
PQC-AMX: Accelerating Saber and FrodoKEM
on the Apple M1 and M3 SoCs

Décio Luiz Gazzoni Filho (decio.gazzoni@ic.unicamp.br)
Guilherme Brandão

Gora Adj
Arwa Alblooshi

Isaac A. Canales-Mart́ınez
Jorge Chávez-Saab

Julio López

Gazzoni Filho, Brandão, Adj, Alblooshi, Canales-Mart́ınez, Chávez-Saab, López

PQC-AMX: Accelerating Saber and FrodoKEM on the Apple M1 and M3 SoCs 1 / 23

decio.gazzoni@ic.unicamp.br

Agenda

Introduction

The AMX matrix multiplication accelerator

Arithmetic for Saber and FrodoKEM

Saber on AMX

Baseline polynomial multiplication and reduction
Polynomial multiplication from linear algebra
Higher-level improvements

FrodoKEM on AMX

Gaussian sampling

Conclusions

Gazzoni Filho, Brandão, Adj, Alblooshi, Canales-Mart́ınez, Chávez-Saab, López

PQC-AMX: Accelerating Saber and FrodoKEM on the Apple M1 and M3 SoCs 2 / 23

Introduction

Modern cryptography is under threat by quantum computers

Post-quantum cryptography: cryptosystems resistant to
both classical and quantum adversaries

Key/ciphertext size and performance a concern

Efficient and secure implementations are a must

Turing award lecture by Hennessy and Patterson: “Innovations
like domain-specific hardware (. . .) will lead the way.”

AI/deep learning requires TOPS-level processing power for
linear algebra (matrix multiplication)

Many accelerators and instruction set extensions available:
TPUs, GPUs, Intel AMX, ARM SME, Apple AMX, etc.

Gazzoni Filho, Brandão, Adj, Alblooshi, Canales-Mart́ınez, Chávez-Saab, López

PQC-AMX: Accelerating Saber and FrodoKEM on the Apple M1 and M3 SoCs 3 / 23

AMX

Apple SoCs: multiple computational resources such as the
CPU, Neural Engine, GPU and AMX, the latter of which is
an undocumented coprocessor mainly for matrix multiplication

Reverse engineering by D. Johnson, P. Cawley, M. Handley

First application to crypto: NTRU (Gazzoni Filho et al, 2024)

Programmer’s model: X,Y vector registers (8× 64 bytes each)
and Z matrix registers (64× 64 bytes)

Décio Luiz Gazzoni Filho, Guilherme Brandão, Julio López 5

We do not lay claim to any of these discoveries; our main contribution lies in cata-
loguing techniques to repurpose AMX to e�ciently perform polynomial multiplication
modulo “small” integers, and its application to NTRU – although other lattice-based PQC
cryptosystems should also benefit, a task left as future work in Section 6.

AMX is a coprocessor from Apple to accelerate matrix multiplication operations, first
introduced in the Apple A13 SoC powering the iPhone 11 [Rod20]. Functionally, the M1
and M3 AMX units are almost identical; there are two added features in the M3’s which
we did not find useful for our implementation. Performance-wise, our results of Section 5
indicate that M3 delivers improvements over M1.

3.1 Programmer’s model
AMX exposes 80 64-byte registers, split into eight X and eight Y registers (X0 to X7 and
Y0 to Y7), and 64 Z registers better viewed as rows of a matrix, denoted as Z[0], . . . , Z[63].
Figure 1, redrawn from an Apple patent [SBG+16, Figure 2], is a visualization of intended
register file organization. Some instructions can concatenate together either the X or Y
registers for bytewise addressing as 512-byte circular bu�ers, for which we use the slice
notation defined in Section 2. Figure 2 shows di�erent X/Y register addressing notations.

X[0] X[1] · · · X[n]

Y[0] Z[0][0] += Y[0]X[0] Z[0][1] += Y[0]X[1] · · · Z[0][n] += Y[0]X[n]

Y[1] Z[1][0] += Y[1]X[0] Z[1][1] += Y[1]X[1] · · · Z[1][n] += Y[1]X[n]
...

...
...

Y[n] Z[n][0] += Y[n]X[0] Z[n][1] += Y[n]X[1] · · · Z[n][n] += Y[n]X[n]

Figure 1: AMX register file organization.

Bytes 0 . . . 63 64 . . . 127 128 . . . 447 448 . . . 511
Registers X0, Y0 X1, Y1 . . . X7, Y7

Slice notation X[0 : 31] X[32 : 63] . . . X[224 : 255]
(16-bit elements) Y[0 : 31] Y[32 : 63] Y[224 : 255]

Figure 2: Relationship between bytes, registers and slices in X and Y AMX registers.

X and Y are inputs and Z are outputs for most instructions, with a few exceptions. Data
cannot be moved between CPU and AMX registers directly; it must go through memory.

Di�erent data types can be operated on (8-, 16- or 32-bit integers, or 16-, 32- or 64-bit
floating-point values). Input/output lane widths may be identical or mixed in specific
combinations [Caw24], but we only use 16-bit integer inputs and outputs. The inputs to
outer product operations (Xi and Yi) are 32-element vectors of 16 bits each, resulting in a
32 ◊ 32 output matrix of 16-bit elements; this is smaller than Z’s available storage space
(16,384 out of an available 32,768 bits). As such, each row of the output matrix is mapped
to either the even or odd rows of Z, which are fully populated with output coe�cients, as
the size of a row of Z (512 bits) matches the size of a row of the output matrix.

CPUs in a cluster can share an AMX unit through per-CPU replication of architectural
state [Joh22a, Han23]. Instructions are tagged with their source CPU to identify their copy
of the state; thus, multiple CPUs may interleave instruction execution [Han23]. Special
instructions (set/clr) control AMX’s enabled/disabled status for each thread [Caw24].

Gazzoni Filho, Brandão, Adj, Alblooshi, Canales-Mart́ınez, Chávez-Saab, López

PQC-AMX: Accelerating Saber and FrodoKEM on the Apple M1 and M3 SoCs 4 / 23

AMX instructions

6 Fast polynomial multiplication . . . with applications to NTRU on Apple M1/M3 SoCs

3.2 Programming interface
AMX instructions are inserted into the CPU’s instruction stream, and once no longer
speculative, are dispatched to AMX via the CPU’s store units [Han23]. They are encoded
as A64 instructions within a reserved opcode space [Caw24]; given A64’s fixed 32-bit
instruction encoding, only 10 bits remain, 5 of which encode the instruction’s opcode.
The remaining 5 bits either encode the index of a scalar 64-bit register through which
parameters are passed, or an immediate. This layout is shown in Figure 3. [Caw24]
provides preprocessor macros to emit AMX instructions, with an intrinsics-like syntax.

