
31st IEEE International Symposium on Computer Arithmetic
Málaga, Spain. June 10-12, 2024

HGH-CORDIC: A High-Radix Generalized Hyperbolic
Coordinate Rotation Digital Computer

1 College of Integrated Circuits, Nanjing University of Aeronautics and Astronautics, China

Hui Chen1, Lianghua Quan2, Weiqiang Liu1

2 School of Electronic Science and Engineering, Nanjing University, China

2

Agenda

p Introduction

p Contribution

p Overview of Radix-2 GH-CORDIC Algorithm

p Definition of High-Radix GH-CORDIC Algorithm

p Software Simulation

p Analysis of Hardware Implementation

p Conclusion

3

Introduction

● Application of CORDIC
- (initial) real-time navigation computers for aircraft
- digital signal processing
- communication system
- artificial intelligence
● Capability of CORDIC
- trigonometric, logarithmic, exponential, multiplication, division, and so on
● Advantage of CORDIC
- high-precision, low-complexity

4

● Development and Challenge
- Circular CORDIC was first invented by Volder in 1959.
- Walther developed a unified CORDIC algorithm for the three coordinate systems in 1971.
- J.D. Bruguera developed an any-radix CORDIC algorithm in three coordinate systems in 1993.
- Luo et al. proposed a generalized hyperbolic CORDIC (GH-CORDIC) algorithm in 2019.
- CORDIC can achieve higher accuracy through more iterations, but it results in long latency.
● Research purpose and contribution
- To fill the theoretical gap——propose a high-radix GH-CORDIC, which not only can compute the

logarithmic and exponential functions with any-base, but also can reduce the number of iterations.

Introduction / Contribution

5

Overview of Radix-2 GH-CORDIC Algorithm

Coordinate rotation principle of radix-2 GH-CORDIC

6

Overview of Radix-2 GH-CORDIC Algorithm

The modes and outputs of GH−CORDIC

𝐾!" is the scaling factor, which
is defined as:

𝐾!" =#
#$%

&
1 − 2'(#

𝑥) = 1/𝐾!"

𝑦) = 1/𝐾!"
𝑧) = 𝑄

𝑦* = 𝑐𝑜𝑠ℎ𝑏 𝑄 + 𝑠𝑖𝑛ℎ𝑏(𝑄)
= 𝑏+

𝑥) = 𝑄+1

𝑦) = 𝑄–1

𝑧) = 0

𝑧* = 𝑡𝑎𝑛ℎ𝑏
+'%
+,%

=𝑡𝑎𝑛ℎ +'%
+,%

/ 𝑙𝑛 𝑏= %
(
𝑙𝑜𝑔- 𝑄

Approach of Using
GH-CORDIC

7

Definition of High-Radix GH-CORDIC Algorithm
First, we propose the radix-𝑟 GH-CORDIC equations of rotation mode (HGHR-CORDIC)

In order to have the non-zero digits always in the most significant positions to select 𝑑#,
here we use a scaled recurrence 𝑤# = 𝑟#𝑧# to decompose the rotation angle instead of the
more conventional recurrence 𝑧#,% = 𝑧# − 𝑡𝑎𝑛ℎ𝑏'%(𝑑#𝑟'#), which is a standard practice
in other digit recurrences, such as division and square root [23].

[23] T. Lang and P. Montuschi, “Very-high radix combined division and square root with prescaling and selection by rounding,” in Proceedings of the 12th Symposium on Computer Arithmetic
(ARITH), 1995, pp. 124-131.
[24] M. Anane, H. Bessalah, M. Issad, N. Anane, and H. Salhi, “Higher radix and redundancy factor for floating point SRT division,” IEEE Trans. VLSI Syst., vol. 16, no. 6, pp. 774-779, 2008.

