVERSIDAD DE CÓRDOBA

Departamento de Arquitectura de Computadores, Electrónica y

Tecnologı́a Electrónica

TESIS DOCTORAL

Programming issues for video analysis on Graphics

Processing Units

Juan Gómez Luna

Córdoba, Febrero de 2012

A mis padres, por enseñarme el camino

A Virginia y a Nicolás, por recorrerlo conmigo

Agradecimientos

Con la satisfacción de haber llegado al final y después del esfuerzo realizado, hay que mirar atrás para

agradecer su apoyo a todos los que han hecho posible la consecución de esta meta.

En primer lugar, a mis directores Dr. José Marı́a González Linares, Dr. José Ignacio Benavides

y Dr. Nicolás Guil, por haberme orientado tan certeramente. Me siento afortunado por trabajar en

condiciones de exigencia y rigor.

A mis compañeros del Departamento de Arquitectura de Computadores, Electrónica y Tecnologı́a

Electrónica de la Universidad de Córdoba, en especial a Edmundo Sáez por su ayuda en los inicios.

También a los compañeros del Departamento de Arquitectura de Computadores de la Universidad de

Málaga, particularmente a Juan Lucena, por su habilidad resolviendo problemas hardware, y a Fran,

por sus orientaciones en la preparación de este documento.

Al Vicerrectorado de Polı́tica Cientı́fica y al Vicerrectorado de Estudios de Posgrado y Formación

Continua de la Universidad de Córdoba, por toda la ayuda prestada.

Al profesor Walter Stechele, de la Universidad Técnica de Munich, por darme la posibilidad de

hacer la estancia allı́ y por facilitarme todos los trámites para la consecución del Doctorado Europeo.

Por supuesto, a Holger Endt, de BMW Forschung und Technik. También, a los profesores Hans-

Joachim Bungartz y Noel O’Connor por elaborar los informes sobre mi tesis.

A Nacho, Marisa y Miguel Ángel, por acogerme tan bien en Málaga.

A mi padre, Pedro, por ser mi mentor en la tesis y en todo lo demás; a mi madre, Mercedes, por

escucharme siempre y por hacer todo por ayudarme; y a mis hermanos, Fernando y Pedro, porque me

gusta que seamos tres diferentes implementaciones de la misma arquitectura. Y, por supuesto, a Loli,

por lo bien que me prepara el hatillo cada vez que paso por casa.

Por último, a Virginia por ser la motivación y la recompensa, por compartir lo bueno y lo malo

incondicionalmente (”Bajo el tı́tulo estará mi nombre, que traducido significará el tuyo”). Y a mi

pequeño Nicolás por darle sentido a todo.

Contents

List of Figures vii

List of Tables ix

1.- Video analysis on Graphics Processing Units 1

1.1 Introduction . 1

1.1.1 Parallelism as the key for improving computer performance 2

1.1.2 Recent evolution of parallel hardware . 2

1.1.3 Parallel programming models . 4

1.2 Programming GPUs for general-purpose processing 5

1.2.1 A few words on CUDA . 6

1.2.2 Conditions and bottlenecks for GPU performance 6

1.2.3 Generic optimization techniques on GPUs 7

1.3 Towards video processing optimization on GPU . 10

1.3.1 State of the art of video and image processing on GPU 11

1.3.2 Efficient mapping of video analysis applications on GPU 12

1.3.3 Stream processing paradigm for video analysis on GPU 13

1.3.4 Aims of this work . 16

1.4 Structure of this document . 16

2.- An introduction to GPU computing with CUDA 19

2.1 Graphics processing units as general-purpose processors 19

2.2 CUDA-enabled devices . 21

2.3 CUDA programming model . 21

2.3.1 Thread hierarchy . 21

2.3.2 Memory hierarchy . 23

2.4 Hardware implementation . 23

i

CONTENTS

2.4.1 SIMT architecture and multithreading . 24

2.4.2 Streaming multiprocessors . 24

2.4.3 Memory spaces . 26

3.- Target applications 31

3.1 Introduction . 31

3.2 Histogram calculation . 32

3.2.1 Discussion . 32

3.3 Egomotion compensation and moving objects detection algorithm 33

3.3.1 Discussion . 38

3.4 The Generalized Hough Transform . 39

3.4.1 Discussion . 42

3.5 Conclusions . 44

4.- Highly optimized histogram calculation on GPU 47

4.1 Introduction . 47

4.2 Related work . 49

4.3 A microbenchmark-based study of the shared memory 50

4.3.1 Methodology and initial observations . 51

4.3.2 Warp access patterns . 52

4.3.3 Non-atomic access . 53

4.3.4 Atomic access . 54

4.4 An optimized approach to histogram generation in shared memory 65

4.4.1 Replication . 66

4.4.2 Padding . 68

4.4.3 Interleaved read access . 68

4.5 Experimental evaluation . 69

4.5.1 Evaluation of the optimization techniques 70

4.5.2 Thorough evaluation of our approach and comparison to related works 73

4.5.3 Histogram-based kernels for color images 74

4.5.4 Discussion . 75

4.5.5 Evaluation of the R -per-block approach on older GPU generations 76

4.6 Experiences with replication in global memory . 77

4.7 Conclusions . 77

ii Universidad de Córdoba

CONTENTS

5.- Efficient work distribution 81

5.1 Introduction . 81

5.2 Dealing with sequential parts . 82

5.2.1 SISD and SIMD computing on the GPU . 83

5.2.2 Experimental evaluation . 84

5.3 Re-organizing the workload . 85

5.3.1 Reducing memory accesses and executed instructions through compaction . . 86

5.3.2 Minimizing warp divergence through sorting 87

5.3.3 Experimental evaluation . 87

5.4 Load balancing versus occupancy maximization . 89

5.4.1 Applying compaction and sorting to the GHT 89

5.4.2 Work distribution among blocks and threads 92

5.4.3 Application of the mechanisms . 94

5.4.4 Experimental evaluation . 96

5.5 Conclusions . 100

6.- Stream processing on GPU with CUDA streams 101

6.1 Introduction . 101

6.2 CUDA streams . 103

6.3 Characterizing the behavior of CUDA streams . 105

6.3.1 A thorough observation of CUDA streams 106

6.3.2 CUDA streams performance models . 110

6.4 Testing the streams with SDK-based applications 112

6.4.1 Matrix multiplication . 113

6.4.2 256-bins histogram . 115

6.4.3 RGB to grayscale conversion . 117

6.5 Optimized stream processing with CUDA streams 118

6.5.1 Adaptation to variable kernel computation time 118

6.6 Conclusions . 120

7.- Conclusions 123

7.1 Conclusions and main contributions . 123

7.2 Publications related to this dissertation . 125

7.2.1 Publications in conference proceedings . 126

7.2.2 Publications in journals . 126

Programming issues for video analysis on Graphics Processing Units iii

CONTENTS

7.2.3 Technical reports . 127

7.2.4 Articles under review . 127

7.3 Future research . 128

A.- Resumen de la tesis doctoral en castellano 131

A.1 Paralelización eficiente de las aplicaciones de vı́deo en GPU 131

A.2 Stream processing para análisis de vı́deo en GPU 133

A.3 Principales aportaciones . 133

A.4 Conclusiones y trabajos futuros . 134

Bibliography 135

iv Universidad de Córdoba

List of Figures

1.1 Schematic of heterogeneous architectures . 3

1.2 Blocking/tiling in shared memory . 8

1.3 Thread Level Parallelism vs. Instruction Level Parallelism 8

1.4 Scatter and gather parallelization . 9

1.5 Global memory organization and addresses . 10

1.6 SISD, SIMD and stream processing . 14

1.7 Programming issues tackled in this dissertation . 17

2.1 Comparison of CPU and GPU architectures . 20

2.2 CUDA programming model . 23

2.3 Streaming multiprocessor in c.c. 1.x . 25

2.4 Streaming multiprocessor in c.c. 2.0 . 26

3.1 Parallel histogram calculation . 33

3.2 Spatial locality in a grayscale image . 33

3.3 Scheme of an optical flow based motion detection algorithm 34

3.4 Flow diagram for egomotion estimation with RANSAC 35

3.5 2D histogram used for vector clustering . 36

3.6 Captures of two videos . 37

3.7 GPU implementation of a moving objects detection algorithm 38

3.8 Variables defined in the GHT . 40

3.9 Template, image and Hough spaces generated by the Fast GHT 41

3.10 GPU implementation of the Fast GHT . 42

3.11 Non-maximum suppression in Canny edge detection 43

4.1 Timeline for a warp access pattern to shared memory 52

4.2 Latency in clock cycles of non-atomic access to shared memory 54

4.3 Latency in clock cycles of atomic access with position conflicts 55

4.4 Latency in clock cycles of atomic access with bank conflicts 56

v

LIST OF FIGURES

4.5 Implementation of hash function in lock mechanism 59

4.6 Schematic of the shared memory . 60

4.7 Timeline for execution of instructions performing an atomic addition 61

4.8 Execution time in milliseconds (ms) for 16 warps accessing 32 to 512 positions . . . 64

4.9 Latency in clock cycles due to inter-warp conflicts 65

4.10 Detail of a Lenna’s grayscale image . 66

4.11 Replication in shared or global memory . 67

4.12 Degenerate case in a 32-bin histogram in shared memory 69

4.13 Latency in clock cycles for a 32-way position conflict 70

4.14 Naive and interleaved read accesses . 71

4.15 Execution time for 256-bin histogram calculation with replication and padding . . . 71

4.16 Execution time for 256-bin histogram calculation with interleaved read access 73

4.17 Performance in gigabytes per second of 256-bins histogram calculation 74

4.18 Average execution time in milliseconds of the displacement calculation 78

5.1 Execution results of block-centric and warp-centric RANSAC implementations . . . 85

5.2 GPU implementation of clustering kernel . 86

5.3 Compaction and sorting applied to the resultant vectors array 88

5.4 Performance impact of compaction and sorting on clustering kernel 88

5.5 Compaction: contour points are compacted into a List of Edges 90

5.6 BASE strategy . 90

5.7 Dense list sorting using index I as a key . 91

5.8 Load-balancing mechanism . 93

5.9 Save-shared-memory mechanism . 94

5.10 Comparison between SSM and LB using a synthetic sorted list 99

6.1 Comparison of timelines for sequential and concurrent copy and kernel execution . . 104

6.2 Computation on a sequence of 6 frames for non-streamed and streamed execution . . 105

6.3 First observations of CUDA streams on GeForce GTX 280 107

6.4 First observations of CUDA streams on GeForce GTX 480 108

6.5 Second observations of CUDA streams on GeForce GTX 280 and GTX 480 110

6.6 Validation of performance model on devices with compute capability 1.1 113

6.7 Validation of performance model on devices with compute capability 1.2/1.3 114

6.8 Validation of performance model on devices with compute capability 2.0 115

6.9 Execution time for streamed matrix multiplication 116

6.10 Execution time for streamed 256-bins histogram computation of 64 frames 116

vi Universidad de Córdoba

LIST OF FIGURES

6.11 Execution time for streamed RGB to grayscale conversion of 32 frames 118

6.12 Optimally streamed computation on a video stream 119

6.13 Execution time for streamed 256-bins histogram computation of 4096 frames 121

Programming issues for video analysis on Graphics Processing Units vii

List of Tables

2.1 Hardware and software features in NVIDIA GPUs 22

2.2 Hardware features of NVIDIA devices used in this dissertation 22

3.1 Summary of target applications and their parallelization problems 44

4.1 Experiments with atomic additions incurring in 2-way bank conflicts 58

4.2 Recommended execution configurations on GeForce GTX 580 71

4.3 Average performance in GB/s of histogram calculation on GeForce GTX 580 75

4.4 Average and minimum execution times for three histogram-based kernels 75

4.5 Recommended execution configurations on GeForce GTX 280 76

4.6 Average performance in GB/s of histogram calculation on GeForce GTX 280 77

5.1 Videos used for performance evaluation of a motion detection algorithm 87

5.2 Implementations for search for pairings, scale and displacement calculations 95

5.3 Test workloads characteristics for GHT implementation 96

5.4 Profiling of irregular kernels within the GHT . 97

5.5 Average execution times (ms) of the main parts of the application for four videos . . 99

6.1 NVIDIA GeForce Series features related to data transfers and streams 107

6.2 Features of NVIDIA GeForce GPUs used in this work 112

6.3 Values of tsc for devices from GeForce 8, 9, 200, 400 and 500 series 112

6.4 Estimated and experimental optimal number of streams for three applications 117

6.5 Number of frames per second for histogram calculation of a video sequence 121

ix

1
Video analysis on
Graphics Processing
Units

Video processing is a part of signal processing where input and/or output signals are video streams.

It covers a wide variety of applications that are generally very compute-intensive due to the algorith-

mic complexity. Moreover, many of these applications demand real-time performance. Fulfilling

these requirements makes necessary the use of hardware acceleration such as Graphics Processing

Units (GPUs).

GPUs have spectacularly bursted in the scene of High Performance Computing (HPC) in the last

few years, thanks to the advent of new programming models that allow an easy exploitation of their

vast computing resources. They are successfully being used in an innumerable variety of scientific and

engineering applications. Among them video applications are on the cutting edge of this revolution,

because of their computational requirements and the wide spectrum of end users that increasingly

demands them.

This chapter contextualizes the parallelization of video applications on GPU and establishes moti-

vations and goals of this dissertation. Section 1.1 gives an overview of current matters about computer

performance and parallelism. In Section 1.2 GPUs are introduced as programmable general-purpose

processors. In Section 1.3 research efforts in video and image processing on GPU are reviewed.

Moreover, motivations and goals of this dissertation are stated. Finally, Section 1.4 depicts the struc-

ture of this document.

1.1 Introduction

The ever-increasing need for processing speed, together with the sudden braking in the evolution of

single-core Central Processing Units (CPU) due to power consumption and thermic problems, has

made the industry search for alternative and productive computing platforms. Until today there is no

known alternative to parallelism for sustaining growth in computing performance. Parallelism, that

was traditionally exclusive for supercomputing applications on large and expensive distributed-

memory or shared-memory multiprocessors, has been extended to new chip multiprocessor (CMP)

1

1.1. Introduction

or multicore architectures. The deployment of these new architectures on all types of computers,

included desktop and mobile devices, highlights the need for parallel programming, in order to take

advantage of the multiple processing cores.

The former issues are introduced in this section. Then, the recent evolution of parallel computing

platforms is reviewed. Finally, several topics related to programming parallel platforms are discussed

and parallel programming models are presented.

1.1.1 Parallelism as the key for improving computer performance

In 1965 Gordon E. Moore [80] predicted the exponential growth of transistor density along the years.

The so-called Moore′s law states that the number of transistors that can be placed inexpensively on

an integrated circuit doubles approximately every two years. Consequently, for the last half-century

computers have been doubling in performance and capacity every couple of years. This uninterrupted

growth has boosted the age of Information Technology (IT).

IT has transformed our works and lives: it helps to bring distant people together, enhance eco-

nomic productivity, advance science, enable medical diagnoses and treatments, improve weather pre-

diction, produce and deliver content for education and entertainment, coordinate disaster response...

These are just samples of an endless list that have been made possible by sustained improvements

in computer performance. In this way, there exists a societal dependence on growth in comput-

ing performance [31]. Moreover, it has arisen the expectation that such phenomenal progress will

continue into the future. Every sector of the economy pursues more productivity, efficiency and inno-

vation, which are only possible through technological advances that should be supported by computer

performance.

The mentioned exponential growth on performance was based on a corresponding growth on

processors clock frequency. By scaling down the size of the CMOS integrated circuits, the supply

voltage was reduced, in order to allow the increase of clock speed with an affordable power con-

sumption. However, the physical limits of this strategy were reached by 2003, so that increasing

performance required increasingly expensive energy demands and heat-dissipation challenges. The

sustained performance improvement of single-core CPUs was abruptly stopped.

Therefore, future growth in computer performance will not come from increasing clock frequency

but from new designs including multiple processing cores that make parallelism available. Applica-

tions will continue to enjoy performance improvement whether their inherent parallelism is exploited,

in order to allow multiple threads of execution to work cooperatively. Thus, this new context, that has

been called the concurrency revolution [132], has hardware and software sides.

1.1.2 Recent evolution of parallel hardware

The first response that microprocessor vendors gave to the slowdown in the growth of processor per-

formance was to include more than one processor core in the same chip. Chip multiprocessors or

multicore processors multiply the number of transistors within the same die while maintaining power

constrains under control. Processor cores share the main memory (and possibly some cache levels)

2 Universidad de Córdoba

Chapter 1. Video analysis on Graphics Processing Units

SPE

SPE

PPE

Main Memory

SPE

SPE

SPE

SPE

SPE

SPE

CellBE
Core 0 Core 1

Core 2 Core 3

CPU GPU

Main Memory GPU Memory

PCI Express

Core 0 Core 1

Core 2 Core 3

CPU FPGA

Main Memory

L
o

c
a

l M
e

m
o

ry

HyperTransport

(a) (b) (c)

Figure 1.1: Schematic of heterogeneous architectures: CPU in combination with GPU (a), linked by

the PCI Express bus; CPU in combination with FPGA (b), linked by HyperTransport or QuickPath

Interconnect; and Cell Broadband Engine Architecture, which includes CPU core and accelerator

cores within the same chip

and, as single-core processors, they implement superscalar architectures that can include multithread-

ing designs and Single−Instruction Multiple−Data (SIMD) extensions such as MMX and SSE.

Current desktop processors include up to 6 cores while server processors have up to 12 cores.

Multicore processors allow some kind of coarse-grain program parallelism, but they do not satisfy

applications including massive data parallelism. Such a necessity has favored the appearance of

many − core processors, that consist of hundreds of simple scalar cores. The main exponent of this

trend are GPUs, that are presented in Section 1.2.

Another alternative for applications acceleration are Field Programmable Gate Arrays (FPGA).

They contain execution units embedded that can yield high performance, because they exploit locality

and program their on-chip interconnects to match the data flow of an application. They ensure orders

of magnitude performance improvement over microprocessors and less power consumption.

GPUs and FPGAs are used as accelerators in conjunction with a CPU, forming a heterogenous

computing system [10], as it can be seen in Figure 1.1. Such combinations offer high peak per-

formance and energy efficiency. The CPU executes sequential code, and the accelerator deals with

parallel and specialized computation. Both parts are linked by some high-speed bus, as the PCI Ex-

press bus [110] in the case of GPUs, or QuickPath Interconnect [58] and HyperTransport [55] in the

case of FPGAs.

Together with the former, the third trend in heterogeneous computing are heterogeneous chips as

the Cell Broadband Engine Architecture [17]. It consists of one CPU core, called Power Processing

Element (PPE), and eight accelerator cores, called Synergistic Processing Elements (SPE), as pre-

sented in Figure 1.1(c). A related concept is AMD Fusion [1], an integration of CPUs and GPUs

within the same die.

In the near future, many alternatives are glimpsed: a number of different designs for different

purposes are being developed. Intel and Altera are working in a microprocessor with integrated

FPGA for embedded applications [67]. The Intel’s Single-chip Cloud Computer [52] will be a many-

core design including 48 processors with dynamic configuration of voltage and frequency to attain

reduced power consumptions. On-chip accelerators specifically designed for highly specialized tasks

(cryptography, compression, network security...) are opening a wide spectrum of possibilities [50].

Programming issues for video analysis on Graphics Processing Units 3

1.1. Introduction

1.1.3 Parallel programming models

Together with designing and building parallel hardware, the challenge of parallelism is developing

programs in a way that mainstream applications can be benefited. A successful exploitation of paral-

lelism is subject to several factors [31]:

• The application under consideration must inherently have parallelism. Many computational

problems have independent tasks or process large data sets in which operations on each indi-

vidual item are mostly independent.

• The parallelism must be identified by the programmer. If tasks are not entirely independent,

the programmer should identify communication and synchronization between tasks.

• Parallelization must be efficient. The amount of work assigned to each processing thread should

be similar, ensuring load-balancing. Locality should also be properly exploited, in order to

minimize synchronization and communication overheads.

• The parallel program must be correct. Programmers should be aware of dependence among

tasks, communication and synchronization issues, restrictions of the programming models...

They should have computational thinking skills [146], i.e., the ability to formulate problems

into computational models that can be solved efficiently by available computing resources.

Unfortunately automatic parallelization of sequential codes has not worked well in practice. Se-

quential programs expose inherent dependences that require an accurate program analysis to under-

stand its potential behavior. In this way, many parallel programming languages and models have been

proposed in the past several decades. Choosing the proper programming model mainly depends on

the parallel machine.

The most widely used parallel programming models are the Message Passing Interface (MPI) [81]

and OpenMP [102]. They can also be used in conjunction [114, 147]. On the one hand, MPI is

used for scalable cluster computing. It is originally a model where computing nodes do not share

memory, although it is also used in shared-memory machines [142]. All data sharing and interaction

must be done through explicit message passing. MPI has been successful in the high-performance

scientific computing domain, but the amount of effort required to port an application into MPI can

be extremely high. On the other hand, OpenMP supports shared memory. Thus, it is successfully

used for multicore processors allowing both data and task parallelism. However, it has not been

able to scale beyond a couple hundred computing nodes due to thread management and frequent

synchronization overheads [114]. In addition, certain types of parallelism have been more difficult

to support in OpenMP. Examples are pipelining [35] due to complex synchronization needs, as well

as client-server and nested parallelism that have benefited from the later introduced OpenMP tasking

model [3].

Programming GPUs for general-purpose computations was extremely hard in the beginning, be-

cause standard graphics Application Programming Interfaces (API) were used. The Cg (C for graph-

ics) shading language [84] was able to be used as a general programming language, thanks to basic

data types and operators which work in a similar way to their C equivalents. Then, there were early

attempts to provide general-purpose programming languages such as Brook [12]. Nevertheless, the

4 Universidad de Córdoba

Chapter 1. Video analysis on Graphics Processing Units

popularity of GPUs for general-purpose computations started with the advent of the Compute Unified

Device Architecture (CUDA) [90] by NVIDIA. Since then, GPUs have demonstrated that they are a

solid alternative for HPC applications.

In order to avoid the programming effort due to rewriting parallel programs for different plat-

forms, several research works have tackled the translation of CUDA programs into OpenMP or vice

versa. MCUDA [130] allows CUDA programs to be executed on multicore processors. In [72] a

compiler framework for automatic translation of OpenMP applications into CUDA-based GPU ap-

plications is presented. That concern together with the fact that CUDA is only valid on NVIDIA

devices made several major industry players, including Apple, Intel, AMD/ATI and NVIDIA, jointly

develop OpenCL [65]. Similar to CUDA, OpenCL is a standardized programming model in which

applications can run without modification on all processors that support OpenCL. For instance, the

same OpenCL program can be executed on a NVIDIA GPU, an AMD GPU or a multicore processor.

Nevertheless, program optimization and tuning is very dependent on the hardware platform, so that

OpenCL is still far from being the definitive parallel programming model. Moreover, performance

comparisons between CUDA and OpenCL are nowadays clearly favorable to the first one [22, 25, 44].

In the case of FPGAs, programming is performed through hardware description languages (HDL)

such as VHDL and Verilog. Hardware programming is hard and requires an advance expertise. An

attempt to port CUDA programs into FPGAs is presented in [106]. A comparison between FPGAs

and GPUs with CUDA and OpenCL can be found in [143].

Finally, there are several attempts in the industry to deliver higher-level data-parallel programming

systems that allow certain kinds of data-parallel descriptions to be written once and then executed on

different targets such as multicore, GPUs and FPGAs. Examples are Microsoft’s Accelerator [133]

and Intel Array Building Blocks [82]. Although these models do not ensure the best performance on

the variety of target platforms, they might be sufficient for many classes of algorithms and users, and

save a considerable programming effort [125].

1.2 Programming GPUs for general-purpose processing

In the eighties, graphics cards appeared as specialized processors for manipulating computer graph-

ics. The term GPU was coined by NVIDIA in 1999 with the introduction of the GeForce 256, ”The

World’s first GPU” [99]. It was technically defined as ”a single-chip processor with integrated trans-

form, lighting, triangle setup/clipping, and rendering engines”. Such capabilities were based on a

highly parallel structure that made them very effective while processing large blocks of data in paral-

lel.

That massive computational power made some scientific researchers pay attention to the use of

GPUs as general-purpose accelerators. Earlier works [46, 70] already noticed their potential per-

formance. Nowadays, GPUs are a successful alternative for scientific and engineering applications,

thanks to new architectural designs and new programming environments oriented to general-purpose

computations, and the fact that there is a huge install base of desktop graphics cards.

There are two major GPU manufacturing companies, AMD and NVIDIA, and two booming pro-

gramming models, CUDA and OpenCL. Latest AMD GPU, Radeon HD 6990M, promises a peak

Programming issues for video analysis on Graphics Processing Units 5

1.2. Programming GPUs for general-purpose processing

performance of 1601.6 GFLOPs and a memory bandwidth of 115.2 GB/s while the most powerful

NVIDIA GPU, GeForce GTX 580, has 1581.1 GFLOPs peak performance and 192.4 GB/s memory

bandwidth. These figures sound impressive compared to current desktop CPUs, but real performance

of an application is inevitably conditioned by the efficient exploitation of hardware resources. This

section reviews relevant factors on GPU performance and suitable techniques for GPU programming.

Although the following explanations are focused on CUDA and NVIDIA devices, they are also valid

for OpenCL and AMD devices due to the similarities between both.

1.2.1 A few words on CUDA

CUDA offers a huge number of threads (work items in OpenCL) running logically in parallel.

Every thread executes the same code, called kernel, in a Single − Program Multiple − Data

(SPMD) fashion. Threads are grouped into blocks (work groups in OpenCL) which are mapped

to streaming multiprocessors (SM). A multiprocessor consists of several streaming processors

(SP) which execute concurrently a collection of threads, called warp (wavefront in AMD GPUs).

Warp size is 32 threads in current NVIDIA GPUs.

Multiprocessors have access to the same high-capacity off-chip global memory, their own low-

latency on-chip shared memory (local memory in OpenCL), and a number of registers. On the one

hand, the global memory bandwidth is used most efficiently when simultaneous memory accesses

by threads can be coalesced into a single memory transaction. Coalescing occurs when the words

accessed by all threads lie in the same memory segment. On the other hand, shared memory improves

performance when data reuse exists. It is divided into banks which can be accessed simultaneously.

The hardware also has cached constant and texture memories which are appropriate for read-only

data.

An extensive introduction to CUDA programming model and hardware architecture is given in

Chapter 2.

1.2.2 Conditions and bottlenecks for GPU performance

In spite of the vast potential performance of GPUs and their improved programmability, achieving a

significant performance is subject to some conditions. In order to harvest maximum performance

benefits, the GPU formulation of an application algorithm should fulfill the following characteristics

as far as possible [54]:

• Massive data parallelism: GPUs contain hundreds of execution units that perform properly

when huge numbers of input data instances must be processed.

• Regularity in computations and data accesses: Threads should perform similar work.

• Avoidance of conflicts: The way memory bandwidth is exploited is crucial. Conflicting

parallel accesses to memory locations are undesirable.

If the former conditions fail, the GPU implementation will suffer serious performance bottlenecks

such as the following.

6 Universidad de Córdoba

Chapter 1. Video analysis on Graphics Processing Units

Serialization makes potentially concurrent threads be executed sequentially. Two are the main

causes of serialization. On the one hand, kernels are SPMD programs where conditional branches can

be included. These branches can provoke divergence among threads of the same warp. Each branch

path taken is independently executed. On the other hand, certain memory accesses might result in

contention between threads. Atomic operations in shared or global memory are serialized if different

threads try to access the same location. Read or write accesses to shared memory are serialized as

well when threads access more than one address in the same bank.

In general, the total amount of time to complete a parallel job is limited by the thread that takes

the longest to finish. Typically, load imbalance appears with non-uniform data distributions.

GPUs have limited global memory bandwidth compared to peak compute throughput. This is

able to provoke a memory − bound behavior of the application. In order to illustrate this, let us

consider the peak throughput and memory bandwidth of GeForce GTX 580 given above.With 192.4

GB/s bandwidth, 48 G single-precision floating-point operands can be read per second. In order to

achieve peak throughput (1581.1 GFLOPs), a program must perform 1581.1
48

≈ 32 single-precision

floating-point arithmetic operations for each operand. In this way, GPUs prefer high arithmetic

intensity, that is, large amounts of instructions sequentially applied to the same operand [103].

1.2.3 Generic optimization techniques on GPUs

Programmers should face many challenges when implementing GPU applications. Attaining the men-

tioned performance conditions might be a hard task. In the following lines a survey of optimization

techniques applicable to GPU programming are reviewed [54, 119].

Increasing locality in dense arrays In many applications input data elements are accessed sev-

eral times during execution. This data reuse can be effectively managed through the shared memory.

Blocking or tiling technique consists of identifying chunks of global memory content that are ac-

cessed by multiple threads and loading them into shared memory, as depicted in Figure 1.2. Exam-

ples of the use of this technique can be found in several codes in CUDA Software Development Kit

(SDK) [86] such as matrix multiplication and convolution.

Data reuse can also be managed through registers, that are even faster than the shared mem-

ory [140]. Register tiling is profitable when threads do not need to access data in registers owned

by other threads.

Improving efficiency and vectorization in dense arrays Thread coarsening stands for how

much work performs each thread. With this technique the work that would be assigned to multiple

threads in a straightforward implementation is merged so that each thread calculates multiple output

elements. In this way, possible redundant work is performed only once. Moreover, this technique

increases Instruction Level Parallelism (ILP), which helps to hide pipeline latencies [141].

The merged code will result in the use of more registers probably causing a reduction in the ratio of

active threads per SM (the so-called occupancy). Nevertheless, the increase in the ILP compensates

for the reduction in Thread Level Parallelism (TLP). Figure 1.3 explains TLP and ILP approaches.

Programming issues for video analysis on Graphics Processing Units 7

1.2. Programming GPUs for general-purpose processing

Thread 0 Thread 1 Thread n-1

Global memory

Shared memory
Chunk of input data, often

referred to as block, bin, tile

Figure 1.2: Blocking/tiling in shared memory. First, threads load chunks of global memory data into

shared memory. This can be performed by coalesced accesses. Then, threads take advantage of data

reuse in the faster shared memory

x = x + b y = y + b z = z + b w = w + b

x = x + b

x = x + c

x = x + a

y = y + c

y = y + a

z = z + c

z = z + a

w = w + c

w = w + a

Warp 0

T
im

e

w = w + b

z = z + b

y = y + b

T
im

e

w = w + a

z = z + a

y = y + a

x = x + a

4 independent operations

4 independent operations

Thread Level Parallelism

Instruction

Level

Parallelism

Warp 1 Warp 2 Warp 3

Warp 0

Figure 1.3: Thread Level Parallelism (TLP) vs. Instruction Level Parallelism (ILP). A TLP approach

fills the pipeline with instructions from different warps. An ILP approach chains instructions from

the same warp. The pipeline flows without stalls in both approaches, if the instructions that the warp

scheduler launches are independent

Reducing output interference Many applications in GPU computing are easily designed by using

a scatter approach, that consists of assigning one thread per input element, as shown in Figure 1.4

(left). Such an approach performs particularly well in highly regular and workload-independent com-

putations. However, in some cases output elements are affected by more than one input element.

Under such circumstances a scatter approach would suffer contention among threads. It should use

atomic operations, which provoke serialization. Therefore, it is most beneficial assigning one thread

per output element, i.e., a gather approach, as illustrated in Figure 1.4 (right). Examples of gather

implementation are direct coulomb summation [128] and parallel reduction [43].

8 Universidad de Córdoba

Chapter 1. Video analysis on Graphics Processing Units

Thread 0 Thread 1 Thread n-1

Input

Output

Thread 0 Thread 1 Thread n-1

Input

Output

Scatter parallelization Gather parallelization

Figure 1.4: Scatter and gather parallelization. A scatter approach assigns one thread per input element.

It suffers write contention when more than one thread access the same output element. In a gather

approach one thread is assigned to one output element. An input element can be broadcasted when it

is read by more than one thread

Nevertheless, in applications with a reduced number of output elements a gather approach makes

no sense, because the reduced number of threads would be insufficient for exploiting the vast GPU

resources. Hence, other optimization techniques must be found for improving the scatter approach.

For instance, approaches to histogram calculation employ replication schemes in global or shared

memory, in order to decrease contention [112, 123].

Dealing with non-uniform and sparse data Non-uniform or sparse data sets must be carefully

analyzed and reorganized, in order to attain efficient implementations. In the case of sparse data,

compaction can reduce the number of memory accesses and instructions executed, and the incidence

of warp divergence [109]. Non-uniform data can be sorted by certain characteristics and divided into

chunks or bins which can be loaded into shared memory. Moreover, parallel prefix sum or scan

operations can be used to generate an array of starting points of all bins. Sorting and binning are

successfully applied in cutoff summation [118] and MRI reconstruction [129].

The former techniques require fast implementations of parallel primitives, such as compaction,

sorting and scan, that can be found in highly optimized libraries like CUDPP [21] and Thrust [8].

Another set of high performance parallel primitives was presented by Billeter et al. [9].

Dealing with dynamic data In some staged applications, usually referred to as wavefront, data

to be processed in each phase of computation need to be dynamically determined and extracted from

a bulk data structure. Such data must be organized for exploiting locality and coalescing, whilst

contention is avoided. The amount of work and the level of parallelism often grow and shrink during

execution. Examples are graph applications such as Breadth-First Search (BFS). Queue − based

approaches and kernel−arrangement approaches have been successfully used in BFS. The former

organizes dynamic data in a hierarchy of warp, block and global queues to carry out the algorithm

phases [71]. The latter launches one kernel per phase with adaptive number of threads and blocks [76].

Programming issues for video analysis on Graphics Processing Units 9

1.3. Towards video processing optimization on GPU

DRAM

channel

0

DRAM

channel

1

DRAM

channel

2

DRAM

channel

3

DRAM

channel

m-1

DRAM

bank

Global memory Address Steering bits

Figure 1.5: Global memory organization and addresses. Global memory is organized in DRAM

channels/banks. Steering bits of global memory addresses decode DRAM channel and bank

Improving data efficiency in structured grids Applications such as Partial Differential Equations

(PDE) solvers, in which data is arranged in stencils or other multidimensional grids, can be benefited

from a two-fold optimization of global memory accesses. First, the data layout is transformed so that

memory accesses from a (half-)warp are coalesced. Second, memory accesses across warps exploit

Memory Level Parallelism (MLP), if warps are planned to access distinct DRAM channel and banks

which form global memory. This can be achieved through certain steering bits of global memory

addresses that decode the channel/bank [131], as illustrated in Figure 1.5.

1.3 Towards video processing optimization on GPU

Video processing encompasses compression, enhancement, analysis and synthesis of video streams.

It is intrinsically related to image processing, because a video stream is a sequence of still images,

called frames, representing scenes in motion. In order to achieve the illusion of a moving image, the

minimum number of frames per second (fps), called frame rate, should be at least fifteen. Typical

frame rates are 25 or 30 fps, although new professional cameras record 120 or more fps.

Nowadays, the ever-increasing amount of video and image data needs ever-increasing compu-

tational power. Images and frames resolution also tends to increase. Indeed, high-definition (HD)

contents are getting more popular. In addition, video and image processing applications are computa-

tionally intensive and often present real-time or super-real-time requirements. For example, surveil-

lance and monitoring systems need to robustly analyze video from multiple cameras in real time to

automatically detect unusual events.

Luckily, video and image algorithms are highly amenable to parallel processing, because they

exhibit data parallelism and strong computational locality. For instance, video tends to contain high

degrees of locality in time (contents of one frame are similar to contents of previous or next frame)

and in space (neighboring pixels have similar values).

10 Universidad de Córdoba

Chapter 1. Video analysis on Graphics Processing Units

In this regard, GPUs are becoming extensively used computing devices in today’s video and image

processing applications. GPUs are cheap, powerful and widely installed in consumer devices, while

video and image processing is already demanded by more and more end users. Moreover, GPUs

not only speed up video and image processing applications, but they also offer a vast computational

power to transform the workflows themselves [53]. For example, GPUs perform filters and operators

in real-time on full HD video, making low-resolution preview windows obsolete. Until now, many

sophisticated video and image processing applications were executed off-line due to long latencies.

The transitioning of these applications into real-time domain enables opportunities such as additional

user interaction or more intelligent interactive tools.

While parallelizing video applications on GPU two main considerations have to be taken into

account:

• Video applications should be properly mapped onto GPU resources. Many components of these

applications are inherently parallel, as frames are regular data structures and the same computa-

tion is typically applied to every pixel. However, parallelizing other components is pretty much

challenging, because of a variety of factors such as workload-dependent computations, use of

sparse or non-uniform data, etc.

• GPUs belong to a heterogeneous system. Video streams, which can be very long or even end-

less, should be transferred from CPU to GPU, and results from GPU to CPU. Such transfers

constitute a performance bottleneck. The granularity of video data transfers and the conse-

quent computation might have a significant impact on performance. The stream processing

paradigm can help programmers to face this issue.

After reviewing the state of the art of video and image processing, this section discusses the

former considerations. Then, aims of this dissertation are stated.

1.3.1 State of the art of video and image processing on GPU

Since the advent of CUDA a huge number of video and image applications have been ported to GPU.

A significant research work has been performed in many subjects such as image segmentation [139],

feature detection [20, 149, 150], stereo imaging [23, 34], machine learning & data processing [15, 33,

73, 115], particle filtering [13, 79], optical flow [108, 144], and edge detection [77, 105, 108].

Most of the above works are focused on properly mapping algorithms onto GPU architecture.

Systematic analysis and guidance generally applicable are scarce. In this way, a set of metrics cus-

tomized for image processing are presented in [107]. The metrics, sorted by relative importance, are

the parallel fraction (i.e., Amdahl’s law [2]), branch diversity, per-pixel floating-point computation,

per-pixel memory access, floating-point computation to global memory access ratio, and task depen-

dency. They can be used for predicting the effectiveness of an application for GPU implementation.

In [74] several program optimizations applicable to video processing on GPU are evaluated. The

authors use three-dimensional convolution as a pedagogical example. They present a baseline imple-

mentation, and then carry out subsequent optimizations such as the use of shared memory, streaming

pattern and computation in Fourier domain. They also provide an overview of video applications such

as video event detection, spatial interpolation, and depth image-based rendering.

Programming issues for video analysis on Graphics Processing Units 11

1.3. Towards video processing optimization on GPU

Finally, several open-source libraries for image processing and computer vision such as Open-

VIDIA [32], GPUCV [27], minGPU [4], and GPU4vision [57] have appeared. In addition, CUDA

toolkit [89] provides the NVIDIA Performance Primitives library (NPP) [91] for image and video

processing.

1.3.2 Efficient mapping of video analysis applications on GPU

As it has been noticed, video applications are very suitable for parallel implementation and partic-

ularly GPU implementation. They are massively data-parallel, because frames are two-dimensional

data sets which contain hundreds of thousands of pixels. Moreover, they typically implement complex

algorithms which entail a large arithmetic intensity.

Most of these applications or at least many components of them are considered to be regular in

the sense that they apply the same computation to every pixel. This inherent parallelism facilitates

porting the application onto GPU and ensures:

• Load balancing: every thread will perform a similar amount of work.

• Linear addressing: consecutive threads will access consecutive addresses assuring locality of

reference and coalescing.

• Avoidance of serialization: threads will follow the same execution path.

An example of regular computation is color conversion, for instance YUV to RGB [94]. A

straightforward implementation which simply assigns one thread per pixel will yield a satisfactory

performance. A more sophisticated implementation will be necessary to perform a convolution. In

order to deal with data reuse, tiling in shared memory will be very profitable [74, 113].

However, parallelization becomes more challenging in some other components which should

manage sparse or non-uniform intermediate data, present workload-dependence, or include sequential

phases. In the following lines we identify different cases of irregular computation found during the

development of this thesis. Under each bulleted item we draw one example and one possible solution:

• Write collisions that are unpredictable because of workload dependence. They should be re-

solved with atomic operations.

– This occurs in histogram computation.

⇒ As mentioned in Section 1.2.3, replication alleviates contention [112, 123].

• Inherently sequential computations that underutilize GPU resources.

– Any iterative process with separated Single − Instruction Single − Data (SISD) and

SIMD phases.

⇒ Executing just one thread on the GPU might be more efficient than transferring data and

computing on the CPU.

• Non-linear memory references that are due to workload-dependent memory accesses or unsuit-

able data organizations. They provoke uncoalesced accesses to global memory or bank conflicts

in shared memory.

12 Universidad de Córdoba

Chapter 1. Video analysis on Graphics Processing Units

– Any operation in which threads should process the image by columns instead of by rows.

⇒ In [30] image transposition enables linear accesses while applying the wavelet transform by

columns.

• Load imbalance and warp divergence that are due to workload-dependent computations and/or

the handling of intermediate sparse, non-uniform, or dynamic data. They might cause serial-

ization, and unproductive memory accesses and executed instructions.

– After a contour detection an edge image is a sparse data organization. Threads assigned to

edge pixels will work, but the rest will remain idle while processing the edge image.

⇒ A compaction step can be applied in order to remove non-edge pixels.

Motivation

As it can be seen, attaining efficient implementations of irregular parts requires programmers to apply

an additional effort which is indispensable for performance. Systematically tackling parallelization

problems is necessary to consolidate GPUs as readily available high-performance platforms for video

processing.

In this regard, this dissertation will focus on designing and applying programming strategies that

lead us to achieve load balancing, linear addressing, and serialization avoidance while mapping those

non-inherently parallel parts onto GPUs. Thus we direct our efforts to investigate:

• Improvement of histogram-based kernels by minimizing write contention. Current approaches

to histogram calculation yield very far from peak performance. For instance, in [123] the

authors reported throughput values under 11 GB/s on a GeForce 8800 GTX with 86.4 GB/s

peak memory bandwidth.

• Proper mapping of SISD and SIMD phases by designing warp-centric approaches. A warp-

centric implementation distributes data and computation among warps instead of blocks. In

SISD phases some parallelism can be achieved, although one sole thread per warp works. More-

over, these implementations can avoid divergence and intra-block synchronization overheads by

being conscious of warp behavior.

• Use of data-parallel primitives (compaction, sorting...), which re-organize input data, in irreg-

ular parts of video applications, in order to attain load balancing and linear addressing, and

to avoid intra-warp divergence. A proper data organization also saves memory accesses and

executed instructions.

• Evaluation of tradeoffs in load-balanced implementations. Since a perfect load balancing re-

quires a more complex handling of data accesses and work distribution, it entails a more intense

use of registers and shared memory that can burden the occupancy of multiprocessors.

1.3.3 Stream processing paradigm for video analysis on GPU

In the last years, stream processing has become the preferable computer programming paradigm

for certain classes of real-time applications such as video and other media processing applications.

Programming issues for video analysis on Graphics Processing Units 13

1.3. Towards video processing optimization on GPU

SISD SIMD

Stream

Processing

Instructions Instructions

Input data Output data

Input data Output data

Kernels

Input streams Output streams

(a) (b)

(c)

Figure 1.6: Comparison between SISD (a), SIMD (b) and stream processing (c). SISD and SIMD

executions apply a sequence of instructions to one single data element or multiple data elements

respectively. Nevertheless, in the stream processing paradigm data is organized in streams and com-

putation in pipelined kernels. The first kernel receives an input stream, intermediate kernels work

with intermediate streams, and the last kernel outputs a resultant stream

Stream processing meets the computational demands of these applications on programmable archi-

tectures, avoiding the need for inflexible special-purpose solutions [63].

In this way, some specialized stream processors were designed for media processing [64, 117].

Nevertheless, a more recent trend is joining stream processing and GPU architecture.

Stream processing

The stream processing paradigm defines computation in terms of operations performed on sets of data

elements or streams. Operations are grouped into kernels, so that each kernel processes an input

stream and writes the results in an output stream. Kernels are usually pipelined. Figure 1.6 compares

SISD, SIMD and stream processing paradigms.

Stream processing has been applied to disparate systems such as dataflow systems, reactive sys-

tems and signal processing [127]. These applications have in common certain characteristics [116]:

• Data parallelism: the same function is applied to every data element or record in a stream.

Moreover, a number of records can be processed simultaneously without waiting the results

from previous records.

• Arithmetic intensity: a high number of arithmetic instructions is typically applied to every

input record.

