
Performance models for CUDA streams on

NVIDIA GeForce series

Juan Gómez-Luna⋄ José Maŕıa González-Linares⋆

José Ignacio Benavides⋄ Nicolás Guil⋆

⋄Dept. of Computer Architecture and Electronics ⋆Dept. of Computer Architecture

University of Córdoba University of Málaga

Abstract

Graphics Processing Units (GPU) have impressively arisen as general-
purpose coprocessors in high performance computing applications, since
the launch of the Compute Unified Device Architecture (CUDA). How-
ever, they present an inherent performance bottleneck in the fact that
communication between two separate address spaces (the main memory
of the CPU and the memory of the GPU) is unavoidable. CUDA Ap-
plication Programming Interface (API) provides asynchronous transfers
and streams, which permit a staged execution, as a way to overlap com-
munication and computation. Nevertheless, it does not exist a precise
manner to estimate the possible improvement due to overlapping, neither
a rule to determine the optimal number of stages or streams in which
computation should be divided. In this work, we present a methodology
that is applied to model the performance of asynchronous data transfers
of CUDA streams on different GPU architectures. Thus, we illustrate
this methodology by deriving expressions of performance for two different
consumer graphic architectures belonging to the more recent generations.
These models permit to estimate the optimal number of streams in which
the computation on the GPU should be broken up, in order to obtain the
highest performance improvements. Finally, we have successfully checked
the suitability of our performance models on several NVIDIA devices be-
longing to GeForce 8, 9, 200, 400 and 500 series.

1 Introduction

Communication overhead is one of the main performance bottlenecks in high-
performance computing systems. In distributed memory architectures, where
the Message Passing Interface (MPI) [1] has the widest acceptance, this is a well-
known limiting factor. MPI provides asynchronous communication primitives,
in order to reduce the negative impact of communication, when processes with
separate address spaces need to share data. Programmers are able to overlap
communication and computation by using these asynchronous primitives [6, 11].

1



Similar problems derived from communications are being found in Graph-
ics Processing Units (GPU), which have spectacularly burst in the scene of
high-performance computing, since the launch of Application Programming In-
terfaces (API) such as the Compute Unified Device Architecture (CUDA) [7]
and the Open Computing Language (OpenCL) [3]. Their massively parallel ar-
chitecture is making possible impressive performances at cheap prices, although
there exists an inherent performance bottleneck due to data transfers between
two separate address spaces, the main memory of the Central Processing Unit
(CPU) and the memory of the GPU.

In a typical application, non-parallelizable parts are executed in the CPU
or host, while massively parallel computations can be delegated to a GPU or
device. With this aim, the CPU transfers input data to the GPU through the
PCI Express (PCIe) [4] bus and, after the computation, results are got to the
CPU back. Since its first release, the CUDA API provides a function, called
cudaMemcpy() [9], that transfers data between host and device. This is a block-
ing function in the sense that the GPU code, called kernel, can be launched only
after the transfer is complete. Despite that the PCIe supports a throughput of
several gigabytes per second, both transfers inevitably burden the performance
of the GPU. In order to alleviate such a performance bottleneck, later releases of
CUDA provide cudaMemcpyAsync() [9], which permits asynchronous transfers,
i.e. enables overlap of data transfers with computation, in devices with compute
capability equal or higher than 1.1 [9]. Such a concurrency is managed through
streams, i.e. sequences of commands that are executed in order. Streams per-
mit transfers and execution to be broken up into a number of stages, so that
some overlapping of data transfer and computation is achieved.

Some research works have made use of streams, in order to improve appli-
cations performance [2, 5, 10]. However, finding optimal configurations, i.e. the
best number of streams or stages in which transfers and computation are di-
vided, required many attempts for tuning the application. Moreover, CUDA
literature [8, 9] does not provides an accurate way to estimate the performance
improvement due to the use of streams.

