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Abstract

In the last few years, the heterogeneous architectures have become dominant
in each part of the computing industry: from heterogeneous CPUs able to focus
on performance or efficiency, to GPU accelerators joining multi-core CPUs within
the same chip, to Systems on Chip that integrate DSPs, FPGAs and many other
types of processor in the same area. Hardware manufacturers have placed the
responsibility for explicit accelerator management on software developers. In
general, writing high performance programs for heterogeneous architectures is a
complex task. Programming for this kind of platforms requires the understanding
of new hardware concepts, orchestration of different parallelism levels, the explicit
management of different memory spaces and synchronizations between processing
units. Moreover, heterogeneous architectures suffer from performance portability,
as one program can exhibit unequal performance on different devices. The main
problem this thesis addresses is the optimization of real-life irregular massive
data problems for heterogeneous architectures. Irregular problems are those in
which the distribution of computational load is not regular and vary along the
iteration space, exhibiting in most of the cases data and control divergences.
This approach is achieved by providing models that, in runtime, find the best
parallelization and workload balance for, not only the multi-core CPU, but also
the accelerator in the heterogeneous architecture deployed. The main motivation
of this thesis is the fact that there is no implementation with optimal solution for
heterogeneous architectures for two massive data, real-life and complex problems
widely used in big data fields: time series and the skyline problem.

In the first part of this thesis, we focus on the motifs/discord discovery prob-
lem for time series, taking as a starting point the state-of-the-art algorithm, the
Matrix Profile. The workload of the Matrix Profile is an irregular problem which
can be modeled and regularized in runtime to get the optimal parallelization and
distribution of workload for different accelerators. We present the first hetero-
geneous implementations for the matrix profile computation for CPU + GPU
architectures and CPU + FPGA using a High Performance FPGA with inte-
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grated High Bandwidth Memory, HBM. To the best of our knowledge, we provide
the first FPGA implementation of a Matrix Profile algorithm using High Level
Synthesis, HLS. We experimentally evaluate three heterogeneous schedulers com-
paring performance and energy consumption in these architectures. We propose
Fastfit, a hierarchical scheduler: (1) at the system level, it efficiently balances
workload among the FPGA and the CPU cores; and (2) at device level, it com-
putes an even partition of the diagonals of the Matrix Profile so that all FPGA
IPs complete their assignment at the same time. We also develop a methodology
based on a model to optimize the memory bandwidth usage of HBM Banks in a
High Performance FPGA with integrated High Bandwidth Memory. We validate
the accuracy of our models, finding that it outperforms state-of-the-art previous
schedulers by achieving up to 99.4% of ideal performance.

In the second part, we tackle the problem of computing the skyline operator
over a stream of independent data queries targeting a heterogeneous architecture
comprised of a multi-core CPU and an integrated GPU. The skyline problem is an
optimization problem which minimizes a N-Dimensional dataset into the smallest
subset. The workload for each input query is highly dependent on the multidimen-
sional distribution of points and vary with no pattern during execution. Hence,
it is impossible to accurately model the workload of the dataset at runtime. This
kind of irregularities offers the possibility to optimize using a fine-grained parti-
tion to keep the heterogeneous architecture busy while keeping balance between
devices during all the execution. We contribute with a novel implementation,
based on oneAPI, of the state-of-the-art SkyAlign algorithm and evaluate its per-
formance both on GPU and on CPU. We design a graph-based engine, SkyFlow,
and propose two heterogeneous approaches for skyline computation over a stream
of data queries: SkyFlow-CG (Coarse-grained) and SkyFlow-FG (Fine-grained).
Coarse-grained keeps two skyline computations in parallel, one per device, while
in Fine-grained a single skyline computation is split between the CPU and GPU
devices. We present two policies for scheduling the skyline computation of ar-
riving data queries between devices in the Coarse-grained approach, where each
device has a queue. The first strategy (Work Conserving) keeps the devices busy
by offloading queries to the shortest queue. The second approach (Heterogeneous
Earliest Finish Time) enqueues the incoming query on the device queue in which
it will finish earlier using a model that estimates the execution time with negligi-
ble overhead. Our experimental results show that in our streaming scenarios and
datasets, our heterogeneous CPU+GPU approaches always outperform previous
only-CPU and only-GPU state-of-the-art implementations up to 6.86x and 5.19x,
respectively, and they fall below 6% of ideal peak performance at most.



ABSTRACT xv

In the end, this thesis has resulted in schedulers and models to efficiently
optimize two relevant massive data applications, using heterogeneous architec-
tures. We can optimize performance, productivity or energy consumption if we
select the most suitable scheduling strategy and programming model. The scien-
tific community can apply these approaches to accelerate data processing using
heterogeneous architectures in other problems with similar requirements.
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1 Introduction

Since the paradigm shift from single-core CPU to multi-core architectures, the
structure of hardware architectures has been continuously progressing. Nowa-
days, not only the performance has become a main variable to consider in the
development of new architectures but also the energy consumption. In the last
few years, the heterogeneous architectures have become dominant in each part
of the computing industry: from supercomputers to embedded systems or even
mobile architectures. The development of task-specific devices in heterogeneous
architectures (GPU, NPU, TPU, FPGA) that co-work with CPUs in SoC have
allowed not only an improvement of the energy efficiency over traditional multi-
core systems, but also performance-wise. In this work we discuss the challenges
and analyze the strengths of using heterogeneous architectures to optimize per-
formance and energy consumption to solve massive data problems.

In this introduction we present the transition to heterogeneous architectures
from multi-core era in Section 1.1. Section 1.2 covers the challenge of program-
ming heterogeneous architectures, as they request more effort from the program-
mer. The topics covered in this Section include the use of lower-level libraries to
exploit the potential of the architecture, the data partitioning and the load bal-
ance among the available devices. Section 1.3 highlights the motivations of this
thesis motivations and addresses the unresolved problems we are going to study.
Section 1.4 states the thesis objectives and the research questions addressed. Fi-
nally, Section 1.5 presents the thesis contributions and Section 1.6 depicts the
thesis structure.

1
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1.1. The transition to heterogeneous architectures

According to Moore’s law [1], over the past fifty years the number of tran-
sistors per chip, which is a short and simple way to measure their performance,
has doubled every two years. This fact has been accompanied by an increase in
frequency and power consumption that in the mid-2000s became unsustainable.
Such limit led to stabilize the frequency in order to restrain the power consump-
tion and to continue the improvement of technology the multi-core architecture
emerged. The industry shifted its strategy for continuing performance growth
from increasing the frequency of the core, to adding more cores in a chip. This
innovation brought developers a challenge to take advantage of the new archi-
tectures: now they have to adapt the code with specific software to leverage
the multi-core capabilities of the new chips. Until the multi-core era, the soft-
ware engineers developed their codes without worrying about performance: each
new iteration of architectures gave more performance to the same code. Since
the dawn of the multi-core era, the burden of increasing the performance of the
implementations has fallen on the programmer shoulders [2].

The last decade has seen a revolution in hardware architecture design, with
chips moving from multi-core systems to heterogeneous architectures. Now the
chips do not contain only replications of the same core (multi-core systems), but
task-specialized devices co-working together with the CPU in a SoC. Examples
of this specialized devices are:

GPU. Designed initially for computer graphics and image processing. They
mainly exploit massive data-level parallelism requiring less energy than
CPU. Nowadays they are widely used in many fields of industry and re-
search and are known as GPGPU (standing for General Purpose GPU) since
they can accelerate general applications that have traditionally been run on
(general purpose) CPU, ranging from embarrassingly parallel tasks [3] to
more irregular applications like ray tracing [4].

FPGA. This architecture is made of logic blocks designed to be recon-
figured in a specific electronic device for implementing basic or complex
logic functions [5]. This device offers very low power consumption, since it
only uses the logic/transistors required to implement the specific function
for which the FPGA has been reconfigured. Usually, the FPGA perfor-
mance increments comes from exploiting pipeline parallelism, what makes
this architecture quite suitable for stream processing.
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DSP. Devices specifically designed for digital signal processing such as au-
dio signal processing, telecommunications, digital image processing, mostly
found in embedded systems [6].

NPU and TPU. These devices are designed specifically for machine learn-
ing processing [7]. They offer optimal performance in neural networks pro-
cessing, since its architecture is designed specifically for matrix multiplica-
tions.

All of these devices offers significant performance and energy efficiency if
they are used for specific task instead of CPU. However, these benefits do not
come for free, since they need to be programmed by using specific libraries and
programming techniques. Finding out the right way to leverage the capabilities of
these new architectures is now responsibility of the programmer. The following
section discusses what these programming libraries offer, their limitations and
challenges.

1.2. The challenge of heterogeneous programming

Traditional parallel architectures, multi-core chips, works with the task par-
allel paradigm programming. Each application is divided into smaller tasks exe-
cuted on the different cores available in the chip, aiming at distributing the work
and improving the overall application performance. The division of the work-
load in smaller tasks and their distribution among available cores makes parallel
programming a challenge for traditional programmers, since getting the optimal
parallelization of an application can easily become a really challenging task.

Heterogeneous computing is the paradigm in which the parallelization of an
application is performed in an heterogeneous architecture made of different de-
vices. This context offers even more complexity in the parallelization, since the
orchestration of tasks among devices has to take into account the capabilities
of each one in order to take advantage of the architecture. The key idea of this
paradigm is to assign the tasks which fit better for a particular device, optimizing
the code for each device. For example, let’s consider a particular code with two
main parts: one with an embarrassingly parallel loop and other with a huge num-
ber of conditions and random memory access. The first one will execute faster on
a GPU and the second one will fits better on a CPU. In this thesis we focus on
heterogeneous CPU+GPU and CPU+FPGA architectures to solve real problems
and its optimizations to leverage these architectures.
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Along with the explosion of different heterogeneous architectures to solve
specific problems, the number of heterogeneous frameworks and libraries has also
increased. Some of them are for proprietary devices as CUDA [8] only for NVIDIA
devices, while others are available for different architectures and cross-platforms
such as OpenCL [9], SYCL [10] or the recently introduced oneAPI [11]. Others
less common are RenderScript [12] and Mare [13] which are focused on optimizing
heterogeneous applications for mobile devices.

Although these frameworks help in harnessing the heterogeneous devices by
adding the accelerators along with the multi-core CPU, the challenges for lever-
aging heterogeneous programming has hindered the general adoption of these
frameworks. These challenges open a research opportunity in which heteroge-
neous programming models and libraries can be proposed in order to facilitate
the adoption of these heterogeneous platforms for the vast majority of developers
and, hence, democratize the “heterogeneous programming”.

1.3. The challenge of optimizing massive data ap-
plications on heterogeneous architectures

In heterogeneous programming, the computation is divided into tasks and
offloaded into the different devices that constitute the heterogeneous platform.
Optimizing an application via heterogeneous programming requires a thorough
knowledge of both the application and the heterogeneous architecture on which
it will be executed. Furthermore, each device has different features in terms or
performance, energy consumption and parallelization capabilities. The developer
has to hone his skills to find the optimal solution with the optimal resources,
which becomes one of the main challenges that comes with heterogeneous pro-
gramming.

The main problem this thesis addresses is the optimization of real-life irregular
massive data problems for heterogeneous architectures.

Irregular problems are those in which the computational load is not regular
and vary along the iteration space. In some problems the irregularity can be
regularized. This approach is achieved by providing models that, at runtime,
find the best parallelization and workload balance for, not only the multi-core
CPU, but also the accelerator in the heterogeneous architecture deployed. On
other problems, however, modeling the program before runtime is neither feasible
nor possible, the workload distribution is completely unpredictable and may even
change depending on previous results or input received. A possible solution in this
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case is a fine-grained partitioning of the workload to keep the balance between
the devices.

This issue is even more challenging and remains unsolved for many real-life
problems where the complexity of the implementation of the codes makes harder
to model the best parallelization or finding the optimal workload distribution.

Several approaches has been proposed in the literature to address this prob-
lem. Some of them propose an offline training phase in order to figure out the
best workload partition among devices [14, 15, 16, 17]. The strategies these
approaches tackle are launching small executions to profile the problem or use
machine learning methods in order to build a model which predict the optimal
workload partition. The drawbacks of these approaches are the ones of the of-
fline training techniques: (1) overhead of training, particularly for large datasets
and/or (2) unsuitability of training, specially for irregular applications, in which
the optimal workload partition can not be estimated offline so that adaptive
schedulers has to be devised to solve the partitioning problem at runtime.

Recent work has proposed solutions for optimizing irregular applications using
a runtime model that is agnostic to the application being run [18, 19]. While these
approaches get excellent performance in most of the codes, for specific real-life
and complex irregular problems, a general optimization without knowledge of the
application falls short of fully exploiting the heterogeneous architecture.

This thesis is motivated by the fact that there is no implementation with op-
timal solution for heterogeneous architectures for two data massive, real-life and
complex problems widely used in big data fields: time series and the skyline prob-
lem. We focus on proposing an optimal solution for these two problems. On the
one hand, for time series we focus in the motifs/discord discovery problem, taking
as a starting point the state-of-the-art algorithm, the Matrix Profile. Previous
implementations of the matrix profile [20] made an embarrassingly paralleliza-
tion of the problem, at the cost of a huge computational load. State-of-the-art
implementations [21, 22] optimize the sequential calculation of the matrix profile
by rearranging and skipping operations, but at the cost of creating an irregular
problem in its parallelization. However, the workload can be modeled and regu-
larized at runtime to get the optimal parallelization and distribution of workload
for different accelerators, as we will see in Chapters 3 and 4.

On the other hand, the skyline problem is a highly irregular problem in which
the workload can not be modeled, and this fact hampers an optimal workload
distribution. The skyline problem is an optimization problem widely used for
multi-criteria decision making. It allows to minimize a N-Dimensional dataset
into the smallest subset. In this thesis we focus on the computation of a stream
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of skyline queries. The workload for each input query is highly dependent on the
multidimensional distribution of points and vary with no pattern during execu-
tion. Hence, not until the complete iteration space is computed, is it impossible to
accurately model the workload of the dataset. This kind of irregularities offers the
possibility to optimize using a fine-grained partition to keep the heterogeneous
architecture busy while keeping balance between devices during all the execu-
tion. As a starting point we take the state-of-the-art algorithms for CPU [23]
and GPU [24], as we will detail in Chapter 5.

In this sense, models and scheduling strategies for these two applications are
proposed to optimize performance and energy consumption on different hetero-
geneous architectures, such as CPU+GPU and CPU+FPGA.