• Data locality: records in a stream or streams themselves might be affected by neighboring

counterparts but not by remote ones. This generates a regular and deterministic data flow in

14 Universidad de Córdoba

Chapter 1. Video analysis on Graphics Processing Units

which data elements are processed only once or a short number of times. Thus, pipelined

kernels are able to work with independent streams.

Research efforts towards stream processing on GPU

Recently, several research works have tackled the adaptation of the stream processing paradigm to

GPUs. They make use of the StreamIt programming model [134], which supplies programming

constructs that raise the abstraction level of stream processing.

In [136] it is described a method to orchestrate the execution of a StreamIt program on a het-

erogenous platform with multicore CPU and GPU. This approach identifies the relative benefits of

executing a task on the CPU and the GPU. The method formulates the problem of partitioning the

work between CPU and GPU, taking into account the latencies of data transfers, as an integrated

Integer Linear Program (ILP) which can then be resolved by an ILP solver.

A compilation framework for GPU using synchronous data flow streaming languages, called

Sponge, is presented in [49]. Sponge performs a variety of optimizations to generate efficient code.

It provides portability across different GPU generations thanks to a higher abstraction of hardware

details.

In [41] an automated compilation flow that optimizes the mapping of stream processing applica-

tions on GPU is presented. This approach proposes the use of a mixture of memory access threads,

which are in charge of copying data from global memory to shared memory, and compute threads,

which are disconnected from global memory. The tradeoff between memory access and compute

threads is determined by a heuristic that automatically selects the best mapping parameters.

CUDA streams

In CUDA a stream is defined as a sequence of commands that execute in order [97]. These com-

mands can be data transfers or kernel launches. CUDA streams are announced as the way to overlap

communication and computation. Since data transfers are an intrinsic performance bottleneck of

GPUs, the use of CUDA streams alleviates it by hiding data transfers with execution. Moreover, the

CPU can be performing other tasks concurrently, because CUDA streams use non-blocking (asyn-

chronous) memory transfers. In Fermi devices [93] CUDA streams also allow concurrent kernel

execution within the same GPU, and concurrent data transfers between CPU and GPU in Tesla de-

vices.

Motivation

In this dissertation, CUDA streams are interpreted as the way to implement stream processing in

CUDA. We focus on video processing applications, which exhibit the stream processing characteris-

tics listed above. As indicated in Section 1.3.2, arithmetic intensity and data parallelism are respec-

tively due to the algorithmic complexity and the massive number of pixels in each frame. Both are

desirable features for GPU computing, as it was stated in Section 1.2.2.

Data locality is clearly reflected by the fact that video applications typically process single frames

Programming issues for video analysis on Graphics Processing Units 15

1.4. Structure of this document

or short sequences of frames in an independent manner. Thus, in a heterogenous CPU-GPU environ-

ment these (sequences of) frames can be independently transferred from CPU to GPU, processed in

the GPU, and results transferred from GPU to CPU. Such a succession of events can be efficiently

managed by CUDA streams with the added advantage of hiding data transfer latencies.

Let us consider a long or endless video stream that should be processed on a GPU. The video

stream can be divided into chunks of a certain number of frames. Each chunk is assigned to one

CUDA stream. Then, each CUDA stream will be responsible for transferring the chunk from CPU to

GPU, applying computation through one or more kernels, and transferring the results from GPU to

CPU. Synchronization of these steps will be automatically carried out.

We investigate the impact (if any) of the chunk size and the number of streams on performance,

in order to obtain an optimum application of CUDA streams to video processing.

1.3.4 Aims of this work

The main goal of this dissertation is obtaining efficient implementations of video analysis applications

on GPUs. In this way, we tackle such a challenge from two sides, as it has been introduced above.

First, we investigate proper mappings of video and image algorithms onto GPU, paying attention to

memory access and work distribution. Second, we deal with GPUs as part of heterogenous systems

and look at video applications from the stream processing point of view by using CUDA streams.

Thus, we pursue the following concrete aims:

• Developing optimized histogram calculation on GPU by an exhaustive analysis of the perfor-

mance of atomic operations.

• Dealing with inherently sequential parts (SISD) surrounded by massively data-parallel parts

(SIMD).

• Achieving load-balanced implementations of irregular components of video applications after

the use of data-parallel primitives which re-organize the workload.

• Evaluating the tradeoffs during the development of load-balanced implementations, which re-

quire a complex handling of data accesses and work distribution.

• Analyzing the behavior of CUDA streams and investigating how data transfers are overlapped

with computations, in order to use them optimally.

• Designing an optimized scheme for stream processing on GPU based on CUDA streams.

1.4 Structure of this document

This section explains how this document is organized. As a roadmap through the motivations of this

dissertation, Figure 1.7 summarizes the main programming issues related to the parallelization of

video applications.

16 Universidad de Córdoba

Chapter 1. Video analysis on Graphics Processing Units

Kernel 0

Kernel i

Kernel i+1

...

Kernel n

...

...

...

Input stream

Video sequence from CPU

Output stream
Results to CPU

Intermediate

data

Stream processing:
- How to use CUDA streams

- Determine stream size Undesirable features:
- Sparse data

- Non-uniform data

- Dynamic data

- Workload-dependence

Programmers should deal with:

Kernels should achieve:
- Load balancing

- High occupancy

Computation on GPU

- Data reuse

- Sequential (SISD) phases

- Unproductive memory accesses

and executed instructions

- Warp divergence

Kernel 1 - Histogram calculation

Chapter
6

Chapter

4

Chapter
5

Chapters 3 and 5

Figure 1.7: Programming issues for video analysis tackled in this dissertation. The yellow boxes

represent the challenges that a programmer must face, while parallelizing irregular components in

video applications. The green box stands for the application of the stream processing paradigm. It is

indicated the chapter in which these issues are studied

Chapter 1 gives an overview of current issues in parallel processing and introduces GPUs as

general-purpose processors. Then, it presents the goals and structure of this work.

Chapter 2 contains an extensive introduction to the CUDA programming model and hardware

architecture. A thorough comprehension of these concepts is necessary to understand the rest of this

document. Moreover, characteristics of NVIDIA GPUs used in this dissertation are presented.

In Chapter 3 three applications are presented, because they are conducting threads along the

document. The first one is histogram calculation, a very common operation in video and image

processing, that poses serious parallelization problems due to write contention. The other two are

complete applications that have been chosen because of the variety of kernels they include that permit

us to illustrate part of the aims of this dissertation.

Chapter 4 investigates proper techniques to avoid or minimize the negative impact of write con-

tention. It performs an exhaustive analysis of atomic additions that conducts the design of an opti-

mized approach to histogram calculation.

Chapter 5 deals with efficient work distribution within GPUs. Through several case studies pre-

sented in Chapter 3, this chapter proposes the use of warp-centric approaches to deal with sequential

Programming issues for video analysis on Graphics Processing Units 17

1.4. Structure of this document

phases, explains the use of data-parallel primitives to re-organized the workload and explores the

tradeoffs of perfectly load-balanced implementations.

Chapter 6 studies the implementation of the stream processing paradigm by using CUDA streams.

It proposes performance models for overlapping data transfers and computation and explains how to

adapt the size and the number of streams automatically.

Finally, Chapter 7 presents the main conclusions and future research lines derived from this dis-

sertation.

18 Universidad de Córdoba

2
An introduction to
GPU computing with
CUDA

In the beginning of the last decade, some pioneering researchers started to use Graphics Processing

Units (GPU), which were traditionally oriented to graphics rendering acceleration, as general-purpose

coprocessors. Although a promising trend, it was heavily burdened by a scarce programmability.

Taking a visionary initiative, NVIDIA launched the Compute Unified Device Architecture (CUDA)

in February 2007, as the compute engine which makes the vast computing resources of GPUs acces-

sible to every software programmer. In this way, NVIDIA GPUs have impressively arisen as a readily

available alternative in High Performance Computing (HPC).

In this Chapter, main issues related to CUDA architecture and programming model are briefly

reviewed. Section 2.1 explains the origins of GPU computing. CUDA-enabled devices are presented

in Section 2.2. Section 2.3 depicts the CUDA programming model and Section 2.4 gives the hardware

point of view. More detailed description about CUDA can be found in NVIDIA CUDA literature [93,

96, 97], and in some valuable teaching books [26, 66, 122].

2.1 Graphics processing units as general-purpose processors

Microprocessors based on a single Central Processing Unit (CPU) were evolving with rapid perfor-

mance increases and cost reductions in computer applications for more than two decades. During

this period, increasing the speed of applications was mainly delegated to the advances in hardware.

Each new generation of processors ran faster than the previous. However, this trend has been abruptly

slowed down since 2003 due to energy-consumption and heat-dissipation issues that have limited the

increase of the clock frequency.

Consequently, microprocessor vendors have switched to models with multiple processing units,

or processor cores, within the same chip. Two alternatives have arisen. On the one hand, multicore

processors include two or more CPU cores. Each of them is an out-of-order, multiple-instruction issue

processor. As their predecessors with a single CPU, they are designed to maximize the execution

19

2.1. Graphics processing units as general-purpose processors

ALU ALU

ALU ALU

Control

Cache

DRAM DRAM

CPU GPU

Figure 2.1: Comparison of CPU and GPU architectures. CPUs include a few out-of-order processor

cores and large caches. GPUs are devised to execute hundreds of threads in parallel and to achieve a

high memory bandwidth

speed of sequential programs, while easing the cooperation between a short number of computing

threads. On the other hand, many − core or massively parallel processors focus on the execution

throughput of parallel applications. They have hundreds of small in-order cores. Main exponents

of this trend are GPUs, which have experimented a spectacular revolution in terms of computing

capabilities and programmability during the last five years.

These two types of processors present different design philosophies, as it is illustrated in Fig-

ure 2.1. Multicore CPUs include a sophisticated control logic to allow instructions from a single

thread of execution to execute in parallel or even out of their sequential order while maintaining the

appearance of sequential execution. Large cache memories are provided to reduce instruction and

data access latencies. On the contrary, GPUs are able to execute many threads of execution in parallel

and exhibit around 10 times higher memory bandwidth than CPUs. Such characteristics were origi-

nally oriented to boost the performance of 3D graphics visualization, but some researchers started to

exploit them for general purpose computation in the early 2000s.

General-purpose program development on GPUs was extraordinarily convoluted in the beginning.

Standard graphics Application Programming Interfaces (APIs), such as OpenGL or DirectX, were the

only way to interact with a GPU. Thus, any attempt to perform arbitrary computations on a GPU was

subject to the constrains of programming within a graphics API.

Those GPUs were designed to produce a color for every pixel on the screen using arithmetic units

called pixel shaders. A pixel shader uses its (x, y) position on the screen as well as some additional

input data to compute a final color. Since the arithmetic on such inputs was controlled by the pro-

grammer, these input colors could actually be any data. Valuable works applied such a new approach

to general-purpose applications, such as matrix-matrix multiplication [28] or signal processing [36].

These incipient efforts were called General-Purpose GPU (GPGPU) programming [37].

GPGPU precedes the GPU Computing [38, 92] era, which is initiated with the introduction of

CUDA by NVIDIA in 2007. The CUDA programming model has dramatically improved the pro-

grammability of GPUs by extending the C language to express parallelism. The model for GPU

computing is to use a CPU and GPU together in a heterogeneous computing model. The sequential

part of the application runs on the CPU and the computationally-intensive part is accelerated by the

GPU. Host and device, i.e. CPU and GPU, are connected through a PCI Express bus [110], which

20 Universidad de Córdoba

Chapter 2. An introduction to GPU computing with CUDA

provides a peak of 16 GB/s. CUDA boosts this heterogenous model by allowing the overlap of data

transfers and computations and, in recent devices, the concurrent execution of different functions on

the device.

Nowadays, CUDA and the GPU computing model are being actively and successfully used in

HPC applications from diverse fields, from astrophysical to financial [87]. Moreover, CUDA has

inspired the development of the standardized Open Computing Language (OpenCL) [65], supported

by Apple, Intel, AMD/ATI and NVIDIA. Although promising, OpenCL is still in its dawn. It is much

tedious to use than CUDA and the speedup achieved is much lower. A translation tool between CUDA

and OpenCL was presented in [44], and performance comparisons can be found in [22, 25, 44].

2.2 CUDA-enabled devices

Every NVIDIA GPU since the 2006 release of the GeForce GTX 8800 has been CUDA-enabled,

that is, they have the CUDA hardware architecture and support the CUDA programming model.

Anyway, a complete list of CUDA-enabled GPUs can be found in [85]. NVIDIA GPUs are classified

into three brand names: GeForce are consumer GPUs, Quadro GPUs are specialized in professional

visualization, and Tesla are for technical and scientific computing.

Architectures have evolved so far along three generations: G80, GT200, and Fermi. Although

the underlying paradigm is the same for the three architecture generations, there are significant dif-

ferences that are listed in the following subsections. Main features of the three generations are sum-

marized in Table 2.1.

The architecture generation is represented by the compute capability (c.c.). This is defined by a

major revision number and a minor revision number. Devices with the same major revision number

have the same core architecture. Thus, G80 and GT200 devices are c.c. 1.x, and Fermi devices are c.c.

2.x. The minor revision number corresponds to an incremental improvement of the core architecture,

including new features.

In this dissertation, NVIDIA devices belonging to all CUDA-enabled generations have been used

in the experiments. They are listed in Table 2.2.

2.3 CUDA programming model

In this section, main concepts behind the CUDA programming model are introduced. CUDA C

extends C by allowing the programmer to define C functions, called kernels, that are executed in

parallel by threads.

Kernels are called by the host thread. Kernel call syntax describes the execution configuration,

which defines how threads are organized into a grid of blocks. Figure 2.2 summarizes the concepts

presented in this Section.

2.3.1 Thread hierarchy

Threads are grouped into one-dimensional, two-dimensional or three-dimensional blocks. Within a

block each thread is identified by its own thread ID, which is accessible through the built-in variable

Programming issues for video analysis on Graphics Processing Units 21

2.3. CUDA programming model

Table 2.1: Summary of hardware and software features in NVIDIA GPUs. Comma-separated values

correspond to different minor revision numbers

Architecture G80 GT200 Fermi

Compute Capability 1.0, 1.1 1.2, 1.3 2.0, 2.1

Transistors 681 million 1.4 billion 3.0 billion

Streaming Multiprocessors (SMs) Up to 16 Up to 30 Up to 16

Streaming Processors (SPs) / SM 8 8 32, 48

Special Function Units (SFUs) / SM 2 2 4, 8

Warp Schedulers / SM 1 1 2

32-bit registers / SM 8192 16384 32768

Shared Memory / SM 16 KB 16 KB 48 KB or 16 KB

L1 Cache / SM None None 16 KB or 48 KB

L2 Cache None None 768 KB

Load/Store Address Width 32-bit 32-bit 64-bit

Memory Interface 384 bits 512 bits 384 bits

Threads / Warp 32 32 32

Threads / Block Up to 512 Up to 512 Up to 1024

Threads / SM Up to 768 Up to 1024 Up to 1536

Blocks / SM Up to 8 Up to 8 Up to 8

Overlap of data transfers and computation No, Yes Yes Yes

Concurrent Kernels No No Up to 16

Table 2.2: Hardware features of NVIDIA devices used in this dissertation

GPU Codename Compute capability SMs / GPU SPs / GPU Global memory

8800 GTS 512 G92-400 1.1 16 128 512 MB

9600M GT G96 1.1 4 32 256 MB

9800 GX2 G92 1.1 2× 16 2× 128 2× 512 MB

GT 220 GT216 1.2/1.3 6 48 512 MB

GTX 260 GT200 1.2/1.3 27 216 896 MB

GTX 280 GT200 1.2/1.3 30 240 1024 MB

GTX 480 GF100 2.0 15 480 1536 MB

GTX 580 GF110 2.0 16 512 1536 MB

C2050 Fermi Tesla 2.0 14 448 3072 MB

threadIdx. This is a 3-component variable that provides a natural way to invoke computation

across domains such as vectors, matrices or volumes.

Threads within a block are able to cooperate by sharing data through a so-called shared mem-

ory. They are also able to synchronize their execution by calling the syncthreads() intrinsic

function.

Blocks are organized into a one-, two- or three-dimensional grid. The number of blocks within a

grid is usually dictated by the size of the input data or the number of processors in the device. Blocks

are identified by their own index through blockIdx, and their size through blockDim. These two

variables together with threadIdx allow the programmer to globally identify any thread.

22 Universidad de Córdoba

Chapter 2. An introduction to GPU computing with CUDA

Grid (Device)

Block (0, 0)

Thread (0, 0) Thread (1, 0)

Registers

Shared memory

Registers

Block (1, 0)

Thread (0, 0) Thread (1, 0)

Registers

Shared memory

Registers

Global / Texture & Surface memory

Constant memory
Host

Figure 2.2: CUDA programming model is represented by a thread hierarchy and a memory hierarchy.

Threads are organized in a grid of thread blocks. The memory hierarchy is composed by per-thread,

per-block and per-kernel memory spaces

This hierarchy permits blocks to be executed independently. Indeed, each block can be scheduled

on any of the available processors, in any order, concurrently or sequentially. Thus, a CUDA program

can execute on any CUDA-enabled device ensuring the automatic scalability of the programming

model.

2.3.2 Memory hierarchy

Threads may access several memory spaces during their execution. These are classified into per-

thread, per-block and per-kernel memory spaces.

Within a kernel each thread makes use of its private automatic scalar variables that are placed into

registers. However, automatic array variables are stored in a per-thread local memory. Automatic

variables have the lifetime of the kernel, i.e. they cease to exist when threads terminate.

Threads belonging to the same block may access to the same shared memory. Variables declared

by using the keyword shared are allocated in shared memory and their lifetime is the duration

of the kernel.

Contents of per-kernel memories persist across kernel launches within the same application. All

threads may access variables in the global memory. Moreover, there are two read-only memories

accessible by all threads: the constant memory that is used to provide non-modifiable input values

to kernel functions; and the texture and surface memory that is optimized for 2D spatial locality.

2.4 Hardware implementation

The CUDA architecture is based on an array of multithreaded streaming multiprocessors (SMs).

When the host invokes a kernel, blocks of the grid are mapped onto multiprocessors with available

Programming issues for video analysis on Graphics Processing Units 23

2.4. Hardware implementation

execution capacity. Threads of the same block are executed on the same multiprocessor, which is

capable of managing and executing up to 8 blocks (in all G80, GT200 and Fermi architectures). As

blocks terminate, new blocks are launched on the vacated multiprocessors.

A multiprocessor is designed to execute hundreds of threads concurrently. Such a large amount

of threads is managed by a Single − Instruction Multiple − Thread (SIMT) architecture. The

instructions are pipelined to leverage instruction-level parallelism within a single thread. Thread-level

parallelism is achieved through hardware multithreading. Unlike CPU cores, instructions are issued

in order and there is neither branch prediction nor speculative execution.

The SIMT architecture is presented in subsection 2.4.1. In subsection 2.4.2, characteristics of

streaming multiprocessors are detailed. Subsection 2.4.3 describes the memory spaces from the hard-

ware point of view.

2.4.1 SIMT architecture and multithreading

When a multiprocessor receives blocks to execute, it partitions them into collections of threads called

warps. The size of warps is implementation specific [66], although all G80, GT200 and Fermi

architectures use warps of 32 threads. Consecutive warps contain consecutive threads, with the first

warp containing thread 0.

Warps are devised as basic Single−Instruction Multiple−Data (SIMD) units. Typically, all

threads of a warp execute the same instruction at the same time. Nevertheless, the SIMT architecture

permits programmers to specify the execution of a single thread, so that the SIMD width, i.e. the warp

size, is not exposed to the software. Consequently, some instructions, such as conditional branches

and atomic operations, may cause warp serialization. On the one hand, if threads of a warp diverge

in a data-dependent conditional branch, the warp serially executes each branch path taken. On the

other hand, atomic operations cause serialization, when more than one of the threads access the same

location. As it can be seen, although the SIMT architecture offers more flexibility to programmers,

performance improvements are achieved by being aware of warp behavior.

Multiprocessors are able to maintain the execution contexts (program counters, registers...) of up

to 24, 32 and 48 warps, in G80, GT200 and Fermi architectures, respectively. Moreover, switching

from one execution context to another has no cost, what is referred to as zero − overhead thread

scheduling. At every instruction issue time, a warp scheduler selects a warp that has threads ready

to execute its next instruction and issues the instruction to those threads.

This is the basis of the multithreading scheme that permits multiprocessors to execute efficiently

long-latency operations, such as global memory accesses, pipelined arithmetic instructions and branch

instructions. When an instruction corresponding to a warp must wait for the result of a previously

initiated long-latency operation, the warp is not selected for execution. Another warp that is no

longer waiting for results is selected for execution. This mechanism of filling the latency of expensive

operations with work from other threads is referred to as latency hiding.

2.4.2 Streaming multiprocessors

Streaming multiprocessors are the key hardware element in CUDA. They contain computing as well

as memory resources. Arithmetic instructions are executed on an array of streaming processors

24 Universidad de Córdoba

Chapter 2. An introduction to GPU computing with CUDA

SM

SP SP

SP SP

SP SP

SP SP

SFU

SFU

Register File

Instruction Fetch/Dispatch

Instruction Cache

Streaming Processor Array

TPC

SM SM

Texture L1 Cache

Texture Unit

TPCTPCTPCTPC

Shared Memory

Constant Cache

…..

Figure 2.3: NVIDIA GPUs with compute capability 1.x consist of an array of Texture Processor

Clusters (TPCs). Within each TPC there are 2 or 3 Streaming Multiprocessors (SMs). Each SM

contains 8 SPs and 2 SFUs. The shared memory has a capacity of 16 KB

(SPs), also called CUDA cores, while some transcendental instructions (sine, cosine...) are executed

on special function units (SFUs). Memory resources, detailed in subsection 2.4.3, include the

shared memory, the register file and some kind of L1 cache.

Multiprocessors exhibit significant differences across architecture generations. In G80 and GT200

architectures, i.e. devices of compute capabilities (c.c.) 1.x, multiprocessors contain 8 SPs for integer

and single-precision floating-point arithmetic operations, 1 double-precision floating-point unit and 2

SFUs. In this way, the warp scheduler issues instructions every 4 clock cycles on the SPs, 32 clock

cycles on the double-precision unit and 16 clock cycles on the SFUs. Figure 2.3 shows a scheme of

multiprocessors of c.c. 1.x.

Multiprocessors on Fermi architecture differ depending on the compute capability. In devices of

compute capability 2.0, there are 32 SPs and 4 SFUs, as it is represented in Figure 2.4. For compute

capability 2.1, 48 SPs and 8 SFUs. In both cases, multiprocessors have a dual warp scheduler. Each

warp scheduler issues one instruction on 16 CUDA cores over two clock cycles. In c.c. 2.1 each

scheduler is able to issue up to two different instructions, if there are warps ready to execute. Double-

precision floating-point instructions are also scheduled on the SPs. When a scheduler issues one

Programming issues for video analysis on Graphics Processing Units 25

2.4. Hardware implementation

Streaming Multiprocessor

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

LD/ST

SFU

SFU

SFU

SFU

Register File

Shared Memory / L1 Cache

Constant Cache

Dispatch Unit Dispatch Unit

Warp Scheduler Warp Scheduler

Instruction Cache

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

Figure 2.4: Streaming Multiprocessors (SMs) in devices with compute capability 2.0 contain 32

Streaming Processors (SPs), 16 Load/Store units and 4 Special Function Units (SFUs). Two warp

schedulers issue instructions to them. Shared Memory/L1 is configurable to 48 KB/16 KB

double-precision floating-point instruction, the other scheduler cannot issue any instruction.

In c.c. 1.x, multiprocessors are grouped into Texture Processor Clusters (TPCs). The number

of multiprocessors per TPC is 2 in c.c. 1.0 and 1.1, and 3 in c.c. 1.2 and 1.3. In c.c. 2.x, multiproces-

sors are grouped into Graphics Processor Clusters (GPCs). A GPC includes 4 multiprocessors.

While TPCs have a read-only texture cache that is shared by all multiprocessors, each multiprocessor

within a GPC has its private read-only texture cache.

2.4.3 Memory spaces

The CUDA architecture presents several memory spaces for a variety of purposes. Initially, they

can be classified into off-chip and on-chip memories. Off-chip memories reside in device memory.

The device memory is a dynamic random access memory (DRAM), which tends to have long access

latencies and limited access bandwidth. On-chip memories are much faster, but they have a limited

26 Universidad de Córdoba

Chapter 2. An introduction to GPU computing with CUDA

capacity.

Main issues related to all memory spaces are presented in this subsection. Performance guidelines

are given and differences across architecture generations are stated.

Global memory

Global memory resides in device memory and is accessed via 32-, 64-, or 128-byte memory transac-

tions, which must be naturally aligned on 32-, 64-, or 128-byte segments.

Global memory transactions typically take between 400 and 600 clock cycles. Much of this global

memory latency can be hidden if there are sufficient independent arithmetic instructions that can be

issued while waiting for the global memory access to complete. However it is best to avoid accessing

global memory whenever possible.

When a warp executes an instruction that accesses global memory, it coalesces the memory ac-

cesses of the threads within the warp into one or more memory transactions depending on the size

of the words accessed and the distribution of the memory addresses. In general, the more transac-

tions are necessary, the lower memory throughput. Coalescing requirements vary with the compute

capability.

In devices of compute capability 1.x, a global memory request for a warp is split into two memory

request, one for each half-warp. Coalescing in compute capability 1.0 and 1.1 occurs when threads

access word in sequence: The kth thread in the half-warp must access the kth word. Otherwise, 16

memory transactions are issued.

Requirements are more relaxed in c.c. 1.2 and 1.3. Threads can access any word in any order,

including the same words, and a single memory transaction for each segment addressed by the half-

warp is issued.

For devices of compute capability 2.x, the granular memory access request corresponds to the

whole warp. Moreover, the memory transactions are cached, so data locality is exploited. They can

be configured at compile time to be cached in both L1 and L2 or in L2 only. A cache line is 128 bytes

and maps to a 128-byte aligned segment in device memory.

The L1 cache resides within the streaming multiprocessors and it uses the same on-chip memory

than the shared memory: it can be configured as 48 KB of shared memory and 16 KB of L1 cache or

as 16 KB of shared memory and 48 KB of L1 cache. The L2 cache is shared by all multiprocessors

and has 768 KB.

Local memory

Local memory accesses occur for per-thread automatic array variables. Automatic scalar variables

are placed in registers, unless the kernel needs more registers than available. In such case, register

spilling is carried out in local memory.

Local memory resides in device memory, so it has the same high latency than global memory and

is subject to the same coalescing requirements. On devices of c.c. 2.x, local memory accesses are

always cached in L1 and L2.

Programming issues for video analysis on Graphics Processing Units 27

2.4. Hardware implementation

Texture and surface memory

The texture and surface memory spaces reside in device memory. They are cached in a texture cache

which is optimized for 2D spatial locality. In this way, the best performance is achieved if threads of

the same warp read texture or surface addresses that are close together in 2D.

Reading device memory through texture or surface fetches, instead of global memory reads, may

report some benefits because of the 2D spatial locality. This is more likely for devices of compute

capability 1.x, since global memory reads are cached in c.c. 2.x.

Constant memory

The constant memory resides in device memory and is cached in a memory space within multiproces-

sors. Thus, reading from constant cache is as fast as reading from registers. Nevertheless, accesses

to different addresses by threads within a half-warp are serialized, so cost scales linearly with the

number of different addresses.

Shared memory

This on-chip memory is much faster than global and local memories. Its latency is roughly one

hundredth of device memory latency, provided there are no collisions among threads. The shared

memory is specially indicated in those kernels where there exists data reuse. It makes unnecessary

the costlier accesses to device memory.

The shared memory is a scratchpad memory divided into equally-sized memory modules, called

banks, which can be accessed simultaneously. Successive 32-bit words are assigned to successive

banks. If the number of banks is N and A is the address of a 32-bit word, A resides in bank A%N ,

where % stands for modulo operation. This permits to achieve a high bandwidth, if threads access

addresses that fall in distinct memory banks. However, if two addresses of a memory request fall in

the same bank, there is a bank conflict and the access has to be serialized.

For devices of compute capability 1.x, the warp size is 32 and the number of banks is 16. Thus, a

shared memory request is split into one request for the first half-warp and one request for the second

half-warp. Hence, no bank conflicts are possible between threads belonging to different half-warps.

In devices of c.c. 2.x, the shared memory has 32 banks, which is the warp size too. Thus, the

granularity of memory requests is 32 and bank conflicts can occur among threads belonging to the

same warp.

Multiprocessors in devices of c.c. 1.x contain 16 KB of shared memory. As indicated above, in

devices of c.c. 2.x, it is configurable to 48 KB or 16 KB. Such a limited capacity makes the shared

memory a valued resource that conditions the occupancy of multiprocessors together with registers.

Within a kernel, block and thread needs for shared memory and registers limit the number of active

blocks which can run concurrently on a multiprocessor. The occupancy is the ratio of the number of

active warps within a multiprocessor to the maximum possible number of active warps. It is related

to the ability of the SIMT architecture to hide long-latency operations with computation.

28 Universidad de Córdoba

Chapter 2. An introduction to GPU computing with CUDA

Registers

Each multiprocessor contains a partitioned register file which is individually used by each thread. Its

size in 32-bit words is 8192 in devices of compute capability 1.0 and 1.1, 16384 in devices of c.c. 1.2

and 1.3, and 32768 in devices of c.c. 2.x.

Accessing a register entails zero extra clock cycles per instruction, but delays may occur due to

register read-after-write dependencies and register memory bank conflicts.

The latency of read-after-write dependencies is 24 cycles. This latency is completely hidden on

multiprocessors that have at least 6 active warps (192 threads) for devices of c.c. 1.x, since there are

8 SPs per multiprocessor. For devices of c.c. 2.x, which have 32 SPs per multiprocessor, 24 warps

(768 threads) might be required.

The recommendation to avoid register memory bank conflicts is using blocks with a number of

threads multiple of 64.

Programming issues for video analysis on Graphics Processing Units 29

3 Target applications

Some components of video analysis applications exhibit regular behaviors that are based on the

regularity of data instances such as frames. They can be easily ported to GPU computing and yield

a satisfactory performance. The main programming challenge that they present is possibly the use

of the shared memory, in order to take advantage of data reuse. However, in other components the

parallelism is not so evident and can be considered irregular. A variety of threats may make their

implementation fall into performance bottlenecks.

In order to illustrate these issues, this chapter describes three applications and discusses their

GPU implementations. They pose typical parallelization problems in video and image processing

applications on GPU. These applications are the conducting thread along Chapters 4 and 5. The first

one is histogram calculation, a widely-used kernel that may suffer write contention. The other are

two complete video processing applications that include a variety of regular and irregular stages.

Histogram computation on GPU is presented in Section 3.2. Sections 3.3 and 3.4 describe re-

spectively a moving objects detection algorithm and the Generalized Hough Transform (GHT), and

classify their components into regular and irregular.

3.1 Introduction

In this chapter histograms are introduced and analyzed from the point of view of GPU implementa-

tion. They have a huge number of uses in video and image processing but represent a parallelization

challenge on GPU. Moreover, two complete video processing applications are described. These ap-

plications have been chosen due to the variety of computations they include. They are divided into

several components with different characteristics that permit us to illustrate frequent parallelization

problems that appear in GPU implementation of video and image applications.

The GPU implementation of the applications is divided into regular and irregular components.

31

3.2. Histogram calculation

Listing 3.1: Pseudo-code of sequential histogram calculation of an image

For (each p i x e l i i n image I){

Pixel = I[i] / / Read p i x e l

Pixel′ = Computation(Pixel) / / Pe r fo rm some c o m p u t a t i o n (o p t i o n a l l y)

Histogram[Pixel′] + + / / Vote i n one h i s t o g r a m b i n

}

Regular components are considered those parts that can be ported to CUDA with a limited effort.

They easily attain load balancing and locality of references. Moreover, they avoid warp divergence

because every thread follows the same execution path. The use of shared memory guarantees the

efficiency of memory accesses when there exists data reuse. This way, they obtain an important

performance improvement on GPU.

However, irregular components are more difficult to parallelize. Their straightforward implemen-

tation on GPU may fall into load imbalance, uncoalesced memory accesses, and serialization due to

warp divergence or the use of atomic operations. We put a special focus on the parallelization of these

parts that will be fully explained in Chapters 4 and 5.

3.2 Histogram calculation

Histograms are a fundamental statistical tool with a wide range of applications in many fields such

as image processing and data mining. In image processing they are typically used for obtaining the

distribution of pixel intensities within an image.

Calculating a histogram on a single-threaded device is easy, as Listing 3.1 shows. It consists of

sequentially reading input elements and voting in the corresponding histogram bin, that is, increasing

the bin by one. Optionally some computation can be applied on the input element. An example is an

image processing kernel that reads pixels within an RGB image, performs a conversion to grayscale

and votes then in the grayscale histogram.

3.2.1 Discussion

As it has been noticed, there is a huge number of video and image processing applications that require

computing histograms. In this way, efficient implementations on GPU of histogram-based kernels

are needed. Nevertheless, parallel histogram calculation poses an inherent parallelization problem

in the fact that threads may compete for accessing the same histogram bins. Two or more threads

may attempt to vote in the same bin at the same time, incurring in a collision as threads 0 and 2 in

Figure 3.1 represent. Since every vote must be counted, threads should update the bin in an atomic

way. Atomicity entails serialization of write accesses and consequently a performance loss.

Serialization will frequently happen while using histograms in video and image applications due

to the spatial locality in images and frames. Figure 3.2 shows a region of a grayscale image in which

adjacent pixels have similar or equal values.

32 Universidad de Córdoba

Chapter 3. Target applications

Thread 0 Thread 1 Thread 2 Thread n-1

Input data

Histogram

0 1 2

data[1]data[0] data[2] data[n-1]...

... B-1

data[n+1]data[n] data[n+2] data[2n-1]...

...

..
.

..
.

..
.

..
.

Figure 3.1: Parallel calculation of a B-bins histogram with n threads. Each thread reads one input data

element and votes in the corresponding histogram bin. Threads 0 and 2 are incurring in a collision,

since they perform writing accesses to the same bin at the same time

169 170 171 174 177 182 187 192 194 192

169 173 173 175 177 181 185 189 191 192

169 173 173 175 177 180 184 188 190 193

169 172 173 174 176 180 183 187 189 193

171 173 173 174 176 179 182 185 187 192

174 175 175 175 176 178 180 183 184 1885 5 5 6 8 80 83 8 88

177 177 176 176 177 179 180 181 185 188

178 178 176 178 184 185 189 193 195 194

176 176 173 176 181 183 186 190 192 191

174 172 170 173 177 181 185 189 191 190

173 171 169 172 175 181 185 190 192 192

171 169 169 172 174 179 183 189 192 192

Figure 3.2: Spatial locality in a grayscale image. Neighboring pixels in the highlighted region present

similar or equal luminance values. This spatial correlation will frequently make neighboring threads

vote in the same bin

In Chapter 4 we tackle histogram calculation on GPU with a special focus on video and image

applications. We review existing implementations by other authors [83, 112, 123, 124] and detect their

weaknesses. Then, we steer our efforts to achieve an optimized approach to histogram computation

that properly deals with write contention among threads. Several techniques, such as replication and

padding, will be explored.

3.3 Egomotion compensation and moving objects detection algorithm

Motion detection consists of determining the movement of an object with respect to the background

in a video stream. The applicability of motion detection algorithms is significant in diverse fields,

from walking robots to automotive systems. In the case of robots in rescue scenarios, they are subject

to a strong egomotion due to the rough terrain in which they are needed [59]. On the other hand, there

Programming issues for video analysis on Graphics Processing Units 33

3.3. Egomotion compensation and moving objects detection algorithm

Egomotion

estimation

Egomotion

compensation and

vector clustering

Egomotion

compensation and

frame differencing

Bounding

boxes
Current

frame

Next

frame

Optical flow

Region

growing

Region

growing

Figure 3.3: Scheme of the optical flow based motion detection algorithm. Shadowed blocks indicate

computing stages. Inputs are two consecutive frames. Two complementary detection methods are

used: vector clustering and frame differencing. They output bounding boxes surrounding the moving

objects

exists an increasing demand for driver assistance systems which help a driver to detect potential risks

such as the presence of pedestrians or animals [11]. In both cases real-time processing is required.

This makes necessary the use of hardware accelerators such as GPUs.

The moving objects detection algorithm presented in [68] has demonstrated an impressive relia-

bility in scenarios with strong egomotion. Figure 3.3 shows a scheme of the algorithm. It is based on

optical flow [18, 126] and consists of three main stages: egomotion estimation, egomotion compen-

sation, and moving object detection. The use of egomotion compensation and two complementary

detection methods (vector clustering and frame differencing) has permitted to outperform previous

approaches [75, 62] while detecting slow and fast moving objects.

After obtaining the optical flow fields, the egomotion estimation computes the first order flow

(F-o-F) model presented in [135] and shown in Equation 3.1. Such a model considers six degrees

of freedom including yaw, pitch and roll. It is estimated using the velocity (vx, vy) and position (x,

y) of two flow vectors that are selected at random. Equations for obtaining the dilation D, rotation

R and the coordinates of the focus of expansion (xc, yc) can be found in [68]. If those two flow

vectors belong to the background, the model can be estimated in one single step. However, this is

unpredictable due the unknown nature of the moving object and the changing background. Thus, the

widely-known Random Sample Consensus (RANSAC) technique [29] is used, in order to estimate

the parameters of the motion model through an iterative process.

[

vx

vy

]

=

[

D −R

R D

] [

x − xc

y − yc

]

(3.1)

RANSAC establishes a minimum and a maximum number of iterations (typically 50 and 300,

respectively). During each iteration, a fitting stage and an evaluation stage are performed. In the

fitting stage, two flow vectors are randomly taken and used for generating a motion model. Once

this model is obtained, it is evaluated. Evaluation consists of: first, calculating a motion vector (v′x,

v′y) for each location (x, y) where an original flow vector (vx, vy) exists; second, subtracting those

motion vectors and the original flow vectors, in order to obtain resultant vectors (vxres, vyres); third,

counting outliers, i.e. those resultant vectors that are longer than a certain error threshold (typically

1 or 2 pixels, as it is stated in [68]). After each iteration, the best model is that with the lowest

number of outliers. It is assumed that most of flow vectors correspond to the background, so that

the model converges to the motion of the background and consequently to the egomotion. RANSAC

34 Universidad de Córdoba

Chapter 3. Target applications

Start

Fitting stage:

generate F-o-F model

Evaluation stage: generate

vectors from F-o-F model

Evaluation stage: compute

outliers

Outlier_count <

Outlier_count_Best_model

Outlier_ratio_Best_model

< Threshold

Iteration > minimum

Best_model =

current_model

Egomotion estimation

successful

Egomotion estimation

failed

Iteration < Maximum

Stop

Outlier_ratio_Best_model

< Threshold

NoYes

Yes

Yes

Yes

YesNo

No

No

No

Figure 3.4: Flow diagram for egomotion estimation with RANSAC. In each iteration the fitting stage

calculates the F-o-F model. The evaluation stage computes the number of outliers. If the number

of outliers in an iteration is the lowest until then, the F-o-F model is taken as the best model. The

process finishes successfully when the ratio of outliers is under a threshold, and the minimum number

of iterations has been reached

finishes when the minimum number of iterations has been reached and the ratio between the number

of outliers of the best model and the number of flow vectors is under a certain convergence threshold

(typically 0.75). The whole process is explained in Figure 3.4.

Then, the estimated model is used for egomotion compensation. At this stage a new set of motion

vectors (v′x, v′y) is generated using the motion model. By subtracting these motion vectors and the

original flow vectors (vx, vy), the egomotion is removed. After that, no flow vectors (except a few

ones due to noise) will exist on the background while resultant vectors (vxres, vyres) on the object

will represent the actual direction of its motion. This set of resultant vectors is the input to the vector

clustering stage.

In the vector clustering stage the resultant vectors are used for generating a 2D histogram. Each

vote in this histogram is given by the coordinates (vxres, vyres). Thus, the highest peak of the his-

togram will lie in location (0, 0), since it is induced by the static vectors of the background. Other

peaks will correspond to moving objects, as Figure 3.5 illustrates. In order to detect moving objects:

1. Peaks should be local maxima and have an enough number of votes. Then, peaks and surround-

Programming issues for video analysis on Graphics Processing Units 35

3.3. Egomotion compensation and moving objects detection algorithm

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 6 4 9 12 0

0 0 0 0 0 5 21 32 24 10

0 0 0 0 0 0 14 95 17 9

0 0 0 0 0 0 31 27 19 11

0 0 0 0 0 0 4 13 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0

0 7 3 4 0

0 2 18 6 0

0 5 2 0 0

0 0 0 0 0

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

2D histogram

(0)

(0)

(1)

(1)

Most of flow vectors are static, since they

correspond to the background (0). The

second peak in the 2D histogram is due to

the rocket (1).

Peaks (0, 0) and (5, 5) are local maxima.

Peaks are extended to clusters, including

adjacent bins.

vx

vy

Figure 3.5: One frame and its corresponding 2D histogram in which two peaks appear. The highest

corresponds to the background (0) while the other is due to the flow vectors on the moving object (1).

Both peaks are local maxima

ing bins are clustered.

2. Clusters are back-projected into the image. Locations within the image that have a certain

number of resultant motion vectors belonging to one cluster in their vicinity are considered

part of a moving object.

3. A region growing procedure links those pixels belonging to a moving object and determines

the top-left and bottom-right coordinates of a bounding box.

Vector clustering is very effective in detecting slow moving objects, because they appear sharp in

the frame and consequently significant numbers of flow vectors will lie around the object.

However, when fast motion is present in the video, objects appearance is blurred. This reduces

the number of flow vectors, so that the efficiency of vector clustering is limited. In this way, frame

differencing is used to make the algorithm more sensitive. The frame differencing technique used

in this work is similar to the one presented in [62], but it employs the F-o-F model for egomotion

compensation. The F-o-F model permits to find the new location for every pixel. Then, subtrac-

tion between corresponding pixels in current and next frames is performed. In the difference image,

pixels belonging to moving objects will show high values. In addition, narrow lines with high differ-

ence values will appear around moving objects. Afterwards, an erosion algorithm can be applied for

eliminating these narrow regions without affecting the clusters. Finally, region growing is used for

obtaining the bounding boxes around the moving objects.

Two examples of the results retrieved by the motion detection algorithm are shown in Figure 3.6.

Frames on top (a) show a fast object with blurred appearance which is properly detected by frame

differencing. Frames on bottom (b) present strong egomotion which is removed by the egomotion

compensation stage. Adjacent bounding boxes can be merged in a fast post-processing step on CPU.

36 Universidad de Córdoba

Chapter 3. Target applications

(a) Swinging object with blurred appareance detected by frame differencing

(b) Fast moving object in strong egomotion scenario detected by vector clustering

Figure 3.6: Captures of two videos processed by the moving objects detection algorithm. On the top

(a), a fast swinging object with blurred appearance. Since no flow vectors are obtained on this object,

it should be detected by the frame differencing. On the bottom (b), frames with a fast moving object

in a strong egomotion scenario. Since the number of flow vectors on the moving object is high, it can

be detected by the vector clustering. In both cases, optical flow vectors are on the left and bounding

boxes obtained by the algorithm are on the right

Programming issues for video analysis on Graphics Processing Units 37

3.3. Egomotion compensation and moving objects detection algorithm

RANSAC

kernel
(egomotion

estimation)

Flow

vectors

array

F-o-F

model

Compensati

on kernel

2D

Histogram

calculation

Local

maxima

kernel

Clustering

kernel

Region

growing

kernel

Compensation

and differencing

kernel
NPP Erode

Region

growing

kernel

Bounding

boxes

Vector clustering

Frame differencing

Optical flow
Current

frame

Next

frame

Figure 3.7: GPU implementation of the moving objects detection algorithm. Color blocks indicate

computing stages. The vector clustering stage consists of four kernels. The frame differencing is

divided into one kernel that obtains a difference image, and an erosion function. Yellow kernels are

regular, and blue kernels are irregular. Region growing suffers from irregular computation that is

unavoidable

3.3.1 Discussion

Figure 3.7 shows a general scheme of our GPU implementation of the moving objects detection

algorithm. The optical flow computation is based on census transform as described in [18]. The rest

of computing stages are classified into regular and irregular components in the following subsections.

