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Abstract—In many instances of fixed-point multiplication, a
full precision result is not required. Instead it is sufficient to
return a faithfully rounded result. Faithful rounding permits
the machine representable number either immediately above or
below the full precision result, if the latter is not exactly repre-
sentable. Multipliers which take full advantage of this freedom
can be implemented using less circuit area and consuming less
power. The most common implementations internally truncate
the partial product array. However, truncation applied to the
most common of multiplier architectures, namely Booth ar-
chitectures, results in non-commutative implementations. The
industrial adoption of truncated multipliers is limited by the
absence of formal verification of such implementations, since
exhaustive simulation is typically infeasible. We present a com-
mutative truncated Booth multiplier architecture and derive
closed form necessary and sufficient conditions for faithful
rounding. We also provide the bit-vectors giving rise to the
worst-case error. We present a formal verification methodology
based on ACL2 which scales up to 42 bit multipliers. We
synthesize a range of commutative faithfully rounded multi-
pliers and show that truncated booth implementations are up
to 31% smaller than externally truncated multipliers.

1. Introduction

Of the most common arithmetic circuits, multiplication
consumes the greatest power and occupies the largest cir-
cuit area. As a result, binary multiplication has been the
subject of significant academic and industrial research [1],
[2], [3]. Amongst the most widely implemented multiplier
architectures is the Booth Radix-4 multiplier [4]. In many
applications, the requirement for exact multiplication can be
dropped, and replaced with a faithful rounding requirement.
A faithful rounding returns the machine representable num-
ber immediately above or below the infinitely precise result,
unless the infinitely precise result can in fact be represented
at the machine precision.

The additional freedom introduced by a faithful round-
ing, can be exploited, at the register transfer level (RTL),
to improve multiplier power consumption and save circuit
area. The standard approach to exploiting such freedom is
to truncate the partial product array, as shown in Figure 1.
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Figure 1. A 16-bit a×b, implemented as a traditional partial product array,
where each partial product bit is a[i]&b[j]. From this array we truncate
12 columns and insert the compensation constant, 11 (red). Summing
the truncated array (black) and discarding the light blue bits produces a
faithfully rounded 16-bit multiplication result.

Unfortunately, the partial product array arising from a Booth
Radix-4 encoding is not symmetric, as only one operand gets
encoded. Applying truncation to a Booth Radix-4 multiplier,
results in a non-commutative implementation [5], [6]. Com-
piler optimizations routinely implicitly assume mathematical
properties of underlying hardware. Application level cor-
rectness may implicitly require monotonicity of a complex
function say, but may not have been considered during
the hardware design. But commutativity is a far greater
pervasive assumption, to the extent that compiler engineers
could not conceive that non-commutative multipliers could
even be built. Preserving commutativity significantly re-
duces compiler complexity for this most fundamental of
operations.

In this work, we first demonstrate how, for minimal
hardware overhead, the commutativity property of a trun-
cated Booth implementation can be recovered. We then
analytically derive tight error bounds on Booth array trun-
cation and describe necessary and sufficient conditions to
implement a faithful rounding. Lastly, we describe a pro-
cedure to construct efficient hardware implementations. The
result is a fully parameterizable faithfully rounded multiplier



design that exhibits better power and area than alternative
approaches.

The paper is organized as follows. In Section 2 we
discuss prior work on hardware efficient multiplier, with
a particular focus on works that exploit error freedom. In
Section 3 we derive compensation terms to recover commu-
tativity and prove a set of mathematical bounds on truncation
error. We then demonstrate how we can use this information
to design an efficient faithfully rounded commutative Booth
multiplier. In Section 4 we compare synthesis results for a
range of different implementations and discuss our approach
to verifying these multiplier designs.

The paper contains the following novel contributions:

• a precise description of the compensation hardware
required to recover the commutativity property,

• proven mathematical bounds on the maximal error
due to truncation of Booth partial product arrays,

• a procedure to construct faithfully rounded com-
mutative truncated Booth multipliers with maximal
truncation.

