# An Open-Source RISC-V Vector Math Library

Ping Tak Peter Tang Rivos Inc. June 11, 2024 ARITH 2024, Malaga, Spain

# An Open-Source RISC-V VecLibm

- Background and Motivation
- Snapshots of RISC-V Vector ISA
- RISC-V Vector Math Library: Strategies and Illustrations
- Rivos FP64 Vector Libm current status at a glance

- RISC-V: An open ISA first developed in 2011
- Two distinguished features: modular and extensible

- RISC-V: An open ISA first developed in 2011
- Two distinguished features: modular and extensible



- RISC-V: An open ISA first developed in 2011
- Two distinguished features: modular and extensible

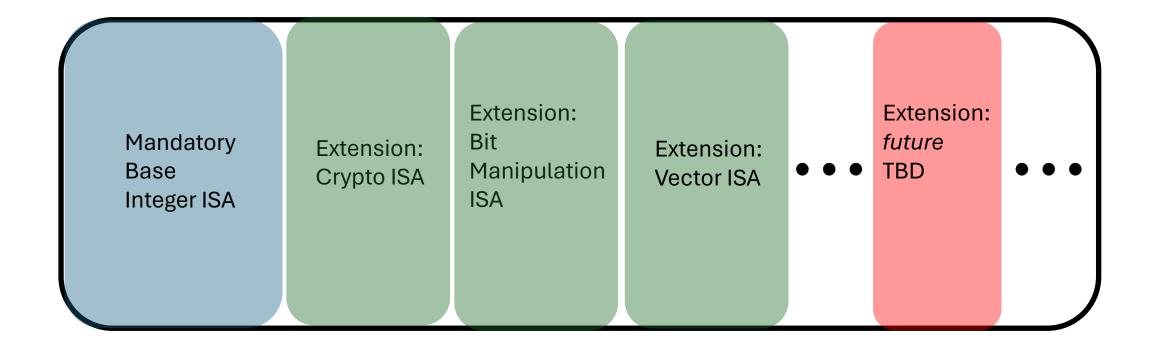


- RISC-V: An open ISA first developed in 2011
- Two distinguished features: modular and extensible

- RISC-V: An open ISA first developed in 2011
- Two distinguished features: modular and extensible

|--|

- RISC-V: An open ISA first developed in 2011
- Two distinguished features: modular and extensible



- RISC-V: An open ISA first developed in 2011
- Two distinguished features: modular and extensible
- Open ISA: accelerates innovations via robust ecosystems

- RISC-V: An open ISA first developed in 2011
- Two distinguished features: modular and extensible
- Open ISA: accelerates innovations via robust ecosystems
- Open RISC-V Vector Libms are worthy additions
  - FP64 vector libm fits the need to traditional computational science and HPC

- RISC-V: An open ISA first developed in 2011
- Two distinguished features: modular and extensible
- Open ISA: accelerates innovations via robust ecosystems
- Open RISC-V Vector Libms are worthy additions
  - FP64 vector libm fits the need to traditional computational science and HPC

In math.h exp(x), sin(x), atan(x), etc.

- RISC-V: An open ISA first developed in 2011
- Two distinguished features: modular and extensible
- Open ISA: accelerates innovations via robust ecosystems
- Open RISC-V Vector Libms are worthy additions

VS.

 FP64 vector libm fits the need to traditional computational science and HPC

```
In math.h exp(x), sin(x), atan(x), etc.
```

Scalar:

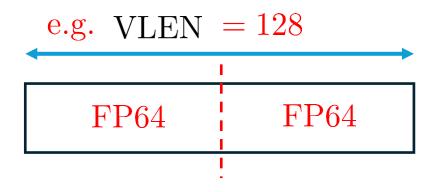
double exp(double x);

Vector:
void vec\_exp(int N, const double\* x, double\* y);

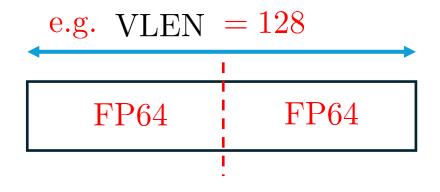
- RISC-V: An open ISA first developed in 2011
- Two distinguished features: modular and extensible
- Open ISA: accelerates innovations via robust ecosystems
- Open RISC-V Vector Libms are worthy additions
  - FP64 vector libm fits the need to traditional computational science and HPC
  - Requires experience to construct a numerically reliable library
  - Scope is modest that a start up can undertake as a good-citizen project

#### Snapshots of RISC-V Vector ISA: General

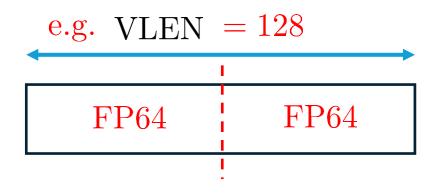
#### 32 architectural registers VLEN implementation defined