Regular components

Egomotion compensation, local maxima and frame differencing kernels in Figure 3.7 (yellow) are

considered regular, because they ensure load balancing across threads and locality of references.

The egomotion compensation kernel and the compensation and differencing kernel are imple-

mented with straightforward scatter approaches that obtain high performances. The last step in frame

differencing is the erosion function available in the NVIDIA NPP library for image processing [91].

The local maxima kernel applies a scatter approach too. It assigns one block per histogram row

and one thread per bin. Each row plus the upper row and the lower row are loaded into shared memory,

in order to take advantage of data reuse. This is the most significant optimization in this kernel.

Irregular components

RANSAC, 2D histogram calculation, and clustering kernels in Figure 3.7 (blue) are irregular in the

sense that they present certain characteristics that make them less suitable for GPU computing and

could limit performance, if they are not properly tackled. The region growing kernel (dark blue) is

also considered irregular, because it presents idle threads in an iterative process that merges adjacent

bounding boxes which have been previously obtained by individual threads. After each iteration only

half of the threads remain active. Nevertheless, such a drawback is unavoidable due to the nature of

the region growing technique.

In the RANSAC kernel the fitting stage, which calculates the F-o-F model, is inherently sequen-

tial. A naive approach would perform the fitting stage on the CPU and the evaluation stage on the

GPU. This would need transferring the F-o-F model from CPU to GPU as many times as RANSAC

38 Universidad de Córdoba

Chapter 3. Target applications

iterations. Such transfers would entail an unavoidable performance bottleneck. Thus, we propose a

warp-centric approach that alleviates the negative performance impact of the sequential behavior of

the fitting stage. It assigns each RANSAC iteration to one warp within the GPU. Only one thread be-

longing to a warp will work during the fitting stage, but some parallelism can be achieved, since one

iteration per active warp is able to be performed in parallel. This approach is thoroughly explained in

Chapter 5.

The 2D histogram calculation kernel is a practical example of histogram-based kernel as described

in Section 3.2. While generating the histogram, collisions among threads will be very frequent, since

votes will be concentrated in a short number of peaks or local maxima. Optimization of this kernel is

detailed in Chapter 4.

In the vector clustering stage, once known the local maxima of the 2D histogram, histogram bins

adjacent to the maxima are clustered and back-projected into the image. In this way, the clustering

kernel assigns one thread per image pixel. The thread should search in the array of resultant vectors

for those in the proximity of the pixel. If a majority of these neighboring resultant vectors belongs to

one cluster (i.e., they are adjacent to or included in a local maxima), the pixel is considered part of

the moving object that generates the cluster. This procedure requires the use of conditional clauses,

in order to check whether a resultant vector is in the proximity and whether it belongs to a cluster.

Consequently, warp divergence will be very frequent, burdening the performance. Moreover, most of

memory accesses to the resultant vectors array are unproductive, because the corresponding vector

belongs to the background or is not in the proximity of the pixel. Thus, this kernel will significantly

benefit from re-organization of the resultant vectors array by using compaction and sorting, as detailed

in Chapter 5.

3.4 The Generalized Hough Transform

Template matching is a difficult problem with high computational requirements. One of the most

popular algorithms for detecting shapes in images is the Hough Transform [51], which was originally

used to detect parametric shapes such as lines, circles and ellipses, as shown by Duda et al. [24].

Ballard [7] generalized the Hough Transform (GHT) to detect arbitrary shapes which are represented

by a template. In the original formulation, called Classic GHT, a feature space (composed of the

template contour points and their vectors to a reference point) is transformed into a four-dimensional

Hough space (the rotation, scale and displacement of the template in the image). In this transforma-

tion, rotated and scaled versions of the vector of each template contour point are superimposed over

every edge point found in the image to vote in the Hough space. The maximum value in this Hough

space corresponds to the rotation, scale and displacement parameters of the template in the image.

The size of the Hough space and the number of voting operations can be enormous, depending

on the desired resolution for the parameters. Thus, the computation time of the Classic GHT is

very high, making it inappropriate for real-time applications. A solution to reduce the memory and

computational requirements were presented by Guil et al. [40]. In that work, the detection process is

split into three stages by uncoupling the rotation, scale and displacement calculation using invariant

information, achieving lower computational complexity. Instead of using as features the vectors of the

contour points to a reference point, a scale and displacement invariant feature is used. Moreover, three

Programming issues for video analysis on Graphics Processing Units 39

3.4. The Generalized Hough Transform

jθ

d

jr

O

ij

j

ir

P

ijα

iP

θi

Figure 3.8: Variables defined in the GHT. Two contour points pi and pj are paired if their gradient

angles θi and θj differ in a certain angle. A spatial angle αij , a distance value dij , and reference

vectors ~ri and ~rj are calculated for every pairing

transforms are applied in this version, called Fast GHT, to obtain the rotation, scale and displacement

parameters.

The invariant features selected in that work are pairings of contour points pi and pj whose gradient

angles θi and θj are separated by a given difference angle ξ. For every pairing a spatial angle αij , a

distance value dij , and reference vectors ~ri and ~rj are computed as shown in Figure 3.8. The feature

space (composed of the pairings with their gradient angles, spatial angles, distances and vectors) is

transformed in a two-dimensional Hough space (the gradient and spatial angles) with every pairing

voting in the bin with the same gradient and spatial angle. The Hough spaces of the template and the

image can be compared using a special cross-correlation function whose maximum value is located

in the rotation value β of the template in the image.

Next, the gradient angles of the pairings in the template are rotated β degrees and a new transform

in a one-dimensional Hough space (the scale parameter) is applied. Every pairing in the template and

the image feature space with the same gradient and spatial angles are selected and the quotient of their

distances is used to vote in the Hough space. The position of the maximum of the Hough space is the

scale parameter. Finally, the reference vectors of the pairings in the template are rotated and scaled

using the calculated parameters, and a transform in a two-dimensional Hough space (the displacement

coordinates) is computed. Pairings with the same gradient and spatial angles are selected and the

vectors superimposed to vote in the Hough space whose maximum corresponds to the position of the

template in the image. The former explanation about computing the Hough spaces and obtaining the

rotation, scale and displacement parameters is summarized in Figure 3.9. This shows a template and

an image in which the template is included. First, the Orientation Hough spaces are obtained and

correlated, in order to obtain the orientation parameter. Then, maxima in the Scale Hough space and

the Displacement Hough space give the scale and displacement parameters, respectively.

Let T be the template, I the image, (xi, yi) the coordinates of an edge point pi, ξ a difference

angle, O, S and D the Hough spaces to compute orientation, scale and displacement respectively,

and maxi(M) a function that returns the index where the maximum value of M takes place, the

40 Universidad de Córdoba

Chapter 3. Target applications

30 90 180 270 359

90 180 270 359

90

180

270

359

Image Orientation

Hough Space

Template Orientation

Hough Space

0 64 128 192 255
0

64

128

192

255

0 64 128 192 2550

64

128

192

255

Image

Template

0
64

128
192

255

0
64

128
192

255

0 30 90 180 270 359
0

50
100
150
200
250
300
350
400
450
500

Orientation

50 100 150 200 250
0

1

2

3

4

5

6

7

8
Scale Hough Space

Displacement

Hough Space

90

180

270

359

Figure 3.9: Template, image and Hough spaces generated by the Fast GHT. For both the template and

the image Orientation Hough spaces are calculated. They are used to obtain the orientation parameter.

Then, the maximum in the Scale Hough space gives the scale parameter, and the maximum in the

Displacement Hough space is the displacement parameter

Listing 3.2: Pseudo-code of the Fast Generalized Hough Transform

1 . Compute c o n t o u r p o i n t s pTi
def
= {xi, yi, θi} i n T

2 . For each p a i r i n g {pTi , pTj } wi th θi − θj = ξ , compute pTij
def
= {αij , dij , ~ri, ~rj}

3 . For each pTij , i n c r e m e n t OT (θi, αij)

4 . Rep ea t s t e p s 1 , 2 , 3 f o r I t o o b t a i n pIi , pIij and OI

5 . β = maxi(corr(OI ,OT))

6 . R o t a t e t e m p l a t e c o n t o u r p o i n t s pTi
def
= {xi, yi, θi + β}

7 . For each {pTij , p
I
kl} wi th θi = θk and αij − αkl , i n c r e m e n t S(dij , dkl)

8 . ς = maxi(S)

9 . S c a l e v e c t o r s i n pTij u s i n g ς

1 0 . For each {pTij , p
I
kl} wi th θi = θk and αij − αkl , i n c r e m e n t D((xk , yk) + ~ri) ,

D((xk, yk) + ~rj) , D((xi, yi) + ~ri) and D((xi, yi) + ~rj)

1 1 . (δx, δy) = maxi(D)

algorithm steps are in Listing 3.2.

In addition to the detection of arbitrary shapes in two-dimensional images, the GHT can be easily

applied to video processing, as shown by Sáez et al. [120]. In that work, a scene cut detector was

implemented using the GHT to compare two consecutive frames from a video stream. Steps 1-5 of the

pseudo-code in Listing 3.2 are computed to obtain a correlation value that is interpreted as a similarity

measure between the two frames. Studying this value along pairs of consecutive frames allows the

detection of the cuts. Moreover, the study of rotation, scale and displacement values along a window

of n frames allows the development of global motion estimation algorithms [121].

Programming issues for video analysis on Graphics Processing Units 41

3.4. The Generalized Hough Transform

Compact

& Sort

Search for

Pairings

(steps 2 & 3)

Compact

& Sort

Search for

Pairings

(steps 2 & 3)

Correlation

(step 5)

SortTemplate

Edge

Points

Image

Edge

Points

LTE

LIE

O
T

O
I

LTP

LIP

S
Scale

calculation

(steps 6 & 7)

Displacement

calculation

(steps 9 & 10)
D

Sort

β

Sorted by θ
D

Sorted by θ
D

Sorted by αθ_index

Sorted by αθ_index

ς (δx, δy)

Figure 3.10: Our implementation of the GHT: Stages in blue compute the O, S and D Hough spaces;

stages in green perform data re-organization by compacting and/or sorting the intermediate data

3.4.1 Discussion

A general scheme of our GPU implementation is presented in Figure 3.10. This figure includes the

irregular components (stages in blue), that are the core kernels and the most time-consuming parts

of the algorithm. Parallelization of these stages develops a unified strategy due to the similarities

among them. Moreover, the figure includes the correlation kernel which is regular. Edge detection is

represented by the template and image edge points on the left of the figure.

Regular components

Edge detection and correlation, applied in steps 1 and 5 respectively, exhibit mainly a regular par-

allelism, since a simple workload distribution guarantees a good load balance, coalesced memory

accesses and consequently good performance values.

Edge detection is performed using the widely-known Canny algorithm [14]. Our version does

not implement the last stage of the detector, called thresholding with hysteresis, which completes

the detection of edges in a finer and more precise way, because such accuracy is not necessary for

obtaining good matching results with the GHT. Our Canny edge detector is implemented by using

a separable convolution [113] included in the CUDA SDK. Only the fourth stage can be considered

irregular, as it is explained below. Correlation is also based on the separable convolution.

Irregular components

As indicated above, the fourth stage in the Canny algorithm, called non-maximum suppression,

presents a limiting factor to performance due to the dependence on gradient direction, as it is shown

in Figure 3.11. This requires conditional clauses which unavoidably cause warp divergence when

threads take different flow paths.

The function maxi(M), used in steps 5, 8 and 11, consists of a parallel reduction. Although this

is an inherently irregular component, its implementation is highly optimized [43].

Computation of O (steps 2-3), S (steps 6-7) and D (steps 9-10) Hough spaces represents the

parallelization challenges of the GHT. All these stages have some common features as far as memory

accesses and work distribution are concerned:

42 Universidad de Córdoba

Chapter 3. Target applications

31.1 30.9 80.3 12.4

98.2 70.1 34.2 30.0

28.1 14.1 12.0 77.6

11.4 6.8 19.3 12.2

50.3 90.8 91.4 87.5

21.8 54.2 32.2 78.7

12.9 23.9 54.8 20.1

58.9 11.5 50.3 81.2

32.0 22.3 21.1 73.3

69,4 17.6 14.8 24.4

Gradient magnitude matrix

Figure 3.11: Non-maximum suppression. A block is focused on a row tile (red), but also loads to

shared memory the upper and the lower row tiles (blue). A pixel belongs to a contour if its gradient

magnitude is greater in the direction of the gradient (lime). If it is not, the pixel is discarded as contour

point (pale blue). Such a dependence on gradient direction unavoidably provokes warp divergence

• Computation of the three Hough spaces requires some kind of features comparison, followed

by some computation, among the elements of the corresponding input workload, as stated in

steps 2, 7 and 10. In the case of the O Hough space, step 2 of the algorithm carries out a search

for pairings among the contour points. Every pair of contour points is compared in order to

check whether their gradients differ at an angle ξ. A straightforward implementation could

assign one thread to each pixel of the edge image, previously obtained by the Canny algorithm.

If the pixel is a contour point, the thread will search the rest of contour points, in order to find

its pairings. This strategy does not achieve a good performance, due to load unbalance. Most of

the threads will turn idle because the edge image is a sparse matrix, in which only a small set of

image pixels corresponds to an edge point. In fact, many warps remain completely idle, what

prevents the hardware from hiding memory latencies. In Chapter 5 we propose the compaction

of the sparse matrix of edges into a dense list, in order to ensure a better load balance during

the computation of the O Hough space.

• The features comparisons in steps 2, 7 and 10 also need a huge number of memory accesses,

which seriously penalizes the performance. In step 2, active threads should examine the whole

edge image, in order to compare the contour points with each other. In steps 7 and 10, each

couple {pTij, p
I

kl} is found after applying the rotation angle or the scale factor, respectively. By

sorting the input workload, the number of memory accesses is greatly reduced, as it is explained

in Chapter 5.

• O, S and D Hough spaces are generated during a voting process. This entails the use of atomic

additions in shared or global memory, depending on the size of the voting space, which serialize

the execution. As explained in Chapter 4, replication of the Hough spaces decreases the impact

of serialization.

Programming issues for video analysis on Graphics Processing Units 43

3.5. Conclusions

Table 3.1: Summary of target applications, parallelization problems and optimization techniques. It

includes irregular parts in each application. Each parallelization problem can be tackled by a specific

optimization technique. An extensive explanation can be found in the corresponding chapter

Application Stage Parallelization problems Optimization techniques Chapter

Histogram
Write contention Replication, padding... 4

calculation

Motion detection

RANSAC Sequential phases Warp-centric approach 5

2D histogram Write contention Replication 4

Clustering kernel
Warp divergence

Data re-organization 5
Unproductive memory accesses

GHT

O computation

Idle threads Compaction
5

Unproductive memory accesses Sorting

Write contention Replication 4

S computation
Unproductive memory accesses Sorting 5

Write contention Replication 4

D computation
Unproductive memory accesses Sorting 5

Write contention Replication 4

In Figure 3.10, stages in blue correspond to kernels that perform the computation of the O Hough

spaces (Search for pairings), the S Hough space (Scale calculation) and the D Hough space (Dis-

placement calculation). Stages in green represent the primitives applied for regularizing the problem

by compacting and/or sorting the workloads of the kernels.

3.5 Conclusions

This chapter has presented three applications that exhibit typical parallelization problems while port-

ing them onto GPUs. Moreover, their implementations on GPU have been thoroughly discussed, in

order to introduce the issues tackled in the following two chapters. Table 3.1 summarizes the main

conclusions derived from the discussions.

The first one is histogram calculation, a widely-used kernel with a full range of applications in

video and image processing. It is a particularly tricky operation on multithreaded architectures due to

the fact that thousand of threads vote in a reduced number of histogram bins. In order to ensure that

the histogram is correctly generated, votes must be performed atomically. Write contention will be

very frequent if neighboring threads access spatially correlated input data, as images and frames. This

provokes serialization of memory accesses, which seriously damages the performance. In Chapter 4

we focus on finding strategies to lessen the impact of write contention.

The other are two complete video processing applications composed by a diversity of regular and

irregular kernels. We put a special interest on the parallelization of irregular parts, which represent

the main challenge to GPU computing. Their implementations have been discussed in this chapter

and will be exhaustively explained in Chapters 4 and 5.

An optical flow based motion detection algorithm has been presented in Section 3.3. It uses the

RANSAC technique to implement egomotion estimation. This step poses parallelization problems,

because it contains inherently sequential phases. Moreover, the algorithm generates a 2D histogram

44 Universidad de Córdoba

Chapter 3. Target applications

that is later used by a clustering kernel. This kernel makes use of conditional clauses that may entail

warp divergence and an excessive number of memory accesses and executed instructions. Data re-

organization will be very profitable for this kernel.

Section 3.4 has described the Generalized Hough Transform, a widely-known algorithm for de-

tecting shapes in images. The most time consuming parts of this algorithm are also the most chal-

lenging to parallelize. These parts generate three Hough spaces from non-uniform and workload-

dependent intermediate data. Data layout must be modified in order to avoid parallelization problems

such as idle threads and warp divergence. Since the Hough spaces are types of histograms, replication

will reduce serialization.

Programming issues for video analysis on Graphics Processing Units 45

4
Highly optimized
histogram calculation
on GPU

Histogram generation is an inherently sequential operation with a full range of applications in

diverse fields such as video and image processing. This makes finding efficient parallel implemen-

tations very desirable but challenging, because on Graphics Processing Units thousands of threads

may be atomically updating a short number of histogram bins. Under these circumstances, collisions

among threads will be very frequent and such collisions will serialize thread execution, seriously

damaging the performance. In this chapter we describe our attempts towards achieving optimized

histogram calculations on GPU. We explore alternatives for histogram computation in shared and

global memories.

Section 4.2 reviews the state of the art in histogram calculation on GPU. In Section 4.3 atomic ad-

ditions in shared memory are exhaustively analyzed and a performance model is presented. Thus, we

are able to propose an optimized approach to histogram calculation in shared memory in Section 4.4.

This approach is evaluated in Section 4.5 on a current Fermi GPU and on an older one belonging

to GT200 architecture. Afterwards, we present our experiences with histogram calculation in global

memory in Section 4.6.

4.1 Introduction

Histograms are functions that count the number of observations that fall into disjoint categories,

known as bins. They permit to estimate the probability distribution of a variable and, in this manner,

they are frequently used to obtain the probability density function of the analyzed variable by nor-

malizing the histogram area to 1. Histograms are actively used in many applications, notably in video

and image processing, and pattern recognition fields [56, 104].

Developing histogram calculation codes constitutes a quite challenging task due to the multi-

threaded architecture of GPUs. Histograms will be generated by thousands of threads voting in a

47

4.1. Introduction

limited number of bins, while atomicity will be required for each vote. This is generally resolved

by using atomic additions, but these present a considerable objection: if two or more threads try to

update the same memory location at the same time, accesses will be serialized. Such a collision is a

position conflict, and the number of colliding threads is the conflict degree. Roughly, serializa-

tion will entail a latency penalization that is proportional to the conflict degree. In the case of image

processing, where typically neighboring pixels will have similar or equal color values, conflicts will

be very frequent, and performance of histogram calculation will be significantly burdened.

An effective technique to reduce the number of position conflicts consists of replicating the his-

togram, that is, placing private copies, called sub-histograms, in order to spread the votes along

more memory positions. Once the voting step has finished, sub-histograms are reduced into a final

histogram. Replication has been used in previous main works in histogram generation on CUDA-

capable GPUs [83, 112, 123]. In these works, one sub-histogram is used per thread or per warp.

However, these per-thread and per-warp approaches present several drawbacks, which limit the ben-

efit of replication.

On the one hand, the per-thread approach by Shams et al. [123] declares one sub-histogram

per thread, what avoids the need for atomic operations, but requires placing a vast number of sub-

histograms in the high-latency off-chip global memory. Position conflicts are eliminated at the ex-

pense of a costly final reduction step. Nugteren et al. [83] propose a per-thread approach in the

scarce on-chip shared memory, which presents other drawbacks such as the limited maximum size of

a histogram.

On the other hand, the per-warp approach in [112, 123] places one sub-histogram per warp in

shared memory. This makes necessary the use of atomic additions, since threads of a warp might

incur in many position conflicts due to the typical data distributions in real images. An attempt

to overcome this drawback is presented in Nugteren’s per-warp approach [83], but it is based on

uncoalesced global memory accesses, which are one of the most undesirable bottlenecks for GPU

performance.

In this chapter, we propose a new replication approach to histogram calculation founded on a

thorough microbenchmark-based study of atomic additions in shared memory. This study takes into

account the impact of conflicts coming from threads belonging to both the same warp (intra −

warp conflicts) and different warps (inter − warp conflicts), and develops a performance model.

This analysis leads us in the design of our new approach, which applies replication and padding,

for optimizing the voting process in shared memory. Our replication approach declares a number

R , called replication factor, of sub-histograms per block of threads in shared memory. Adjacent

threads will vote in different sub-histograms, in order to minimize the number of position conflicts.

However, since the shared memory is divided into memory banks [97], if the size of the histogram is

a multiple of the number of banks, position conflicts will turn into bank conflicts, which serialize

memory accesses too. Therefore, we propose the use of padding for reducing the amount of bank

conflicts. Moreover, a read access optimization, called interleaved read access, reduces inter-warp

conflicts.

Furthermore, we have explored the applicability of replication in global memory, because his-

tograms of more than 4096 bins do not fit in shared memory. We have tested a replication approach

that declares R sub-histograms in global memory, that are accessible to all thread blocks.

48 Universidad de Córdoba

Chapter 4. Highly optimized histogram calculation on GPU

Thus, in this chapter, our main contributions are:

• We present a microbenchmark-based analysis of the shared memory of a NVIDIA GPU with

Fermi architecture. We distinguish between non-atomic and atomic accesses. In the case of

atomic accesses, we study intra-warp and inter-warp conflicts, and propose a performance

model for intra-warp memory accesses.

• Such a model helps us to design an optimized approach to histogram generation, called R -per-

block, which applies replication, padding and interleaved read accesses. We also give some

guidelines for an efficient kernel configuration: number of blocks, number of threads per block

and replication factor R .

• We compare our approach with the implementations developed by other authors [83, 123, 124]

for histograms of up to 4096 bins. Tests using two natural image databases [45, 101] and four

histogram-based kernels show significant speedups of our approach on a current Fermi GPU.

• We successfully prove the applicability of our R -per-block approach on older GPU generations

for histograms of up to 1024 bins.

• We present our experiences with a R -per-kernel approach in global memory for bigger his-

tograms, which has performed well in histogram calculation in the motion detection algorithm

and the GHT, both presented in Chapter 3.

4.2 Related work

CUDA SDK contains two implementations of histogram calculation [112]. The 64-bin histogram

code assigns one sub-histogram per thread in shared memory. This is possible due to the use of 8-

bit bins. Thus, threads do not need using atomic operations. Whether the benefit is the avoidance

of serialization, the drawback lies on the fact that the maximum value a bin can store is limited

to 255, what is insufficient for most real applications. This limitation is overcome by the 256-bin

histogram implementation, where the size of the bins is 32 bits. It uses replication per warp in shared

memory, that is, threads belonging to a warp vote in a private sub-histogram using atomic additions.

Consequently, threads will be serialized when two or more incur in a position conflict.

Shams et al. [123] improved these two methods. On the one hand, Shams’ per-warp approach

is able to compute histograms of an arbitrary number of bins. If the whole set of sub-histograms

does not fit in shared memory, these are divided into a number of sub-ranges that are processed in

as many iterations. This method is only recommended for uniform input data distributions (i.e., each

value is equally likely to appear), because position conflicts among threads of the same warp can be

very frequent for spatially correlated distributions such as real images. On the other hand, Shams’

per-thread approach replicates sub-histograms in global memory. Moreover, it uses temporary bins

in shared memory, so that it improves the 64-bin approach in [112]. This method outperforms the

per-warp approach while working with real images, because there will be no concurrent updates at

the same memory locations. However, it requires a huge number of sub-histograms, whose reduction

time is not negligible.

Programming issues for video analysis on Graphics Processing Units 49

4.3. A microbenchmark-based study of the shared memory

In [124], Shams et al. presented a histogram calculation method based on counting while sorting

the input data. Since sorting is a highly optimized technique on GPU, the achieved performance is

high, beating the per-warp and per-thread approaches for histograms of more than 10000 bins.

Recently, Nugteren el at. [83] tested several new versions of per-warp and per-thread approaches

to 256-bin histogram calculation. Their best per-warp and per-thread versions achieve on a current

Fermi GPU a performance increase of 33% and 56%, respectively, in comparison to the 256-bin

implementation included in CUDA SDK [112]. Nugteren’s per-warp approach reduces the number of

position conflicts by carrying out uncoalesced global memory accesses, whose drawback is a lower

off-chip memory bandwidth. Nugteren’s per-thread approach replicates in shared memory. Each

thread votes in its own sub-histogram, which is allocated in only one memory bank. This way, this

approach eliminates all position and bank conflicts. However, the short size of the shared memory

(48 Kbytes on Fermi devices) forces this approach to use 16-bit bins and limits the number of active

threads under the minimum recommended in CUDA literature [96]. The maximum histogram size is

very limited as well. In fact, this approach is not applicable to 256-bin histogram calculation on older

GPU generations (G80, GT200), since their shared memory is insufficient (16 Kbytes).

In addition, the former works lack for an exhaustive evaluation using an important amount of

real images. Shams et al. only experimented with uniform and degenerate (i.e., all input elements

set to the same value) data distributions in [123]. In [124] they present a comparison of their per-

thread, per-warp and sort-and-count approaches by using two 3D medical images from the Vanderbilt

database [145]. Nugteren et al. [83] used uniform and degenerate distributions, and four real images.

4.3 A microbenchmark-based study of the shared memory

In order to be able to propose optimization strategies for efficient implementations of histogram cal-

culation on GPU, we have performed a thorough microbenchmark-based study of atomic additions in

shared memory. Although some valuable works have used microbenchmarking for studying the GPU

architecture [140, 148, 152], the shared memory and specifically the atomic operations have not been

meticulously analyzed. Hence, in this section we have quantified the impact of atomic additions on

performance by measuring latency penalties due to position and bank conflicts.

For devices of compute capability 1.2 and above, CUDA offers atomic functions which perform

a read-modify-write operation on a word residing in shared memory. For example, atomicAdd()

reads a word at some address, adds a number to it, and writes the result back to the same address. It

is atomic in the sense that no other threads can access this address until the operation is complete.

The syntax of atomic functions in the CUDA instruction set architecture, called PTX (Paral-

lel Thread eXecution) [100], indicates the type of operation (addition, subtraction, exchange...), the

memory space (global or shared), and the data type used. For instance, the syntax for an atomic ad-

dition on an unsigned integer in shared memory is: atom.shared.add.u32 c, [a], b. This

operation atomically loads the original value at location a into a destination register c, performs an

addition with the operand in register b and the value in location a, and stores the result at location a

overwriting the original value.

However, PTX is a pseudo-assembly language which is translated by the nvcc compiler driver

50 Universidad de Córdoba

Chapter 4. Highly optimized histogram calculation on GPU

Listing 4.1: Assembly code for an atomic addition on Fermi instruction set (c.c. 2.0)

/ * 0 2 1 0 * / LDSLK P0 , R7 , [R9] ; / / Load from s h a r e d memory i n t o r e g i s t e r

/ * 0 2 1 8 * / @P0 IADD R10 , R7 , 0 x1 ; / / Add 1 t o r e g i s t e r

/ * 0 2 2 0 * / @P0 STSUL [R9] , R10 ; / / S t o r e from r e g i s t e r i n t o s h a r e d memory

/ * 0 2 2 8 * / @! P0 BRA 0 x210 ; / / C o n d i t i o n a l b r an ch

into a binary form called cubin object. It can be inspected by using cuobjdump [98], a disassembler

included in CUDA Toolkit 4.0. The code of an atomic addition for compute capability (c.c.) 2.0 is in

Listing 4.1. We observe that an atomic addition consists of a load from shared memory followed by

an integer addition (increment by 1 in this case) and a store to shared memory. The load instruction

locks the access to shared memory until it is unlocked by the store instruction [98].

The remainder of this section is organized as follows. The microbenchmark methodology is

introduced in Section 4.3.1. Section 4.3.2 describes access patterns to shared memory that have been

used to generate parameter-driven position and bank conflict degrees. In Section 4.3.3, we analyze

non-atomic loads from shared memory, integer additions and non-atomic stores to shared memory,

in order to obtain a first reference of the latency of atomic additions. Finally, atomic additions are

studied in Section 4.3.4. The analysis has been carried out on a current NVIDIA GeForce GTX 580,

whose details are given in Chapter 2.

4.3.1 Methodology and initial observations

The methodology we have followed is similar to the one explained in [148]. In that work, microbench-

mark tests were carried out by using the clock() function [97] to measure the timing of instructions

of interest. For arithmetic operations, the authors used a chain of dependent instructions and ran one

thread or a block of 512 threads for measuring latency or throughput, respectively. For shared memory

accesses, they used one thread reading a shared memory location.

In our work we measure the latency of atomic additions in shared memory. Typically, one warp

is planned for execution. Threads of the warp access a collection of addresses called warp access

pattern. In this way, our aim is to find out how warp access patterns are related to latency. Ultimately,

we pursue an expression of the relationship between the position and bank conflict degrees within the

warp access pattern and the latency penalties.

In order to illustrate the latency measurement, the experiment in Figure 4.1 shows the timeline

for a warp access pattern that consists of threads 0 to 31 accessing addresses [0, 0, 0, 0, 4, 4, 1024,

2304, 3328, 4352, 5376, 11, 12, ..., 31] in shared memory. It can be observed that the 32 threads start

at the same time; however, some of them have different end times. In order to obtain the latency, we

subtract the start time to the latest end time.

In the figure we notice that threads involved in a position or a bank conflict have different end

times. This exposes the serialization suffered by colliding threads. Moreover, conflicts at different

positions appear to be resolved concurrently: threads 4 and 5 (colliding at address 4) have the same

end times than threads 0 and 1 (colliding at address 0), respectively. Thus, the highest conflict degree

would be conditioning the latency.

Programming issues for video analysis on Graphics Processing Units 51

4.3. A microbenchmark-based study of the shared memory

5449400

5449600

5449800

5450000

5450200

5450400

5450600

5450800

0 1 2 3 4 5 6 7 8 9 10 11 12 30 31

Begin

End

...

...

C
lo

c
k
 (

ti
c
k
s
)

Threads

Figure 4.1: Timeline for a warp access pattern with a 4-way position conflict and a 6-way bank

conflict. Threads 0 to 31 access addresses [0, 0, 0, 0, 4, 4, 1024, 2304, 3328, 4352, 5376, 11, 12, ...,

31]. There are position conflicts among threads 0 to 3 (address 0) and threads 4 and 5 (address 4). In

addition, threads 6 to 10 collide while accessing bank 0

The former observations have been ratified by preliminary experiments we have carried out using

several warp access patterns with different position and bank conflict degrees. Furthermore, these

experiments have permitted us to confirm that position and bank conflicts impose a latency penalty

each. Both penalties are added to a base latency (neither position nor bank conflicts related). In this

way, in Section 4.3.4, we study position and bank conflicts separately with the aim of analyzing them

in a simpler way.

4.3.2 Warp access patterns

In this subsection we describe some warp access patterns to shared memory that are used in later

explanations. These warp access patterns are selected for illustrative purposes, but they are used

without loss of generality since the behavior they reveal has been profusely ratified by hundreds of

random warp access patterns that have been employed during the experimental phase of this work.

Position conflicts A n-way position conflict consists of n threads accessing the same shared mem-

ory address. As indicated in Equation 4.1, each thread of the warp with thread-id ThId (such that

0 ≤ ThId ≤ 31) accesses a 32-bit-word address Address(ThId). The conflict degree n is given

by the number of threads accessing address 0. In this illustrative patterns, address 0 has been chosen

as conflicting address for the sake of simplicity. However, conclusions are generalizable to any other

shared memory address.

Address(ThId) =

{

0 if ThId < n

ThId if ThId ≥ n
(4.1)

52 Universidad de Córdoba

Chapter 4. Highly optimized histogram calculation on GPU

Listing 4.2: Assembly code for a read access, addition and write access to shared memory

/ * 0 3 0 0 * / LDS R7 , [R9] ; / / Load from s h a r e d memory i n t o r e g i s t e r

/ * 0 3 0 8 * / IADD R7 , R7 , 0 x1 ; / / Add 1 t o r e g i s t e r

/ * 0 3 1 0 * / STS [R9] , R7 ; / / S t o r e from r e g i s t e r i n t o s h a r e d memory

As these access patterns are applicable to one warp, the conflict degree n can change between 1 and

32. If n = 1, there will be no position conflict, since every thread with thread-id ThId accesses

address ThId . In the case of n = 32, every thread within the warp accesses position 0 incurring in a

32-way position conflict.

Bank conflicts A m-way bank conflict consists of m threads accessing the same shared memory

bank, as described in Equation 4.2. Bank 0 is accessed by m colliding threads. Colliding threads

access 32-bit-word addresses at distance bank number × S, where bank number is the number of

shared memory banks (32 in Fermi devices) and S is an integer value greater than or equal to 1. In

Section 4.3.4 we will refer to this distance as stride.

Address(ThId) =

{

ThId × bank number × S if ThId < m

ThId if ThId ≥ m
(4.2)

With these warp access patterns, the conflict degree m changes between 1 and 32. For instance, if

m = 1, there will be no bank conflict. If m = 2 and S = 4, thread 0 will access address 0 and thread

1 will access address 128. The stride is 128, which is a multiple of the number of banks. Thus, both

addresses fall into the same bank and threads incur in a 2-way bank conflict.

4.3.3 Non-atomic access

As a first approach to the latencies and penalties of atomic additions, the code in Listing 4.2 has been

analyzed. In this code, each thread reads an integer (32-bit word) from shared memory, adds one to

the current value and writes the result back to the same position. Although these operations are not

atomic, the code is similar to the one in Listing 4.1.

First, we have run the microbenchmark test of [148]. Integer additions result in a latency of 11

clock cycles (taddition) and a throughput of 16 operations per clock cycle, what verifies the perfor-

mance according to CUDA literature [93, 97]. In the shared memory latency test, read access results

in 44 clock cycles (tmemory). Afterwards, as this test uses one sole thread to measure latency, we

have slightly modified the code to execute a warp of threads. We confirm that the latency for shared

memory access without bank conflicts is 44 cycles. By changing the warp access pattern, we measure

the impact of bank conflicts. The bank conflict penalty increases in steps of tbank (typically, 32 clock

cycles) with the bank conflict degree, while performing read access.

Then, we have tested the code in Listing 4.2. Only one warp executes the code on one multipro-

cessor. Thus, since the three operations are dependent, the whole pipeline latency will be exposed.

In order to measure the impact of bank conflicts, we have used the access pattern described in Equa-

tion 4.2, so that the bank conflicts degree m varies from 1 to 32.

Programming issues for video analysis on Graphics Processing Units 53

4.3. A microbenchmark-based study of the shared memory

9
8

1
6

6

2
3

4

3
0

2

3
7

0

4
3

8

5
0

6

5
7

4

6
4

2

7
1

0

7
7

8

8
4

6

9
1

4

9
8

2

1
0

5
0

1
1
1

8

1
1

8
6

1
2

5
4

1
3

2
2

1
3

9
0

1
4

5
8

1
5

2
6

1
5

9
4

1
6

6
2

1
7

3
0

1
7

9
8

1
8

6
6

1
9

3
4

2
0

0
2

2
0

7
0

2
1

3
8

2
2

0
6

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Non-atomic access

L
a
te

n
c
y

(c
lo

c
k
 c

y
c
le

s
)

m-way bank conflicts

Figure 4.2: Latency in clock cycles of code in Listing 4.2 (non-atomic access) with m-way bank con-

flicts in GeForce GTX 580. A m-way bank conflict means m threads accessing m distinct addresses

in the same bank

Figure 4.2 shows the results of this experiment. These results are independent on the stride

between adjacent threads, given by the value of S. Code in Listing 4.2 takes 98 clock cycles, if

threads access the shared memory without bank conflicts, i.e., 1-way bank conflict. We call this

value base latency or tbase. It approximately coincides with two accesses to shared memory plus

one integer addition, according to the previous measures using the microbenchmark test of [148]:

tbase = tmemory + taddition + tmemory .

Moreover, we observe that the gap between two consecutive marks in Figure 4.2 is always 68

clock cycles. This value approximately corresponds to the penalty due to bank conflicts in read

and write accesses, that is, 2 × tbank. Thus, the latency of code in Listing 4.2 for one warp is

tbase + (m − 1) × 2 × tbank clock cycles, when threads belonging to the warp incur in a m-way

bank conflict per shared memory access.

Finally, we have tested many patterns with bank conflicts in more than one bank. As expected,

we confirm that the latency depends on the bank with the highest conflict degree (m), since the rest

of banks in shared memory are accessed concurrently.

4.3.4 Atomic access

Atomic addition code consists of a load and lock instruction and three other instructions (integer ad-

dition, store and branch) which are conditioned to it, as predicate register P0 represents in Listing 4.1.

It can be seen that threads compete for locking the access to those addresses which are to be atomi-

cally updated. This fact exposes the serialization that threads of a warp suffer when they try to update

the same address. Moreover, since the thread scheduler of the GPU will be alternatively launching

instructions for different warps, some warp may have to wait until other warp finishes the atomic

operation if threads of both warps access the same locations.

From the former observations, we distinguish between intra-warp and inter-warp conflicts. In the

54 Universidad de Córdoba

Chapter 4. Highly optimized histogram calculation on GPU

1
0

8

2
3

2

3
5

2

4
7

2

5
9

2

7
1

2

8
7

2

9
9

6

1
1
1

6

1
2

3
6

1
4

0
4

1
5

2
8

1
6

4
8

1
7

6
8

1
8

8
8

2
0

1
2

2
1

3
2

2
2

5
2

2
3

7
2

2
4

9
6

2
6

1
6

2
7

3
6

2
8

5
6

2
9

8
0

3
1

0
0

3
2

2
0

3
3

4
0

3
4

6
4

3
5

8
4

3
7

0
4

3
8

2
4

3
9

4
8

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Position conflicts

L
a
te

n
c
y

(c
lo

c
k
 c

y
c
le

s
)

n-way position conflicts

Figure 4.3: Latency in clock cycles of an atomic addition with n-way intra-warp position conflicts in

GeForce GTX 580. In each test, n threads vote in the same bin

following subsections we study separately both types of conflicts.

Intra-warp conflicts

While executing an atomic addition, threads belonging to a warp may suffer a position conflict if they

try to access the same address. On the other hand, they may suffer a bank conflict if different accessed

addresses belong to the same memory bank. First we will quantify the impact of position conflicts,

and then we will study how bank conflicts are resolved.

Position conflicts In order to measure the impact of intra-warp position conflicts, we use the warp

access pattern described in Equation 4.1. Such a pattern results in a n-way position conflict with no

bank conflicts. Figure 4.3 presents the latency results. The access without position conflicts (n = 1)

results in 108 clock cycles. This value is the base latency (tbase) for atomic additions. It is higher

than the base latency of the non-atomic code due to the branch instruction execution. Moreover, it

can be observed the gap between two consecutive marks is around 120 clock cycles (tposition). Thus,

the penalty due to a n-way position conflict is (n − 1) × tposition clock cycles.

We have checked that these values are independent on the address where the conflict occurs. We

have also tested many patterns with position conflicts (and no other bank conflicts) in more than one

address. Our conclusion is that the exposed latency of the warp access is always determined by the

address with the highest conflict degree (n).

Bank conflicts We use the access pattern given by Equation 4.2 to estimate the influence of intra-

warp bank conflicts. The value of S is changed between 1 and 32, so that the stride is a multiple of

the number of banks between 32 and 1024. We observe there are two types of bank conflicts:

• If addresses in conflict are at a distance multiple of 1024 words, the penalty is tbank−long

Programming issues for video analysis on Graphics Processing Units 55

4.3. A microbenchmark-based study of the shared memory

1
0

8

1
7

4

2
4

2

3
1

0

3
7

8

4
4

6

5
1

4

5
8

2

6
5

0

7
1

8

7
8

6

8
5

4

9
2

2

9
9

0

1
0

5
8

1
1

2
6

1
1

9
4

1
2

6
2

1
3

3
0

1
3

9
8

1
4

6
6

1
5

3
4

1
6

0
2

1
6

7
0

1
7

3
8

1
8

0
6

1
8

7
4

1
9

4
2

2
0

1
0

2
0

7
8

2
1

4
6

2
2

1
4

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Bank conflicts, stride = 32

L
a
te

n
c
y

(c
lo

c
k
 c

y
c
le

s
)

m-way bank conflicts

1
0
8

1
7
4

2
4
2

3
1
0

4
5
6

5
5
6

6
5
6

7
5
6

9
3
2

1
0
6
4

1
1
9
6

1
3
2
8

1
5
3
6

1
7
0
0

1
8
6
4

2
0
2
8

2
2
6
8

2
4
6
4

2
6
6
0

2
8
5
6

3
1
2
8

3
3
5
6

3
5
8
4

3
8
1
2

4
1
6
0

4
4
1
6

4
6
7
6

4
9
3
6

5
2
7
6

5
5
6
4

5
8
5

6

6
1

4
8

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Bank conflicts, stride = 256

L
a
te

n
c
y

(c
lo

c
k
 c

y
c
le

s
)

m-way bank conflicts

1
2

3

4

5

6

7

p = 0
p = 1

p = 2

p = 3

p = 4

p = 5

p = 6

p = 7

Figure 4.4: Latency in clock cycles of an atomic addition with m-way intra-warp bank conflicts

in GeForce GTX 580. On the top, results with a stride = 32 are presented. The gap between two

consecutive marks is tbank−short. On the bottom, results with a stride = 256 are shown. Gaps are

approximately equal between the first four marks (tbank−short). Where arrow 1 has been placed, the

gap is significantly higher (tbank−long). Gaps between the second four marks are again approximately

equal, but higher than gaps between the first four marks in 32 clock cycles (textra). Similarly, the gap

pointed by arrow 2 is 32 clock cycles longer than the gap in arrow 1 (tbank−long + textra)

(typically, 152 clock cycles). We call it long− latency bank conflict. For example, if the warp

access pattern is [0, 1024, 2, 3, ..., 31], the penalty tbank−long is added to the base latency.

• If addresses in conflict are at a different distance, the latency is increased in tbank−short (typi-

cally, 68 clock cycles). We call it short − latency bank conflict. An example is a warp access

pattern equal to [0, 32, 2, 3, ..., 31]: tbank−short is added to the base latency. This value matches

the bank conflict penalty measured in the non-atomic code. It corresponds to bank conflicts in

read and write accesses: tbank−short = 2 × tbank.

• Moreover, both penalties are increased in steps of textra (32 clock cycles), whenever a new

56 Universidad de Córdoba

Chapter 4. Highly optimized histogram calculation on GPU

colliding thread accesses an address at a distance multiple of 1024 with respect to the addresses

being accessed in the two former cases. For instance, a warp access pattern [0, 1024, 2048,

3, ..., 31] entails a penalty of tbank−long + tbank−long + textra, because thread 2 is accessing

an address at distance multiple of 1024 with respect to addresses 0 and 1024. If the warp

access pattern is [0, 1024, 2048, 32, 4, ..., 31], the penalty is tbank−long + tbank−long + textra +

tbank−short. The extra penalty appears again with a new colliding thread at distance 1024 with

respect to 32: the warp access pattern [0, 1024, 2048, 32, 1056, 4, ..., 31] entails a penalty

tbank−long + tbank−long + textra + tbank−short + tbank−short + textra.

This behavior is shown in Figure 4.4 for two particular cases where the stride takes the values of

32 (S = 1) and 256 (S = 8) respectively.

In the case of a stride equal to 32, the whole range of addresses accessed by the threads of the

warp is between address 0 and 1024 of the shared memory. Therefore, there are no addresses in

conflict at distances multiple of 1024. In this way, the penalty due to a m-way bank conflict is

(m − 1) × 2 × tbank clock cycles, what coincides with results in subsection 4.3.3. These results are

shown in Figure 4.4 (top).