2. Background

2.1. Binary Multiplication

The most naive implementation of n-bit binary multipli-
cation via primitive logic gates [4] consists of first forming
a partial product (PP) array of n2 PP bits, where each PP
bit is the logical AND of two input bits. Next that PP array
is reduced from n rows to two rows via compressor cells
arranged in a reduction tree. Once reduced to a summation
of two rows, a full parallel adder can be deployed, usually
to produce a 2n-bit result. Decades of research has led
to efficient implementations of all stages of this approach.
Array reduction was studied by Wallace and Dadda [1], [2]
then more recently improved with timing driven compressor-
tree construction [7], [8]. Parallel addition in ASIC design
is now most commonly implemented via parallel prefix
structures [3], [8]. In this work, we will be entirely focused
upon the first step, the construction of the PP array, and
rely on existing techniques for the efficient implementation
of array reduction and parallel addition.

One of the most widely used PP array creation tech-
niques, is to add a Booth encoding step, which groups bits
together to reduce the number of rows in the PP array. As
observed by Zimmerman [8], the overhead introduced by the
additional encoding step only offers a net benefit at larger
bitwidths, beyond 16-bits. The two primary variants are the
Booth Radix-4 and Radix-8 encoding schemes. This paper
modifies the Booth Radix-4 multiplication method, so we
will describe it in detail. We define the following encoding
function taking three single bit operands:

B(x, y, z) = −2x+ y + z (1)

For an n-bit signed multiplication, Booth Radix-4 encoding
halves the PP array height:

a× b =

n−1∑
i=0

2iai × b (2)

=

(n/2)−1∑
i=0

4iB(a2i+1, a2i, a2i−1)× b, (3)

where a−1 = 0 and we assume an even n. Each PP
row in (3) can be efficiently implemented using primitive
logic gates. Minor modifications are required for odd n and
unsigned multiplication [4].

2.2. Faithfully Rounded Binary Multiplication

The implementation of binary multiplication where the
full result is not required is most commonly achieved via
truncation schemes [9], [10], [11]. These schemes follow
a similar structure to compute n-bit a × b. First, truncate
the partial product array, removing the k least significant
columns, corresponding to an error value of ∆k. To the
remaining array add a compensation term, f(a, b), to the
kth column and then perform standard array reduction.
From this summation result a further n − k columns can
be truncated to recover a faithfully rounded multiplication.
Early work in this domain, described as Constant Correction
Truncated schemes (CCT), started from an AND array and
considered constant f(a, b) [12], [13]. An example of CCT
is shown in Figure 1. Later work introduced Variable Correc-
tion Truncation, where f(a, b) was considered to be a func-
tion of the inputs [14]. Other works considered linearization
schemes [15] and approximate carry predictions [16]. Booth
array truncation has similarly seen CCT techniques applied
along with a range of statistical methods to approximate the
expected truncation error [5], [6], [9]. These previous Booth
truncation schemes have broken the commutativity property
of multiplication, a property that, as we show in this work,
can be recovered for minimal hardware overhead.

Faithfully rounded truncated multipliers are most com-
monly applied in Digital Signal Processing (DSP) but also
can be found in floating point multipliers, where a lower
accuracy can be permitted [17]. For transcendental function
approximations, it is rarely necessary to compute full preci-
sion multiplication, since we already have the approximation
error to factor in [18], [19].

3. Methodology

The cause of the non-commutativity of truncated Booth
multiplier architectures stems from the asymmetry of how
the multiplier and multiplicand are treated; namely that only
one of the inputs is Booth encoded. Naturally to maintain
the hardware benefits of Booth architectures and remain
commutative, the solution is to Booth encode both inputs.
For ease of exposition we will assume that both inputs are
signed two’s complement, have even bitwidth n. We focus
on a Booth Radix-4 architecture. It is simple to extend



the analysis presented here to odd n and unsigned multi-
plication. Given these assumptions, double Booth encoding
results in the following:

a× b =

(n/2)−1∑
i,j=0

4i+jPPi,j (4)

PPi,j = B(a2i+1, a2i, a2i−1)×B(b2j+1, b2j , b2j−1), (5)

where a−1 = b−1 = 0. The key observation to achieving
commutative truncated Booth architectures is to truncate
(4) directly. Ultimately we will target creating a faithfully
rounded result returning the most significant n bits. By
truncating k columns, a portion of the summation, ∆, will
be deleted and the remainder, M , will be implemented as a
partial-product array such that a× b = M +∆.

