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Fully Homomorphic Encryption (FHE)
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• Allows performing computations on encrypted data

3rd-partyClient
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Fully Homomorphic Encryption (FHE)

• Based on ring learning with errors (RLWE)

• Data is encrypted into large polynomials

• Number of operations bounded by noise growth
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Number theoretic transform (NTT)

• Number theoretic transform (NTT) is finite field equivalent of discrete 

Fourier transform (DFT)

• Efficient implementation of polynomial multiplication using NTT

• HElib’s BGV requires non-power-of-two length NTTs
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Timing of HElib operations
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Non-power-of-two FFT algorithms

• Prime-factor FFT algorithm

• Bluestein’s algorithm

• Rader’s algorithm
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Prime-factor FFT algorithm (PFA)

• N factorizes into coprime number N1 and N2

• Transform N-point DFT into N1xN2 two dimensional DFT

• Only permutation of data, no additional multiplications

+ Reduces number of twiddle factors
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Bluestein’s algorithm

• Computes N-point DFT using N-point convolution

• Convolution can be padded to power of two length

+ Works for any N

+ No permutation of input data

+ Efficient to compute power-of-two-length DFT

- Number of points in DFT is at best doubled, at worst quadrupled
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Rader’s algorithm

• Computes N-point DFT using (N-1)-point convolution

• Can only be used when N is prime

• PFA can be used to compute (N-1)-point DFT

+ Number of points in DFT is not increased

+ Possible to choose N so (N-1)-point DFT is efficient to compute

- Permutation of input data
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Comparison of FFT algorithms
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Recursive use of PFA and Rader’s algorithm

• If N is not prime use PFA

• If N is prime use Rader’s algorithm

• Ends with small prime 

or prime power
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Recursive use of PFA and Rader’s algorithm

More efficient parameter choices
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Architecture overview

• Maximize parallelism

• Fully Pipelined

• Functional Reuse
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Control Flow

• Each NTT computation stage 
done on all rows along one axis 
before moving to the next stage

• Pipeline stalls only in final state 
to wait for the last NTTs along 
the current axis to complete
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Memory

• Data stored in Block RAM on FPGA

• Access elements of both rows and 

columns in parallel for 2D-FFT
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Memory

• Data stored in Block RAM on FPGA

• Access elements of both rows and 

columns in parallel for 2D-FFT

• Barrel shifter at input and output to 

remove and reapply offset
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Combining Permutations

• Re-indexing for PFA and Rader’s 

algorithm can be combined into a single 

permutation

• Six total permutations

• Select permutation with 6-to-1 

multiplexers
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Cooley-Tukey FFT

• Breaks larger NTT of size 2n into two 

n-size NTTs

• Uses “butterflies” for computations

• Design focuses on 256-point FFT with 

128 butterflies; hardware also used for 

16-point and 4-point FFTs
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Butterfly diagram for radix-2 DIT FFT algorithm from Pace et al. [15] 



Bit-reversal permutations

• Cooley-Tukey FFT requires "bit-reversal" 

reordering after each butterfly stage

• Implemented as a series of eight bit-reversal 

permutations of increasing length 2, 4, 8, 16, 32, 

64, 128, 256
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0 1 2 3 4 5 6 7 → 0 4 2 6 1 5 3 7



Butterfly Units

• Uses word-level Montgomery 

modular multiplier from Mert et al. 

[14] 

• Twiddle factors pre-stored in lookup 

table

• Butterfly unit multipliers repurposed 

for Rader's algorithm convolution

• Multiplexers added to allow 

multiplication without final addition
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Additions for Rader’s algorithm

• Pointwise multiplication done 

separately for even and uneven indices

• Two steps 

1. X0=x0+A0 and even-indexed 

multiplication 

2. C0+x0  and uneven-indexed 

multiplication

• Perform steps in subsequent cycles

-> no memory needed to store x0
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Architecture overview
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Hardware-Software Interface
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• 85 cycles fill BRAMs

• Duplicate BRAM and transfer memory during NTT 
computation



Implementation Results

Frequency 
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• AMD Alveo U250 FPGA



Implementation Results

Frequency 

(MHz)
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• Time for one NTT: 11.9µs

• Compared to software: 1.10ms
• HElib on Intel Core i7-9750h @4.3 GHz

• 92× improvement 



Implementation Results
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• Problem: SLL (Super Long Line) 
Congestion

• Solution: All logic confined to
single SLR → no SLLs used

• New problem: local congestion within SLR



Comparison to Other Implementation
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Comparison to Other Implementation

Proposed [10] (best case) [10] (practical) [5] [6] [7] [8]
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Performance scaled to 1024 NTT points and 32-bit words (lower is better)



Conclusion

• Hardware architecture for efficient non-power-of-two NTT, targeting fully 

homomorphic encryption via the BGV scheme

• Combination of Prime-Factor FFT and Rader's algorithms shown to be 

superior for bootstrappable parameters in HElib's BGV

• Design focuses on 21845-th cyclotomic polynomial, employs efficient 

arithmetic, parallel processing, pipelining, and functional reuse

• Competitive performance demonstrated
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Questions?
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