When the stride is 256 the latency function can be approximated by a piecewise linear function

whose intervals change at addresses at distances multiple of 1024 within the same bank. Arrows in

Figure 4.4 (bottom) point to the endpoints of these pieces. Thus, arrow 1 points to the limit between

the first (p = 0) and the second (p = 1) pieces and coincides with a new conflict due to two accesses

to the same bank with distance multiple of 1024. The gap in arrow 2 reflects that there is another new

conflict in the same bank with distance multiple of 1024.

Discussion CUDA literature [96, 97, 98, 100] includes very scarce information about atomic oper-

ations, so that it is difficult to explain the former observations. However, a recently issued patent [19]

assigned to NVIDIA Corporation describes a lock mechanism to enable atomic updates to shared

memory. We consider very probable that the patent describes actual hardware implementation, be-

cause it is unlikely that NVIDIA releases patents with no hardware yet.

This patent details a memory lock unit that locks and unlocks memory locations to provide support

for atomic updates in shared memory. Memory read and write requests from threads are input to the

memory lock unit. A set of lock bits are provided that store the lock status for locations. A lock

bit may be shared amongst several addressable locations. Thus, multiple addresses are aliased to the

same lock bit. A hash function may be implemented by the memory lock unit to map request memory

addresses to lock bit addresses. The hash function guarantees preferably that word addresses N and

N +1 will map to different lock bits, and at least 256 independent locks are provided. Otherwise, the

hash function may simply use the low bits of the address.

It is also indicated that shared memory read and write instructions are augmented with lock ac-

quire and lock release suffixes. A read instruction G2R.LCK returns both the data that is stored at

the indicated address and a flag that indicates if the lock was successfully acquired. The lock bits

are accessed in parallel with memory read and write accesses, so that no additional pipeline stages or

clock cycles are needed to acquire and release the lock.

If the lock was successfully acquired, the program may then modify the data, store the new value

Programming issues for video analysis on Graphics Processing Units 57

4.3. A microbenchmark-based study of the shared memory

Table 4.1: Experiments with atomic additions incurring in 2-way bank conflicts on GeForce GTX

280. Bank conflicts with addresses in conflict at distances multiple of 256 provoke a longer latency

Warp access pattern Latency (clock cycles)

(1) 0, 1, 2, 3, 4, 5, 6, 7, 8, ..., 31 180

(2) 0, 32, 2, 3, 4, 5, 6, 7, 8, ..., 31 228

(3) 0, 64, 2, 3, 4, 5, 6, 7, 8, ..., 31 228

...

(4) 0, 128, 2, 3, 4, 5, 6, 7, 8, ..., 31 228

...

(5) 0, 224, 2, 3, 4, 5, 6, 7, 8, ..., 31 228

(6) 0, 256, 2, 3, 4, 5, 6, 7, 8, ..., 31 340

(7) 0, 288, 2, 3, 4, 5, 6, 7, 8, ..., 31 228

...

(8) 0, 512, 2, 3, 4, 5, 6, 7, 8, ..., 31 340

(9) 0, 544, 2, 3, 4, 5, 6, 7, 8, ..., 31 228

...

and release the lock (with a write instruction R2G.UNL) to allow other threads to access the location

whose address aliases to the same lock address as the released lock address. If the lock is not success-

fully acquired by the G2R.LCK instruction, the program should attempt to acquire the lock again.

The program is also responsible to honor the lock bits, since the memory lock unit is not configured

to track lock ownership.

The patent illustrates this process with a pseudo-code that uses the former instructions and an

embodiment of the invention in which the lock address is the low 8 bits of address. If byte addresses

are used, locking is performed using a 4-byte granularity and the low 8 bits of address are then bits

9:2.

We notice that instructions G2R.LCK and R2G.UNL belong to the GT200 instruction set [98].

Thus, we have performed several experiments with shared memory atomic additions on a GeForce

GTX 280, whose details are given in Chapter 2. Table 4.1 shows that 2-way bank conflicts with strides

multiple of 256 (experiments 6 and 8) are costlier than others (experiments 2, 3, 4, 5, 7, and 9). These

results can be explained by the former description of lock mechanism. In this way, addresses 0, 256,

512... are aliased to the same lock bit, so that the lock address is bits 9:2, which are equal in addresses

at distances multiple of 256. Apart from the bank conflict latency that is noticeable in experiments 2,

3, 4, 5, 7, and 9, experiments 6 and 8 suffer the execution serialization of threads accessing addresses

with the same lock bit. Therefore, long-latency bank conflicts are resolved in the same way as position

conflicts.

As we have previously observed that bank conflicts at distances multiple of 1024 words are

costlier than others on the GeForce GTX 580, we infer that the lock mechanism in Fermi architecture

uses likely 1024 independent locks. Thus, the lock address will be bits 11:2, as Figure 4.5 illustrates.

In this way, long-latency bank conflicts on GTX 580 can be explained similarly as on GTX 280, that

is, the program must treat them as position conflicts.

In addition, since the patent indicates that the lock bits are accessed in parallel with memory

58 Universidad de Córdoba

Chapter 4. Highly optimized histogram calculation on GPU

th0 th1 th2 th3 th4 th5 th6 th7 th8 th9 th31

0 32 1 33 0 1024 1056 2048 8 9 ... 31

Warp access pattern

0 = 0000 00000 00000 00

1 = 0000 00000 00001 00

32 = 0000 00001 00000 00

33 = 0000 00001 00001 00

1024 = 0001 00000 00000 00

1056 = 0001 00001 00000 00

2048 = 0010 00000 00000 00

8 = 0000 00000 01000 00

9 = 0000 00000 01001 00

31 = 0000 00000 11111 00

...

Memory addresses

00000 00000

00000 00001

00001 00000

00001 00001

00000 01000

00000 01001

00000 11111

...

Lock addressesHash function

Bits 11:2

Figure 4.5: Implementation of hash function in lock mechanism. Given a memory address, the corre-

sponding lock address is bits 11:2. Memory addresses at distance 1024 words are aliased, since they

have the same lock address. This way, threads 0, 4, 5, and 7 will be executed sequentially, as well as

threads 1 and 6

accesses, latency penalties due to bank conflicts will always be suffered in read access, although the

lock is not acquired. For instance, in the warp access pattern presented in Figure 4.5 addresses 0

and 1024 incur in a bank conflict when data is read. As the locks are accessed in parallel and these

memory addresses share lock address, only one of both addresses will finally acquire the lock, but

a bank conflict penalty has already been added due to read access. This issue would explain that

long-latency bank conflicts are even longer than position conflicts, i.e., tbank−long = tposition + tbank

(typically, 152 = 120 + 32 clock cycles).

The additional penalty textra can be explained in a similar way. Let us consider addresses 0,

1024, and 2048 in Figure 4.5. As they are aliased, code in Listing 4.1 will be executed three times.

For instance, if the order in which these addresses acquire the shared lock is 0 - 1024 - 2048, address

1024 will be read twice and address 2048 will be read three times. Thus, the penalty tbank−long due

to address 2048 is increased in tbank. Consequently, textra = tbank.

An schematic of the shared memory according to atomic operation execution is presented in

Figure 4.6. Figure 4.7 summarizes the former issues by explaining the execution of an atomic addition

for the warp access pattern in Figure 4.5. As it can be observed, the timeline gives the order in which

instructions of Listing 4.1 are executed. Together with a read access, a load and lock instruction

generates a predicate register, which indicates the threads that have acquired the locks. Then, addition,

store and branch instructions are subject to the predicate register.

The latency of load and store instructions is conditioned by the bank conflicts they have to resolve.

In this example, the penalty due to bank conflicts is 10 × tbank. Part of this penalty is due to long-

Programming issues for video analysis on Graphics Processing Units 59

4.3. A microbenchmark-based study of the shared memory

48128

48160

48192

48224

3039

48256

48288

...

48129

48161

48193

48225

49121

48257

48289

...

48130

48162

48194

48226

49122

48258

48290

...

48131

48163

48195

48227

49123

48259

48291

...

2048

2080

2112

2144

3039

2176

2208

0

32

64

96

128

160

...

1024

1088

1056

1120

1152

1184

2015

2049

2081

2113

2145

3040

2177

2209

1

33

65

97

129

161

…

1025

1057

1089

1121

1153

1185

2016

2050

2082

2114

2146

3039

2178

2210

2

34

66

98

130

162

...

1026

1058

1089

1122

1154

1186

2017

2051

2083

2115

2147

3043

2179

2211

…

3

35

67

99

131

163

...

1027

1059

1090

1123

1155

1187

...
3039

48158

48190

48222

48254

49150

48286

48318

...

48159

48191

48223

48255

49151

48287

48319

...

2078

2110

2142

2174

3070

2206

2238

30

62

94

126

158

190

...

1054

1086

1118

1150

1182

2046

2079

2111

2143

2175

3071

2207

2239

…

31

63

95

127

159

191

...

1055

1087

1119

1151

1183

1215

...

2047

995

2019

993992991

0

32

64

96

128

160

...

992

1

33

65

97

129

161

…

993

2

34

66

98

130

162

...

994

3

35

67

99

131

163

...

995

1022 1023

30

62

94

126

158

190

...

1022

31

63

95

127

159

191

...

1023

B
a
n

k
 0

B
a
n

k
 1

B
a
n

k
 2

B
a
n

k
 3

B
a
n

k
 3

0

B
a
n

k
 3

1

Lock addresses

Address 1056

0001 00001 00000 00

Page 0

Page 1

Page 2

Page 48

Page Row Bank

Storage resource

Memory lock unit

Shared memory

Figure 4.6: Schematic of the shared memory in accordance with the execution of atomic operations.

The shared memory in Fermi devices is composed by a memory lock unit and 48 Kbytes storage.

The memory lock unit contains 1024 lock bits associated to a number of shared memory addresses

that map to the same lock bit address. The storage resource is divided into 32 interleaved banks.

Addresses in the same bank have the same bits 6:2. Row is identified by bits 11:7. Address bits 11:2

determine the lock bit associated to an address. Thus, each 1024 consecutive words form a memory

page. Highlighted memory locations have aliased addresses, i.e. bits 11:2 are equal

60 Universidad de Córdoba

Chapter 4. Highly optimized histogram calculation on GPU

LDSLK P0

@P0 IADD

@P0 STSUL

!@P0 BRA

LDSLK P0

@P0 IADD

@P0 STSUL

!@P0 BRA

LDSLK P0

@P0 IADD

@P0 STSUL

!@P0 BRA

LDSLK P0

@P0 IADD

@P0 STSUL

!@P0 BRA

Instruction Active threads
Addresses

involved

0 2 4 8 9 … 31 0 1 8 9 … 31

1 3 32 33

5 1024

6 1056

7 2048

0 1 2 3 8 9 … 31 0 1 8 9 … 31 32 33

0 2 8 9 … 31 0 1 8 9 … 31

1 3 32 33

4 5 6 7

4 0

5 1024

6 1056

7 2048

4 6 0 1056

4 0

6 1056

5 7

5 1024

7 2048

5 1024

5 1024

7

7 2048

7 2048

7 2048

In memory...

Read access

Bank conflict

Bank conflict

Bank conflict

Bank conflict

In lock unit...

Lock addresses:

Hash[0 32 1 33 0 1024 1056 2048 8

9 … 31] = 0 1 8 9 … 31 32 33

LockBits:
[0 1 8 9 … 31 32 33] = 1

Write access

Bank conflict
Release locks

In processing unit...

Predicated addition

Read access

Bank conflict

Bank conflict

Bank conflict

Lock addresses:

Hash[0 1024 1056 2048] = 0 32

LockBits:

[0 32] = 1

Write access

Bank conflict
Release locks

Predicated branch

Predicated addition

Predicated branch

Read access

Bank conflict

Hash[1024 2048] = 0

LockBits[0] = 1

Predicated addition

Write accessRelease locks

Predicated branch

Read accessHash[2048]=0; LockBits[0]=1

Predicated addition

Write accessRelease locks

Predicated branch

ti
m

e

tposition

tbank

tbank

tbank

tbank

tbase

Latency

penalties

tbank

tbank

tbank

tbank

tbank

tpositiontbank

tposition

Figure 4.7: Timeline for execution of instructions in Listing 4.1, which perform an atomic addition

for the warp access pattern presented in Figure 4.5. Load and lock instructions (LDSLK) make the

memory lock unit determine the lock addresses and set the corresponding lock bits. The predicate

register P0 establishes which threads have acquired the lock. Simultaneously, addresses involved are

read in shared memory. Those threads whose flag is set execute subsequent addition (IADD) and

store (STSUL) instructions. Additionally, STSUL releases the locks. The branch (BRA) is taken by

those threads that have not acquired the lock. On the right, tags indicate the latencies due to different

actions

latency bank conflicts (for instance, addresses 32 and 1056) while another part is due to short latency

bank conflicts (for instance, addresses 0 and 32). The number of iterations of the code is 4, as it is

determined by the maximum number of addresses that map to the same lock address: 0, 0, 1024, and

2048. This explains latencies tbase + 3 × tposition that tags show in the figure.

Intra-warp performance model We can put all previous aspects together and define a procedure

to determine the latency estimate of atomic additions in shared memory with arbitrary access pattern.

Programming issues for video analysis on Graphics Processing Units 61

4.3. A microbenchmark-based study of the shared memory

Listing 4.3: Procedure for determining the maximum number of addresses, in a set of addresses

Address, that fall in the same bank

B a n k c o n f l i c t c a l c u l a t i o n (Address[]){

For (each Address[i]){

/ / De te rm in e bank

bank = Address[i]%NUMBER BANKS

I f (Address[i] i s n o t w i t h i n Bank Address[bank][]){

Bank Count[bank] + +

Bank Address[bank][Bank Count[bank]− 1] = Address[i]

}

}

/ / De te rm in e bank c o n f l i c t d e g r e e

bank conflict degree = Maximum(Bank Count[])

Retu rn bank conflict degree

}

Listing 4.4: Procedure for determining the maximum number of addresses, in a set of addresses

Address, that are aliased and the addresses that acquire the lock

L o c k c o n f l i c t c a l c u l a t i o n (Address[]){

For (each Address[i]){

/ / De te rm in e l o c k a d d r e s s

lock = Address[i]%NUMBER LOCKS

Lock Count[lock] + +

Lock Address[lock][Lock Count[lock] − 1] = Address[i]

}

/ / Take a d d r e s s e s t o be u p d a t e d

Address to update[] = Lock Address[][0]

/ / De te rm in e l o c k c o n f l i c t d e g r e e

lock conflict degree = Maximum(Lock Count[])

Retu rn Address to update[]

Retu rn lock conflict degree

}

By generalizing the rules we have applied in the previous example, we propose the procedure in

Listing 4.5. In each iteration it calculates the bank conflict degree in the read access, and determines

which addresses acquire the locks. Then, it calculates the bank conflict degree in the write access.

Finally, it removes those addresses that have been updated from the original set of addresses. Code

in Listing 4.3 calculates the bank conflict degree of a set of addresses. Listing 4.4 shows the code for

determining the addresses that acquired locks and the maximum number of addresses that share one

lock.In addition, we have evaluated the reliability of the intra-warp performance model with 5184

different warp access patterns. These tests have successfully shown that latency estimates match

measured latencies. The median relative error of latency estimates is 1.9%.

62 Universidad de Córdoba

Chapter 4. Highly optimized histogram calculation on GPU

Listing 4.5: Procedure for determining a latency estimate for a warp access pattern Aw

L a t e n c y e s t i m a t i o n (Aw){

/ / The number o f i t e r a t i o n s i s d e t e r m i n e d by t h e l o c k c o n f l i c t d e g r e e

lock conflict degree = lock conflict calculation(Aw)

/ / Copy warp a c c e s s p a t t e r n t o a r r a y Address[]

Address[] = Aw

For (iteration = 0; iteration < lock conflict degree; iteration + +){

/ / La ten cy due t o i t e r a t i o n : load , a d d i t i o n , s t o r e , and b ran ch

I f (iteration = 0) Latency = tbase

E l s e Latency + = tposition

/ / Read a c c e s s

/ / De te rm in e bank c o n f l i c t s i n r e a d a c c e s s

bank conflict degree = bank conflict calculation(Address[])

/ / La ten cy due t o bank c o n f l i c t s i n r e a d a c c e s s

I f (bank conflict degree > 0)

Latency + = (bank conflict degree − 1) × tbank

/ / Lock a c q u i s i t i o n

Address to update[] = lock conflict calculation(Address[])

/ / Wr i t e a c c e s s

/ / De te rm in e bank c o n f l i c t s i n w r i t e a c c e s s

bank conflict degree = bank conflict calculation(Address to update[])

/ / La ten cy due t o bank c o n f l i c t s i n w r i t e a c c e s s

I f (bank conflict degree > 0)

Latency + = (bank conflict degree − 1) × tbank

Remove Address to update[] f rom Address[]

}

Retu rn Latency

}

Programming issues for video analysis on Graphics Processing Units 63

4.3. A microbenchmark-based study of the shared memory

2.8

1.6
1.4 1.4 1.4

0.0

1.0

2.0

3.0

4.0

16 8 4 2 1

Inter-warp conflict degree

E
x
e
c
u
ti
o
n

ti
m

e
 (

m
s
)

Figure 4.8: Execution time in milliseconds (ms) for 16 warps accessing 32 to 512 positions. The

inter-warp conflict degree changes from 16 to 1

Inter-warp conflicts

Within a multiprocessor the warp scheduler alternates instructions from different warps. While exe-

cuting atomic operations, one warp may be stalled because of a conflict with other warp. For instance,

if two warps try to access the shared memory with the same warp access pattern at the same time,

one of them must wait until the other finishes. This is what we call an inter-warp conflict, and the

number of colliding warps is the conflict degree. We should remark that these conflicts are solely po-

sition conflicts, since bank conflicts are only possible within a warp because the granularity of shared

memory requests is 32.

In order to illustrate the impact of inter-warp conflicts, we have performed an experiment in which

one block of 512 threads (i.e., 16 warps) executes atomic additions in 32 to 512 different positions.

The access pattern is presented in the following equation:

Address(ThId) = ThId%

(

block size

conflict degree

)

, with conflict degree ∈ {1, 2, 4, 8, 16} (4.3)

According to Equation 4.3, each thread with thread-id ThId (such that 0 ≤ ThId ≤ 511) accesses

address Address(ThId). Such an access pattern presents no intra-warp conflicts and a variable inter-

warp conflict degree. For instance, an inter-warp conflict degree equal to 16 entails that threads 0 to

31 access addresses 0 to 31, threads 32 to 63 access 0 to 31, threads 64 to 95 access 0 to 31... In the

access pattern without inter-warp conflicts (conflict degree = 1), threads 0 to 511 access addresses

0 to 511.

In Figure 4.8, we observe there exist penalties due to inter-warp conflicts. The execution time

decreases with the inter-warp conflict degree for values above 4. However, tests with inter-warp

conflict degrees equal to 4, 2, and 1 take the same execution time. In this way, we confirm that the

multithreaded architecture of the GPU permits to hide memory access latencies. In this experiment,

warps concurrency is hiding an inter-warp conflict degree up to 4.

The benefits of multithreading are also viewed in the following experiment. One block of 32 to

64 Universidad de Córdoba

Chapter 4. Highly optimized histogram calculation on GPU

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Warp_latency x Number_of_warps

Measured latency
L
te

n
c
y

(c
lo

c
k
 c

y
c
le

s
)

Number of warps

Figure 4.9: Latency in clock cycles due to inter-warp conflicts. In each test, 1 to 32 warps access 32

addresses

1024 threads (in steps of 32 threads) is executed on one multiprocessor. Thus, the number of warps

changes from 1 to 32. We measure the latency of atomic additions to addresses 0 to 31. This is

the warp access pattern for every warp: thread ThId accesses address ThId%32. Hence, there are

no intra-warp conflicts and the inter-warp conflict degree is equal to the number of warps (1 to 32).

In order to carry out this experiment, we include a synchronization barrier just before the atomic

addition, so that all warps start the execution of the atomic addition at the same time. The latency is

taken from the time the first warp starts to the time the last warp finishes. As expected, Figure 4.9

shows a latency growing with the inter-warp conflict degree. However, we observe that the measured

latency is always lower than the theoretical latency due to warps executing in a strictly serialized way,

i.e., the latency for one warp multiplied by the number of warps. In this experiment, multithreading

decreases the latency up to 37%.

4.4 An optimized approach to histogram generation in shared memory

The use of atomic additions in shared memory is necessary for designing a histogram calculation

approach independent on histogram size, because per-thread approaches are limited by the availability

of shared memory [83] or require voting in the slower global memory [123].

On the other hand, the per-warp approach in [123] is subject to many intra-warp position conflicts

when working with real images. In a typical image or video application on GPU, threads belonging

to the same warp will read contiguous pixels of an image or frame stored in global memory. Such an

access pattern is recommended on GPUs in order to fulfill coalescing requirements, which permit a

faster access to global memory [97]. Real images typically present high spatial correlation of pixels.

Thus, color values of neighboring pixels will be generally in the same range. Furthermore, adjacent

pixels will often have the same value. For instance, Figure 4.10 shows the luminance values of one

Lenna’s image window. Threads of the same warp will vote in a reduced range of the histogram, due

to the spatial similarity of the input distribution. Since these threads vote in the same sub-histogram,

Programming issues for video analysis on Graphics Processing Units 65

4.4. An optimized approach to histogram generation in shared memory

169 170 171 174 177 182 187 192 194 192

169 173 173 175 177 181 185 189 191 192

169 173 173 175 177 180 184 188 190 193

169 172 173 174 176 180 183 187 189 193

171 173 173 174 176 179 182 185 187 192

174 175 175 175 176 178 180 183 184 1885 5 5 6 8 80 83 8 88

177 177 176 176 177 179 180 181 185 188

178 178 176 178 184 185 189 193 195 194

176 176 173 176 181 183 186 190 192 191

174 172 170 173 177 181 185 189 191 190

173 171 169 172 175 181 185 190 192 192

171 169 169 172 174 179 183 189 192 192

Figure 4.10: Detail of a Lenna’s grayscale image. Neighboring pixels on her forehead present similar

or equal luminance values

position conflicts will be very frequent.

In this way, since the impact of position and bank conflicts has been previously characterized

for atomic additions in shared memory, we are able to propose a per-block replication approach that

reduces the number of conflicts. Replication is used to turn position conflicts into bank conflicts by

making consecutive threads vote in consecutive sub-histograms, as it is explained below. However,

bank conflicts entail a latency penalty as well, specially those between addresses at distances multiple

of 1024, that are even costlier than position conflicts. In this way, padding is necessary to minimize

the number of bank conflicts. Finally, we complete our approach proposing an interleaved read access

which deals with the access to the input data, and permits to decrease inter-warp conflicts.

Our approach uses a number of blocks whose threads read pixels from global memory and vote in

R sub-histograms in shared memory. It is applicable to histograms up to 4096 bins on current Fermi

GPUs, with bin size equal to 32 bits.

Pseudo-code in Listing 4.6 describes our proposal. It basically consists of three parts: first, threads

initialize sub-histograms in shared memory; second, threads read image pixels in an interleaved man-

ner, perform optionally some computation, and vote in a number R of sub-histograms per block,

called replication factor; third, the R sub-histograms per block are reduced and, finally, merged into

a final histogram in global memory. This reduction step uses the same code as the per-warp ap-

proach [112, 123].

4.4.1 Replication

Replication consists of placing several sub-histograms in shared memory with the aim of reducing or

eliminating position conflicts during the voting process.

In this work, we propose a replication approach per block in which consecutive threads belonging

to a block will access consecutive sub-histograms in shared memory, as Figure 4.11 shows. Thus, if

the replication factor is R , thread ThId (such that 0 ≤ ThId ≤ block size − 1, where block size is

the number of threads within a block) will vote in sub-histogram ThId%R . This strategy will mainly

permit to reduce the serialization caused by threads of the same warp (i.e., intra-warp conflicts) when

updating the same memory location. Moreover, it will also reduce inter-warp conflicts, if the number

of sub-histograms is higher than the size of a warp.

66 Universidad de Córdoba

Chapter 4. Highly optimized histogram calculation on GPU

Listing 4.6: Pseudo-code of our R -per-block approach to histogram calculation

H i s t o g r a m k e r n e l {

Sub − histogram = ThId%R / / Thread ThId v o t e s i n Sub − histogram

Th read s i n i t i a l i z e t o z e r o R sub−h i s t o g r a m s p e r b l o c k i n s h a r e d mem.

s y n c h r o n i z a t i o n p o i n t

For (each p i x e l i i n image I){

Pixel = I[i] / / I n t e r l e a v e d a c c e s s t o I[i] i n g l o b a l mem .

Pixel′ = Computation(Pixel) / / Pe r fo rm some c o m p u t a t i o n (o p t i o n a l l y)

Sub − histogram[Pixel′] + + / / Vote i n one b i n o f Sub − histogram

}

s y n c h r o n i z a t i o n p o i n t

R e d u c t i o n o f R sub−h i s t o g r a m s p e r b l o c k

R e d u c t i o n i n t o a f i n a l h i s t o g r a m i n g l o b a l memory

}

Sub-histogram

0

Sub-histogram

1

Sub-histogram

2

Sub-histogram

3

Sub-histogram

4

Sub-histogram

5

Sub-histogram

6

Sub-histogram

7

th0

th8

th16

th24

th1

th9

th17

th25

th2

th10

th18

th26

th3

th11

th19

th27

th4

th12

th20

th28

th5

th13

th21

th29

th6

th14

th22

th30

th7

th15

th23

th31

Global or shared memory

Figure 4.11: Replication in shared or global memory consists of allocating several private copies,

called sub-histograms. If the replication factor is 8, thread ThId votes in sub-histogram ThId%8.

Probability of collision among threads of the same warp is reduced by 8

The potential benefit of replication can be figured out when observing Figure 4.10. Unlike in the

per-warp approach, threads in the same warp vote in several different sub-histograms. Hence, the

number of position conflicts will significantly decrease.

We have measured the latency of an atomic warp access to shared memory while changing the

size of the histogram, the replication factor and the position conflict degree. Warp access patterns

we have used are inspired on real pixel distributions. They have been designed in order to represent

the high spatial correlation in real images: n consecutive pixels will have the same value. Thus, n

consecutive threads will vote in the same bin. In this way, we have changed the position conflict

degree (n) from 1 to 32. In a test with a n-way position conflict, thread ThId votes in bin ⌊ThId
n

⌋.

The replication factor has been changed from 1 to 32 and the histogram sizes we have used are 32,

64, 128, 256, 512 and 1024 32-bit bins.

While applying replication, votes of consecutive threads are carried out in consecutive sub-

histograms. Thus, the number of position conflicts decreases. For instance, let us consider a 256-bins

histogram calculation using a replication factor equal to 2. If threads 0 and 1 must vote in bin 0,

they will perform an atomic addition in addresses 0 and 256 respectively. Consequently, the position

conflict turns into a bank conflict. By using the procedure in Listing 4.5, we are able to estimate the

Programming issues for video analysis on Graphics Processing Units 67

4.4. An optimized approach to histogram generation in shared memory

latency taken in any combination of position conflict degree, histogram size and replication factor. We

observe that in all cases (aforementioned replication factors and histogram sizes) latencies estimated

through our procedure match measured latencies properly.

Results in all cases show that replication is profitable when the memory space used is less or equal

than 1024 memory words, that is, R × histogram size ≤ 1024. This is due to the fact that bank

conflicts involving addresses at distances multiple of 1024 are costlier than position conflicts, as it was

shown in Section 4.3.4. Figure 4.13 (blue square marks) shows latency results for 32-bins and 256-

bins histogram calculation using a warp access pattern with a 32-way position conflict. The 32-bins

histogram obtains the best performance with R = 32, since all bank conflicts derived from replication

are due to addresses at distances under 1024. However, in the case of the 256-bins histogram, the

best replication factor is 4, because the memory space used is 1024 memory words. With a higher

replication factor, performance is burdened by bank conflicts among addresses at distances multiple

of 1024.

4.4.2 Padding

As it has been explained, the use of replication in shared memory reduces the number of position

collisions. However, position conflicts turn into bank conflicts, that limit the performance as well.

This is shown in Figure 4.12 (a). Bank conflicts among addresses at distances multiple of 1024

are particularly harmful, as it has been seen. In this regard, the use of padding is recommended to

improve the performance. Padding strengthens replication by avoiding bank conflicts when two or

more threads of the same warp access the same histogram bin in contiguous sub-histograms in shared

memory. Figure 4.12 (b) explains the use of padding in histogram calculation.

We have carried out the same experiments as in the previous subsection while applying replication

and padding. Latency results show in all cases that the best performance with replication and padding

is always obtained with a replication factor equal or greater than the position conflict degree. Padding

permits to reduce impressively the number of bank conflicts and to overcome the drawback of using

only replication. As it can be seen in Figure 4.13 (green circular marks), latency undergoes a huge

reduction thanks to padding. Since bank conflicts with addresses at distances multiple of 1024 are

mostly avoided, the size of memory space used is not an objection.

4.4.3 Interleaved read access

As it has been seen in Figure 4.10, any image is typically composed by many different regions with

similar color values. In this way, read access to pixels can have an important influence on how voting

is performed, that is, how many position conflicts occur.

When processing an image, read access patterns to global memory typically consist of consecutive

threads of a warp reading consecutive pixels, in order to take advantage of coalescing. A naive

addressing makes also consecutive blocks access consecutive chunks of pixels, as Figure 4.14 (left)

shows, and consecutive warps access consecutive groups of 32 pixels. In this regard, thread ThId

in block Bi will read pixel Bi × block size + ThId. Such an access ensures a good performance in

most image processing applications, especially if computations are not input dependent. Nevertheless,

68 Universidad de Córdoba

Chapter 4. Highly optimized histogram calculation on GPU

0 1 2 ... 30 31

0 1 2 ... 30 31

0 1 2 ... 30 31

0 1 2 ... 30 31

th0

th1

th2

th3

Sub-histogram 0

Sub-histogram 1

Sub-histogram 2

Sub-histogram 3

0 1 2 ... 31

Pad 0 1 2 ... 30

31 Pad 0 1 2 ...

30 31 Pad 0 1 2 ...

Sub-histogram 0

Sub-histogram 1

Sub-histogram 2

Sub-histogram 3

30 31 Pad

th0

th1

th2

th3

(a)

(b)

Banks 0 to 31→

Banks 0 to 31→

Figure 4.12: Degenerate case in a 32-bin histogram in shared memory. The use of replication (a)

avoids position conflicts but provokes bank conflicts. Therefore, threads 0 to 3 access bank 1 sequen-

tially. Replication and padding (b) make threads voting in different banks in parallel

execution time of histogram generation is dependent on pixel distribution. Thus, since real images

are divided into color regions, it is very probable that consecutive warps access pixels with similar or

equal color values while using the mentioned naive addressing. In this way, they will incur in many

inter-warp conflicts.

For this reason, we propose a read access method that separates warps belonging to the same

block as much as possible. This consists of dividing the image in as many parts as warps within a

block, so that warp wi of any block will only access part i of the image. Thread ThId in block Bi

will start reading pixel image size
warps per block

× wi + warp size × Bi + (ThId%warp size). Figure 4.14

(right) illustrates the method. This way, probability of inter-warp conflicts will likely decrease. More-

over, this access method ensures coalesced reads to global memory, since consecutive threads within

a warp read consecutive addresses.

4.5 Experimental evaluation

In this section we evaluate our approach to histogram generation, in which kernel code exploits the

use of optimization techniques in Section 4.4. Tests in this section use a kernel execution configu-

ration (i.e., the number of blocks and the number of threads per block) that is chosen for achieving

load balancing across hardware resources and follows recommendations in CUDA literature [96]. Ta-

ble 4.2 collects all the execution configurations that have been used in this work on the GeForce GTX

580.

We first check the applicability of the optimization techniques. Then we compare our approach

to Shams’ and Nugteren’s implementations by using four histogram-based kernels. Finally, we check

Programming issues for video analysis on Graphics Processing Units 69

4.5. Experimental evaluation

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Rep: Estimated latency Rep: Measured latency

Rep+Pad: Estimated latency Rep+Pad: Measured latency

L
a
te

n
c
y
 (

c
lo

c
k
 c

y
c
le

s
)

Replication factor

32-bins histogram, 32-way intra-warp position conflict

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Rep: Estimated latency Rep: Measured latency

Rep+Pad: Estimated latency Rep+Pad: Measured latency

L
a
te

n
c
y
 (

c
lo

c
k
 c

y
c
le

s
)

Replication factor

256-bins histogram, 32-way intra-warp position conflict

Figure 4.13: Latency in clock cycles for a 32-way position conflict using replication factors between

1 and 32. Histogram size is 32 (top) and 256 32-bit bins (bottom). In the case of replication without

padding (blue square marks), the best replication factor is the highest that maintains the memory

space used less or equal than 1024 memory words. However, the use of padding (green circular

marks) avoids bank conflicts, what permits an impressive reduction of the latency

the applicability of this approach to older GPU generations. Since the name of our approach, R -

per-block, remarks the number of sub-histograms used per block, we extend this kind of naming to

per-warp and per-thread approaches by calling them 1-per-warp and 1-per-thread respectively.

As an important novelty in the evaluation of histogram calculation in GPUs, tests in this section

have used Van Hateren’s natural image database [45] which contains 4164 monochrome images, and

McGill’s color image data-base [101] with 1152 images.

4.5.1 Evaluation of the optimization techniques

The optimization techniques presented in Section 4.4 have been evaluated for histograms of power-

of-2 sizes from 32 to 4096 bins, using all execution configurations in Table 4.2.

70 Universidad de Córdoba

Chapter 4. Highly optimized histogram calculation on GPU

B0-w0 B0-w1 B0-w2 B0-w3 B1-w0 B1-w1
B1-w2 B1-w3 B2-w0 B2-w1 B2-w2 B2-w3
B0-w0 B0-w1 B0-w2 B0-w3 B1-w0 B1-w1

Naive read access Interleaved read access

B1-w2 B1-w3 ...

B0-w0 B1-w0 B2-w0 B0-w0 B1-w0 B2-w0
B0-w0 B1-w0 B2-w0 ...

B0-w1 B1-w1 B2-w1 ...

B0-w2 B1-w2 B2-w2 ...

B0-w3 B1-w3 B2-w3 ...

Warp 0

Warp 1

Warp 2

Warp 3

Figure 4.14: Naive (left) and interleaved (right) read accesses. Bi − wj stands for warp j in block

i. In the naive access, consecutive warps of a block access consecutive groups of 32 pixels. In the

interleaved access, warps wj only access part j of the image

Table 4.2: Recommended execution configurations for histogram generation on GeForce GTX 580.

The same number of blocks is used in each SM, in order to ensure load balancing. Moreover, the

number of threads per block follows recommendations in CUDA literature [96]

Blocks / SM

1 2 3 4 5 6 7 8

Threads / Block 768 384 256 192 192 128 128 128

on GTX 580 1024 512 384 256 256 192 192 192

768 512 384 256

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Replication

Replication+Padding

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Replication factor

Figure 4.15: Average execution time (ms) for 256-bin histogram calculation of images from Van

Hateren’s database on GTX 580. Results correspond to an execution configuration of 16 blocks of

1024 threads, and a maximum R per block of 47

Programming issues for video analysis on Graphics Processing Units 71

4.5. Experimental evaluation

Impact of replication and padding

Once determined the execution configuration, a number R of sub-histograms must be declared per

block. We have tested all possible replication factors from 1 to a maximum that does not burden the

occupancy. This maximum is dependent on the size of the histogram, the possible use of padding, the

number of blocks per SM, and the shared memory size. It is calculated with Equation 4.4:

R =
ShMemsize

BSM × (Histogramsize + 1)
(4.4)

where ShMemsize is the size of the shared memory in 4-byte words, BSM is the number of blocks

per SM and Histogramsize is the size of the histogram (1 is added if padding is used). For instance,

let us consider a 256-bins histogram calculation using padding on a GeForce GTX 580. If only one

block is declared per SM, the maximum replication factor is 47.

With the aim to illustrate our generalizable conclusions, Figure 4.15 shows the impact of repli-

cation and padding on GeForce GTX 580 while generating a 256-bins histogram. As it can be seen,

the use of replication without padding (blue square marks) obtains the best results with R = 4. This

experiment with real images is in accordance with the experiments presented in Figure 4.13. With a

replication factor higher than 4, some position conflicts turn into bank conflicts among addresses at

distances multiple of 1024, that are costlier than position conflicts.

Hence, the use of padding is required for an efficient implementation of a 256-bins histogram

calculation. As it is shown in Figure 4.15, padding (green circular marks) reduces bank conflicts and

makes that the highest replication factor is the most profitable. Thus, votes are performed in a wider

address space and, consequently, probability of collision is smaller. Moreover, although in Section 4.4

we stated that replication and padding were focused on reducing intra-warp conflicts, we observe that

a replication factor higher that 32 (including padding) reduces inter-warp conflicts as well. This

conclusion is based on the fact that the execution time is still decreasing when the replication factor

exceeds 32. In addition, the execution time due to sub-histograms reduction is not significant and

does not impact on the overall performance.

As a conclusion, we recommend using the highest possible replication factor per block, which

does not reduce the occupancy, and padding. The maximum replication factor per block will depend

on the number of blocks mapped onto each multiprocessor. For instance, if one block is used on

each multiprocessor, the maximum replication factor will be twice the replication factor when two

blocks are mapped. However, the total number of sub-histograms in shared memory on the whole

multiprocessor will be the same. The highest the total number of sub-histograms, the lowest the

probability of conflict.

Impact of interleaved read access

As it can be seen in Figure 4.16, the interleaved read access permits to reduce the execution time due

to the reduction of the number of inter-warp conflicts. Although in this figure we are only presenting

the results for 256-bins histograms, we have checked a performance improvement between 2% and

20% due to interleaved read access for every histogram size and every configuration in Table 4.2.

72 Universidad de Córdoba

Chapter 4. Highly optimized histogram calculation on GPU

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Naive access

Interleaved access
E

x
e
c
u
ti
o
n

ti
m

e
 (

m
s
)

Replication factor (using padding)

Figure 4.16: Average execution time (ms) for 256-bin histogram calculation of images from Van

Hateren’s database on GTX 580. Results correspond to an execution configuration of 32 blocks of

384 threads, and a maximum R per block of 23

4.5.2 Thorough evaluation of our approach and comparison to related works

We have compared our R -per-block approach to Shams’ [123, 124] and Nugteren’s [83] implemen-

tations. Shams’ and Nugteren’s codes are downloadable at the respective authors’ sites1.

Tests have been performed using the execution configurations in Table 4.2. It is remarkable that

Shams’ 1-per-thread approach works properly only with a power-of-two number of blocks and a

power-of-two number of threads. Thus, we have tested 20 execution configurations for R -per-block,

Shams’ 1-per-warp and Shams’ sort-and-count approaches. The Shams’ 1-per-thread approach has

been tested with 30 execution configurations. These values of execution configuration can be found

in abscissas at Figure 4.17. The replication factor in our R -per-block approach has been taken as the

maximum possible value that does not reduce the occupancy.

The number of blocks and the number of threads per block in Nugteren’s implementations are

fixed. Otherwise, they do not work correctly. The number of blocks is equal to the image size divided

by the number of threads per block. In the case of Nugteren’s 1-per-warp approach, the number of

threads per block is fixed to 256. Nugteren’s 1-per-thread implementation uses 32 threads per block.

Histogram calculation of monochrome images

This kernel calculates a histogram for a monochrome image. We have used all 4164 1536×1024,

12-bit depth, images of Van Hateren’s database. This depth permits to experiment with histograms

of 32- to 4096-bins length. We have measured the number of gigabytes per second processed for

every approach and every histogram size. Table 4.3 presents an average value, obtained with all the

execution configurations tested, and the best performance value (in parentheses).

1We have updated Shams’ per-warp code in order to use hardware atomic additions that replace the original simulated

ones. Sort-and-count code has been re-implemented by using explanations and code included in [124]

Programming issues for video analysis on Graphics Processing Units 73

4.5. Experimental evaluation

0

10

20

30

40

50

60

1
6

/7
6

8

1
6

/1
0

2
4

3
2

/3
8

4

3
2

/5
1

2

3
2

/7
6

8

4
8

/2
5

6

4
8

/3
8

4

4
8

/5
1

2

6
4

/1
9

2

6
4

/2
5

6

6
4

/3
8

4

8
0

/1
9

2

8
0

/2
5

6

9
6

/1
2

8

9
6

/1
9

2

9
6

/2
5

6

1
1

2
/1

2
8

1
1

2
/1

9
2

1
2

8
/1

2
8

1
2

8
/1

9
2

R-per-block Shams' 1-per-warp Shams' sort-and-count

Execution configuration (Blocks/Threads)

P
e
rf

o
rm

a
n
c
e
 (

G
B

/s
)

0

5

10

15

20

25

30

1
6
/6

4

1
6
/1

2
8

1
6
/2

5
6

1
6
/5

1
2

1
6
/1

0
2
4

3
2
/6

4

3
2
/1

2
8

3
2
/2

5
6

3
2
/5

1
2

3
2
/1

0
2
4

6
4
/6

4

6
4
/1

2
8

6
4
/2

5
6

6
4
/5

1
2

6
4
/1

0
2
4

1
2
8
/6

4

1
2
8
/1

2
8

1
2
8
/2

5
6

1
2
8
/5

1
2

1
2
8
/1

0
2
4

2
5
6
/6

4

2
5
6
/1

2
8

2
5
6
/2

5
6

2
5
6
/5

1
2

2
5
6
/1

0
2
4

5
1
2
/6

4

5
1
2
/1

2
8

5
1
2
/2

5
6

5
1
2
/5

1
2

5
1
2
/1

0
2
4

Shams' 1-per-thread

Execution configuration (Blocks/Threads)

P
e
rf

o
rm

a
n
c
e
 (

G
B

/s
)

Figure 4.17: Performance in gigabytes per second of 256-bins histogram calculation for R -per-block,

Shams’ 1-per-warp, Shams’ sort-and-count and Shams’ 1-per-thread approaches on GeForce GTX

580

For illustrative purposes, Figure 4.17 shows the performance (GB/s) for our approach and Shams’

approaches while calculating a 256-bins histogram on GeForce GTX 580. As it can be observed, our

R -per-block approach always outperforms the other approaches. Performance is quite flat along all

the execution configurations. The best performance of Shams’ implementations is obtained by the

1-per-thread approach with 16 blocks of 512 threads, although it is far from our approach. Moreover,

it is noticeable that the performance of the Shams’ 1-per-thread approach is very dependent on the

execution configuration. Anyway, the author [123] does not give any specific guidelines for obtaining

the execution configuration that results in the best performance.

4.5.3 Histogram-based kernels for color images

We have implemented three common histogram-based kernels. Our R -per-block approach to these

kernels is compared to Shams’ and Nugteren’s approaches by using all 1152 2560×1920 RGB images

74 Universidad de Córdoba

Chapter 4. Highly optimized histogram calculation on GPU

Table 4.3: Average performance in gigabytes per second for R -per-block, Shams’ and Nugteren’s

approaches on GeForce GTX 580. Best performance values are in parentheses

Histogram size Performance (GB/s)

(Bins) Our approach Shams’ approaches Nugteren’s approaches

R -per-block 1-per-warp 1-per-thread sort-and-count 1-per-warp 1-per-thread

32 51.8 (66.5) 19.0 (21.0) 14.6 (41.6) 3.0 (3.8)

64 58.2 (63.9) 21.7 (24.1) 12.8 (41.3) 3.0 (3.7)

128 58.1 (64.2) 23.8 (27.7) 11.1 (32.7) 3.0 (3.7)

256 50.0 (54.5) 21.6 (26.3) 9.2 (27.5) 3.0 (3.7) 15.9 (15.9) 22.4 (22.4)

512 40.8 (43.6) 17.5 (21.1) 7.2 (22.0) 3.0 (3.7)

1024 32.1 (39.3) 7.9 (12.1) 5.3 (15.8) 3.0 (3.7)

2048 25.6 (36.9) 7.0 (7.5) 3.9 (11.5) 3.0 (3.7)

4096 19.7 (21.9) 2.6 (7.7) 2.8 (3.7)

Table 4.4: Average and minimum (in parentheses) execution times per image in milliseconds for

R -per-block, Shams’ and Nugteren’s approaches to three histogram-based kernels on GeForce GTX

580

Execution time (ms)

Histogram-based Our approach Shams’ approaches Nugteren’s approaches

kernel R -per-block 1-per-warp 1-per-thread sort-and-count 1-per-warp 1-per-thread

RGB to grayscale 0.51 (0.48) 0.70 (0.66) 4.55 (2.94) 8.04 (6.05) 1.73 (1.73) 3.15 (3.15)

Direct color (l./c.)
8 0.73 (0.54) 2.74 (2.43) 3.75 (1.09) 8.04 (6.22)

16 1.65 (1.54) 5.28 (2.53) 8.43 (6.28)

Color histograms 0.88 (0.78) 1.67 (1.43) 13.40 (7.56) 23.16 (17.73) 5.06 (5.06) 5.55 (5.55)

of McGill’s database. Table 4.4 shows average and minimum execution times of all the approaches.

