
Hardware Acceleration of the Prime-Factor and

Rader NTT for BGV Fully Homomorphic

Encryption

Presentation: David Du Pont

Fully Homomorphic Encryption (FHE)

plaintext encrypt(plaintext) encrypt(plaintext)

encrypt(F(plaintext))encrypt(F(plaintext))F(plaintext)

Department of Electrical Engineering (ESAT)2

• Allows performing computations on encrypted data

3rd-partyClient

Encryption

Decryption
Computation on ciphertext

Fully Homomorphic Encryption (FHE)

• Based on ring learning with errors (RLWE)

• Data is encrypted into large polynomials

• Number of operations bounded by noise growth

Department of Electrical Engineering (ESAT)3

7 + 4x + 16x2 + … + 14xn

1 + 2x + 11x2 + … + 3xn

0 - 1x + 1x2 + … + 1xn

12 - 9x + 10x2 + … + 4xn

small error+

=

×

ℤ17[x]/⟨xn+1⟩

secret

Number theoretic transform (NTT)

• Number theoretic transform (NTT) is finite field equivalent of discrete

Fourier transform (DFT)

• Efficient implementation of polynomial multiplication using NTT

• HElib’s BGV requires non-power-of-two length NTTs

Department of Electrical Engineering (ESAT)4

Timing of HElib operations

0.133s

7.30s

112.35s

0.255s

15.34s

210.02s

0 0,2 0,4 0,6 0,8 1 1,2

Cyphertext multiplication

Thin bootstrapping

Thick bootstrapping

Total Bluestein NTT

Department of Electrical Engineering (ESAT)5

Non-power-of-two FFT algorithms

• Prime-factor FFT algorithm

• Bluestein’s algorithm

• Rader’s algorithm

Department of Electrical Engineering (ESAT)6

Prime-factor FFT algorithm (PFA)

• N factorizes into coprime number N1 and N2

• Transform N-point DFT into N1xN2 two dimensional DFT

• Only permutation of data, no additional multiplications

+ Reduces number of twiddle factors

Department of Electrical Engineering (ESAT)7

Bluestein’s algorithm

• Computes N-point DFT using N-point convolution

• Convolution can be padded to power of two length

+ Works for any N

+ No permutation of input data

+ Efficient to compute power-of-two-length DFT

- Number of points in DFT is at best doubled, at worst quadrupled

Department of Electrical Engineering (ESAT)8

Rader’s algorithm

• Computes N-point DFT using (N-1)-point convolution

• Can only be used when N is prime

• PFA can be used to compute (N-1)-point DFT

+ Number of points in DFT is not increased

+ Possible to choose N so (N-1)-point DFT is efficient to compute

- Permutation of input data

Department of Electrical Engineering (ESAT)9

Comparison of FFT algorithms

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

21845 35115 42799 49981 65535

M
U

L
T

IP
L

IC
A

T
IO

N
S

NTT POINTS

Bluestein PFA + Bluestein PFA + Rader

Department of Electrical Engineering (ESAT)10

Recursive use of PFA and Rader’s algorithm

• If N is not prime use PFA

• If N is prime use Rader’s algorithm

• Ends with small prime

or prime power

Department of Electrical Engineering (ESAT)11

42 799

337 127

336 126

16 3 7 2 9 7

Rader

PFA

PFA

Recursive use of PFA and Rader’s algorithm

More efficient parameter choices

Department of Electrical Engineering (ESAT)12

21 845

17 257

16 256

5
Rader

PFA
65 535

17 257

16 256

5
Rader

PFA

3

4 4

Architecture overview

• Maximize parallelism

• Fully Pipelined

• Functional Reuse

Department of Electrical Engineering (ESAT)13

Department of Electrical Engineering (ESAT)14

Control Flow

• Each NTT computation stage
done on all rows along one axis
before moving to the next stage