#### 32 architectural registers VLEN implementation defined

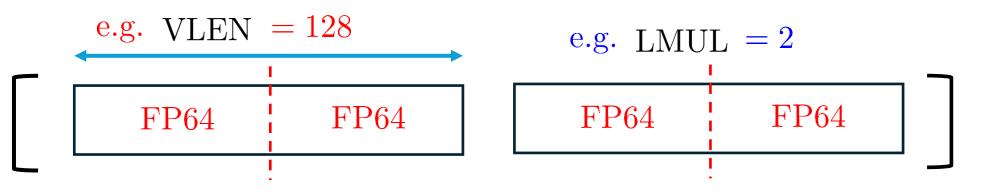


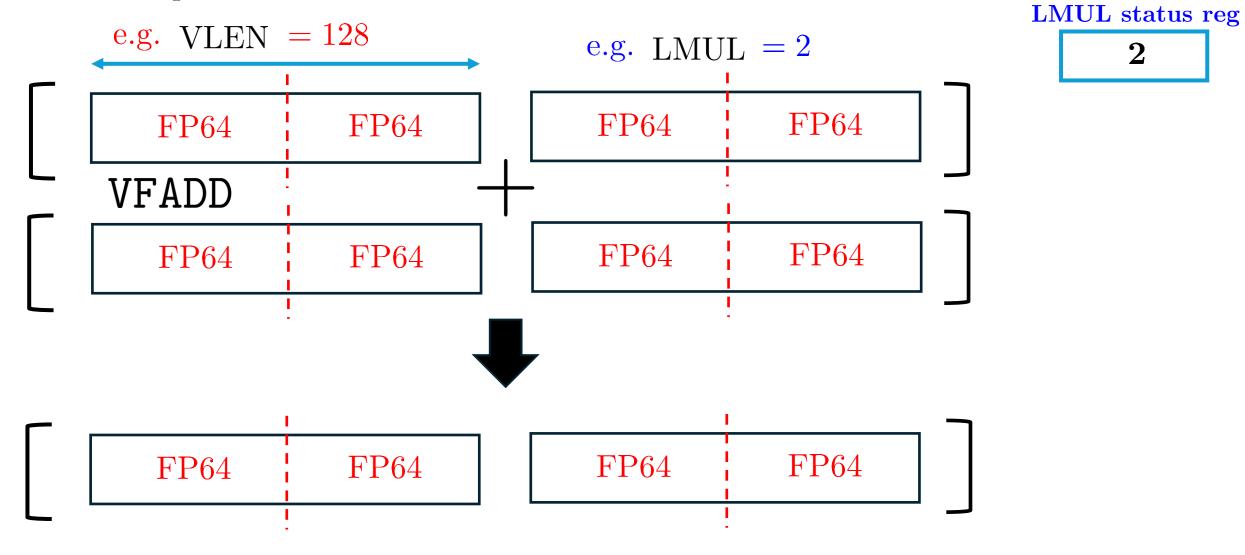
Registers are type agnostic: Just a number of bits, to be interpreted in the context of the instructions

