Multiple-base Logarithmic Quantization and Application in Reduced Precision AI Computations

> **Vassil Dimitrov**^{1,2} Richard Ford¹ Laurent Imbert^{1,3} Arjuna Madanayake¹ Nilan Udayanga¹ Will Wray¹

> > ¹Lemurian Labs, Oakville, Canada

²University of Calgary, Canada

³CNRS, LIRMM, University of Montpellier, France

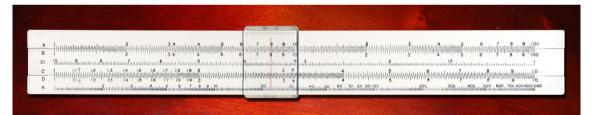
ARITH 2024

Málaga, June 10-12

- ► A brief history of the logarithmic representations
- ▶ Generalization of the logarithmic number systems into multidimensional representation
- ► The usefulness of logarithmic quantizations in reduced precision computations
- QSNR experimental results
- ► FPGA designs for dot-product engine
- Conclusions

A brief history of logarithmic representations

- ► Logarithmic number system (LNS) is just a digital version of the slide rule!
- Initially used to simplify multiplications and divisions
- ► A large body of literature on the use of LNS in DSP in mid 70s and 80s
- Since 2016 many articles and patents on the use of LNS for reduced precision ML computations



In LNS, real numbers are represented by the logarithm in base 2 of their absolute values

$$(s,e)$$

 $x \in \mathbb{R}$ \longrightarrow $s = \pm 1, \ e = \log_2 |x|$
 $\Rightarrow x = s \cdot 2^e$

In the original definition, *e* is written in signed fixed-point representation.

- ► LNS for digital filtering
- ► DSP transforms
- ► some other applications

New era: LNS in machine learning applications (2026 – today)

▶ Mayashita et al. (2016): LNS for reduced precision ML computations.

point out that LNS with base $\sqrt{2}$ seems more appropriate than LNS with base 2.

MDLNS: Multi-Dimensional Logarithmic Number Systems

Defined using 3 finite sequences:

- $R = (\beta_1, \ldots, \beta_k) \in (\mathbb{R}_{>0})^k$: MDLNS bases (rationally independent real numbers)
- $W = (w_1, \ldots, w_k) \in \mathbb{N}^k$ exponent bit-lengths
- ▶ $B = (b_1, ..., b_k) \in \mathbb{Z}^k$ exponent biases

The total bit-length of the MDLNS representation is $n = 1 + \sum_{i=1}^{k} w_i$

Then, $MDLNS_n(R, W, B)$ is the finite set of real numbers of size 2^n given by:

$$\mathsf{MDLNS}_n = \left\{ \pm \prod_{i=1}^k \beta_i^{e_i}; \ 0 \le e_i + b_i < 2^{w_i} \right\}$$

The exponents $e_i \in \mathbb{Z}$ have bit-length w_i respectively and are biased with bias b_i , i.e. the unsigned binary encoded value \hat{e}_i corresponds to the integer $e_i = \hat{e}_i - b_i$.

Example of MDLNS representation

Let:

- ► *R* = (2,3)
- W = (2,2) bit-length of the representation: n = 1 + 2 + 2 = 5
- B = (2,2) i.e. the exponents are encoded using two's complement notation

Then $MDLNS_5 = \{\pm 2^a 3^b, -2 \le a, b \le 1\}$

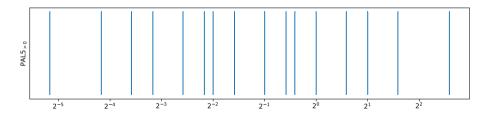
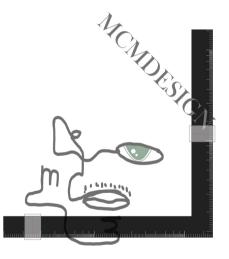
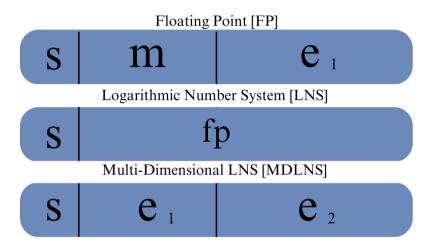


Figure: The 16 positive real values from MDLNS₅ (on a log scale)

Multi-Dimensional Slide Rule



Pictorial representation - floating point, logarithmic and MDLNS



- ► ARITH-1997: "Theory and Applications of the Double-Base Number System"
- ARITH-2001: "The use of multidimensional logarithmic number system in DSP applications"
- ► ARITH 2007: "Multiplication by a constant is sublinear" (main theorem uses DBNS)

- Dual-logarithmic (Jeff Johnson ARITH 2020)
- multi-base LNS NVIDIA (IEEE Trans on Computers 2023)
- Logarithmic Posits (https://arxiv.org/abs/2403.05465)

Quantization: the process of mapping an infinite set of continuous values to a finite set of discrete values.

