An Open-Source RISC-V
Vector Math Library

Ping Tak Peter Tang
Rivos Inc.
June 11, 2024
ARITH 2024, Malaga, Spain

An Open-Source RISC-V VecLibm

* Background and Motivation

* Snapshots of RISC-V Vector ISA

* RISC-V Vector Math Library: Strategies and lllustrations
* Rivos FP64 Vector Libm current status — at a glance

Background and Motivation

* RISC-V: An open ISA first developed in 2011
* Two distinguished features: modular and extensible

Background and Motivation

* RISC-V: An open ISA first developed in 2011
* Two distinguished features: modular and extensible

Mandatory
Base

Integer ISA

Background and Motivation

* RISC-V: An open ISA first developed in 2011
* Two distinguished features: modular and extensible

Mandatory Extension:

Base Crypto ISA
Integer ISA

Background and Motivation

* RISC-V: An open ISA first developed in 2011
* Two distinguished features: modular and extensible

Extension:

Base Crypto ISA Manipulation
Integer ISA ISA

Background and Motivation

* RISC-V: An open ISA first developed in 2011
* Two distinguished features: modular and extensible

Extension:
Mandatory Extension: Bit Extension:

Base Crypto ISA Manipulation Vector ISA
Integer ISA ISA

Background and Motivation

* RISC-V: An open ISA first developed in 2011
* Two distinguished features: modular and extensible

Extension: Extension:
Mandatory Extension: Bit Extension: future

Base Crypto ISA Manipulation VectoriSA ©® ® @ 1BD
Integer ISA ISA

Background and Motivation

* RISC-V: An open ISA first developed in 2011
* Two distinguished features: modular and extensible
* Open ISA: accelerates innovations via robust ecosystems

Background and Motivation

* RISC-V: An open ISA first developed in 2011
* Two distinguished features: modular and extensible
* Open ISA: accelerates innovations via robust ecosystems

* Open RISC-V Vector Libms are worthy additions

* FP64 vector libm fits the need to traditional computational science and
HPC

Background and Motivation

* RISC-V: An open ISA first developed in 2011
* Two distinguished features: modular and extensible
* Open ISA: accelerates innovations via robust ecosystems

* Open RISC-V Vector Libms are worthy additions

* FP64 vector libm fits the need to traditional computational science and
HPC

In math.h exp(x), sin(x), atan(x), etc.

Background and Motivation

* RISC-V: An open ISA first developed in 2011
* Two distinguished features: modular and extensible
* Open ISA: accelerates innovations via robust ecosystems

* Open RISC-V Vector Libms are worthy additions

* FP64 vector libm fits the need to traditional computational science and
HPC

In math.h exp(x), sin(x), atan(x), etc.

Scalar: Vector:
double exp(double x); VS. void vec_exp(int N, const double* x, doublex y);

Background and Motivation

* RISC-V: An open ISA first developed in 2011
* Two distinguished features: modular and extensible
* Open ISA: accelerates innovations via robust ecosystems

* Open RISC-V Vector Libms are worthy additions

* FP64 vector libm fits the need to traditional computational science and
HPC
* Requires experience to construct a numerically reliable library

* Scope is modest that a start up can undertake as a good-citizen project

Snapshots of RISC-V Vector ISA: General

32 architectural registers
VLEN implementation defined

e.g. VLEN = 128

<

FP64 FP64

32 architectural registers

VLEN implementation defined
e.g. VLEN = 128 Registers are type agnostic:

< > Just a number of bits,
to be interpreted in the context
FP64 of the instructions

FP64

32 architectural registers Can configure; group LMUL physical regs
VLEN implementation defined to form one logical vector reg.

e.g. VLEN = 128

< >

FP64 FP64

32 architectural registers Can configure; group LMUL physical regs

VLEN implementation defined to form one logical vector reg.
B LMUL status reg
¢ VLEN =128 e.g. LMUL =2 2

< >

FP64

FP64 FP64 | FP64

32 architectural registers Can configure; group LMUL physical regs

VLEN implementation defined to form one logical vector reg.
LMUL status reg

4e.g. VLEN |: 128 » e.o. LMUIL —9 5
FP64 ; FP64 FP64 ; FP64
~ VFADD —+ |
FP64 i FP64 FP64 i FP64
\ 4

FP64 FP64 FP64 FP64

32 architectural registers Can configure; group LMUL physical regs

VLEN implementation defined to form one logical vector reg.
LMUL status reg

4e.g. VLEN |: 128 » e.o. LMUIL —9 5
FP64 ; FP64 FP64 ; FP64 VL status reg
~ VFADD | —+ | >
FP64 FP64 FP64 FP64
' \ 4

FP64 FP64 FP64 FP64

32 architectural registers Can configure; group LMUL physical regs

VLEN implementation defined to form one logical vector reg.
LMUL status reg

2|
VL status reg
4 3

<

32 architectural registers Can configure; group LMUL physical regs
VLEN implementation defined to form one logical vector reg.