M =

(n/2)−1∑
i,j=0,i+j≥k/2

4i+jPPi,j

∆ =

(k/2)−1∑
i,j=0,i+j<k/2

4i+jPPi,j (6)

Note that the proposed architecture and analysis assumes
k < n such that ∆ is strictly triangular in shape. (Hence the
proposed architecture can be extended to return a faithfully
rounded result with m bits as long as m > n.) The first
challenge is how M is transformed into a binary array and
the second is analyzing the error of ∆.

3.1. Commutative Truncated Booth Arrays

To begin reducing M to a binary PP array, we can undo
the Booth encoding to one of the inputs:

M =

(n/2)−1∑
i=0

4iB(a2i+1, a2i, a2i−1)× bbi (7)

bbi = (−2n−k+2i−1bn−1 + bn−2:k−2i + bk−2i−1),

where bj = 0 if j < 0 and bn:m denotes the bit slice of
b[n : m]. Now the terms in the summation only differ from
a standard Booth Radix-4 summation due to the presence of
the bk−2i−1 term. Let us consider a standard Booth Radix-4
PP row rowi and contrast this with one of the terms in (7),
row′

i. Such rows are of the form (for some ci):

rowi = B(a2i+1, a2i, a2i−1)(−2n−2cn−1 + cn−2:1)

row′
i = B(a2i+1, a2i, a2i−1)(−2n−2cn−1 + cn−2:1 + c0)

(8)

Now the bit level construction of rowi and row′
i can be

found in Table 1 (note that for two’s complement c and bit
c0, −c− c0 = c+ 1− c0 = c+ c0).

Note that rowi and row′
i can both be expressed in the

form integer pp plus bit s. Moreover truncated ppi has
identical values to truncated pp′i, the key and only difference
between a truncated Booth Radix-4 array and commutative
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Figure 2. A 16-bit commutative truncated Booth multiplier, with 12
columns of truncation. The six red bits are the additional compensation
bits s′i. The pink bits represent the typical Booth sign bits si.

array are the s′i bits. The Boolean expressions for si and s′i,
derivable from Table 1 are:

si = a2i+1&a2i&a2i−1

s′i = a2i+1&a2i&a2i−1&(c0 ⊕ a2i+1) (9)

We can now present the steps in constructing a commutative
truncated Booth Radix-4 array:

1) Construct standard Booth Radix-4 array
2) Remove least significant k columns, k is even
3) In column k, for i ∈ [0, k

2 − 1], add additional bits

s′i = a2i+1&a2i&a2i−1&(bk−2i−1 ⊕ a2i+1).

The difference between a commutative and a non-
commutative array is just the inclusion of these k/2 bits.
Since these s′ bits increase the array height of the least
significant column, it is natural to ask whether this will
affect the critical path.

Consider any array reduction that performs the summa-
tion of m addends of large length k. The greatest number
of carries that the summation generates will occur when the
addends are maximal, evaluating m(2k − 1) = (m− 1)2k +
(2k −m). For sufficiently large k, 2k −m > 0 and hence
such a summation will generate at most m− 1 carries. This
means the implementations are capable of dealing with m−1
carries and hence accepting m − 1 additional carry-in bits
in its least significant column without significantly altering
its delay characteristics.

The maximum array height in Figure 2 is ≈ n/2, the
number of additional carry ins such an array can handle
is < n/2, there are k/2 additional s′i bits which is by
assumption on k, < n/2. Hence such commutative truncated
Booth Radix-4 arrays are expected to exhibit minimal delay
differences when compared to untruncated arrays.

It is important to note that while there are but k/2 s′

bits additional bits required to make the truncated Booth
Radix-4 array commutative and such inclusion is expected
to have limited delay impact; these bits are in no way
trivial. Omitting any one of them is likely to still produce