Very popular for accelerating inference and for reducing memory/power consumption in DNN

MDLNS is particularly suited for quantization since:

- We can choose any bases
 - 1. Adapt to any model/layer distribution
 - 2. Can likely find base to beat out FP, LNS, ...
- ► Can easily scale from 16bit to 4,6,8...
- Multiplication maps to addition
- ► Great dynamic range with precision around 0

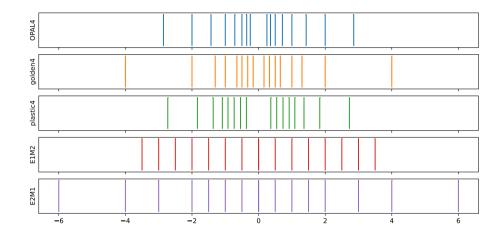


Figure: Distributions of values for various MDLNS_4 and $\mathsf{FP4}$ formats

Quantization signal to noise ratio [Rouhani et. al. 2023]

Ratio of the power of the non-quantized signal $X = (x_1, x_2, ..., x_k) \in \mathbb{R}^k$ to the power of the quantization noise expressed in decibels

$$\mathsf{QSNR} := -10 \log_{10} \left(\frac{E\left[\|Q(X) - X\|^2 \right]}{E\left[\|X\|^2 \right]} \right)$$

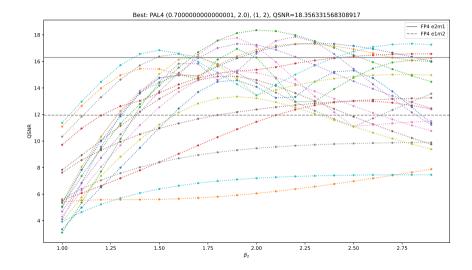
 $\|.\|$ denotes the L_2 norm

	MDLNS ₅ ((2,3), (2,2))	
Bases	[2, 3]	
Exponent sizes	[2, 2]	
Exponent biases	[2, 2]	
Min. pos. value	0.02777778	
Max. pos. value	6.0000000	
DNR(*)	7.75488750	
QSNR	19.67874706	

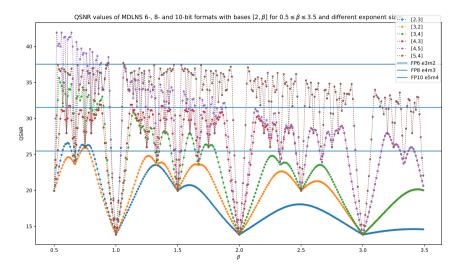
Table: $MDLNS_5((2,3), (2,2))$ parameters

(*) the dynamic range (DNR) of a finite set of strictly positive real numbers is defined as the logarithm in base 2 of the ratio between the largest and the smallest values from that set.

Comparisons with floating point in terms of QSNR (MDLNS₄)

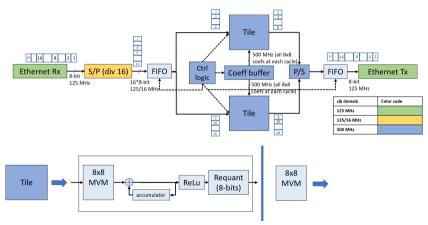


Comparisons with floating point in terms of QSNR (MDLNS_{6,8,10})



MDLNS matrix-vector multipliers (FPGA)

Demo Architecture for 8x8 Matrix Vector Multiplier (MVM)



*No of channels accumulate inside the tile = tile_clk*noOfTiles*8/ethernet_clk = Coeff buffer depth = number of coefs applied per 8x1 input

	Fixed-point	MDLNS
Configurable logic blocks	35 659 CLBs	28 813 CLBs
Static power	3.53 W	3.22 W
Dynamic power	3.2 W	4.41 W
Maximum clock rate	312 MHz	555 MHz
Throughput	47.4 Gops/W	74.4 Gops/W
AT^2	0.37	0.09

- ► Non-integers exponents
- MDLNS with more than 2 bases
- Complex and hypercomplex MDLNS

Open problems and directions for future research

- MDLNS arithmetic: The biggest challenge MDLNS addition and subtraction
- ▶ Efficient conversion from float to MDLNS and back
- MDLNS for complex arithmetic
- MDLNS for image processing
- ► Theoretical problems

Thank you for your attention!

https://www.lemurianlabs.com/

A MDLNS is a LNS where the encoding of the exponent can be written as linear forms of logarithms.

For all $\beta_i \in B$, it is always possible to write $\beta_i = \exp(\log(\beta_i))$ so that:

$$\mathsf{MDLNS}_n = \left\{ \pm \exp\left(\sum_{i=1}^k e_i \log(eta_i)\right) \ ; \ 0 \leq e_i + b_i < 2^{w_i}
ight\}$$

MDLNS block quantization