1.4. Thesis Objectives and Research questions

Despite the fact that there are already different solutions proposed, as men-
tioned in previous section, there is still a lot of room for improvement in optimiz-
ing irregular data massive applications on heterogeneous architectures. Although
these approaches fits well for regular applications, real applications with complex
workflow can difficult its parallelization and optimization using generic templates,
so that custom and fine-grained solutions become necessary. Also, the introduc-
tion of new accelerators such as FPGA with HBM requires specific models and
schedulers to leverage its capabilities. In this thesis we aim to fill this gap in lit-
erature, providing not only the first heterogeneous implementations, but specific
high level models and schedulers for our two complex and data massive applica-
tions targeted: the matrix profile and the streaming skyline computation. We
use not only the traditional accelerator such as GPU, but also new specific accel-
erators as FPGA with integrated HBM. An HBM-capable FPGA needs a specific
scheduler and model to fully leverage the architecture that it is not solved in
literature yet. In the case of the skyline problem with its unpredictable work-
load, the general parallel solutions do not solve the heterogeneous parallelization
problem, needing a custom fine-grained solution.

For this reason, the research questions(RQs) to be answered in this PhD.
thesis are the following:

RQ #1: Is it possible to develop an optimal heterogeneous implementation for
the state-of-the-art Time Series algorithm?

RQ #2: Can FPGA with HBM capabilities be an efficient accelerator for Time
Series computation? And more specifically: Is it possible to develop a scheduler
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which leverage such accelerator in an heterogeneous implementation for the state-
of-the-art Time Series algorithm?

RQ #3: Is it possible to develop an optimal heterogeneous implementation for
the state-of-the-art skyline algorithm and a model to optimize its performance?

RQ #4: In the context of the skyline computation, can a multi-algorithm
scheduler be developed for a continuous streaming of datasets that maps the input
received into the best-suited device to optimize the overall system performance?

In order to answer these RQs and taking into account that we target hetero-
geneous systems made of CPU+GPU and CPU+FPGA, the following objectives
has been fulfilled during this PhD:

1. Analyze the state-of-the-art for time series and skyline computation, find-
ing the gaps in the literature for heterogeneous implementation of such
algorithms.

2. Understand CPU, GPU and FPGA architectures and how to adapt such
algorithms to these architectures to maximize its performance.

3. Profile the algorithms, analyzing bottlenecks and different approaches for
an optimal parallelization.

4. Develop an heterogeneous implementation on CPU+GPU and CPU+FPGA
for time series computation and CPU+GPU for the skyline. Profile the
heterogeneous implementations, to find an analytical model of its behavior
and predict its execution time. Analyze impact and workload distribution
among devices to fine tune the model.

5. Design performance and energy models that, at runtime, after a small
profiling step, predict the workload balance with best performance on a
CPU+GPU and CPU+FPGA heterogeneous architecture for such algorithms.

6. Compare our models with the different state-of-the-art approaches found
in the literature to objectively measure its performance.

1.5. Thesis Contributions

This thesis is supported by several journal and conference contributions in the
area of heterogeneous computing. The main contributions of this thesis which
answer the previous research questions are summarized as follows:
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1. In the context of time series computation:

We experimentally compare an ideal static distribution of the Matrix
Profile computation [21, 22] with a dynamic one based on work stealing
(TBB) for multi-core architectures, showing that the latter is better
suited for commodity platforms as mobiles, desktops or servers.
We present the first heterogeneous implementation for the matrix pro-
file computation for CPU + GPU architectures. We extend a previ-
ously developed heterogeneous parallel_for template [25] to imple-
ment heterogeneous parallel_reduce computations. We propose two
alternatives for the OpenCL kernel that implements the matrix pro-
file computation on the GPU. A precise but slower one is based on
OpenCL atomic operations to guarantee the correct implementation
of the reduction operations. An imprecise but faster alternative avoids
the OpenCL atomic operations but results in accuracy losses.
We experimentally evaluate three heterogeneous schedulers (Static,
Dynamic and LogFit) [18] that require a different input from the user.
The simplest ones need the percentage of work (Static), or the size
of the chunk of iterations (Dynamic), that should be offloaded to the
GPU. The most elaborated one (LogFit) automatically computes the
work granularity (and the offload ratio) required to make the most out
of the available devices in the system.
We present, to the best of our knowledge, the first FPGA implemen-
tation of a Matrix Profile algorithm using High Level Synthesis, HLS.
We tune the matrix profile algorithm [21, 22] for FPGA execution. We
contribute with an efficient heterogeneous CPU + FPGA implemen-
tation that reduces the execution time and energy consumption with
respect to the only-CPU approach.
We propose Fastfit, a hierarchical scheduler: (1) at the outer/inter-
device/system level, it efficiently balances workload among the FPGA
and the CPU cores using a strategy that calculates a near optimal par-
titioning of the work for each device. For it, our scheduler uses an ana-
lytical model that assumes that an FPGA IP is internally implemented
as a pipeline from which it estimates the near-optimal FPGA chunk
size that maximizes the device throughput; and (2) at inner/intra-
device/device level, it computes an even partition of the diagonals of
the Matrix Profile so that all FPGA IPs complete their assignment at
the same time.
We develop a methodology based on a model to optimize the mem-
ory bandwidth usage of HBM Banks in a High Performance FPGA
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with integrated High Bandwidth Memory. Our model allows to easily
find the minimum number of active HBM banks that reduce power
consumption while ensuring maximum aggregated bandwidth.

2. In the context of the skyline computation:

We contribute with a novel SYCL-based implementation of the SkyAlign
algorithm and evaluate its performance both on GPU and on CPU.

We design a graph-based engine, SkyFlow based on oneAPI, and pro-
pose two heterogeneous approaches for skyline computation over a
stream of data queries: SkyFlow-CG (Coarse-grained) and SkyFlow-
FG (Fine-grained). Coarse-grained keeps two skyline computation in
parallel, one per device, while in Fine-grained a single skyline compu-
tation is split between the CPU and GPU devices. We validate the
suitability of each approach for different streaming scenarios.

We present two policies for scheduling the skyline computation of ar-
riving data queries between devices in the Coarse-grained approach,
where each device has a queue. The first strategy (Work Conserving)
keeps the devices busy by offloading queries to the shortest queue. The
second approach (Heterogeneous Earliest Finish Time) estimates the
execution time for the arriving query on each device. To such end,
we develop a model that, taking small chunks of points at runtime,
estimates the execution time of an arriving query with negligible over-
head. That estimated time is used to enqueue the incoming query on
the device queue in which it will finish earlier.

The aforementioned contributions have been published in international con-
ferences [26, 27] , national conference [28], and journals [29, 30] ranked by the ISI
Journal Citation Report (JCR).

1.6. Thesis Structure

The rest of this thesis is structured as follows:

Chapter 2 motivates the need to develop models to optimize applications
for heterogeneous architectures. Then, an overview of the state-of-the-art
in heterogeneous architectures is presented, along with the state-of-the-art
for the real-life data massive applications this thesis tackles.
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Chapter 3 introduces the state-of-the-art in time series computation and
the-state-of-the-art algorithm for motif/discord discovery, the matrix pro-
file. We cover the literature of this algorithm from sequential implemen-
tation to parallel implementations and its current applications. First, we
propose an heterogeneous implementation of the state-of-the-art version of
the Matrix Profile, and how the synchronization and workload balancing
between devices have been addressed. Later, different existing scheduling
strategies are compared to optimize the heterogeneous implementation pro-
posed.

Chapter 4 extends the Matrix Profile computation problem introduced in
Chapter 3. By the time this work was developed, new state-of-the-art was
released, which was adapted to our heterogeneous implementation. This
new heterogeneous implementation has been implemented in a FPGA with
HBM capabilities. Previous scheduling strategies could not leverage this
new accelerator architecture, so we propose in this work a novel hierarchical
scheduler to optimize Matrix Profile computation in this new heterogeneous
architecture.

Chapter 5 describes the skyline problem, its complexities and different ap-
proaches in its current implementations. We propose an heterogeneous im-
plementation for the state-of-the-art algorithm. In addition to this, a model
with a scheduling strategy is proposed to optimize the workload balance for
this implementation. Additionally a multi-algorithm scheduler is proposed
for solving streaming skyline computations, which allows to dispatch each
input dataset to the best suited device.

Experimental results are covered within the scope of each chapter to ease the
readability of this thesis. The last chapter wraps up with the thesis conclusions
and potential lines of future work.



2 Background and Related
Work

In this chapter, we provide a background on the topics covered in this thesis:
from the emergence of heterogeneous architectures, the programming models pro-
posed to fully exploit them [31], to the challenges that data massive applications
must address when ported to this type of architectures.

Nowadays there exists a huge variety of heterogeneous architectures made of
CPUs and accelerators (GPU, FPGA, DSP, NPU) manufactured in a single SoC.
The high performance capabilities and energy efficiency provided by these SoCs
have made them pervasive in almost every computing area. They go from battery
powered devices (embedded boards, smartphones, laptops) to large supercomput-
ing systems (like the current top positions in both the general TOP500list or its
Green500 version [32]).

However, these architectures come with a lot of unsolved challenges. Lever-
aging performance and the promised energy consumption efficiency thanks to its
heterogeneous capabilities require three main skills from the programmer when
porting the applications to these systems: (1) a deeper understanding of the ap-
plication to that is ported; (2) a well-founded knowledge of the programming
model used and its optimization functionalities, and (3) a solid knowledge of the
heterogeneous architecture and the features exposed to the programming model
to help optimize the new code implementation.

To help meet these new demands, also new techniques are required to facilitate
finding the optimization possibilities for each application and new programming
models that allow exploiting the capabilities of the architectures in a high-level
and friendly way for the programmer.

11
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In this thesis, we aim to design and apply the aforementioned optimization
strategies to new heterogeneous programming models for leveraging heteroge-
neous architectures to accelerate specific algorithms widely used in data massive
and Big Data applications. Therefore, it is necessary to understand the funda-
mentals covered in this section. At first, Section 2.1 covers the history of evolu-
tion from single processors to heterogeneous chips in SoC. Section 2.2 describes
the details of the heterogeneous architectures used in this thesis. Section 2.3
details the programming models and the main functionalities that allow the ex-
ploitation of these architectures in order to achieve their maximum performance.
Section 2.4 delves into the algorithms optimized in this thesis, covers its theo-
retical background, previous works and the existing challenges for porting them
to heterogeneous systems. Finally, Section 2.5 presents the main related work
in strategies for scheduling heterogeneous applications for both accelerators used
in this thesis, GPU and FPGA, which is a key topic extensively studied in this
work.

2.1. Hardware evolution

In 1965, Gordon E. Moore predicted that the number of transistors within a
chip will double every two years[33], the so-called Moore’s Law. Figure 2.1 shows
the evolution of processors features for the last 50 years [34].

The number of transistors follows a straight line in the logarithmic y-axis,
demonstrating the exponential growth Moore’s Law predicted. Until the early
2000s, this increment translated into exponential performance growth. However,
the performance increment collapsed after that date since performance also de-
pended on other processor features that were stalling.

As can be seen in Figure 2.1 one of the reasons is the collapse of frequency in-
crement. The frequency grew by three orders of magnitude, from 1MHz (in 1975)
to 1GHz (in 2000). Three main factors were limiting performance growth [35]:

The Power wall. It is a consequence of the non-linear relationship between
frequency and power consumption increment. The increase in the number
of transistors was accompanied by an increase in frequency and, therefore,
performance until this increase was unsustainable in power consumption.
This issue is known as the power density problem. The increment in voltage
supply and frequency has stopped growing to maintain stable power density
in chips. Nowadays, the frequency is kept around 3GHz.
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Figure 2.1: Processor features trends for the last 50 years. Data collected and
plotted by Karl Rupp. Originals authors of this plot are M. Horowitz, F. Labonte,
O. Shacham, K. Olukotun, L. Hammond, and C. Batten [34].

The Memory wall. It appears in memory-bound codes, which have a
higher number of memory operations (read and write) than arithmetic op-
erations. The two main factors that affect memory operations are band-
width (the rate at which data is read or stored) and latency (time between
a memory request operation and it is finished). Although bandwidth still
grows with new generations of chips, latency increases and becomes a lim-
iting factor.

The ILP wall. Traditional techniques like pipeline, branch predictors,
and superscalar instruction issuer have extracted automatically low-level
parallelism and provided increments in performance executing the same
sequential code. They also have reached their limit. This effect can be seen
in Figure 2.1 where performance for single-threaded runs does not scale
anymore with transistors growth.

Before these factors appeared, software developers did not care about hard-
ware in the single-core era since performance increased in every new generation
of chips with no modification in their sequential codes.
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These factors forced processor designers to move from single-core to multi-
core and heterogeneous processors to efficiently leverage the highest number of
transistors available on the chip. The trend is to increase the number of cores
included in heterogeneous processors. However, hardware engineers are not only
increasing the number of CPU cores but also including other specific accelerators
to leverage performance in the tasks for which they have been designed. The free
lunch to automatically increase performance in sequential codes is over. Now
software engineers have to consider the architecture on which the code executes
and adapt its applications to achieve performance from the heterogeneous devices.
They are responsible for knowing in detail the different heterogeneous architec-
tures available, targeting the most suitable architecture for the application, and
how to extract the most of them.

2.2. Heterogeneous architectures

Heterogeneous architectures can come in two different approaches: (1) SoC
where a single chip hosts the main device (CPU) and the accelerator, known as an
integrated accelerator; (2) the accelerator is away and connected to the CPU by
the PCI-express of the motherboard, known as a discrete accelerator. Both have
their advantages and drawbacks. Integrated design allows faster communications
sharing memory resources, more suitable for memory-bound problems, but is
limited by bandwidth and power consumption of the entire chip. Discrete designs
offer more performance and power availability but slower communication between
devices. This situation creates potential bottlenecks if there are many memory
operations. In this section, we present the two heterogeneous accelerators used
in this work: an integrated GPU and a discrete FPGA.

2.2.1. GPU architecture

Figure 2.2 shows the architecture of a Intel processor Gen 11 SoC with an
integrated GPU [36], similar to the one used in this thesis.

The architecture implements, in a SoC, a multi-core CPU processor along
with an integrated GPU. A ring-based topology connects CPU cores, GPU and
a shared Last Level Cache (LLC), facilitating all system memory transactions.

The GPU architecture’s main area is divided into 8 sub-slices. Each sub-slice
contains 8 Execution-Units (EU), making 64 EUs. The EU is the foundational
building block in the GPU architecture, as can be seen in Figure 2.2. The EU com-
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Figure 2.2: Intel Core Processor Graphics Architecture Gen 11. [36]

bines simultaneous multi-threading and fine-grained interleaved multi-threading
(SMT and IMT). The EU are processors that combine multiple single instruc-
tions, multiple data arithmetic logic units, SIMD ALUS. They are distributed
in a pipeline across multiple threads, allowing high throughput in integers and
floating points operations. Depending on the software workload, all the threads
within an EU could be executing the same kernel code or different ones. Further-
more, the fine-grained structure guarantees a flow of instructions being computed
non-stop. This structure allows hiding latency for memory scatter/gather or more
prolonged operations.