First kernel consists of converting an RGB image to gray-scale and then voting in a 256-bin

histogram.

Second kernel generates the direct color histogram of an RGB image. The size of the histogram

depends on the resolution of the RGB color space. We have considered two resolutions of 8 and

16 levels per color component (l./c.). These values entail two histogram sizes of 512 and 4096 bins

respectively.

Third kernel calculates three color histograms, one per color component. This is equivalent to

computing a histogram of 3×256=768 bins.

4.5.4 Discussion

Results in Tables 4.3 and 4.4 show that our R -per-block approach clearly outperforms the rest of

approaches.

In the case of histogram calculation of monochrome images, the best performance of our R -

per-block approach obtains a speedup with respect to the best performance of Shams’ 1-per-thread

approach, which is the best of the rest of approaches, between 1.6 and 2.8. Moreover, our R -per-

Programming issues for video analysis on Graphics Processing Units 75

4.5. Experimental evaluation

Table 4.5: Recommended execution configurations for histogram generation on GeForce GTX 280.

The same number of blocks is used in each SM, in order to ensure load balancing. Moreover, the

number of threads per block follows recommendations in CUDA literature [96]

Blocks / SM

1 2 3 4 5 6 7 8

Threads / Block 192 128 64 64 64 64 64 64

on GTX 280 256 192 128 128 128 128 128 128

384 256 192 192 192

512 384 256 256

512

block approach is much more stable along execution configurations: the coefficient of variation (i.e.,

the ratio of the standard deviation to the mean) for every histogram size is between 6% and 25%,

while it is between 71% and 81% for Shams’ 1-per-thread approach. Thus, our algorithm does not

need to be optimally tuned to obtain a good performance.

The sort-and-count approach gives a very flat performance which is independent on histogram size

and data distribution due to the use of a sorting procedure. It is a specially interesting approach for

very big histograms. In fact, it outperforms Shams’ 1-per-thread approach for monochrome histogram

of 4096 bins in average.

Shams’ 1-per-warp approach yields good performance values in RGB to grayscale conversion

and color histograms kernels although it is burdened by intra-warp conflicts. The author reported a

good performance with uniform data distributions [123], but this is far from real conditions in image

processing as explained with Figure 4.10.

Nugteren’s implementations work only for 256-bins histograms. Despite that the authors pro-

claimed performance improvements with respect to previous implementations [83], they did not com-

pare their implementations to the latest ones by Shams. Together with the rigid establishment of the

number of blocks and threads, Nugteren’s 1-per-warp approach is burdened by the use of two separate

kernels: the first one for voting and the second one for reducing the sub-histograms. This corresponds

to the original CUDA SDK implementation of 256-bins histogram [112], which was later improved to

use one single kernel. Nugteren’s 1-per-thread approach performs better but does not improve the best

performance of the latest Shams’ 1-per-thread implementation. A severe drawback of this method is

the fixed block size of 32 threads what makes possible to place 3 blocks per SM. This means only 96

active threads per SM, which is a too low occupancy for Fermi devices.

4.5.5 Evaluation of the R -per-block approach on older GPU generations

Although the shared memory presents some differences between Fermi GPUs and older NVIDIA

GPU generations, we have checked that our R -per-block approach is also applicable in these devices.

We have tested the histogram calculation of monochrome images on a GeForce GTX 280 with GT200

architecture. The maximum possible size is 1024 bins on this device, due to the smaller size of the

shared memory. We have used the recommended execution configurations in Table 4.5. Results in

Table 4.6 show a speedup of at least 1.5 for our approach with respect to the rest.

76 Universidad de Córdoba

Chapter 4. Highly optimized histogram calculation on GPU

Table 4.6: Average performance in gigabytes per second for R -per-block, Shams’ and Nugteren’s

approaches on GeForce GTX 280. Best performance values are in parentheses

Histogram size Performance (GB/s)

(Bins) Our approach Shams’ approaches Nugteren’s

R -per-block 1-per-warp 1-per-thread sort-and-count 1-per-warp

32 22.6 (29.7) 8.7 (9.9) 9.7 (16.9) 1.7 (2.1)

64 20.5 (29.0) 10.5 (12.2) 7.7 (14.7) 1.7 (2.1)

128 17.6 (22.5) 11.5 (14.0) 6.9 (20.6) 1.7 (2.1)

256 15.7 (18.6) 10.6 (13.9) 6.2 (17.8) 1.7 (2.1) 6.4 (6.4)

512 15.5 (20.6) 7.7 (10.1) 5.4 (14.6) 1.6 (2.1)

1024 13.7 (19.7) 4.5 (4.7) 4.4 (10.6) 1.5 (1.8)

4.6 Experiences with replication in global memory

Replication is also useful in global memory, in order to reduce serialization while using atomic func-

tions. We have tested a R -per-kernel approach which is made up of two kernels. The first one declares

R sub-histograms in global memory which are accessible to all thread blocks. The second one re-

duces the sub-histograms into a final histogram. Although a higher replication factor R reduces the

probability of conflict, it also increases the reduction time. Therefore, there will be a tradeoff between

both kernels.

This is illustrated with the displacement calculation within the GHT. Since the D Hough space

has the size of an image, it should be placed in global memory. Figure 4.18 shows the execution time

results for the generation of sub-histograms (top) and the reduction (bottom) on a GeForce GTX 280.

D LB and D SSM are two alternatives for work distribution that are detailed in Chapter 5.

Replication in global memory decreases the execution time significantly. We observe that the

improvement is maintained from a replication of 16. The best approach is D SSM with R = 64,

obtaining a speedup of 3.2 with respect to the version without replication. As expected, the reduction

of sub-histograms is slower as the replication factor grows.

The same approach has also been used in the motion detection algorithm. Velocity components

(vxres, vyres) of each motion vector are used for voting in a 2D histogram. Due to the size of the

histogram (typically, 127×127 bins), it does not fit in shared memory, so it is placed in global memory.

We tested several values of R and the best performance was obtained with 16 sub-histograms. On a

GeForce 9600M GT, the implementation with R = 16 resulted more than twice faster than without

replication.

4.7 Conclusions

This chapter has described our attempts toward optimized histogram calculation on GPU. It has pre-

sented a highly optimized approach to histogram calculation in shared memory, called R -per-block

approach. This approach is founded on the conclusions obtained by an exhaustive microbenchmark-

based study of atomic additions in shared memory. This study has permitted us to accurately char-

Programming issues for video analysis on Graphics Processing Units 77

4.7. Conclusions

2
8

3
.8

1

1
3

0
.7

9

1
1

0
.0

7

1
0

8
.6

6

1
0

8
.7

0

1
0

8
.6

9

1
0

8
.6

4

1
0

8
.6

5

1
0

8
.7

6

2
6

4
.4

3

1
0

9
.9

1

8
4

.9
1

8
3

.0
9

8
3

.1
4

8
3

.1
9

8
3

.2
2

8
3

.1
6

8
3

.2
5

0

50

100

150

200

250

300

1 4 16 64 128 256 512 1024 2048

D_LB D_SSM

0

2

4

6

8

10

12

14

16

1 4 16 64 128 256 512 1024 2048

D_LB D_SSM

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Replication factor

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Reduction of sub-histograms

Voting kernel

Replication factor

Figure 4.18: Average execution time in milliseconds for the voting kernel (top) and reduction of sub-

histograms (bottom) in the displacement calculation. Two alternatives for work distribution D LB

and D SSM are tested. Tests have used one thousand frames from one video

acterize the behavior of atomic additions. Threads executing atomic additions may collide, suffering

position or bank conflicts. Both entail the serialization of the execution imposing latency penalties.

Our study has precisely quantified latency penalties due to position and bank conflicts on a cur-

rent NVIDIA Fermi GPU. We noticed that bank conflicts are generally resolved faster than position

conflicts. However, we discovered a costlier type of bank conflict while using atomic additions. If

addresses in conflict are at a distance multiple of 1024 32-bit words, the penalty is even longer than

the one due to position conflicts. From the analysis of many access patterns we have obtained an

intra-warp performance model for atomic additions in shared memory. This model has demonstrated

an impressive accuracy in a huge number of tests.

The microbenchmarking and the performance model lead us to propose several optimization tech-

niques that overcome the drawbacks of previous per-warp and per-thread implementations. Our

approach applies a histogram replication scheme, devised for eliminating position conflicts among

consecutive threads that are typical in histogram calculation of real images. Thus, position conflicts

are turned into bank conflicts, and their associated penalties are further reduced by using padding.

78 Universidad de Córdoba

Chapter 4. Highly optimized histogram calculation on GPU

Moreover, an interleaved read access diminishes inter-warp conflicts.

As expected, the experimental evaluation has shown that the best performance is obtained with

the maximum replication factor, together with padding, and the interleaved read access. Experi-

ments have been performed by using kernel execution configurations following load balancing crite-

ria and recommendations in CUDA literature. We have carried out an exhaustive comparison with

the main state-of-the-art implementations by other authors using two natural image databases and

four histogram-based kernels. Our R -per-block approach reaches performance rates on current Fermi

GPUs that clearly outperform the rest of implementations.

Although we have focused on the Fermi architecture, our approach is also applicable to the GT200

architecture. Tests on a GeForce GTX 280 have shown that it is at least 1.5 times faster than every

previous implementation.

We have also experimented with the use of replication in global memory. It has been successfully

applied to big histograms in the motion detection algorithm and in the GHT.

Programming issues for video analysis on Graphics Processing Units 79

5 Efficient work
distribution

This chapter focuses on efficiently distributing computation among threads in irregular compo-

nents of video applications. The goal is obtaining efficient implementations that attain load balancing

and avoid non-linear memory references and warp divergence. In this way, we present three case

studies in order to show how to deal with typical programming issues in irregular components within

video processing applications.

Section 5.2 explains how to manage computing stages that alternate sequential and massively-

parallel sections. Warp-centric approaches can be very profitable in these circumstances. In Sec-

tions 5.3 and 5.4 the deployment of data re-organization is explained. Applying compaction and

sorting to sparse, non-uniform and/or workload-dependent intermediate data regularizes the subse-

quent computations and entails significant reductions in the number of memory accesses, instructions

and control flow divergence. Moreover, Section 5.4 presents an exhaustive comparison between an

implementation that achieves a perfect load balancing and an implementation that maximizes the

occupancy of multiprocessors. We detect under which conditions is better to use one or the other.

5.1 Introduction

A key performance factor for GPU programming is an efficient work distribution among threads. Any

GPU implementation should pursue load balancing, so that threads finish their computation at the

same time, and a high occupancy of multiprocessors, which is indispensable for the proper exploita-

tion of the multithreaded architecture. Moreover, it is necessary to avoid control flow divergence,

which serializes the execution. These aims can be easily achieved in inherently parallel components

of video applications. However, this is much more challenging in other components that include se-

quential computation or handle non-uniform, sparse and/or workload-dependent intermediate data.

This chapter illustrates these parallelization problems through three case studies.

81

5.2. Dealing with sequential parts

First, the parallelization of the egomotion estimation stage within the motion detection algorithm

is explained. This stage implements the Random Sample Consensus (RANSAC), which contains

SISD and SIMD phases. We propose a warp-centric approach that successfully manages both phases,

and obtains a certain degree of parallelism during SISD phases.

Second, we describe the parallelization of the clustering kernel within the motion detection algo-

rithm. In this kernel, input data is an array of resultant vectors which depends on the characteristics

of the corresponding frame. This array contains motion vectors belonging to background and moving

objects. Since the motion vectors from the background are not needed for further processing, they

entail a huge number of unproductive memory accesses and executed instructions. In this way, data

re-organization through compaction and sorting can significantly improve performance. Compaction

removes background vectors, so that memory accesses and instructions are diminished. Then, the

compacted array is sorted, in order to allow threads to access only those parts of the array that are

needed. This also reduces control flow divergence among threads of the same warp.

Third, irregular components within the GHT permit us to explore the tradeoffs of load balanced

implementations. Since a perfect load balancing may increase the use of hardware resources, the

occupancy can be burdened. We compare two implementations, that increase respectively load bal-

ancing or occupancy, and determine under which conditions is each one preferable. Moreover, we

also apply data re-organization. Compaction is necessary to avoid idle threads while working with

edge images, which are sparse data distributions. Sorting reduces the number of memory accesses

and executed instructions.

Therefore, in this chapter our main contributions are:

• We propose the use of warp-centric approaches, in order to deal with alternating SISD and

SIMD phases.

• We show how to re-organize intermediate data by using compaction and sorting. Thus, warp

divergence, and unproductive memory accesses and instructions are dramatically reduced.

• We investigate the tradeoffs of load balanced implementations and determine under which con-

ditions is better to maximize the occupancy.

5.2 Dealing with sequential parts

While porting an application to the GPU computing paradigm, the general recommendation is per-

forming sequential computations on the CPU and parallel computations on the GPU [66]. CPUs are

designed for Single-Instruction Single-Data (SISD) computation, while GPUs are better as Single-

Instruction Multiple-Data (SIMD) devices. In this way, GPU kernels will be launched when execution

goes through computing stages with obvious data parallelism (SIMD phases). Input data should be

transferred from CPU to GPU and, after kernel execution, output data are moved from GPU to CPU,

in order to carry on with the execution on the CPU.

However, there are applications in which sequential sections (SISD phases) are short and/or they

are repeated many times, so that data transfers entail an unsustainable performance penalty. In such

cases, it is likely more efficient to execute SISD phases on the GPU, although one sole thread works

82 Universidad de Córdoba

Chapter 5. Efficient work distribution

on the whole GPU. Furthermore, the mapping onto the GPU could be reoriented in order to find ways

to parallelize sequential code.

In this section, the former issues are illustrated through the parallelization of the egomotion esti-

mation stage within the motion detection algorithm presented in Chapter 3. Egomotion estimation is

implemented by the RANSAC technique [29]. RANSAC consists of two stages. First, a fitting stage

calculates a model from a certain number of random samples belonging to input data. Second, the

evaluation stage counts the number of outliers, i.e., input data instances that do not fit to the model.

These two stages are repeatedly executed between a minimum and a maximum number of iterations,

until the number of outliers is acceptable.

To the best of our knowledge, only one implementation of RANSAC on GPU has been pub-

lished [61]. In that work, fitting and evaluation stages are performed in different kernels on the device.

In this way, iterations are controlled from the host side. Both stages contain inherent parallelism, so

that they perform well on the GPU. Nevertheless, that approach is not proper for the egomotion esti-

mation using RANSAC, because computation in the fitting stage (i.e., the generation of the first order

flow (F-o-F) model) is a SISD phase, that is, it exhibits a sequential behavior. Hence, it would be

executed on the CPU or on the GPU by one only thread. In order to overcome this drawback, we

should devise a novel strategy.

5.2.1 SISD and SIMD computing on the GPU: block-centric and warp-centric ap-

proaches

If we take advantage of the random nature of RANSAC, more efficient implementations can be at-

tained. Since input data samples (two flow vectors in our application) are taken at random, the order in

which iterations are executed does not matter. Indeed, several iterations could be executed in parallel.

In this regard, as the CUDA programming model typically organizes computation in blocks of

threads, we propose an initial approach that assigns one RANSAC iteration per block. Each block

executes the fitting and evaluation stages for one iteration. The fitting stage will be executed by one

thread of the block, since it is a SISD phase. The evaluation stage is the SIMD phase and will be

performed by all the threads within the block. We call this approach block− centric implementation.

It has several inherent advantages with respect to the implementation in [61]:

• The whole process is performed on the device without intervention of the host, which can

execute other tasks in the meantime.

• Only one kernel is needed, what avoids synchronizing at the end of each kernel and accessing

global memory for reading the F-o-F model that is to be evaluated.

• Although the generation of the F-o-F model is a sequential task, some parallelism is achieved

thanks to the fact that several blocks are simultaneously executed in the GPU. Moreover, this

approach could be used in other applications in which the model is able to be processed in

parallel, since all the threads of the block are available.

The former approach can be optimized by turning it into a warp−centric implementation which

distributes RANSAC iterations among warps. Thus, one thread within the warp executes SISD phases,

Programming issues for video analysis on Graphics Processing Units 83

5.2. Dealing with sequential parts

Listing 5.1: Pseudo-code of the warp-centric implementation of RANSAC

For (iteration = 0; iteration < MAX ITER; iteration + = num warps){

/ / F i t t i n g s t a g e − SISD p h ase

I f (lane = 0){

S e l e c t two f low v e c t o r s a t random

Compute F−o−F model

}

/ / E v a l u a t i o n s t a g e − SIMD p h ase

For (i = lane; i < flowvector count; i + = WARP SIZE){

Compute mot ion v e c t o r s , u s i n g F−o−F model

S u b t r a c t mot ion v e c t o r s and o r i g i n a l f low v e c t o r s

I f (resultant vector >= error threshold)

outlier counter per thread + +

}

ATOMIC ADD(outlier counter per warp, outlier counter per thread)

/ / Compare t o b e s t model − SISD p h ase

I f (lane = 0){

I f (outlier counter per warp < outlier count best){

Update outlier count best i n g l o b a l memory

Copy F−o−F model , a s b e s t model , t o g l o b a l memory

}

}

/ / Check i f b e s t model i s good enough

I f ((outlier count best/flowvector count < convergence threshold)

&&(iteration > MIN ITER)) Break lo o p

}

while the 32 threads of the warp execute SIMD phases.

With respect to the block-centric implementation, the warp-centric approach prevents from using

intra-block synchronization primitives, which force threads of a block to remain idle until all of them

reach the synchronization point. Moreover, it is achieving a higher degree of parallelism during SISD

phases, because as many threads as warps within a block are working.

The benefits of warp-centric programming have been explored by other authors [9, 137]. In fact,

Hong et al. [48] have recently presented a warp-centric programming method clearly similar to our

warp-centric approach to RANSAC.

Pseudocode in Listing 5.1 depicts our warp-centric approach. Input data to this kernel are an array

of flow vectors and the number of flow vectors flowvector count. A number of warps num warps

is working in the whole GPU. Thread number within a warp is lane. Since the fitting stage is a SISD

phase, only thread 0 within each warp works during this stage.

5.2.2 Experimental evaluation

Some tests have been performed on one NVIDIA GeForce 9600M GT GPU, in order to compare

block-centric and warp-centric approaches to a CPU implementation. Details about this device are

84 Universidad de Córdoba

Chapter 5. Efficient work distribution

2
4
.3

4

9
7
.6

4

3
7

3
.2

0

2
7
.6

5

9
5
.8

8

3
5

0
.1

5

1
7
.3

6

3
1
.1

3

8
5
.4

9

0

50

100

150

200

250

300

350

400

75/10 300/50 1200/200

CPU

Block-centric

Warp-centric

1
8

7
5

.0
7 3

7
3
8

.7
4

7
4

5
8

.7
6

1
7

0
7

.3
6 3

4
0
7

.6
4

6
7

9
4

.3
6

3
7

4
.2

1

7
3

6
.8

3

1
4

5
5

.0
8

0

1000

2000

3000

4000

5000

6000

7000

8000

6000/1000 12000/2000 24000/4000

CPU

Block-centric

Warp-centric

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Maximum/minimum number of iterations

Figure 5.1: Execution time (ms) per frame for CPU and GPU block-centric and warp-centric imple-

mentations of RANSAC on GeForce 9600M GT

given in Chapter 2. CPU implementation has been tested on a 2.4 GHz Intel Core2Duo. Tests have

been carried out with a video containing 20 frames of 640×480 pixels. The average number of flow

vectors per frame is 5888.

As it can be observed in Figure 5.1, the warp-centric approach clearly outperforms the block-

centric one. It achieves a speedup between 1.6 and 4.7. This is due to the avoidance of synchronization

overheads, together with the higher degree of parallelism that is achieved during the SISD phases.

5.3 Re-organizing the workload

Input data to video and image applications are generally frames or images, that form regular data

structures. Accessing these data by threads can be carried out with linear memory references, that

result in efficient coalesced global memory accesses on GPU. Nevertheless, subsequent computing

stages may require the handling of intermediate data which pose more irregular organizations and/or

are input dependent. For instance, in the motion detection algorithm presented in Chapter 3, the

vector clustering stage should manage an array of resultant motion vectors. These motion vectors are

dependent on frame characteristics, so that their number and contents (x, y, vx, vy) might be quite

different from one frame to another. Thus, achieving an effective distribution of computation among

threads is challenging, because parallelization problems may arise, as unnecessary memory accesses

and executed instructions, and control flow divergence. In such cases, a proper re-organization of

these intermediate data can produce significant benefits, as it is shown in this section by taking the

vector clustering as a case study.

In the clustering kernel, pixels belonging to moving objects are identified by checking if there are

neighboring motion vectors which belong to local maxima in the previously calculated 2D histogram.

This process is explained in Figure 5.2:

Programming issues for video analysis on Graphics Processing Units 85

5.3. Re-organizing the workload

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 6, 5

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0

0 0 0 0

x
y
vx

vy

3
0

0
0

3
0

2
2

0
3

1
2

1
2

0
0

2
1

0
0

1
2

0
0

I13
1

2
3

0
2

0
0

1
0

3
1

2
3

0
0

1
2

2
3

3
2

0
0

3
1

1
1

2
0

0
0

1
2

0
0

0
1

0
0

0
3

0
0

1
3

1
2

2
0

1
1

3
2

3
2

2
1

1
3

1
0

0
0

2
2

0
0

1
0

3
0

0
3

0
0

1
2

0
0

3
1

0
0

3
2

1
1

2
0

0
2

1
1

0
0

Resultant vectors array (global memory)

3

8

4

1

3
0

0
0

3
0

2
2

0
3

1
2

1
2

0
0

x
y
vx

vy

2. The kernel carries out several iterations. In each

iteration, one chunk of resultant vectors is loaded into

shared memory, through a coalescent access

3. Each thread looks for resultant vectors in a window.

This search is performed through coordinates (x, y)

4. Those in the window are compared to the local

maxima using vx and vy, in order to check if they

belong to a cluster, e.g., velocity (4, 1) is within a

circle centered on one local maximum (4, 0)

vx

vy

4

0

0
0

2
2

0

0

0

0

0

0

0

0

0 0 0 0 0 0 0 0 0 0 00

1. Each thread is assigned to one pixel

(e.g. x=6, y=5) of the output image

Output image (global memory)

Local maxima array

(shared memory)

+1 0 2
Clusters counter

(shared memory)

5. If one resultant vector in the proximity belongs to

one cluster, the corresponding position in the clusters

counter is increased (one counter per local maximum)

6. Finally, that cluster with the highest value is the

one to which the pixel (6, 5) belongs

0

Figure 5.2: Clustering kernel searches in a window around each pixel for those vectors belonging to

a cluster

• We consider an output image in which each pixel (x, y) is assigned to one thread (1). We use

one-dimensional blocks, so that all their threads work with the same row (i.e., coordinate y).

• Each thread searches in the whole array of resultant vectors for those in the proximity of the

pixel (by x, y). Several iterations are required, in order to load chunks of the array of resultant

vectors into shared memory (2). The search is performed in a square window (typically, size 7)

around the pixel (3).

• Vectors are compared to the local maxima of the histogram (by vx, vy), that have previously

been loaded into shared memory, in order to check whether they belong to any cluster (4). A

vector belongs to a cluster if its velocity is within a circle with a radius, for instance, 3 centered

on the maximum.

• The most frequent cluster in the proximity of the pixel will be considered the one to which

the pixel belongs (5)(6). The number of occurrences (or flow vectors belonging to that cluster)

should also be above a certain number (typically, 4).

5.3.1 Reducing memory accesses and executed instructions through compaction

It is noticeable that many tuples in the array of resultant vectors correspond to static motion vectors

from the background. These are not needed for further processing, since they are not related to

moving objects. In this way, they entail an unproductive number of memory accesses and executed

instructions.

Those static motion vectors are identifiable, because their velocity is equal to 0. They can be

removed by compacting the array of resultant vectors. Taking the array of resultant vectors as input,

compaction outputs a compacted array which does not have vectors with velocity equal to 0. It will

86 Universidad de Córdoba

Chapter 5. Efficient work distribution

Table 5.1: Characteristics of the videos used for performance evaluation of compaction and sorting

Video Moving objects Camera motion

0 Cars No egomotion

1 Fast moving hand Weak egomotion

2 Swinging object Strong egomotion

3 Expanding structure Rotation

4 Rotating object Translation

5 Expanding structure Strong egomotion

6 Fast and slow moving objects Weak egomotion

7 Fast moving object Strong egomotion

significantly reduce the size of the array. In this way, the number of accesses to global memory will

be reduced, together with the total instruction count. Thus, the search in the clustering kernel will be

much faster.

5.3.2 Minimizing warp divergence through sorting

As explained above, threads should search for motion vectors in the proximity of pixels. With this

aim, they inspect the whole array of resultant vectors. As most of the motion vectors will not be in

the proximity of their corresponding pixels, many unproductive memory accesses will be carried out.

Moreover, warp divergence will occur when threads within a warp follow different execution paths

that are dependent on vector values.

If the elements of the array are sorted by one coordinate, this will permit to access only to those

parts of the array which contain the neighboring motion vectors of a pixel. Since every thread in a

block work in the same row, sorting by y will reduce the number of accesses more than sorting by

x. Moreover, warp divergence will be reduced, because threads will always find neighboring motion

vectors.

Figure 5.3 explains the use of compaction and sorting. Those tuples (x, y, vx, vy) in the resultant

vectors array that do not belong to the background (i.e., velocity is not equal to 0) remain after

compaction. Moreover, compaction procedure can be modified for returning a histogram that counts

the number of resultant vectors with a certain y coordinate. Then, the compacted array is sorted using

y as a key and a scan operation is applied on the histogram, in order to obtain pointers to the locations

of the sorted array in which different values of y start. Codes for compaction, sorting and scan, that

we have used, are based on CUDPP [21].

5.3.3 Experimental evaluation

In this section, we evaluate the performance impact of compaction and sorting in clustering kernel.

We have used eight videos with different levels of egomotion. Their features are stated in Table 5.1.

Frame size is 640×480 pixels. Tests have been carried out on several NVIDIA GPUs: 9600M GT,

GT220, GTX 260 and C2050. Details about these devices are given in Chapter 2.

Figure 5.4 depicts the average execution time per frame of three versions of the clustering kernel:

Programming issues for video analysis on Graphics Processing Units 87

5.3. Re-organizing the workload

Compacted array

Sorted array

2 4 4 5

0

Compaction

Sorting Scan

Histogram_y

Pointers

x
y
vx

vy

0

2

0

0

1

3

0

0

0

1

2

1

2

2

1

1

3

0

0

0

3

0

2

2

0

3

1

2

1

2

0

0

2

1

0

0

1

2

0

0

I13

1

2

3

0

2

0

0

1

0

3

1

2

3

0

0

1

2

2

3

3

2

0

0

3

1

1

1

2

0

0

0

1

2

0

0

0

1

0

0

0

3

0

0

1

3

1

2

2

0

1

1

3

2

3

2

2

1

1

3

1

0

0

0

2

2

0

0

1

0

3

0

0

3

0

0

1

2

0

0

3

1

0

0

3

2

1

1

2

0

0

2

1

1

0

0

0

1

2

1

2

2

1

1

3

0

2

2

0

3

1

2

I13

1

2

3

2

0

1

1

1

0

3

1

1

2

2

3

3

1

1

1

1

3

1

2

3

2

3

2

2

1

1

3

1

0

3

0

3

2

1

1

2

0

0

2

Resultant vectors array

0

1

2

1

0

3

1

2

1

0

3

1

1

2

2

3

1

3

1

2

1

0

3

0

2

2

1

1

2

0

1

1

2

1

1

3

2

0

0

2

3

0

2

2

I13

1

2

3

3

1

1

1

3

2

3

2

3

2

1

1

2 6 10

x
y
vx

vy

x
y
vx

vy

Figure 5.3: Compaction and sorting applied to the resultant vectors array. Scan is applied for obtain-

ing pointers to the sorted array

757.47

115.54

11.12

427.46

69.38
4.67

128.10

17.061.45

77.08
13.34

0.81
0

100

200

300

400

500

600

700

800

O
ri
g

in
a

l

w
/

C
o

m
p

a
c
t

w
/

C
o

m
p

a
c
t+

S
o

rt

O
ri
g

in
a

l

w
/

C
o

m
p

a
c
t

w
/

C
o

m
p

a
c
t+

S
o

rt

O
ri
g

in
a

l

w
/

C
o

m
p

a
c
t

w
/

C
o

m
p

a
c
t+

S
o

rt

O
ri
g

in
a

l

w
/

C
o

m
p

a
c
t

w
/

C
o

m
p

a
c
t+

S
o

rt

9600MGT GT220 GTX260 C2050

Clustering kernel

E
x
e

c
u

ti
o

n
ti
m

e
 p

e
r

fr
a

m
e

 (
m

s
)

Figure 5.4: Performance impact of compaction and sorting on clustering kernel. Average execution

times per frame (in ordinate) are presented in milliseconds

the original one, which uses the whole array of resultant vectors; an optimized version which uses

compaction; and an optimized version with compaction and sorting.

As it can be seen, the optimized versions provide impressive reductions of the execution time of

88 Universidad de Córdoba

Chapter 5. Efficient work distribution

the clustering kernel. The optimized version with compaction reduces the execution time around six

times with respect to the original version, thanks to the reduction in the number of memory accesses

and executed instructions. The impact of sorting is very significant as well, so that the optimized

version with compaction and sorting attains a speedup of up to 95 with respect to the original version.

Moreover, the execution time spent on compaction, sorting and scan primitives is only around 10%

of the execution time of the optimized clustering kernel. This is by far the most compute intensive

part of the algorithm. In this way, the whole algorithm significantly benefits from the optimizations

applied. In fact, on GeForce GTX 260 and Tesla C2050 real-time processing is achieved with rates

of more than 50 fps.

5.4 Load balancing versus occupancy maximization

GPU programming recommendations are optimizing load balancing and increasing processor occu-

pancy. However, depending on the algorithm structure, both recommendations cannot be applied

simultaneously. Then some kind of tradeoff must be undertaken, since an optimally balanced im-

plementation may increase the use of registers and the need for sharing data among threads, what

decreases the occupancy. Moreover, parallelization becomes even more challenging, if the algorithm

presents workload-dependent computations, which provoke divergence among threads, if the layout

is not carefully planned.

The former issues are detected in the irregular components (search for pairings, scale calculation

and displacement calculation) of the Fast Generalized Hough Transform (Fast GHT) presented in

Chapter 3. This section describes the parallelization of these components. As it was explained, the

search for pairings takes the contour points of an image or template as inputs. These should be

compacted into a dense list in order to avoid idle threads and ensure a better load balancing. Thus,

we develop an initial strategy that works with compacted lists. Due to the similarities among the

three irregular components, this strategy can also be applied to scale calculation and displacement

calculation. Then, we propose sorting the lists, what is able to improve further the implementation of

these components. Thus, two new parallelization alternatives for working with sorted lists, one that

optimizes the load balancing and another that maximizes the occupancy, are presented.

5.4.1 Applying compaction and sorting to the GHT

As it was stated, an efficient implementation of the search for pairings requires the compaction of the

whole set of contour points into a dense list. The compacting process should keep the information

that is useful during the search for pairings. Thus, for each contour point in the template or the image,

a tuple pi composed of its gradient direction θi and its coordinates (xi, yi) is stored into a List of

Template Edges (LTE) or a List of Image Edges (LIE). Figure 5.5 illustrates the compacting

process. The compact primitive returns a List of Edges composed by three output arrays: one for the

gradient directions and two for the coordinates. The gradient directions are used to detect pairings

and, together with the coordinates, are needed for computing the angle αij .

As it was shown in Figure 3.10, the List of Edges is the workload of the kernel that performs the

search for pairings. It outputs a List of Template or Image Pairings (LTP or LIP) whose elements are

Programming issues for video analysis on Graphics Processing Units 89

5.4. Load balancing versus occupancy maximization

θ

y

x

Gradient

direction

Edge points

List of Template or Image Edges

x

y
0.0 4.3 4.1 5.1 6.0 7.3 1.7 6.9 0.1 4.1

3.2 6.4 3.1 3.9 2.1 4.0 4.2 3.9 1.4 5.0

4.1 4.3 4.2 5.9 0.3

1.7 2.3 0.2 7.9 2.2

2.4 2.8 5.1 7.3 2.8

2.9 7.4 5.4 2.8 2.7

1.0 6.2 6.8 4.9 2.1

5.3 2.2 3.1 4.2 5.8

5.7 2.3 1.9 3.8 5.2

7.9 4.2 1.8 3.3 7.5

2.4 2.8 5.1 7.3

2.9 7.4 5.4 2.8

1.0 6.2 6.8 4.9

5.3 2.2 3.1 4.2

5.7 2.3 1.9 3.8

7.9 4.2 1.8 3.3

0.0 4.3 4.1 5.1 6.0

3.2 6.4 3.1 3.9 2.1

7.3

2.8

4.9

4.2

3.8

3.3

0 1 0 0 1 0 0 1 0 0

0 0 0 0 0 0 1 0 1 0

0 0 1 1 0 1 1 0 1 0

0 1 0 0 1 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0

0 0 1 1 0 1 1 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0

1.4

1

8

……

Gradient direction

x, y

Figure 5.5: Compaction: contour points are compacted into a List of Edges. The coordinates and the

gradient direction are necessary during the search for pairings

Chunk of List1 in shared memory

th
0
 (
1
st

 it
e
r.
)

Iterations
th7 (1

st it
er.)

th
0
 (L

a
st ite

r.)

...

During each iteration of the

inner loop, each thread checks

if a certain condition is satisfied.

...

List2 in global memory

Chunk of List2 in shared memoryDuring each iteration of the

outer loop, each block loads

one chunk of List2 in shared

memory

th
7
 (
L
a
st

 it
e
r.
)

th
1

(1
st

 it
er

.) th
1
 (L

a
st ite

r.)

Figure 5.6: BASE strategy: Tuples of the chunk of List1 are compared to every tuple of List2, as it is

represented by black arrows. In the search for pairings, List1 and List2 are the same List of Edges. In

the scale and the displacement calculations, List1 is the LTP and List2 is the LIP

tuples pij , and a template or image O Hough space (OT or OI). LTP and LIP are dense lists used as

inputs for the scale and the displacement calculations. Due to implementation convenience, tuples pij

in a List of Pairings contain the index of the pairing in the corresponding O Hough space (αθindex =

αij × 90+ θij), the index of each contour point in the image or template (pkindex
= yk ×width+xk ,

where width is the width of the image) and the distance between these paired contour points (dij).

An initial strategy for working with dense lists can be applied to the search for pairings, the scale

calculation and the displacement calculation. We call this implementation BASE, below in Table 5.2.

This BASE strategy subdivides a dense list into chunks. Since these kernels perform some kind

90 Universidad de Córdoba

Chapter 5. Efficient work distribution

I1 I3 I2 I3 I4 I1

Dense list

I1 I1 I1 I1 I1 I1 I2 I2 I2 I2 I2 I2 I4 I4 I4 I4 I4

Sorted list

I3 I1 I4 I3 I2 I1I2 I4 I2 I2 I3 I4 I2 I1 I2 I1 I4 I2

I2 I3 I3 I3 I3 I3I2

6 8 5 5

0 6 14 19

Compaction

Radix sort Scan

4-bins array

Pointers array

Sub-list I1 Sub-list I2 Sub-list I3 Sub-list I4

I1

Figure 5.7: Dense list sorting using index I (with values I1, I2, I3 and I4) as a key. The starting

positions of the four sub-lists in the sorted list are obtained computing the prefix sum of the 4-bins

array which contains the number of tuples of each I index

of features comparison along the lists, which involves an important data reuse, each thread block

loads one chunk in shared memory. The size of the chunk is equal to the size of a block, since each

thread loads one tuple of the chunk in a coalescent access. Then, each block performs the features

comparison of the tuples of its chunk. The BASE strategy is illustrated in Figure 5.6 using two lists

(List1 and List2). In the case of the search for pairings, each thread takes one contour point and

compares its gradient to any other in the whole List of Edges. In this case, List1 and List2 are the

same List of Edges. In the case of the scale or the displacement calculation, one tuple of the LTP

(List1 in Figure 5.6) is compared to every tuple of the LIP (List2 in Figure 5.6) after applying a

rotation angle or a scale factor. In both cases, the number of comparisons is very high, despite that

only a small amount of them will be successful. Thus, although this strategy achieves a good load

balance, it carries out an excessive number of global memory accesses.

At this point, we propose a previous sorting of the dense lists, in order to minimize global memory

accesses. In the search for pairings, the List of Edges can be sorted by the quantized gradient direction.

Then, given a certain value of the quantized gradient direction, this value plus the difference angle

(ξ) determines the part of the List of Edges where the pairing points lie. A simple modification of

the compacting process permits to obtain a fourth array containing the quantized gradient directions

(θD). Then, the List of Edges is sorted using the quantized gradient direction as a key, for which we

have used the radix sort code [39] from CUDA SDK. Furthermore, during the compacting process,

a 90-bins histogram with the number of contour points of each quantized gradient direction can be

generated. Applying the prefix sum to the 90-bins histogram generates a Pointers array, which can

be used to address the sorted List of Edges. This is divided into sub-lists of the same index value.

Figure 5.7 illustrates this process using a generic dense list with an index I .

In the scale and the displacement calculations, the Lists of Pairings are sorted by the αθindex, that

Programming issues for video analysis on Graphics Processing Units 91

5.4. Load balancing versus occupancy maximization

Listing 5.2: Pseudo-code of the work distribution among blocks and threads while working with

sorted lists

Load chunk o f sub− l i s t I1 , b e l o n g i n g t o List1 , i n s h a r e d memory

I2 = F u n c t i o n (I1)

For (each chunk o f sub− l i s t I2 , b e l o n g i n g t o List2) / / Ou te r lo o p

Load chunk o f sub− l i s t I2 i n s h a r e d memory o r r e g i s t e r s

For (d ep en d in g on mechanism) / / I n n e r lo o p

I f (f e a t u r e s co m p ar i so n) / / Compare and compute

Co m p u ta t ion (t u p l e o f List1 , t u p l e o f List2)

is, pairings are grouped in sub-lists with the same α and θ values. Thus, the Pointers array is obtained

by applying the prefix sum to the corresponding O Hough space.

5.4.2 Work distribution among blocks and threads

In this subsection, we present two mechanisms for working with the created sorted lists. Both can

be applied to the search for pairings and to the scale and displacement calculations, after sorting the

Lists of Edges or the Lists of Pairings respectively. As it was seen in Figure 3.10, computing stages

(in blue) which generate the Hough spaces use sorted dense lists as inputs. As a general explanation

of the mechanisms, we assume that two lists (List1 and List2) are the inputs to the computing stages.

Specifically, LTP and LIP are List1 and List2 for scale and displacement calculations and in the case

of the search for pairings, a Template or Image List of Edges takes the role of both List1 and List2.

We consider a kernel whose inputs are two dense lists (List1 and List2), which have been sorted

by an index I . List1 and List2 are divided into sub-lists, in which every tuple has the same index.

Each list has its own constant array associated (Pointers array), in which the kth element contains

the position of the list where the sub-list with index I equal to k starts. Pointers arrays are placed in

constant memory or texture memory depending on their size, since they are read-only data that must

be accessed very frequently.

Each thread block takes one chunk of List1, belonging to a sub-list with a certain index I1, and

loads it in shared memory. Each thread loads just one tuple of the chunk, thus the size of the chunk is

at most the number of threads in a block. Then, the block performs an iterative process with an outer

and an inner loop. The outer loop accesses those chunks of List2, which belong to the sub-list with

an index I2 that fulfills a certain condition with respect to the index I1. The inner loop distributes the

work among the threads, which perform some computation using one tuple from List1 and another

from List2. Pseudo-code in Listing 5.2 summarizes this process.

Work distribution within the inner loop can be done in two ways that are explained next: the first

one achieves an optimal load balancing, while the second one focuses on increasing occupancy of the

multiprocessors. Depending on this mechanism, the chunks of List2 are loaded in shared memory or

registers.

92 Universidad de Córdoba

Chapter 5. Efficient work distribution

I1 I1 I1 I1 I1

I2 I2 I2 I2 I2

Chunk of List1 in shared memory

th
0
 (
1
st

 it
e
r.
)

Iterationsth
7
 (

1
s
t
ite

r.
)

th
0
 (
L
a
st

 it
e
r.
)

...

During each iteration of the

inner loop, each thread

performs a features comparison

between two tuples

I1 I1

I2

I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2
...

Sub-list with index I2 of List2 in global memory

Chunk of List2 in shared memoryDuring each iteration of the

outer loop, each block loads

one chunk of the sub-list with

index I2 in shared memory

I2 I2
th

7
 (

L
a
st

 it
e
r.

)

th0

th7

th5

th1

th0

th7

th6

th2

th1

th0

th7

th3

th2

th1

th0

th4

th3

th2

th1

th5

th4

th6

th5

th4

th3

th5

th4

th6

th5

th7

th6

th0

th7

th1

th0

th2

th1

0 1 2 3 4 5 6

0

1

5

2

3

4

th3

th2

th4

th3

th6

Features comparison

performed by each thread

(th0-th7), during each

iteration of the inner loop

Tuples of chunk of List1

T
u

p
le

s
 o

f
c
h

u
n

k

o
f

L
is

t2

th
1

(1
st

 it
er

.)

th
1

(L
as

t i
te

r.
)

Figure 5.8: Load-balancing mechanism: Each thread performs approximately the same number of

features comparisons, represented by black arrows. For the sake of clarity, blocks of 8 threads are

represented

Load-balancing (LB) mechanism

A load-balancing work distribution must ensure that every thread will perform the same number of

features comparisons or, in other words, the same number of iterations of the inner loop. In this way,

this mechanism does not statically assign tuples of the chunks to the threads, but features comparisons.

The red chunk in Figure 5.8 contains n tuples and the blue chunk contains m. Values n and m are

less or equal to the number of threads in the block (block size). Thus, the number of comparisons is

n × m. Thread N performs the N th comparison, the N th + block size, and so on. This mechanism

requires that every tuple of the chunk of List2 is available for every thread. Thus, the chunk of List2

is loaded in shared memory.

Save-shared-memory (SSM) mechanism

Although the former mechanism ensures an optimal load balancing, it requires loading two chunks

in shared memory. Unfortunately, the occupancy is determined by the amount of shared memory

and registers used by each thread block, thus load balancing can affect negatively the efficiency. We

propose a new mechanism, the save-shared-memory (SSM), which saves shared memory to increase

occupancy.

This mechanism, as it can be seen in Figure 5.9, assigns one tuple of the chunk of List2 to one

thread, so that each thread loads only its tuple in registers. Then, the thread performs the comparisons

between its tuple and all the tuples of the chunk of List1.

Programming issues for video analysis on Graphics Processing Units 93

5.4. Load balancing versus occupancy maximization

I2

I1 I1 I1 I1 I1

Chunk of List1 in shared memory

I1 I1

I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 I2
...

Sub-list with index I2 of List2 in global memory

I2 I2

th0

th1

th3

th0

th1

th2

th3

th0

th1

th2

th3

th0

th1

th2

th3

th0

th1

th2

th3

th0

th1

th0

th1

th4

th5

th4

th5

th4

th5

th4

th5

th4

th5

th4

th5

th4

th5

0 1 2 3 4 5 6

0

1

5

2

3

4

th2

th3

th2

th3

th2

Features comparison

performed by each

active thread (th0-th5),

during each iteration of

the inner loop. Threads

6 and 7 are idle, during

this iteration of the outer

loop

Tuples of chunk of List1

T
u

p
le

s
 o

f
c
h

u
n

k

o
f

L
is

t2

I2 I2 I2 I2

Tuples of List2 in registers

During each iteration of the

inner loop, each thread

performs a features

comparison with its tuple

1st 2nd Last

Iterations

(thread 0)

...