Our work starts with a thorough observation of CUDA streams performance,
in order to accurately characterize how transfers and computation are over-
lapped. We have carried out a huge number of experiments by changing the ratio
between kernel execution time and transfers time, and the ratio between input
and output data transfer times. Then, we have tried out several performance
estimates, in order to check their suitability to the results of the experiments.
Thus, our main contributions are:

• We present a novel methodology that is applicable for modeling the per-
formance of asynchronous data transfers when using CUDA streams.

• We have applied this methodology to devices with compute capabilities
(c.c.) 1.x and 2.x. Thus, we are able to derive two performance models,
i.e. the one for devices with c.c. 1.x and the other for devices with c.c.
2.x. These models clearly fit the observed performance of the streams

2



on those NVIDIA GPUs that permit overlapping of communication and
computation.

• Moreover, from the mathematical expressions obtained can be derived
the optimal number of streams to reach the maximum computation time
speed-up. The optimal number of streams to be used for a specific appli-
cation only depends on the data transfer time and the kernel computation
time of the non-streamed application.

• We have successfully checked the suitability of our models on several
NVIDIA GPUs with c.c. 1.x and 2.x.

The rest of the paper is organized as follows. Section 2 reviews the use of
CUDA streams. In Section 3, we explain how the behavior of CUDA streams
has been analyzed and we propose two performance models. Our models are
validated in Section 4 on several NVIDIA GPUs belonging to GeForce 8, 9, 200,
400 and 500 series. Finally, conclusions are stated in Section 5.

2 CUDA streams

In order to overlap communication and computation, CUDA permits to divide
memory copies and execution into several stages, called streams. CUDA defines
a stream as a sequence of operations that are performed in order on the device.
Typically, such a sequence contains one memory copy from host to device, which
transfers input data; one kernel launch, which uses these input data; and one
memory copy from device to host, which transfers results.

Given a certain application which uses D input data instances and defines B

blocks of threads for kernel execution, a programmer could decide to break up
them into nStreams streams. Thus, each of the streams works with D

nStreams

data instances and B
nStreams

blocks. In this regard, memory copy of one stream
overlaps kernel execution of other stream, achieving a performance improve-
ment. In [8], such a concurrency between communication and computation is
depicted as in Figure 1 with nStreams = 4.

An important requirement for ensuring the effectiveness of the streams is
that B

nStreams
blocks are enough for maintaining all hardware resources of the

GPU busy. In other case the sequential execution could be faster than the
streamed one.

The following code declares and creates 4 streams [9]:

cudaStream_t stream[4];

for (int i = 0; i < 4; ++i)

cudaStreamCreate(&stream[i]);

Then, each stream transfers its portion of host input array, which should
have been allocated as page-locked memory, to the device input array, processes
this input on the device and transfers the result back to the host:

3



Copy data

Execute

Copy data

Execute

tT

tE

Figure 1: Comparison of timelines for sequential (top) and concurrent (bottom)
copy and kernel execution, as presented in [8]. tT means data transfer time and
tE kernel execution time.

for (int i = 0; i < 4; ++i)

cudaMemcpyAsync(inputDevPtr + i * size,

hostPtr + i * size, size,

cudaMemcpyHostToDevice, stream[i]);

for (int i = 0; i < 4; ++i)

MyKernel<<<num_blocks / 4, num_threads, 0,

stream[i]>>> (outputDevPtr + i * size,

inputDevPtr + i * size, size);

for (int i = 0; i < 4; ++i)

cudaMemcpyAsync(hostPtr + i * size,

outputDevPtr + i * size, size,

cudaMemcpyDeviceToHost, stream[i]);

cudaThreadSynchronize();

As it can be seen, the use of streams can be very profitable in applica-
tions where input data instances are independent, so that computation can be
divided into several stages. For instance, video processing applications satisfy
this requirement, when computation on each frame is independent. A sequential
execution should transfer a sequence of n frames to device memory, apply cer-
tain computation on each of the frames, and finally copy results back to host.
If we consider a number b of blocks used per frame, the device will schedule
n×b blocks for the whole sequence. However, a staged execution of nStreams

streams transfers chunks of n
nStreams

size. Thus, while the first chunk is being

computed using n×b
nStreams

blocks, the second chunk is being transferred. An im-
portant improvement will be obtained by hiding the frames transfers, as Figure 2
shows.

