
Multiplier Architecture with a Carry-Based
Partial Product Encoding

Martin Langhammer, Bogdan Pasca, Igor Kucherenko

Intel Corporation

ARITH 2024
10-12 June, 2024

Malaga, Spain

Acknowledgement

Some elements of this work already exist in the following US patent:
https://patents.google.com/patent/US10466968B1/en

This work was conducted independently
without any prior knowledge of its existence.

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 2/15

https://patents.google.com/patent/US10466968B1/en

Why do we care about multipliers?

Recent FPGAs embed thousands of DSP Blocks

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 3/15

What can a recent Agilex 5 DSP Block do?

Multiplier DSP Block Resource Usage
9x9 bits 6x per DSP block
18x19 bits 2x per DSP block
27x27 bits 1x per DSP block
half-precision 2x per DSP block
bfloat16 2x per DSP block
FP19(8,10) 2x per DSP block
single-precision 1x per DSP block
AI tensor : 2 x 10 x (8x8-bit) 1x per DSP Block

Many smaller-bitwidth multipliers used as internal building blocks

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 4/15

Steps for implementing a multiplier

Example: Radix 4, 8 x 8-bit unsigned

Partial Products

PP[3]=B[7:6] x A

PP[2]=B[5:4] x A

PP[1]=B[3:2] x A

PP[0]=B[0:1] x A

In this work we focus on the partial-product generation

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 5/15

Steps for implementing a multiplier

Example: Radix 4, 8 x 8-bit unsigned

Partial Products

PP[3]=B[7:6] x A

PP[2]=B[5:4] x A

PP[1]=B[3:2] x A

PP[0]=B[0:1] x A

Stage 13:2

In this work we focus on the partial-product generation

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 5/15

Steps for implementing a multiplier

Example: Radix 4, 8 x 8-bit unsigned

Partial Products

PP[3]=B[7:6] x A

PP[2]=B[5:4] x A

PP[1]=B[3:2] x A

PP[0]=B[0:1] x A

Stage 13:23:2

In this work we focus on the partial-product generation

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 5/15

Steps for implementing a multiplier

Example: Radix 4, 8 x 8-bit unsigned

Partial Products

PP[3]=B[7:6] x A

PP[2]=B[5:4] x A

PP[1]=B[3:2] x A

PP[0]=B[0:1] x A

Stage 13:23:22:2

In this work we focus on the partial-product generation

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 5/15

Steps for implementing a multiplier

Example: Radix 4, 8 x 8-bit unsigned

Partial Products

PP[3]=B[7:6] x A

PP[2]=B[5:4] x A

PP[1]=B[3:2] x A

PP[0]=B[0:1] x A

Stage 13:23:22:2

In this work we focus on the partial-product generation

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 5/15

Steps for implementing a multiplier

Example: Radix 4, 8 x 8-bit unsigned

Partial Products

PP[3]=B[7:6] x A

PP[2]=B[5:4] x A

PP[1]=B[3:2] x A

PP[0]=B[0:1] x A

Stage 13:23:22:2

3:2

Stage 2

In this work we focus on the partial-product generation

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 5/15

Steps for implementing a multiplier

Example: Radix 4, 8 x 8-bit unsigned

Partial Products

PP[3]=B[7:6] x A

PP[2]=B[5:4] x A

PP[1]=B[3:2] x A

PP[0]=B[0:1] x A

Stage 13:23:22:2

3:2

Stage 2

2:2

In this work we focus on the partial-product generation

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 5/15

Steps for implementing a multiplier

Example: Radix 4, 8 x 8-bit unsigned

Partial Products