During each iteration of the

outer loop, each thread

loads one tuple of the sub-

list with index I2 in registers

I2

Iterations

(thread 5)

1st 2nd Last...

Figure 5.9: Save-shared-memory mechanism: Each thread performs the features comparisons of one

tuple, as indicated by the black arrows

Since usually the number of tuples with the same index I is not a multiple of the block size, there

will be idle threads in the inner loop. Nevertheless, we expect a good performance due to the increase

of occupancy.

5.4.3 Application of the mechanisms

As we stated above, the former strategies can be applied to the computation of the O, S and D Hough

spaces. Table 5.2 summarizes the different implementations which have been developed for these

three stages. They are also explained in the following sections.

Search for pairings: computation of the O Hough space and the List of Pairings

In the case of the search for pairings, List1 and List2 are the same dense list, which is the LTE or

the LIE (see Figure 3.10). The list has been previously sorted by the quantized gradient direction

(θD). The features comparisons performed by the threads are the pairings among contour points. The

gradient directions of two paired contour points should differ a ξ angle. Applying the prefix sum on

the 90-bins histogram, generated during the compaction, the Pointers array is obtained and loaded in

constant memory.

The search for pairings generates an O Hough space and a List of Pairings. The O Hough space

is a 90 × 90 histogram, in which the kernel votes each time a pairing is found. Since every pairing

found by a block has the same θD value, each block needs only one column of the O Hough space in

shared memory. This represents an important advantage with respect to the BASE strategy, in which

94 Universidad de Córdoba

Chapter 5. Efficient work distribution

Table 5.2: Implementations for the search for pairings, the scale calculation and the displacement

calculation

Stage Implementation Based on... Input Output

Search SP BASE BASE strategy Non-sorted List of Edges O Hough space

for pairings and List of Pairings

SP LB Load-balancing Sorted List of Edges O Hough space

and List of Pairings

SP SSM Save-shared-memory Sorted List of Edges O Hough space

and List of Pairings

Scale S BASE BASE strategy Non-sorted Lists of Pairings S Hough space

calculation S LB Load-balancing Sorted Lists of Pairings S Hough space

S SSM Save-shared-memory Sorted Lists of Pairings S Hough space

Displacement D BASE BASE strategy Non-sorted Lists of Pairings D Hough space

calculation D LB Load-balancing Sorted Lists of Pairings D Hough space

D SSM Save-shared-memory Sorted Lists of Pairings D Hough space

one block could vote in the whole O Hough space because the list is not sorted. In that case, the O

Hough space has to lie in global memory, what entailed the use of high latency atomic additions. One

more advantage with respect to the BASE strategy is that the number of pairings that each block and

each thread will find can be anticipated. This permits that a thread stores its pairings in predetermined

locations of the List of Pairings. However, in the BASE strategy, a global counter is updated in order

to determine the position of a pairing. This requires atomic additions, which cause serialization.

Scale calculation: computation of the S Hough space

In the scale calculation, List1 is the LTP and List2 is the LIP. Both lists are previously sorted by the

index in the O Hough space, i.e., αθindex. The Pointers arrays are obtained by applying the prefix

sum to OT and OI Hough spaces. They are placed in the texture memory, since their size exceeds

the 64 KB of constant memory.

The rotation angle β is also necessary for calculating the scale parameter. Each pair of contour

points in the template is rotated by β, thus its αθindex is shifted because its θ component is rotated

too (step 6 of the algorithm in Listing 3.2).

In this kernel, each block divides the distances of its template chunk by the distances of the

corresponding image sub-list. As it is recommended [96], division is performed by the single pre-

cision fast math instruction fdividef(). Ratios among distances are indexes to increment a

one-dimensional accumulator array, the S Hough space. Maxima in this space indicate possible scale

parameters. If we consider a 0.5 to 1.5 range of scale parameters with a 0.1 step, the size of the S

Hough space is 11 elements which can be placed in shared memory.

Displacement calculation: computation of the D Hough space

As in the scale calculation, List1 is the LTP and List2 is the LIP. Displacement calculation consists of

applying rotation and scale to the reference vectors of the template. These vectors are defined from

Programming issues for video analysis on Graphics Processing Units 95

5.4. Load balancing versus occupancy maximization

Table 5.3: Test workloads characteristics. Videos have a resolution of 352 × 288 pixels. Number of

edge points and pairings are average values. Each video is consisting in 4000 frames

Video Description Edge points Pairings (ξ = 90◦)

Cycling A cyclist and people around him 2778 78770

Movie Beginning of a movie 1436 13332

Basket Basketball game 5061 140030

Drama A situation comedy 2684 54921

the paired contour points to a reference point (typically, the center of the image or the template) using

the coordinates of the contour points, which are extracted from the List of Pairings.

After rotating and scaling a reference vector, this defines a new location to which it points. Such

a new location entails a vote in a two-dimensional space of the size of the image, the D Hough space.

The maximum in this space stands for the location in the image of the reference point defined in the

template. Then, displacement is calculated by subtracting the position of the image reference point

from the template. Every thread needs access to the whole voting space, because the order in the

List of Pairings is not related to the direction of the vectors. The size of the D Hough space does not

permit to place it in shared memory. Thus, the D Hough space resides in global memory.

5.4.4 Experimental evaluation

In this section, the three strategies are evaluated. Moreover, LB and SSM strategies are throughly

analyze, in order to understand under which conditions it is better to use one or the other. In addition,

the final performance of the GHT is evaluated. Thus, we have analyzed the impact of the irregular

stages in the total execution times as they are the most time-consuming ones in the GHT. In fact,

computation of O, S and D Hough spaces require more than 90% of the execution time, while Canny

detection, rotation calculation, compacting and sorting have negligible execution times. Tests have

been made on a NVIDIA GeForce GTX 280 GPU, whose features can be found in Chapter 2.

As explained in Chapter 3, the GHT allows the development of global motion estimation algo-

rithms [121]. We have selected this real application for the experiments because videos provide an

assorted database of images to test our improvements, especially when the chosen videos belong to

different genres. In Table 5.3 the workloads of the four videos used in the experiments are shown.

These videos have been selected from the MPEG-7 Content Set.

Profiling the kernels

CUDA Occupancy Calculator and CUDA Visual Profile [95] have been used in this work in order

to check how optimizations affect the structure of the programs and their performance. The values

obtained with the occupancy calculator correspond to devices with compute capability 1.2. Perfor-

mance counters of this profiler do not correspond to individual thread activity, but warp activity, and

96 Universidad de Córdoba

Chapter 5. Efficient work distribution

Table 5.4: Figures obtained with CUDA Occupancy Calculator and Visual Profile of the BASE, LB

and SSM kernel versions for the search for pairings, scale computation and displacement computa-

tions

Search for pairings Scale computation Displacement computation

SP BASE SP LB SP SSM S BASE S LB S SSM D BASE D LB D SSM

Registers 22 26 24 13 18 10 21 25 20

Shared memory 4184 4004 2452 2148 2164 1132 3144 3156 1604

Occupancy 37.5% 50.0% 62.5% 75.0% 75.0% 100.0% 50.0% 50.0% 75.0%

Instructions 100 3.18 6.61 100 21.34 18.71 100 16.55 11.45

Global loads 100 5.75 5.51 100 2.39 2.29 100 2.48 2.28

Branch divergence 2.02% 11.59% 13.07% 1.31% 6.77% 7.85% 0.59% 0.16% 0.34%

Warp serialization 0 6366 0 0 33842 0 0 65437 0

should be used to identify relative performance differences. Thus, we have used them to detect if an

optimization causes the desired effect, e.g., a decrease of warp divergence.

As stated in Section 5.4.1, the size of chunks and, consequently, the use of shared memory de-

pend on the size of blocks. We have used blocks of 128 threads, which is the smaller size recom-

mended [96]. Bigger blocks perform worst due to a lower occupancy.

Table 5.4 shows some key elements to analyze the two new distribution mechanisms. These

figures are the number of registers used per thread, the total shared memory used per thread block

in bytes, the occupancy computed as the ratio of active warps to the maximum number of warps

supported on a multiprocessor of the GPU, the ratio of total executed instructions to the BASE strat-

egy total executed instructions, the ratio of number of accesses to global memory to the number of

accesses to global memory in the BASE strategy, the ratio of divergent execution paths to the total

number of branches, and the number of thread warps that serialize on address conflicts to either shared

or constant memory.

The first three rows show the SSM mechanism is able to maintain a higher number of thread

blocks active in the machine simultaneously. Occupancy of the kernel SP BASE is 37.5%, since it

stores the Hough space in global memory. If the Hough space is stored in shared memory, occupancy

falls down even under the minimum value of 18.75% recommended [96]. Regarding the two new

strategies, the occupancy in SSM is always higher because LB needs one more chunk in shared

memory.

The use of sorted lists has reduced the number of executed instructions and accesses to global

memory, as expected. The reduction depends on the distribution of data but it is significantly lower

in any case. The percentage of divergent execution paths in the LB mechanism is always lower than

in the SSM one, due to a better load balancing which prevents from idle threads. However, we have

observed that a small value of warp serialization is present in the LB mechanism due to some banks

conflicts, while the SSM mechanism completely avoids banks conflicts. Due to the work distribution

in LB, threads may access tuples located in the same banks, before performing the comparisons they

have assigned. In the case of SSM, there are no bank conflicts, since all the threads of one block

access the same shared memory location, resulting in a broadcast.

Programming issues for video analysis on Graphics Processing Units 97

5.4. Load balancing versus occupancy maximization

An exhaustive comparison between the load-balancing and the save-shared-memory mecha-

nisms

It is inferred from the former analysis that the mechanisms presented in Section 5.4.2 outperform

the BASE strategy, due to a higher occupancy and a lower warp divergence. However, we are not

able to assert which of them is better, since both have their own strong points. For this reason, we

have compared both mechanisms changing the size and data distribution of a sorted list. Without

loss of generality, we have used a synthetic sorted list, equally divided among sub-lists with different

index values. Each element of the synthetic sorted list emulates a tuple. Since each block works with

chunks belonging to a sub-list, we have changed the number of tuples per sub-list, so that the number

of chunks in a sub-list changes between 1 and 6.

In the case of SSM, the saving of shared memory permits 5 blocks of 128 threads per multipro-

cessor, one more than LB. On the other hand, LB guarantees an optimal load balancing, while SSM

will have idle threads in the last block assigned to a sub-list. Using blocks of 128 threads, if each

sub-list contains T tuples, this last block have only T%128 active threads. We have carried out 55

tests of the SSM and LB mechanisms, changing the number of tuples of the sub-lists. Figure 5.10

presents the execution results for these tests. Abscissas represent the number of 128-tuples chunks

per sub-list, which is also the number of blocks working with the same sub-list. The graph on the top

shows the ratio between the execution times of LB and SSM. Values above 1 mean the SSM mecha-

nism runs faster. The graph on the bottom shows two columns for each test. The left column (yellow),

called %Last block, represents the percentage of active threads in the last block assigned to a sub-list

in SSM. The right column (green), called %GPU, stands for the percentage of active threads in the

whole GPU in SSM. The higher these values the better is the distribution of the workload in SSM.

Thus, both columns give a hint of the computational load balance of SSM.

For a number of blocks per sub-list between 1 and 4, there exists a value of %Last block which

determines that the SSM mechanism outperforms the LB one because the impact of load unbalance

is less important than the occupancy value. When the number of blocks per sub-list is 5 or more, a

low value of %Last block does not impact significantly within the whole GPU and the SSM mech-

anism always performs better due to the higher occupancy, which permits to execute more blocks

simultaneously.

Comparison among implementations

The execution times of the different implementations of the main parts of the application are shown

in Table 5.5, with every row corresponding to one of the four videos in Table 5.3. Kernels use blocks

of 128 threads, which maximize the occupancy as it has been explained above.

The results reflect that the search for pairings performs better using the LB mechanism in three of

the four videos. This makes sense with the conclusions presented in Section 5.4.4, because the size

of the sub-lists is small. More specifically, the number of tuples in a List of Edges is the number of

edge points, whose averages are in Table 5.3. Lists of Edges are divided into 90 sub-lists, which is the

number of quantized gradient values (θD). The distribution of these 90 quantized gradients among

the contour points of the frames is expected to be uniform in generic videos. Thus, if we take the

averages in Table 5.3 and divide them by 90, the number of tuples per sub-list is always under 60.

98 Universidad de Córdoba

Chapter 5. Efficient work distribution

0.80

0.90

1.00

1.10

1.20

1.30

0%

20%

40%

60%

80%

100%

120%

LB / SSM

%Last block & %GPU

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 6 6

Number of blocks assigned to a sub-list

Figure 5.10: Comparison between SSM and LB using a synthetic sorted list. The number of blocks

assigned to a sub-list has been changed from 1 to 6, as the abscissas shows

Table 5.5: Average execution times (ms) of the main parts of the application for four videos. Bold

values stand for optima

Search for pairings Scale calculation Displacement calculation

Video BASE LB SSM BASE LB SSM BASE LB SSM

Cycling 20.73 1.78 1.66 330.87 86.53 53.10 751.12 265.02 210.09

Movie 5.79 0.28 0.63 23.56 20.13 18.37 32.23 29.93 22.29

Basket 36.37 1.13 1.36 824.34 102.38 83.83 1052.72 198.09 152.28

Drama 15.92 0.67 0.99 209.09 49.31 42.00 262.99 85.17 60.07

This entails one chunk of less than 60 tuples per sub-list, and since blocks have 128 threads, more

than half of the threads will remain idle in SP SSM. In this way, LB will perform generally better for

the search for pairings than SSM.

If the number of tuples increases, the percentage of idle threads decreases for SSM. In this way,

its load balancing improves and the occupancy becomes more decisive. This explains that SSM out-

performs LB for scale and displacement calculations, since the Lists of Pairings are much longer than

the Lists of Edges. Using blocks of 128 threads the occupancy for both the scale and displacement

calculation with the SSM mechanism (S SSM and D SSM) is 8 blocks per multiprocessor, while with

the LB mechanism (S LB and D LB) is just 6 blocks per multiprocessor. Since GTX 280 contains

30 multiprocessors, S LB and D LB have a limit of 180 blocks working simultaneously and the 240

simultaneous blocks of S SSM and D SSM ensure a better performance.

Programming issues for video analysis on Graphics Processing Units 99

5.5. Conclusions

Execution times of the irregular parts do not only depend on the size of the lists of edges and

the lists of pairings, but also on the data distribution. For example, the sizes of the lists of edges and

pairings in the Cycling video are smaller than in the Basket video (see Table 5.3), but the displacement

calculation execution time is higher. This occurs due to the distribution of votes in the D Hough space.

Maximum in the D Hough space is more than 2 times higher for Cycling than for Basket, what entails

more bank conflicts and serialization while voting.

Considering the optimal results in Table 5.5, the speedup with respect to the BASE strategy is up

to 36 for the search for pairings, up to 10 for the scale calculation and up to 7 for the displacement

calculation.

5.5 Conclusions

This chapter has presented three case studies that show programming strategies applicable to non-

inherently parallel computations in video processing applications.

We have shown that using warp-centric approaches, in which work distribution is organized by

being aware of warp behavior, can be very profitable in computing stages that present both SISD

and SIMD phases. Although only one thread per warp works in SISD phases, some parallelism is

achieved with as many threads as warp working in the whole GPU. Such a degree of parallelism is

higher than in a block-centric approach. Moreover, synchronization overheads are avoided.

Data re-organization through compaction and sorting has been applied to computing stages within

the motion detection algorithm and the GHT. In the clustering kernel, compaction and sorting greatly

reduce the number of executed instructions and memory accesses, and warp divergence. Such opti-

mization permits the implementation to achieve real-time performance on current GPUs.

In the irregular components within the GHT, compaction avoids idle threads while working with

sparse data distributions, and sorting optimizes subsequent computations by diminishing the number

of instructions and memory accesses. Moreover, we present two mechanisms for working with sorted

data. The one implements a perfect load balancing (LB mechanism) while the other increases the

occupancy of multiprocessors (SSM mechanism). These have permitted us to study the tradeoffs of

load balancing and to detect under which conditions is each one preferable. Perfect load balancing

performs better with short lists, that provoke too many idle threads in the SSM mechanism. With

longer lists, the number of idle threads in the SSM mechanism is negligible. Thus, it results in a

better performance due to the higher occupancy.

100 Universidad de Córdoba

6
Stream processing on
GPU with CUDA
streams

CUDA API provides CUDA streams as the way to manage concurrency between CPU computa-

tion, data transfers and GPU computation. They are based on asynchronous transfers and permit a

staged execution which presents similarities with the stream processing paradigm. Moreover, they are

the way to overlap communication and computation, in order to avoid the inherent performance bot-

tleneck that represents the communication between two separate address spaces (the main memory of

the CPU and the memory of the GPU). Nevertheless, it does not exist a precise manner to estimate the

possible improvement due to overlapping, neither a rule to determine the optimal number of stages

or streams in which computation should be divided. In this chapter, we present a methodology that

is applied to model the performance of asynchronous data transfers of CUDA streams on different

GPU architectures. Such performance models permit to estimate the optimal number of streams in

which the computation on the GPU should be broken up, in order to obtain the highest performance

improvements.

This chapter is organized as follows. Section 6.2 reviews the use of CUDA streams. In Sec-

tion 6.3, we illustrate our methodology by deriving expressions of performance for two different

consumer graphic architectures belonging to the more recent generations. Our models are checked

in Section 6.4 using several applications based on codes from the CUDA SDK. Then, in Section 6.5

we describe our method for optimized stream processing with CUDA streams, that is adaptable to

variable kernel computation time.

6.1 Introduction

The stream processing paradigm has demonstrated a significant suitability for real-time applications,

such as video processing. It has been used to facilitate code portability to GPU architectures [49]

and cooperative application execution on multi-core processors and accelerators [136]. These works

101

6.1. Introduction

do not explore the deployment of CUDA streams, which are the tool that CUDA offers programmers

for implementing a staged execution and a software pipeline. Thus, they are the way to perform

concurrently computation on CPU, computation on GPU and data transfers between both, so that

some overlapping of data transfer and computation is achieved.

Such is the way to overcome communication overheads, which are one of the main performance

bottlenecks in high-performance computing systems. In distributed memory architectures, where the

Message Passing Interface (MPI) [81] has the widest acceptance, this is a well-known limiting factor.

MPI provides asynchronous communication primitives, in order to reduce the negative impact of

communication, when processes with separate address spaces need to share data. Programmers are

able to overlap communication and computation by using these asynchronous primitives [78, 138].

Similar problems derived from communications are being found in GPUs, where there exists an

inherent performance bottleneck due to data transfers between two separate address spaces, the main

memory of the CPU and the memory of the GPU. In a typical application, the CPU transfers input data

to the GPU through the PCI Express (PCIe) [110] bus and, after the computation, results are got to the

CPU back. Since its first release, the CUDA API provides a function, called cudaMemcpy() [97],

that transfers data between host and device. This is a blocking function in the sense that the kernel

can be launched only after the transfer is complete. Despite that the PCIe supports a throughput

of several gigabytes per second, both transfers inevitably burden the performance of the GPU. In

order to alleviate such a performance bottleneck, later releases of CUDA provide the non-blocking

cudaMemcpyAsync() [97], which requires host pinned memory. It permits asynchronous trans-

fers, which enable overlap of data transfers with computation, in devices with compute capability

equal or higher than 1.1 [97]. Streams manage such a concurrency.

Some research works have made use of CUDA stream model in order to improve applications

performance [42, 111]. However, finding optimal configurations, i.e., the best number of streams or

stages in which transfers and computation are divided, required many attempts for tuning the applica-

tion. Moreover, CUDA literature [96, 97] does not provide an explicit method to apply them optimally

neither an accurate way to estimate the performance improvement due to the use of streams. Such

a lack of reliable analytical models limits the usefulness of asynchronous transfers and streams. In

this way, we consider that this chapter covers an empty space, because we have obtained performance

models, which have been validated from both architectural and experimental points of view. They

permit to estimate the execution time of a streamed application and the optimal number of streams

that is recommended to use.

GPU performance modeling has been tackled in some valuable research works [6, 47, 152], but

none of them deals with data transfers between CPU and GPU and the use of streams. To the best

of our knowledge, there is only one research work focused on CUDA streams performance [69]. It

presents some theoretical models for asynchronous data transfers, but they are not empirically vali-

dated neither related to architectural issues. The authors do not give any hint about the applicability

of these models and assume that the optimal number of streams is 8 for any application.

This chapter starts with a thorough observation of CUDA streams performance, in order to accu-

rately characterize how transfers and computation are overlapped. We have carried out a huge number

of experiments by changing the ratio between kernel execution time and transfers time, and the ratio

between input and output data transfer times. Then, we have tried out several performance estimates,

102 Universidad de Córdoba

Chapter 6. Stream processing on GPU with CUDA streams

in order to check their suitability to the results of the experiments. Thus, our main contributions are:

• We present a novel methodology that is applicable for modeling the performance of asyn-

chronous data transfers when using CUDA streams.

• We have applied this methodology to devices with compute capabilities (c.c.) 1.x and 2.x.

Thus, we have derived two performance models, i.e., the one for devices with c.c. 1.x and the

other for devices with c.c. 2.x.

• Moreover, from the mathematical expressions obtained can be derived the optimal number of

streams to reach the maximum computation time speedup. The optimal number of streams

to be used for a specific application only depends on the data transfer time and the kernel

computation time of the non-streamed application.

• We have successfully checked the applicability of our models to several applications based on

codes from the CUDA SDK.

• We describe how CUDA streams are able to implement the stream processing model optimally.

We also show that signal processing applications, particularly video processing, where data

are being continuously processed, can benefit from our approach as they can recalculate the

optimal number of streams from previous calculations.

6.2 CUDA streams

CUDA defines a stream as a sequence of operations that are performed in order on the device. Typ-

ically, such a sequence contains one memory copy from host to device, which transfers input data;

one kernel launch, which uses these input data; and one memory copy from device to host, which

transfers results.

Given a certain application which uses D input data instances and defines B blocks of threads

for kernel execution, a programmer could decide to break up them into nStreams streams. Thus,

each of the streams works with D
nStreams

data instances and B
nStreams

blocks. In this regard, memory

copy of one stream overlaps kernel execution of other stream, achieving a performance improvement.

In [96], such a concurrency between communication and computation is depicted as in Figure 6.1

with nStreams = 4.

An important requirement for ensuring the effectiveness of the streams is that B
nStreams

blocks

are enough for maintaining all hardware resources of the GPU busy. In other case the sequential

execution could be faster than the streamed one.

Code in Listing 6.1 declares and creates 4 streams [97]. Then, as shown in Listing 6.2 each stream

transfers its portion of host input array, which should have been allocated as page-locked memory, to

the device input array, processes this input on the device and transfers the result back to the host.

The use of streams can be very profitable in applications where input data instances are inde-

pendent, so that computation can be divided into several stages. For instance, video processing ap-

plications satisfy this requirement, when computation on each frame is independent. A sequential

Programming issues for video analysis on Graphics Processing Units 103

6.2. CUDA streams

Copy data

Execute

Copy data

Execute

tT

tE

Figure 6.1: Comparison of timelines for sequential (top) and concurrent (bottom) copy and kernel

execution, as presented in [96]. tT means data transfer time and tE kernel execution time.

Listing 6.1: Code for creation of 4 CUDA streams

c u d a S t r e a m t s t r e a m [4] ;

f o r (i n t i = 0 ; i < 4 ; ++ i)

c u d a S t r e a m C r e a t e (& s t r e a m [i]) ;

Listing 6.2: A sequence of CPU-GPU memory copy, kernel launch and GPU-CPU memory copy

using CUDA streams

f o r (i n t i = 0 ; i < 4 ; ++ i)

cudaMemcpyAsync (i n p u t D e v P t r + i * s i z e , h o s t P t r + i * s i z e , s i z e ,

cudaMemcpyHostToDevice , s t r e a m [i]) ;

f o r (i n t i = 0 ; i < 4 ; ++ i)

MyKernel<<<num blocks / 4 , n u m th read s , 0 , s t r e a m [i]>>>

(o u t p u t D e v P t r + i * s i z e , i n p u t D e v P t r + i * s i z e , s i z e) ;

f o r (i n t i = 0 ; i < 4 ; ++ i)

cudaMemcpyAsync (h o s t P t r + i * s i z e , o u t p u t D e v P t r + i * s i z e , s i z e ,

cudaMemcpyDeviceToHost , s t r e a m [i]) ;

c u d a T h r e a d S y n c h ro n i z e () ;

execution should transfer a sequence of n frames to device memory, apply certain computation on

each of the frames, and finally copy results back to host. If we consider a number b of blocks used per

frame, the device will schedule n×b blocks for the whole sequence. However, a staged execution of

nStreams streams transfers chunks of n
nStreams

size. Thus, while the first chunk is being computed

using n×b
nStreams

blocks, the second chunk is being transferred. An important improvement will be

obtained by hiding the frames transfers, as Figure 6.2 shows.

Estimating the performance improvement that is obtained through streams is crucial for program-

mers when an application is to be streamed. Considering data transfer time tT and kernel execution

time tE , the overall time for a sequential execution is tE + tT . In [96] the theoretical time for a

streamed execution is estimated in two ways:

• Assuming that tT and tE are comparable, a rough estimate for the overall time is tE + tT
nStreams

for the staged version. Since it is assumed that kernel execution hides data transfer, in the

104 Universidad de Córdoba

Chapter 6. Stream processing on GPU with CUDA streams

6 x b blocks compute on the sequence of frames

A sequence of 6 frames is transferred to device

A chunk of 2 frames is

transferred to device

2 x b blocks compute

on the chunk, while the

second chunk is being

transferred

Non-

streamed

execution

Streamed

execution

Execution time saved

thanks to streams

Figure 6.2: Computation on a sequence of 6 frames for non-streamed and streamed execution. In the

streamed execution, frames are transferred and computed in chunks of size 2, what permits to hide

part of the transfers

following sections, we call this estimate dominant kernel.

• If the transfer time exceeds the execution time, a rough estimate is tT + tE
nStreams

. This estimate

is called dominant transfers.

6.3 Characterizing the behavior of CUDA streams

The former expressions do not define the possible improvement in a precise manner or give any hint

about the optimal number of streams. For this reason, in this section we apply a methodology which

consists of testing and observing the streams by using a sample code included in the CUDA SDK.

This methodology thoroughly examines the behavior of the streams through two different tests:

• First, the size of the input and output data is fixed, while the computation within the kernel is

variable.

• After that, the size of the data transfers is asymmetrically changed. Along these tests, the

number of bytes that are transferred from host to device is ascending, while the number of

bytes from device to host is descending.

After applying our methodology, we are able to propose two performance models which fit the results

of the tests.

Programming issues for video analysis on Graphics Processing Units 105

6.3. Characterizing the behavior of CUDA streams

Listing 6.3: Kernel code of simpleStreams.cu

g l o b a l v o id i n i t a r r a y (i n t * g d a t a , i n t ∗factor , i n t num iter){

i n t i d x = b l o c k I d x . x* blockDim . x+ t h r e a d I d x . x ;

f o r (i n t i =0 ; i<num iter ; i ++)

g d a t a [i d x] += ∗factor ;

}

6.3.1 A thorough observation of CUDA streams

The CUDA SDK includes the code simpleStreams.cu, which makes use of CUDA streams. It

compares a non-streamed execution and a streamed execution of the kernel presented in the following

lines. This is a simple code in which a scalar ∗factor is repeatedly added to an array that represents

a vector. The variable num iter defines the number of times that ∗factor is added to each element

of the array, that is, the number of iterations within the kernel. Kernel code is shown in Listing 6.3.

simpleStreams.cu declares streams that include the kernel and the data transfer from device to

host, but not the data transfer from host to device. We have modified the code, so that transfers from

host to device are also included in the streams. Thus, we observe the behavior of CUDA streams in

the whole process of transferring from CPU to GPU, executing on GPU and transferring from GPU

to CPU. Testing this code gives us three parameters which define a huge number of cases: the size

of the array, the number of iterations within the kernel, and the number of streams. In this way, in

the first part of our methodology we use a fixed array size and change the number of iterations within

the kernel and the number of streams, what permits us to compare dominant transfers and dominant

kernel cases. Afterwards, in the second part the sizes of data transfers are changed asymmetrically, in

order to refine the performance estimates.

After observing the behavior of CUDA streams, one performance model for stream computation

will be calculated for each of the two most recent NVIDIA architectures (compute capabilities 1.x and

2.x). In this chapter, the applied methodology is illustrated on the Geforce GTX 280, as an example

of c.c. 1.x, and on the Geforce GTX 480, as an example of c.c. 2.x.

Details about NVIDIA devices are presented in Table 6.1. As stated in [97], devices with com-

pute capability 1.x do not support concurrent kernel execution. In this way, streams are not subject

to implicit synchronization. In devices with compute capability 2.x, concurrent kernel execution en-

tails that those operations which require a dependency check (such as data transfers from device to

host) cannot start executing until all thread blocks of all prior kernel launches from any stream have

started executing. These considerations should be ratified by the execution results, after applying our

methodology.

First observations: Fixed array size

First tests carried out consist of adding a scalar to an array of size 15 Mbytes using the modified

simpleStreams.cu. The number of iterations within the kernel takes 20 different values (from 8 to

27 in steps of 1 in GTX 280; and from 20 to 115 in steps of 5 in GTX 480). Thus, these tests change

the ratio between kernel execution and data transfers times, in order to observe the behavior of the

106 Universidad de Córdoba

Chapter 6. Stream processing on GPU with CUDA streams

Table 6.1: NVIDIA GeForce Series features related to data transfers and streams

GeForce
Features Considerations related to streams

series

8 Compute capability 1.x (x>0) Host-to-device and device-to-host transfers

9 PCIe ×16 (8 series) cannot be overlapped (only one DMA channel)

200 PCIe ×16 2.0 (9 and 200 series) No implicit synchronization:

1 DMA channel Device-to-host data transfer of a stream just can

Overlapping of data transfer start when that stream finishes its computation.

and kernel execution Consequently, this transfer can be overlapped

with the computation of the following stream

400 Compute capability 2.x Host-to-device and device-to-host transfers

500 PCIe ×16 2.0 cannot be overlapped (only one DMA channel)

1 DMA channel Implicit synchronization:

Overlapping of data transfer Device-to-host data transfer of the streams

and kernel execution cannot start until all the streams have started

Concurrent kernel execution executing

0

20

40

60

80

100

120

140

160
Non-streamed Streamed

Kernel time Transfers time

Dominant kernel Dominant transfers

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

GeForce GTX 280

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Number of iterations of a loop within the kernel

Figure 6.3: Execution time (ms) for the addition of a scalar to an array of size 15 Mbytes on GeForce

GTX 280. The blue line represents the execution time for non-streamed executions and the orange

line stands for the results of the streamed execution. Each column in the graph represents a test with

a changing number of iterations between 8 and 27 in steps of 1, in abscissas. In each column, the

number of streams has been changed along the divisors of 15 M between 2 and 64. Thick green and

red lines represent respectively the transfers time and the kernel execution time in each column. Thin

green and red lines represent possible performance models (dominant transfer or dominant kernel) as

stated in [96]

streams in a large number of cases. The number of streams is changed along the divisors of 15 M

between 2 and 64.

Figure 6.3 shows the execution results on GeForce GTX 280. A blue line with diamond markers

presents the non-streamed execution results and an orange line with square markers stands for the

Programming issues for video analysis on Graphics Processing Units 107

6.3. Characterizing the behavior of CUDA streams

0

10

20

30

40

50

60

70

80
Non-streamed Streamed

Kernel time Transfers time

Dominant kernel Dominant transfers

Dom. kernel (revised)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115

GeForce GTX 480

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Number of iterations of a loop within the kernel

Figure 6.4: Execution time (ms) for the addition of a scalar to an array of size 15 Mbytes on GeForce

GTX 480. Each column in the graph represents a test with a changing number of iterations between

20 and 115 in steps of 5. In each column, the number of streams has been changed along the divisors

of 15 M between 2 and 64. Thick green and red lines represent respectively the data transfers time and

the kernel execution time in each column. Thin green and red lines represent possible performance

models (dominant transfer or dominant kernel) as stated in [96]. Thin purple line stands for a revised

dominant kernel model, in which only one of the transfers is hidden

streamed execution results. The graph is divided into several columns. Each of the columns represents

one test using a certain number of iterations within the kernel. This number of iterations between 8

and 27, which determines the computational complexity of the kernel, is shown in abscissas. Together

with the execution times for non-streamed and streamed configurations, two thick lines and two thin

lines have been included. Thick lines represent the data transfers and the kernel execution times. Thin

lines correspond to possible performance models for the streamed execution, as stated in [96]. The

red thin line considers a dominant kernel case and estimates the execution time as tE + tT
nStreams

,

where tT is the copy time from CPU to GPU plus the copy time from GPU to CPU. The green thin

line represents a dominant transfers case and the estimate is tT + tE
nStreams

.

The dominant kernel hypothesis is reasonably suitable when the kernel execution time is clearly

longer than the data transfers time. However, the dominant transfers hypothesis does not match the

results of any test. In this way, we observe that the transfers time tT (green thick line) is a more

accurate reference when the data transfers are dominant.

In the dominant transfers cases (results on the left of the graph) on the GeForce GTX 280, we also

observe that the best results for the streamed execution are around the point where the green thick line

and the red thin line intersect. In this point the dominant kernel estimate equals the transfers time. In

this way, a reference for the optimal number of streams is nStreams = tT
tT −tE

.

On the GeForce GTX 480, the dominant transfers hypothesis suits properly on the left of the

graph. However, the dominant kernel hypothesis does not fit in any case. Figure 6.4 shows that a

revised dominant kernel hypothesis (purple thin line), in which the streams hide only one of the data

transfers, matches better. The revised estimate is tE + tT1

nStreams
+ tT2, where tT1 + tT2 = tT . At this

108 Universidad de Córdoba

Chapter 6. Stream processing on GPU with CUDA streams

point we are not able to assert which of both transfers (i.e., host to device or device to host) is hidden,

since both copy times are similar.

Finally, it is remarkable that in all tests on both GPUs the streamed time gets worse from a certain

number of streams. One can figure out that some overhead exists due to the generation of a stream.

Thus, the higher the number of streams the longer the overhead time.

Second observations: Asymmetric transfers

Second tests use the same kernel with a variable number of iterations, but data transfers are asymmet-

ric. For each kernel using a certain number of iterations, we perform 13 tests in which 24 Mbytes are

transferred from host to device or from device to host. Along the 13 tests, the number of bytes copied

from host to device is ascending, while the number of bytes from device to host is descending. In this

way, the first test transfers 1 Mbytes from host to device and 23 Mbytes from device to host, and in

the last test 23 Mbytes are copied from host to device and 1 Mbytes from device to host. The number

of streams has been established in 16 for every test.

Figure 6.5 (top) shows the results on the GeForce GTX 280. It can be observed that the streamed

results match the transfers time, when data transfers are dominant (tests with 1, 2 and 4 iterations).

When the kernel execution is longer (test with 16 iterations), the dominant kernel estimate fits prop-

erly.

Moreover, one can notice that the execution time decreases along the 13 tests in each column,

despite the whole amount of data transferred from or to the device is constant. We have observed that

on GTX 280 data transfers from device to host take around 36% more time than transfers from host

to device. For this reason, the left part of the test with 8 iterations follows the transfers time, while

the right part fits the dominant kernel hypothesis.

In subsection 6.3.1, we observed that on the GeForce GTX 480 only one of the data transfers

was hidden by the kernel execution, when the kernel was dominant. In these tests with asymmetric

transfers, we conclude that the transfer from host to device is the one being hidden, as can be observed

in Figure 6.5 (bottom). It depicts two revised dominant kernel estimates, purple and yellow thin lines.

The first revised estimate assumes that the transfer from device to host is hidden, while the second

one considers the transfer from host to device to be overlapped with execution. It is noticeable that

the later estimate matches perfectly when kernel execution is clearly dominant (32 and 40 iterations).

The former observation agrees with the fact that dependent operations in GTX 480 do not start

until all prior kernels have been launched. Thus, data transfers from device to host are not able to

overlap with computation, since all kernels from any stream are launched before data transfers from

device to host, as it can be seen in the code at the beginning of Section 6.2.

When the data transfer from host to device takes more time than the kernel execution, the streamed

execution follows the dominant transfers hypothesis. For this reason, the right part of the columns

with 8, 16 and 24 iterations follows the green thin line.

On the GTX 480 data transfers from device to host are slightly faster (around 2%) than transfers

from host to device. This fact explains the weak increase of the execution time along the 13 tests in

each column.

Programming issues for video analysis on Graphics Processing Units 109

6.3. Characterizing the behavior of CUDA streams

0

20

40

60

80

100

120

140
Non-streamed Streamed

Dominant kernel Transfers time

1 2 4 8 16

GeForce GTX 280

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Number of iterations of a loop within the kernel

0

10

20

30

40

50

60

70

80

90
Non-streamed Streamed

Dominant transfers Dom. kernel (revised 1)

Dom. kernel (revised 2)

8 16 24 32 40

GeForce GTX 480

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Number of iterations of a loop within the kernel

Figure 6.5: Execution time (ms) on GeForce GTX 280 (top) and GTX 480 (bottom) for tests with

asymmetric transfers. 24 Mbytes are copied from host to device or from device to host. Abscissas

represent the number of iterations within the kernel. In each column, 13 tests are represented with an

ascending number of bytes from host to device and a descending number of bytes from device to host.

In all cases, the number of streams is 16. In the graph on top, the red thin line stands for a dominant

kernel hypothesis and the green thick line is the transfers time. In the graph on bottom, the green

thin line stands for the dominant transfers hypothesis, and purple and yellow thin lines represent two

revisions of the dominant kernel estimate

6.3.2 CUDA streams performance models

Considering the observations in the previous subsections, we are able to formulate two performance

models which fit the behavior of CUDA streams on devices with c.c. 1.x and 2.x. In the following

equations, tE represents the kernel execution time, tThd stands for the data transfer time from host

to device and tTdh the data transfer time from device to host. Transfer times satisfy tT = tThd +

tTdh, and it depends on the number of data to be transmitted and the characteristics of the PCIe bus.

Moreover, we define an overhead time toh derived from the creation of the streams. We consider that

this overhead time increases linearly with the number of streams, i.e., toh = tsc×nStreams. The

value of tsc should be estimated for each GPU. In the particular case of GTX 280 and GTX 480, tsc

110 Universidad de Córdoba

Chapter 6. Stream processing on GPU with CUDA streams

takes a value of 0.10 and 0.03, respectively.

Performance on devices with compute capability 1.x

When data transfers time is dominant, we realized that the streamed execution time tstreamed tends to

the data transfers time tT . Since the performance of CUDA streams on these devices is not subject to

implicit synchronization, the data transfers time is able to completely hide the execution time. Thus,

we propose the following model for nStreams streams:

If (tT > tE +
tT

nStreams
), tstreamed = tT + toh (6.1)

In subsection 6.3.1, we noticed that the optimal number of streams nStreamsop with dominant

transfers time is around:

nStreamsop =
tT

tT − tE
(6.2)

In a dominant kernel scenario, the most suitable estimate counts the kernel execution time and the

data transfers time divided by nStreams:

If (tT < tE +
tT

nStreams
), tstreamed = tE +

tT
nStreams

+ toh (6.3)

Deriving equation 6.3 permits to obtain the optimal number of streams in a dominant kernel case:

nStreamsop =

√

tT
tsc

(6.4)

Performance on devices with compute capability 2.x

In subsection 6.3.1, we observed that on GTX 480 a dominant transfers scenario was properly defined

as in [96]. Moreover, from subsection 6.3.1 we infer that on GTX 480 only the data transfer from

host to device is overlapped with kernel execution. In this way, when data transfer is dominant, we

propose:

If (tThd > tE), tstreamed = tThd +
tE

nStreams
+ tTdh + toh (6.5)

The first derivative of the former equation gives an optimal number of streams:

nStreamsop =

√

tE
tsc

(6.6)

In a dominant kernel scenario, we propose the last revised estimate presented in subsection 6.3.1:

If (tThd < tE), tstreamed =
tThd

nStreams
+ tE + tTdh + toh (6.7)

The optimal number of streams, when the kernel is dominant, is obtained with:

nStreamsop =

√

tThd

tsc
(6.8)

Programming issues for video analysis on Graphics Processing Units 111

6.4. Testing the streams with SDK-based applications

Table 6.2: Features of NVIDIA GeForce GPUs used in this work

Parameter 8800 GTS 512 9800 GX2 GTX 260 GTX 280 GTX 480 GTX 580

Series 8 9 200 200 400 500

Codename G92-400 G92 GT200 GT200 GF100 GF110

Compute capability 1.1 1.1 1.2/1.3 1.2/1.3 2.0 2.0

PCIe 2.0 ×16 2.0 ×16 2.0 ×16 2.0 ×16 2.0 ×16 2.0 ×16

Overlapping of data ! ! ! ! ! !transfer and kernel

execution

Concurrent kernel # # # # ! !
execution

Table 6.3: Values of tsc for devices in Table 6.2

8800 GTS 512 9800 GX2 GTX 260 GTX 280 GTX 480 GTX 580

tsc 0.30 0.10 0.10 0.10 0.03 0.01

As it can be observed, this performance model considers the limitations derived from the implicit

synchronization that exists in devices with compute capability 2.x.

Validation of our performance models

In this Section, we validate the performance models presented in Section 6.3.2 on several devices

with compute capabilities 1.x and 2.x, belonging to NVIDIA GeForce 8, 9, 200, 400 and 500 series.

Characteristics of these devices are shown in Table 6.2. All of them allow concurrent data transfers

and execution. Moreover, devices with c.c. 2.x enable concurrent kernel execution, that can improve

the exploitation of hardware resources when two or more kernels are launched within a stream [97].

Figures 6.6 to 6.8 show the suitability of our performance models.

In Section 6.3.2, we indicated that the overhead time (toh) is obtained as a linear function of the

number of streams. We consider the constant tsc as the time needed to create one stream. Table 6.3

lists the values of tsc that we have estimated for each GPU.

6.4 Testing the streams with SDK-based applications

We have tested our performance models with three applications based on codes belonging to the

CUDA SDK. We have compared performances of non-streamed and streamed executions. Applying

a streamed execution consists of dividing kernel execution into several stages. In this way, if a number

B of thread blocks is defined in the non-streamed execution, an execution with nStreams streams

will use B
nStreams

thread blocks in each stage.

In the last subsection, we deal with dynamically recalculating the optimal number of streams.

This is applicable in those cases where the computational complexity of the kernels is dependent on

the characteristics of the frames, as in histogram calculation.

112 Universidad de Córdoba

Chapter 6. Stream processing on GPU with CUDA streams

0

100

200

300

400

500

600

700

800

Non-streamed Streamed

Our performance model

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

GeForce 8800 GTS 512

Number of iterations of a loop within the kernel

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

0

100

200

300

400

500

600

700

800

Non-streamed Streamed

Our performance model

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

GeForce 9800 GX2

Number of iterations of a loop within the kernel

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Figure 6.6: Execution time (ms) for the addition of a scalar to an array of size 15 Mbytes on devices

with compute capability 1.1. The number of iterations changes between 1 and 18 in steps of 1 on

GeForce 8800 GTS 512, and between 1 and 20 on GeForce 9800 GX2. The number of streams takes

the divisors of 15 M between 2 and 64. Black thin line stands for our performance model. Overhead

time is obtained with tsc = 0.30 on 8800 GTS 512, and tsc = 0.10 on 9800 GX2

6.4.1 Matrix multiplication

CUDA SDK includes a sample code of matrix multiplication [88]. This code performs the product

of a m×p matrix A with a p×n matrix B. The result is a m×n matrix C . The code divides matrix

C into 16×16 tiles and defines 16×16 blocks, so that each thread computes one element of C . The

streamed configuration splits computation into nStreams stages. Each stream consists of copying

part of matrix A to device, computing and copying the resulting part of matrix C to host. Matrix B

has been previously transferred to the device. We have carried out five tests with m = 512, p = 256, n

= 256; m = 1024, p = 512, n = 512; m = 2048, p = 1024, n = 1024; m = 4096, p = 2048, n = 2048;

and m = 8192, p = 4096, n = 4096. Figure 6.9 shows the results on GTX 280 (left) and GTX 480

(right). The suitability of our performance model is ratified in both GPUs.

