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Scalar: Vector:
double exp(double x); VS. void vec_exp(int N, const double* x, doublex y);



Background and Motivation

* RISC-V: An open ISA first developed in 2011
* Two distinguished features: modular and extensible
* Open ISA: accelerates innovations via robust ecosystems

* Open RISC-V Vector Libms are worthy additions

* FP64 vector libm fits the need to traditional computational science and
HPC
* Requires experience to construct a numerically reliable library

* Scope is modest that a start up can undertake as a good-citizen project



Snapshots of RISC-V Vector ISA: General
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32 architectural registers

VLEN implementation defined
e.g. VLEN = 128 Registers are type agnostic:

< > Just a number of bits,
to be interpreted in the context
FP64 of the instructions

FP64
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32 architectural registers Can configure; group LMUL physical regs
VLEN implementation defined to form one logical vector reg.

LMUL status reg
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Snapshots of RISC-V Vector ISA: Floating-Pt.



Some Useful Vector Instructions for Veclibm

VFREC7, VFRSQRT, VFSQRT, etc Unary FP instructions:
! ! virec7, virsqrt7, visqrt
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Some Useful Vector Instructions for Veclibm

Unary FP instructions:
virec7, vifrsqrt7, visqrt

VECLASS

I I | I
| | | |
FP64 1 FP64 ! | FP64 1 FP64 viclass
rd bit | Meaning
0 | rslis —oc.
| rsl is a negative normal number,
I I ! I 2 rsl is a negative subnormal number.
10-bit I 10-bit ! | 10-bit | 10-bit 3 | rslis —0.
class | class | | class | class | rstis +0.
’ ’ ) ’ 5 rsl is a positive subnormal number.
6 rsl is a positive normal number.
fi ral 18 400,
X rsl is a signaling NalN.
9 rsl is a quiet NaN.
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FP64 1 FP64 | FP64
; _I_a ;X7_7+ : ,
FP64 1 FP64 | FP641 FP64

or | P64
: | FP64 1 FP64

FP64 1 FP64

Unary FP instructions:
virec7, vifrsqrt7, visqrt
viclass

Binary FP instructions:
vfadd, vimul

visub, vfdiv
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Some Useful Vector Instructions for Veclibm

Unary FP instructions:
virec7, virsqrt7, visqrt
vfclass

Binary FP instructions:
vfadd, vimul

visub, vfdiv
virsub, vfrdiv



Some Useful Vector Instructions for Veclibm

visgnj, visgnjn, visgnjx
| |

I I
<
2 |FP641FP6; | FP641 FP64
- . . .
: C | : : |
@ FPG64 1 FP64 'FP64 1 FP64
£ or | kP64
I I : I
1 1 1
FP64 1 FP64 1 'FP64 1 FP64

Unary FP instructions:
virec7, virsqrt7, visqrt
vfclass

Binary FP instructions:
vfadd, vimul

visub, vfdiv
virsub, vfrdiv
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Some Useful Vector Instructions for Veclibm

| 1
FP64 1 FP64 1 :51964::FT?64 Unary FP instructions:
: : : : virec7, vfrsqrt7, visqrt

vfclass

FP64 Binary FP instructions:

' ' : vfadd, vimul

or | P64 visub, vfdiv.

virsub, vfrdiv

or — visgnj, visgnjn, visgnjx

X

FP64 1 FP64

FP64 1 FP64

|
| FP64 Ternary FP instructions:
' _ vf [n]madd, vf[n]lmsub

‘ vf [n]lmacc, vf[n]msac

FP64 1 FP64




Some Useful Vector Instructions for Veclibm

Fixed-point arithmetic:

| |
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| | | |
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Some Useful Vector Instructions for Veclibm

Fixed-point arithmetic:

| |
L bits : L. bits L bits : L bits
, ! vsadd, vssub, vaadd, wvasub
[ [ | I vsmul
| |
L bits : L bits 1 I L bits : L bits
] ] 1 |
or L bits L bits Signed or
unsigned
X g
L bits L bits
‘ saturate L + 1 bits L—-1 g
| : | | to shifted off
I ] ] 7 :
L bits 1 L bits 1 ' L bits 1 L bits L bits
| | |



Some Useful Vector Instructions for Veclibm
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Some Useful Vector Instructions for Veclibm

Fixed-point arithmetic:

A =int(a x 27¢) (A is a in Q-0, format) vsadd, vssub, vaadd, vasub

B =int(b x 29%) (B is b in Q-0 format) vemul
C' :=vsmul(A, B) C is ab in . format
O, = 04 + 0p — 63

L bits signed or
Fixed-point arithmetic can % unsigned
potentially carry 63 bits of
precision L bits L bits

saturate L + 1 bits < L —1
to shifted off

L bits




Some Useful Vector Instructions for Veclibm

A =int(a x 29¢) (A is a in Q-0, format)
B =int(b x 29%) (B is b in Q-0 format)
C' :=vsmul(A, B) C is ab in . format
Oc =04+ 0p — 63

Choice for scales are flexible: but 63 is nice

For example, Horner’s recurrence:

All P; having the same scale
and R being scaled at 63
eliminates the need for
manual shifting

Fixed-point arithmetic:
vsadd, vssub, vaadd, vasub
vsmul

L bits .
signed or
unsigned
L bits L bits

saturate L + 1 bits < L —1
to shifted off

L bits




VecLibm:  Strategies and lllustrations

* Exception Handling
 Precision Preservation
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Exception Handling

* Challenge: Need to minimize branching while returning correct
value AND signal.