31 10 9 5 4 0
0000 0000 0010 0000 0001 00 opcode register/immediate

Figure 3: AMX instruction encoding.

3.3 Instruction set
We now list all known AMX instructions, reviewing those used by our polynomial multipli-
cation implementation, as well as parameters of interest; for an exhaustive specification, see
[Caw24]. We propose a taxonomy of instructions in Table 2, categorized by functionality.

Table 2: A taxonomy of AMX instructions. Opcodes given in base 10.

Instruction Type Mnemonics(Opcode) Description

Loads and stores ldx(0), ldy(1), stx(2), sty(3),
ldz(4), stz(5), ldzi(6), stzi(7)

Data movement between
memory and AMX registers

Extract extrh(8), extrx(8),
extrv(9), extry(9)

Data movement within
the AMX register file

First generation
matrix/vector

fma64(10), fms64(11),
fma32(12), fms32(13),

mac16(14), fma16(15), fms16(16)

Outer or pointwise products
with accumulation/subtraction

Second generation
matrix and vector

vecint(18), vecfp(19),
matint(20), matfp(21)

Outer or pointwise products
with accumulation/subtraction

Miscellaneous set(17), clr(17), genlut(22) Context switching, lookup tables

We first consider loads and stores. The least-significant 56 bits of their 64-bit argument
are treated as a pointer to the source/target memory address; remaining bits encode
parameters as per Table 3. While many other instructions can address X/Y registers at
arbitrary byte positions, loads and stores require aligning to the start of a register (64-byte
boundary); register indices are encoded in bits 58–56 of the argument (or 61–56 for Z
rows). Memory accesses can be 64 bytes (bit 62 = 0) or 128 bytes (bit 62 = 1) wide.

Table 3: Parameters for AMX load and store instructions.

Bits ldx, ldy, stx, sty ldz, stz
63
62 Load/store single register (0) or pair of consecutive registers (1)

61–59 Z-row index (0 to 63)58–56 Register index (0 to 7)
55–0 Least significant 56 bits of pointer

Matrix-mode mac16, matint: outer products

Vector-mode mac16, vecint: pointwise vector operations

Bytewise register addressing ⇒ free bytewise shifts

Gazzoni Filho, Brandão, Adj, Alblooshi, Canales-Mart́ınez, Chávez-Saab, López

PQC-AMX: Accelerating Saber and FrodoKEM on the Apple M1 and M3 SoCs 5 / 23

AMX performance (M1)

Note: operation counts consider multiply-accumulate (MACs)
– multiplies or additions only halves throughput

Outer product: building block for matrix multiplication

16-bit FP or 8-bit integer: 3.05 TOPS/s
16-bit integer: 1.53 TOPS/s

Vector (pointwise) operations

FP or 8-bit integer: 381 GOPS/s
16-bit integer: 191 GOPS/s

Superscalar (2/cycle) execution of some vector instructions on
M3, doubling throughput

NEON 16-bit MAC throughput for comparison: 204.8 GOPS/s

Matrix operations much faster than vector operations

Gazzoni Filho, Brandão, Adj, Alblooshi, Canales-Mart́ınez, Chávez-Saab, López

PQC-AMX: Accelerating Saber and FrodoKEM on the Apple M1 and M3 SoCs 6 / 23

Saber

Based on the module-Learning with Rounding (LWR) problem

Small matrix-vector products in Rq = Zq[x]/(x
256 + 1)

Arithmetic in Rq: polynomial arithmetic modulo
q = 213 < 216, no explicit modular reduction needed

NTT-unfriendly ring

Different security levels by increasing module dimension

Parameter set Sec. level ℓ n q

LightSaber 1 2 256 213

Saber 3 3 256 213

FireSaber 5 4 256 213

Gazzoni Filho, Brandão, Adj, Alblooshi, Canales-Mart́ınez, Chávez-Saab, López

PQC-AMX: Accelerating Saber and FrodoKEM on the Apple M1 and M3 SoCs 7 / 23

FrodoKEM

Unstructured lattices – multiplication of “large” square
(n × n) by “thin” (n × n) matrices

Coefficient arithmetic modulo q = 2b ≤ 216

Parameter set Sec. level n q m = n

Frodo-640 1 640 215 8

Frodo-976 3 976 216 8

Frodo-1344 5 1344 216 8

Gazzoni Filho, Brandão, Adj, Alblooshi, Canales-Mart́ınez, Chávez-Saab, López

PQC-AMX: Accelerating Saber and FrodoKEM on the Apple M1 and M3 SoCs 8 / 23

AMX polynomial multiplication

Basic idea applied to NTRU by Gazzoni Filho et al (2024)

Outer products vs. polynomial multiplication parallelogram:

10 Fast polynomial multiplication . . . with applications to NTRU on Apple M1/M3 SoCs

performance, we noted a claim in [Han23] of performance degradation from concurrent
accesses by AMX and the CPU to the same memory page. In Section 4.5, we investigate
allocation of input arrays in separate memory pages via the POSIX mmap() function.
Performance results are summarized in Table 5, for both AMX and NEON, from geometric
means of measurements presented later in Table 6. Briefly, per-page memory allocation
benefits AMX considerably (M1 more so than M3), while NEON displays mixed results
regardless of SoC. This also suggests that concurrent processing of the same dataset with
NEON and AMX may, counterintuitively, have detrimental performance e�ects.

Table 5: Geometric mean of speedups (◊) for mmap() compared to stack memory allocation.

Instruction set Keygen Encaps Decaps Poly. mul.
M1 M3 M1 M3 M1 M3 M1 M3

NEON 1.00 1.00 1.02 1.01 1.03 1.02 0.96 0.98
AMX 1.19 1.05 1.38 1.08 1.33 1.33 1.34 1.15

All implementations of Section 4 are based on the O(n2) schoolbook method. In Sec-
tion 5.1, we investigate the performance of subquadratic algorithms, showing experimental
evidence that the Karatsuba algorithm with a single recursion level does not outperform
schoolbook in AMX until well outside the range of polynomial degrees of cryptographic
interest. We refer to that section for hypotheses to explain this somewhat counterintuitive
result, and evidence that other strategies based on subquadratic algorithms are also not
expected to outperform schoolbook in AMX, for the polynomial degrees used in NTRU.