LMUL status reg

2|
VL status reg
4 4]

<

predicated
execution
pred. reg

100100

Snapshots of RISC-V Vector ISA: Floating-Pt.

Some Useful Vector Instructions for Veclibm

VFREC7, VFRSQRT, VFSQRT, etc Unary FP instructions:
! ! virec7, virsqrt7, visqrt

FP64 1 FP64 FP64 1 FP64

B

FP64 1 FP64 | FP641 FP64

Some Useful Vector Instructions for Veclibm

Unary FP instructions:
virec7, vifrsqrt7, visqrt

VECLASS

I I | I
| | | |
FP64 1 FP64 ! | FP64 1 FP64 viclass
rd bit | Meaning
0 | rslis —oc.
| rsl is a negative normal number,
I I ! I 2 rsl is a negative subnormal number.
10-bit I 10-bit ! | 10-bit | 10-bit 3 | rslis —0.
class | class | | class | class | rstis +0.
’ ’) ’ 5 rsl is a positive subnormal number.
6 rsl is a positive normal number.
fi ral 18 400,
X rsl is a signaling NalN.
9 rsl is a quiet NaN.

Some Useful Vector Instructions for Veclibm

FP64 1 FP64 | FP64
; _I_a ;X7_7+ : ,
FP64 1 FP64 | FP641 FP64

or | P64
: | FP64 1 FP64

FP64 1 FP64

Unary FP instructions:
virec7, vifrsqrt7, visqrt
viclass

Binary FP instructions:
vfadd, vimul

visub, vfdiv

I I
FP64 1 FP64 | FP64 1 FP64
; _I_’ IX’ —, +)CCI.?_, CCI;.77+
| |
FP64 1 FP64 | FP64 1 FP64
or | P64
| | | |
| |
| |
l

FP64 1 FP64

Some Useful Vector Instructions for Veclibm

Unary FP instructions:
virec7, virsqrt7, visqrt
vfclass

Binary FP instructions:
vfadd, vimul

visub, vfdiv
virsub, vfrdiv

Some Useful Vector Instructions for Veclibm

visgnj, visgnjn, visgnjx
| |

I I
<
2 |FP641FP6; | FP641 FP64
- . . .
: C | : : |
@ FPG64 1 FP64 'FP64 1 FP64
£ or | kP64
I I : I
1 1 1
FP64 1 FP64 1 'FP64 1 FP64

Unary FP instructions:
virec7, virsqrt7, visqrt
vfclass

Binary FP instructions:
vfadd, vimul

visub, vfdiv
virsub, vfrdiv

visgnj, visgnjn, visgnjx

Some Useful Vector Instructions for Veclibm

| 1
FP64 1 FP64 1 :51964::FT?64 Unary FP instructions:
: : : : virec7, vfrsqrt7, visqrt

vfclass

FP64 Binary FP instructions:

' ' : vfadd, vimul

or | P64 visub, vfdiv.

virsub, vfrdiv

or — visgnj, visgnjn, visgnjx

X

FP64 1 FP64

FP64 1 FP64

|
| FP64 Ternary FP instructions:
' _ vf [n]madd, vf[n]lmsub

‘ vf [n]lmacc, vf[n]msac

FP64 1 FP64

Some Useful Vector Instructions for Veclibm

Fixed-point arithmetic:

| |
L bits : L. bits L bits : L bits
. . vsadd, vssub, vaadd, vasub
[[1 [vsmul
| |
L bits 1 L bits 1 | L bits 1 L bits
| | | |
or | L bits L bits signed or
unsigned
+ or —
L bits
‘ saturated
| | | |
| | | |
L bits 1 L bits 1 ! L bits 1 L bits
|] |

Some Useful Vector Instructions for Veclibm

Fixed-point arithmetic:

| |
L bits : L. bits L bits : L bits
, ! vsadd, vssub, vaadd, wvasub
[[| I vsmul
| |
L bits : L bits 1 I L bits : L bits
]] 1 |
or L bits L bits Signed or
unsigned
X g
L bits L bits
‘ saturate L + 1 bits L—-1 g
| : | | to shifted off
I]] 7 :
L bits 1 L bits 1 ' L bits 1 L bits L bits
| | |