PP[3]=B[7:6] x A

PP[2]=B[5:4] x A

PP[1]=B[3:2] x A

PP[0]=B[0:1] x A

Stage 13:23:22:2

3:2

Stage 2

2:2

In this work we focus on the partial-product generation

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 5/15

Steps for implementing a multiplier

Example: Radix 4, 8 x 8-bit unsigned

Partial Products

PP[3]=B[7:6] x A

PP[2]=B[5:4] x A

PP[1]=B[3:2] x A

PP[0]=B[0:1] x A

Stage 13:23:22:2

3:2

Stage 2

2:2

Compressor Tree

In this work we focus on the partial-product generation

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 5/15

Steps for implementing a multiplier

Example: Radix 4, 8 x 8-bit unsigned

Partial Products

PP[3]=B[7:6] x A

PP[2]=B[5:4] x A

PP[1]=B[3:2] x A

PP[0]=B[0:1] x A

Stage 13:23:22:2

3:2

Stage 2

2:2

Compressor Tree

Carry−Propagate Adder

In this work we focus on the partial-product generation

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 5/15

Steps for implementing a multiplier

Example: Radix 4, 8 x 8-bit unsigned

Partial Products

PP[3]=B[7:6] x A

PP[2]=B[5:4] x A

PP[1]=B[3:2] x A

PP[0]=B[0:1] x A

Stage 13:23:22:2

3:2

Stage 2

2:2

Compressor Tree

Carry−Propagate Adder

In this work we focus on the partial-product generation

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 5/15

Partial Product Generation: Multiplier Encoding

Example: Radix 4 vs Modified Booth’s Radix 4 for 8-bit unsigned B

b6b7 b5 b3 b1 b0b4 b2

Radix 4: half the PP of Radix 2, but more complex 3A multiple required

Booth’s Radix 4: half the PP of Radix 2*, simple multiples required

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 6/15

Partial Product Generation: Multiplier Encoding

Example: Radix 4 vs Modified Booth’s Radix 4 for 8-bit unsigned B

Weight

b6b7 b5 b3 b1 b0b4 b2

2021222324252627

Radix 4: half the PP of Radix 2, but more complex 3A multiple required

Booth’s Radix 4: half the PP of Radix 2*, simple multiples required

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 6/15

Partial Product Generation: Multiplier Encoding

Example: Radix 4 vs Modified Booth’s Radix 4 for 8-bit unsigned B

Weight

Radix 4

b6b7 b5 b3 b1 b0b4 b2

2021222324252627

B0B1B2B3

Bi ∈ {0,1,2,3}

Radix 4: half the PP of Radix 2, but more complex 3A multiple required

Booth’s Radix 4: half the PP of Radix 2*, simple multiples required

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 6/15

Partial Product Generation: Multiplier Encoding

Example: Radix 4 vs Modified Booth’s Radix 4 for 8-bit unsigned B

Weight

Booth’s R4

b6b7 b5 b3 b1 b0b4 b2 0

2021222324252627

−2b5 + b4 + b3−2b7 + b6 + b5 −2b1 + b0 + b−1−2b3 + b2 + b1

Bi ∈ {−2,−1,0,1,2}

Radix 4: half the PP of Radix 2, but more complex 3A multiple required

Booth’s Radix 4: half the PP of Radix 2*, simple multiples required

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 6/15

Partial Product Generation: Multiplier Encoding

Example: Radix 4 vs Modified Booth’s Radix 4 for 8-bit unsigned B

Weight

Booth’s R4

Weight−Separated

b6b7 b5 b3 b1 b0b4 b2 0

2021222324252627

−2b5 + b4 + b3−2b7 + b6 + b5 −2b1 + b0 + b−1−2b3 + b2 + b1

Bi ∈ {−2,−1,0,1,2}
−b1b2 + b1−b3b4 + b3−b5b6 + b5 b0 + b−1

Radix 4: half the PP of Radix 2, but more complex 3A multiple required

Booth’s Radix 4: half the PP of Radix 2*, simple multiples required