• Pipeline stalls only in final state
to wait for the last NTTs along
the current axis to complete

x 85

x 86

x 86

x 85

x 86

x 86

x 7

x 3

x 1

x 85

x 86

x 86

x 8

x 4

x 2

x 85

x 86

x 86

x 3

257 x 32 bit

15 x 17 x 32 bit

51 x 5 x 32 bit

Memory

• Data stored in Block RAM on FPGA

• Access elements of both rows and

columns in parallel for 2D-FFT

Department of Electrical Engineering (ESAT)15

BRA

M 10, 0

1, 6

2, 5

3, 4

3, 4

BRA

M 20, 1

1, 0

2, 6

3, 5

4, 4

BRA

M 30, 2

1, 1

2, 0

3, 6

4, 5

BRA

M 40, 3

1, 2

2, 1

3, 0

4, 6

BRA

M 50, 4

1, 3

2, 2

3, 1

4, 0

BRA

M 60, 5

1, 4

2, 3

3, 2

4, 1

BRA

M 70, 6

1, 5

2, 4

3, 3

4, 2

Memory

• Data stored in Block RAM on FPGA

• Access elements of both rows and

columns in parallel for 2D-FFT

• Barrel shifter at input and output to

remove and reapply offset

Department of Electrical Engineering (ESAT)16

Combining Permutations

• Re-indexing for PFA and Rader’s

algorithm can be combined into a single

permutation

• Six total permutations

• Select permutation with 6-to-1

multiplexers

Department of Electrical Engineering (ESAT)17

Cooley-Tukey FFT

• Breaks larger NTT of size 2n into two

n-size NTTs

• Uses “butterflies” for computations

• Design focuses on 256-point FFT with

128 butterflies; hardware also used for

16-point and 4-point FFTs

Department of Electrical Engineering (ESAT)18

Butterfly diagram for radix-2 DIT FFT algorithm from Pace et al. [15]

Bit-reversal permutations

• Cooley-Tukey FFT requires "bit-reversal"

reordering after each butterfly stage

• Implemented as a series of eight bit-reversal

permutations of increasing length 2, 4, 8, 16, 32,

64, 128, 256

Department of Electrical Engineering (ESAT)19

0 1 2 3 4 5 6 7 → 0 4 2 6 1 5 3 7

Butterfly Units

• Uses word-level Montgomery

modular multiplier from Mert et al.

[14]

• Twiddle factors pre-stored in lookup

table

• Butterfly unit multipliers repurposed

for Rader's algorithm convolution

• Multiplexers added to allow

multiplication without final addition

Department of Electrical Engineering (ESAT)20

×

Twiddle Factor

LUT

Delay Shift

Register

+

+

-B in

A in

0

A out

B out

M in

Additions for Rader’s algorithm

• Pointwise multiplication done

separately for even and uneven indices

• Two steps

1. X0=x0+A0 and even-indexed

multiplication

2. C0+x0 and uneven-indexed

multiplication

• Perform steps in subsequent cycles

-> no memory needed to store x0

Department of Electrical Engineering (ESAT)21

Architecture overview

Department of Electrical Engineering (ESAT)22

Hardware-Software Interface

Department of Electrical Engineering (ESAT)23

• 85 cycles fill BRAMs

• Duplicate BRAM and transfer memory during NTT
computation

Implementation Results

Frequency

(MHz)

Cycles CLB LUT CLB Register BRAM DSP

250 2987 224074 179900 300 1024

Department of Electrical Engineering (ESAT)24

• AMD Alveo U250 FPGA

Implementation Results

Frequency

(MHz)

Cycles CLB LUT CLB Register BRAM DSP

250 2987 224074 179900 300 1024

Department of Electrical Engineering (ESAT)25

• Time for one NTT: 11.9µs

• Compared to software: 1.10ms
• HElib on Intel Core i7-9750h @4.3 GHz

• 92× improvement

Implementation Results

Department of Electrical Engineering (ESAT)26

• Problem: SLL (Super Long Line)
Congestion

• Solution: All logic confined to
single SLR → no SLLs used

• New problem: local congestion within SLR

Comparison to Other Implementation

Department of Electrical Engineering (ESAT)27

Comparison to Other Implementation

Proposed [10] (best case) [10] (practical) [5] [6] [7] [8]