* General strategy

If there is some x € exceptional arguments

set flag x_special
set result y_special for special inputs
substitute special inputs with safe values (e.g. 0.0 or 1.0)

Compute result y_normal for all (modified) inputs
vmerge (y_normal, y_special, x_special)
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log(x)
Value Result Signal
+00 +00 None
gqNaN gNaN None
sNaN, -ve  gNalN invalid
+0 —o0  divide by 0
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class = vfclass(vx)
x_special = and(class,0x3BF) > 0
if (vcpop(x_special) > 0){
// handle exceptions
. .substitute -ve with sNaN
. .substitute +0 with -0
y_special = vfadd(vx, virec7(vx))
. .substitute special x with 1.0

}

...compute with vx as input

...ylelding y_normal as result

y_result = vmerge(y_normal,
y_special, x_special)
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Exception Handling: example

asinpi(x)

Value Result  Signal
gNaN gNaN  None
sNaN, || >1 gNaN invalid
+1 +1  None

expo = ((vx >> 52) & Ox7FF)
X_special = expo >= Ox3FF
if (vcpop(x_special) > 0){
//handle exceptions
. .substitute [|x[>1 with sNaN
. .substitute +-1 with +-1/4
y_special = vfadd(vx, vx)
. .substitute special x with 0.0

}

...compute with vx as input

...ylelding y_normal as result

y_result = vmerge(y_normal,
y_special, x_special)
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Three steps to compute exp(x)

r~r —nlog(2); reduction
p = exp(r): approximation

e’ ~2"p reconstruction
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Precision Preservation

* General algorithmic approach well understood

* Main challenge is precision preservation
* General double-double simulation is costly (though is a reliable Plan-B)

Operations # ops, an op 1S 4+, —, X or fmadd
d(dd) 4+ d(dd) — dd 6,7, 8
d(dd) x d(dd) — dd 2,3, 4
d(dd)/d(dd) — dd 3, 4,5 plus 1 div

v d(dd) — dd 3, 4 plus 1 sqrt and 1 div
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Precision Preservation

* General algorithmic approach well understood

* Main challenge is precision preservation
* General double-double simulation is costly (though is a reliable Plan-B)

* Our general strategy:
* Situation-specific extra-precision computation

Fast2Sum: (3 ops, not 6) Works if |A| > | B|

5 = vfadd(4, B) also works if 1sb(A) > Isb(B)
s := vfadd(vfsub(A4,S), B)



Precision Preservation

* General algorithmic approach well understood

* Main challenge is precision preservation
* General double-double simulation is costly (though is a reliable Plan-B)

* Our general strategy:
* Situation-specific extra-precision computation

Fast2FMA: AB + C (3 ops)
S = vfmadd(A, B, C)
s := vfmadd(A, B, vEfsub(C, 5))

Works if C' — §' is exact



Precision Preservation

* General algorithmic approach well understood

* Main challenge is precision preservation
* General double-double simulation is costly (though is a reliable Plan-B)

* Our general strategy:
* Situation-specific extra-precision computation
* Leverage mixed fixed-and-floating-point arithmetic



Precision Preservation

* General algorithmic approach well understood

* Main challenge is precision preservation
* General double-double simulation is costly (though is a reliable Plan-B)

* Our general strategy:
* Situation-specific extra-precision computation
* Leverage mixed fixed-and-floating-point arithmetic

Y :=pr+7r X (Prr1+7 X (Prg2 +--+)) in floating-point

For Y := vicvt x(vEimul(29,y)) (convert to fixed point)

example Yy .— P+ RX (PL+RX(Po+ ...+ Rx (Py_1 + RxY)))
y = vimul(vicvt _£(Y),279)
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atanh(x) = 1 log (E—i) log(y) = 2atanh ( +1)
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Some implementations: VecLibm implementation:
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which in turn scales and transform in dd
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Precision Preservation: An example

Compute for 0 < x < 1
atanh(z) = 1 log (E—i) log(y) = 2 atanh ( +1)

= (n/2)log(2) + % log ( 1+3’), s = 27" (n cheap to get)

= (n/2)log(2) + atanh (813;8:3?2)

Fixed-point scale 60: (1 + X) £ ((1 — X) << n) yields exact value

Fixed—poin.t NUMER, .DENOM VecLibm implementation:
— (a‘hi,a_lo), (b_hi,b_lo) use virec7 to get n

Obtain dd quotient (r, r_lo) computes numer, denom in fixed point
get extra-precise FP input to atanh poly
(n/2)log(2) +r +rlo+r°p(r?) use floating-point computation onwards



VecLibm: Current Status At-a-Glance

Library Functions Maximum Deviation in ulps

exp exp2 expl0 expml 0.56 056 0.75  0.77

when result underflows 0.77 0.77 082  N/A
log log2 logl0 loglp 0.55 057 0.56  0.66
pow cbrt 0.55 0.52
sin sinpi cos cospi 0.79 0.76 0.76  0.77
tan tanpi 0.62 0.61
sinh cosh tanh 0.67 0.59 0.76
asin asinpi acos acospi 0.66 0.71 0.64  0.65
atan atanpi atan2 atan2pi | 0.55 0.55 055  0.55
atan2p1 underflows 0.75
asinh acosh atanh 0.55 056 0.54

https://github.com/rivosinc/veclibm
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