Some Useful Vector Instructions for Veclibm

A =int(a x 29¢) (A is a in Q-0, format)
B =int(b x 29%) (B is b in Q-0 format)
C' :=vsmul(A, B) C is ab in . format
Oc =04+ 0p — 63

Fixed-point arithmetic:
vsadd, vssub, vaadd, vasub
vsmul

L bits .
signed or
unsigned
L bits L bits

saturate L + 1 bits L—-1
to shifted off

L bits

Some Useful Vector Instructions for Veclibm

Fixed-point arithmetic:

A =int(a x 27¢) (A is a in Q-0, format) vsadd, vssub, vaadd, vasub

B =int(b x 29%) (B is b in Q-0 format) vemul
C' :=vsmul(A, B) C is ab in . format
O, = 04 + 0p — 63

L bits signed or
Fixed-point arithmetic can % unsigned
potentially carry 63 bits of
precision L bits L bits

saturate L + 1 bits < L —1
to shifted off

L bits

Some Useful Vector Instructions for Veclibm

A =int(a x 29¢) (A is a in Q-0, format)
B =int(b x 29%) (B is b in Q-0 format)
C' :=vsmul(A, B) C is ab in . format
Oc =04+ 0p — 63

Choice for scales are flexible: but 63 is nice

For example, Horner’s recurrence:

All P; having the same scale
and R being scaled at 63
eliminates the need for
manual shifting

Fixed-point arithmetic:
vsadd, vssub, vaadd, vasub
vsmul

L bits .
signed or
unsigned
L bits L bits

saturate L + 1 bits < L —1
to shifted off

L bits

VecLibm: Strategies and lllustrations

* Exception Handling
 Precision Preservation

Exception Handling

* Challenge: Need to minimize branching while returning correct
value AND signal.

Exception Handling

* Challenge: Need to minimize branching while returning correct
value AND signal.

* General strategy

If there is some x € exceptional arguments

set flag x_special
set result y_special for special inputs
substitute special inputs with safe values (e.g. 0.0 or 1.0)

Exception Handling

* Challenge: Need to minimize branching while returning correct
value AND signal.

* General strategy

If there is some x € exceptional arguments

set flag x_special
set result y_special for special inputs
substitute special inputs with safe values (e.g. 0.0 or 1.0)

Compute result y_normal for all (modified) inputs
vmerge (y_normal, y_special, x_special)

Exception Handling: example

log(x)
Value Result Signal
+00 +00 None
gqNaN gNaN None
sNaN, -ve gNalN invalid
+0 —o0 divide by 0

Exception Handling: example

log(x)
Value Result Signal

+00 +00 None

gqNaN gNaN None

sNaN, -ve gNalN invalid
+0 —o0 divide by 0

class = vfclass(vx)
x_special = and(class,0x3BF) > 0
if (vcpop(x_special) > 0){
// handle exceptions
. .substitute -ve with sNaN
. .substitute +0 with -0
y_special = vfadd(vx, virec7(vx))
. .substitute special x with 1.0

}

Exception Handling: example

class = vfclass(vx)
x_special = and(class,0x3BF) > 0
if (vcpop(x_special) > 0){
// handle exceptions
. .substitute -ve with sNaN
. .substitute +0 with -0
y_special = vfadd(vx, virec7(vx))
. .substitute special x with 1.0

}

...compute with vx as input

...ylelding y_normal as result

y_result = vmerge(y_normal,
y_special, x_special)

log(x)

Value Result Signal
+00 +00 None
gqNaN gNaN None
sNaN, -ve gNalN invalid
+0 —o0 divide by 0

Exception Handling: example

asinpi(x)

Value Result Signal
gNaN gNaN None
sNaN, || >1 gNaN invalid
+1 +1 None

Exception Handling: example

expo = ((vx >> 52) & Ox7FF)
X_special = expo >= Ox3FF
if (vcpop(x_special) > 0){
//handle exceptions
. .substitute |x|>1 with sNalN
. .substitute +-1 with +-1/4
y_special = vfadd(vx, vx)

asinpi (x) . .substitute special x with 0.0
}
Value Result Signal
gNaN gNaN None

sNaN, || >1 gNaN invalid
+1 +1 None

Exception Handling: example

asinpi(x)