Estimating the performance improvement that is obtained through streams
is crucial for programmers, when an application is to be streamed. Consider-
ing data transfer time tT and kernel execution time tE , the overall time for
a sequential execution is tE + tT . In [8], the theoretical time for a streamed
execution is estimated in two ways:

• Assuming that tT and tE are comparable, a rough estimate for the overall

4



6 x b blocks compute on the sequence of frames

A sequence of 6 frames is transferred to device

A chunk of 2 frames is 

transferred to device

2 x b blocks compute 

on the chunk, while the 

second chunk is being 

transferred

Non-

streamed 

execution

Streamed 

execution

Execution time saved 

thanks to streams

Figure 2: Computation on a sequence of 6 frames for non-streamed and streamed
execution. In the streamed execution, frames are transferred and computed in
chunks of size 2, what permits to hide part of the transfers

time is tE + tT

nStreams
for the staged version. Since it is assumed that

kernel execution hides data transfer, in the following Sections, we call this
estimate dominant kernel.

• If the transfer time exceeds the execution time, a rough estimate is tT +
tE

nStreams
. This estimate is called dominant transfers.

3 Characterizing the behavior of CUDA streams

The former expressions do not define the possible improvement in a precise
manner or give any hint about the optimal number of streams. For this reason, in
this Section, we apply a methodology which consists of testing and observing the
streams, by using a sample code, included in the CUDA SDK. This methodology
thoroughly examines the behavior of the streams through two different tests:

• First, the size of the input and output data is fixed, while the computation
within the kernel is variable.

• After that, the size of the data transfers is asymmetrically changed. Along
these tests, the number of bytes that are transferred from host to device
is ascending, while the number of bytes from device to host is descending.

After applying our methodology, we are able to propose two performance models
which fit the results of the tests.

5



3.1 A thorough observation of CUDA streams

The CUDA SDK includes the code simpleStreams.cu, which makes use of
CUDA streams. It compares a non-streamed execution and a streamed execu-
tion of the kernel presented in the following lines. This is a simple code in which
a scalar *factor is repeatedly added to an array, that represents a vector. The
variable num iter defines the number of times that *factor is added to each
element of the array.

__global__ void init_array (int *g_data, int *factor, int num_iter)

{

int idx = blockIdx.x*blockDim.x+threadIdx.x;

for(int i=0; i<num_iter; i++)

g_data[idx] += *factor;

}

simpleStreams.cu declares streams that include the kernel and the data
transfer from device to host, but not the data transfer from host to device. We
have modified the code, so that transfers from host to device are also included
in the streams. Thus, we observe the behavior of CUDA streams in the whole
process of transferring from CPU to GPU, executing on GPU and transferring
from GPU to CPU. Testing this code gives us three parameters which define
a huge number of cases: the size of the array, the number of iterations within
the kernel and the number of streams. In this way, in the first part of our
methodology, we use a fixed array size and change the number of iterations
within the kernel and the number of streams, what permits us to compare
dominant transfers and dominant kernel cases. Afterwards, in the second part,
the sizes of data transfers are changed asymmetrically, in order to refine the
performance estimates.

After observing the behavior of CUDA streams, one performance model for
stream computation will be calculated for each of the two most recent NVIDIA
architectures (compute capabilities 1.x and 2.x). In this paper, the applied
methodology is illustrated on the Geforce GTX 280, as an example of c.c. 1.x,
and on the Geforce GTX 480, as an example of c.c. 2.x.

Details about NVIDIA devices are presented in Table 1. As stated in [9],
devices with compute capability 1.x do not support concurrent kernel execution.
In this way, streams are not subject to implicit synchronization. In devices with
compute capability 2.x, concurrent kernel execution entails that those opera-
tions, which require a dependency check (such as data transfers from device to
host), cannot start executing until all thread blocks of all prior kernel launches
from any stream have started executing. These considerations should be ratified
by the execution results, after applying our methodology.