Let us look at the memory distribution, starting from the bottom to the
top. We can see that each subslice has a shared local memory (SLM). This
proximity to the EUs provides higher efficiency with low latency, increasing the
effectiveness rate for atomic operations. This local memory is separated from
the L3 cache shared by all subslices. Above those, a DRAM physical memory
is shared between the GPU and the CPU. This unified memory architecture
leverages power efficiency and programmability advantages over discrete memory
transfers from host-to-device or device-to-host through PCI-Express. The main
advantage of this architecture is the zero-copy buffer transfers between CPU and
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GPU since the physical memory is shared. This performance is improved by
adding an LLC shared with the main memory.

2.2.2. FPGA architecture

A field-programmable gate array, FPGA, is a reconfigurable integrated cir-
cuit [37]. In contrast to CPUs and GPUs having a fixed hardware structure to
which a program maps, the FPGA can build custom hardware to implement a
specific program. FPGA belongs to the group of customs accelerators, such as
ASICs (Application Specific Integrated Circuit). On the one hand, an ASIC gen-
erally outperforms an FPGA for the specific task they are designed for but at a
higher cost, requiring longer development times and more money invested. On
the other hand, an FPGA is cheaper in money and development time and can be
reprogrammed for each application developed.

Figure 2.3 shows an overview of the FPGA architecture. It consists of a grid
of configurable logic blocks, known as adaptive logic modules (ALMs), and spe-
cialized blocks, such as digital signal processing (DSP) or random-access memory
(RAM) blocks. These blocks are connected through configurable routing inter-
connects to implement the required digital circuits. The total number of ALMs,
DSP and RAM blocks used in an implemented digital circuit is known as the
FPGA area that the design uses.

The basic block of an FPGA, the ALM, is made of a lookup table (LUT) and
a register from which the compiler can build any Boolean logic circuit. The DSP
block implements specific support for fixed-point and floating-point arithmetic,
which reduces the need of building such logic from the general-purpose ALMs.
Finally, the RAM blocks use a high amount of memory cells to implement the
memory used by the applications.

2.2.2.1. FPGA with HBM

High Bandwidth Memory (HBM) is a high-speed computer memory interface
for 3D-stacked synchronous dynamic random-access memory (SDRAM). HBM
achieves higher bandwidth while using less power in a substantially smaller form
factor than regular RAM such as DDR4 or GDDR5. This higher bandwidth is
achieved by stacking up to eight DRAM dies and connecting them to the memory
controller on a CPU, GPU or FPGA.
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Figure 2.3: Intel FPGA architecture overview [37].

In this work, we have used an FPGA with HBM: The Intel’s Stratix 10
MX2100 FPGA with integrated HBM2 memory [38]. This device has 32 pseudo
HBM2 memory channels.

Each channel has 512MB, making a total of 16GB. The Intel Stratix 10 MX of-
fers 10x more bandwidth versus current discrete memory solutions such as DDR4
SDRAM. Traditional DDR4 DIMMs provide 21 GBps bandwidth, while 1 HBM2
tile reaches up to 256 GBps. The Intel Stratix 10 MX integrates up to two HBM2
devices in a single package, enabling a maximummemory bandwidth of 512 GBps.
It is designed for high-performance computing, enabling acceleration of memory-
bound applications. Both traditional Hardware design language(HDL) and higher
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abstraction C, C++, OpenCL-based and oneAPI-based tool flows are supported.
It includes an optimized board support package (BSP) for the Intel OpenCL
SDK and Intel oneAPI SDK. It also includes a Board Management Controller
(BMC) for advanced system monitoring and control, which greatly simplifies
platform integration and management. This architecture poses challenges from
a programmer’s point of view, detailed below.

The BSP maintains the physical partitioning between the 32 pseudo-channels
(PCs). The BSP-to-kernel interface is comprised of 32 separate global mem-
ory interfaces that ultimately connect to the physically separate PCs. The PCs
are partitioned because of the difficulty of creating a soft-logic in one ample
address space with reasonable maximum frequency (Fmax) and area while pro-
viding maximal throughput. By partitioning the PCs, the compiler will create
a small memory system for each PC that does not interact with other memory
systems, resulting in better Fmax and throughput. This approach differs from
previous reference BSPs where multiple DDR banks were combined to form a
single homogeneous memory system. Therefore, the global memory accesses in
the application must be partitioned in the same way. The application developer
must explicitly specify which memory system (i.e. which PC) each global mem-
ory pointer must access in the kernel code. This assignation is done using the
buffer_location attribute, as shown in Figure 2.4.

A global memory pointer without a memory system label will cause the
compiler to implement by default that pointer in the first memory system (i.e.
HBM0). Therefore, when porting an existing design to this architecture with
no code modifications, all global memory accesses will target HBM0. For kernels
needing to operate on memory buffers larger than 512MB, which is the maximum
storage of each HBM2 PC, the host application must split the buffer across two
or more PCs and correspondingly access them using two or more global memory
pointers in the kernel. Figure 2.4 shows an example of a kernel code using the
triad metric. The triad function of the well-known STREAM benchmark [39] is an
essential array operation, also called “linked triad,” that computes C = A+α ·B,
where A, B, and C are 1D arrays and α is a ratio between 0 and 1. To facilitate
the HBM exploitation and for programming productivity, a single kernel is writ-
ten using a subset of the available HBM2 channels, followed by replicating the
kernel. The kernel is coded inside a macro and calls it multiple times to achieve
the replication. Each kernel instance would use a different set of HBM2 channels,
with a different kernel name and specifying different buffer_location attributes.
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1
2 #define NUM_KERNEL_INSTANCES 32
3 #define MY_KERNEL(kernel_name, global_mem_label) \
4 __kernel void __attribute((reqd_work_group_size(1024,1,1))) \
5 kernel_name ( \
6 __global __attribute((buffer_location(global_mem_label))) float8 *

restrict sA, \
7 __global __attribute((buffer_location(global_mem_label))) float8 *

restrict sB, \
8 __global __attribute((buffer_location(global_mem_label))) float8 *

restrict dst, \
9 const float alpha \

10 ) { \
11 uint gid = get_global_id(0); \
12 float8 vA = sA[gid]; \
13 float8 vB = sB[gid]; \
14 vA = vA + alpha*vB; \
15 dst[gid] = vA; \
16 }
17 //support for up to 32 kernels
18 #if NUM_KERNEL_INSTANCES >= 1
19 MY_KERNEL(k0, "HBM0")
20 #endif
21 #if NUM_KERNEL_INSTANCES >= 2
22 MY_KERNEL(k1, "HBM1")
23 #endif
24 #if NUM_KERNEL_INSTANCES >= 3
25 MY_KERNEL(k2, "HBM2")
26 #endif
27 . . .
28 #if NUM_KERNEL_INSTANCES >= 31
29 MY_KERNEL(k30, "HBM30")
30 #endif
31 #if NUM_KERNEL_INSTANCES >= 32
32 MY_KERNEL(k31, "HBM31")
33 #endif

Figure 2.4: OpenCL FPGA kernel for triad example.

2.3. Programming models for heterogeneous ar-
chitectures

To achieve performance productivity in this work, it is worth targeting open,
standard-based programming models for heterogeneous architectures rather than
proprietary device-specific programming models such as CUDA [40]. This section
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presents an overview of the two open programming models used in this work:
OpenCL and oneAPI-SYCL.

2.3.1. OpenCL

OpenCL (Open Computing Language) is an open, royalty-free standard for
cross-platform, parallel programming of various accelerators found in supercom-
puters, cloud servers, personal computers, mobile devices and embedded plat-
forms. OpenCL was created by the Khronos Group [41]. The OpenCL API
specification enables each chip to have its OpenCL drivers tuned to its specific
architecture. Having standardized API available on many systems enables devel-
opers to reach more customers while minimizing porting and development costs.

OpenCL is a programming framework and runtime that enables a programmer
to develop codes that can be compiled and executed, in parallel, across any
processor in a system. The processors can be any mix of different types, including
CPUs, GPUs, TPUs, FPGAs, DSPs, as can be seen in Figure 2.5.

Figure 2.5: OpenCL compile and execute kernels flow overview [41].

An OpenCL application is split into host code and device kernel code. Host
code is typically written using a general programming language such as C or C++
and compiled by a conventional compiler for execution on the host CPU. A kernel
program is the basic unit of executable code, similar to a C function. Kernels
can execute with data or task-parallelism. The most common language for pro-
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gramming the kernels is OpenCL C, which is based on C99 and is defined as part
of the OpenCL specification. Kernels written in other programming languages
work in OpenCL by compiling to an intermediate program representation, such
as SPIR-V.

OpenCL is a low-level programming framework. This way, the programmer
has direct, explicit control over where and when kernels execute, the memory allo-
cation and how the compute devices and host CPU synchronize their operations
to ensure that data and computed results flow correctly. The communication
between the host and kernels takes place through the command queue. By en-
queueing commands into a command queue, kernels and data transfer functions
may execute asynchronously in parallel with the host code. The kernels and
functions in a command queue can execute in or out of order. A device may have
multiple command queues, but a command queue can only communicate with
one device.

2.3.1.1. OpenCL Programming Model

The OpenCL programming model is divided into three main parts: Platform,
Execution and Memory Models.

The OpenCL Platform Model describes how OpenCL interconnect the com-
pute resources. A host is connected to one or more OpenCL compute devices. A
compute device can be, for example, a GPU. Each compute device is a collection
of one or more compute units. Each compute unit is composed of one or more
processing elements. Processing elements execute code with SIMD (Single In-
struction Multiple Data) or SPMD (Single Program Multiple Data) parallelisms.

The OpenCL execution model is divided into the host program and the device
code, made of one or more kernels, executed in the compute device. The host
interacts with these kernels through command queues, where each device has its
command queue. The host submits the kernel code through the command queue,
checking for dependencies and executing it. After the execution, the command
queue communicates to the host the termination of the kernel life cycle. As a
kernel is submitted for execution, the command queue creates an instance for
the kernel with an N-dimensional range. A kernel instance is made of the kernel
function, the arguments of the kernel and the parameters that define the range.
The N-dimensional range (ND-Range) of a kernel is distributed in three levels,
as can be seen in Figure 2.6:
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Figure 2.6: ND-Range Compute device Execution Model [42].

Work-item: is the individual execution of a point of the kernel function. It
is also called a thread. It is executed on a processing element

Work-group: is a 1-,2-, or 3-dimensional set of work-items. It is executed
on a compute unit.

ND-Range: contains the total set of operations to be performed. The ND-
Range is distributed among the work-groups witch will be executed in the
available compute units.

Individual work-items can be identified by a global ID or a combination of
work-group ID and a local ID for that work-group. The work-group runs the same
kernel code, capturing the data-parallel computing. A work-group is executed in
a device in random order. Also, the work-items within a work-group execute
concurrently in random order. Synchronization points between work-items must
be precisely defined and controlled by the programmer, as needed. This execution
model will be detailed further for different programming models in Section 2.3.

OpenCL has a hierarchical memory model that can be seen in Figure 2.7.

The memory model is breakdown into:

Host memory: available to the Host (CPU).

Global/Constant memory: available to all compute units in a device.
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Figure 2.7: OpenCL Memory model [42].

Local memory: available to all the processing elements in a compute unit.

Private memory: available to a single processing element.

OpenCL memory management is explicit, which means that the memory do
not automatically synchronizes. The application needs to specify the data move-
ment between different memory levels.

2.3.2. oneAPI and SYCL

SYCL is a royalty-free, cross-platform abstraction layer that enables code for
heterogeneous processors to be written using standard ISO C++ with both the
host and kernel code for an application contained in the same source file [43].

SYCL uses generic programming with templates and generic lambda functions
to enable higher-level application software to be cleanly coded with an optimized
acceleration of kernel code across the extensive range of various acceleration APIs,
such as OpenCL. Developers program at a higher level than the native accelera-
tion API but always have access to lower-level code through seamless integration
with the native acceleration API through the interoperability mode, C/C++ li-
braries, and frameworks such as OpenCV or OpenMP.

SYCL implementations are available from an increasing number of vendors,
including adding support for various acceleration API back-ends in addition to
OpenCL, as can be seen in Figure 2.8.
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Figure 2.8: SYCL API implementations currently available [44].

We are going to examine the one used in this work, oneAPI [45]. oneAPI is a
promising framework that simplifies programming heterogeneous architectures by
providing several libraries and an unified programming language DPC++ (Data
Parallel C++) [46] able to target CPUs, GPUs and FPGAs. DPC++ is an open-
source language based on modern C++ and the SYCL [43] from the Khronos
Group with some additional Intel extensions. DPC++ incorporates extensions
for Unified Shared Memory (USM), ordered queues, reductions, subgroups (on
CPU and GPU implementations), and data flow pipes (for FPGAs) support.
The main benefit of using oneAPI over other languages, as OpenCL or CUDA,
is the single programming language approach, which enables targeting multiple
platforms using the same programming model and, therefore, having a cleaner,
portable, and easier to maintain code. The host and offloaded accelerator codes
can be combined in a single source file. Likewise, the syntax is standard C++:
no new keywords or pragmas are used to express the parallelism. Instead, paral-
lelism is expressed through C++ classes. The accelerator (such as a CPU, GPU
or FPGA) to offload the code is selected in the host code using a device queue.
The queue is initialized in host code using different flags: (1) default_selector, an
heuristic chooses among the available devices the most suitable one; (2) cpu_se-
lector, the CPU is selected as an accelerator; (3) gpu_selector, to target the GPU;
(4) ext::intel::fpga_emulator_selector to target CPU as emulation of FPGA, (5)
ext::intel::fpga_selector, to target a real Intel’s FPGA; (6) accelerator_selector,
that can be customize for target other generic devices.
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It is worth mentioning that, although DPC++ applications can run on any
supported target hardware, tuning is required to derive the best performance
advantage on the given target architecture. For example, code tuned for a GPU
likely will not run as fast on a CPU selected as an accelerator.

Single source compilation has several benefits compared to separate host and
device code compilation. The oneAPI programming model supports single-source
compilation. It should be noted that the oneAPI programming model also sup-
ports separate host and device code compilation. Advantages of the single source
compilation model include:

Usability, programmers need to create fewer files and can define device code
right next to the call site in the host code.

Extra safety, single source means one compiler can see the boundary code
between host and device and the actual parameters generated by host com-
piler will match formal parameters of the kernel generated by the device
compiler.

Optimization, the device compiler can perform additional optimizations
by knowing the context from which a kernel is invoked. For instance, the
compiler may propagate some constants or infer pointer aliasing information
across the function calls.