𝑑# is determined by a selection criterion, which assures the convergence of the proposed
HGHR-CORDIC algorithm. We need to bound the new variable 𝑤# by upper limit (𝑈#[𝑞])
and lower limit (𝐿#[𝑞]), which follows a similar method to the one proposed for the radix
-r SRT division algorithm [24]. The bounded limits can be defined as follows:

Rotation
Mode

8

Definition of High-Radix GH-CORDIC Algorithm
Second, for the radix-𝑟 GH-CORDIC equations of vector mode (HGHV-CORDIC), we similarly

define a new scaled recurrence 𝑤# = 𝑟#𝑦#. The new iteration equations are

To make sure the algorithm is still convergent, 𝑤# also must be bounded between the
lower limit function and the upper limit function. Similarly, we de^ine them asVector

Mode
𝑑# = 𝑎 is selected by the criteria given in an interval 𝐿#[𝑎] ≤ 𝑤# ≤ 𝑈#[𝑎] to guarantee
convergence of HGHV-CORDIC. Similarly, 𝑝 is often selected as 𝑟/2.

Based on the new iteration equations, we can get the same convergence result as the radix-2
GH-CORDIC. But most importantly, HGH-CORDIC can quickly calculate the exponential
and logarithmic results.

9

Definition of High-Radix GH-CORDIC Algorithm

According to the theorem of CORDIC, the convergence range of HGH-CORDIC depends
on the maximum sum of the rotation angles 𝛽./0, which can be defined as

Convergence Range of HGH-CORDIC

It is worth mentioning that the high-radix GH-CORDIC should not require any repeated
iteration for convergence. Therefore, the number of iterations will be further reduced.
Because the maximum value of 𝑑# is 1

(
, the convergence range of HGHR-CORDIC can

be given by

Similarly, we can get the convergence range of HGHV-CORDIC as follows:

10

Definition of High-Radix GH-CORDIC Algorithm

When we use HGHV-CORDIC to compute 𝑙𝑜𝑔- 𝑄, the input 𝑄 meets the following condition.

Convergence Range of HGH-CORDIC

For example, when the radix of HGH-CORDIC is 4 and the base of the generalized hyperbolic
function is 2. We can get that

So the range of Q using HGHV-CORDIC can be derived as

If we use HGHR-CORDIC to compute 𝑏+, the input range of 𝑧) will be

11

Definition of High-Radix GH-CORDIC Algorithm

The selection function of 𝑑# is crucial, which determines whether HGH-CORDIC can converge.
In addition, it also determines the cost of hardware implementation.

Selection Criteria in HGH-CORDIC

Let’s start with HGHV-CORDIC. For the sake of derivation and exposition, we take 𝑟 = 4 and
𝑏 = 2 as an example (denoted as H4G2HV-CORDIC). So we get a clear equation to guarantee
the convergence of H4G2HV-CORDIC.

Then, we can use it to derive the criteria intervals to select 𝑑# . According to the overlap principle,
the relationship among selection value, judgment criteria, and overlap interval is as follows.

12

Definition of High-Radix GH-CORDIC Algorithm

Similar to the high-radix CORDIC of the circular system, we can also seek an iteration i such that
the judgment boundaries belong to the common overlap region. According to the theoretical proof
in [25], we can directly get the following inequality:

Selection Criteria in HGH-CORDIC

where 𝐷# is the selected judgment boundary from the overlap interval. We only need to calculate
the judgment boundaries in the first iteration for 𝐷#[±1] and first two iterations for 𝐷#[±2]. From
this iteration on, the calculated values 𝐷(2 , 𝐷% 1 , 𝐷% −1 , 𝐷(−2 are valid for the remaining
iterations.

[25] J. Villalba, E. Zapata, E. Antelo, and J. Bruguera, “Radix-4 vectoring CORDIC algorithm and architectures,” J. VLSI Signal Process. Syst., vol. 19, pp. 127-147, 1998.

13

Definition of High-Radix GH-CORDIC Algorithm

Next, we discuss the selection criteria for H4G2HR-CORDIC (𝑟 = 4 and 𝑏 = 2). Other cases are
similar. To be able to obtain a selection function independent of the iteration index, the limits of the
𝑑# selection intervals must be the same in each iteration. In fact, it is possible for all microrotations
with i ≥ 1.