4.2 Basic block: multiplication of 32-coe�cient slices
The basic block of our implementation multiplies slices of 32 coe�cients from each input
polynomial. We define a specific notation for polynomial slices starting at indices that are
a multiple of 32: a32k:32k+31(x) = ak(x) (note boldface k). We also define a notation for
the product of 32-coe�cient polynomial slices: ck,l(x) = ak(x)bl(x). To clarify, we have:

ck,l(x) = (a32kx
32k + . . . + a32k+31x

32k+31)(b32lx32l + . . . + b32l+31x
32l+31)

= c32(k+l)x
32(k+l) + . . . + c32(k+l)+62x

32(k+l)+62,

where cm =
q

i+j=m aibj . As before, ck,l is the associated row vector representation.
Throughout the rest of Section 4, we resort to examples using a hypothetical 1/8-size AMX
unit for space reasons. Boldface indices will then refer to 4-coe�cient slices as appropriate
for these examples, rather than 32-coe�cient slices for full AMX; thus, ak would refer to
a4k:4k+3. It will be clear from the context whether we refer to 4- or 32-coe�cient slices.

We first note that the outer product bT
l ak generates the required partial products;

shifting each row produces the usual multiplication parallelogram. We then perform
sum-reduction of partial products in each column (an operation which we refer throughout
the rest of Section 4 as flattening to avoid confusion with polynomial reduction) to obtain
ck,l. This can be visualized by considering an analogous operation in a hypothetical
1/8-size AMX unit, operating on 4-coe�cient slices starting at the constant coe�cient:

a3 a2 a1 a0
b0 a3b0 a2b0 a1b0 a0b0
b1 a3b1 a2b1 a1b1 a0b1
b2 a3b2 a2b2 a1b2 a0b2
b3 a3b3 a2b3 a1b3 a0b3

Left shift
i-th row by
i positions≠≠≠≠≠≠≠æ

a3b0 a2b0 a1b0 a0b0
a3b1 a2b1 a1b1 a0b1

a3b2 a2b2 a1b2 a0b2
a3b3 a2b3 a1b3 a0b3

Sum-reduction of columns to finish polynomial multiplication

Natural AMX dimension: 64 bytes i.e. 32, 16-bit words

Combine these basic blocks using a product scanning
(columnwise) approach, delaying shifting and sum-reduction
to the end of the computation

Gazzoni Filho, Brandão, Adj, Alblooshi, Canales-Mart́ınez, Chávez-Saab, López

PQC-AMX: Accelerating Saber and FrodoKEM on the Apple M1 and M3 SoCs 9 / 23

AMX polynomial multiplication
Décio Luiz Gazzoni Filho, Guilherme Brandão, Julio López 13

a0b0

a0b1

a0b2

a0b3

a1b0

a1b1

a1b2

a1b3

a2b0

a2b1

a2b2

a2b3

a3b0

a3b1

a3b2

a3b3

a0b4

a0b5

a0b6

a0b7

a1b4

a1b5

a1b6

a1b7

a2b4

a2b5

a2b6

a2b7

a3b4

a3b5

a3b6

a3b7

a4b0

a4b1

a4b2

a4b3

a5b0

a5b1

a5b2

a5b3

a6b0

a6b1

a6b2

a6b3

a7b0

a7b1

a7b2

a7b3

a4b4

a4b5

a4b6

a4b7

a5b4

a5b5

a5b6

a5b7

a6b4

a6b5

a6b6

a6b7

a7b4

a7b5

a7b6

a7b7

≠æ(a)

a0b0

a0b1

a0b2

a0b3

a1b0

a1b1

a1b2

a1b3

a2b0

a2b1

a2b2

a2b3

a3b0

a3b1

a3b2

a3b3

a4b0

a4b1

a4b2

a4b3

a5b0

a5b1

a5b2

a5b3

a6b0

a6b1

a6b2

a6b3

a7b0

a7b1

a7b2

a7b3

a0b4

a0b5

a0b6

a0b7

a1b4

a1b5

a1b6

a1b7

a2b4

a2b5

a2b6

a2b7

a3b4

a3b5

a3b6

a3b7

a4b4

a4b5

a4b6

a4b7

a5b4

a5b5

a5b6

a5b7

a6b4

a6b5

a6b6

a6b7

a7b4

a7b5

a7b6

a7b7

≠æ

(b)

a0b0

a0b1

a0b2

a0b3

a1b0

a1b1

a1b2

a1b3

a2b0

a2b1

a2b2

a2b3

a3b0

a3b1

a3b2

a3b3

a4b0 + a0b4

a4b1 + a0b5

a4b2 + a0b6

a4b3 + a0b7

a5b0 + a1b4

a5b1 + a1b5

a5b2 + a1b6

a5b3 + a1b7

a6b0 + a2b4

a6b1 + a2b5

a6b2 + a2b6

a6b3 + a2b7

a7b0 + a3b4

a7b1 + a3b5

a7b2 + a3b6

a7b3 + a3b7

a4b4

a4b5

a4b6

a4b7

a5b4

a5b5

a5b6

a5b7

a6b4

a6b5

a6b6

a6b7

a7b4

a7b5

a7b6

a7b7

≠æ

(c)

a7b7

a7b6

a6b7

a7b5

a6b6

a5b7

a7b4

a6b5

a5b6

a4b7

a6b4

a5b5

a4b6

a7b3 + a3b7

a5b4

a4b5

a7b2 + a3b6

a6b3 + a2b7

a4b4

a7b1 + a3b5

a6b2 + a2b6

a5b3 + a1b7

a7b0 + a3b4

a6b1 + a2b5

a5b2 + a1b6

a4b3 + a0b7

a6b0 + a2b4

a5b1 + a1b5

a4b2 + a0b6

a3b3

a5b0 + a1b4

a4b1 + a0b5

a3b2

a2b3

a4b0 + a0b4

a3b1

a2b2

a1b3

a3b0

a2b1

a1b2

a0b3

a2b0

a1b1

a0b2

a1b0

a0b1

a0b0

(d)

Figure 5: Transformations of the multiplication parallelogram for 8-coe�cient polynomials
for e�cient implementation on a hypothetical 1/8-size AMX unit. Dotted lines enclose
each outer product of 4-coe�cient slices. Starting from the regular parallelogram (a),
the i-th row is shifted right by i mod 4 positions (i.e. the reverse of the shifting step of
Figure 4) to obtain (b), revealing how two outer products are aligned. In (c), these two
outer products are summed prior to left-shifting the i-th row by i positions in the last
state shown, (d). The final result is obtained by flattening each column (not shown).

result. The advantage of lazy shifting/flattening is clear from extrapolation of Figure 5:
we see that it results in 2(nÕ/32) ≠ 1 = O(n) matrices of dimension 32 ◊ 32 in the third
step of the process (Figure 5(c)), which are shifted (Figure 5(d)) and flattened (not shown)
to obtain the final polynomial multiplication result. While we still compute the same
amount of outer products, (nÕ/32)2 = O(n2), they are considerably cheaper than shifts
and flattenings realized by AMX vector instructions, of which only O(n) are required.