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 6/15

Partial Product Generation: Multiplier Encoding

Example: Radix 4 vs Modified Booth’s Radix 4 for 8-bit unsigned B

Weight

Booth’s R4

Weight−Separated

b6b7 b5 b3 b1 b0b4 b2 0

2021222324252627

−2b5 + b4 + b3−2b7 + b6 + b5 −2b1 + b0 + b−1−2b3 + b2 + b1

Bi ∈ {−2,−1,0,1,2}
−b1b2 + b1−b3b4 + b3−b5b6 + b5 b0 + b−1

28

b7

Radix 4: half the PP of Radix 2, but more complex 3A multiple required

Booth’s Radix 4: half the PP of Radix 2*, simple multiples required

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 6/15

Partial Product Generation: Multiplier Encoding

Example: Radix 4 vs Modified Booth’s Radix 4 for 8-bit unsigned B

Weight

Booth’s R4

Weight−Separated

b6b7 b5 b3 b1 b0b4 b2 0

2021222324252627

−2b5 + b4 + b3−2b7 + b6 + b5 −2b1 + b0 + b−1−2b3 + b2 + b1

Bi ∈ {−2,−1,0,1,2}
−b1b2 + b1−b3b4 + b3−b5b6 + b5 b0 + b−1

28

b7

−b7b7

Radix 4: half the PP of Radix 2, but more complex 3A multiple required

Booth’s Radix 4: half the PP of Radix 2*, simple multiples required

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 6/15

Partial Product Generation: Multiplier Encoding

Example: Radix 4 vs Modified Booth’s Radix 4 for 8-bit unsigned B

Weight

Booth’s R4

Weight−Separated

b6b7 b5 b3 b1 b0b4 b2 0

2021222324252627

−2b5 + b4 + b3−2b7 + b6 + b5 −2b1 + b0 + b−1−2b3 + b2 + b1

Bi ∈ {−2,−1,0,1,2}
−b1b2 + b1−b3b4 + b3−b5b6 + b5 b0 + b−1

28

b7

−b7b7

+b7 +b5 +b3 +b1

Radix 4: half the PP of Radix 2, but more complex 3A multiple required

Booth’s Radix 4: half the PP of Radix 2*, simple multiples required

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 6/15

Partial Product Generation: Multiplier Encoding (2)

Dibit encoding can be seen as a carry chain

Encoder Encoder Encoder Encoder

COUT CIN CIN CINCOUT COUTCOUT CIN

b6b7 b5 b4 b3 b2 b1 b0 0

b2j+1 b2j b2j−1 B M B + b2j−1 CO
CO CI b2j+1:2j

0 0 0 0 0 0 0
0 0 1 0 1 1 0
0 1 0 1 1 1 0
0 1 1 1 2 2 0
1 0 0 2 -2 2 1
1 0 1 2 -1 3 1
1 1 0 3 -1 3 1
1 1 1 3 0 4 1

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 7/15

Alternate Multiplier Encoding

counter-intuitive approach: use an alternate encoding
goal: reduce input count to the partial product multiplexer

replace "-2" with carry-out of 1→ "+2" with carry-out of 0.
this creates a dependency between the carries

CI B M CO
0 0 0 0
0 1 1 0
0 2 -2 1
0 3 -1 1
1 0 1 0
1 1 +2 0
1 2 -1 1
1 3 0 1

⇒

CI B M CO
0 0 0 0
0 1 1 0
0 2 +2 0
0 3 -1 1
1 0 1 0
1 1 +2 0
1 2 -1 1
1 3 0 1

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 8/15

Alternate Multiplier Encoding

counter-intuitive approach: use an alternate encoding
goal: reduce input count to the partial product multiplexer
replace "-2" with carry-out of 1→ "+2" with carry-out of 0.
this creates a dependency between the carries

CI B M CO
0 0 0 0
0 1 1 0
0 2 -2 1
0 3 -1 1
1 0 1 0
1 1 +2 0
1 2 -1 1
1 3 0 1

⇒

CI B M CO
0 0 0 0
0 1 1 0
0 2 +2 0
0 3 -1 1
1 0 1 0
1 1 +2 0
1 2 -1 1
1 3 0 1

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 8/15

Handling the carry dependencies

CI B M CO
0 0 0 0
0 1 1 0
0 2 +2 0
0 3 -1 1
1 0 1 0
1 1 +2 0
1 2 -1 1
1 3 0 1

use the concept of prefix
computations for computing carries
define the generate and propagate
across dibits

generate when b2j+1,b2j are 1.
propagate when b2j+1 is 1.