In a program with an offload computation, the compiler must generate code
for the host and the device. oneAPI tries to hide this complexity from the devel-
oper. A Data Parallel C++ (DPC++) application is compiled with dpcpp compile
command and generates the host and device code. The compilation flow for
DPC++ offers two options for the device code: Just-in-Time (JIT) compilation
and Ahead-of-Time (AOT) compilation. In the JIT compilation flow, which is the
default one, when the application is running the runtime determines the available
devices, the target device with the device queue and generates the code specific
to that device. This allows for more flexibility than the AOT flow, which must
specify a device at compile time. However, performance may be worse because
compilation occurs when the application runs. Larger applications with sub-
stantial amounts of device code may notice performance impacts due to longer
compilation times. FPGAs differ from CPUs and GPUs in generating device
code. Generating the device binary for the FPGA hardware is a computation-
ally intensive and time-consuming process. An usual FPGA compilation takes
several hours to complete, which makes impractical just-in-time (or online) com-
pilation. For this reason, only ahead-of-time (or offline) kernel compilation mode
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is supported for FPGA. The Intel oneAPI DPC++/C++ Compiler provides sev-
eral mechanisms like emulating FPGA on CPU, partial compilation or simulation,
enabling a quick iteration on FPGA designs.

2.3.2.1. oneTBB and FlowGraph

oneAPI API-based programming is supported via sets of optimized libraries
included in the oneAPI product, pre-tuned for use with any supported target
architecture, eliminating the need for developer intervention. For example, the
BLAS routine available from Intel oneAPI Math Kernel Library is just as op-
timized for a GPU target as a CPU target. API-based programming takes ad-
vantage of device offload using library functionality, which can save developers
time when writing an application. In general it is easiest to start with API-based
programming and use DPC++ offload features where API-based programming is
insufficient for your needs. A summary of the API-based library oneAPI provide
are: Intel oneAPI Collective Communications Library (oneCCL), Intel oneAPI
Data Analytics Library (oneDAL), Intel oneAPI Deep Neural Network Library
(oneDNN), Intel oneAPI DPC++ Library (oneDPL), Intel oneAPI Math Ker-
nel Library (oneMKL), Intel oneAPI Video Processing Library (oneVPL), Intel
oneAPI Threading Building Blocks (oneTBB).

The oneAPI Threading Building Blocks (oneTBB) library [47] is a solution
for writing parallel programs in C++ which has become the most popular and
extensive support for parallel programming in C++. oneTBB provides support for
parallelism where the C++ standard has not sufficiently evolved, or where new
features are not fully supported by all compilers. It also provides higher-level
abstractions for parallelism that are beyond the scope of what the C++ language
standard will likely ever include. oneTBB contains a number of features, as shown
in Figure 2.9.

The three most common layers of parallelism that are expressed in parallel
applications are: The message-driven layer, the fork-join layer and the Single
Instruction, Multiple Data (SIMD) layer. The message-driven layer captures
parallelism that is structured as relatively large computations that communi-
cate to each other through explicit messages. Common patterns in this layer
include streaming graphs, data flow graphs, and dependency graphs. one TBB
support these patterns through the Flow Graph interfaces. The fork-join layer
supports patterns where the serial computation is split in parallel tasks and then
continues in serial when the parallel computations are completed. Examples of
fork-join patterns include task parallelism, parallel loops, parallel reductions, and
pipelines. oneTBB supports them with its Generic Parallel Algorithms. Finally,
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Figure 2.9: oneTBB Library Features [47].

the Single Instruction, Multiple Data (SIMD) layer is where data parallelism is
exploited by applying the same operation to multiple data elements simultane-
ously. This type of parallelism is often implemented using vector extensions such
as AVX, AVX2, and AVX-512.

oneTBB potential is truly leveraged when these interfaces are mixed together,
a feature called “composability”. An example could be an application that uses
FlowGraph at the top level with nodes that use nested Generic Parallel Algo-
rithms. These parallel algorithms, in turn, may contain SIMD operations. These
parallelisms are exposed to the oneTBB library, which can schedule all the tasks
in an efficient way, making the best use of the platform’s resources.

The Flow Graph interface The Flow Graph is aimed at applications that
react as data becomes available, such as streaming applications, or applications
that contain parallelism that can be expressed as graphs. We call these data
flow graphs. In many cases, these applications stream data through a set of
filters or computations. Graphs can also express before-after relationships be-
tween operations, allowing us to express dependency structures that cannot be
easily expressed with a parallel loop or pipeline. Thus, the Flow Graph construct
can be used to exploit graph parallelism. The Flow Graph interfaces have been
successfully used in a wide range of domains including in image processing, ar-
tificial intelligence, financial services, healthcare, and games. A Flow Graph is
made of the graph object, the nodes and the edges. We first create a graph ob-
ject. We then create nodes to perform operations on messages that flow through
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the graph, such as applying user computations, joining, splitting, buffering, or re-
ordering messages. We use edges to express the message channels or dependencies
between these nodes.

Figure 2.10: Flow Graph Heterogeneous Triad example [47].

Recent features incorporated into the oneTBB library allow for offloading
computation to asynchronous devices, embracing heterogeneous computing. This
offloading is reached through a new type of node: async_node. Figure 2.10
shows an example of Flow Graph executing a Triad [39] benchmark but with a
heterogeneous CPU + GPU execution: part of the computation is offloaded to the
GPU thanks to the async_node. This node differs from regular function_nodes
in providing asynchronous execution. A regular function_node offloading work to
an accelerator, such as GPU or FPGA, will cause a blocking function inside a user-
level task to block the task and block the OS-managed worker thread processing
this task. One factor that makes oneTBB composable is that adding nested
levels of parallelism does not increase the number of worker threads, avoiding
over-subscription and its associated overheads from ruining our performance. To
make the most out of the hardware, oneTBB is configured by default for running
as many threads as logical cores. The different oneTBB parallel programs only
add enough user-level lightweight tasks to feed these worker threads and exploit
the cores. Using the function_node for offloading computation to an accelerator,
if we had a worker thread per core and one of them was blocked in the function_-
node, the corresponding core may become idle. In such a case, we would not be
fully utilizing the hardware.
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The async_node solves this issue. When the async_node offloads compu-
tation to an accelerator, the worker thread that was taking care of this task
switches to work on other pending tasks of the flow graph. This way, the worker
thread does not block, leaving an idle core. The Flow Graph is warned about
an async_node executing an asynchronous task, keeping a flag to wait for its
completion. When the task is finished, the results are re-injected into the graph.
The node finishes, and the computation continues as expected.

2.4. Data massive applications and their challenges
when ported to heterogeneous applications

As detailed in Section 1.3, this thesis focuses on proposing optimal solutions
for heterogeneous architectures for two data massive, real-life and complex prob-
lems widely used in big data fields: time series and the skyline. This section
covers an introduction, the literature background of these two applications, the
state-of-the-art and the challenges for heterogeneous implementations.

2.4.1. Time Series Application: The Matrix Profile

A time series is a collection of sequentially taken observations, as the electro-
cardiogram example depicted in Figure 2.11.

Time series T

i j

m
Ti,m Tj,m

time
discord

Subsequences of length m

di,j is the z-normalized euclidean distance between Ti,m and Tj,m

Figure 2.11: Electrocardiogram time series T and two subsequences from which
we can compute the distance di,j . The goal is to find motifs/discords, as the ven-
tricular arrhythmia highlighted in the red box. Notation is defined in Section 3.1.
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Time series analysis covers many fields, such as cloud computing [48, 49, 50],
forecasting [51, 52, 53, 54], clustering [55, 56], similarity search [57], geology [58],
geodesy [59], or economics [60, 61].

In particular, the discovery of similarities (motifs) or critical points (discords)
in a time series is relevant for several of the previous problems. Motifs and
discords can be found via probabilistic approaches [62, 63], machine learning [64]
or proposing spatio-temporal models [65]. However in this research we focus on
the matrix profile [66] alternative because it provides an exact solution that can
not be obtained by probabilistic approaches.

Innovative implementations have been proposed for the matrix profile compu-
tation since its first appearance as the STAMP [66] algorithm, such as STOMP [20],
SCRIMP [21] and SCAMP [67].

STAMP algorithm [66] presents an O(n2log(n)) complexity (being n the
length of the time series) thanks to an FFT based computation of the dot prod-
uct of two subsequences (which is needed to find the distance/similarity between
them [68]). On the positive side, the rows of the matrix profile can be computed
in any order and therefore in parallel.

STOMP’s [20] complexity is reduced to O(n2) at the cost of a sequential
traversal of rows of the matrix profile. However, the diagonals can be computed
in parallel and this is the main property exploited in SCRIMP.

SCRIMP also been implemented in different parallel architectures, such as
farms of GPUs [22, 67], a distributed-memory implementation aimed at multi-
dimensional time-series [69], distributed memory multi-computers [70] and some
optimizations proposed for the execution on Intel Xeon Phi KNL processors that
integrate 3D-stacked high-bandwidth memory (HBM) [71, 72].

The state-of-the-art algorithm to compute the matrix profile, SCAMP [67]
takes advantage of the Pearson correlation to compare subsequences, instead of
euclidean distance. The use of the Pearson correlation improves both performance
in the computation and accuracy in the results.

Practical implementations of matrix profile have been developed. On the
one hand, from a practitioner point of view, the research by [73] provides an
easy-to-use framework to contextualize the computation of matrix profile along
different domains. In [74] matrix profile results are compared and analyzed with
other state-of-the-art algorithms to prove their strengths in performance and
programming effort. Likewise, a framework for indexing the matrix profile allows
arbitrary range queries and avoids recomputing the entire matrix profile in case of
needing a particular range of queries [75]. On the other hand, from an accuracy
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point of view, all previous algorithms use z-normalized euclidean distance to
measure the distance between subsequences. However, this distance can report
wrong results for some datasets, as it is pointed in [76], where AAMP and
ACAMP algorithms are proposed to improve accuracy using non-normalized and
normalized euclidean distance respectively. Motifs and discords are very sensitive
to the subsequence length. Previous implementations need to fix this length,
which implies previous knowledge of the time series in order to find the right
motif and discords. In this regard, [77, 78] propose a framework to compute
time series and find motifs and discords in a given range of lengths.

It is not easy to find related work in which Matrix Profile is computed on
CPU+GPU or FPGA devices. A CPU+GPU platform was exploited in [79] in
order to optimize time series queries. Besides not being related to motif/discord
discoveries, their tool leverages functional parallelism (some tasks running on
GPU and others on CPU), whereas in our work we tackle the load balancing
problem when data parallelism is exploited and both devices work simultaneously
on the same data space. Besides, the authors in [80] do not consider scheduling
strategies, a key topic in our research.

FPGA architectures are gaining momentum in HPC and Data Centers as an
energy-efficient alternative to CPUs and GPUs for different kind of time series
problems like neural networks forecasting [81], in chaotic time series predictions[82,
83], in image processing [84], and in cloud servers [85]. However, to date and to
the best of our knowledge, there is no heterogeneous implementation for time
series problems, like the matrix profile, able to efficiently distribute the computa-
tion among CPU cores and accelerators such as GPU or FPGA, which we address
in this thesis.

2.4.2. Optimization application: The Skyline operator

The skyline, initially introduced in [86], is an optimization operator widely
used for multi-criteria decision making. It allows to minimize a n-dimensional
dataset into the smallest subset, usually using as a reduction metric the minimum
value for each dimension.

Figure 2.12 shows a toy example of a dataset and its corresponding skyline.
The skyline is the subset of points that are not eliminated (or not dominated) by
any other point in the dataset. Point C has lower values in its two dimensions
with respect to point A, thus point A is eliminated from the skyline by point
C. Point B has lower value in x than point C, but higher in y, so neither
can eliminate the other (they are incomparable), so both B and C end up in the
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Figure 2.12: Dataset and skyline example. Skyline points are B and C. The
numbering 00, 01, 10, 11 corresponds to the nomenclature of a possible space
partitioning of the dataset.

skyline set. For large datasets with points of several dimensions, the computation
of the skyline becomes a computationally expensive task.

The skyline operator has been applied in the context of privacy-preserving
skyline computation framework across multiple domains [87], the processing of
skyline query over encrypted data in Cloud-enabled databases [88], an optimiza-
tion of Quality-of-Services-aware big service processes with discovery of skyline
services [89, 90], or a resilient drone service composition framework for delivery
in dynamic weather conditions [91].

It also has been applied in the context of reinforcement learning for improv-
ing adaptive scheduling of cloud computing services [92], or over multi-source
encrypted data for efficient privacy-preserving data merging [93], or evolutionary
mining of graph clustering [94].

In addition, generalizations of skyline computation have been proposed in [95],
where they work with all the 2d−1 skyline query subdomains combinations from
a dataset of d dimensions.

Considering the literature on optimizing a regular skyline computation, ini-
tial implementations of the skyline operator [86] were based on the divide-and-
conquer approach. Early improvements to the algorithm came in the form of
tree-based indexing methods, B-trees [96] and R-trees [97]. In general, the op-
timizations of this algorithm focus on reducing the number of operations, that
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typically are comparisons to asses if a point is in the skyline or not. For it, two
main strategies are adopted: sorting and space partitioning.

Sorting-based algorithms [98, 99, 100] introduce a data precomputation phase
before entering the main loop. This precomputation phase facilitates both the
elimination of points that do not belong to the skyline and the reduction of
comparisons between points. Researchers have used different sorting strategies,
such as the Manhattan norm [98], z-order [99] or the minimum as a sorting
attribute for each dimension [100]. On the other hand, partitioning-based al-
gorithms [101, 102, 103] divide the data space into regions, so that they avoid
point comparisons between entire regions, which reduces the number of opera-
tions. These strategies typically are based on recursive methods such as pivot
point-based partitioning [101], being BSkyTree [102] the current state-of-the-art
for sequential skyline computation.

The first multi-core parallel approach [103] partitioned the space into blocks.
Hybrid [23], the state-of-the-art in multicore algorithms, proposes a hybrid strat-
egy: it applies sorting followed by partitioning with no recursion. This algo-
rithm builds dynamically a two-level quad-tree in tiled batches to support multi-
threading. Algorithms optimized for GPU avoid synchronisations to achieve very
high compute throughput. As authors of [24] noticed, Hybrid requires dynamical
synchronization points to update the skyline, stalling performance of the GPU.

The first algorithm for skyline computation on GPU, GNL [104], assigns a
point in the dataset to each thread without further optimization. GGS [105]
improves on this implementation by adding a preprocessing stage that sorts the
points according to the Manhattan distance. SkyAlign [24], which represents
the current state-of-the-art for GPU, outperforms previous works by building a
statically-defined quad tree. It also uses medians and quartiles of each dimen-
sion to construct virtual pivot points, which are defined globally to create more
predictable tree traversals that minimise branch divergence. By contrast, Hybrid
only uses medians. Authors in [106] propose an alternative to SkyAlign for high
dimensional datasets and skylines variations with more relaxed rules for prun-
ing points. In any case, in our work we want to focus on a general approach
for computing the skyline for arriving data queries with any number of dimen-
sions. In addition, the experimental validation of SkyAlign in [24] demonstrates
that the parallel scalability of this algorithm is preserved when increasing the
number of computing units, what makes it a good candidate for heterogeneous
implementations, one of the goals in this work, so we keep SkyAlign as our al-
gorithm of reference on the GPU. However, as we will show in Chapter 5, on
our platform and for specific datasets, running Hybrid on the multicore CPU
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outperforms SkyAlign on the GPU. Thus, Hybrid is still considered for the CPU
implementation in some of our heterogeneous proposals.