Moving on to practical implementation issues, the Z register, where outer products
accumulate, can only store two 32 ◊ 32 matrices, one in the even rows and another in
the odd rows. Careful sequencing of shift and flattening operations is needed to avoid
spills and reloads of Z’s contents. Consider the flattened parallelogram in Figure 5(d),
which is split into three sub-parallelograms, each corresponding to one of three matrices
of Figure 5(c), formed from accumulating outer products; we denote them, from right
to left, as M0, M1 and M2, respectively. Working through the final flattening step (i.e.
sum-reduction of columns, not shown in the figure), from the rightmost column towards
the leftmost one, we see that the first columns (0 to 3) contain only elements from M0. As
we move left, columns 4 to 6 contain elements from M0 and M1; column 7 from M1 only;
columns 8 to 10 from M1 and M2; and columns 11 to 14 from M2 only. A general pattern
emerges: each column contains either elements from Mj only, or from Mj and Mj+1.

This suggests a structure for our polynomial multiplication algorithm, described in terms
of full-size (nÕ coe�cients) input polynomials. Formalizing the concept from the previous
paragraph, we define Mj =

q
k+l=j bT

l ak; the computation of each Mj is performed by
Algorithm 4.2. We first compute M0 and M1, storing them in the even and odd rows of Z,
respectively, as needed to perform shifts and flattenings to obtain the first 64 coe�cients
c0, . . . , c63 of c(x) = a(x)b(x), a procedure we formalize as Algorithm 4.3. We now compute
M2 overwriting the even rows of Z, and use both M1 (still available in the odd rows of
Z) and M2 to obtain the next 32 coe�cients of c(x), i.e. c64, . . . , c95, by the procedure of

Gazzoni Filho, Brandão, Adj, Alblooshi, Canales-Mart́ınez, Chávez-Saab, López

PQC-AMX: Accelerating Saber and FrodoKEM on the Apple M1 and M3 SoCs 10 / 23

AMX polynomial multiplication, reduction modulo xn + 1

O(n) shifts and sum-reductions vs. O(n2) outer products ⇒
high ratio of matrix to vector operations

Must perform polynomial reduction modulo xn + 1

An integrated procedure decreases (!) the vector operation
count, by postponing shifts and sum-reductions after the
polynomial reduction

Next slide: toy example for reduction modulo x10 + 1

Gazzoni Filho, Brandão, Adj, Alblooshi, Canales-Mart́ınez, Chávez-Saab, López

PQC-AMX: Accelerating Saber and FrodoKEM on the Apple M1 and M3 SoCs 11 / 23

AMX polynomial multiplication, reduction modulo xn + 1

a0b0

a0b1

a0b2

a0b3

a1b0

a1b1

a1b2

a1b3

a2b0

a2b1

a2b2

a2b3

a3b0

a3b1

a3b2

a3b3

−a6b4

−a6b5

−a6b6

−a6b7

−a7b4

−a7b5

−a7b6

−a7b7

−a8b4

−a8b5

−a8b6

−a8b7

−a9b4

−a9b5

−a9b6

−a9b7

−a2b8

−a2b9

a2b10

a2b11

−a3b8

−a3b9

a3b10

a3b11

−a4b8

−a4b9

a4b10

a4b11

−a5b8

−a5b9

a5b10

a5b11

a4b0

a4b1

a4b2

a4b3

a5b0

a5b1

a5b2

a5b3

a6b0

a6b1

a6b2

a6b3

a7b0

a7b1

a7b2

a7b3

a0b4

a0b5

a0b6

a0b7

a1b4

a1b5

a1b6

a1b7

a2b4

a2b5

a2b6

a2b7

a3b4

a3b5

a3b6

a3b7

−a6b8

−a6b9

a6b10

a6b11

−a7b8

−a7b9

a7b10

a7b11

−a8b8

−a8b9

a8b10

a8b11

−a9b8

−a9b9

a9b10

a9b11

a8b0

a8b1

a8b2

a8b3

a9b0

a9b1

a9b2

a9b3

a10b0

a10b1

a10b2

a10b3

a11b0

a11b1

a11b2

a11b3

a4b4

a4b5

a4b6

a4b7

a5b4

a5b5

a5b6

a5b7

a6b4

a6b5

a6b6

a6b7

a7b4

a7b5

a7b6

a7b7

a0b8

a0b9

a0b10

a0b11

a1b8

a1b9

a1b10

a1b11

a2b8

a2b9

a2b10

a2b11

a3b8

a3b9

a3b10

a3b11

01234567891011

0

1

2

3

0

1

2

3

0

1

2

3

(a)

M
(0)
0,0

M
(0)
0,1

M
(0)
0,2

M
(0)
0,3

M
(0)
1,0

M
(0)
1,1

M
(0)
1,2

M
(0)
1,3

M
(0)
2,0

M
(0)
2,1

M
(0)
2,2

M
(0)
2,3

M
(0)
3,0

M
(0)
3,1

M
(0)
3,2

M
(0)
3,3

M
(1)
0,0

M
(1)
0,1

M
(1)
0,2

M
(1)
0,3

M
(1)
1,0

M
(1)
1,1

M
(1)
1,2

M
(1)
1,3

M
(1)
2,0

M
(1)
2,1

M
(1)
2,2

M
(1)
2,3

M
(1)
3,0

M
(1)
3,1

M
(1)
3,2

M
(1)
3,3

M
(2)
0,0

M
(2)
0,1

M
(2)
0,2

M
(2)
0,3

M
(2)
1,0

M
(2)
1,1

M
(2)
1,2

M
(2)
1,3

(b)

M
(0)
0,0

M
(0)
0,1

M
(0)
0,2

M
(0)
0,3

M
(0)
1,0

M
(0)
1,1

M
(0)
1,2

M
(0)
1,3

M
(0)
2,0

M
(0)
2,1

M
(0)
2,2

M
(0)
2,3

M
(0)
3,0

M
(0)
3,1

M
(0)
3,2

M
(0)
3,3

M
(1)
0,0

M
(1)
0,1

M
(1)
0,2

M
(1)
0,3

M
(1)
1,0

M
(1)
1,1

M
(1)
1,2

M
(1)
1,3

M
(1)
2,0

M
(1)
2,1

M
(1)
2,2

M
(1)
2,3

M
(1)
3,0

M
(1)
3,1

M
(1)
3,2

−M
(1)
3,3

M
(2)
0,0

M
(2)
0,1

−M
(2)
0,2

−M
(2)
0,3

M
(2)
1,0

−M
(2)
1,1

−M
(2)
1,2

−M
(2)
1,3

0123456789101112

(c)