Programming issues for video analysis on Graphics Processing Units 113

6.4. Testing the streams with SDK-based applications

0

20

40

60

80

100

120

140

160

Non-streamed Streamed

Our performance model

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

GeForce GTX 260

Number of iterations of a loop within the kernel

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

0

20

40

60

80

100

120

140

160
Non-streamed Streamed

Our performance model

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

GeForce GTX 280

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Number of iterations of a loop within the kernel

Figure 6.7: Execution time (ms) for the addition of a scalar to an array of size 15 Mbytes on devices

with compute capability 1.2/1.3. The number of iterations changes between 5 and 24 in steps of 1

on GeForce GTX 260, and between 8 and 27 in steps of 1 on GeForce GTX 280. The number of

streams takes the divisors of 15 M between 2 and 64. Black thin line stands for our performance

model. Overhead time is obtained with tsc = 0.10 on both devices

In the optimal cases, the performance improvement thanks to the streams ranges between 8% and

19% for the GTX 280, and between 5% and 14% for the GTX 480. Optimal values of the number of

streams can be estimated through the equations in subsection 6.3.2. Table 6.4 compares the estimated

optimal number of streams with the experimental optimal number of streams. It can be observed that

our estimations are very close to the experimental results. There is only one anomalous estimation,

which is due to the fact that applying streams reduces excessively the number of blocks that are used

in each kernel launch. As we indicated in Section 6.2, if the number of blocks B
nStreams

is not high

enough to make an extensive use of the hardware resources available on the GPU, the performance

will be burdened.

114 Universidad de Córdoba

Chapter 6. Stream processing on GPU with CUDA streams

0

10

20

30

40

50

60

70

80
Non-streamed Streamed

Our performance model

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115

GeForce GTX 480

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Number of iterations of a loop within the kernel

0

10

20

30

40

50

60

70

80
Non-streamed Streamed

Our performance model

25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

GeForce GTX 580

Number of iterations of a loop within the kernel

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Figure 6.8: Execution time (ms) for the addition of a scalar to an array of size 15 Mbytes on devices

with compute capability 2.0. The number of iterations changes between 20 and 115 in steps of 5

on GeForce GTX 480, and between 25 and 120 in steps of 5 on GeForce GTX 580. The number

of streams takes the divisors of 15 M between 2 and 64. Black thin line stands for our performance

model. Overhead time is obtained with tsc = 0.03 on GTX 480, and tsc = 0.01 on GTX 580

6.4.2 256-bins histogram

We have adapted the 256-bins histogram code in CUDA SDK [112], so that it computes the histogram

of each frame belonging to a video sequence of n frames. In this way, a thread block votes in the

histogram of the corresponding frame.

Three tests with different frame sizes have been carried out: 176×144, 352×288 and 704× 576.

The number of frames of the video sequence is n = 64. We proceed as it was explained in Section 6.2

for video processing applications. In the non-streamed execution, the histogram of each of the 64

frames is computed in one kernel invocation. The 64 frames are transferred to the GPU; then, the

histograms are computed; and, finally, the 64 histograms are copied to the CPU. However, in the

streamed execution, computation is divided into a number of streams. In this way, each kernel call

Programming issues for video analysis on Graphics Processing Units 115

6.4. Testing the streams with SDK-based applications

1100

1300

100

200

0

5

10

15

20

25

30

2

4

8

1
6

3
2

2

4

8

1
6

3
2

6
4

2

4

8

1
6

3
2

6
4

1
2
8

2

4

8

1
6

3
2

6
4

1
2
8

2
5
6

2

4

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

256 512 1024 2048 4096

Non-streamed

Streamed

Our performance model

GeForce GTX 480

1300

1800

100

300

0

10

20

30

40

50

2

4

8

1
6

3
2

2

4

8

1
6

3
2

6
4

2

4

8

1
6

3
2

6
4

1
2
8

2

4

8

1
6

3
2

6
4

1
2
8

2
5
6

2

4

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

256 512 1024 2048 4096

Non-streamed

Streamed

Our performance model

GeForce GTX 280
E

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Number of streams

Matrix size (p)

Figure 6.9: Execution time (ms) for matrix multiplication on GeForce GTX 280 (left) and GeForce

GTX 480 (right). Abscissas presents the number of streams and the value of p. On GTX 280, overhead

time is obtained with tsc = 0.10. On GTX 480, overhead time takes tsc = 0.03

0

5

10

15

20

25

30

2

4

8

1
6

3
2

6
4

2

4

8

1
6

3
2

6
4

2

4

8

1
6

3
2

6
4

176 x 144 352 x 288 704 x 576

Non-streamed

Streamed

Our performance model

0

2

4

6

8

10

12

2

4

8

1
6

3
2

6
4

2

4

8

1
6

3
2

6
4

2

4

8

1
6

3
2

6
4

176 x 144 352 x 288 704 x 576

Non-streamed

Streamed

Our performance model

GeForce GTX 480 GeForce GTX 280

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Number of streams

Size of the frames

Figure 6.10: Execution time (ms) for 256-bins histogram computation of 64 frames, on GeForce GTX

280 (left) and GeForce GTX 480 (right). Abscissas presents the number of streams and the size of the

frames. On GTX 280, overhead time is obtained with tsc = 0.10. On GTX 480, overhead time takes

tsc = 0.03

computes the histograms of 64

nStreams
frames.

Figure 6.10 shows the execution results. The improvement due to the streams is between 25%

and 44% for the GTX 280, and between 6% and 21% for the GTX 480. Our performance model

fits the behavior of CUDA streams almost perfectly. The comparison between the estimated and the

116 Universidad de Córdoba

Chapter 6. Stream processing on GPU with CUDA streams

Table 6.4: Estimated and experimental optimal number of streams for streamed matrix multiplication,

256-bins histogram calculation and RGB to grayscale conversion. Two values are presented when the

difference between the experimental results is less than 1%. † represents an anomalous result

Application GPU
Matrix (p) or Estimated Experimental

frame size optimum optimum

Matrix multiplication

GTX 280

256 5.4 2†

512 4.3 4

1024 6.1 4 - 8

2048 12.2 8 - 16

4096 24.5 16 - 32

GTX 480

256 3.1 2 - 4

512 6.4 4 - 8

1024 12.8 8 - 16

2048 25.8 16 - 32

4096 51.7 32 - 64

256-bins histogram

GTX 280

176×144 2.6 2

352×288 5.1 4 - 8

704×576 9.9 8 - 16

GTX 480

176×144 2.3 2

352×288 4.5 4

704×576 9.1 8 - 16

RGB to grayscale

GTX 280

176×144 3.5 4

352×288 7.0 8

704×576 13.9 16

GTX 480

176×144 2.8 2 - 4

352×288 5.6 4 - 8

704×576 11.3 8 - 16

experimental optima is presented in Table 6.4. As it can be observed, our estimations are in the order

of magnitude of the experimental optima.

Thanks to our performance models, the computation of the histograms of a video can be carried

out optimally, hiding the latencies of frames transfers to the GPU and histograms transfers to the

CPU. Nevertheless, the execution time is dependent on the distribution of luminance values of the

pixels. In subsection 6.5.1, we explain how a dynamic calculation of the optimal number of streams

can be performed.

6.4.3 RGB to grayscale conversion

This application is also based on the 256-bins histogram code. It consists of converting a sequence

of RGB frames to grayscale and then generating their histograms. With respect to the 256-bins

histogram code, it includes more computation that will increase the kernel execution time. We have

used sequences of 32 frames. Execution results are presented in Figure 6.11. It can be observed that

our models match the results properly. In the best cases, the improvement obtained with streams is

between 52% and 63% for the GTX 280, and between 6% and 18% for the GTX 480. The estimation

of the optimal number of streams is clearly correct, if we compare them to the experimental optima,

Programming issues for video analysis on Graphics Processing Units 117

6.5. Optimized stream processing with CUDA streams

0

10

20

30

40

50

2

4

8

1
6

3
2

2

4

8

1
6

3
2

2

4

8

1
6

3
2

176 x 144 352 x 288 704 x 576

Non-streamed

Streamed

Our performance model

0

5

10

15

20

25

2

4

8

1
6

3
2

2

4

8

1
6

3
2

2

4

8

1
6

3
2

176 x 144 352 x 288 704 x 576

Non-streamed

Streamed

Our performance model

GeForce GTX 480 GeForce GTX 280

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Number of streams

Size of the frames

Figure 6.11: Execution time (ms) for RGB to grayscale conversion of 32 frames, on GeForce GTX

280 (left) and GeForce GTX 480 (right). Abscissas presents the number of streams and the size of the

frames. On GTX 280, overhead time is obtained with tsc = 0.10. On GTX 480, overhead time takes

tsc = 0.03

as Table 6.4 shows.

6.5 Optimized stream processing with CUDA streams

A class of application that clearly can benefit from CUDA streams is signal processing, and partic-

ularly video processing. These applications process long or even endless input data to generate new

output data. In this way, a lot of execution time can be saved, if streams are optimally applied.

Our proposal consists of dividing a video stream into chunks of frames. The number of frames

within each chunk can be determined as a function of the global memory size, that is, how many

frames (and their corresponding intermediate data and results) can be placed in global memory. As it

is illustrated in Figure 6.12, the first chunk is processed in a non-streamed way, in order to obtain data

transfers time and execution time. Then, the optimal number of streams is calculated using equations

in Section 6.3.2. Thus, the following chunks are optimally processed in a streamed manner.

6.5.1 Adaptation to variable kernel computation time

The computational complexity of video applications can be independent on the input data, for in-

stance, a space color transformation of video frames. However, in other cases the computational

complexity is dependent on the input data, as the histogram computation of a video frame (see Sec-

tion 6.4.2).

Our method can be employed in these circumstances to recalculate the optimal number of streams

at any moment. We illustrate this approach with an experiment where the histograms of video frames

118 Universidad de Córdoba

Chapter 6. Stream processing on GPU with CUDA streams

Video stream

First chunk Following chunks

tT tE

1. First chunk is processed in a non-streamed

way. Transfers times (tThd and tTdh) and execution

time (tE) are measured.

2. Once known tThd, tTdh and tE,

with our performance models,

optimum number of streams

(nStreamsop) is determined
3. Following chunks are

divided in nStreamsop
parts. In this example,

nStreamsop = 4

Figure 6.12: Optimally streamed computation on a video stream. The first chunk is processed in

a non-streamed way, in order to determine tThd, tTdh and tE . The following chunks are processed

in nStreamsop streams. Data transfers from GPU to CPU are not drawn in order to simplify the

illustration

Listing 6.4: Dynamic calculation of the optimal number of streams

z = 0

While (z < TOTAL FRAMES/FRAMES){

T r a n s f e r FRAMES f r am es o f chunk z f rom h o s t t o d ev ice , and o b t a i n tThd

Compute h i s t o g r a m f o r FRAMES f rames , and o b t a i n tE
T r a n s f e r FRAMES h i s t o g r a m s from d e v i c e t o h o s t , and o b t a i n tTdh

z + +

C a l c u l a t e nStreamsop and testimated , u s i n g e q u a t i o n s i n S e c t i o n 6 . 3 . 2

tstream = testimated

C r e a t e nStreamsop s t r e a m s

While (aprox equal(tstream, testimated)&&(z < TOTAL FRAMES/FRAMES)){

Take s t a r t t im e tstart

Using nStreamsop s t r e a m s , t r a n s f e r FRAMES f rames ,

compute h i s t o g r a m f o r FRAMES f rames ,

and t r a n s f e r FRAMES h i s t o g r a m s

Take s t o p t im e tstop

tstream = tstop − tstart

z + +

}

D e s t r o y nStreamsop s t r e a m s

}

Programming issues for video analysis on Graphics Processing Units 119

6.6. Conclusions

are calculated. We take advantage of the distribution of color pixels, and consequently the computa-

tion time, is normally very similar in consecutive frames. Only in shots transitions (cuts, dissolves

and so on) this distribution can change abruptly. Our approach detects this change automatically and

then recalculates the new number of streams for the upcoming frames.

Pseudo-code in Listing 6.4 explains how a dynamic calculation of the optimal number of streams

can be performed. A whole sequence of TOTAL FRAMES frames is divided into chunks of

FRAMES frames. The first chunk is processed in a non-streamed way, in order to obtain the

estimated time (testimated) and the optimal number of streams (nStreamsop). The estimated time

is continuously compared to an on-the-fly measurement of the streamed execution time (tstream). If

both diverge over a certain threshold, the optimum is readily recalculated.

Using the former procedure, we have performed tests on GeForce GTX 280 and GTX 480. A

sequence of 4096 frames has been divided into chunks of 32 frames. Frames are grayscale and size

352×288 or 704×576. In the first half of the sequence, frames have uniform distribution of the

luminance values. Frames of the second half present a degenerate distribution. In this way, histogram

calculation of the frames of the second half presents more collisions between threads. For this reason,

the execution time in this half is expected to be much longer. As an illustrative example, Figure 6.13

shows the execution time (ms) for histogram calculation of each of the 128 chunks belonging to the

whole sequence. This test has been performed on GTX 480 and frames are size 352×288. Numbers

on the Figure correspond to the following comments:

1. The first chunk (chunk 0) is processed in a non-streamed way. Data transfers times (tThd and

tTdh) and kernel time (tE) are measured, in order to obtain the optimal number of streams

(nStreamsop1 = 2, in this particular case) and the estimated time (blue line, estimated time).

2. Following chunks are processed with nStreamsop1 streams, obtaining a streamed execution

time (streamed time) approximately equal to the estimate.

3. The first chunk of the second half, i.e., first chunk of frames with degenerate distribution (chunk

64), is processed with nStreamsop1. Since the execution time is very divergent to the estimate,

the streamed execution finishes momentarily.

4. A non-streamed execution is performed for chunk 65, in order to recalculate the optimum.

Thus, nStreamsop2 (equal to 4 in this particular case) is obtained.

5. Computation carries on using nStreamsop2 streams, for the rest of the chunks. As it can be

observed, the execution time is again very close to the estimate.

Table 6.5 summarizes the execution results for non-streamed and optimally streamed histogram calcu-

lation for the whole sequence. As it can be seen, the number of frames per second is clearly increased

by using an optimal number of streams for each half of the video sequence.

6.6 Conclusions

This chapter has shown that CUDA streams are one way to link the stream processing paradigm and

GPUs. They allow concurrent computations on CPU and GPU, and data transfers between both, what

120 Universidad de Córdoba

Chapter 6. Stream processing on GPU with CUDA streams

0.5

1.5

2.5

3.5

4.5

5.5

6.5

1

4

7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0
0

1
0
3

1
0
6

1
0
9

1
1
2

1
1
5

1
1
8

1
2
1

1
2
4

1
2
7

estimated_time streamed_time

(1)

(2)

(3)

(4)

(5)

Chunk number

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Figure 6.13: Execution time (ms) for 256-bins histogram computation of 4096 frames size 352×288,

on GeForce GTX 480. The whole sequence is divided into 128 chunks. Abscissas presents the chunk

number

Table 6.5: Number of frames per second for histogram calculation of a video sequence, on GTX 280

and GTX 480. Frames are size 352×288 or 704×576

GPU Frame size
Frames per second

Non-streamed execution Optimally streamed execution

GTX 280
352×288 5770 6502

704×576 1401 1656

GTX 480
352×288 8469 9149

704×576 2153 2429

hides communication overheads. Although exploiting such a concurrency can achieve an important

performance improvement, CUDA literature barely gives rough estimates which do not steer towards

the optimal manner to deploy CUDA streams.

In this chapter, we have exhaustively analyzed the behavior of CUDA streams through a novel

methodology, in order to define precise estimates for streamed executions. In this way, we have

found two mathematical models which accurately characterize the performance of CUDA streams

on consumer NVIDIA GPUs with compute capabilities 1.x and 2.x. Through these models, we have

found specific equations for determining the optimal number of streams, once kernel execution and

data transfers times are known. Our performance models have been validated on NVIDIA GPUs from

GeForce 8, 9, 200, 400 and 500 series.

We have successfully tested our approaches with three applications based on codes from CUDA

SDK. Our performance models have matched the experimental results, as well as the estimated optima

have resulted in the order of magnitude of the experimental ones.

Finally, we have explained how CUDA streams are able to implement optimally the stream pro-

cessing paradigm. Moreover, since some applications such as histogram calculation are workload-

Programming issues for video analysis on Graphics Processing Units 121

6.6. Conclusions

dependent, our method can be used for a dynamic calculation of the optimal number of streams. An

on-the-fly analysis of the streamed execution time, checking if it diverges from the estimate over a

certain threshold, will permit to recalculate the optimum.

122 Universidad de Córdoba

7 Conclusions

In this dissertation, we have tackled the parallelization of video analysis applications on Graph-

ics Processing Units. Our research work towards efficient implementations has been focused on an

optimized exploitation of GPU hardware resources, and on the performance of data communications

between CPU and GPU.

This chapter lists the main conclusions and contributions of this dissertation in Section 7.1. Sec-

tion 7.2 presents the publications that are fruits of our research work. Finally, Section 7.3 enumerates

some open research lines that will be continued in the near future.

7.1 Conclusions and main contributions

Along this dissertation, the main goal we have pursued is achieving efficient implementations of

video processing applications on GPU. Video and image processing applications are very suitable

for parallel processing on GPU, because they handle hundreds of thousands of pixels, which entail

massively-parallel computations. Moreover, they exhibit large arithmetic intensity, since they imple-

ment complex algorithms.

As it was stated in Chapter 1, we have tackled such a main goal from two sides: the mapping onto

the GPU, and the integration of the GPU in a heterogeneous system. Chapters 3 to 5 have covered the

former topic, while Chapter 6 has been focused on the latter.

With respect to the mapping of video applications onto the GPU, we have studied how this kind

of applications can be ported to the GPU computing paradigm. We detect that they are composed by

a variety of components, such that some of them can be considered regular, while others are irregular.

Regular components work typically with regular data structures as frames or images. They can be

ported to GPU in a more or less straightforward way, and they easily attain a satisfactory performance.

Their implementations generally assign one input or output data instance (for example, one pixel) per

thread. Thus, threads carry out approximately the same computation, so that a good load balancing is

123

7.1. Conclusions and main contributions

achieved. In addition, since threads access regular data structures, locality of references is ensured.

Definitely, these components are very suitable for GPU computing and obtain important performance

improvements with respect serial implementations on CPU.

However, in irregular components parallelism is not so inherent. They are subject to conditions

that can burden the performance, such as workload dependence or the lack of parallelism in some

parts. In this dissertation, we have identified several threats that are frequent in video analysis ap-

plications on GPU. Then, we have proposed proper strategies to tackle them. In this way, our main

contributions to efficiently implementing irregular components on GPU are:

• We have analyzed a widely-used kernel, which is histogram calculation, and two complete

video analysis applications from the point of view of their GPU implementation. Thus, we have

detected difficulties they pose for yielding well on GPU. In the case of histogram calculation,

serialization represents an unbearable performance bottleneck due to collisions among threads

while updating a short number of histogram bins. The two applications are a moving objects

detection algorithm and the Generalized Hough Transform, which is a well-known algorithm

for detecting shapes in images. We have analyzed them and have detected regular and irregular

components within them. We give specific indications towards achieving good implementations

of both types of components.

• We have proposed a highly optimized approach to histogram calculation based on replication,

padding and an interleaved read access. It works in shared memory and is applicable on current

Fermi GPUs for histograms of up to 4096 bins, and up to 1024 bins in older generations. We

give guidelines to achieve an optimized configuration of our approach.

• Our approach is based on an exhaustive microbenchmark-based study of the shared memory.

This has permitted us to accurately characterize how atomic additions are performed in shared

memory. We distinguish between intra-warp and inter-warp conflicts. We measure latency

penalties due to position and bank conflicts. Finally, we devise an intra-warp performance

model of atomic additions in shared memory, that is indispensable to justify the optimization

techniques that our approach uses.

• We have exhaustively compared our approach to the main state of the art works using two real

image databases. Our approach has clearly outperform the rest of implementations. It obtains

significant speedups on a current Fermi GeForce GTX 580 and on an older GeForce GTX 280.

• We have also experimented with a replication approach in global memory, that has performed

well for big histograms in the motion detection algorithm and the GHT.

• We have explained how to deal with inherently sequential computations through a case study.

Our warp-centric approach to RANSAC on GPU has demonstrated inherent advantages with

respect to a previous implementation of RANSAC by other authors. It achieves a certain degree

of parallelism in sequential phases, thanks to the distribution of RANSAC iterations among

warps. It also performs well in parallel phases, because ILP is improved. Moreover, it saves

synchronization overheads that burden block-centric approaches.

• We have shown how to re-organize intermediate data in video processing algorithms, in order

to obtain more efficient implementations of subsequent kernels. The use of compaction and

124 Universidad de Córdoba

Chapter 7. Conclusions

sorting on sparse, non-uniform and/or workload-dependent intermediate data has resulted in

important reductions of the number of memory accesses and executed instructions, and control

flow divergence. We show two examples of data re-organization with the clustering kernel in

the motion detection algorithm and with the irregular components within the GHT.

• We have explored the tradeoffs of perfectly load balanced implementations, that may decrease

the occupancy of multiprocessors due to a greater need of hardware resources. We have com-

pared two mechanisms for distributing the computation among threads and blocks: one ensures

perfect load balancing, while the other saves shared memory and increases occupancy. We

have detected under which conditions is better to use each one. A perfect load balancing is

only more profitable with short amounts of data, that are able to provoke many idle threads

within the multiprocessors.

The second part of our research work has been focused on the use of CUDA streams. These are

the way that CUDA offers to manage concurrency among CPU computation, GPU computation and

data transfers. They are based on asynchronous data transfers. However, specific instructions for

obtaining an optimized application of CUDA streams are lacking. We have attempted to throw light

upon this issue:

• We have presented a methodology that is able to be used for characterizing the performance of

asynchronous transfers.

• By using this methodology, we have obtained two performance models that perfectly fit the

behavior of CUDA streams across all CUDA-enabled GPU generations. One performance

model is for devices with compute capability 1.x, while the other is for devices with compute

capability 2.x.

• With these performance models, a programmer is able to estimate the execution time that a

streamed execution will achieve. Furthermore, it can be derived the optimal number of streams

in which computation should be broken up in order to attain the highest performance rates.

• The applicability of the models has been successfully checked with three applications belonging

to the CUDA SDK. Estimated optimum numbers of streams have coincided with experimental

optima. Performance improvements up to 63% have been achieved thanks to CUDA streams.

• We have interpreted CUDA streams as the way to implement the stream processing paradigm

on GPU. We show how to use them for video processing. By using our performance models,

frame can be optimally packed into streams, that ensure the best possible overlapping of data

transfers and kernel execution.

• Moreover, we have explained how to perform a dynamic calculation of the optimal number of

streams, that allows an on-the-fly adaptation to workload-dependent computations.

7.2 Publications related to this dissertation

The research work carried out during the development of this dissertation has produced several articles

that have been published in well-respected peer-reviewed journals and conferences. Other have been

Programming issues for video analysis on Graphics Processing Units 125

7.2. Publications related to this dissertation

submitted and are under review at the time of the submission of this dissertation. Moreover, two

technical reports have been elaborated.

7.2.1 Publications in conference proceedings

Juan Gómez-Luna, José Marı́a González-Linares, José Ignacio Benavides, and Nicolás Guil. Paral-

lelization of a video segmentation algorithm on CUDA–enabled Graphics Processing Units. In Proc.

of the Int’l Euro-Par Conference on Parallel Processing (EuroPar’09), pages 924–935, 2009.

This paper presents the GPU parallelization of a video segmentation application which imple-

ments an algorithm for abrupt and gradual transitions detection. The critical part of the algorithm

implements part of the Generalized Hough Transform. The O Hough space is calculated after com-

pacting the contour points of a frame. By comparing O Hough spaces of consecutive frames, a

similarity value is obtained. Highly dissimilar frames stand for a transition. Results on three CUDA-

enabled GPUs were encouraging, because of the significant speedup achieved. Performance on a

GeForce GTX 280 achieved a speedup between 7.6 and 11.3 versus a single-thread implementation

on an Intel Core2Quad. Moreover, it was in the same order of magnitude than an OpenMP 8-thread

version on an 8-core Intel Xeon.

Juan Gómez-Luna, Holger Endt, Walter Stechele, José Marı́a González-Linares, José Ignacio Bena-

vides, and Nicolás Guil. Egomotion estimation and moving objects detection algorithm on GPU. In

International Conference on Parallel Computing (ParCo’11), 2011.

In this work, a GPU implementation of an optical flow based moving objects detection algorithm

was presented. This algorithm is applicable in scenarios with weak and strong egomotion, thanks to

egomotion compensation and two alternative detection methods. Our implementation includes novel

approaches on GPU to widely-used techniques as RANSAC and region growing. It also solves image

processing parallelization problems, as divergent execution paths, by using compaction and sorting

primitives, with a significant impact on performance. Finally, our implementation has been compared

to a previous FPGA implementation. From the performance point of view, results on the newest GPUs

clearly outperform the FPGA.

7.2.2 Publications in journals

Juan Gómez-Luna, José Marı́a González-Linares, José Ignacio Benavides, Emilio L. Zapata, and

Nicolás Guil. Load balancing versus occupancy maximization on Graphics Processing Units: The

Generalized Hough Transform as a case study. Int. J. High Perform. Comput. Appl., 25:205–222,

May 2011.

Load balancing among threads and a high value of processor occupancy are indispensable for a

proper GPU performance. However, in certain applications an optimally balanced implementation

may limit the occupancy, due to a greater need of registers and shared memory. This is the case of

the Fast Generalized Hough Transform (Fast GHT). In this work, we presented two parallelization

alternatives for the Fast GHT, one that optimizes the load balancing and another that maximizes

126 Universidad de Córdoba

Chapter 7. Conclusions

the occupancy. We compared them using a large amount of real images to test their strong and

weak points, and we drew several conclusions about under which conditions it is better to use one or

another. We also tackled several parallelization problems related to sparse data distribution, divergent

execution paths and irregular memory access patterns in updating operations by proposing a set of

generic techniques as compacting, sorting and memory storage replication. Finally, we compared our

Fast GHT with the classic GHT on a current GPU, obtaining an important speedup.

Juan Gómez-Luna, José Marı́a González-Linares, José Ignacio Benavides, and Nicolás Guil. Perfor-

mance models for asynchronous data transfers on consumer Graphics Processing Units. Journal of

Parallel and Distributed Computing. To appear, 2011.

In this work, we presented a methodology that is applied to model the performance of asyn-

chronous data transfers of CUDA streams on different GPU architectures. CUDA API provides asyn-

chronous transfers and streams, as a way to overlap communication and computation. We illustrated

our methodology by deriving expressions of performance for two different consumer graphic archi-

tectures belonging to the more recent generations. These models permit programmers to estimate the

optimal number of streams in which the computation on the GPU should be broken up, in order to

obtain the highest performance improvements. Finally, we checked the suitability of our performance

models with three applications based on codes from the CUDA SDK with successful results.

7.2.3 Technical reports

Juan Gómez-Luna, José Marı́a González-Linares, José Ignacio Benavides, and Nicolás Guil. Effi-

cient techniques for histograms in GPUs. Technical Report. University of Málaga. http://www.ac.

uma.es/∼vip/publications/UMA-DAC-11-01.pdf, 2011.

In order to achieve an optimized approach to histogram computation on GPU, we proposed several

techniques, such as replication, padding and interleaved read access, that can be used to compute

histograms efficiently on GPUs. Our approach is applicable to histograms of up to 1024 bins. We

compared our implementations with the main state-of-the-art works with successful results. Our

approach reaches performance rates more than 1.5 higher than the rest of implementations.

Juan Gómez-Luna, José Marı́a González-Linares, José Ignacio Benavides, and Nicolás Guil. Per-

formance models for CUDA streams on NVIDIA GeForce series. Technical Report. University of

Málaga. http://www.ac.uma.es/∼vip/publications/UMA-DAC-11-02.pdf, 2011.

In this report, we apply our methodology for analyzing asynchronous transfers in CUDA to sev-

eral devices belonging to NVIDIA GeForce 8, 9, 200, 400 and 500 series. We successfully checked

the suitability of our performance models on them.

7.2.4 Articles under review

Juan Gómez-Luna, José Marı́a González-Linares, José Ignacio Benavides, and Nicolás Guil. Highly

optimized histogram generation on GPU based on performance modeling of atomic additions. Sub-

Programming issues for video analysis on Graphics Processing Units 127

7.3. Future research

mitted to IEEE Transactions on Parallel and Distributed Systems.

While histogram generation on GPU, collisions among threads will be very frequent and such col-

lisions will serialize thread execution, seriously damaging the performance. In this work we carried

out an exhaustive analysis of the behavior of the shared memory under conflicting accesses caused by

concurrent threads. This analysis permitted us to extract an experimental performance model that ac-

curately characterizes the latency penalties due to collisions by position or bank conflicts. Moreover,

we proposed a highly optimized approach to histogram calculation, which tackles such performance

bottlenecks. It uses histogram replication for eliminating position conflicts, padding to reduce bank

conflicts, and an improved access to input data called interleaved read access. Our so-called R -

per-block approach to histogram calculation achieves the highest performance rates compared to the

main state-of-the-art works. We tested the algorithms using a real image database, and timing results

showed that our proposal is more than twice faster than every previous implementation for histograms

of up to 4096 bins.

Juan Gómez-Luna, José Marı́a González-Linares, José Ignacio Benavides, and Nicolás Guil. An op-

timized approach to histogram computation on GPU. Submitted to Machine Vision and Applications.

In this paper, we compared our R -per-block approach to histogram calculation to the main state-

of-the-art works by using four histogram-based image processing kernels and two real image databases.

Results showed that our proposal is between 1.4 and 15.7 faster than every previous implementation

for histograms of up to 4096 bins.

7.3 Future research

This dissertation has covered a wide research work on video and image processing applications on

GPU. We consider this thesis as the first milestone in a long road towards efficient video analysis on

GPU. We have detected the following future research lines:

Generation of large histograms has still room for improvement The state-of-the-art alternatives

for large histograms, which exceed the shared memory size, present significant drawbacks:

• Shams et al. [123] proposed a multi-pass scheme for their per-warp approach. They subdivide

the histogram into a number of sub-ranges that fit in shared memory. The algorithm is executed

as many times as sub-ranges, so that at each iteration the kernel only process those data that

fall in the specified bin range. The main drawback of this approach is the fact that input data

must be read from global memory as many times as sub-ranges. For instance, if the size of the

sub-ranges is 1024 bins, a 10000-bin histogram generation will require ten read accesses per

input data instance located in the slow global memory. Therefore, we ruled out the application

of a similar multi-pass scheme to our R -per-block approach.

• The per-thread approach by Shams et al. [123] poses an inherent performance bottleneck in

the final reduction of the huge number of sub-histograms that it needs. The reduction time

128 Universidad de Córdoba

Chapter 7. Conclusions

seriously increases with the number of bins. For instance, we have observed that the reduction

time of a 4096-bin histogram generation is between 50% and 200% the voting time.

• Shams’ sort-and-count [124] has demonstrated a very flat performance across histogram sizes

and data distributions. This is a powerful strength but its performance rate is anyway very

limited. In Chapter 4 we measured its performance on a current GeForce GTX 580: 3.0 GB/s

average performance is not a proper exploitation of a 192.4 GB/s memory bandwidth.

An optimized approach to histogram calculation in global memory should be based on a mi-

crobenchmark study of atomic additions in global memory, as it was carried out for shared memory

in Chapter 4. Microbenchmarking has already been applied in global memory, as in [131]. The au-

thors detected which address bits steer DRAM channel and bank selection on an old GeForce GTX

280, in order to optimize memory accesses in structured grid applications. Microbenchmarking on

current Fermi GPU will have to take into account the presence of L1 and L2 cache levels.

Data re-organization on video and image applications is generalizable Efficient accesses to

GPU memories are key for properly exploiting the memory bandwidth and achieving a good per-

formance.

In this way, there is a considerable amount of recent research works that propose data transfor-

mation techniques towards attaining optimal memory accesses. As indicated above, Sung et al. [131]

proposed several data layout transformations for structured grids. Bader et al. [5] presented a set of

data rearrangement kernels, including permutation, reordering, interlacing/deinterlacing, and generic

stencil computation. In [60] Jang et al. analyzed several memory access patterns (linear, reverse

linear, stride, random...), and introduce data transformations and an algorithmic memory selection

technique. Zhang et al. [151] tackled irregular memory references through data reordering, job swap-

ping, and a hybrid strategy. A simple API that performs data remapping (row-major to column-major

order, diagonal-strip, indirect...) was presented by Che et al. [16]. It uses CUDA streams to hide the

overhead due to remapping.

In this dissertation we have used data re-organization for optimizing global memory accesses in

the motion detection algorithm and in the GHT. In both cases a similar strategy has been followed

(Figures 5.3 and 5.7). After these experiences, it would be desirable to find a methodology to system-

atically apply these type of data re-organization in video and image applications.

The stream processing model is to be extended Our study of CUDA streams has led us to propose

a scheme that implements the stream processing model on GPU. It is based on our performance

models for asynchronous data transfers. This scheme is still in its dawn, as it applies to a heterogenous

system executing one CPU-GPU data transfer, one kernel execution on a single GPU, and one GPU-

CPU data transfer. Next steps in the development of our stream processing scheme are:

• Analyzing CUDA streams behavior when a stream includes the pipelined execution of more

than one kernel. This would conduct us to find out new performance models which would

optimize the stream processing model. Moreover, we should deal with new functionalities in

devices with compute capability 2.x: concurrent kernel execution that is able to overlap up to

Programming issues for video analysis on Graphics Processing Units 129

7.3. Future research

16 kernels; and concurrent data transfers, which perform a copy from page-locked host memory

to device memory concurrently with a copy from device memory to page-locked host memory,

in Tesla devices.

• Extending our stream processing model to multi-GPU environments. This aim will have to

be based on an exhaustive analysis of asynchronous peer-to-peer data transfers between GPUs

with cudaMemcpyPeerAsync(). Moreover, an optimized pipelined execution across CPU

and GPUs will need some coordination mechanisms among CPU-GPU, GPU-GPU and GPU-

CPU data transfers. The reference for comparison will be the unified virtual address space for

the host and all the devices with compute capability 2.x that CUDA offers.

130 Universidad de Córdoba

Appendix
Resumen de la tesis

doctoral en castellano

El procesamiento de vı́deo es la parte del procesamiento de señales, donde las señales de entrada y/o

de salida son secuencias de vı́deo. Cubre una amplia variedad de aplicaciones que son, en general, de

cálculo intensivo, debido a su complejidad algorı́tmica. Por otra parte, muchas de estas aplicaciones

exigen un funcionamiento en tiempo real. El cumplimiento de estos requisitos hace necesario el uso

de aceleradores hardware como las Unidades de Procesamiento Gráfico (GPU).

En los últimos años, el crecimiento en la potencia de computación de los procesadores de un

solo núcleo se ha visto mermado por la aparición de problemas de consumo de potencia y disipación

del calor. Por esta razón, los fabricantes de hardware han buscado alternativas, para poder continuar

satisfaciendo las necesidades de crecimiento continuo en la velocidad de las aplicaciones. Junto con

los procesadores multinúcleo, los dispositivos many − core, entre los que destacan las GPUs, son

una importante alternativa.

Ası́, el procesamiento de propósito general en GPU representa una tendencia exitosa en la com-

putación de alto rendimiento. Esta tendencia comenzó con el lanzamiento de la arquitectura y el

modelo de programación NVIDIA CUDA. La GPU está formada por multiprocesadores que con-

tienen los núcleos de computación, registros y una memoria compartida tipo scratchpad. Los multi-

procesadores tienen también acceso a la memoria de la GPU, llamada memoria global.

Esta tesis doctoral trata sobre la paralelización eficiente de aplicaciones de procesamiento de

vı́deo en GPU. Este objetivo se aborda desde dos vertientes: por un lado, la programación adecuada

de la GPU para conseguir la paralelización eficiente de las aplicaciones de vı́deo; por otro lado,

la GPU debe ser considerada como parte de un sistema heterogéneo, para lo que puede ser útil la

aplicación del paradigma del stream processing.

A.1 Paralelización eficiente de las aplicaciones de vı́deo en GPU

Dado que las secuencias de vı́deo se componen de fotogramas, que son estructuras de datos regulares,

muchos componentes de las aplicaciones de vı́deo son inherentemente paralelizables. Por esto, para

un programador es relativamente simple alcanzar implementaciones que cumplan los requisitos para

A.1. Paralelización eficiente de las aplicaciones de vı́deo en GPU

una ejecución eficiente en GPU: balanceo de carga, direccionamiento lineal de memoria y ausencia

de serialización.

Sin embargo, otros componentes son irregulares en el sentido de que presentan alguna de las

siguientes caracterı́sticas:

• Colisiones de escritura, que son tı́picas cuando existe dependencia de la carga de trabajo. Un

ejemplo serı́a el cálculo de histogramas, en el que múltiples hilos de computación (threads)

simultáneos tendrán que acceder a un conjunto reducido de bins del histograma.

• Computaciones inherentemente secuenciales, que infrautilizan las capacidades de la GPU. Se

darán en procesos con fases SISD (Single− InstructionSingle−Data) y SIMD (Single−

InstructionMultiple− Data) alternantes.

• Referencias a memoria no lineales, que se darán cuando haya dependencia de los datos o cuando

se manejen estructuras de datos no adecuadas para la GPU.

• Desbalanceo de carga y ejecución divergente, que serán tı́picas también con dependencia de los

datos, datos no uniformes, datos dispersos

En esta tesis, hemos tratado de resolver los anteriores inconvenientes en las partes irregulares de

los algoritmos de procesamiento de vı́deo. Para ello hemos trabajado con una operación tı́pica en

procesamiento de vı́deo e imagen, como es el cálculo de histogramas. También se han empleado dos

aplicaciones completas que presentan una gran variedad de componentes, que nos han permitido estu-

diar los anteriores aspectos y su implementación eficiente. La primera es una aplicación de detección

de objetos móviles en vı́deo que aplica compensación del movimiento de cámara. La segunda es la

Transformada Generalizada de Hough (GHT) que es una aplicación de reconocimiento de objetos

muy extendida.

En el caso del cálculo de histogramas, hemos estudiado las implementaciones previas realizadas

por otros autores. Después, hemos realizado un exhaustivo estudio de las operaciones atómicas en

la memoria compartida de la GPU, ya que éstas son necesarias para la generación del histograma.

De esta forma, encontramos un modelo de funcionamiento que nos ha orientado al proponer una

implementación optimizada del cálculo de histogramas, que mejora claramente las implementaciones

previas.

El manejo de las fases secuenciales se ha llevado a cabo mediante una implementación centrada

en warp (mı́nima unidad de computación SIMD de la GPU) de la compensación de movimiento de

la aplicación de detección de objetos móviles. ésta utiliza la conocida técnica RANSAC, en la que

se genera un modelo a partir de datos tomados aleatoriamente. Nuestra aproximación consigue muy

buenos resultados y se muestra como una adecuada alternativa para este tipo de situaciones.

La obtención de implementaciones balanceadas requiere la reorganización de los datos de entrada.

Esto se ha ilustrado con la paralelización de diversas etapas de las dos aplicaciones. La reorganización

de los datos se lleva a cabo mediante la compactación y la ordenación de los mismos. Estas opera-

ciones se implementan con el uso de librerı́as optimizadas. Gracias a la reorganización de los datos

se han obtenido mejoras espectaculares sobre las implementaciones iniciales.

132 Universidad de Córdoba

Chapter 7. Conclusions

También se ha llevado a cabo un estudio del compromiso entre balanceo de carga y ocupación,

que es el porcentaje de threads activos en la GPU y depende de la necesidad de registros y memo-

ria compartida por parte de los threads. Dado que un balanceo perfecto requiere mayor uso de los

recursos de la GPU (registros y memoria compartida), la ocupación puede verse disminuida. Hemos

conseguido determinar bajo qué circunstancias es preferible una implementación con balanceo per-

fecto o una implementación que mejore la ocupación.

A.2 Stream processing para análisis de vı́deo en GPU

Las secuencias de vı́deo son flujos continuos que deben ser transferidos desde el host (CPU) al

dispositivo (GPU), y los resultados del dispositivo al host. Esto supone un cuello de botella para las

GPUs, puesto que las transferencias requieren un tiempo en el que no se realiza ningún cálculo.

Esta tesis doctoral propone el uso de CUDA streams para implementar el paradigma de stream

processing en la GPU, con el fin de controlar la ejecución simultánea de las transferencias de datos

y de la computación.

Los CUDA streams representan operaciones que se ejecutan sucesivamente. Estas operaciones

pueden ser transferencias de memoria CPU a memoria GPU, y viceversa, y computación en la GPU.

Utilizando CUDA streams la carga de trabajo se divide en trozos que son transferidos a la GPU para

ser procesados. Mediante el uso de transferencias ası́ncronas, puede simultanearse la transferencia de

trozo con la computación del trozo anterior.

Sin embargo, no existı́a en los trabajos de investigación previos ninguna regla para aplicar de

forma óptima los CUDA streams. Por esto, hemos aplicado una metodologı́a consistente en obser-

var el comportamiento de los mismos en distintas situaciones. La hemos aplicado a dispositivos

pertenecientes a todas las generaciones de GPUs con CUDA.

Ası́ se han hallado modelos de rendimiento que permiten una ejecución óptima. Con ellos se

obtiene una estimación del tiempo de ejecución utilizando CUDA streams, ası́ como el número de

trozos óptimo en que la carga de trabajo debe ser dividida.

También proponemos un procedimiento para aplicar los modelos de rendimiento de forma dinámica.

Esto permitirá calcular el número de trozos óptimo en cualquier situación, aunque haya dependencia

de los datos. De esta forma, conseguimos una aplicación óptima del paradigma stream processing

para procesamiento de vı́deo a la GPU.

A.3 Principales aportaciones

En esta tesis doctoral se han realizado las siguientes aportaciones:

• Implementación optimizada del cálculo de histogramas en memoria compartida, basada en

replicación, padding y acceso de lectura entrelazada. Nuestra implementación es válida para

histogramas de hasta 4096 bins.

• Modelo de funcionamiento de las operaciones atómicas en memoria compartida. Distinguimos

Programming issues for video analysis on Graphics Processing Units 133

A.4. Conclusiones y trabajos futuros

entre conflictos intra−warp y conflictos inter−warp. También se caracterizan las latencias

debidas a conflictos de posición y conflictos de bancos.

• Uso de implementaciones centradas en warp para el manejo de fases inherentemente secuen-

ciales. En el caso del RANSAC, se puede alcanzar cierto paralelismo en dichas fases.

• Reorganización de los datos de entrada mediante compactación y ordenación. Ası́ se consigue

evitar la ejecución divergente y reducir el número de instrucciones ejecutadas y de accesos a

memoria.

• Exploración del compromiso entre balanceo perfecto y ocupación. Hemos determinado en qué

circunstancias es preferible una implementación u otra.

• Obtención de modelos de funcionamiento de CUDA streams en GPUs pertenecientes a todas

las generaciones NVIDIA CUDA. Estos modelos permiten estimar el tiempo de ejecución y

dividir la computación de forma óptima.

• Diseño de un esquema optimizado para la aplicación del stream processing en GPU para

procesamiento de vı́deo. Este esquema es adaptable dinámicamente en función de las carac-

terı́sticas de los datos de entrada.

A.4 Conclusiones y trabajos futuros

En esta tesis doctoral hemos abordado la implementación de algoritmos de procesamiento de vı́deo

en GPU.

Por un lado, se han desarrollado estrategias para adaptar correctamente los algoritmos a la arqui-

tectura de la GPU. La investigación se ha centrado en las partes irregulares de los algoritmos, es decir,

aquellas que presentan caracterı́sticas que las hacen menos adecuadas para la ejecución en GPU.