In any case, another goal of this work has to do with providing support for
the skyline computation over a stream of independent data queries. There has
been previous research on incrementally computing the skyline for a data query
for which data points arrive over time in streams [107, 108, 109, 110, 111, 112].
Typically, the output is a sequence or incremental update of skyline computations.
Sequential solutions for continuous data streams maintain a sliding window of
the most recent points [107, 108, 109]. Researchers in [110] propose parallel
implementations of a previous proposal in [108]. Authors in [111, 112] present
parallel solutions on distributed systems for the sliding window approach.

Nevertheless, these approaches focus on considering a stream of dependent
datasets of points to process. They need to keep and update a global skyline over
time with the historical data processed to be compared with the new queries.
Our work, however, considers as an input a stream of independent datasets of
points, producing as an output a stream of independent skylines, one per input
received.

Parallel implementations of skyline computation over a stream of data queries
targeting heterogeneous architectures are still an open research issue. We focus
on heterogeneous architectures comprised of a multicore CPU and an integrated
GPU. In order to improve performance productivity for this type of architectures,
new programming models such as oneAPI [45] or SYCL [43] have been proposed
and we consider them for the first time to solve the problem at hand. However,
these frameworks do not solve the problem of partitioning the workload and
scheduling the tasks among the devices, issues that we address in this work.
Thus, to the best of our knowledge, the new heterogeneous proposals introduced
here represent novel contributions in this context.

2.5. Strategies for scheduling heterogeneous ap-
plications

2.5.1. Heterogeneous scheduling using CPU+GPU

Developing heterogeneous applications that makes the most out of CPU +
Accelerator platforms is difficult and error prone due to low-level considerations:
data sharing, synchronization, load balancing, scheduling, etc. To make it more
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approachable, new programming models and frameworks such as OmpSs [113],
HDSS [114], Fluidic [115], oneAPI [116] or SYCL [43] are being proposed.

However, the workload distribution at runtime and specially the selection of
the appropriate granularity for each computing device has not received enough
attention. In order to address these important issues, our research group has
previously proposed a heterogeneous template for the parallel_for pattern [117],
which: i) reduces the burden of implementing the heterogeneous application; and
ii) is based on an adaptive scheduler that at runtime computes the size of the
chunks of work that have to be offloaded to each device to fully utilize them and
avoid load unbalance.

Some heterogeneous schedulers have been also proposed in order to distribute
the iteration space of a parallel_for among CPU cores and a GPU. The most
straightforward one, usually called Static, does a single partition, dividing the
iteration space in as many chunks as computing devices: usually a big chunk of
iterations is offloaded to the GPU and the rest is assigned to the CPU cores.
A good enough static partition can be computed by an offline search phase, for
example changing the percentage of iterations offloaded to the GPU from 0% to
100% in steps of 10% (which results in 11 runs) and selecting the fastest partition
for future runs. A more convenient alternative conducts a single offline run to
measure the relative speed of the GPU over the CPU and uses this ratio to do a
single partition of the iteration space accordingly. Concord [118] takes a further
step by measuring the devices relative speed online instead of offline: some initial
chunks of the iteration space are computed on the GPU and CPU and execution
times are taken in order to estimate the relative speed and proportionally dis-
tribute the remaining iterations. This may work well for regular codes in which
the first (profiled) iterations are representative of the rest of the computation.
Concord approach is improved in the Maat library [119] that includes a hetero-
geneous guided (HGuided) scheduler that results in better load balance because
the chunks of iterations are larger at the beginning of the iteration space and
smaller towards the end.

However, none of these previous approaches consider that larger chunks of iter-
ations offloaded to the GPU can result in less throughput than smaller ones. That
observation was considered in the Dynamic and LogFit heterogeneous schedulers
presented in our previous work [117] and validated for irregular codes in which
data divergence is an issue and/or the computational load of each parallel iter-
ation is different. These schedulers are especially suitable for architectures with
integrated (on-chip) GPU where the overhead of communicating data between
CPU and GPU is small or even negligible if Shared Virtual Memory, SVM, is
available. Within this framework, offloading several smaller chunks of iterations
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to the GPU can be profitable w.r.t. offloading just a single larger chunk. In
the Dynamic scheduler a user provides the GPU chunk size that is used to con-
tinuously feed the GPU, whereas the CPU cores are fed in parallel with CPU
chunks. On the contrary, the LogFit scheduler does not require user intervention
because at runtime computes a near-optimal GPU chunk size with an algorithm
inspired in the HDSS scheduler [120], as well as the optimal CPU chunk size that
ensures load balance. LogFit is designed as a three-phase partition strategy: the
Exploration Phase, the Stable Phase and the Final Phase. Summarizing, in the
Exploration Phase the throughput for different GPU chunk sizes is examined and
a logarithmic fitting is applied to find the GPU chunk size that maximizes the
throughput. In the Stable Phase, GPU throughput is monitored and adaptive
GPU chunk sizes are re-adjusted following the previously computed logarithmic
fitting. Finally, when there are few remaining iterations, the Final Phase pays
especial attention to the load balance.

All these heterogeneous scheduling strategies are examined in this work for the
data massive applications of interest, and new more efficient scheduling proposals
are introduced as we will see in the next sections.

Another parallel pattern that we tackle in this thesis is related to data flow
applications in which a set of dependent computations are carried out over a
stream of independent data inputs: parallel data flow. An important challenge
for this pattern is to exploit graph parallelism on heterogeneous CPU + GPU
architectures, an issue that we address in this thesis. In particular we propose
novel policies for scheduling the computation of arriving data inputs between
devices, introducing a new model that at runtime estimates the computation time
of any arriving input on each device to enqueue the task on the device where the
system throughput is maximized. We also propose a dynamic workload partition
of each arriving data input between the GPU and the CPU, and discuss the
streaming scenarios where each approach achieves the best performance.

2.5.2. Heterogeneous scheduling using CPU+FPGA

High-level design environments, such as OpenCL, have increased significantly
the productivity in FPGA designs [121]. Heterogeneous developments based
on CPU + FPGA are more visible every day in many domains, such as astro-
physics [122], or clusters and cloud services [123, 124, 125]. Likewise, they have
been applied for algorithms optimization, like hash-join [126], NP-hard prob-
lems [127], Synthetic Aperture Radar (SAR) simulation algorithm [128], Agent-
based Simulations (ABSs)[129], Sparse Matrix Operations [130], Sparse Linear
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Algebra[131], or Temporal Convolutional Networks (TCNs) [132]. The problem
of using GPU + FPGA at the same time is tackled by [133, 134]. Multi-FPGA
to optimize task graphs using heuristics are studied in [135].

Heterogeneous platforms based on CPU + FPGA can be more effectively
used if the scheduling of the workload between devices is considered. There are a
few application-independent frameworks, e.g., EngineCL [136]. Other scheduling
strategies are proposed for different applications, such as Proximal Policy Opti-
mization(PPO) algorithm for reinforcement learning [137], Feature-Aware Task
Scheduling [138], Accelerating Graph Convolutional Networks (GCNs) Train-
ing [139], Cloud platforms for big data applications [140], or Convolutional Neural
Networks, which apply double-buffer to overlap computation and data trans-
fer [141]. The research by [142] proposes a tool for resource estimation in FPGA
kernels within the context of an heterogeneous scheduling scheme. In [143], the
scheduling is proposed with a mathematical model focusing on minimizing the
communication delays. Other interesting approach for scheduling is proposed
in [144], where the utilization of CPU + FPGA is maximized by dynamically
scaling the resource allocation (FPGA partial reconfiguration) for tasks trans-
parently.

Innovative contributions with different scheduling approaches are shown in [145],
which implements Logfit and Dynamic schedulers presented in [146]. Addition-
ally, [145] proposes a framework based on interruptions to remove spin-locks in
the FPGA. The research by [147] presents a framework with a productive and
energy efficiency programming model targeted to low-cost and low-power plat-
forms.

However, the FPGA architecture is better exploited by regular algorithms
and, in these cases, an adaptive scheduler introduces unnecessary overhead. In
this work, we propose the Fastfit scheduler, designed for regular codes and tai-
lored to make the most out of the FPGA features by minimizing the scheduling
overheads. Although our target Time Series application is irregular, it can be
regularized to take advantage of FPGA capabilities. One important feature of
the testbed platform is the FPGA support for High Bandwidth Memory (HBM)
that is paramount for memory bound applications, like most of the Time Series
algorithms. To the best of our knowledge, there are no published proposals to
model and optimize the execution of Time Series applications on HBM-enabled
FPGAs, which is another of the original contributions of this thesis.
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The discovery of similar subsequences (motifs) or anomalies (discords) in large
time series is a computationally expensive problem with applicability in many
fields, such as seismology [148], power demand [149], neuroscience [150] or ento-
mology [151], to name a few. A recently proposed solution [66] consists in first
computing a score for each subsequence in the time series, resulting in another
time series called matrix profile. By a simple inspection of the matrix profile it
is straightforward to identify the motifs and discords by focusing on minimum
and maximum values respectively. Several algorithms have been proposed to
compute the matrix profile: STAMP [66], STOMP [20], SCRIMP [21] or the
more advanced SCAMP [22] which exhibits a higher degree of parallelism. Also,
different versions of SCRIMP have been adapted to target shared-memory mul-
tiprocessors, distributed-memory computers [70], multi-GPU platforms [22] and
Intel Xeon Phi KNL processors [71].

This chapter proposes an heterogeneous CPU + GPU implementation of the
Matrix Profile using SCRIMP algorithm [21] as a starting point. We pay partic-
ular attention to the load unbalance problem posed by the SCRIMP algorithm,
where each parallel iteration has a different computational workload. As we
explain later, this is a consequence of the computational pattern which follows
a diagonal traverse of a triangular matrix where each diagonal has a different
length. To solve this problem, using Threading Building Blocks [152], TBB, we
evaluate the efficiency of a scheduler that relies on a dynamic partition of the
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iteration space and compare it with a static distribution based on an analytical
partitioning of the workload.

Furthermore, we contribute with a heterogeneous version of the Matrix Pro-
file that distributes the matrix profile computation among CPU cores and an
OpenCL capable GPU. To that end, we leverage a previously developed paral-
lel_for template [117] that is based on a heterogeneous scheduler implemented
on top of TBB. Our scheduler takes care of the load balance problem among
devices, either CPU or GPU, and of finding the appropriate granularity for the
chunks of work that are processed on each one. An additional challenge of the
heterogeneous implementation is that the kernel of the matrix profile compu-
tation consists in a parallel_reduce pattern. Thus, in this chapter we propose
some strategies to extend our previous parallel_for template to also implement
heterogeneous parallel reductions.

By the time this work was developed, SCRIMP was the state-of-the-art al-
gorithm for computing the Matrix Profile and therefore the one used in this
chapter. However, our proposals in this chapter can be applied to general matrix
profile computation, independently of the implementation applied: SCAMP or
SCRIMP. As we will detail in chapter 4, the main difference between SCRIMP
and SCAMP is the way in which the distance between time series points is com-
puted. Hence, our proposal can be easily implemented using SCAMP by simply
updating the distance equation.

The rest of the chapter is organized as follows. First we introduce in Sec-
tion 3.1 the background required to understand the problem at hand. In Sec-
tion 3.2 we describe the parallel and heterogeneous implementations we propose
to optimize the Matrix Profile. Next, the experimental results are presented in
Section 3.3. Finally, we wrap up with conclusions in Section 3.4.

3.1. Matrix Profile: Theoretical background

A time series is a collection of sequentially taken observations, as the elec-
trocardiogram one depicted in Figure 2.11. More formally and following the
notation introduced in [20], a time series T is a sequence of real-valued numbers
ti : T = t1, t2, . . . , tn where n is the length of T . A subsequence is a local region
of a time series. A subsequence Ti,m is the region of consecutive values starting at
position i and of lengthm (a window of lengthm), i.e. Ti,m = ti, ti+1, . . . , ti+m−1.

We are interested in comparing each subsequence Ti,m with all the other
subsequences Tj,m of the same time series T , with 1 ≤ i, j,≤ n−m+ 1. To that
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end, we compute the distance profile as the vector Di = [di,1, di,2, . . . , di,n−m+1],
where di,j is the z-normalized Euclidean distance between Ti,m and Tj,m:

di,j =

√
2m

(
1− Qi,j − µiµj

mσiσj

)
(3.1)

Here µi is the mean of Ti,m, σi is the standard deviation of Ti,m, and Qi,j =∑m−1
k=0 ti+ktj+k, i.e. the dot product of Ti,m and Tj,m. Note that once Qi−1,j−1

is computed, Qi,j = Qi−1,j−1 − ti−1tj−1 + ti+m−1tj+m−1, so di,j depends on
di−1,j−1.
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Figure 3.1: Distance matrix, D, matrix profile, P and matrix profile index, I.

The distance matrix, D = [Di] (1 ≤ i ≤ n −m + 1), contains all pairwise
distances between all subsequences of T and is represented in Figure 3.1. It is
straightforward to demonstrate that this matrix D is symmetric (di,j = dj,i), the
values in the diagonal are zero (di,i = 0) and values near the diagonal are close
to zero (di,i±k ∼ 0 for small values of k) since neighbor subsequences are quite
similar.

A matrix profile, P = [min(D1),min(D2), . . . ,min(Dn−m+1)], is a vector of
the distances between each subsequence Ti,m and its closest match (nearest neigh-
bor). Intuitively, the matrix profile contains the minimum value of each column
of the distance matrix, hence the name “matrix profile”. The smallest values in
the matrix profile identify the motifs and the highest values the discords. A ma-
trix profile index, I is used to record where these motifs/discords are. Formally,
I = [I1, I2, . . . , In−m+1] where Ii = j if di,j = min(Di) that is computed as
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Ii = arg min(Di). Note that to avoid trivial matches due to comparing neighbor
subsequences, an Exclusion Zone surrounding the diagonal of D is enforced.

3.2. Matrix Profile Optimizations

With all the definitions detailed in Section 3.1, the Algorithm 1 sketches
the Matrix Profile computation. From lines 1 to 4 we initialize n, compute µi
and σi and initialize the matrix profile, matrix profile index vectors and the set
of diagonals that have to be traversed. Since matrix D is symmetric and the
exclusion zone is avoided, only an upper triangular matrix is traversed. The
elements di,j of matrix D are not stored, but computed as d in line 10 and
later discarded after they are used to update P and I in lines 11-12. Although
di,j == dj,i, Pi = min(Di) can be different to Pj = min(Dj), and the same for
Ii and Ij , so the two checks of lines 11-12 are necessary.