1

Gazzoni Filho, Brandão, Adj, Alblooshi, Canales-Mart́ınez, Chávez-Saab, López

PQC-AMX: Accelerating Saber and FrodoKEM on the Apple M1 and M3 SoCs 12 / 23

Polynomial multiplication from linear algebra

The previous techniques were applied to NTRU by Gazzoni
Filho et al (2024), which uses a similar (implementation-wise)
ring, but modulo xn − 1 rather than xn + 1

Alone it was competitive, but not a definite improvement,
over the state-of-the-art (Becker et al, 2021)

We propose an alternative technique, casting polynomial
multiplication in the language of linear algebra

Gazzoni Filho, Brandão, Adj, Alblooshi, Canales-Mart́ınez, Chávez-Saab, López

PQC-AMX: Accelerating Saber and FrodoKEM on the Apple M1 and M3 SoCs 13 / 23

Polynomial multiplication from linear algebra

Polynomial multiplication modulo x256 + 1 can be viewed as a
multiplication of a skew-circulant matrix by a vector:

Mv =



a0 −a255 −a254 · · · −a2 −a1
a1 a0 −a255 · · · −a3 −a2
a2 a1 a0 · · · −a4 −a3
...

...
. . .

...
...

a254 a253 a252 · · · a0 −a255
a255 a254 a253 · · · a1 a0


·



b0
b1
b2
...

b254
b255


Can decompose M into 8× 8 block Toeplitz matrix, and v
into block 8× 1 vector

Gazzoni Filho, Brandão, Adj, Alblooshi, Canales-Mart́ınez, Chávez-Saab, López

PQC-AMX: Accelerating Saber and FrodoKEM on the Apple M1 and M3 SoCs 14 / 23

Polynomial multiplication from linear algebra

We can write Mv as
M0 −M7 −M6 −M5 −M4 −M3 −M2 −M1

M1 M0 −M7 −M6 −M5 −M4 −M3 −M2

M2 M1 M0 −M7 −M6 −M5 −M4 −M3

M3 M2 M1 M0 −M7 −M6 −M5 −M4

M4 M3 M2 M1 M0 −M7 −M6 −M5

M5 M4 M3 M2 M1 M0 −M7 −M6

M6 M5 M4 M3 M2 M1 M0 −M7

M7 M6 M5 M4 M3 M2 M1 M0

 ·


v0
v1
v2
v3
v4
v5
v6
v7



=


M0v0 −M7v1 −M6v2 −M5v3 −M4v4 −M3v5 −M2v6 −M1v7
M1v0 +M0v1 −M7v2 −M6v3 −M5v4 −M4v5 −M3v6 −M2v7
M2v0 +M1v1 +M0v2 −M7v3 −M6v4 −M5v5 −M4v6 −M3v7
M3v0 +M2v1 +M1v2 +M0v3 −M7v4 −M6v5 −M5v6 −M4v7
M4v0 +M3v1 +M2v2 +M1v3 +M0v4 −M7v5 −M6v6 −M5v7
M5v0 +M4v1 +M3v2 +M2v3 +M1v4 +M0v5 −M7v6 −M6v7
M6v0 +M5v1 +M4v2 +M3v3 +M2v4 +M1v5 +M0v6 −M7v7
M7v0 +M6v1 +M5v2 +M4v3 +M3v4 +M2v5 +M1v6 +M0v7


Gazzoni Filho, Brandão, Adj, Alblooshi, Canales-Mart́ınez, Chávez-Saab, López

PQC-AMX: Accelerating Saber and FrodoKEM on the Apple M1 and M3 SoCs 15 / 23

Polynomial multiplication from linear algebra

If we “reshape” the 256× 1 result into a 32× 8 matrix, it can
be computed as:

M · v= M0 · [v0 v1 v2 v3 v4 v5 v6 v7]

+ M1 · [−v7 v0 v1 v2 v3 v4 v5 v6]

+ M2 · [−v6 −v7 v0 v1 v2 v3 v4 v5]

+ M3 · [−v5 −v6 −v7 v0 v1 v2 v3 v4]

+ M4 · [−v4 −v5 −v6 −v7 v0 v1 v2 v3]

+ M5 · [−v3 −v4 −v5 −v6 −v7 v0 v1 v2]

+ M6 · [−v2 −v3 −v4 −v5 −v6 −v7 v0 v1]

+ M7 · [−v1 −v2 −v3 −v4 −v5 −v6 −v7 v0]

Gazzoni Filho, Brandão, Adj, Alblooshi, Canales-Mart́ınez, Chávez-Saab, López

PQC-AMX: Accelerating Saber and FrodoKEM on the Apple M1 and M3 SoCs 16 / 23

Outer level Saber M-V product improvements

Saber performs matrix-vector products, with elements in
Zq/(x

256 + 1): ATs+ h and As′ + h in PKE key generation
and encryption, respectively (A is ℓ× ℓ for ℓ ∈ {2, 3, 4})
We noticed that (example for PKE encryption and ℓ = 2):

As′ =
(
A00 A01

A10 A11

)(
s ′0
s ′1

)
= s ′0

(
A00

A10

)
+ s ′1

(
A01

A11

)
,

Allows batching multiplications by s ′0 and s ′1
We reuse the technique of the previous slides to write As′ as a
sum of 8 multiplications of 32× 32 by 32× 8ℓ matrices,
increasing AMX utilization (full utilization for ℓ = 4)

One of the reviewers pointed out an analogous trick for the
baseline (polymul) implementation, which sped it up nicely

Gazzoni Filho, Brandão, Adj, Alblooshi, Canales-Mart́ınez, Chávez-Saab, López

PQC-AMX: Accelerating Saber and FrodoKEM on the Apple M1 and M3 SoCs 17 / 23

Saber performance results (kilocycles, M3 only)
Best-performing implementation and memory allocation in each case