3.1.1 First observations: Fixed array size

First tests carried out consist of adding a scalar to an array of size 15 Mbytes,
using the modified simpleStreams.cu. The number of iterations within the

6



Table 1: NVIDIA GeForce Series features related to data transfers and streams
GeForce

Features Considerations related to streams
series

8 Compute capability 1.x (x>0) Host-to-device and device-to-host transfers
9 PCIe ×16 (8 series) cannot be overlapped (only one DMA channel)

200 PCIe ×16 2.0 (9 and 200 series) No implicit synchronization:
1 DMA channel Device-to-host data transfer of a stream just can
Overlapping of data transfer start when that stream finishes its computation.
and kernel execution Consequently, this transfer can be overlapped

with the computation of the following stream
400 Compute capability 2.x Host-to-device and device-to-host transfers
500 PCIe ×16 2.0 cannot be overlapped (only one DMA channel)

1 DMA channel Implicit synchronization:
Overlapping of data transfer Device-to-host data transfer of the streams
and kernel execution cannot start until all the streams have started
Concurrent kernel execution executing

kernel takes 20 different values (from 8 to 27 in steps of 1, in GTX 280; and from
20 to 115 in steps of 5, in GTX 480). Thus, these tests change the ratio between
kernel execution and data transfers times, in order to observe the behavior of
the streams in a large number of cases. The number of streams is changed along
the divisors of 15 M between 2 and 64.

Figure 3 shows the execution results on the GeForce GTX 280. With the
aim of facilitating the understanding of the results, this Figure only shows a
blue line with diamond markers, which presents the non-streamed execution
results, and an orange line with square markers, which stands for the streamed
execution results. The graph is divided into several columns. Each of the
columns represents one test using a certain number of iterations within the
kernel. This number of iterations, between 8 and 27, which determines the
computational complexity of the kernel, is shown in abscissas. In Figure 4,
together with the execution times for non-streamed and streamed configurations,
two thick lines and two thin lines are depicted. Thick lines represent the data
transfers and the kernel execution times. Thin lines correspond to possible
performance models for the streamed execution, as stated in [8]. The red thin
line considers a dominant kernel case and estimates the execution time as tE +

tT

nStreams
, where tT is the copy time from CPU to GPU plus the copy time from

GPU to CPU. The green thin line represents a dominant transfers case and the
estimate is tT + tE

nStreams
.

The dominant kernel hypothesis is reasonably suitable when the kernel exe-
cution time is clearly longer than the data transfers time. However, the domi-
nant transfers hypothesis does not match the results of any test. In this way, we
observe that the transfers time tT (green thick line) is a more accurate reference
when the data transfers are dominant.

In the dominant transfers cases (results on the left of the graph) on the
GeForce GTX 280, we also observe that the best results for the streamed ex-
ecution are around the point where the green thick line and the red thin line
intersect. In this point, the dominant kernel estimate equals the transfers time.
In this way, a reference for the optimal number of streams is nStreams = tT

tT −tE

.
On the GeForce GTX 480, the dominant transfers hypothesis suits properly

7



0 

20 

40 

60 

80 

100 

120 

140 

160 

Non-streamed Streamed 

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

GeForce GTX 280 

Figure 3: Execution time (ms) for the addition of a scalar to an array of size 15
Mbytes on GeForce GTX 280. The blue line represents the execution time for
non-streamed executions. The orange line stands for the results of the streamed
execution. Each column in the graph represents a test with a changing number
of iterations between 8 and 27 in steps of 1. These numbers are shown in
abscissas. The number of streams has been changed along the divisors of 15
M between 2 and 64. Thus, in each column, one marker of the orange line
represents the execution time using a certain number of streams

