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RNS-MMM for Crypto algorithms (e.g., RSA)

• Typical Key-length:

𝑛 = 𝑘 × 𝑟 = 2𝑖 9 ≤ 𝑖 ≤ 13

𝑘 = # of co-prime moduli,

𝑟 = Residue channel bit-width

• Ultra-fast long key-length RNS-MMM via free-δ scheme:

𝑟 = 16, 𝑘 ∈ 32,64,128,256,512

• # of dynamically changeable 𝑘-moduli pair sets for

𝑘 ∈ 32,64,128,256,512 : 2505, 2887, 21302, 22727, 23833

Source: AI generated image (DALLE) 
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BE-MMM: Architecture and formulas

Schematic of 

RNS-MMM

with two 

consecutive BE

operations

Forward conversion

BEBEBE

BE BE BE

Reverse conversion



• Problem: RNS-unfriendly division operation

• Current Solution:   Base extension

 BE-MMM: Two non-overlapped 𝑘-size co-prime (2𝑟 − δ) moduli sets: 

Dynamic range (DR) of each set: 2𝑘𝑟

 BE-MMM drawbacks
Requires double of the essential number of co-prime moduli to support the working DR

• Proposed Solution: SB-MMM: No base extension ⟹
 𝑋2 DR (i.e., 22𝑘𝑟) size of the same 𝑟

 or same DR with half bit-width residue channels (i.e., 𝑟/2)

 Example : 𝑟 = 24

2170, 2294, 2506, 2835, 21309 , for 𝑘 ∈ 22,43,86,171,342

Motivation



Proposed algorithm (SB-MMM)

Inputs: 𝑚𝑖, 𝑥𝑖, 𝑦𝑖, 0 ≤ 𝑖 ≤ 𝑘, Outputs:  𝑧𝑖
′+, 0 ≤ 𝑖 ≤ 𝑘

1) For 𝑖 = 0 to 𝑘 do par 𝑤𝑖 = 𝑥𝑖𝑦𝑖 𝑚𝑖
; ξ𝑥𝑖 = 𝑥𝑖𝑀𝑖

−1
𝑚𝑖

; ξ𝑦𝑖 = 𝑦𝑖𝑀𝑖
−1

𝑚𝑖
;

2) For 𝑖 = 0 to 𝑘 do par

ξ𝜔𝑖
= 𝑤𝑖

 𝑁𝑀𝑖
−1

𝑚𝑖 𝑚𝑖

;

𝑢𝑖 = 𝑤𝑖 𝑀𝑖
−1 𝑀𝑖

𝑚𝑖
𝑀𝑖

−1 +
𝑁

𝑚𝑖

 𝑁
𝑚𝑖 𝑚𝑖

;

3) For 𝑖 = 0 to 𝑘 do par 𝑠𝑖 = ξ𝑥𝑖ξ𝑦𝑖 𝑀𝑖 𝑚𝑖
𝑚𝑖

−1 + ξ𝜔𝑖
𝑁 𝑚𝑖

𝑚𝑖
−1

22𝑟 𝑚𝑖

;

4) For 𝑖 = 0 to 𝑘 do par

𝒑𝒙𝒊 =  𝒋=𝟎,𝒋≠𝒊
𝒌 𝝃𝒙𝒋𝒎𝒋

−𝟏 − 𝜸𝑿
𝒆 +

𝟏

𝟐
;

𝒑𝒚𝒊 =  𝒋=𝟎,𝒋≠𝒊
𝒌 𝝃𝒚𝒋𝒎𝒋

−𝟏 − 𝜸𝒀
𝒆 +

𝟏

𝟐
;

𝒑𝝎𝒊
=  𝒋=𝟎,𝒋≠𝒊

𝒌 𝝃𝝎𝒋
𝒎𝒋

−𝟏 − 𝜸𝜴
𝒆 +

𝟏

𝟐
;

;

5) For 𝑖 = 0 to 𝑘 do par  𝑧𝑖
′+ = 𝑁 + 𝑥𝑖 𝑝𝑦𝑖 𝑚𝑖

+ 𝑦𝑖 𝑝𝑥𝑖 𝑚𝑖
+ 𝑁 𝑚𝑖

𝑝𝜔𝑖 𝑚𝑖
+ 𝑢𝑖 + 𝑠𝑖

𝑚𝑖

;∎



SB-MMM: Architecture and formulas
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SB-MMM: Detailed Architecture
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Definitive derivation of the reduction factors

Register
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Main architecture
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The cyclic register file

Initial value of MAC = 2𝑟−1 for supporting 𝜸 +
𝟏

𝟐

Definitive derivation via an additional modulo 𝑚0 = 8
that allows Γ = 𝑀 > 6𝑁



Three scenarios for using SB-MMM

1) Speedup via reducing the bit-widths

to half, thus doubling the number of moduli,

for the same working DR.