Algorithm 1: The Matrix Profile algorithm
Data: A time series T, m and ExclusionZone
Result: Matrix Profile P and matrix profile index I

1 n← Length(T )

2 µ, σ ← preComputeMeanStd(T,m)

3 P ← inf, I ← zeros
4 Diagonals← (ExclusionZone+ 1 : n−m+ 1)

5 for k in Diagonals do
6 for i← 1 to length(k) do
7 j ← i+ k − 1

8 if i == 1 then q ← DotProduct(T1,m, Tk,m)

9 else q ← q − ti−1tj−1 + ti+m−1tj+m−1
10 d← CalculateDistance(q, µi, µj, σi, σj)

11 if d < Pi then Pi ← d, Ii ← j

12 if d < Pj then Pj ← d, Ij ← i

13 return P, I

As we said, the dot product Qi,j can be computed from Qi−1,j−1 so the
outer loop (line 5) traverses the set of Diagonals and the inner one (line 6) each
diagonal. For the same reason, the dot product is computed only for the first row
(see line 8) and just updated in O(1) for the remaining elements of the diagonal
(line 9).
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The parallel implementation traverses the diagonals in parallel: several threads
can process different diagonals at the same time. The only dependence that needs
attention is the update of P and I vectors since two threads traversing two differ-
ent diagonals can try to simultaneously write in the same Pi and Ii position. A
possible solution consists in declaring P and I as vectors of atomics, but a more
efficient alternative is based on privatizing both vectors. That way, each thread
has a private copy of P and I which avoids conflicting accesses to the vectors
and incurs in an acceptable increment of the memory footprint on the platforms
that we consider in this paper, in which the number of cores/threads is not large.
A reduction step is needed to compute the global P and I vectors, but in our
experiments the reduction time represents less than 0.01% of the total execution
time.

3.2.1. Multi-core partitioning strategies

As we have seen in the Matrix Profile implementation (Algorithm 1), the outer
loop that traverses the diagonals (line 5) can be executed in parallel. However,
each parallel iteration exhibits a different workload due to the inner loop (line 6)
depends on the diagonal length. In this section, we elaborate on two alternatives
to avoid load unbalance: i) an ideal static one that computes the number of
diagonals that each device has to process based on an analytical partition; and
ii) a dynamic alternative based on the work stealing scheduler provided by the
TBB library.

3.2.1.1. Static partitioner

Assuming we have nth threads collaborating on the computation of the matrix
profile P , the problem we want to solve is to identify the first and the last diagonal
(i.e. the chunk of diagonals) each thread has to process, so that all threads have
approximately the same load (number of elements of D). In Figure 3.2, assuming
nth = 4 and discarding the Exclusion Zone, 4 chunks of diagonals should have
about the same number of elements (Ai == Aj , 0 ≤ i, j < nth).

The threads IDs, tid, are in the range [0, nth) and thread tidi is responsible
of computing the chunk of diagonals [xi, xi+1). The index of the last diagonal is
mpl = n −m + 1. Figure 3.2 shows that xi = mpl − yi + 1 and therefore, the
problem of finding xi translates into finding yi.

The number of elements in the upper-right triangle, A3 in Figure 3.2, is equal
to
∑y3
i=1 i = y3(y3 + 1)/2. Likewise, we say that N = y0(y0 + 1)/2 is the total
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Figure 3.2: Static distribution problem: compute xi so that the number of ele-
ments in each chunk of diagonals, Ai, are approximately the same.

number of elements in all diagonals. Therefore we want that A3 = y3(y3+1)/2 =

N/nth (one forth of the number of elements if nth = 4). In the same manner
A2 +A3 = y2(y2 + 1)/2 = 2N/nth, A1 +A2 +A3 = y1(y1 + 1)/2 = 3N/nth, and
by induction yi(yi + 1)/2 = (nth − i)N/nth. Therefore we can solve yi as 3.2,
from which xi can be computed as we mentioned in the previous paragraph

yi = round

(
−1 +

√
1 + 8(nth− i)N/nth

2

)
(3.2)

With this ideal static partitioning each thread has approximately the same
number of elements (±1 diagonal). In our experiments this translates into a
negligible unbalance (less than 10−5%).

3.2.2. Work-stealing partitioner

The fact that an ideal static partition can almost perfectly balance the number
of elements among all threads does not necessarily imply that all threads/cores
will finish at the same time. An alternative work distribution strategy we evaluate
is based on the work-stealing policy provided by TBB. On commodity chips
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governed by commodity operating systems there are several sources of noise and
architectural asymmetries that may result in some cores being more loaded or
working at a different speed. In those cases, a dynamic partitioning pays off,
although it may add some partitioning overhead. A typical solution consists in
a work sharing paradigm in which threads pick up chunks of work from a global
queue of tasks. However, this single global queue may represent a contended
resource and become a bottleneck. The work stealing alternative [153] tackles
this issue by allocating a work queue to each working thread and incorporating a
work stealing policy in which threads with an empty work queue can steal work
from busier threads.

The TBB library [152] is mainly based on a work stealing scheduler and task-
level parallelism. In addition, TBB offers some helpful templates and high level
C++ classes to ease the development of parallel applications, so we have imple-
mented the Matrix Profile algorithm drawing on two TBB templates: parallel_for
and combinable.

The parallel_for template can dynamically partition the iteration space
into chunks of variable size. A given number of working threads is created and fed
with chunks (tasks in the TBB jargon). The iteration space is recursively split
into chunks and thanks to the work stealing policy each thread’s work queue
gets populated with enough chunks to keep the thread busy. At the end of the
iteration space, some stealing operations may take place to balance the workload.
Furthermore, with the default TBB partitioner (auto_partitioner) the chunk
size can be larger at the beginning of the iteration space and shrink to just
1 iteration when there are few remaining iterations, resulting in a maximum
unbalance bound of 1 diagonal. Thus, faster cores (or less loaded) will process
more elements than slower ones.

The combinable class provides thread local storage (privatization) and in-
cludes a combine member function that reduces all private copies in order to
compute the final result. In our implementation, we hold the matrix profile in-
formation in a vector of structs with two fields: a float to store the matrix profile
value, Pi, and an integer to store the matrix profile index, Ii, i.e. struct
mp {float val; int idx}). With this data structure, we can create a
combinable<vector<mp» mp_cpu object. The object constructor takes care
of allocating and initializing the vector. Inside the body of the parallel_for
each task invokes mp_cpu.local() which returns a reference to a thread lo-
cal vector<mp> so it is safe to update the privatized matrix profile values and
indices. After the parallel_for is computed, a call to mp_cpu.combine()
will return the reduced matrix profile vector.
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Figure 3.3: TBB implementation of Matrix Profile: parallel_for +
combinable, assuming 2 threads.

As illustrated in Figure 3.3 two threads, tid0 and tid1, are collaborating in
computing the matrix profile, but each one updates a private copy of mp_cpu.
This prevent a read-modify-write conflict if tid0 and tid1 try to simultaneously
update Pj and Ij . The TBB combine() member function comes in handy to
easily implement the reduction of the private copies.

3.2.3. HetMP: Heterogeneous implementation

Many commodity processors for desktops, laptops and smart phones feature
an integrated GPU along with the CPU cores. A heterogeneous implementation
that efficiently exploits both devices poses some challenges: (i) Programming
language: the CPU and the GPU can have different programming models. In
our approach we use OpenCL for the GPU and C++ for the CPU and orches-
trating code; (ii) Data sharing: the CPU and the GPU have to share data in
order to collaborate. In our approach we leverage the Shared Virtual Memory
(SVM) available in OpenCL 2.1 to reduce the communication overheads; and (iii)
Workload balance: the CPU and the GPU have to evenly share the computational
load. In our approach we adapt and extend a previously developed heterogeneous
scheduler [117]. In this section, we elaborate on how these problems have been
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addressed and on some details of the heterogeneous implementation of Matrix
Profile that we call HetMP.

3.2.3.1. User interface

Figure 3.4 shows an excerpt of the main function for the HetMP implemen-
tation. Our Heterogeneous Building Blocks, HBB, library encapsulates most of
the internal details of the implementation and it is made available by including
the hbb.h header file (line 1).

1 #include "hbb.h"
2
3 int main(int argc, char* argv[]){
4 Params p;
5 InitParams (argc, argv, &p);
6 ...
7 struct mp {float val; int idx};
8 combinable<vector<mp>> mp_cpu;
9 init_CPU_MP(mp_cpu);

10 init_GPU_MP(mp_gpu);
11 preComputeMeanStd(T,m);
12 ...
13 // Instantiate task scheduler
14 auto *hs = {Static, Dynamic, LogFit}::getInstance(&p);
15 Body body;
16 hs->parallel_for(ExlusionZone+1, n-m+1, body);
17 reduce(mp_cpu, mp_gpu);
18 ...
19 }

Figure 3.4: HetMP main() function.

Program arguments can be read from the command-line, as can be seen
in line 5. HetMP accepts four command-line arguments: <num_cpu_cores>,
<num_gpus>, <timeseries_file> and <sch_arg>. The last argument mean-
ing depends on the particular implementation of the selected heterogeneous sched-
uler. For instance, the Static scheduler requires the ratioGPU argument that
states the percentage of the iteration space that is offloaded to the GPU, and
the Dynamic scheduler needs the gpuChunksize argument that is the size of
the GPU chunks. Initialization chores are carried out in lines 7 to 11, where
the combinable object, mp_cpu, and private GPU buffer, mp_gpu, are con-
structed and initialized and global arrays to store µ and σ are computed. The
GPU buffer is implemented as a Shared Virtual Memory, SVM, region. This
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is an OpenCL 2.1 feature in which the buffer seats in a region of memory that
both the CPU and GPU can read and write. We configure the SVM buffers
in the fine-grained mode (adding the flag CL_MEM_SVM_FINE_GRAIN_BUFFER
to the OpenCL call clSVMAlloc) so that CPU and GPU cache coherency is
maintained by hardware.

Currently, our HBB library provides three heterogeneous schedulers, each one
with a different partitioning strategy: Static, Dynamic and LogFit. They can be
instantiated as shown in Figure 3.4 at line 14, were briefly described in Section
2.5.1, and will be evaluated in Section 3.3.

The parallel_for() function template receives three parameters (line 16):
the first two parameters describe the parallel iteration space. The iteration space
goes from ExclusionZone+1 to n-m+1. The parallel_for() scheduler
takes care of partitioning this iteration space into chunks of iterations that are
assigned to CPU cores or offloaded to the GPU. The third parameter is the Body
instance that should include the user implementation of the CPU and GPU loop
body (this is, two functions that define how a chunk of iterations should be
processed on the CPU and on the GPU, respectively). The implementation of
the Body class is presented in Figure 3.5.

1 class Body{
2
3 public:
4 void operatorCPU(int begin, int end) {
5 vector<mp> &priv_mp = mp_cpu.local(); // access a private matrix

profile
6 for(k=begin; k!=end; i++){
7 ... // Process diagonal k (lines 6-13 of Alg. 1) updating

priv_mp
8 }
9 }

10
11 void operatorGPU()(int begin, int end){
12 clSetKernelArg(...,&begin); // Kernel argument
13 clSetKernelArg(...,&end); // Kernel argument
14 clEnqueueNDRangeKernel(...,kernel,...); // Launch OpenCL kernel
15 clFinish(...); // Wait for kernel

completion
16 }
17 };

Figure 3.5: Body class for HetMP.
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The parallel_for finishes when all the diagonals have been processed but
at that point the results are scattered in several private buffers, one per core (man-
aged with the combinable object, mp_cpu), and an additional one for the GPU in
a SVM buffer, mp_gpu. In line 17 of Figure 3.4 the function reduce(mp_cpu,
mp_gpu) is invoked in order to combine the partial results and generate the final
matrix profile data.

As we see in Figure 3.5, two member functions have to be defined in the
Body class: operatorCPU and operatorGPU. The former processes the chunk
of iterations [begin,end) on a single CPU core. Several threads (one per
available CPU core) will be running this function in parallel. Thus, each thread
first gets a reference to a private matrix profile vector (line 5). This private vector
is safely updated following lines 6 to 12 of Algorithm 1.

The operatorGPU member function also processes a chunk of diagonals, but
in this case it offloads the work to a GPU. To that end, some OpenCL functions
are used: clSetKernelArg() sets the kernel arguments (the chunk bounds
among them), clEnqueueNDRangeKernel launches the kernel to the GPU
and clFinish waits until the offloaded work is done. In the next section, we
delve into the OpenCL kernel implementation for the HetMP algorithm.

3.2.3.2. GPU kernel implementation

The implementation of the OpenCL kernel is based on a CUDA version that
was described by Zhu et al. [22] for the SCAMP algorithm. Although our ap-
proach is similar, we have adapted the implementation to OpenCL 2.1 to take
advantage of the SVM features that do away with the host-to-device and device-
to-host operations that are required in CUDA.

The on-chip GPUs that we used for the experimental evaluation (see next
section) include 24 compute units and each one can have 16 × 7 GPU threads
(work items) in flight [154]. Therefore, there can be 24 × 16 × 7 = 2, 688 kernel
instances being executed concurrently on the GPU. Each GPU thread will process
a diagonal of the distance matrix, D, so it is clearly prohibitive to allocate a
private matrix profile vector for each GPU thread. The immediate alternative is
to rely on OpenCL atomics.

To that end, we first add the flag CL_MEM_SVM_ATOMICS to the clSVMAlloc
call used to allocate the mp_gpu buffer. However, it is necessary to guarantee the
atomic update of both the matrix profile value, Pi, and the matrix profile index,
Ii, but there is not atomic operation able to do that in OpenCL. The workaround
consists in packing the float value (32 bits) and the integer index (32 bits) in a
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union data type (64 bits) that we call mp_entry in line 7 of the code snippet
listed in Figure 3.6.

1 #pragma OPENCL EXTENSION cl_khr_int64_base_atomics : enable
2
3 typedef union{
4 float vals[2];
5 int idxs[2];
6 unsigned long val_idx;
7 } mp_entry;
8
9 inline void AtomicMin(volatile __global unsigned long *mpe, float val,

int idx) {
10
11 mp_entry old_value, new_value;
12 new_value.vals[0] = val;
13 new_value.idxs[1] = idx;
14 old_value.val_idx = *mpe;
15 while (old_value.floats[0] > val){
16 old_value.val_idx = atom_cmpxchg(mpe, old_value.val_idx, new_value.

val_idx);
17 }
18 }
19
20 kernel void HetMP(..., global mp_entry* mp_gpu, int begin, int end, ...)
21 {
22 //Get a diagonal from the range [begin,end).
23 int k = get_global_id(0) + begin;
24 //Compute distance d following lines 7 to 10 of Algorithm 1
25 ...
26 //Update GPU matrix profile and matrix profile index if necessary
27 if (d < mp_gpu[i].floats[0]) AtomicMin(&mp_gpu[i], d, j);
28 if (d < mp_gpu[j].floats[0]) AtomicMin(&mp_gpu[j], d, i);
29 }

Figure 3.6: OpenCL kernel for HetMP.