Selection Criteria in HGH-CORDIC

After deduction and proof, we find that it always has a common overlap region:

Therefore, for H4G2HR-CORDIC, the relationship among selection value, judgment criteria, and overlap
interval are presented as follows.

14

Software Simulation of HGH-CORDIC

To explain the differences between different radix r and whether there are differences between different base b,
we choose four cases for simulation using MATLAB and analyze them by control variable method.
The combinations of (r, b) corresponding to these cases are (2, 2), (4, 2), (8, 2), and (4, 4).

Computing 𝑙𝑜𝑔! 𝑥 and 𝑏" using HGH-CORDIC and traditional GH-CORDIC. (a) Vector Mode; (b) Rotation Mode.

15

Software Simulation of HGH-CORDIC

Ø For each case, we randomly selected 10,000 data from different convergence ranges for testing.
Ø The results show that the iterations of radix-4 is half of that of radix-2, and that of radix-8 is two-thirds of

that of radix-4, which is basically consistent with the results of theoretical derivation.
Ø In addition, under the condition of radix-4, no matter how b changes, its convergence speed and calculation

precision are basically same, which is also in line with expectations.

Computing 𝑙𝑜𝑔! 𝑥 and 𝑏" using HGH-CORDIC and traditional GH-CORDIC. (a) Vector Mode; (b) Rotation Mode.

16

Analysis of Hardware Implementation

Taking the specific case ARCH(4, 2) as an example, we will analyze how to efficiently implement the key components,
including inverse scaling factor 𝐾"!"'% , selection criteria 𝑑#, and inverse hyperbolic tangent function 𝑡𝑎𝑛ℎ('%.
Other architectures ARCH(r, b) can learn from this idea and analyze them according to the specific situations.

Analysis of the Inverse Scaling Factor

Obviously, calculating 𝐾"!"'% is a complicated because 𝑑# is uncertain (𝑑#(has three different values) after each iteration.
If it is implemented directly in hardware, it will be very resource-consuming. One of the most common solutions is to
take Taylor series expansion and combine it with a smaller LUT.

Ø For 𝑖 > 𝑛/4, 𝐾"!"'% can be approximated as 1 because the result of the second term %
(
𝑑#(4'(# or more terms is often

so small relative to the expected precision that it can be ignored.
Ø For 𝑖 ≥ 𝑛/8 + 1 , 𝐾"!"'% can be approximated by the first two terms in n-bit precision.
Ø For 𝑖 ≥ 𝑛/12 + 1 , 𝐾"!"'% can be approximated by the first three terms.
Ø For the remaining iterations, we can implement it with a small LUT.

17

Analysis of Hardware Implementation

Analysis of the Selection Criteria

u For H4G2HR-CORDIC, we can select multiple combined boundary constant values within the overlap interval.
u But for the sake of simplified hardware implementation, we can choose a uniform set of hardware-friendly compa

rison points {±0.5, ±2.25}. They require at most 1 sign bit, 2 integer bits, and 2 fractional bits.
u So the width of the comparator only needs to be up to 5 bits.

u For H4G2HV-CORDIC, the choice of 𝑑# is related to the variable 𝑥#.
u From [25], we can reduce the bit width of the comparator without making errors.

u The distance between 𝑈/(𝑥#) and 𝐷#(𝑎 + 1) must be greater than or equal to %
2
𝑥# and it must be greater than 2'3,

where 𝑓 refers to the truncated fractional bits.
u Assume that the input range of 𝑙𝑜𝑔(𝑥 is [1, 2], that is, the initial value range of 𝑥) of H4G2HV-CORDIC is [2, 3].

Through analysis, the minimum value of 𝑥# in all iterations is 2 and the maximum value is 3 (𝑚𝑎𝑥{𝑤#}=5.43). We
can deduce that 𝑓 > 1.585 and we need at least 2 fractional bits.

u Therefore, we totally assimilate 6 bits for 𝑥# and 𝑤#, including 2 fractional bits, 3 integer bits, and 1 sign bit.

[25] J. Villalba, E. Zapata, E. Antelo, and J. Bruguera, “Radix-4 vectoring CORDIC algorithm and architectures,” J. VLSI Signal Process. Syst., vol. 19, pp. 127-147, 1998.