TABLE 1. PARTIAL PRODUCT CREATION FOR COMMUTATIVE TRUNCATED BOOTH RADIX-4 ARRAY

a2i+1 a2i a2i−1 −2a2i+1 + a2i + a2i−1 rowi = ppi + si row′
i = pp′i + s′i

0 0 0 0 0 0
0 0 1 1 {cn−1, cn−1...c2, c1}+ 0 {cn−1, cn−1...c2, c1}+ c0
0 1 0 1 {cn−1, cn−1...c2, c1}+ 0 {cn−1, cn−1...c2, c1}+ c0
0 1 1 2 {cn−1, cn−2...c1, 0}+ 0 {cn−1, cn−2...c1, c0}+ c0
1 0 0 -2 {cn−1, cn−2...c1, 1}+ 1 {bn−1, cn−2...c1, c0}+ c0
1 0 1 -1 {cn−1, cn−1...c0, c0}+ 1 {bn−1, cn−1...c2, c1}+ c0
1 1 0 -1 {cn−1, cn−1...c0, c0}+ 1 {bn−1, cn−1...c2, c1}+ c0
1 1 1 0 0 0

a faithfully rounded implementation, but it will not be
commutative. These s′ bits are not present in the original
Booth Radix-4 array and any truncation or promotion of
bits within the array will not result in a commutative array.
Such compensation bits would need to be rederived for every
Booth architecture variant. Moreover commutativity was
achieved by truncating (4), not standard Booth summation
formulae.

3.2. The Truncation Error

In order to create optimal faithfully rounded multipliers,
the value range of ∆ must be precisely known. This anal-
ysis will be facilitated by the following helper functions,
representing hexadecimal summations:

Xn = Yn = Zn = Wn =
n︷ ︸︸ ︷

222..222

n︷ ︸︸ ︷
222..222

n︷ ︸︸ ︷
000..000

n︷ ︸︸ ︷
444..444

+444..444 +444..444 +444..444
+444..440 +444..440 +444..440 +444..440
+444..440 +444..440 +444..440 +444..440
+444..400 +444..400 +444..400 +444..400
+444..400 +444..400 +444..400 +444..400

· · · · · · · · · · · ·
+440..000 +440..000 +440..000 +440..000
+440..000 +440..000 +440..000 +440..000
+400..000 +400..000 +400..000 +400..000
+400..000 +400..000 +400..000 +400..000

These hexadecimal summations can be simplified. Consider
reducing Xn:

n︷ ︸︸ ︷
222..222 = 2

15FFF..FFF = 2
15

n+1︷ ︸︸ ︷
0FFF..FFF

+444..440 − 8
15111..110 − 8

1520FFF..FF0

+444..440 + 8
15111..110 + 8(n−1)

152 1000..000

+444..400 + 8
15FFF..FF0

+444..400 + 8
15FFF..F00

· · · · · ·
+440..000 + 8

15FF0..000

+440..000

+400..000 + 8
15F00..000

+400..000

Therefore,

Xn =
2

15
(16n − 1)− 8

152
(16n − 16) +

8

15
(n− 1)16n

=
2

225
(16n(60n− 49) + 49).

Similarly the remaining helper functions can be reduced to:

Yn =
2

225
(16n(60n− 19) + 19)

Zn =
4

225
(16n(30n− 17) + 17)

Wn =
8

225
(16n(15n− 1) + 1)

Lemma 1. Extremal values of ∆ occur when ai ̸= ai−2

and bj ̸= bj−2 for all n > i, j > 1.

Proof. Consider the contribution of a0 and a2 in ∆:

∆ =(−2k−1bk−1 + bk−2:0)a0

+ 4(−2k−3bk−3 + bk−4:0)a2 + ...

=− 2k−1(bk−1a0 + bk−3a2)

+ 2k−2(bk−2a0 + bk−4a2) + ...

+ 4(b2a0 + b0a2) + ...

For a0 = a2 = 1, extremal ∆ occurs when bk−1:2 = bk−3:0.
If a0 = a2 = 0 made ∆ extremal this would imply bk−1:2 =
bk−3:0. But if a0 = a2 implies bk−1:2 = bk−3:0 and hence
b2 = b0 then by a symmetric argument this would imply
ak−1:2 = ak−3:0. Up to input reordering, this implies the
following extremal inputs:

TABLE 2. ∆ WORST CASE INPUTS ai = ai−2 AND bj = bj−2

a b ∆

111...111 111...111 1

111...111 101...010 2k+2
3

111...111 010...101 − 2k−1
3

101...010 101...010 1
18

((3k + 16)2k + 16)

101...010 010...101 −k2k−2 − 1
3
(2k − 1)

010...101 010...101 1
18

((3k − 2)2k + 2)

000...000 000...000 0

Alternatively if a0 ̸= a2, swapping the value of a0 with
a2 will produce the largest change to ∆ if bk−1:2 ̸= bk−3:0.
But if a0 ̸= a2 implies bk−1:2 ̸= bk−3:0 and hence b2 ̸= b0



then by a symmetric argument this would imply ak−1:2 ̸=
ak−3:0.