The whole mp_entry requires 64 bits that can be seen as two floats, or
two integers or a single unsigned long. We declare mp_gpu as an array of
mp_entry’s. Thus, we can use mp_gpu[i].vals[0] to access Pi and mp_-
gpu[i].idxs[1] to access Ii. However, the atomic update of both values is
done at once using their compound reference: mp_gpu[i].val_idx. To enable
64 bits atomics, the pragma of line 1 is compulsory.

From lines 9 to 18, we detail the AtomicMin function that takes care of safely
updating the matrix profile information. It is based on the OpenCL atom_-
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cmpxchg (atomic compare and exchange) [155] that works as a regular com-
pare_and_swap, CAS, operation.

The actual GPU kernel is sketched from line 20 to line 29. In line 23 a single
diagonal k is assigned to the thread using get_global_id. This diagonal is
computed on the GPU following lines 7 to 10 of Algorithm 1. However, the
update of the matrix profile array, Pi and Ii, is carried out in lines 27 and line 28
using the aforementioned AtomicMin function.

In order to measure the impact of the atomic updates, we have also developed
an OpenCL kernel for HetMP that does not protect concurrent read-modify-write
accesses. Clearly, this approximate version may result in a non exact computation
of the matrix profile. In the next section, we discuss how these two versions, called
Atomic and NonAtomic, compare.

3.3. Experimental results

3.3.1. Experimental setup

We run our experiments in two platforms that are representative of commodity
heterogeneous processors with an integrated GPU.

The processor architecture and software details of each platform can be found
in Tables 3.1 and 3.2, respectively.

The performance and energy results reported in this section represent the
median value in 5 runs. We should note that the results reported here have been
obtained without exploiting the Hyperthreading feature of the Intel processors.
For our application we found that spawning two threads per physical core do
not render significant benefits. As we explain at the end of Section 3.3.2, this
algorithm is heavily memory bound, so having more threads putting additional
pressure on the memory (along with the GPU) leads to a slight performance
degradation. For instance, enabling Hyperthreading on Coffeelake (16 threads)
may degrade throughput up to 5.1% when compared to executions with 8 threads.

Energy readouts were obtained thanks to the Processor Counter Monitor,
PCM, library, which reports the breakdown of energy consumed on the CPU, on
the GPU and and on the uncore components of the chip. The input datasets
are random walk time series, which is a widely known and classical type of time
series [156]. We use three time series, with the following sizes: 217 (131072),
218 (262144) and 219 (524188) elements each one, to analyze the impact on the
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Table 3.1: Platform details (Coffeelake & Kabylake).

Microarchitecture Coffeelake Kabylake

Processor i9-9900K 3.6 GHz i7-7700K 4.2 GHz

Number of cores 8 4

Clock Speed 3.6 GHz 4.2 GHz

Max Turbo Frequency 5.0 GHz 4.5GHz

Main memory 32GB DDR4 32GB DDR4

Cache L3 16 MB 8 MB

Litography 14 nm 14 nm

Max TDP 95 W 91 W

Intel Graphics GPU UHD Graphics 630 HD Graphics 630

Number of GPU Compute Units 24 24

GPU Base Frequency 350 MHz 350 MHz

GPU Max Dynamic Frequency 1.2 GHz 1.15GHz

Table 3.2: Software details (Coffeelake & Kabylake).

Operating System Ubuntu 18.04.2 LTS, kernel v5.0

Intel Graphics Compute Runtime for OpenCL version 19.08.12439

Intel OpenCL 2.1

Intel TBB and VTune 2018 Update 6

Processor Counter Monitor 201902

Intel C++ Compiler 19.0.3.206

processor and memory systems. The window size, m, is 1024 and the Exclusion
Zone is m/4 = 256 as recommended in the literature [21, 22].

3.3.2. Parallel implementations: Optimizing load balance
in the multi-core

We start with the parallels implementations, evaluating the two partition-
ing strategies presented in Section 3.2.1, which are designed to tackle the load
unbalance problem in the context of a multi-core. Thus, we compare an ideal
static distribution and a dynamic distribution based on work stealing. Figure
3.7 shows the throughput (elements/ms) when the number of cores increases for
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the two partitioning strategies and different input sizes, in Coffelake (above) and
Kabylake (below).
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Figure 3.7: Performance scalability of partitioning strategies in the multi-core:
ideal static vs. dynamic based on work stealing.

From Figure 3.7, we find that dynamic scheduling based on work stealing al-
ways improves the static partitioning performance, in particular when the number
of cores increases. For instance, work stealing improves ideal static throughput
up to 11.3%, 11% and 5.7% for time series of size 217, 218 and 219, respectively,
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on the 8 cores of Coffeelake, and up to 10.4%, 11.3% and 8.8% on the 4 cores
of Kabylake. Although the static partitioning analytically computes an almost
perfect distribution of the diagonals, it can not cope with runtime asymmetries
in the load on the CPU cores, even when the experiments were conducted in
unburdened scenarios (no other user applications were running on the systems).

When the size of the input grows we also notice that the scalability for both
partitioning strategies degrades, although most significantly for the static solu-
tion. We elaborate on this issue in more depth, by using Intel VTune, and found
that SCRIMP exhibits the characteristics of a heavily memory bound application
when the size increases. For instance, in Coffeelake and 8 cores, the percentage
of pipeline stalls due to memory demands goes from 0.7% for 217 to 12.8% for
219 in the work stealing experiment, what explains the performance drop (similar
measures for Kabylake and the ideal static partitioning).

The parallel implementations were developed during a research stay in the
EPCC in Edinburgh. The findings of this study have been reinforced with the
results on the ARCHER supercomputer. ARCHER compute nodes contain two
2.7 GHz, 12-core E5-2697 v2 (Ivy Bridge) series processors with 30 MB of Cache
L3. Each of the cores in these processors can support 2 hardware threads (Hyper-
threads). Within the node, the two processors are connected by two QuickPath
Interconnect (QPI) links. Standard compute nodes on ARCHER have 64 GB
of memory shared between the two processors. There are a smaller number of
high-memory nodes with 128 GB of memory shared between the two processors.
The memory is arranged in a non-uniform access (NUMA) form: each 12-core
processor belongs to a single NUMA region with local memory of 32 GB (or
64 GB for high-memory nodes). Access to the local memory by cores within a
NUMA region has a lower latency than accessing memory on a different NUMA
region.

The same experiment performed on Coffeelake and Kabylake has been repli-
cated on an ARCHER compute node. Figure 3.8 shows the throughput (ele-
ments/ms) when the number of cores increases for the two partitioning strategies
and different input sizes.

In this case, the overall throughput is lower than in Coffeelake and Kabylake
due to ARCHER’s Ivy Bridge is a weaker processor. For instance, Coffeelake
improves the ARCHER node throughput up to 161.47%, 186.62% and 217.56%
for 217, 218 and 219, respectively, on the 8 cores in work stealing, and up to
142.20%, 157.92% and 201.59% on the 8 cores in ideal static. Comparing the
work stealing and ideal static approaches on the ARCHER node, we can see that
work stealing improves ideal static throughput up to 3.09%, 3.51% and 3.82% for
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Figure 3.8: Performance scalability of partitioning strategies in the ARCHER
node: ideal static vs. dynamic based on work stealing.

217, 218 and 219. The relative performance between strategies slightly decreases
respect to Coffeelake and Kabylake. That can be explained because the static
strategy exploits the cache better due to i) this strategy processes larger blocks of
diagonals and ii) Ivy Bridge processors feature a larger L3 cache (30MB vs 16M
in Coffeelake and 8MB in Kabylake). However, work stealing is still a better
approach than static also for the ARCHER platform.

3.3.3. HetMP: Evaluation of heterogeneous implementa-
tions

As explained in Section 3.2.3, we have designed two alternatives for our het-
erogeneous HetMP algorithm: (i) the NonAtomic version, where the matrix
profile results, computed on the GPU, are not protected while writing them in
the output vector. In this version, data races may affect the accuracy of the final
result, although the overhead of atomic contention is avoided; (ii) the Atomic
version, where the matrix profile results, computed on GPU, are protected while
writing them in the output vector. This version guarantees exact results but adds
some overhead due to the atomic accesses.
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3.3.3.1. Accuracy analysis of heterogeneous implementations

The main goal of having both the Atomic and NonAtomic versions of the
HetMP GPU kernel is to assess the overhead introduced by protecting the ma-
trix profile updates with atomics. On Coffeelake and Kabylake, for the GPU
only executions, the Atomic kernel reduces the throughput in 8.1% and 8.9%
respectively.

For the interested reader, we also study the loss of accuracy of NonAtomic
when working with 6 different time series. The three random walk time series
presented in 3.3.1 and three real time series of three different scenarios from [157]:
Taxi (taxi usage in New York city during a year) with size 3600, PowerDemand
(power demand in a house during a year) with size 29931 and ECG (an elec-
trocardiogram) with size 450000. For each time series, we computed the matrix
profile 1,000 times with the NonAtomic version and compared the result with the
Atomic golden version (that coincides with the one computed sequentially).

Figure 3.9 shows the histogram of accuracy for the 6 time series analyzed.For
the three random walk series the percentage of correct entries in the matrix pro-
file was on average 99.96%, 99.96% and 99.99% with a standard deviation of
0.026, 0.011, and 0.004 respectively. For the three real time series the corre-
sponding values were 92.93%, 97.42% and 82.70% with a standard deviation of
0.508, 1.207 and 0.885, respectively. Note, that these last three time series are
shorter which results in a smaller matrix profile and a higher probability of colli-
sions of read-modify-write operations, thus the larger impact of the NonAtomic
implementation on the matrix profile accuracy. We get the same accuracy on
both platforms.

We have also studied the loss of accuracy of NonAtomic when working with
our biggest data input: a time series of 219 elements. By comparing the outputs
of the NonAtomic and Atomic versions in our runs, we find that matrix profile
Index I is always the same in both versions, i.e., the relative position of all motifs
and discords is always correct. However, matrix profile P (see Figure 3.1) differs
in about 2% of the elements, i.e. in these cases the distance value is not correctly
computed in the NonAtomic version. Interestingly, if we check the difference
between the unmatched values, we realize that they only differ in an ε value less
than 10−8, which can be considered irrelevant in many use cases. Actually in our
runs the top ten motifs and discords were always the same for the Atomic and
NonAtomic versions.

Thus, depending on the use case in the application domain, it could be up to
the user selecting the NonAtomic or the Atomic version. As we will see in the
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Figure 3.9: Histogram of accuracy percentage for the 6 time series analyzed. Y-
label shows the frequency for each accuracy percentage while X-label shows the
distribution of the accuracy percentage.

next section, NonAtomic version provides better performance -but at the cost of
this accuracy loss-, while Atomic provides the exact solution.
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In the next section, we explore the performance behavior of both versions.
Orthogonally, we analyze the behavior of 3 different heterogeneous schedulers that
are available in our heterogeneous HBB library (Static, Dynamic and LogFit),
which we evaluate in the context of the heterogeneous parallel_reduce solution
presented in this chapter. Thus, a total of 6 heterogeneous configurations for our
HetMP application are evaluated next.

3.3.3.2. Exploring the behavior of CPU+GPU implementations

Figure 3.10 shows the throughput, in terms of processed elements per mil-
lisecond, that NonAtomic (solid lines) vs Atomic (dashed lines) implementations
achieve for the Static scheduler when the ratio of the iterations offloaded to the
GPU, ratioGPU, goes from 0 (0% -only CPU cores are working-) to 1 (100%
-only GPU is working-).

We analyze the three different input sizes and report results for Coffeelake
(above) using 8 cores and the GPU and Kabylake (below) using 4 cores and the
GPU.

As we can see in Figure 3.10, the optimal ratioGPU or partition of parallel
iterations at which each implementation achieves the higher throughput depends
on the version, input size and platform. In any case, lower or higher ratios degrade
performance due to load unbalance, either because the GPU or the CPU multi-
core are stalled waiting for the other device. As expected, the Atomic version
tends to be slower than the NonAtomic one, in particular when the input size is
smaller, due to a higher probability of contention in the atomic accesses. This
effect is particularly evident when the ratioGPU increases beyond the optimal,
meaning that a higher number of diagonals has been offloaded to the GPU, which
in turn increases the likelihood of contention in the resulting protected data.

Figure 3.11 shows the throughput (elements per millisecond) that NonAtomic
(solid lines) vs Atomic (dashed lines) implementations achieve for the Dynamic
scheduler. Now we explore what is the GPU chunk size (gpuChunksize) that
dynamically offloaded to the GPU achieves the higher throughput.

Let’s recall that this scheduler performs many partitions of the iteration space.
For instance, a gpuChunksize=210 means that the GPU is repeatedly fed with
this chunk size of iterations until we compute the whole iteration space. Again, we
study different input sizes and report results for Coffeelake (above) and Kabylake
(below) having the GPU along with all the cores working in parallel.



3.3. Experimental results 59

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ratioGPU (Coffeelake)

2

3

4

5

T
h

ro
u

gh
p

u
t

(E
le

m
en

ts
/m

s)

×106

NonAtomic 217

Atomic 217

NonAtomic 218

Atomic 218

NonAtomic 219

Atomic 219

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ratioGPU (Kabylake)

1

2

3

4

T
h

ro
u

gh
p

u
t

(E
le

m
en

ts
/m

s)

×106

NonAtomic 217

Atomic 217

NonAtomic 218

Atomic 218

NonAtomic 219

Atomic 219

Figure 3.10: Exploring Static scheduler in CPU+GPU. X-axes represent the per-
centage of parallel iterations offloaded to the GPU (ratioGPU).

From Figure 3.11, we find that Coffeelake and Kabylake show a similar behav-
ior. Small chunk sizes degrade throughput due to under utilization of the GPU
resources. Too big chunk sizes also degrade throughput now due to load unbal-
ance with the CPU multi-core and due to an increment in the pressure on the
FSB (Front Side Bus) that results from the irregular memory access pattern of
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Figure 3.11: Exploring Dynamic scheduler in CPU+GPU. X-axes represent the
chunk size of parallel iterations offloaded to the GPU.