0 

20 

40 

60 

80 

100 

120 

140 

160 

Non-streamed Streamed 

Kernel time Transfers time 

Dominant kernel Dominant transfers 

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

GeForce GTX 280 

Figure 4: Execution time (ms) for the addition of a scalar to an array of size 15
Mbytes on GeForce GTX 280. Each column in the graph represents a test with
a changing number of iterations between 8 and 27 in steps of 1. In each column,
the number of streams has been changed along the divisors of 15 M between 2
and 64. Thick green and red lines represent respectively the transfers time and
the kernel execution time in each column. Thin green and red lines represent
possible performance models (dominant transfer or dominant kernel) as stated
in [8]

8



0 

10 

20 

30 

40 

50 

60 

70 

80 

Non-streamed Streamed 

Kernel time Transfers time 

Dominant kernel Dominant transfers 

Dom. kernel (revised) 

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 

GeForce GTX 480 

Figure 5: Execution time (ms) for the addition of a scalar to an array of size
15 Mbytes on GeForce GTX 480. Each column in the graph represents a test
with a changing number of iterations between 20 and 115 in steps of 5. In each
column, the number of streams has been changed along the divisors of 15 M
between 2 and 64. Thick green and red lines represent respectively the data
transfers time and the kernel execution time in each column. Thin green and
red lines represent possible performance models (dominant transfer or dominant
kernel) as stated in [8]. Thin purple line stands for a revised dominant kernel
model, in which only one of the transfers is hidden

on the left of the graph. However, the dominant kernel hypothesis does not fit
in any case. Figure 5 shows that a revised dominant kernel hypothesis (purple
thin line), in which the streams hide only one of the data transfers, matches
better. The revised estimate is tE + tT1

nStreams
+ tT2, where tT1 + tT2 = tT . At

this point we are not able to assert which of both transfers, i.e. host to device
or device to host, is hidden, since both copy times are similar.

Finally, it is remarkable that, in all tests on both GPUs, the streamed time
gets worse from a certain number of streams. One can figure out that some
overhead exists due to the generation of a stream. Thus, the higher the number
of streams the longer the overhead time.

3.1.2 Second observations: Asymmetric transfers

Second tests use the same kernel with a variable number of iterations, but data
transfers are asymmetric. For each kernel using a certain number of iterations,
we perform 13 tests in which 24 Mbytes are transferred from host to device
or from device to host. Along the 13 tests, the number of bytes copied from
host to device is ascending, while the number of bytes from device to host is
descending. In this way, the first test transfers 1 Mbytes from host to device
and 23 Mbytes from device to host, and in the last test 23 Mbytes are copied
from host to device and 1 Mbytes from device to host. The number of streams
has been established in 16 for every test.

9



Figure 6 shows the results on the GeForce GTX 280. It can be observed
that the streamed results match the transfers time, when data transfers are
dominant (tests with 1, 2 and 4 iterations). When the kernel execution is longer
(test with 16 iterations), the dominant kernel estimate fits properly.

Moreover, one can notice that the execution time decreases along the 13
tests in each column, despite the whole amount of data transferred from or to
the device is constant. We have observed that on GTX 280 data transfers from
device to host take around 36% more time than transfers from host to device.
For this reason, the left part of the test with 8 iterations follows the transfers
time, while the right part fits the dominant kernel hypothesis.

In subsection 3.1.1, we observed that on the GeForce GTX 480 only one of
the data transfers was hidden by the kernel execution, when the kernel was dom-
inant. In these tests with asymmetric transfers, we conclude that the transfer
from host to device is the one being hidden, as can be observed in Figure 7. It
depicts two revised dominant kernel estimates, purple and yellow thin lines. The
first revised estimate assumes that the transfer from device to host is hidden,
while the second one considers the transfer from host to device to be overlapped
with execution. It is noticeable that the later estimate matches perfectly when
kernel execution is clearly dominant (32 and 40 iterations).

The former observation agrees with the fact that dependent operations in
GTX 480 do not start until all prior kernels have been launched. Thus, data
transfers from device to host are not able to overlap with computation, since all
kernels from any stream are launched before data transfers from device to host,
as it can be seen in the code at the beginning of Section 2.

When the data transfer from host to device takes more time than the kernel
execution, the streamed execution follows the dominant transfers hypothesis.
For this reason, the right part of the columns with 8, 16 and 24 iterations
follows the green thin line.