Value Result Signal
gNaN gNaN None
sNaN, || >1 gNaN invalid
+1 +1 None

expo = ((vx >> 52) & Ox7FF)
X_special = expo >= Ox3FF
if (vcpop(x_special) > 0){
//handle exceptions
. .substitute [|x[>1 with sNaN
. .substitute +-1 with +-1/4
y_special = vfadd(vx, vx)
. .substitute special x with 0.0

}

...compute with vx as input

...ylelding y_normal as result

y_result = vmerge(y_normal,
y_special, x_special)

Precision Preservation

Precision Preservation

* General algorithmic approach well understood

Three steps to compute exp(x)

r~r—nlog(2): reduction
p = exp(r): approximation

e’ ~2"p reconstruction

Precision Preservation

* General algorithmic approach well understood
* Main challenge is precision preservation

Three steps to compute exp(x)

r~r —nlog(2); reduction
p = exp(r): approximation

e’ ~2"p reconstruction

Precision Preservation

* General algorithmic approach well understood

* Main challenge is precision preservation
* General double-double simulation is costly (though is a reliable Plan-B)

Precision Preservation

* General algorithmic approach well understood

* Main challenge is precision preservation
* General double-double simulation is costly (though is a reliable Plan-B)

Operations # ops, an op 1S 4+, —, X or fmadd
d(dd) 4+ d(dd) — dd 6,7, 8
d(dd) x d(dd) — dd 2,3, 4
d(dd)/d(dd) — dd 3, 4,5 plus 1 div

v d(dd) — dd 3, 4 plus 1 sqrt and 1 div

Precision Preservation

* General algorithmic approach well understood

* Main challenge is precision preservation
* General double-double simulation is costly (though is a reliable Plan-B)

* Our general strategy:
* Situation-specific extra-precision computation

Precision Preservation

* General algorithmic approach well understood

* Main challenge is precision preservation
* General double-double simulation is costly (though is a reliable Plan-B)

* Our general strategy:
* Situation-specific extra-precision computation

Fast2Sum: (3 ops, not 6) Works if |A| > | B|

5 = vfadd(4, B) also works if 1sb(A) > Isb(B)
s := vfadd(vfsub(A4,S), B)

Precision Preservation

* General algorithmic approach well understood

* Main challenge is precision preservation
* General double-double simulation is costly (though is a reliable Plan-B)

* Our general strategy:
* Situation-specific extra-precision computation

Fast2FMA: AB + C (3 ops)
S = vfmadd(A, B, C)
s := vfmadd(A, B, vEfsub(C, 5))

Works if C' — §' is exact

Precision Preservation

* General algorithmic approach well understood

* Main challenge is precision preservation
* General double-double simulation is costly (though is a reliable Plan-B)

* Our general strategy:
* Situation-specific extra-precision computation
* Leverage mixed fixed-and-floating-point arithmetic

Precision Preservation

* General algorithmic approach well understood

* Main challenge is precision preservation
* General double-double simulation is costly (though is a reliable Plan-B)

* Our general strategy:
* Situation-specific extra-precision computation
* Leverage mixed fixed-and-floating-point arithmetic

Y :=pr+7r X (Prr1+7 X (Prg2 +--+)) in floating-point

For Y := vicvt x(vEimul(29,y)) (convert to fixed point)

example Yy .— P+ RX (PL+RX(Po+ ...+ Rx (Py_1 + RxY)))
y = vimul(vicvt _£(Y),279)

Precision Preservation: An example

Compute for 0 < x < 1

Precision Preservation: An example

Compute for 0 < x < 1

Some implementations:
get 1 & x and their quotient in dd
feed to special 1log that takes dd inputs
which in turn scales and transform in dd
computes poly. approx. of atanh

Precision Preservation: An example

Compute for 0 < z < 1
atanh(x) = 1 log (Hm) log(y) = 2 atanh (+1)

= (n/2)log(2) + % log (1+3’), s = 27" (n cheap to get)

Some implementations: VecLibm implementation:
get 1 & x and their quotient in dd use virec7 to get n
feed to special 1log that takes dd inputs
which in turn scales and transform in dd
computes poly. approx. of atanh

Precision Preservation: An example

Compute for 0 < x < 1
atanh(z) = 1 log (E—i) log(y) = 2 atanh (+1)

= (n/2)log(2) + % log (1+3’), s = 27" (n cheap to get)

= (n/2)log(2) + atanh (813;8:3?2)

Some implementations: VecLibm implementation:
get 1 & x and their quotient in dd use virec7 to get n
feed to special 1log that takes dd inputs
which in turn scales and transform in dd
computes poly. approx. of atanh