0123456715 14 13 12 11 10 9 8

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 9/15

Handling the carry dependencies

CI B M CO
0 0 0 0
0 1 1 0
0 2 +2 0
0 3 -1 1
1 0 1 0
1 1 +2 0
1 2 -1 1
1 3 0 1

use the concept of prefix
computations for computing carries
define the generate and propagate
across dibits
generate when b2j+1,b2j are 1.
propagate when b2j+1 is 1.

0123456715 14 13 12 11 10 9 8

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 9/15

Handling the carry dependencies

CI B M CO
0 0 0 0
0 1 1 0
0 2 +2 0
0 3 -1 1
1 0 1 0
1 1 +2 0
1 2 -1 1
1 3 0 1

use the concept of prefix
computations for computing carries
define the generate and propagate
across dibits
generate when b2j+1,b2j are 1.
propagate when b2j+1 is 1.

0123456715 14 13 12 11 10 9 8

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 9/15

Encoder and Partial-Product Multiplexer

Encoder

0
1

sign

CIN

S2

S1

S−1b2j+1

b2j

Partial-Product Multiplexer

S1
A

S−1

S2
2A

PP

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 10/15

Why does this work?

S1
A

S−1

S2
2A

S−2

PP ⇒
S1
A

S−1

S2
2A

PP

16-bit multiplier→ 11 DOTS in Brent-Kung Tree ≈ 33 gates
removing mux input: 2 gates ×16-bit ×8 PP ≈ 256 gates

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 11/15

Proposed Carry-Chain-Based Encoder - Setup

0123456715 14 13 12 11 10 9 8

B[2:1]

B[4:3]

B[6:5]

B[2N:2N−1]

... ...

0

Prefix Tree

p/g signals formula

B

Encoder 1

Encoder 2

Encoder 3

Encoder N

C
om

pr
es

so
r

T
re

e

... ...

C
ar

ry
−

P
ro

pa
ga

te
 A

dd
er

New B4 PP Mux 2

New B4 PP Mux 1

...
New B4 PP Mux 1

New B4 PP Mux k

A, 2A

A

Designware

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 12/15

Results - 12-bit signed multiplier

30

40

50

60

70

80

90

800 1000 1200 1400 1600 1800 2000 2200

Ar
ea

 (u
m

2)

Frequency (MHz)

B4G3
B4
B8

B4 and B8: Synopsys Designware multipliers
B4G3 yields better area for 800 MHz – 2 GHz targets

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 13/15

Future Work - Use in Mixed Radix

0123456715 14 13 12 11 10 9 8

B[2:1]

B[4:3]

...

0

Prefix Tree

p/g signals formula

B

B[7:5]

B[2N:2N−2]

B[4:1]
A

A, 2A, 4A 3A

New B4 PP Mux 2

New B4 PP Mux 1

B8 PP Mux 1

B8 PP Mux K

......

New B4 Encoder

New B4 Encoder

B8 Encoder 1

B8 Encoder K

Proposed method - additional delay in the multiplier encoding
Higher radix (B8) - adds delay in the multiplicand (3A)
Combined (Hybrid) approach may yield lower area

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 14/15

Conclusion

Surge in AI is pushing multiplier densities on all devices.

Efficient architectures are crucial.

Multiplier encoding change reduces PP mux size.

New encoder dependency solved using prefix structures.

Synthesis results: better logic usage (800MHz - 2.1GHz)

Use in mixed-radix multipliers shows promising results.

Martin Langhammer, Bogdan Pasca, Igor Kucherenko, Multiplier Architecture with a Carry-Based Partial Product Encoding 15/15