As an example, consider k/2 is odd and a = b =
10011001...100110:

∆ =

(k/2)−1∑
i,j=0,i+j<k/2

4i+jPPi,j

= −
(k/2)−1∑

i,j=0,i+j<k/2

(−4)i+j+1

= Z(k+2)/4 − 4W(k−2)/4

=
2

25
(2k(5k + 2) + 2)

Similarly, the helper functions can be used to simplify ∆
for all the cases where ai ̸= ai−2 and bj ̸= bj−2 for all
n > i, j > 1, four of these cases are:

TABLE 3. ∆ WORST CASE INPUTS ai ̸= ai−2 AND bj ̸= bj−2

k/2 a b ∆

even 10011001...1001 01100110...0110 4Y k
4
−X k

4

odd 10011001...10 10011001...10 Z k+2
4

− 4W k−2
4

even 01100110...0110 01100110...0110 Z k
4
− 4W k

4

odd 10011001...10 01100110...01 −X k+2
4

+ 4Y k−2
4

The remaining cases produce less extremal ∆ values.
These four cases can be combined and simplified using the
helper function to conclude:

− 1

25
(2k(10k + 5(−1)k/2 − 1)− 5 + (−1)k/2

≤ ∆ ≤
1

25
(2k(10k − 5(−1)k/2 − 1) + 5 + (−1)k/2 (10)

Note that the leading coefficient of k2k in these bounds
are 2/5 versus 1/6 and 1/4 in Table 2 . Conclude that the
extremal values of ∆ occur when ai ̸= ai−2 and bj ̸= bj−2

for all n > i, j > 1. The worst case input vectors can be
found in Table 3 and (10) contains tight bounds on ∆.

3.3. Faithfully Rounded Commutative Truncated
Booth Arrays

The optimal truncation scheme will truncate the most
number of columns while maintaining the faithful rounding
condition. The truncated array M will have an additional
constant C added to compensate for the loss of ∆. Once

summed, the least significant bits (value D) will be truncated
before returning the approximation.

y = a× b = M +∆ Unrounded Result
y′ = M + C −D Rounded Result
|y − y′| < 2n Faithful Rounding Condition
⇒ C −D − 2n < ∆ < C −D + 2n

D can take any value between 0 and 2n − 2k, hence
necessary and sufficient condition for faithful rounding is:

C − 2n <∆ < C + 2k

max(∆)− 2k <C < min(∆) + 2n

Now C is a multiple of 2k, hence:⌊
max(∆)

2k

⌋
≤

⌊
min(∆)

2k

⌋
+ 2n−k

Substituting the extremal found in (10) and simplifying
results in:⌊

2k − (−1)k/2

5

⌋
+

⌈
2k + (−1)k/2

5

⌉
< 2n−k (11)

Maximising k in (11) generates the optimal truncation value.
The optimal truncation scheme values can now be presented:

k∗ = max
even k

(
k ≤ 5× 2n−k−2

)
(12)

2k∗ − 5− (−1)
k∗
2

5
≤ C∗ ≤ 5× 2n−k∗ − 2k∗ − (−1)

k∗
2

5
(13)

Example values of k∗ and C∗:

n k∗ minC∗ maxC∗

8 4 1 14

16 12 4 11

24 20 7 7

32 26 10 53

53 46 18 109

64 58 23 41

We can now present the steps in constructing a commu-
tative truncated Booth Radix-4 array for an n multiplication
returning a faithful rounding of the n most significant bits:

1) Construct standard Booth Radix-4 array, Booth en-
coding a

2) Calculate k∗ = maxeven k(k ≤ 5× 2n−k−2)
3) Remove least significant k∗ columns
4) In column k∗, for i ∈ [0, k∗

2 − 1], add additional
bits

s′i = a2i+1&a2i&a2i−1&(bk∗−2i−1 ⊕ a2i+1).