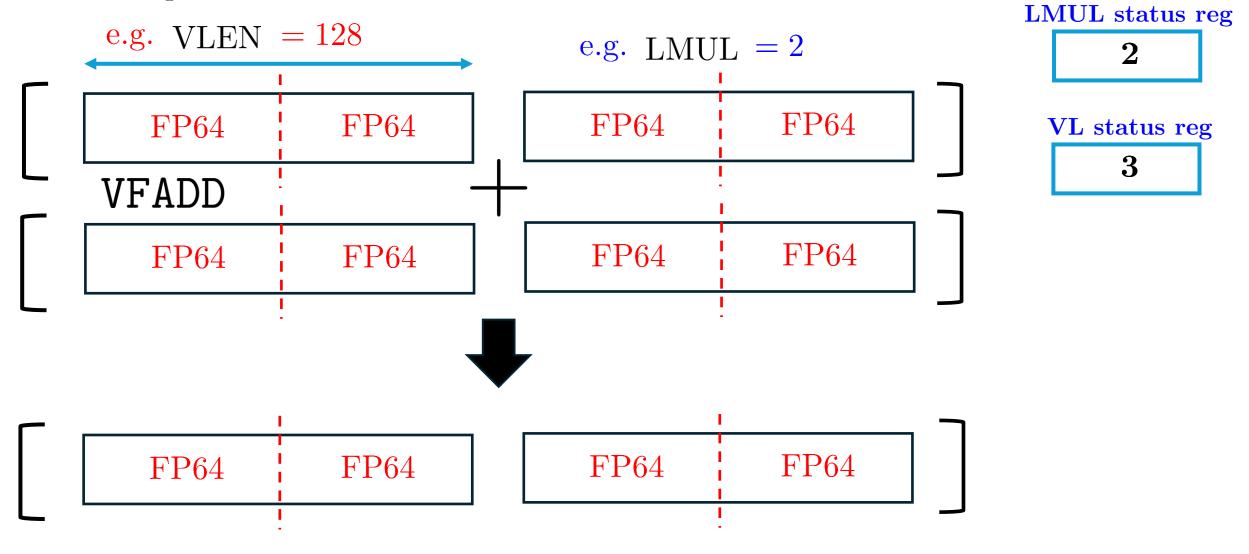


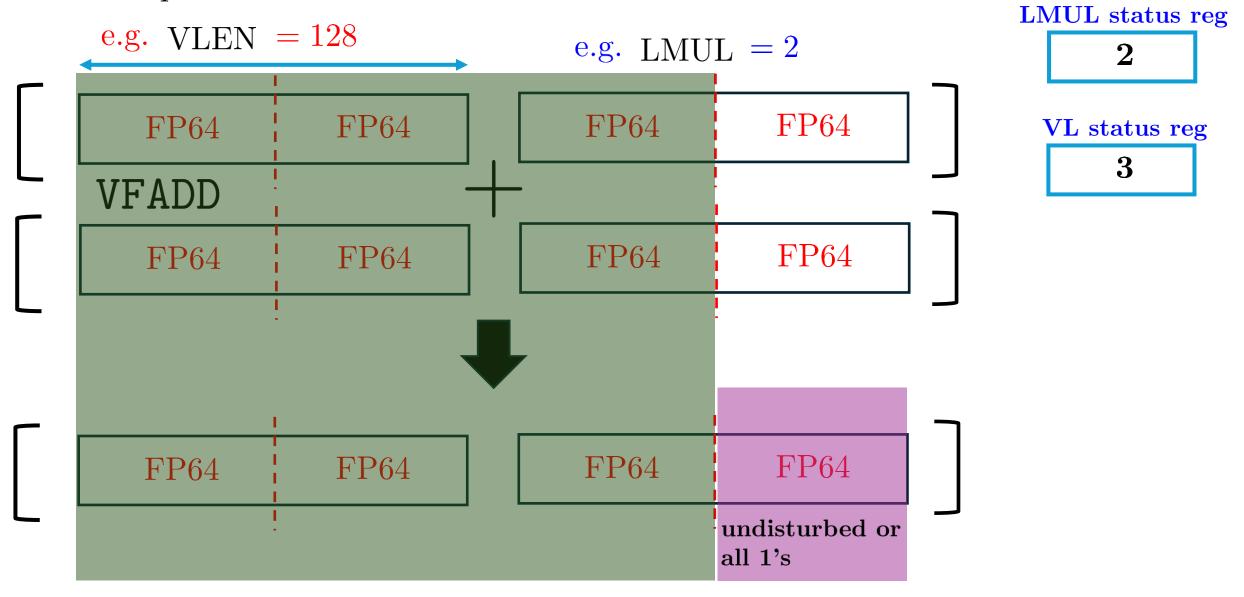
LMUL status reg

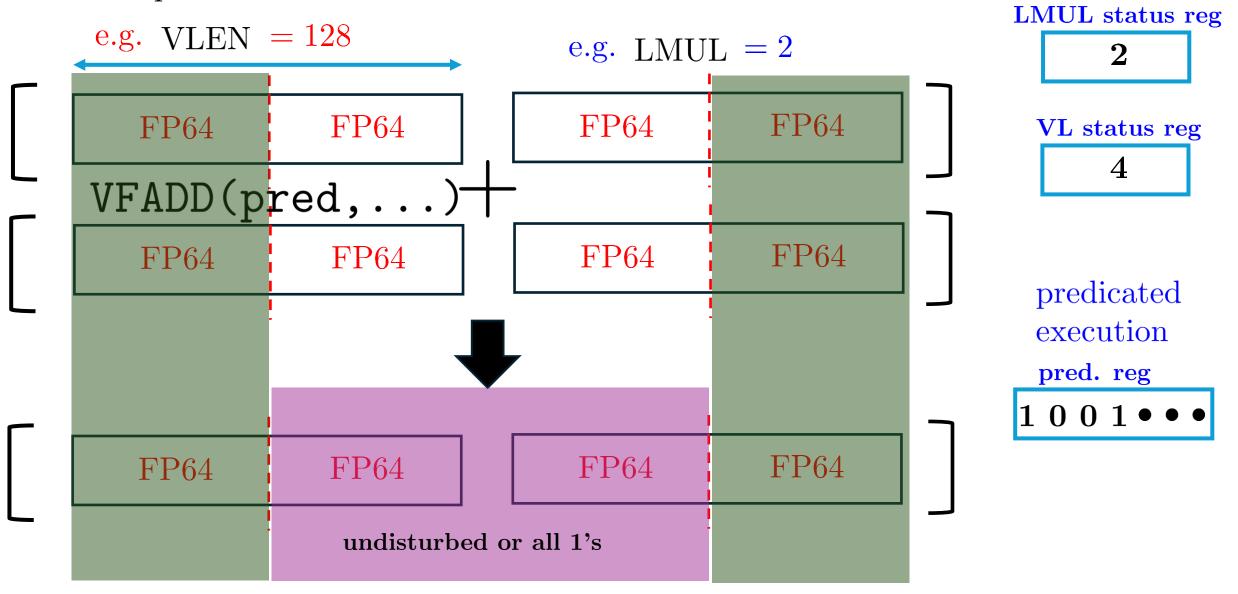
2



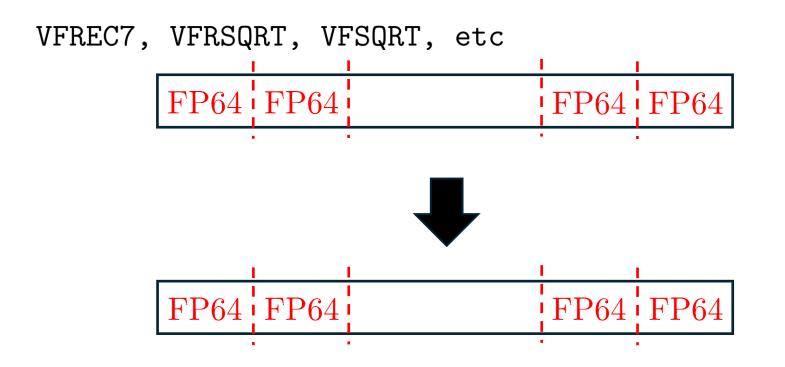




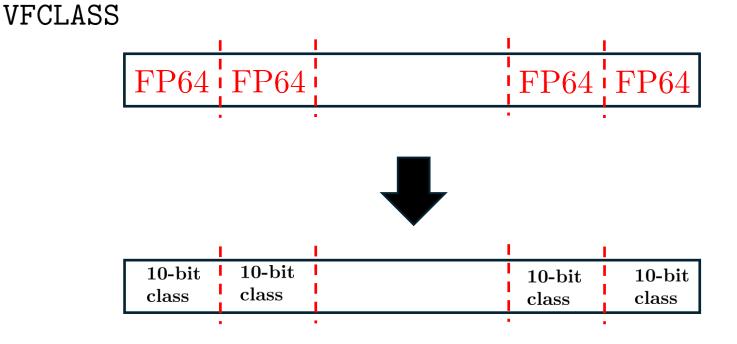




### Snapshots of RISC-V Vector ISA: Floating-Pt.

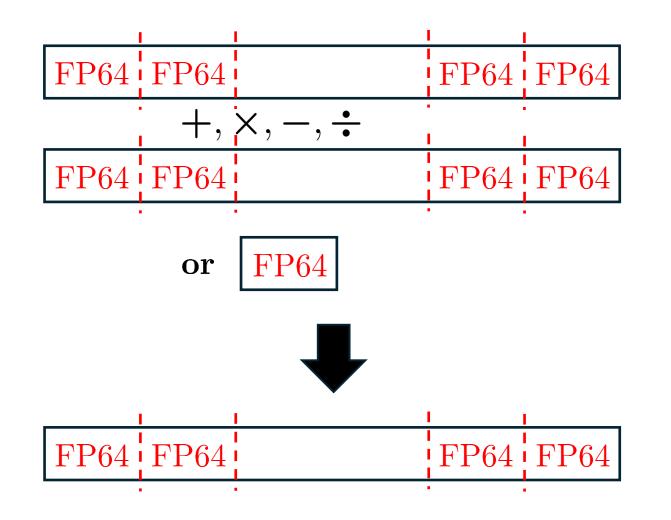


Unary FP instructions: vfrec7, vfrsqrt7, vfsqrt

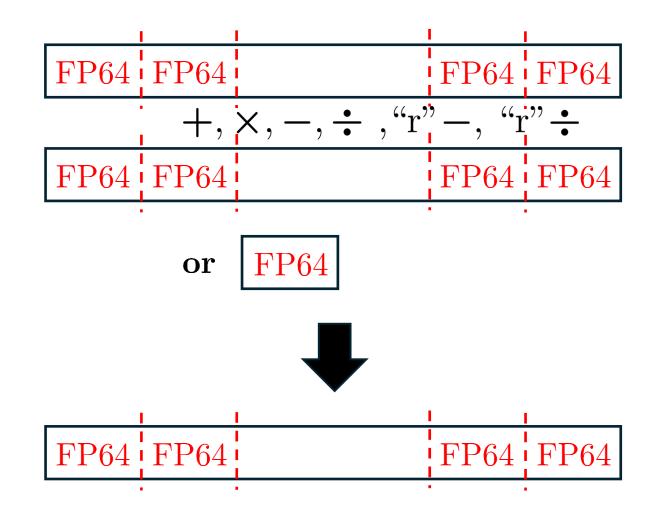


Unary FP instructions: vfrec7, vfrsqrt7, vfsqrt vfclass

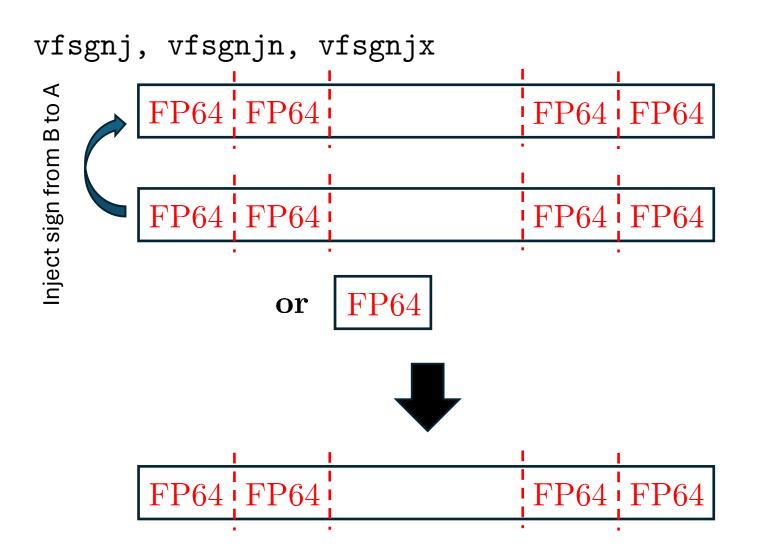
| rd bit | Meaning                             |
|--------|-------------------------------------|
|        | Ŭ                                   |