On the GTX 480 data transfers from device to host are slightly faster (around
2%) than transfers from host to device. This fact explains the weak increase of
the execution time along the 13 tests in each column.

3.2 CUDA streams performance models

Considering the observations in the previous subsections, we are able to for-
mulate two performance models which fit the behavior of CUDA streams on
devices with c.c. 1.x and 2.x. In the following equations, tE represents the
kernel execution time, tThd stands for the data transfer time from host to de-
vice and tTdh the data transfer time from device to host. Transfer times satisfy
tT = tThd + tTdh, and it depends on the number of data to be transmitted and
the characteristics of the PCIe bus. Moreover, we define an overhead time toh

derived from the creation of the streams. We consider that this overhead time
increases linearly with the number of streams, i.e. toh = tsc×nStreams. The
value of tsc should be estimated for each GPU. In Section 4, the value of tsc for
several GPUs are given.

10



0 

20 

40 

60 

80 

100 

120 

140 

Non-streamed Streamed 

Dominant kernel Transfers time 

1 2 4 8 16 

GeForce GTX 280 

Figure 6: Execution time (ms) on GeForce GTX 280 for tests with asymmetric
transfers. 24 Mbytes are copied from host to device or from device to host.
Abscissas represent the number of iterations within the kernel, which is a power
of two between 1 and 16. In each column, 13 tests are represented with an
ascending number of bytes from host to device and a descending number of
bytes from device to host. In all cases, the number of streams is 16. The red
thin line stands for a dominant kernel hypothesis and the green thick line is the
transfers time

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

Non-streamed Streamed Dominant transfers 

Dom. kernel (revised 1) Dom. kernel (revised 2) 

8 16 24 32 40 

GeForce GTX 480 

Figure 7: Execution time (ms) on GeForce GTX 480 for tests with asymmetric
transfers. 24 Mbytes are copied from host to device or from device to host.
Abscissas represent the number of iterations within the kernel, which changes
between 8 and 40 in steps of 8. In each column, 13 tests are represented with
an ascending number of bytes from host to device and a descending number of
bytes from device to host. In all cases, the number of streams is 16. The green
thin line stands for the dominant transfers hypothesis. Purple and yellow thin
lines represent two revisions of the dominant kernel estimate

11



3.2.1 Performance on devices with compute capability 1.x

When data transfers time is dominant, we realized that the streamed execution
time tstreamed tends to the data transfers time tT . Since the performance of
CUDA streams on these devices is not subject to implicit synchronization, the
data transfers time is able to completely hide the execution time. Thus, we
propose the following model for nStreams streams:

If (tT > tE +
tT

nStreams
), tstreamed = tT + toh (1)

In subsection 3.1.1, we noticed that the optimal number of streams nStreamsop,
with dominant transfers time, is around:

nStreamsop =
tT

tT − tE
(2)

In a dominant kernel scenario, the most suitable estimate counts the kernel
execution time and the data transfers time divided by nStreams:

If (tT < tE +
tT

nStreams
), tstreamed = tE +

tT

nStreams
+ toh (3)

Deriving equation 3 permits to obtain the optimal number of streams in a
dominant kernel case:

nStreamsop =

√

tT

tsc

(4)

3.2.2 Performance on devices with compute capability 2.x

In subsection 3.1.1, we observed that on GTX 480 a dominant transfers scenario
was properly defined as in [8]. Moreover, from subsection 3.1.2 we infer that on
GTX 480 only the data transfer from host to device is overlapped with kernel
execution. In this way, when data transfer is dominant, we propose:

If (tThd > tE), tstreamed = tThd +
tE

nStreams
+ tTdh + toh (5)

The first derivative of the former equation gives an optimal number of
streams:

nStreamsop =

√

tE

tsc

(6)

In a dominant kernel scenario, we propose the last revised estimate presented
in subsection 3.1.2:

If (tThd < tE), tstreamed =
tThd

nStreams
+ tE + tTdh + toh (7)

The optimal number of streams, when the kernel is dominant, is obtained
with:

nStreamsop =

√

tThd

tsc

(8)

As it can be observed, this performance model considers the limitations
derived from the implicit synchronization that exists in devices with compute
capability 2.x.