18

Analysis of Hardware Implementation

Analysis of the Inverse Hyperbolic Tangent Function

u No matter which mode HGH-CORDIC works in, they must calculate 𝑡𝑎𝑛ℎ-'%(𝑑#𝑟'#). If we calculate it directly, it
is very complicated.

u The general method is to use LUT. As the number of iterations increases, the size of LUT increases exponentially.
To reduce the LUT size, we can use an approximate scheme by Taylor series expansion of 𝑡𝑎𝑛ℎ-'%𝑥.

Ø When 𝑖 ≥ 𝑛/6 , 𝑡𝑎𝑛ℎ-'%(𝑑#𝑟'#) can be approximated to 𝑑#𝑟'#/ 𝑙𝑛 𝑏. In this case, 𝑤#,% and 𝑧#,% will

where %
4* -

is a concrete constant. When 𝑑# ≠ 0, there are only two possible results for 1 5!
4* -

or 5!
4* -

.

Ø When 𝑖 is less than 𝑛/6 , we can calculate the complicated term 𝑟#,%𝑡𝑎𝑛ℎ-'%(𝑑#𝑟'#) or the term 𝑡𝑎𝑛ℎ-'%(𝑑#𝑟'#)
in advance, and then select them by looking up the table.

Ø It is worth learning that we can also use the zero-skipping technique [25] (used in high-radix circular CORDIC) to
further reduce the number of iterations (about 20%) and resources.

[25] J. Villalba, E. Zapata, E. Antelo, and J. Bruguera, “Radix-4 vectoring CORDIC algorithm and architectures,” J. VLSI Signal Process. Syst., vol. 19, pp. 127-147, 1998.

19

Analysis of Hardware Implementation

Analysis of Performance

[14] J. Rudagi and S. Subbaraman, “Comparative analysis of radix-2, radix-4, radix-8 CORDIC processors,” in Int. Conf. Inventive Comput. Informat. (ICICI), 2017, pp. 378-382.
[17] Y. Y. Luo et al., “Generalized hyperbolic CORDIC and its logarithmic and exponential computation with arbitrary fixed base,” IEEE Trans. VLSI Syst., vol. 27, no. 9, pp. 2156-2169, 2019.
[27] E. Antelo, T. Lang, and J. D. Bruguera, “Very-high radix CORDIC rotation based on selection by rounding,” J. VLSI Signal Process. Syst., vol. 25, pp. 141-153, 2000.

Ø From the previous work [14], we can observe that when designing a pipelined hardware architecture, the area of
radix-4 CORDIC will be smaller than that of radix-2 due to the decreasing number of cascades.

Ø Radix-8, on the other hand, has a small gain because the implementation complexity increases dramatically but
the number of iterations decreases disproportionately.

Ø Compared with [27], we can support the logarithmic and exponential operations with arbitrary base, and also
support radix-4, which has the most cost-effective performance and hardware overhead.

Ø Compared with the traditional GH-CORDIC [17], we can reduce more iterations to speed up the calculation of
arbitrary 𝑙𝑜𝑔- 𝑥 and 𝑏0.

20

Conclusion

u Compared with applied research, the development speed of theoretical research is relatively lagging

behind. To fill the gap in theoretical research, we propose a theory of high-radix generalized hyperbolic

CORDIC for more applications.

u Because base-2 logarithmic and exponential functions are the most commonly used nonlinear functions

in floating-point conversions, and radix-4 CORDIC is the best cost-effective algorithm in hardware, we

focus on the specific case (r=4, b=2) to demonstrate the theory of HGH-CORDIC.

u Then we elaborate on the feasibility and practicability of the theory through simulation and analysis.

u Finally, the advantages of HGH-CORDIC are summarized through comparative analysis, such as low

latency and high precision, which are usually difficult to achieve at the same time.

u In the future, we will conduct research on its hardware implementation based on this theory, especially

to explore the low-latency and high-precision hardware architectures for its related applications.

21

Thank you very much

for your attention!