2)  More dynamism in moduli set selection

to reduce the probability of successful

side-channel attacks.

3) Keeping the same bit-widths, but

reducing the total number of moduli

to half, for faster CRT-like operations.

Example: key-length 𝑛 = 1024,

BE-MMM: 𝑟 = 32 ⟹ 𝑘 = 32 ⟹ Total # of moduli: 2 × 32 = 64 ⟹
Delay: 2 × 32𝑀32

SB-MMM: 𝑟 = 32 ⟹ 𝑘 = 32 ⟹ Total # of moduli: 32 ⟹
Delay: 32𝑀32

Example: key-length 𝑛 = 1024,

BE-MMM: 𝑟 = 32: Total # of free-δ co-prime moduli of the 

form 232 − δ: 384000

Total # of moduli-set selection: 384000
32

× 383968
32

≈ 22374.

SB-MMM: 𝑟 = 64. Total # of free-δ co-prime moduli of the 

form 264 − δ > 251

Total # of moduli-set selection: > 251

16
≈ 2816



# of multiplications: SB-MMM versus [5]

The CDP of un-pipelined SB-MMM vs. similar

design of [5] is more than 83% shorter and 

50% shorter than that of its pipelined version

Cost of the latter advantage is 50% increase

In the total # of multiplications vs. that of [5]

Steps of the SB-MMM 

algorithm

# of multiplications

CDP Total

1 3 3 × 3 = 9

2 3 3 + 3 = 6

3 2 3 + 1 = 4

4 𝑘 3 × 3𝑘

5 3 5

Grand Total 𝑘 + 11 𝑘 9𝑘 + 24

Ref. [5]  (Unpipelined) 6𝑘 + 15
𝑘 6𝑘 + 15

Ref. [5]  (Pipelined) 2𝑘 + 22



Synthesis result: SB-MMM versus [5]

Design

Size of

the 

moduli 

pool

Per residue 

channel

r k
# of clock 

cycle

Clock 

time

(ns)

Probability

Of successful 

attacks
n

𝑀𝑀𝑀 Delay

AT
𝑚𝑠 ×
𝑚𝑚2

PDP
𝑚𝑠 ×
𝑚𝑊Area

(𝒎𝒎𝟐)

Power

(𝒎𝑾)
(ns) Ratio

SB-MMM

1981 0.112 66.5 24

43 75

0.76

2−294 1024 57 1.21 0.274 0.163

86 118 2−506 2048 90 1.45 0.866 0.514

384000 0.135 62.3 32

32 64

0.79

2−369 1024 51 1.08 0.221 0.102

64 96 2−678 2048 76 1.22 0.660 0.303

> 251 0.364 127.9 64

16 48

0.97

< 2−816 1024 47 1 0.274 0.096

32 64 < 2−1631 2048 62 1 0.723 0.253

[5] 251 0.079 17.4 32 32 80 1.86 2−134 1024 149 3.17 0.380 0.083



Selected results: SB-MMM versus [5]

• 62%, 66%, and 69% delay reductions, for 

channel widths 𝑟 = 24, 32, and 64, respectively, 

versus r = 32 of [5]

• 28%, 42%, and 28% reduced area-time (AT) 

product, for 𝑟 = 24, 32, and 64, respectively

• Reduction in the probability of successful side 

channel attacks by a scale of 2160



Conclusion

• New RNS-MMM with three parallel CRT-like operations 

instead of two consecutive similar operations of the BE-MMM

• Definitive parallel derivation of three reduction factors

• 60% speedup, and 20% less area cost of proposed algorithm 

for key-length 𝑛 = 1024, and channel width 𝑟 = 24 in 

comparison to the best previous work [5], with 𝑟 = 32

• Significant reduction in the probability of successful side 

channel attacks