Sec. level Type Keygen Encaps Decaps M-V mul

1
NEON 19.1 26.3 25.7 3.96

AMX-NTRU 18.5 25.6 24.5 3.28
AMX-TMVP 17.5 24.3 23.2 2.32

NEON/AMX-TMVP (×) 1.09 1.08 1.11 1.71

3
NEON 31.4 40.2 40.3 7.52

AMX-NTRU 32.3 40.9 40.9 7.43
AMX-TMVP 28.4 36.5 36.4 3.62

NEON/AMX-TMVP (×) 1.11 1.10 1.11 2.08

5
NEON 48.3 59.7 59.8 12.1

AMX-NTRU 51.3 62.2 62.4 13.3
AMX-TMVP 42.9 53.2 53.5 4.83

NEON/AMX-TMVP (×) 1.12 1.12 1.12 2.51

Gazzoni Filho, Brandão, Adj, Alblooshi, Canales-Mart́ınez, Chávez-Saab, López

PQC-AMX: Accelerating Saber and FrodoKEM on the Apple M1 and M3 SoCs 18 / 23

FrodoKEM on AMX

FrodoKEM is based on matrix multiplication and should be a
nice match to AMX, but we ran into some issues

Data layout mismatches require transpositions (easy but not
free with AMX); can’t generate AT directly

AS in particular requires two transposes, SA only one

AMX is underutilized due to n × 8 dimension of S and S′

Use batching by a factor of 4 in encapsulation/decapsulation

Given there is no publicly available FrodoKEM implementation
in NEON, we wrote our own to have a fair baseline

Gazzoni Filho, Brandão, Adj, Alblooshi, Canales-Mart́ınez, Chávez-Saab, López

PQC-AMX: Accelerating Saber and FrodoKEM on the Apple M1 and M3 SoCs 19 / 23

Gaussian sampling

Random sampling hard to perform in constant-time for some
distributions (e.g. FrodoKEM’s rounded continuous Gaussian)

Inversion sampling using a table, requires an inefficient full
scan to implement in constant-time

genlut: peculiar instruction with generate and lookup modes

Two input (vector) registers, a source S and a table T

For sorted tables, generate mode works like a search

Lookup similar to Intel pshufb, NEON tbl instructions

In either case, works in parallel on all 32 lanes (and is fast)

Trivial changes to FrodoKEM sampling tables allowed us to
repurpose genlut for table-based inversion sampling, with
excellent performance; experiments suggest it is constant-time

Gazzoni Filho, Brandão, Adj, Alblooshi, Canales-Mart́ınez, Chávez-Saab, López

PQC-AMX: Accelerating Saber and FrodoKEM on the Apple M1 and M3 SoCs 20 / 23

FrodoKEM performance results (kilocycles, M3 only)
Best-performing implementation and memory allocation in each case

Sec. level Type Keygen Encaps Decaps E 4× D 4× Sampling

1
Opt 558 669 641 1755 1755 4.59

NEON 468 561 532 1395 1387 4.35
AMX 414 494 447 907 905 0.84

NEON/AMX (×) 1.13 1.14 1.19 1.54 1.53 5.18

3
Opt 1220 1310 1255 3264 3098 5.99

NEON 940 1070 1005 2594 2419 5.65
AMX 839 930 845 1555 1381 1.28

NEON/AMX (×) 1.12 1.15 1.19 1.67 1.75 4.41

5
Opt 1931 2156 2061 5807 5569 5.48

NEON 1573 1766 1681 4249 4004 5.09
AMX 1396 1500 1388 2352 2101 1.76

NEON/AMX (×) 1.13 1.18 1.21 1.81 1.91 2.88

Gazzoni Filho, Brandão, Adj, Alblooshi, Canales-Mart́ınez, Chávez-Saab, López

PQC-AMX: Accelerating Saber and FrodoKEM on the Apple M1 and M3 SoCs 21 / 23

FrodoKEM performance results (kilocycles, M3 only)
Best-performing implementation and memory allocation in each case

Sec. level Type AS+ E S′A+ E S′A+ E 4×
Full Mat mul Full Mat mul Full Mat mul

1
Opt 354 192 345 189 924 745

NEON 263 118 254 108 614 452
AMX 226 77.7 197 52.4 211 64.1

NEON/AMX (×) 1.16 1.52 1.29 2.05 2.91 7.05

3
Opt 880 418 824 384 2001 1533

NEON 600 247 586 247 1423 1001
AMX 530 181 461 125 485 148

NEON/AMX (×) 1.13 1.37 1.27 1.97 2.93 6.78

5
Opt 1479 808 1474 766 4000 3111

NEON 1116 465 1113 471 2690 1942
AMX 970 328 855 229 887 252

NEON/AMX (×) 1.15 1.42 1.30 2.06 3.03 7.70

Gazzoni Filho, Brandão, Adj, Alblooshi, Canales-Mart́ınez, Chávez-Saab, López

PQC-AMX: Accelerating Saber and FrodoKEM on the Apple M1 and M3 SoCs 22 / 23

Conclusions and future work

AMX suitable for polynomial multiplication, but must ensure
high matrix/vector operation ratio

Current cryptosystems are best suited to CPU
implementations; designers may wish to revisit parameter
choices to favor matrix multiplication accelerators

Symmetric primitives becoming the bottleneck of PQC

Future work:

Application to NTT-based schemes (e.g. Kyber, Dilithium)
Application of genlut to other schemes

Gazzoni Filho, Brandão, Adj, Alblooshi, Canales-Mart́ınez, Chávez-Saab, López

PQC-AMX: Accelerating Saber and FrodoKEM on the Apple M1 and M3 SoCs 23 / 23

Thank you!

Questions?

Gazzoni Filho, Brandão, Adj, Alblooshi, Canales-Mart́ınez, Chávez-Saab, López

PQC-AMX: Accelerating Saber and FrodoKEM on the Apple M1 and M3 SoCs 23 / 23

Memory performance issues

Performance anomalies observed in NTRU (and Saber),
especially in the M1

Observation by M. Handley that concurrent AMX/CPU
memory accesses block; not only for the same addresses or
even the same cache line, but rather a full memory page

Arrays of polynomial coefficients in reference/optimized
implementation are allocated on the stack, right next to other
variables used by the CPU for other routines

Solution: allocate arrays using mmap (one page per array)

Gazzoni Filho, Brandão, Adj, Alblooshi, Canales-Mart́ınez, Chávez-Saab, López

PQC-AMX: Accelerating Saber and FrodoKEM on the Apple M1 and M3 SoCs 23 / 23

Saber PKE

increases AMX utilization in Saber’s matrix-vector products
based on the TMVP approach [11]. This sets new speed
records on Apple M1 and M3, with speedups of up to 13% at
the protocol level and 151% for the polynomial operations.

