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Why do we care about multipliers?

Recent FPGAs embed thousands of DSP Blocks

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 3/15



What can a recent Agilex 5 DSP Block do?

Multiplier DSP Block Resource Usage
9x9 bits 6x per DSP block
18x19 bits 2x per DSP block
27x27 bits 1x per DSP block
half-precision 2x per DSP block
bfloat16 2x per DSP block
FP19(8,10) 2x per DSP block
single-precision 1x per DSP block
AI tensor : 2 x 10 x (8x8-bit) 1x per DSP Block

Many smaller-bitwidth multipliers used as internal building blocks
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Steps for implementing a multiplier

Example: Radix 4, 8 x 8-bit unsigned

Partial Products

PP[3]=B[7:6] x A

PP[2]=B[5:4] x A

PP[1]=B[3:2] x A

PP[0]=B[0:1] x A

In this work we focus on the partial-product generation
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Partial Product Generation: Multiplier Encoding

Example: Radix 4 vs Modified Booth’s Radix 4 for 8-bit unsigned B

b6b7 b5 b3 b1 b0b4 b2

Radix 4: half the PP of Radix 2, but more complex 3A multiple required

Booth’s Radix 4: half the PP of Radix 2*, simple multiples required
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Partial Product Generation: Multiplier Encoding
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Partial Product Generation: Multiplier Encoding (2)

Dibit encoding can be seen as a carry chain

Encoder Encoder Encoder Encoder

COUT CIN CIN CINCOUT COUTCOUT CIN

b6b7 b5 b4 b3 b2 b1 b0 0

b2j+1 b2j b2j−1 B M B + b2j−1 CO
CO CI b2j+1:2j

0 0 0 0 0 0 0
0 0 1 0 1 1 0
0 1 0 1 1 1 0
0 1 1 1 2 2 0
1 0 0 2 -2 2 1
1 0 1 2 -1 3 1
1 1 0 3 -1 3 1
1 1 1 3 0 4 1
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Alternate Multiplier Encoding

counter-intuitive approach: use an alternate encoding
goal: reduce input count to the partial product multiplexer

replace "-2" with carry-out of 1→ "+2" with carry-out of 0.
this creates a dependency between the carries

CI B M CO
0 0 0 0
0 1 1 0
0 2 -2 1
0 3 -1 1
1 0 1 0
1 1 +2 0
1 2 -1 1
1 3 0 1

⇒

CI B M CO
0 0 0 0
0 1 1 0
0 2 +2 0
0 3 -1 1
1 0 1 0
1 1 +2 0
1 2 -1 1
1 3 0 1
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Handling the carry dependencies

CI B M CO
0 0 0 0
0 1 1 0
0 2 +2 0
0 3 -1 1
1 0 1 0
1 1 +2 0
1 2 -1 1
1 3 0 1

use the concept of prefix
computations for computing carries
define the generate and propagate
across dibits

generate when b2j+1,b2j are 1.
propagate when b2j+1 is 1.

0123456715 14 13 12 11 10 9 8
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Encoder and Partial-Product Multiplexer

Encoder

0
1

sign

CIN

S2

S1

S−1b2j+1

b2j

Partial-Product Multiplexer

S1
A

S−1

S2
2A

PP
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Why does this work?

S1
A

S−1

S2
2A

S−2

PP ⇒
S1
A

S−1

S2
2A

PP

16-bit multiplier→ 11 DOTS in Brent-Kung Tree ≈ 33 gates
removing mux input: 2 gates ×16-bit ×8 PP ≈ 256 gates

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 11/15



Proposed Carry-Chain-Based Encoder - Setup

0123456715 14 13 12 11 10 9 8
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Results - 12-bit signed multiplier
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B4 and B8: Synopsys Designware multipliers
B4G3 yields better area for 800 MHz – 2 GHz targets
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Future Work - Use in Mixed Radix

0123456715 14 13 12 11 10 9 8

B[2:1]

B[4:3]

...

0

Prefix Tree

p/g signals formula

B

B[7:5]

B[2N:2N−2]

B[4:1]
A

A, 2A, 4A 3A

New B4 PP Mux 2

New B4 PP Mux 1

B8 PP Mux 1

B8 PP Mux K

......

New B4 Encoder

New B4 Encoder

B8 Encoder 1

B8 Encoder K

Proposed method - additional delay in the multiplier encoding
Higher radix (B8) - adds delay in the multiplicand (3A)
Combined (Hybrid) approach may yield lower area
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Conclusion

Surge in AI is pushing multiplier densities on all devices.

Efficient architectures are crucial.

Multiplier encoding change reduces PP mux size.

New encoder dependency solved using prefix structures.

Synthesis results: better logic usage (800MHz - 2.1GHz)

Use in mixed-radix multipliers shows promising results.
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