Precision Preservation: An example

Compute for 0 < x < 1
atanh(x) = 1 log (E—i) log(y) = 2atanh (+1)

= (n/2)log(2) + % log (1+3’), s = 27" (n cheap to get)

= (n/2)log(2) + atanh (813;8:3?2)

Fixed-point scale 60: (1 + X) £ ((1 — X) << n) yields exact value

Some implementations: VecLibm implementation:
get 1 & x and their quotient in dd use virec7 to get n
feed to special 1log that takes dd inputs computes numer, denom in fixed point

which in turn scales and transform in dd
computes poly. approx. of atanh

Precision Preservation: An example

Compute for 0 < x < 1
atanh(z) = 1 log (E—i) log(y) = 2 atanh (+1)

= (n/2)log(2) + % log (1+3’), s = 27" (n cheap to get)

= (n/2)log(2) + atanh (813;8:3?2)

Fixed-point scale 60: (1 + X) £ ((1 — X) << n) yields exact value

Fixed—poin.t NUMER, .DENOM VecLibm implementation:
— (a‘hi,a_lo), (b_hi,b_lo) use virec7 to get n

Obtain dd quotient (r, r_lo) computes numer, denom in fixed point
get extra-precise FP input to atanh poly
(n/2)log(2) +r +rlo+r°p(r?) use floating-point computation onwards

VecLibm: Current Status At-a-Glance

Library Functions Maximum Deviation in ulps

exp exp2 expl0 expml 0.56 056 0.75 0.77

when result underflows 0.77 0.77 082 N/A
log log2 logl0 loglp 0.55 057 0.56 0.66
pow cbrt 0.55 0.52
sin sinpi cos cospi 0.79 0.76 0.76 0.77
tan tanpi 0.62 0.61
sinh cosh tanh 0.67 0.59 0.76
asin asinpi acos acospi 0.66 0.71 0.64 0.65
atan atanpi atan2 atan2pi | 0.55 0.55 055 0.55
atan2p1 underflows 0.75
asinh acosh atanh 0.55 056 0.54

https://github.com/rivosinc/veclibm

	Slide 1: An Open-Source RISC-V Vector Math Library
	Slide 2: An Open-Source RISC-V VecLibm
	Slide 3: Background and Motivation
	Slide 4: Background and Motivation
	Slide 5: Background and Motivation
	Slide 6: Background and Motivation
	Slide 7: Background and Motivation
	Slide 8: Background and Motivation
	Slide 9: Background and Motivation
	Slide 10: Background and Motivation
	Slide 11: Background and Motivation
	Slide 12: Background and Motivation
	Slide 13: Background and Motivation
	Slide 14: Snapshots of RISC-V Vector ISA: General
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Some Useful Vector Instructions for Veclibm
	Slide 25: Some Useful Vector Instructions for Veclibm
	Slide 26: Some Useful Vector Instructions for Veclibm
	Slide 27: Some Useful Vector Instructions for Veclibm
	Slide 28: Some Useful Vector Instructions for Veclibm
	Slide 29: Some Useful Vector Instructions for Veclibm
	Slide 30: Some Useful Vector Instructions for Veclibm
	Slide 31: Some Useful Vector Instructions for Veclibm
	Slide 32: Some Useful Vector Instructions for Veclibm
	Slide 33: Some Useful Vector Instructions for Veclibm
	Slide 34: Some Useful Vector Instructions for Veclibm
	Slide 35: VecLibm: Strategies and Illustrations
	Slide 36: Exception Handling
	Slide 37: Exception Handling
	Slide 38: Exception Handling
	Slide 39: Exception Handling: example
	Slide 40: Exception Handling: example
	Slide 41: Exception Handling: example
	Slide 42: Exception Handling: example
	Slide 43: Exception Handling: example
	Slide 44: Exception Handling: example
	Slide 45: Precision Preservation
	Slide 46: Precision Preservation
	Slide 47: Precision Preservation
	Slide 48: Precision Preservation
	Slide 49: Precision Preservation
	Slide 50: Precision Preservation
	Slide 51: Precision Preservation
	Slide 52: Precision Preservation
	Slide 53: Precision Preservation
	Slide 54: Precision Preservation
	Slide 55: Precision Preservation: An example
	Slide 56: Precision Preservation: An example
	Slide 57: Precision Preservation: An example
	Slide 58: Precision Preservation: An example
	Slide 59: Precision Preservation: An example
	Slide 60: Precision Preservation: An example
	Slide 61: VecLibm: Current Status At-a-Glance
	Slide 62