For FrodoKEM, we first present a NEON implementation
of our own to use as a baseline, which already sets new speed
records on the M1/M3. We then present our AMX implemen-
tation, which improves further on our NEON record. Both im-
plementations explore possible matrix multiplication strategies
and use a novel technique for generating FrodoKEM-AES’s A
matrix. We make an innovative use of AMX’s unique genlut
instruction to perform Gaussian sampling, improving it by up
to 418% versus a NEON implementation. This might be of
particular interest for other applications. Compared to the state
of the art, we improve on the M1 and M3 by up to 21% at
the protocol level and 124% for matrix multiplication. Then,
we develop 4⇥-batched NEON and AMX implementations,
showing that AMX is significantly faster than NEON, by up to
91% at the protocol level and 708% for matrix multiplication.

We make all our code available at https://github.com/... 2

II. PRELIMINARIES

A public-key encryption scheme (PKE) is a tuple of algo-
rithms (KeyGen,Enc,Dec). KeyGen generates a public key
pk and a secret key sk. Enc outputs a ciphertext c given pk
and a message m. Dec outputs a message m0 from sk and c. A
key encapsulation mechanism (KEM) is a tuple of algorithms
(KeyGen,Encaps,Decaps). KeyGen generates a public
key pk and a secret key sk. Encaps outputs a shared key
ss and a ciphertext c given pk. Decaps outputs a shared key
ss0 from sk and c. We present next KEMs obtained from PKEs
via a variant of the Fujisaki-Okamoto transform; we only show
PKE algorithms, which are the target of our optimizations.

Bold lower case denotes vectors and bold upper case denotes
matrices. We write v[i : j : k] for a matrix/vector slice of
coefficients i, i+j, i+2j, . . . , i+k; j = 1 if omitted. Sampling
from a uniform distribution over a set S is denoted x U(S).

A. Saber
Saber [1] is a lattice-based KEM relying on the hardness of

Module Learning With Rounding. Its NIST submission spec-
ifies the parameter sets below for security levels 1, 3, and 5.

Parameter set Sec. level l n q p T µ
LightSaber 1 2 256 213 210 23 10

Saber 3 3 256 213 210 24 8
FireSaber 5 4 256 213 210 26 6

Saber works over the ring Rq := Zq[X]/(Xn + 1) and
employs the binomial distribution centered at µ, denoted �µ,
hash functions F , G, H, and a function gen to generate a
pseudorandom matrix from a seed. We have that q = 2✏q , p =
2✏p , T = 2✏T . Let s �µ(Rl

q; r) denote sampling each
coordinate of a vector s 2 Rl

q pseudorandomly from the
distribution �µ(Rq) with seed r. Algorithms II.1, II.3 and II.2
are a verbatim reproduction of Saber’s PKE specification.

2A GitHub repository will be made available following the paper’s publi-
cation.

Algorithm II.1
Saber.PKE.KeyGen()

Input: None
Output: Key pair (pk, sk)
1: seedA U({0, 1}256)
2: A gen(seedA) 2 Rl⇥l

q

3: r U({0, 1}256)
4: s �µ(Rl⇥1

q ; r)

5: b ((ATs+h) mod q)� (✏q�
✏p) 2 Rl⇥1

p

6: return (pk := (seedA, b), sk :=
s)

Algorithm II.2
Saber.PKE.Dec(sk, c)

Input: Secret key sk, ciphertext c
Output: Message m0

1: v b0T(s mod p) 2 Rp

2: m0 ((v � 2✏p�✏T cm +
h2) mod p)� (✏p � 1) 2 R2

3: return m0

Algorithm II.3
Saber.PKE.Enc(pk, m; r)

Input: Public key pk, message m 2 R2,
optional randomness r

Output: Ciphertext c
1: A gen(seedA) 2 Rl⇥l

q

2: if r is not specified then
3: r U({0, 1}256)

4: s0 �µ(Rl⇥1
q ; r)

5: b0 ((As0 + h) mod q) �
(✏q � ✏p) 2 Rl⇥1

p

6: v0 bT(s0 mod p) 2 Rp

7: cm (v0 + h1 � 2✏p�1m mod
p)� (✏p � ✏T) 2 RT

8: return c := (cm, b0)

B. FrodoKEM
FrodoKEM [2] is a lattice-based KEM that relies on the

hardness of Learning With Errors. The submission to NIST
specifies the parameters as in the table below.

Parameter set Sec. level n q m = n lA lSE

Frodo-640 1 640 215 8 128 128
Frodo-976 3 976 216 8 128 192

Frodo-1344 5 1344 216 8 128 256

FrodoKEM uses a function Gen(s) to generate a matrix
A 2 Zn⇥n

q pseudorandomly from a seed s of length lA (using
AES or SHAKE), and a function SM(r, s, t) for inversion
sampling of a matrix in Zs⇥t

q using a pseudorandom array
of 16-bit integers r and a precomputed table T� for an error
distribution �. Let SK denote SHAKE. The PKE specification
is given by Algorithms II.4, II.6 and II.5.

Algorithm II.4
FrodoPKE.KeyGen()

Input: None
Output: Key pair (pk, sk)
1: seedA U({0, 1}lA)
2: A Gen(seedA)
3: seedSE U({0, 1}lSE)
4: r SK(0x5F||seedSE,2nn · 16)
5: ST SM(r[0 : nn� 1], n, n)
6: E SM(r[nn : 2nn� 1], n, n)
7: B = AS + E
8: return (pk := (seedA, B), sk :=

ST)

Algorithm II.5
FrodoPKE.Dec(sk, c)

Input: Secret key sk, ciphertext c
Output: Message m0

1: M = C2 � C1S
2: return m0 := Decode(M)

Algorithm II.6
FrodoPKE.Enc(pk, m, r)

Input: Public key pk, message m
Output: Ciphertext c
1: A Gen(seedA)
2: seedSE U({0, 1}lSE)
3: r SK(0x96||seedSE,(2mn +

mn) · 16)
4: S0 SM(r[0 : mn� 1], m, n)
5: E0 SM(r[mn : 2mn �

1], m, n)
6: E00 SM(r[2mn : 2mn +

mn� 1], m, n)
7: B0 = S0A + E0;V = S0B + E00

8: return c := (C1, C2) = (B0, V+
Encode(m))

C. The AMX coprocessor
AMX is a matrix multiplication coprocessor found in Apple

SoCs. It lacks official documentation, so we turn to the reverse

2

Gazzoni Filho, Brandão, Adj, Alblooshi, Canales-Mart́ınez, Chávez-Saab, López

PQC-AMX: Accelerating Saber and FrodoKEM on the Apple M1 and M3 SoCs 23 / 23

FrodoKEM PKE

increases AMX utilization in Saber’s matrix-vector products
based on the TMVP approach [11]. This sets new speed
records on Apple M1 and M3, with speedups of up to 13% at
the protocol level and 151% for the polynomial operations.