Por otro lado, se ha conseguido aliviar uno de los mayores cuellos de botella para las GPUs, como

es la necesidad de transferir datos entre la memoria de la CPU y la memoria de la GPU, y viceversa.

La aplicación del paradigma stream processing mediante CUDA streams se ha llegado a cabo de

forma óptima, gracias a la obtención de modelos de funcionamiento.

Este trabajo de investigación será continuado con las siguiente lı́neas:

• Búsqueda de implementaciones óptimas para cálculo de histogramas grandes (más de 4096

bins). Para ello será necesario hacer un estudio exhaustivo de las operaciones atómicas en la

memoria global de la GPU.

• Generalización de la reorganización de datos para cualquier aplicación de vı́deo. Se tratará de

encontrar caracterı́sticas comunes en las aplicaciones que permitan una aplicación sistemática

de la reorganización de datos.

• Extensión del esquema de stream processing a entornos con múltiples GPUs. También se

estudiará la posibilidad de ejecución concurrente que ofrecen las más modernas GPUs.

134 Universidad de Córdoba

Bibliography

[1] AMD. AMD Fusion family of APUs: Enabling a superior, immersive PC experience. White

paper. http://sites.amd.com/us/Documents/48423B fusion whitepaper WEB.pdf, 2010. On-

line; accessed 30-december-2011. 3

[2] AMDAHL, G. M. Validity of the single processor approach to achieving large scale computing

capabilities. In Proceedings of the April 18-20, 1967, spring joint computer conference (New

York, NY, USA, 1967), AFIPS ’67 (Spring), ACM, pp. 483–485. 11

[3] AYGUADÉ, E., DURAN, A., HOEFLINGER, J., MASSAIOLI, F., AND TERUEL, X. An experi-

mental evaluation of the new openmp tasking model. In Languages and Compilers for Parallel

Computing, V. Adve, M. Garzarn, and P. Petersen, Eds., vol. 5234 of Lecture Notes in Com-

puter Science. Springer Berlin / Heidelberg, 2008, pp. 63–77. 10.1007/978-3-540-85261-2 5.

4

[4] BABENKO, P., AND SHAH, M. Mingpu: a minimum gpu library for computer vision. Journal

of Real-Time Image Processing 3 (2008), 255–268. 10.1007/s11554-008-0085-x. 12

[5] BADER, M., BUNGARTZ, H.-J., MUDIGERE, D., NARASIMHAN, S., AND NARAYANAN, B.

Fast GPGPU Data Rearrangement Kernels using CUDA. ArXiv e-prints (Nov. 2010). 129

[6] BAGHSORKHI, S. S., DELAHAYE, M., PATEL, S. J., GROPP, W. D., AND HWU, W.-M. W.

An adaptive performance modeling tool for gpu architectures. In Proceedings of the 15th ACM

SIGPLAN symposium on Principles and practice of parallel programming (New York, NY,

USA, feb 2010), PPoPP ’10, ACM, pp. 105–114. 102

[7] BALLARD, D.H. Generalizing the hough transform to detect arbitrary shapes. Pattern Recog-

nition 13, 2 (1981), 111 – 122. 39

[8] BELL, N., AND HOBEROCK, J. NVIDIA. Thrust. A productivity-oriented library for CUDA.

http://code.google.com/p/thrust/. Online; accessed 10-january-2012. 9

[9] BILLETER, M., OLSSON, O., AND ASSARSSON, U. Efficient stream compaction on wide

simd many-core architectures. In HPG ’09: Proceedings of the Conference on High Perfor-

mance Graphics 2009 (New York, NY, USA, 2009), ACM, pp. 159–166. 9, 84

[10] BRODTKORB, A. R., DYKEN, C., HAGEN, T. R., HJELMERVIK, J. M., AND STORAASLI,

O. O. State-of-the-art in heterogeneous computing. Sci. Program. 18 (January 2010), 1–33. 3

135

BIBLIOGRAPHY

[11] BROY, M. Challenges in automotive software engineering. In Proceedings of the 28th inter-

national conference on Software engineering (New York, NY, USA, 2006), ICSE ’06, ACM,

pp. 33–42. 34

[12] BUCK, I., FOLEY, T., HORN, D., SUGERMAN, J., FATAHALIAN, K., HOUSTON, M., AND

HANRAHAN, P. Brook for gpus: stream computing on graphics hardware. ACM Trans. Graph.

23 (August 2004), 777–786. 4

[13] CABIDO, R., MONTEMAYOR, A., AND PANTRIGO, J. High performance memetic algorithm

particle filter for multiple object tracking on modern gpus. Soft Computing - A Fusion of

Foundations, Methodologies and Applications, 1–14. 10.1007/s00500-011-0715-2. 11

[14] CANNY, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach.

Intell. 8 (June 1986), 679–698. 42

[15] CATANZARO, B. C., SUNDARAM, N., AND KEUTZER, K. Fast support vector machine

training and classification on graphics processors. Tech. Rep. UCB/EECS-2008-11, EECS

Department, University of California, Berkeley, Feb 2008. Online; accessed 10-january-2012.

11

[16] CHE, S., SHEAFFER, J. W., AND SKADRON, K. Dymaxion: optimizing memory access

patterns for heterogeneous systems. In Proceedings of 2011 International Conference for High

Performance Computing, Networking, Storage and Analysis (New York, NY, USA, 2011), SC

’11, ACM, pp. 13:1–13:11. 129

[17] CHEN, T., RAGHAVAN, R., DALE, J. N., AND IWATA, E. Cell broadband engine architecture

and its first implementation: A performance view. IBM Journal of Research and Development

51, 5 (sept. 2007), 559 –572. 3

[18] CLAUS, C., LAIKA, A., JIA, L., AND STECHELE, W. High performance fpga based optical

flow calculation using the census transformation. In Intelligent Vehicles Symposium, 2009

IEEE (2009), pp. 1185 –1190. 34, 38

[19] COON, B. W., NICKOLLS, J. R., NYLAND, L., AND MILLS, P. C. Lock mechanism to enable

atomic updates to shared memory. Patent, november 2011. US 8055856. 57

[20] CORNELIS, N., AND VAN GOOL, L. Fast scale invariant feature detection and matching on

programmable graphics hardware. In Computer Vision and Pattern Recognition Workshops,

2008. CVPRW ’08. IEEE Computer Society Conference on (june 2008), pp. 1 –8. 11

[21] CUDPP. CUDA Data Parallel Primitives. http://code.google.com/p/cudpp/. Online; accessed

10-january-2012. 9, 87

[22] DANALIS, A., MARIN, G., MCCURDY, C., MEREDITH, J. S., ROTH, P. C., SPAFFORD, K.,

TIPPARAJU, V., AND VETTER, J. S. The scalable heterogeneous computing (shoc) benchmark

suite. In Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics

Processing Units (New York, NY, USA, 2010), GPGPU ’10, ACM, pp. 63–74. 5, 21

136 Universidad de Córdoba

BIBLIOGRAPHY

[23] DO, M., NGUYEN, Q., NGUYEN, H., KUBACKI, D., AND PATEL, S. Immersive visual

communication. Signal Processing Magazine, IEEE 28, 1 (jan. 2011), 58 –66. 11

[24] DUDA, R. O., AND HART, P. E. Use of the hough transformation to detect lines and curves in

pictures. Commun. ACM 15 (January 1972), 11–15. 39

[25] FANG, J., VARBANESCU, A. L., AND SIPS, H. A comprehensive performance comparison

of cuda and opencl. In The 40-th International Conference on Parallel Processing (ICPP’11),

Taipei, Taiwan (September 2011). 5, 21

[26] FARBER, R. CUDA application design and development, 1st ed. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 2011. 19

[27] FARRUGIA, J.-P., HORAIN, P., GUEHENNEUX, E., AND ALUSSE, Y. Gpucv: A framework

for image processing acceleration with graphics processors. Multimedia and Expo, IEEE In-

ternational Conference on 0 (2006), 585–588. 12

[28] FATAHALIAN, K., SUGERMAN, J., AND HANRAHAN, P. Understanding the efficiency of

gpu algorithms for matrix-matrix multiplication. In Proceedings of the ACM SIGGRAPH/EU-

ROGRAPHICS conference on Graphics hardware (New York, NY, USA, 2004), HWWS ’04,

ACM, pp. 133–137. 20

[29] FISCHLER, M. A., AND BOLLES, R. C. Random sample consensus: a paradigm for model

fitting with applications to image analysis and automated cartography. Commun. ACM 24 (June

1981), 381–395. 34, 83

[30] FRANCO, J., BERNABÉ, G., FERNÁNDEZ, J., AND UJALDÓN, M. The 2d wavelet transform

on emerging architectures: Gpus and multicores. Journal of Real-Time Image Processing, 1–8.

10.1007/s11554-011-0224-7. 13

[31] FULLER, S. H., AND MILLETT, L. I. The Future of Computing Performance: Game Over

or Next Level?, 1st ed. The National Academies Press, 500 Fifth Street, N.W., Lockbox 285

Washington, D.C. 20055, USA, 2011. 2, 4

[32] FUNG, J., AND MANN, S. Openvidia: parallel gpu computer vision. In Proceedings of

the 13th annual ACM international conference on Multimedia (New York, NY, USA, 2005),

MULTIMEDIA ’05, ACM, pp. 849–852. 12

[33] GARCIA, V., DEBREUVE, E., AND BARLAUD, M. Fast k nearest neighbor search using gpu.

In Computer Vision and Pattern Recognition Workshops, 2008. CVPRW ’08. IEEE Computer

Society Conference on (june 2008), pp. 1 –6. 11

[34] GIBSON, J., AND MARQUES, O. Stereo depth with a unified architecture gpu. Computer

Vision and Pattern Recognition Workshop 0 (2008), 1–6. 11

[35] GONZALEZ, M., AYGUADÉ, E., MARTORELL, X., AND LABARTA, J. Defining and sup-

porting pipelined executions in openmp. In OpenMP Shared Memory Parallel Programming,

R. Eigenmann and M. Voss, Eds., vol. 2104 of Lecture Notes in Computer Science. Springer

Berlin / Heidelberg, 2001, pp. 155–169. 10.1007/3-540-44587-0 14. 4

Programming issues for video analysis on Graphics Processing Units 137

BIBLIOGRAPHY

[36] GOVINDARAJU, N. K., LARSEN, S., GRAY, J., AND MANOCHA, D. A memory model for

scientific algorithms on graphics processors. In Proceedings of the 2006 ACM/IEEE conference

on Supercomputing (New York, NY, USA, 2006), SC ’06, ACM. 20

[37] GPGPU. General-Purpose computation on Graphics Processing Units. http://gpgpu.org/. On-

line; accessed 10-january-2012. 20

[38] GPU COMPUTING COMMUNITY. GPUcomputing.net. http://www.gpucomputing.net/. On-

line; accessed 10-january-2012. 20

[39] GREEN, S. Particle simulation using CUDA. http://developer.download.nvidia.com/compute/

DevZone/C/html/C/src/particles/doc/particles.pdf, May 2010. Online; accessed 10-january-

2012. 91

[40] GUIL, N., GONZALEZ-LINARES, J., AND ZAPATA, E. Bidimensional shape detection using

an invariant approach. Pattern Recognition 32, 6 (1999), 1025 – 1038. 39

[41] HAGIESCU, A., HUYNH, H. P., WONG, W.-F., AND GOH, R. Automated architecture-aware

mapping of streaming applications onto gpus. In Parallel Distributed Processing Symposium

(IPDPS), 2011 IEEE International (may 2011), pp. 467 –478. 15

[42] HAN, W., XIAOPENG, G., ZHIQIANG, W., AND YI, L. Using gpu to accelerate cache simu-

lation. In IEEE International Symposium on Parallel and Distributed Processing with Appli-

cations (2009), pp. 565–570. 102

[43] HARRIS, M. Optimizing parallel reduction in cuda. NVIDIA Developer Technology (2008).

Online; accessed 10-january-2012. 8, 42

[44] HARVEY, M., AND FABRITIIS, G. D. Swan: A tool for porting CUDA programs to OpenCL.

Computer Physics Communications 182, 4 (2011), 1093 – 1099. 5, 21

[45] HATEREN, J. H. V., AND SCHAAF, A. V. D. Independent component filters of natural images

compared with simple cells in primary visual cortex. Proceedings: Biological Sciences 265,

1394 (Mar 1998), 359–366. 49, 70

[46] HOFF, III, K. E., KEYSER, J., LIN, M., MANOCHA, D., AND CULVER, T. Fast computation

of generalized voronoi diagrams using graphics hardware. In Proceedings of the 26th annual

conference on Computer graphics and interactive techniques (New York, NY, USA, 1999),

SIGGRAPH ’99, ACM Press/Addison-Wesley Publishing Co., pp. 277–286. 5

[47] HONG, S., AND KIM, H. An analytical model for a gpu architecture with memory-level and

thread-level parallelism awareness. In Proceedings of the 36th annual international symposium

on Computer architecture (New York, NY, USA, 2009), ISCA ’09, ACM, pp. 152–163. 102

[48] HONG, S., KIM, S. K., OGUNTEBI, T., AND OLUKOTUN, K. Accelerating cuda graph

algorithms at maximum warp. In Proceedings of the 16th ACM symposium on Principles and

practice of parallel programming (New York, NY, USA, 2011), PPoPP ’11, ACM, pp. 267–

276. 84

138 Universidad de Córdoba

BIBLIOGRAPHY

[49] HORMATI, A. H., SAMADI, M., WOH, M., MUDGE, T., AND MAHLKE, S. Sponge: portable

stream programming on graphics engines. In Proceedings of the sixteenth international confer-

ence on Architectural support for programming languages and operating systems (New York,

NY, USA, 2011), ASPLOS ’11, ACM, pp. 381–392. 15, 101

[50] HOU, R., ZHANG, L., HUANG, M., WANG, K., FRANKE, H., GE, Y., AND CHANG, X.

Efficient data streaming with on-chip accelerators: Opportunities and challenges. In High

Performance Computer Architecture (HPCA), 2011 IEEE 17th International Symposium on

(feb. 2011), pp. 312 –320. 3

[51] HOUGH, P. Method and means for recognizing complex patterns, Dec. 18 1962. US Patent

3,069,654. 39

[52] HOWARD, J., DIGHE, S., HOSKOTE, Y., VANGAL, S., FINAN, D., RUHL, G., JENKINS,

D., WILSON, H., BORKAR, N., SCHROM, G., PAILET, F., JAIN, S., JACOB, T., YADA, S.,

MARELLA, S., SALIHUNDAM, P., ERRAGUNTLA, V., KONOW, M., RIEPEN, M., DROEGE,

G., LINDEMANN, J., GRIES, M., APEL, T., HENRISS, K., LUND-LARSEN, T., STEIBL,

S., BORKAR, S., DE, V., VAN DER WIJNGAART, R., AND MATTSON, T. A 48-core ia-32

message-passing processor with dvfs in 45nm cmos. In Solid-State Circuits Conference Digest

of Technical Papers (ISSCC), 2010 IEEE International (feb. 2010), pp. 108 –109. 3

[53] HWU, W.-M. W. Gpu Computing Gems emerald edition, 1st ed. Morgan Kaufmann Publishers

Inc., 2011. 11

[54] HWU, W.-M. W., AND KIRK/NVIDIA URBANA, D. Proven algorithmic techniques for

many-core processors. http://impact.crhc.illinois.edu/gpucourses.php, August 2010. Online;

accessed 10-january-2012. 6, 7

[55] HYPERTRANSPORT CONSORTIUM. HyperTransport. http://www.hypertransport.org/. Online;

accessed 10-january-2012. 3

[56] IDRIS, F., AND PANCHANATHAN, S. Review of image and video indexing techniques. Journal

of Visual Communication and Image Representation 8, 2 (1997), 146 – 166. 47

[57] INSTITUTE FOR COMPUTER GRAPHICS AND VISION/GRAZ UNIVERSITY OF TECHNOL-

OGY. GPU4vision. Accelerating computer vision. http://gpu4vision.icg.tugraz.at/. Online;

accessed 10-january-2012. 12

[58] INTEL. An introduction to the intel quickpath interconnect. White paper.

http://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-

introduction-paper.html, 2009. Online; accessed 10-january-2012. 3

[59] JACOFF, A., MESSINA, E., WEISS, B., TADOKORO, S., AND NAKAGAWA, Y. Test arenas

and performance metrics for urban search and rescue robots. In Intelligent Robots and Systems,

2003. (IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on (2003), vol. 4,

pp. 3396 – 3403 vol.3. 33

Programming issues for video analysis on Graphics Processing Units 139

BIBLIOGRAPHY

[60] JANG, B., SCHAA, D., MISTRY, P., AND KAELI, D. Exploiting memory access patterns to

improve memory performance in data-parallel architectures. Parallel and Distributed Systems,

IEEE Transactions on 22, 1 (jan. 2011), 105 –118. 129

[61] JOHNSON, T., GEORGEL, P., RAGURAM, R., AND FRAHM, J.-M. Fast organization of

large photo collections using CUDA. In Workshop on Computer Vision on GPUs, European

Conference on Computer Vision (ECCV) (2010). 83

[62] JUNG, B., AND SUKHATME, G. S. Detecting moving objects using a single camera on a mo-

bile robot in an outdoor environment. In International Conference on Intelligent Autonomous

Systems (2004), pp. 980–987. 34, 36

[63] KAPASI, U., RIXNER, S., DALLY, W., KHAILANY, B., AHN, J. H., MATTSON, P., AND

OWENS, J. Programmable stream processors. Computer 36, 8 (aug. 2003), 54 – 62. 14

[64] KHAILANY, B., WILLIAMS, T., LIN, J., LONG, E., RYGH, M., TOVEY, D., AND DALLY,

W. A programmable 512 gops stream processor for signal, image, and video processing. Solid-

State Circuits, IEEE Journal of 43, 1 (jan. 2008), 202 –213. 14

[65] KHRONOS GROUP. OpenCL. http://www.khronos.org/opencl/. Online; accessed 10-january-

2012. 5, 21

[66] KIRK, D. B., AND HWU, W.-M. W. Programming Massively Parallel Processors: A Hands-

on Approach, 1st ed. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2010. 19,

24, 82

[67] KONTRON. No end to the possibilities: x86 meets fpga. White pa-

per. http://embedded.communities.intel.com/servlet/JiveServlet/download/6895-3-

1860/Kontron%20Whitepaper%20FPGA.pdf, 2011. Online; accessed 10-january-2012.

3

[68] LAIKA, A., PAUL, J., CLAUS, C., STECHELE, W., EL SAYED AUF, A., AND MAEHLE,

E. Fpga-based real-time moving object detection for walking robots. In Proc. of 8th IEEE

International Workshop on Safety, Security and Rescue Robotics, SSRR’10 (Bremen, Germany,

2010). 34

[69] LAOSOOKSATHIT, S., LEANGSUKSUN, C. B., BAGGAG, A., AND CHANDLER, C. F. Stream

experiments: Toward latency hiding in gpgpu. In Proceedings of the 9th IASTED International

Conference on Parallel and Distributed Computing and Networks (2010), PDCN ’10, pp. 240–

248. 102

[70] LARSEN, E. S., AND MCALLISTER, D. Fast matrix multiplies using graphics hardware. In

Proceedings of the 2001 ACM/IEEE conference on Supercomputing (CDROM) (New York,

NY, USA, 2001), Supercomputing ’01, ACM, pp. 55–55. 5

[71] LAUTERBACH, C., GARL, M., SENGUPTA, S., LUEBKE, D., AND MANOCHA, D. Fast bvh

construction on gpus. In In Proc. Eurographics 09 (2009). 9

140 Universidad de Córdoba

BIBLIOGRAPHY

[72] LEE, S., MIN, S.-J., AND EIGENMANN, R. Openmp to gpgpu: a compiler framework for

automatic translation and optimization. In Proceedings of the 14th ACM SIGPLAN symposium

on Principles and practice of parallel programming (New York, NY, USA, 2009), PPoPP ’09,

ACM, pp. 101–110. 5

[73] LIANG, C.-K., CHENG, C.-C., LAI, Y.-C., CHEN, L.-G., AND CHEN, H. Hardware-

efficient belief propagation. Circuits and Systems for Video Technology, IEEE Transactions

on 21, 5 (may 2011), 525 –537. 11

[74] LIN, D., HUANG, X., NGUYEN, Q., BLACKBURN, J., RODRIGUES, C., HUANG, T., DO,

M., PATEL, S., AND HWU, W.-M. The parallelization of video processing. Signal Processing

Magazine, IEEE 26, 6 (november 2009), 103 –112. 11, 12

[75] LIN, T. F., AND CHEN, B. M. Robust vision-based target tracking control system for an un-

manned helicopter using feature fusion. In in IAPR Conference on Machine Vision Applications

(2009), pp. 398–401. 34

[76] LUO, L., WONG, M., AND HWU, W.-M. W. An effective gpu implementation of breadth-first

search. In Design Automation Conference (DAC), 2010 47th ACM/IEEE (june 2010), pp. 52

–55. 9

[77] LUO, Y., AND DURAISWAMI, R. Canny edge detection on nvidia cuda. In Computer Vision

and Pattern Recognition Workshops, 2008. CVPRW ’08. IEEE Computer Society Conference

on (june 2008), pp. 1 –8. 11

[78] MARJANOVIĆ, V., LABARTA, J., AYGUADÉ, E., AND VALERO, M. Overlapping communi-

cation and computation by using a hybrid MPI/SMPSs approach. In Proceedings of the 24th

ACM International Conference on Supercomputing (New York, NY, USA, 2010), ICS ’10,

ACM, pp. 5–16. 102

[79] MATEO LOZANO, O., AND OTSUKA, K. Real-time visual tracker by stream processing.

Journal of Signal Processing Systems 57 (2009), 285–295. 10.1007/s11265-008-0250-2. 11

[80] MOORE, G. E. Cramming more components onto integrated circuits. Electronics 38, 8 (Apr.

1965), 114–117. 2

[81] MPI FORUM. The Message Passing Interface standard. http://www.mpi-forum.org/. Online;

accessed 10-january-2012. 4, 102

[82] NEWBURN, C., SO, B., LIU, Z., MCCOOL, M., GHULOUM, A., TOIT, S., WANG, Z. G.,

DU, Z. H., CHEN, Y., WU, G., GUO, P., LIU, Z., AND ZHANG, D. Intel’s array building

blocks: A retargetable, dynamic compiler and embedded language. In Code Generation and

Optimization (CGO), 2011 9th Annual IEEE/ACM International Symposium on (april 2011),

pp. 224 –235. 5

[83] NUGTEREN, C., VAN DEN BRAAK, G.-J., CORPORAAL, H., AND MESMAN, B. High per-

formance predictable histogramming on gpus: exploring and evaluating algorithm trade-offs.

Programming issues for video analysis on Graphics Processing Units 141

BIBLIOGRAPHY

In Proceedings of the Fourth Workshop on General Purpose Processing on Graphics Process-

ing Units (New York, NY, USA, 2011), GPGPU-4, ACM, pp. 1:1–1:8. 33, 48, 49, 50, 65, 73,

76

[84] NVIDIA. Cg toolkit. http://developer.nvidia.com/cg-toolkit. Online; accessed 10-january-

2012. 4

[85] NVIDIA. CUDA-enabled GPUs. http://developer.nvidia.com/cuda-gpus. Online; accessed

10-january-2012. 21

[86] NVIDIA. CUDA GPU computing SDK. http://developer.nvidia.com/gpu-computing-sdk. On-

line; accessed 10-january-2012. 7

[87] NVIDIA. CUDA research and applications. http://developer.nvidia.com/cuda-action-

research-apps. Online; accessed 10-january-2012. 21

[88] NVIDIA. CUDA SDK code samples: Matrix multiplication.

http://developer.download.nvidia.com/compute/ cuda/sdk/website/samples.html#matrixMul.

Online; accessed 10-january-2012. 113

[89] NVIDIA. CUDA Toolkit 4.0. http://developer.nvidia.com/cuda-toolkit-40. Online; accessed

10-january-2012. 12

[90] NVIDIA. CUDA Zone. http://www.nvidia.com/object/cuda home new.html. Online; ac-

cessed 10-january-2012. 5

[91] NVIDIA. NVIDIA Performance Primitives (NPP). http://developer.nvidia.com/object/

npp home.html. Online; accessed 10-january-2012. 12, 38

[92] NVIDIA. What is GPU computing? http://www.nvidia.com/object/GPU Computing.html.

Online; accessed 10-january-2012. 20

[93] NVIDIA. Fermi compute architecture. White paper. http:// www.nvidia.com/content/

PDF/fermi white papers/NVIDIA Fermi Compute Architecture Whitepaper.pdf, 2009. On-

line; accessed 10-january-2012. 15, 19, 53

[94] NVIDIA. NVIDIA CUDA video decoder. API specification. http://developer.download.

nvidia.com/compute/DevZone/C/html/C/src/cudaDecodeGL/doc/nvcuvid.pdf, August 2010.

Online; accessed 10-january-2012. 12

[95] NVIDIA. Compute visual profiler. User guide. http://developer.nvidia.com/cuda-toolkit-40,

March 2011. Online; accessed 10-january-2012. 96

[96] NVIDIA. CUDA C Best Practices Guide 4.0. http://developer.download.nvidia.com/compute/

DevZone/docs/html/C/doc/CUDA C Best Practices Guide.pdf, May 2011. Online; accessed

10-january-2012. 19, 50, 57, 69, 71, 76, 95, 97, 102, 103, 104, 107, 108, 111

[97] NVIDIA. CUDA C Programming Guide 4.0. http://developer.download.nvidia.com/compute/

DevZone/docs/html/C/doc/CUDA C Programming Guide.pdf, May 2011. Online; accessed

10-january-2012. 15, 19, 48, 51, 53, 57, 65, 102, 103, 106, 112

142 Universidad de Córdoba

BIBLIOGRAPHY

[98] NVIDIA. cuobjdump. Application Note. http://developer.nvidia.com/cuda-toolkit-40, January

2011. Online; accessed 10-january-2012. 51, 57, 58

[99] NVIDIA. GeForce 256, the World’s first GPU. http://www.nvidia.com/page/geforce256.html,

September 2011. Online; accessed 10-january-2012. 5

[100] NVIDIA. PTX: Parallel Thread Execution. ISA 2.3.

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/ptx isa 2.3.pdf,

March 2011. Online; accessed 10-january-2012. 50, 57

[101] OLMOS, A., AND FREDERICK, A. A biologically inspired algorithm for the recovery of

shading and reflectance images. Perception 33, 12 (2004), 1463. 49, 70

[102] OPENMP. The OpenMP API specification for parallel programming. http://openmp.org/wp/.

Online; accessed 10-january-2012. 4

[103] OWENS, J., HOUSTON, M., LUEBKE, D., GREEN, S., STONE, J., AND PHILLIPS, J. Gpu

computing. Proceedings of the IEEE 96, 5 (may 2008), 879 –899. 7

[104] PAL, N. R., AND PAL, S. K. A review on image segmentation techniques. Pattern Recognition

26, 9 (1993), 1277–1294. Cited By (since 1996): 975. 47

[105] PALOMAR, R., PALOMARES, J. M., CASTILLO, J. M., OLIVARES, J., AND GÓMEZ-LUNA,

J. Parallelizing and optimizing lip-canny using nvidia cuda. In Proceedings of the 23rd in-

ternational conference on Industrial engineering and other applications of applied intelligent

systems - Volume Part III (Berlin, Heidelberg, 2010), IEA/AIE’10, Springer-Verlag, pp. 389–

398. 11

[106] PAPAKONSTANTINOU, A., GURURAJ, K., STRATTON, J., CHEN, D., CONG, J., AND HWU,

W.-M. Fcuda: Enabling efficient compilation of cuda kernels onto fpgas. In Application

Specific Processors, 2009. SASP ’09. IEEE 7th Symposium on (july 2009), pp. 35 –42. 5

[107] PARK, I. K., SINGHAL, N., LEE, M. H., CHO, S., AND KIM, C. Design and performance

evaluation of image processing algorithms on gpus. Parallel and Distributed Systems, IEEE

Transactions on 22, 1 (jan. 2011), 91 –104. 11

[108] PARK, S. I., PONCE, S., HUANG, J., CAO, Y., AND QUEK, F. Low-cost, high-speed com-

puter vision using nvidia’s cuda architecture. In Applied Imagery Pattern Recognition Work-

shop, 2008. AIPR ’08. 37th IEEE (oct. 2008), pp. 1 –7. 11

[109] PATNAIK, D., PONCE, S., CAO, Y., AND RAMAKRISHNAN, N. Accelerator-oriented algo-

rithm transformation for temporal data mining. In Network and Parallel Computing, 2009.

NPC ’09. Sixth IFIP International Conference on (oct. 2009), pp. 93 –100. 9

[110] PERIPHERAL COMPONENT INTERCONNECT SPECIAL INTEREST GROUP. PCI Express.

http://www.pcisig.com/. Online; accessed 10-january-2012. 3, 20, 102

[111] PHILLIPS, J. C., STONE, J. E., AND SCHULTEN, K. Adapting a message-driven parallel

application to gpu-accelerated clusters. In Proceedings of the 2008 ACM/IEEE conference on

Supercomputing (Piscataway, NJ, USA, 2008), SC ’08, IEEE Press, pp. 8:1–8:9. 102

Programming issues for video analysis on Graphics Processing Units 143

BIBLIOGRAPHY

[112] PODLOZHNYUK, V. Histogram calculation in CUDA. White paper.

http://developer.download.nvidia.com/compute/DevZone/C/html/C/src/histogram/doc/ his-

togram.pdf, 2007. 9, 12, 33, 48, 49, 50, 66, 76, 115

[113] PODLOZHNYUK, V. Image convolution with CUDA. White paper.

http://developer.download.nvidia.com/compute/DevZone/C/html/C/src/ convolutionSepa-

rable/doc/convolutionSeparable.pdf, 2007. 12, 42

[114] RABENSEIFNER, R., HAGER, G., AND JOST, G. Hybrid mpi/openmp parallel programming

on clusters of multi-core smp nodes. In Proceedings of the 2009 17th Euromicro International

Conference on Parallel, Distributed and Network-based Processing (Washington, DC, USA,

2009), IEEE Computer Society, pp. 427–436. 4

[115] RAINA, R., MADHAVAN, A., AND NG, A. Y. Large-scale deep unsupervised learning using

graphics processors. In Proceedings of the 26th Annual International Conference on Machine

Learning (New York, NY, USA, 2009), ICML ’09, ACM, pp. 873–880. 11

[116] RIXNER, S. Stream processor architecture. Kluwer Academic Publishers, Norwell, MA, USA,

2002. 14

[117] RIXNER, S., DALLY, W. J., KAPASI, U. J., KHAILANY, B., LÓPEZ-LAGUNAS, A., MATT-

SON, P. R., AND OWENS, J. D. A bandwidth-efficient architecture for media processing.

In Proceedings of the 31st annual ACM/IEEE international symposium on Microarchitecture

(Los Alamitos, CA, USA, 1998), MICRO 31, IEEE Computer Society Press, pp. 3–13. 14

[118] RODRIGUES, C. I., HARDY, D. J., STONE, J. E., SCHULTEN, K., AND HWU, W.-M. W.

Gpu acceleration of cutoff pair potentials for molecular modeling applications. In Proceedings

of the 5th conference on Computing frontiers (New York, NY, USA, 2008), CF ’08, ACM,

pp. 273–282. 9

[119] RYOO, S., RODRIGUES, C. I., STONE, S. S., STRATTON, J. A., UENG, S.-Z., BAGH-

SORKHI, S. S., AND HWU, W.-M. W. Program optimization carving for gpu computing. J.

Parallel Distrib. Comput. 68 (October 2008), 1389–1401. 7

[120] SÁEZ, E., GONZÁLEZ, J. M., PALOMARES, J. M., BENAVIDES, J. I., AND GUIL, N. New

edge-based feature extraction algorithm for video segmentation. In Society of Photo-Optical

Instrumentation Engineers (SPIE) Conference Series (May 2003), B. Vasudev, T. R. Hsing,

A. G. Tescher, & T. Ebrahimi, Ed., vol. 5022 of Society of Photo-Optical Instrumentation

Engineers (SPIE) Conference Series, pp. 861–872. 41

[121] SÁEZ, E., PALOMARES, J. M., BENAVIDES, J. I., AND GUIL, N. Global motion estima-

tion algorithm for video segmentation. In Society of Photo-Optical Instrumentation Engineers

(SPIE) Conference Series (June 2003), T. Ebrahimi & T. Sikora, Ed., vol. 5150 of Society of

Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pp. 1540–1550. 41, 96

[122] SANDERS, J., AND KANDROT, E. CUDA by Example: An Introduction to General-Purpose

GPU Programming, 1st ed. Addison-Wesley Professional, 2010. 19

144 Universidad de Córdoba

BIBLIOGRAPHY

[123] SHAMS, R., AND KENNEDY, R. A. Efficient histogram algorithms for NVIDIA CUDA com-

patible devices. In Proc. Int. Conf. on Signal Processing and Communications Systems (IC-

SPCS) (Gold Coast, Australia, December 2007), pp. 418–422. 9, 12, 13, 33, 48, 49, 50, 65, 66,

73, 74, 76, 128

[124] SHAMS, R., SADEGHI, P., KENNEDY, R. A., AND HARTLEY, R. Parallel computation of mu-

tual information on the GPU with application to real-time registration of 3D medical images.

Computer Methods and Programs in Biomedicine 99, 2 (August 2010), 133–146. 33, 49, 50,

73, 129

[125] SINGH, S. Computing without processors. Commun. ACM 54 (August 2011), 46–54. 5

[126] STEIN, F. Efficient computation of optical flow using the census transform. In DAGM-

Symposium’04 (2004), pp. 79–86. 34

[127] STEPHENS, R. A survey of stream processing. Acta Informatica 34 (1997), 491–541.

10.1007/s002360050095. 14

[128] STONE, J. E., PHILLIPS, J. C., FREDDOLINO, P. L., HARDY, D. J., TRABUCO, L. G.,

AND SCHULTEN, K. Accelerating molecular modeling applications with graphics processors.

Journal of Computational Chemistry 28, 16 (2007), 2618–2640. 8

[129] STONE, S. S., HALDAR, J. P., TSAO, S. C., HWU, W.-M. W., LIANG, Z.-P., AND SUTTON,

B. P. Accelerating advanced mri reconstructions on gpus. In Proceedings of the 5th conference

on Computing frontiers (New York, NY, USA, 2008), CF ’08, ACM, pp. 261–272. 9

[130] STRATTON, J. A., STONE, S. S., AND HWU, W.-M. W. Languages and compilers for parallel

computing. Springer-Verlag, Berlin, Heidelberg, 2008, ch. MCUDA: An Efficient Implemen-

tation of CUDA Kernels for Multi-core CPUs, pp. 16–30. 5

[131] SUNG, I.-J., STRATTON, J. A., AND HWU, W.-M. W. Data layout transformation exploiting

memory-level parallelism in structured grid many-core applications. In Proceedings of the 19th

international conference on Parallel architectures and compilation techniques (New York, NY,

USA, 2010), PACT ’10, ACM, pp. 513–522. 10, 129

[132] SUTTER, H., AND LARUS, J. Software and the concurrency revolution. Queue 3 (September

2005), 54–62. 2

[133] TARDITI, D., PURI, S., AND OGLESBY, J. Accelerator: using data parallelism to program

gpus for general-purpose uses. In Proceedings of the 12th international conference on Ar-

chitectural support for programming languages and operating systems (New York, NY, USA,

2006), ASPLOS-XII, ACM, pp. 325–335. 5

[134] THIES, W., KARCZMAREK, M., AND AMARASINGHE, S. Streamit: A language for stream-

ing applications. In Compiler Construction, R. Horspool, Ed., vol. 2304 of Lecture Notes in

Computer Science. Springer Berlin / Heidelberg, 2002, pp. 49–84. 10.1007/3-540-45937-5 14.

15

Programming issues for video analysis on Graphics Processing Units 145

BIBLIOGRAPHY

[135] TUNLEY, H., AND YOUNG, D. First order optic flow from log-polar sampled images. In Com-

puter Vision ECCV ’94, J.-O. Eklundh, Ed., vol. 800 of Lecture Notes in Computer Science.

Springer Berlin / Heidelberg, 1994, pp. 132–137. 34

[136] UDUPA, A., GOVINDARAJAN, R., AND THAZHUTHAVEETIL, M. J. Synergistic execution

of stream programs on multicores with accelerators. In Proceedings of the 2009 ACM SIG-

PLAN/SIGBED conference on Languages, compilers, and tools for embedded systems (New

York, NY, USA, 2009), LCTES ’09, ACM, pp. 99–108. 15, 101

[137] VENKATASUBRAMANIAN, S., AND VUDUC, R. W. Tuned and wildly asynchronous stencil

kernels for hybrid cpu/gpu systems. In Proceedings of the 23rd international conference on

Supercomputing (New York, NY, USA, 2009), ICS ’09, ACM, pp. 244–255. 84

[138] VIET, T. Q., AND YOSHINAGA, T. Improving linpack performance on smp clusters with

asynchronous mpi programming. IPSJ Digital Courier 2 (2006), 598–606. 102

[139] VINEET, V., AND NARAYANAN, P. Cuda cuts: Fast graph cuts on the gpu. In Computer Vision

and Pattern Recognition Workshops, 2008. CVPRW ’08. IEEE Computer Society Conference

on (june 2008), pp. 1–8. 11

[140] VOLKOV, V., AND DEMMEL, J. W. Benchmarking gpus to tune dense linear algebra. In

Proceedings of the 2008 ACM/IEEE conference on Supercomputing (Piscataway, NJ, USA,

2008), SC ’08, IEEE Press, pp. 31:1–31:11. 7, 50

[141] VOLKOV, VASILY. Better performance at lower occupancy. Proceedings of the GPU Technol-

ogy Conference, GTC 2010, 2010. 7

[142] VOORST, B. V., AND SEIDEL, S. Comparison of mpi implementations on a shared mem-

ory machine. In Proceedings of the 15 IPDPS 2000 Workshops on Parallel and Distributed

Processing (London, UK, UK, 2000), IPDPS ’00, Springer-Verlag, pp. 847–854. 4

[143] WEBER, R., GOTHANDARAMAN, A., HINDE, R. J., AND PETERSON, G. D. Comparing

hardware accelerators in scientific applications: A case study. IEEE Transactions on Parallel

and Distributed Systems 22 (2011), 58–68. 5

[144] WERLBERGER, M., POCK, T., AND BISCHOF, H. Motion estimation with non-local total

variation regularization. In IEEE Computer Society Conference on Computer Vision and Pat-

tern Recognition (CVPR) (San Francisco, CA, USA, June 2010). 11

[145] WEST, J., FITZPATRICK, J. M., WANG, M. Y., DAWANT, B. M., MAURER, C. R.,

KESSLER, R. M., MACIUNAS, R. J., BARILLOT, C., LEMOINE, D., COLLIGNON, A.,

MAES, F., SUMANAWEERA, T. S., HARKNESS, B., HEMLER, P. F., HILL, D. L. G.,

HAWKES, D. J., STUDHOLME, C., MAINTZ, J. B. A., VIERGEVER, M. A., MAL, G.,

PENNEC, X., NOZ, M. E., MAGUIRE, G. Q., POLLACK, M., PELIZZARI, C. A., ROBB,

R. A., HANSON, D., AND WOODS, R. P. Comparison and evaluation of retrospective inter-

modality brain image registration techniques. Journal of Computer Assisted Tomography 21

(1997), 554–566. 50

146 Universidad de Córdoba

BIBLIOGRAPHY

[146] WING, J. M. Computational thinking. Commun. ACM 49 (March 2006), 33–35. 4

[147] WOLF, F., AND MOHR, B. Automatic performance analysis of hybrid mpi/openmp applica-

tions. Journal of Systems Architecture 49, 10-11 (2003), 421 – 439. ¡ce:title¿Evolutions in

parallel distributed and network-based processing¡/ce:title¿. 4

[148] WONG, H., PAPADOPOULOU, M.-M., SADOOGHI-ALVANDI, M., AND MOSHOVOS, A. De-

mystifying gpu microarchitecture through microbenchmarking. In Performance Analysis of

Systems Software (ISPASS), 2010 IEEE International Symposium on (march 2010), pp. 235

–246. 50, 51, 53, 54

[149] WU, C. Siftgpu: A gpu implementation of scale invariant feature transform (sift).

http://www.cs.unc.edu/c̃cwu/siftgpu/, 2007. Online; accessed 10-january-2012. 11

[150] ZACH, C., GALLUP, D., AND FRAHM, J.-M. Fast gain-adaptive klt tracking on the gpu.

In Computer Vision and Pattern Recognition Workshops, 2008. CVPRW ’08. IEEE Computer

Society Conference on (june 2008), pp. 1 –7. 11

[151] ZHANG, E. Z., JIANG, Y., GUO, Z., TIAN, K., AND SHEN, X. On-the-fly elimination

of dynamic irregularities for gpu computing. In Proceedings of the sixteenth international

conference on Architectural support for programming languages and operating systems (New

York, NY, USA, 2011), ASPLOS ’11, ACM, pp. 369–380. 129

[152] ZHANG, Y., AND OWENS, J. D. A quantitative performance analysis model for gpu archi-

tectures. In Proceedings of the 17th IEEE International Symposium on High-Performance

Computer Architecture (HPCA 17) (Feb. 2011). 50, 102

Programming issues for video analysis on Graphics Processing Units 147

	List of Figures
	List of Tables
	1.- Video analysis on Graphics Processing Units
	Introduction
	Parallelism as the key for improving computer performance
	Recent evolution of parallel hardware
	Parallel programming models

	Programming GPUs for general-purpose processing
	A few words on CUDA
	Conditions and bottlenecks for GPU performance
	Generic optimization techniques on GPUs

	Towards video processing optimization on GPU
	State of the art of video and image processing on GPU
	Efficient mapping of video analysis applications on GPU
	Stream processing paradigm for video analysis on GPU
	Aims of this work

	Structure of this document

	2.- An introduction to GPU computing with CUDA
	Graphics processing units as general-purpose processors
	CUDA-enabled devices
	CUDA programming model
	Thread hierarchy
	Memory hierarchy

	Hardware implementation
	SIMT architecture and multithreading
	Streaming multiprocessors
	Memory spaces

	3.- Target applications
	Introduction
	Histogram calculation
	Discussion

	Egomotion compensation and moving objects detection algorithm
	Discussion

	The Generalized Hough Transform
	Discussion

	Conclusions

	4.- Highly optimized histogram calculation on GPU
	Introduction
	Related work
	A microbenchmark-based study of the shared memory
	Methodology and initial observations
	Warp access patterns
	Non-atomic access
	Atomic access

	An optimized approach to histogram generation in shared memory
	Replication
	Padding
	Interleaved read access

	Experimental evaluation
	Evaluation of the optimization techniques
	Thorough evaluation of our approach and comparison to related works
	Histogram-based kernels for color images
	Discussion
	Evaluation of the R-per-block approach on older GPU generations

	Experiences with replication in global memory
	Conclusions

	5.- Efficient work distribution
	Introduction
	Dealing with sequential parts
	SISD and SIMD computing on the GPU
	Experimental evaluation

	Re-organizing the workload
	Reducing memory accesses and executed instructions through compaction
	Minimizing warp divergence through sorting
	Experimental evaluation

	Load balancing versus occupancy maximization
	Applying compaction and sorting to the GHT
	Work distribution among blocks and threads
	Application of the mechanisms
	Experimental evaluation

	Conclusions

	6.- Stream processing on GPU with CUDA streams
	Introduction
	CUDA streams
	Characterizing the behavior of CUDA streams
	A thorough observation of CUDA streams
	CUDA streams performance models

	Testing the streams with SDK-based applications
	Matrix multiplication
	256-bins histogram
	RGB to grayscale conversion

	Optimized stream processing with CUDA streams
	Adaptation to variable kernel computation time

	Conclusions

	7.- Conclusions
	Conclusions and main contributions
	Publications related to this dissertation
	Publications in conference proceedings
	Publications in journals
	Technical reports
	Articles under review

	Future research

	A.- Resumen de la tesis doctoral en castellano
	Paralelización eficiente de las aplicaciones de vídeo en GPU
	Stream processing para análisis de vídeo en GPU
	Principales aportaciones
	Conclusiones y trabajos futuros

	Bibliography