ADP: ˜l × LUTs / 100 870 2190 4400 2320 210 860 700

ADP: ˜l × DSPs 398 734 1480 814 47 803 45

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

ADP: ˜l × LUTs / 100 ADP: ˜l × DSPs

Department of Electrical Engineering (ESAT)28

Performance scaled to 1024 NTT points and 32-bit words (lower is better)

Conclusion

• Hardware architecture for efficient non-power-of-two NTT, targeting fully

homomorphic encryption via the BGV scheme

• Combination of Prime-Factor FFT and Rader's algorithms shown to be

superior for bootstrappable parameters in HElib's BGV

• Design focuses on 21845-th cyclotomic polynomial, employs efficient

arithmetic, parallel processing, pipelining, and functional reuse

• Competitive performance demonstrated

Department of Electrical Engineering (ESAT)29

Questions?

Department of Electrical Engineering (ESAT)30

References

• [1] G. Pace and C. Vella. Describing and verifying fft circuits using sharphdl. 06 2023

• [5] E. ¨ Ozt¨ urk, Y. Dor¨ oz, E. Savas, and B. Sunar, “A custom accelerator for homomorphic encryption
applications,” IEEE Trans. Computers, vol. 66, no. 1, pp. 3–16, 2017. [Online]. Available:
https://doi.org/10.1109/TC.2016.2574340

• [6] M.S. Riazi, K. Laine, B. Pelton, and W. Dai, “HEAX: High-performance architecture for computation on
homomorphically encrypted data in the cloud,” Cryptology ePrint Archive, Report 2019/1066, 2019, https:
//eprint.iacr.org/2019/1066.

• [7] A. C. Mert, E. Karabulut, E. ¨ Ozt¨ urk, E. Savas, and A. Aysu, “An extensive study of flexible design
methods for the number theoretic transform,” IEEE Trans. Computers, vol. 71, no. 11, pp. 2829–2843, 2022.
[Online]. Available: https://doi.org/10.1109/TC.2020.3017930

• [8] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede, “Compact ring-LWE based
cryptoprocessor,” Cryptology ePrint Archive, Report 2013/866, 2013, https://eprint.iacr.org/2013/866.

• [9] T. Fritzmann, G. Sigl, and J. Sep´ ulveda, “RISQ-V: Tightly coupled RISC-V accelerators for post-quantum
cryptography,” Cryptology ePrint Archive, Report 2020/446, 2020, https://eprint.iacr.org/2020/446.

• [10] S.-Y. Wu, K.-Y. Chen, and M.-D. Shieh, “Efficient vlsi architecture of bluestein’s fft for fully homomorphic
encryption,” in 2022 IEEE International Symposium on Circuits and Systems (ISCAS), 2022, pp. 2242–2245.

Department of Electrical Engineering (ESAT)31

https://eprint.iacr.org/2020/446

	Dia 1: Hardware Acceleration of the Prime-Factor and Rader NTT for BGV Fully Homomorphic Encryption
	Dia 2: Fully Homomorphic Encryption (FHE)
	Dia 3: Fully Homomorphic Encryption (FHE)
	Dia 4: Number theoretic transform (NTT)
	Dia 5: Timing of HElib operations
	Dia 6: Non-power-of-two FFT algorithms
	Dia 7: Prime-factor FFT algorithm (PFA)
	Dia 8: Bluestein’s algorithm
	Dia 9: Rader’s algorithm
	Dia 10: Comparison of FFT algorithms
	Dia 11: Recursive use of PFA and Rader’s algorithm
	Dia 12: Recursive use of PFA and Rader’s algorithm
	Dia 13: Architecture overview
	Dia 14
	Dia 15: Memory
	Dia 16: Memory
	Dia 17: Combining Permutations
	Dia 18: Cooley-Tukey FFT
	Dia 19: Bit-reversal permutations
	Dia 20: Butterfly Units
	Dia 21: Additions for Rader’s algorithm
	Dia 22: Architecture overview
	Dia 23: Hardware-Software Interface
	Dia 24: Implementation Results
	Dia 25: Implementation Results
	Dia 26: Implementation Results
	Dia 27: Comparison to Other Implementation
	Dia 28: Comparison to Other Implementation
	Dia 29: Conclusion
	Dia 30: Questions?
	Dia 31: References