For FrodoKEM, we first present a NEON implementation
of our own to use as a baseline, which already sets new speed
records on the M1/M3. We then present our AMX implemen-
tation, which improves further on our NEON record. Both im-
plementations explore possible matrix multiplication strategies
and use a novel technique for generating FrodoKEM-AES’s A
matrix. We make an innovative use of AMX’s unique genlut
instruction to perform Gaussian sampling, improving it by up
to 418% versus a NEON implementation. This might be of
particular interest for other applications. Compared to the state
of the art, we improve on the M1 and M3 by up to 21% at
the protocol level and 124% for matrix multiplication. Then,
we develop 4⇥-batched NEON and AMX implementations,
showing that AMX is significantly faster than NEON, by up to
91% at the protocol level and 708% for matrix multiplication.

We make all our code available at https://github.com/... 2

II. PRELIMINARIES

A public-key encryption scheme (PKE) is a tuple of algo-
rithms (KeyGen,Enc,Dec). KeyGen generates a public key
pk and a secret key sk. Enc outputs a ciphertext c given pk
and a message m. Dec outputs a message m0 from sk and c. A
key encapsulation mechanism (KEM) is a tuple of algorithms
(KeyGen,Encaps,Decaps). KeyGen generates a public
key pk and a secret key sk. Encaps outputs a shared key
ss and a ciphertext c given pk. Decaps outputs a shared key
ss0 from sk and c. We present next KEMs obtained from PKEs
via a variant of the Fujisaki-Okamoto transform; we only show
PKE algorithms, which are the target of our optimizations.

Bold lower case denotes vectors and bold upper case denotes
matrices. We write v[i : j : k] for a matrix/vector slice of
coefficients i, i+j, i+2j, . . . , i+k; j = 1 if omitted. Sampling
from a uniform distribution over a set S is denoted x U(S).

A. Saber
Saber [1] is a lattice-based KEM relying on the hardness of

Module Learning With Rounding. Its NIST submission spec-
ifies the parameter sets below for security levels 1, 3, and 5.

Parameter set Sec. level l n q p T µ
LightSaber 1 2 256 213 210 23 10

Saber 3 3 256 213 210 24 8
FireSaber 5 4 256 213 210 26 6

Saber works over the ring Rq := Zq[X]/(Xn + 1) and
employs the binomial distribution centered at µ, denoted �µ,
hash functions F , G, H, and a function gen to generate a
pseudorandom matrix from a seed. We have that q = 2✏q , p =
2✏p , T = 2✏T . Let s �µ(Rl

q; r) denote sampling each
coordinate of a vector s 2 Rl

q pseudorandomly from the
distribution �µ(Rq) with seed r. Algorithms II.1, II.3 and II.2
are a verbatim reproduction of Saber’s PKE specification.

2A GitHub repository will be made available following the paper’s publi-
cation.

Algorithm II.1
Saber.PKE.KeyGen()

Input: None
Output: Key pair (pk, sk)
1: seedA U({0, 1}256)
2: A gen(seedA) 2 Rl⇥l

q

3: r U({0, 1}256)
4: s �µ(Rl⇥1

q ; r)

5: b ((ATs+h) mod q)� (✏q�
✏p) 2 Rl⇥1

p

6: return (pk := (seedA, b), sk :=
s)

Algorithm II.2
Saber.PKE.Dec(sk, c)

Input: Secret key sk, ciphertext c
Output: Message m0

1: v b0T(s mod p) 2 Rp

2: m0 ((v � 2✏p�✏T cm +
h2) mod p)� (✏p � 1) 2 R2

3: return m0

Algorithm II.3
Saber.PKE.Enc(pk, m; r)

Input: Public key pk, message m 2 R2,
optional randomness r

Output: Ciphertext c
1: A gen(seedA) 2 Rl⇥l

q

2: if r is not specified then
3: r U({0, 1}256)

4: s0 �µ(Rl⇥1
q ; r)

5: b0 ((As0 + h) mod q) �
(✏q � ✏p) 2 Rl⇥1

p

6: v0 bT(s0 mod p) 2 Rp

7: cm (v0 + h1 � 2✏p�1m mod
p)� (✏p � ✏T) 2 RT

8: return c := (cm, b0)

B. FrodoKEM
FrodoKEM [2] is a lattice-based KEM that relies on the

hardness of Learning With Errors. The submission to NIST
specifies the parameters as in the table below.

Parameter set Sec. level n q m = n lA lSE

Frodo-640 1 640 215 8 128 128
Frodo-976 3 976 216 8 128 192

Frodo-1344 5 1344 216 8 128 256

FrodoKEM uses a function Gen(s) to generate a matrix
A 2 Zn⇥n

q pseudorandomly from a seed s of length lA (using
AES or SHAKE), and a function SM(r, s, t) for inversion
sampling of a matrix in Zs⇥t

q using a pseudorandom array
of 16-bit integers r and a precomputed table T� for an error
distribution �. Let SK denote SHAKE. The PKE specification
is given by Algorithms II.4, II.6 and II.5.

Algorithm II.4
FrodoPKE.KeyGen()

Input: None
Output: Key pair (pk, sk)
1: seedA U({0, 1}lA)
2: A Gen(seedA)
3: seedSE U({0, 1}lSE)
4: r SK(0x5F||seedSE,2nn · 16)
5: ST SM(r[0 : nn� 1], n, n)
6: E SM(r[nn : 2nn� 1], n, n)
7: B = AS + E
8: return (pk := (seedA, B), sk :=

ST)

Algorithm II.5
FrodoPKE.Dec(sk, c)

Input: Secret key sk, ciphertext c
Output: Message m0

1: M = C2 � C1S
2: return m0 := Decode(M)

Algorithm II.6
FrodoPKE.Enc(pk, m, r)

Input: Public key pk, message m
Output: Ciphertext c
1: A Gen(seedA)
2: seedSE U({0, 1}lSE)
3: r SK(0x96||seedSE,(2mn +

mn) · 16)
4: S0 SM(r[0 : mn� 1], m, n)
5: E0 SM(r[mn : 2mn �

1], m, n)
6: E00 SM(r[2mn : 2mn +

mn� 1], m, n)
7: B0 = S0A + E0;V = S0B + E00

8: return c := (C1, C2) = (B0, V+
Encode(m))

C. The AMX coprocessor
AMX is a matrix multiplication coprocessor found in Apple

SoCs. It lacks official documentation, so we turn to the reverse

2

Gazzoni Filho, Brandão, Adj, Alblooshi, Canales-Mart́ınez, Chávez-Saab, López

PQC-AMX: Accelerating Saber and FrodoKEM on the Apple M1 and M3 SoCs 23 / 23