12



Table 2: Features of NVIDIA GeForce GPUs used in this work
Parameter 8800GTS512 9800GX2 GTX260 GTX280 GTX480 GTX580

Series 8 9 200 200 400 500
Codename G92-400 G92 GT200 GT200 GF100 GF110
Compute capability 1.1 1.1 1.3 1.3 2.0 2.0
PCIe 2.0 ×16 2.0 ×16 2.0 ×16 2.0 ×16 2.0 ×16 2.0 ×16
Overlapping of data ! ! ! ! ! !transfer and kernel
execution
Concurrent kernel # # # # ! !execution

Table 3: Values of tsc for devices in Table 2
8800GTS512 9800GX2 GTX260 GTX280 GTX480 GTX580

tsc 0.30 0.10 0.10 0.10 0.03 0.01

4 Validation of our performance models

In this Section, we validate the performance models presented in subsection 3.2
on several devices with compute capabilities 1.x and 2.x, belonging to NVIDIA
GeForce 8, 9, 200, 400 and 500 series. Characteristics of these devices are shown
in Table 2.

Figures 8 to 13 show the suitability of our performance models. Streams on
those devices with compute capability 1.x fit the equations in subsection 3.2.1
and devices with compute capability 2.x, the equations in subsection 3.2.2.

In subsection 3.2, we indicated that the overhead time (toh) is obtained as
a linear function of the number of streams. We consider the constant tsc as the
time needed to create one stream. Table 3 lists the values of tsc that we have
estimated for each GPU.

5 Conclusions

Despite that GPUs are nowadays being successfully used as massively parallel
coprocessors in high performance computing applications, the fact that data
must be transferred between two separate address spaces (memories of CPU
and GPU) constitutes a communication overhead. This can be reduced by using
asynchronous transfers, if computation is properly divided into stages. CUDA
provides streams for performing a staged execution, which allows programmers
to overlap communication and computation. Although exploiting such a con-
currency can achieve an important performance improvement, CUDA literature
barely gives rough estimates, which do not steer towards the optimal manner
to break up computation.

In this work, we have exhaustively analyzed the behavior of CUDA streams
through a novel methodology, in order to define precise estimates for streamed
executions. In this way, we have found two mathematical models which accu-
rately characterize the performance of CUDA streams on consumer NVIDIA
GPUs with compute capabilities 1.x and 2.x. Through these models, we have

13



0 

100 

200 

300 

400 

500 

600 

700 

800 

Non-streamed Streamed 

Our performance model 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

GeForce 8800 GTS 512

Figure 8: Execution time (ms) for the addition of a scalar to an array of size 15
Mbytes on GeForce 8800 GTS 512. The number of iterations changes between 1
and 18 in steps of 1. The number of streams takes the divisors of 15 M between
2 and 64. Black thin line stands for our performance model. Overhead time is
obtained with tsc = 0.30

0 

100 

200 

300 

400 

500 

600 

700 

800 

Non-streamed Streamed 

Our performance model 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

GeForce 9800 GX2

Figure 9: Execution time (ms) for the addition of a scalar to an array of size
15 Mbytes on GeForce 9800 GX2. The number of iterations changes between 1
and 20 in steps of 1. The number of streams takes the divisors of 15 M between
2 and 64. Black thin line stands for our performance model. Overhead time is
obtained with tsc = 0.10

found specific equations for determining the optimal number of streams, once
kernel execution and data transfers times are known. Although results in this
paper have been illustrated on GeForce GTX 280 and GTX 480, our perfor-
mance models have also been validated on other NVIDIA GPUs from GeForce
8, 9, 200, 400 and 500 series.