| 0      | $rs1$ is $-\infty$ .                |
| 1      | rs1 is a negative normal number.    |
| 2      | rs1 is a negative subnormal number. |
| 3      | rs1 is $-0$ .                       |
| 4      | rs1 is $+0$ .                       |
| 5      | rs1 is a positive subnormal number. |
| 6      | rs1 is a positive normal number.    |
| 7      | $rs1$ is $+\infty$ .                |
| 8      | rs1 is a signaling NaN.             |
| 9      | rs1 is a quiet NaN.                 |



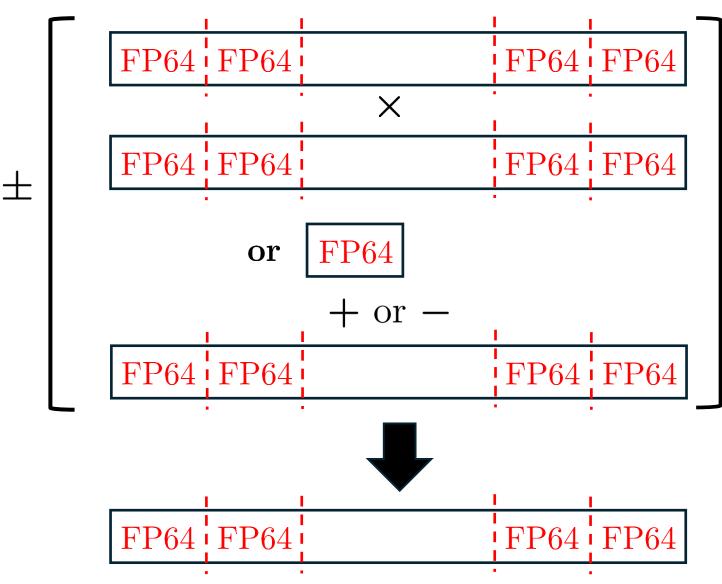
Unary FP instructions: vfrec7, vfrsqrt7, vfsqrt vfclass Binary FP instructions: vfadd, vfmul vfsub, vfdiv