5) In column k∗, include constant C∗ which can be
any value in the range:[
2k∗ − 5− (−1)

k∗
2

5
,
5× 2n−k∗ − 2k∗ − (−1)

k∗
2

5

]
6) Sum the array
7) Remove the least significant n columns



TABLE 4. SYNTHESIS RESULTS FOR THREE COMPETING ARCHITECTURES AT SEVERAL DELAY TARGETS, ACROSS FOUR DIFFERENT BITWIDTHS, n.
THE PERCENTAGE IMPROVEMENTS ARE WITH RESPECT TO THE BASELINE IMPLEMENTATION. WE HIGHLIGHT THE BEST RESULT IN EACH ROW IN

BOLD.

Baseline Truncated AND [9] Commutative Truncated Booth
n Delay (ns) Area (µm2) Power (µW ) Area (µm2) Power (µW ) Area (µm2) Power (µW )

16

0.175 74.0 450 64.4 (-13.0%) 319 (-29.2%) 69.3 (- 6.4%) 389 (-13.7%)
0.2 56.1 346 46.4 (-17.4%) 252 (-27.3%) 48.3 (-13.9%) 286 (-17.5%)

0.225 51.7 309 40.9 (-20.8%) 215 (-30.4%) 43.6 (-15.8%) 252 (-18.5%)
0.25 47.5 283 37.1 (-21.9%) 198 (-30.1%) 39.7 (-16.3%) 226 (-20.1%)

24

0.225 127.7 815 108.6 (-14.9%) 622 (-23.7%) 99.9 (-21.8%) 600 (-26.4%)
0.25 113.4 705 101.5 (-10.4%) 575 (-18.4%) 88.7 (-21.8%) 516 (-26.8%)
0.275 108.0 653 93.5 (-13.4%) 502 (-23.2%) 84.9 (-21.3%) 498 (-23.8%)
0.3 99.2 595 83.8 (-15.6%) 466 (-21.8%) 77.3 (-22.1%) 447 (-25.0%)

32

0.275 193.7 1225 161.3 (-16.7%) 897 (-26.7%) 156.2 (-19.4%) 914 (-25.4%)
0.3 171.5 1097 156.3 (- 8.8%) 861 (-21.5%) 148.0 (-13.7%) 862 (-21.4%)

0.325 164.3 1024 139.7 (-15.0%) 787 (-23.1%) 134.2 (-18.3%) 768 (-25.0%)
0.35 152.9 945 137.2 (-10.3%) 772 (-18.3%) 130.7 (-14.5%) 748 (-20.8%)

64

0.3 823.0 5548 647.6 (-21.3%) 3808 (-31.4%) 566.8 (-31.1%) 3527 (-36.4%)
0.325 745.5 4886 593.3 (-20.4%) 3403 (-30.4%) 515.6 (-30.8%) 3073 (-37.1%)
0.35 709.2 4558 565.1 (-20.3%) 3165 (-30.6%) 491.7 (-30.7%) 2846 (-37.6%)
0.375 638.6 4187 513.1 (-19.7%) 2936 (-29.9%) 446.9 (-30.0%) 2593 (-38.1%)

4. Results

We compare three implementations of faithfully rounded
commutative n-bit multipliers returning an n-bit result. The
baseline is a round to zero multiplier, implemented by
computing the full precision n-bit multiplication, generating
a 2n-bit result, from which we return the n most signifi-
cant bits. The second implementation is a truncated AND
array, where we follow the approach in [9] to compute
the maximum possible truncation and an efficient constant
compensation term. We do not compare against alternative
truncated Booth implementations since these designs do not
retain commutativity.

4.1. Synthesis

We synthesize each design using a commercial logic
synthesis tool, targeting a standard TSMC 5nm library. We
present results for a range of bitwidths and at a number
of delay targets for each parameterization. The combina-
tional area and total power consumption results reported
by the logic synthesis tool are shown in Table 4. We also
present the percentage improvement in each metric with
respect to the baseline. We synthesize multipliers at rele-
vant bitwidths between 16 and 64 bits. At lower bitwidths
the overhead of Booth encoding is detrimental [8] and at
higher bitwidths multiplier decomposition techniques, such
as Karatsuba [20], dominate [21].