14



0 

20 

40 

60 

80 

100 

120 

140 

160 

Non-streamed Streamed 

Our performance model 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

GeForce GTX 260 

Figure 10: Execution time (ms) for the addition of a scalar to an array of size
15 Mbytes on GeForce GTX 260. The number of iterations changes between 5
and 24 in steps of 1. The number of streams takes the divisors of 15 M between
2 and 64. Black thin line stands for our performance model. Overhead time is
obtained with tsc = 0.10

0 

20 

40 

60 

80 

100 

120 

140 

160 

Non-streamed Streamed 

Our performance model 

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

GeForce GTX 280 

Figure 11: Execution time (ms) for the addition of a scalar to an array of size
15 Mbytes on GeForce GTX 280. The number of iterations changes between 8
and 27 in steps of 1. The number of streams takes the divisors of 15 M between
2 and 64. Black thin line stands for our performance model. Overhead time is
obtained with tsc = 0.10

References

[1] MPI Forum. The Message Passing Interface standard. http://www.mpi-
forum.org/.

[2] Juan Gómez-Luna, José Maŕıa González-Linares, José Ignacio Benavides,
and Nicolás Guil. Parallelization of a video segmentation algorithm on

15



0 

10 

20 

30 

40 

50 

60 

70 

80 

Non-streamed Streamed 

Our performance model 

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 

������� ��� �	

Figure 12: Execution time (ms) for the addition of a scalar to an array of size
15 Mbytes on GeForce GTX 480. The number of iterations changes between
20 and 115 in steps of 5. The number of streams takes the divisors of 15 M
between 2 and 64. Black thin line stands for our performance model. Overhead
time is obtained with tsc = 0.03

0 

10 

20 

30 

40 

50 

60 

70 

80 

Non-streamed Streamed 

Our performance model 

25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 

������ ��� ���
Figure 13: Execution time (ms) for the addition of a scalar to an array of size
15 Mbytes on GeForce GTX 580. The number of iterations changes between
25 and 120 in steps of 5. The number of streams takes the divisors of 15 M
between 2 and 64. Black thin line stands for our performance model. Overhead
time is obtained with tsc = 0.01

CUDA–enabled graphics processing units. In Proc. of the Int’l Euro-Par
Conference on Parallel Processing (EuroPar’09), pages 924–935, 2009.

[3] Khronos group. OpenCL. http://www.khronos.org/opencl/.

[4] Peripheral Component Interconnect Special Interest Group. PCI Express.
http://www.pcisig.com/.

16



[5] Wan Han, Gao Xiaopeng, Wang Zhiqiang, and Li Yi. Using gpu to accel-
erate cache simulation. In IEEE International Symposium on Parallel and
Distributed Processing with Applications, pages 565–570, 2009.

[6] Vladimir Marjanović, Jesús Labarta, Eduard Ayguadé, and Mateo Valero.
Overlapping communication and computation by using a hybrid mpi/smpss
approach. In Proceedings of the 24th ACM International Conference on
Supercomputing, ICS ’10, pages 5–16, New York, NY, USA, 2010. ACM.

[7] NVIDIA. CUDA Zone. http://www.nvidia.com/object/cuda home new.html.

[8] NVIDIA. CUDA C Best Practices Guide 3.2.
http://developer.download.nvidia.com/compute/cuda/
3 2/toolkit/docs/CUDA C Best Practices Guide.pdf, August 2010.

[9] NVIDIA. CUDA C Programming Guide 3.2. http:// devel-
oper.download.nvidia.com/compute/cuda/ 3 2/toolkit/docs/CUDA
C Programming Guide.pdf, September 2010.

[10] James C. Phillips, John E. Stone, and Klaus Schulten. Adapting a message-
driven parallel application to gpu-accelerated clusters. In Proceedings of the
2008 ACM/IEEE conference on Supercomputing, SC ’08, pages 8:1–8:9,
Piscataway, NJ, USA, 2008. IEEE Press.

[11] Ta Quoc Viet and Tsutomu Yoshinaga. Improving linpack performance on
smp clusters with asynchronous mpi programming. IPSJ Digital Courier,
2:598–606, 2006.

17