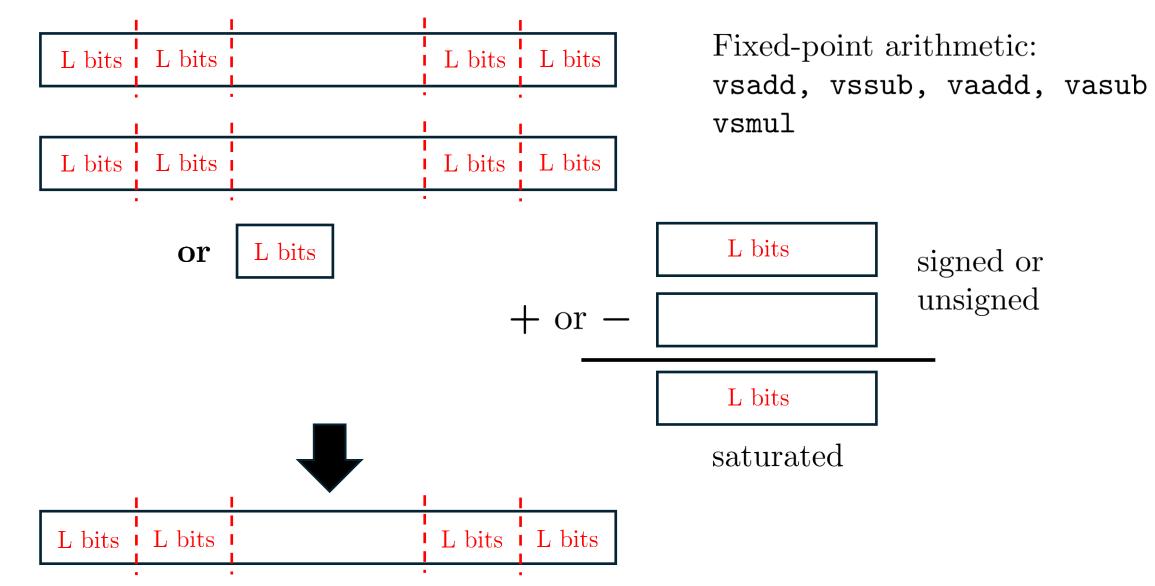
Unary FP instructions: vfrec7, vfrsqrt7, vfsqrt vfclass Binary FP instructions: vfadd, vfmul vfsub, vfdiv vfrsub, vfrdiv

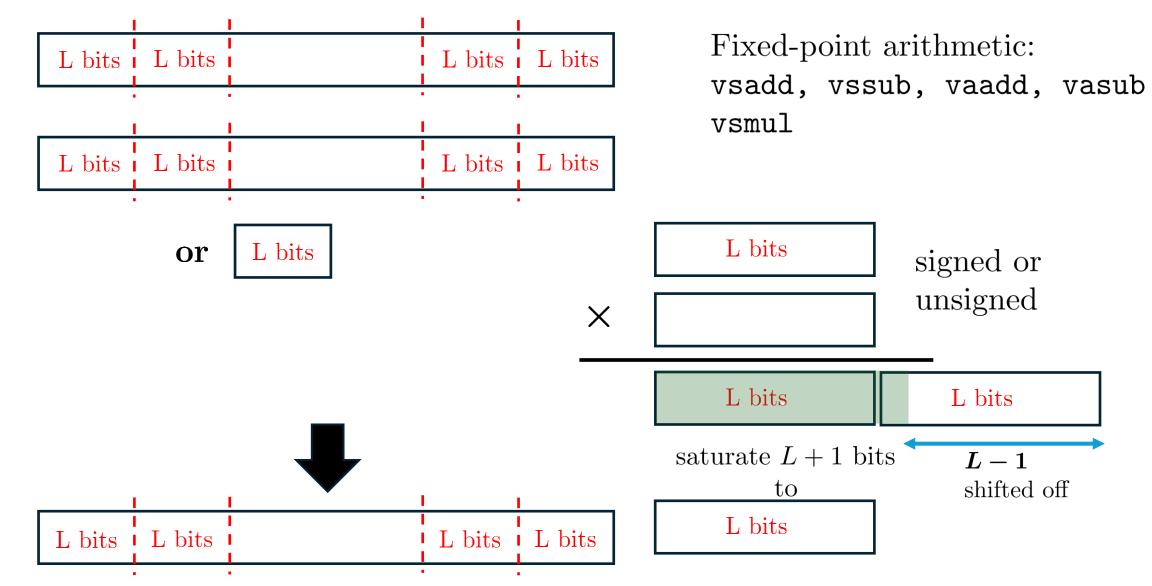


Unary FP instructions: vfrec7, vfrsqrt7, vfsqrt vfclass Binary FP instructions: vfadd, vfmul vfsub, vfdiv vfrsub, vfdiv vfrsub, vfrdiv vfsgnj, vfsgnjn, vfsgnjx

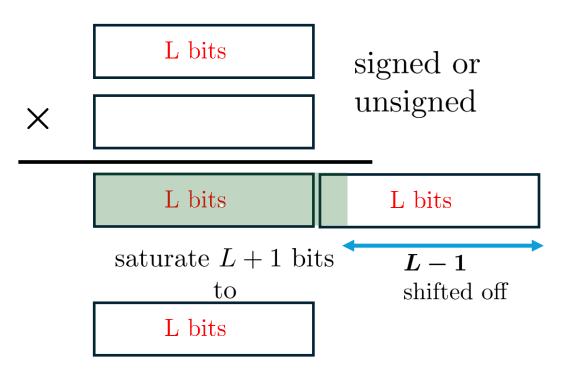


Unary FP instructions: vfrec7, vfrsqrt7, vfsqrt vfclass Binary FP instructions: vfadd, vfmul vfsub, vfdiv vfrsub, vfrdiv vfsgnj, vfsgnjn, vfsgnjx Ternary FP instructions: vf[n]madd, vf[n]msub vf[n]macc, vf[n]msac