In Table 4 we can see that the truncated Booth array
is up to 31% smaller than the baseline implementation and
consumes up to 38% less power. Furthermore, the truncated
Booth array is up to 13% smaller than the truncated AND
array and consumes up to 12% less power. For 16-bit
multiplication, we see that the truncated AND array is both
smaller and more power efficient across all delay targets.
For 24-bit multiplication, the truncated Booth multiplier is
superior. Prior work on exact multiplier implementations
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Figure 3. Area-delay profiles for the three competing commutative designs
for n=64. We also plot the truncated Booth architecture without the com-
pensation bits to recover commutativity.

also observed an architectural crossover point around 16-
bits [8], at which the overhead of Booth encoding is offset
by the gains in array reduction. As we increase the bitwidth,
the benefit offered by the truncated Booth array over the
alternatives increases.

In Figure 3 we present complete area-delay profiles for
the competing 64-bit multiplier implementations. Across
the complete delay spectrum the truncated Booth multiplier
demonstrates roughly constant area reduction when com-
pared against the truncated AND array.

To understand the penalty we must incur to recover com-
mutativity, we also synthesize the 64-bit truncated Booth
array without the additional compensation bits described in
Section 3.1. As we can see in Figure 3, the area difference
between the commutative and non-commutative truncated
Booth implementations is minimal across the delay spec-
trum. At worst we pay a 2.5% area penalty.



TABLE 5. ACL2 RUNTIMES FOR PROVING THAT THE TRUNCATED
BOOTH MULTIPLIER IMPLEMENTS A FAITHFUL ROUNDING AND IS
COMMUTATIVE. THE DASH INDICATES A PROOF WHICH DID NOT

CONVERGE.

n Faithful (sec) Commutative (sec)
4 3 0.6
6 4 0.6

16 7 0.7
24 44 0.7
32 63 0.9
36 117 1.0
42 835 1.1
64 – 2.0

4.2. Formal Verification

For multiplier implementations beyond 16-bit, formal
verification becomes challenging as the number of inputs
exceeds what can be simulated. Furthermore, the verification
of custom multiplier implementations is particularly chal-
lenging due to the circuit complexity, leading to bespoke
tools [22], [23] and methods [24], [25].

In this work, we deploy the S-C-Rewriting method [26],
[27] built on the ACL2 theorem prover [28], supported by
the Glucose SAT solver. We use the tool to prove that the
output, out, of the Verilog code implementing a truncated
Booth multiplier satisfies the following lemma:

mul t = a [ n − 1 : 0 ] * b [ n − 1 : 0 ]
l s b s = mul t [ n − 1 : 0 ]
msbs = mul t [2* n −1: n ]

lemma ( l s b s ==0) ? o u t ==msbs
: 0<=out −msbs<=1

Where a and b are n-bit, and mult is 2n-bit wide un-
signed bit-vectors representing integer values. This lemma
guarantees that out is a faithful rounding. We also use the
same tool to prove commutativity of the truncated Booth
multiplier.

We prove the two properties for a range of bitwidths n
and present the proof runtimes in Table 5. Unfortunately, as
the bitwidth n increases, the proof of faithful rounding run-
times grow exponentially, meaning we are unable to prove
the correctness of the 64-bit truncated Booth multiplier.

5. Conclusion

This paper provides the first implementation of a com-
mutative truncated Booth multiplier, that produces a faith-
fully rounded result. We first described how, for minimal
circuit area overhead, we can recover commutativity, via
the introduction of a small number of compensation bits. We
then proved exact bounds on the maximal error due to Booth
array truncation and used these bounds to calculate the max-
imum number of columns which can be truncated. Lastly, we
described how the addition of a constant can compensate for
the error induced by truncation. We synthesized a number
of faithfully rounded multiplier implementations and were
able to reduce circuit area by up to 13% and reduce power

consumption by up to 12% when compared to the state of
the art. Using an ACL2 based verification tool, we were
able to prove the correctness of the commutative truncated
Booth multipliers up to 42 bits.

Future work will look to generalize the results here to
arbitrary Booth encoding radices, e.g. Booth Radix-8. A fur-
ther generalization will consider different error thresholds,
as opposed to the faithful rounding considered here. We will
also address the limitations of our verification, exploring
proof decomposition techniques. Lastly, an approach in [9]
can be used to incorporate these multiplier components
into larger hardware designs, for example a floating-point
multiplier.
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