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What the paper is all about

▶ A brief history of the logarithmic representations

▶ Generalization of the logarithmic number systems into multidimensional representation

▶ The usefulness of logarithmic quantizations in reduced precision computations

▶ QSNR experimental results

▶ FPGA designs for dot-product engine

▶ Conclusions
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A brief history of logarithmic representations

▶ Logarithmic number system (LNS) is just a digital version of the slide rule!

▶ Initially used to simplify multiplications and divisions

▶ A large body of literature on the use of LNS in DSP in mid 70s and 80s

▶ Since 2016 - many articles and patents on the use of LNS for reduced precision ML
computations
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LNS representations

In LNS, real numbers are represented by the logarithm in base 2 of their absolute values

x ∈ R

(s, e)

s = ±1, e = log2 |x |

⇒ x = s · 2e

In the original definition, e is written in signed fixed-point representation.
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LNS in DSP (1970s – 2010s)

▶ LNS for digital filtering

▶ DSP transforms

▶ some other applications
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New era: LNS in machine learning applications (2026 – today)

▶ Mayashita et al. (2016): LNS for reduced precision ML computations.

point out that LNS with base
√
2 seems more appropriate than LNS with base 2.
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MDLNS: Multi-Dimensional Logarithmic Number Systems

Defined using 3 finite sequences:

▶ R = (β1, . . . , βk) ∈ (R>0)
k : MDLNS bases (rationally independent real numbers)

▶ W = (w1, . . . ,wk) ∈ Nk exponent bit-lengths

▶ B = (b1, . . . , bk) ∈ Zk exponent biases

The total bit-length of the MDLNS reprensentation is n = 1 +
∑k

i=1 wi

Then, MDLNSn(R,W ,B) is the finite set of real numbers of size 2n given by:

MDLNSn =

{
±

k∏
i=1

βei
i ; 0 ≤ ei + bi < 2wi

}
The exponents ei ∈ Z have bit-length wi respectively and are biased with bias bi , i.e. the
unsigned binary encoded value êi corresponds to the integer ei = êi − bi .
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Example of MDLNS representation

Let:
▶ R = (2, 3)
▶ W = (2, 2) bit-length of the representation: n = 1 + 2 + 2 = 5
▶ B = (2, 2) i.e. the exponents are encoded using two’s complement notation

Then MDLNS5 = {±2a3b,−2 ≤ a, b ≤ 1}

2 5 2 4 2 3 2 2 2 1 20 21 22
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>
0

Figure: The 16 positive real values from MDLNS5 (on a log scale)
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Multi-Dimensional Slide Rule
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Pictorial representation - floating point, logarithmic and MDLNS
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Connections with DBNS (for ARITH aficionados)

▶ ARITH-1997: “Theory and Applications of the Double-Base Number System”

▶ ARITH-2001: “The use of multidimensional logarithmic number system in DSP
applications”

▶ ARITH 2007: “Multiplication by a constant is sublinear” (main theorem uses DBNS)
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Alternative MDLNS in the literature

▶ Dual-logarithmic (Jeff Johnson ARITH 2020)

▶ multi-base LNS NVIDIA (IEEE Trans on Computers 2023)

▶ Logarithmic Posits (https://arxiv.org/abs/2403.05465)
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MDLNS as a quantization engine

Quantization: the process of mapping an infinite set of continuous values to a finite set of
discrete values.

Very popular for accelerating inference and for reducing memory/power consumption in DNN

MDLNS is particularly suited for quantization since:

▶ We can choose any bases

1. Adapt to any model/layer distribution
2. Can likely find base to beat out FP, LNS, ...

▶ Can easily scale from 16bit to 4,6,8...

▶ Multiplication maps to addition

▶ Great dynamic range with precision around 0

12/23



OP
AL

4
go

ld
en

4
pl

as
tic

4
E1

M
2

6 4 2 0 2 4 6

E2
M

1

Figure: Distributions of values for various MDLNS4 and FP4 formats
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Numerical fidelity of a quantization scheme

Quantization signal to noise ratio [Rouhani et. al. 2023]

Ratio of the power of the non-quantized signal X = (x1, x2, . . . , xk) ∈ Rk to the power of the
quantization noise expressed in decibels

QSNR := −10 log10

(
E
[
∥Q(X )− X∥2

]
E [∥X∥2]

)

∥.∥ denotes the L2 norm
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Parameters of our MDLNS5 example

MDLNS5((2, 3), (2, 2))

Bases [2, 3]
Exponent sizes [2, 2]
Exponent biases [2, 2]
Min. pos. value 0.02777778
Max. pos. value 6.00000000
DNR(*) 7.75488750
QSNR 19.67874706

Table: MDLNS5((2, 3), (2, 2)) parameters

(*) the dynamic range (DNR) of a finite set of strictly positive real numbers is defined as the
logarithm in base 2 of the ratio between the largest and the smallest values from that set.
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Comparisons with floating point in terms of QSNR (MDLNS4)
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Comparisons with floating point in terms of QSNR (MDLNS6,8,10)
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MDLNS matrix-vector multipliers (FPGA)
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Comparisons between fixed-point and MDLNS implementation results

Fixed-point MDLNS

Configurable logic blocks 35 659CLBs 28 813CLBs
Static power 3.53W 3.22W
Dynamic power 3.2W 4.41W
Maximum clock rate 312MHz 555MHz
Throughput 47.4Gops/W 74.4Gops/W
AT 2 0.37 0.09
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Possible generalizations

▶ Non-integers exponents

▶ MDLNS with more than 2 bases

▶ Complex and hypercomplex MDLNS
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Open problems and directions for future research

▶ MDLNS arithmetic: The biggest challenge - MDLNS addition and subtraction

▶ Efficient conversion from float to MDLNS and back

▶ MDLNS for complex arithmetic

▶ MDLNS for image processing

▶ Theoretical problems

Thank you for your attention!

https://www.lemurianlabs.com/
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MDLNS can be seen as a LNS

A MDLNS is a LNS where the encoding of the exponent can be written as linear forms of
logarithms.

For all βi ∈ B, it is always possible to write βi = exp(log(βi )) so that:

MDLNSn =

{
± exp

(
k∑

i=1

ei log(βi )

)
; 0 ≤ ei + bi < 2wi

}
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MDLNS block quantization

X

X/s

Xq
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R

PAL4 Block Format
     block size=16, scale factor type: float

     PAL bases: pal_t_new([2.0, 1.303116448612589],[2.0, 1.0],[2.0, 1.0])
     QSNR=20.3589
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