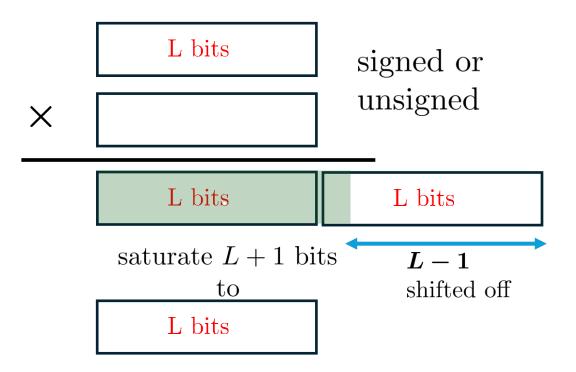


 $A = \operatorname{int}(a \times 2^{\sigma_a}) \text{ (A is } a \text{ in } Q\text{-}\sigma_a \text{ format})$   $B = \operatorname{int}(b \times 2^{\sigma_b}) \text{ (B is } b \text{ in } Q\text{-}\sigma_b \text{ format})$   $C := \operatorname{vsmul}(A, B) C \text{ is } ab \text{ in } \sigma_c \text{ format}$  $\sigma_c = \sigma_a + \sigma_b - 63$  Fixed-point arithmetic: vsadd, vssub, vaadd, vasub vsmul



 $A = \operatorname{int}(a \times 2^{\sigma_a}) \text{ (A is } a \text{ in } Q\text{-}\sigma_a \text{ format})$   $B = \operatorname{int}(b \times 2^{\sigma_b}) \text{ (B is } b \text{ in } Q\text{-}\sigma_b \text{ format})$   $C := \operatorname{vsmul}(A, B) C \text{ is } ab \text{ in } \sigma_c \text{ format}$  $\sigma_c = \sigma_a + \sigma_b - 63$ 

Fixed-point arithmetic can potentially carry 63 bits of precision Fixed-point arithmetic: vsadd, vssub, vaadd, vasub vsmul

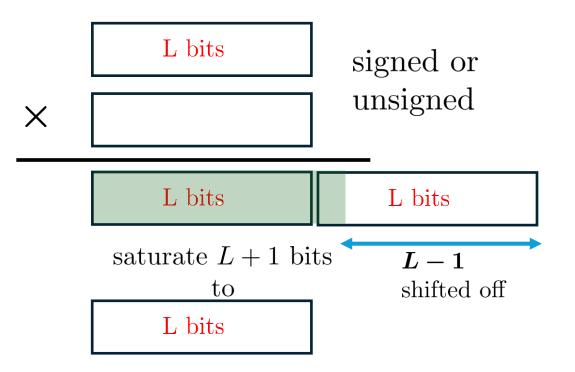


 $A = \operatorname{int}(a \times 2^{\sigma_a}) \text{ (A is } a \text{ in } Q\text{-}\sigma_a \text{ format})$   $B = \operatorname{int}(b \times 2^{\sigma_b}) \text{ (B is } b \text{ in } Q\text{-}\sigma_b \text{ format})$   $C := \operatorname{vsmul}(A, B) C \text{ is } ab \text{ in } \sigma_c \text{ format}$  $\sigma_c = \sigma_a + \sigma_b - 63$ 

Choice for scales are flexible: but 63 is nice

For example, Horner's recurrence:  $P_0 + R * (P_1 + R * (P_2 + \cdots))$ 

All  $P_j$  having the same scale and R being scaled at 63 eliminates the need for manual shifting Fixed-point arithmetic: vsadd, vssub, vaadd, vasub vsmul



# VecLibm: Strategies and Illustrations

- Exception Handling
- Precision Preservation

# **Exception Handling**

• Challenge: Need to minimize branching while returning correct value AND signal.

# **Exception Handling**

- Challenge: Need to minimize branching while returning correct value AND signal.
- General strategy

If there is some  $x \in$  exceptional arguments

set flag x\_special set result y\_special for special inputs substitute special inputs with safe values (e.g. 0.0 or 1.0)

# **Exception Handling**

- Challenge: Need to minimize branching while returning correct value AND signal.
- General strategy

If there is some  $x \in$  exceptional arguments

set flag x\_special set result y\_special for special inputs substitute special inputs with safe values (e.g. 0.0 or 1.0)

Compute result y\_normal for all (modified) inputs vmerge(y\_normal, y\_special, x\_special)

log(x)

| Value     | Result    | Signal      |
|-----------|-----------|-------------|
| $+\infty$ | $+\infty$ | None        |
| qNaN      | qNaN      | None        |
| sNaN, -ve | qNaN      | invalid     |
| $\pm 0$   | $-\infty$ | divide by 0 |

log(x)

| Value     | Result    | Signal      |
|-----------|-----------|-------------|
| $+\infty$ | $+\infty$ | None        |
| qNaN      | qNaN      | None        |
| sNaN, -ve | qNaN      | invalid     |
| $\pm 0$   | $-\infty$ | divide by 0 |

class = vfclass(vx)
x\_special = and(class,0x3BF) > 0
if (vcpop(x\_special) > 0){
// handle exceptions
 ..substitute -ve with sNaN
 ..substitute +0 with -0
 y\_special = vfadd(vx, vfrec7(vx))
 ..substitute special x with 1.0
}

log(x)

| Value     | Result    | Signal      |
|-----------|-----------|-------------|
| $+\infty$ | $+\infty$ | None        |
| qNaN      | qNaN      | None        |
| sNaN, -ve | qNaN      | invalid     |
| $\pm 0$   | $-\infty$ | divide by 0 |

class = vfclass(vx)
x\_special = and(class,0x3BF) > 0
if (vcpop(x\_special) > 0){
// handle exceptions
..substitute -ve with sNaN
..substitute +0 with -0
y\_special = vfadd(vx, vfrec7(vx))
..substitute special x with 1.0
}

```
...compute with vx as input
...yielding y_normal as result
y_result = vmerge(y_normal,
y_special, x_special)
```

asinpi(x)

| Value         | Result            | Signal  |
|---------------|-------------------|---------|
| qNaN          | qNaN              | None    |
| sNaN,  x  > 1 | qNaN              | invalid |
| $\pm 1$       | $\pm \frac{1}{2}$ | None    |

asinpi(x)

| Value         | Result            | Signal  |
|---------------|-------------------|---------|
| qNaN          | qNaN              | None    |
| sNaN,  x  > 1 | qNaN              | invalid |
| $\pm 1$       | $\pm \frac{1}{2}$ | None    |

expo = ((vx >> 52) & 0x7FF)
x\_special = expo >= 0x3FF
if (vcpop(x\_special) > 0){
//handle exceptions
..substitute |x|>1 with sNaN
..substitute +-1 with +-1/4
y\_special = vfadd(vx, vx)
..substitute special x with 0.0
}

asinpi(x)

| Value           | Result            | Signal  |
|-----------------|-------------------|---------|
| qNaN            | qNaN              | None    |
| sNaN, $ x  > 1$ | qNaN              | invalid |
| $\pm 1$         | $\pm \frac{1}{2}$ | None    |

expo = ((vx >> 52) & 0x7FF)
x\_special = expo >= 0x3FF
if (vcpop(x\_special) > 0){
//handle exceptions
..substitute |x|>1 with sNaN
..substitute +-1 with +-1/4
y\_special = vfadd(vx, vx)
..substitute special x with 0.0
}

...compute with vx as input ...yielding y\_normal as result y\_result = vmerge(y\_normal, y\_special, x\_special)

• General algorithmic approach well understood

Three steps to compute  $\exp(x)$   $r \approx x - n \log(2);$  reduction  $p \approx \exp(r);$  approximation  $e^x \approx 2^n p$  reconstruction

- General algorithmic approach well understood
- Main challenge is precision preservation

Three steps to compute  $\exp(x)$   $r \approx x - n \log(2);$  reduction  $p \approx \exp(r);$  approximation  $e^x \approx 2^n p$  reconstruction

- General algorithmic approach well understood
- Main challenge is precision preservation
  - General double-double simulation is costly (though is a reliable Plan-B)

- General algorithmic approach well understood
- Main challenge is precision preservation
  - General double-double simulation is costly (though is a reliable Plan-B)

Operations# ops, an op is 
$$+, -, \times$$
 or fmadd $d(dd) + d(dd) \rightarrow dd$ 6, 7, 8 $d(dd) \times d(dd) \rightarrow dd$ 2, 3, 4 $d(dd)/d(dd) \rightarrow dd$ 3, 4, 5 plus 1 div $\sqrt{d(dd)} \rightarrow dd$ 3, 4 plus 1 sqrt and 1 div

- General algorithmic approach well understood
- Main challenge is precision preservation
  - General double-double simulation is costly (though is a reliable Plan-B)
- Our general strategy:
  - Situation-specific extra-precision computation

- General algorithmic approach well understood
- Main challenge is precision preservation
  - General double-double simulation is costly (though is a reliable Plan-B)
- Our general strategy:
  - Situation-specific extra-precision computation

Fast2Sum: (3 ops, not 6) S := vfadd(A, B)s := vfadd(vfsub(A, S), B)

Works if  $|A| \ge |B|$ also works if  $lsb(A) \ge lsb(B)$ 

- General algorithmic approach well understood
- Main challenge is precision preservation
  - General double-double simulation is costly (though is a reliable Plan-B)
- Our general strategy:
  - Situation-specific extra-precision computation

Fast2FMA: AB + C (3 ops) S := vfmadd(A, B, C)s := vfmadd(A, B, vfsub(C, S))

Works if C - S is exact

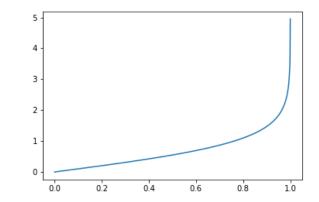
- General algorithmic approach well understood
- Main challenge is precision preservation
  - General double-double simulation is costly (though is a reliable Plan-B)
- Our general strategy:
  - Situation-specific extra-precision computation
  - Leverage mixed fixed-and-floating-point arithmetic

- General algorithmic approach well understood
- Main challenge is precision preservation
  - General double-double simulation is costly (though is a reliable Plan-B)
- Our general strategy:
  - Situation-specific extra-precision computation
  - Leverage mixed fixed-and-floating-point arithmetic

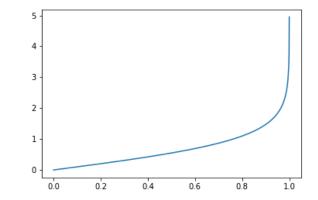
For example

$$\begin{split} y &:= p_k + r \times (p_{k+1} + r \times (p_{k+2} + \cdots)) \text{ in floating-point} \\ Y &:= \texttt{vfcvt\_x}(\texttt{vfmul}(2^q, y)) \text{ (convert to fixed point)} \\ Y &:= P_0 + R \times (P_1 + R \times (P_2 + \ldots + R \times (P_{k-1} + R \times Y))) \\ y &:= \texttt{vfmul}(\texttt{vfcvt\_f}(Y), 2^{-q}) \end{split}$$

Compute for 0 < x < 1 $\operatorname{atanh}(x) = \frac{1}{2} \log \left(\frac{1+x}{1-x}\right) \qquad \log(y) = 2 \operatorname{atanh}\left(\frac{y-1}{y+1}\right)$ 

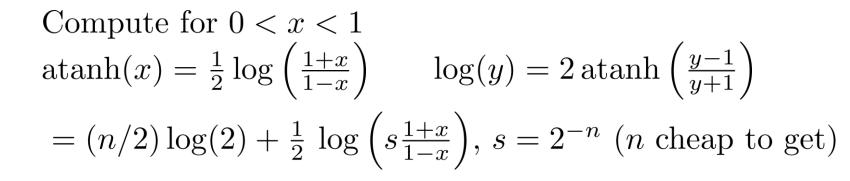


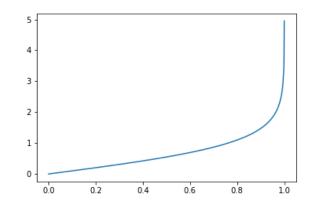
Compute for 
$$0 < x < 1$$
  
 $\operatorname{atanh}(x) = \frac{1}{2} \log \left( \frac{1+x}{1-x} \right) \qquad \log(y) = 2 \operatorname{atanh} \left( \frac{y-1}{y+1} \right)$ 



Some implementations:

get  $1 \pm x$  and their quotient in dd feed to special log that takes dd inputs which in turn scales and transform in dd computes poly. approx. of atanh

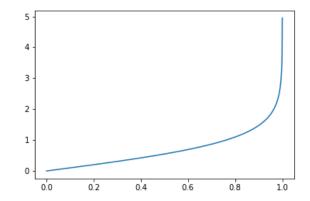




Some implementations:

get  $1 \pm x$  and their quotient in dd feed to special log that takes dd inputs which in turn scales and transform in dd computes poly. approx. of atanh VecLibm implementation: use vfrec7 to get n

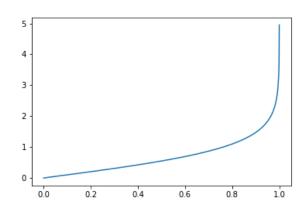
Compute for 
$$0 < x < 1$$
  
 $\operatorname{atanh}(x) = \frac{1}{2} \log \left( \frac{1+x}{1-x} \right) \quad \log(y) = 2 \operatorname{atanh} \left( \frac{y-1}{y+1} \right)$   
 $= (n/2) \log(2) + \frac{1}{2} \log \left( s \frac{1+x}{1-x} \right), \ s = 2^{-n} \ (n \text{ cheap to get})$   
 $= (n/2) \log(2) + \operatorname{atanh} \left( \frac{(1+x)-(1-x)/s}{(1+x)+(1-x)/s} \right)$ 



Some implementations:

get  $1 \pm x$  and their quotient in dd feed to special log that takes dd inputs which in turn scales and transform in dd computes poly. approx. of atanh VecLibm implementation: use vfrec7 to get n

Compute for 
$$0 < x < 1$$
  
 $\operatorname{atanh}(x) = \frac{1}{2} \log \left( \frac{1+x}{1-x} \right) \quad \log(y) = 2 \operatorname{atanh} \left( \frac{y-1}{y+1} \right)$   
 $= (n/2) \log(2) + \frac{1}{2} \log \left( s \frac{1+x}{1-x} \right), \ s = 2^{-n} \ (n \text{ cheap to get})$   
 $= (n/2) \log(2) + \operatorname{atanh} \left( \frac{(1+x)-(1-x)/s}{(1+x)+(1-x)/s} \right)$ 

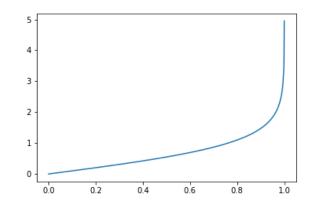


Fixed-point scale 60:  $(1 + X) \pm ((1 - X) < < n)$  yields exact value

Some implementations:

get  $1 \pm x$  and their quotient in dd feed to special log that takes dd inputs which in turn scales and transform in dd computes poly. approx. of atanh VecLibm implementation: use vfrec7 to get ncomputes numer, denom in fixed point

Compute for 
$$0 < x < 1$$
  
 $\operatorname{atanh}(x) = \frac{1}{2} \log \left( \frac{1+x}{1-x} \right) \quad \log(y) = 2 \operatorname{atanh} \left( \frac{y-1}{y+1} \right)$   
 $= (n/2) \log(2) + \frac{1}{2} \log \left( s \frac{1+x}{1-x} \right), \ s = 2^{-n} \ (n \text{ cheap to get})$   
 $= (n/2) \log(2) + \operatorname{atanh} \left( \frac{(1+x)-(1-x)/s}{(1+x)+(1-x)/s} \right)$ 



Fixed-point scale 60:  $(1 + X) \pm ((1 - X) < < n)$  yields exact value

Fixed-point NUMER, DENOM  $\rightarrow$  (a\_hi,a\_lo), (b\_hi,b\_lo)

Obtain dd quotient (r, r\_lo)

$$(n/2)\log(2) + r + r_lo + r^3p(r^2)$$

VecLibm implementation: use vfrec7 to get n computes numer, denom in fixed point get extra-precise FP input to atanh poly use floating-point computation onwards

#### VecLibm: Current Status At-a-Glance

| Library Functions      |        |       | Maximum Deviation in ulps |      |      |      |      |
|------------------------|--------|-------|---------------------------|------|------|------|------|
| exp                    | exp2   | exp10 | expm1                     | 0.56 | 0.56 | 0.75 | 0.77 |
| when result underflows |        |       | 0.77                      | 0.77 | 0.82 | N/A  |      |
| log                    | log2   | log10 | log1p                     | 0.55 | 0.57 | 0.56 | 0.66 |
| pow                    | cbrt   |       |                           | 0.55 | 0.52 |      |      |
| sin                    | sinpi  | COS   | cospi                     | 0.79 | 0.76 | 0.76 | 0.77 |
| tan                    | tanpi  |       |                           | 0.62 | 0.61 |      |      |
| sinh                   | cosh   | tanh  |                           | 0.67 | 0.59 | 0.76 |      |
| asin                   | asinpi | acos  | acospi                    | 0.66 | 0.71 | 0.64 | 0.65 |
| atan                   | atanpi | atan2 | atan2pi                   | 0.55 | 0.55 | 0.55 | 0.55 |
| atan2pi underflows     |        | 0.75  |                           |      |      |      |      |
| asinh                  | acosh  | atanh |                           | 0.55 | 0.56 | 0.54 |      |

https://github.com/rivosinc/veclibm