HetMP. Interestingly, gpuChunksize= 212 (4096 diagonals) achieves the optimal
throughput for the NonAtomic version, independently of the input size. In fact,
the reported throughput values for the three input data are similar. On the other
hand, gpuChunksize= 211 (2048 diagonals) provides the optimal throughput for
the Atomic version, independently of the input size. Now, in the Atomic version,
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the reported throughput for the smaller input data set tends to be worst than
for the bigger input data. Again, this is explained due to a higher probability of
contention in the atomic accesses when the input data is small. This issue also ex-
plains why the optimal chunk size of the Atomic version is smaller: higher chunk
sizes increase the probability of contention among the diagonals being processed
in-flight on the GPU.

Both Static andDynamic schedulers require offline training to find the optimal
ratioGPU or gpuChunksize. In fact, for this running example, we need to execute
11 runs for Static, where we move the ratioGPU from 0 to 1 with 0.1 steps, and
15 runs for Dynamic, while varying the gpuChunksize from 25 to 219. We next
explore the behavior of LogFit that finds, at runtime, the optimal GPU and CPU
chunk sizes and adaptively changes them throughout the computation.

Figure 3.12 shows the evolution of the throughput (elements per millisecond,
blue lines) and GPU chunk size (purple lines) that NonAtomic vs Atomic imple-
mentations achieve for the LogFit scheduler. Here, we show the results for the
input time series with 219 elements and report results for Coffeelake (above) and
Kabylake (below).

As we see in Figure 3.12, LogFit presents the same trends in Coffeelake and
Kabelake. First, as expected, the NonAtomic version achieves slightly higher
throughput than the Atomic one. Second, the NonAtomic version tends to
present noticeable fluctuations of throughput, while the Atomic one shows a
very stable result. This is due to how LogFit works when looking for the optimal
throughput: in the NonAtomic case, after the Exploration Phase, the scheduler
finds a chunk size around 212 (as we manually found with Dynamic) and enters in
the Stable Phase, where it adapts with smooth chunk size variations to changes
in the application throughput; on the contrary, in the Atomic case, LogFit never
exits the Exploration Phase, because the condition that ensures that the through-
put has been stabilized is never met. As a consequence, LogFit is always exploring
bigger and bigger chunk sizes until the iteration space is completely processed.
With big chunk sizes it is unlikely to produce significant variations of throughput.

3.3.3.3. Performance vs. Energy analysis

Once we have studied in detail how the different schedulers behave for both
NonAtomic and Atomic versions in CPU+GPU executions, we compare the per-
formance and energy efficiency of our implementations, assuming that we have
chosen the ratioGPU and gpuChunksize that achieve the best throughput, for
both Static and Dynamic, respectively. We use 8 cores and 4 cores on Coffeelake
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Figure 3.12: Evolution of LogFit scheduler in CPU+GPU for input 219.

and Kabylake, respectively, and the 219 time series, but similar conclusions can be
obtained from the other inputs too. These results are shown in Figures 3.13 and
3.14. For reference, we also include results for CPU only and GPU only execu-
tions. Table 3.3 contains a summary of results for the different implementations
of the Atomic version in Coffeelake and Kabylake.

Figure 3.13 shows that heterogeneous CPU+GPU executions always perform
better than any of the homogeneous ones -CPU only or GPU only- and, as al-
ready discussed in the previous section, NonAtomic versions perform better than
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Figure 3.13: Performance comparison: best NonAtomic (solid bar) vs best Atomic
(pattern bar) for Static, Dynamic and LogFit schedulers in CPU+GPU runs. The
solid line represents ideal performance.

Atomic in all cases. The solid line represents an “Ideal” throughput estimated as
the aggregation of the CPU only throughput and NonAtomic GPU only through-
put. This ideal throughput does not take into account the overheads due to load
unbalance and atomic contention, so it gives us a theoretical upper bound of
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Figure 3.14: Energy breakdown for best NonAtomic (solid bar) and best Atomic
(pattern bar) versions Static, Dynamic and LogFit schedulers in CPU+GPU runs.

how efficient the heterogeneous implementations are. As we see in the figure,
Dynamic is the most performing implementation for NonAtomic versions, while
LogFit tends to be a good candidate for the Atomic version. This version is
only 2.3% slower than NonAtomic in Coffelake and 10.3% in Kabylake. With
respect to the Ideal Throughput, in Table 3.3 we see that LogFit only presents
an overhead of 3.5% and 13.5% on Coffeelake and Kabylake, respectively. Let’s
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recall that Dynamic requires offline training to find the optimal chunk size, while
LogFit computes the optimal chunk automatically without user intervention.

Table 3.3 also shows the speedup obtained by each version with respect to
serial execution on a single CPU core. CPU only version yields almost perfect
scalability (7.49x and 3.99x on Coffeelake and Kabylake respectively). GPU only
results in 9.8x/8.8x (Coffeelake/Kabylake), but the simultaneous exploitation of
both devices improves the performance to up to 15.78x/10.96x (Coffeelake/K-
abylake).

Table 3.3: Summary of performance and energy efficiency of Atomic versions on
Coffeelake and Kabylake. In bold the optimal implementation for each criterion.

Coffeelake
CPU

8 cores

GPU

Only
Static Dynamic Logfit

Throughput

(Elements/ms)
2741990 3420660 4480770 5849570 5942580

%Diff Ideal Throughput

(CPU+GPU)
-55.50% -44.5% -27.9% -5% -3.5%

Speedup (w.r.t. 1 Core) 7.49x 9.82x 11.90x 15.54x 15.78x

Energy efficiency

(Elements/mJ)
41121 135147 116796 71596 73099

%Diff Best Energy 228.3% 0.0% 71.9% 88.7% 84.8%

Kabylake
CPU

4 cores

GPU

Only
Static Dynamic Logfit

Throughput

(Elements/ms)
1041820 3245590 3759050 4025530 3960490

%Diff Ideal Throughput

(CPU+GPU)
-77.2% -29.1% -17.9% -12% -13.5%

Speedup (w.r.t. 1 Core) 3.97x 8.84x 10.24x 10.96x 10.79x

Energy efficiency

(Elements/mJ)
38483 152643 81496 53279 62508

%Diff Best Energy 296.4% 0.0% 86.2% 186.3% 144.1%

From the energy consumption point of view, Figure 3.14 indicates that het-
erogeneous CPU+GPU executions consume more energy than GPU only, both for
NonAtomic and Atomic versions. In particular, Atomic versions are less energy
efficient than NonAtomic ones, due to taking longer. On the other hand, although
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the heterogeneous CPU+GPU implementations are faster than GPU only ones,
they require of an important energy component that is negligible in GPU only
case: the consumption due to the CPU cores, which can account for more than
70% of the total energy. As a result, the GPU only implementation is the optimal
solution in terms of energy consumption. The best CPU+GPU heterogeneous im-
plementation is Static, that for the Atomic version “only” consumes 71.9% and
86.2% more energy than GPU only, for Coffeelake and Kabylake, respectively, as
we see in Table 3.3.

Table 3.4: Performance comparison with Matrix profile implementations using
Intel Xeon Phi processors.

Time Series Length

Throughput

(Elements/ms)
217 218 219 220

HetMP 6.32 · 106 6.41 · 106 6.28 · 106 5.92 · 106

Intel Xeon Phi 7290 - - - 1.1 · 107

Intel Xeon Phi 7210 9.34 · 106 1.07 · 107 1.06 · 107 1.01 · 107

Performance / Watt

(Throughput/Watio)
217 218 219 220

HetMP 6.65 · 104 6.75 · 104 6.62 · 104 6.23 · 104

Xeon Phi 7290 - - - 4.48 · 104

Xeon Phi 7210 4.34 · 104 4.99 · 104 4.98 · 104 4.70 · 104

Two of the most recent works on discords discovery revolve around parallel
optimizations for the Intel Xeon Phi 7290 [72] and Intel Xeon Phi 7210 [71].
For the interested reader, we have compared in table 3.4 the best HetMP re-
sults on our Coffeelake (8 threads+GPU, 95W TDP) with the results of [71]
on a Xeon Phi 7210 (256 threads, 215W TDP) and [72] on a Xeon Phi 7290
(288 threads, 245W TDP). We compare two metrics: Throughput (Elements per
milisecond) as performance of the execution and Energy Performance of the ex-
ecution (Throughput per Watt). For a time series with 220 elements, HetMP is
41.44% and 46.18% slower than [71] and [72], respectively. However, considering
the maximum power of the different architectures, HetMP delivers 32.53% and
38.81% more performance per Watt than [71] and [72], respectively.
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3.3.3.4. Summary of results

As a summary, our analysis of performance and energy efficiency for hetero-
geneous CPU+GPU implementations of HetMP has taught us:

If accuracy is not an issue, NonAtomic versions perform best than Atomic.
In this case, the heterogeneous Dynamic scheduler can achieve the fastest
execution time. However, the user has to find the optimal GPU chunk size
(offline training).

If accuracy is a requirement, then the heterogeneous LogFit scheduler usu-
ally provides the fastest or near-fastest execution (only 2.3% slower than
NonAtomic LogFit in Coffelake and 10.3% in Kabylake). As an additional
benefit, this scheduler automatically looks for the optimal GPU chunk size
without user intervention.

If energy consumption is the target criterion, then GPU only execution
(both for NonAtomic and Atomic versions) is the implementation of choice.

3.4. Conclusions

The discovery of time series motifs and discords is considered a paramount
and challenging problem regarding time series analysis. In this chapter we present
HetMP, a heterogeneous implementation of matrix profile algorithm that excels
at finding relevant subsequences in time series. We propose and evaluate several
static, dynamic and adaptive partition strategies targeting commodity proces-
sors, both on homogeneous (CPU multi-core) and heterogeneous (CPU+GPU)
architectures. For the CPU+GPU implementation, we explore a heterogeneous
parallel_reduce pattern that computes part of the computation onto an OpenCL
capable GPU whereas the CPU cores take care of the other part. Our hetero-
geneous scheduler, built on top of TBB, pays special attention to appropriately
balance the computational load among the GPU and CPU cores. The experimen-
tal results show that our homogeneous implementation scales linearly and that
our heterogeneous implementation allows us to reach near ideal performance on
commodity processors that feature an on-chip GPU.

Summarizing, the main contributions of this chapter are:

We experimentally compare two parallel implementations of the matrix pro-
file computation for multi-core architectures: an ideal static distribution
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and a dynamic one based on work stealing (TBB) for multi-core architec-
tures. Our results shows that the dynamic distribution based on TBB suites
better for heterogeneous CPU + GPU platforms.

We extend a previously developed heterogeneous parallel_for template to
implement heterogeneous parallel_reduce computations. The reduction
phase between the work offloaded to the GPU and the one computed on
the CPU cores takes a negligible amount of time and is performed on the
CPU. Shared virtual memory, SVM, is leveraged to minimize the CPU-GPU
communication overheads.

We propose two OpenCL kernel implementations for the matrix profile
computation on the GPU, based on the reduction operations. The former
uses OpenCL atomic operations to ensure accurate reductions, resulting
in slower performance. The latter avoids OpenCL atomic operations for
a faster performance, resulting in accuracy losses. Both alternatives are
compared in terms of performance or accuracy of results with real datasets.

We evaluate three heterogeneous schedulers (Static, Dynamic and LogFit)
from the state-of-the-art on our heterogeneous implementation. Each one
requires a different input from the user to control the work offloaded to
the GPU. Static needs the percentage of work and Dynamic the size of
the chunk of iterations. In contrast, LogFit automatically calculates the
working granularity (and offload ratio) required to fully exploit the available
devices in the system.



4
Time series on
Heterogeneous CPU +
FPGA processors

Time series analysis is becoming a major tool on many different domains,
such as cloud computing monitoring [48], climate forecasting [52] or earthquake
detection [58], among others. A very valuable outcome of these kind of analysis
is the discovery of motifs (similarities) or discords (anomalies). Recently, the
matrix profile computation has been proposed to accurately and efficiently find
motifs and discords [66]. This algorithm consists in cross comparing all subse-
quences of the time series and recording a score in a resulting time series named
“matrix profile”. A simple inspection of the maximum and minimum values of
the matrix profile is enough to identify the discords and motifs, respectively. To
compute the matrix profile, different classes have been incrementally proposed:
STAMP [66], STOMP [20], SCRIMP [21], and the latest and most efficient one
SCAMP [67]. SCRIMP has been implemented for different parallel architectures:
(1) distributed-memory computers [158]; (2) Intel Xeon Phi KNL processors that
integrate 3D-stacked high-bandwidth memory (HBM) [159, 160]; or (3) Hetero-
geneous CPU + GPU architectures as one of the contributions of this work in the
previous chapter 3. However, the current state-of-the-art algorithm to efficiently
compute the matrix profile is SCAMP, which has been only implemented on a
Multi-GPU Cluster [67].

In this chapter, we propose an efficient implementation of SCAMP on a het-
erogeneous platform featuring a multi-core CPU and a High Performance FPGA
with integrated High Bandwidth Memory, HBM. This implementation poses some
interesting challenges apart from tuning the Matrix profile algorithm to efficiently

69
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run on the FPGA. For instance, several Matrix Profile kernels can be deployed on
the FPGA as replicated IPs (FPGA compute units). In order to feed the CPU
cores and the FPGA IPs with the corresponding chunks of parallel iterations
that guarantee optimal throughput while ensuring load balance, a hierarchical
scheduler is proposed. It first partitions the work between the CPU cores and
FPGA, and then it proceeds to partition the FPGA work among the different
IPs. The system-level (inter-device) scheduler, called Fastfit, has been devised to
quickly identify the granularity of the work that has to be offloaded to the FPGA
in order to achieve both high FPGA utilization and CPU+FPGA load balance.
The device-level (intra-device) scheduler is aware of the geometry of the Matrix
Profile algorithm (a triangular matrix walk) to also distribute the work evenly
among the FPGA IPs. Since the testbed FPGA features 32 HBM banks, we
also contribute with a methodology to set the minimum number of active banks
that ensure the maximum aggregated memory bandwidth while reducing power
consumption. This methodology is based on a model of the HBM bandwidth
usage and sharing of banks among IPs. We experimentally validate our scheduler
in terms of performance and energy consumption and compare it with previous
related and state-of-the-art heterogeneous schedulers.

The rest of the chapter is organized as follows. Section 4.1 describes the
Matrix Profile algorithm and the optimizations that we propose for our het-
erogeneous CPU+FPGA platform. Next two sections describe the Fastfit het-
erogeneous scheduler and HBM analytical model. The experimental results are
presented in Section 4.4. The chapter wraps up with conclusions (Section 4.5).

4.1. FPGA-oriented Matrix Profile optimizations

The introduction of time series notation, the matrix profile and distance ma-
trix was detailed in Section 3.1. This section tackles the optimizations SCAMP
makes over SCRIMP to improve performance and the FPGA-oriented optimiza-
tions developed. One of the first optimizations is the calculation of the z-
normalized Euclidean distance computation from Equation 3.1 using Pearson
correlation.

Following the notation of Section 3.1, the z-normalized Euclidean distance,
di,j , between subsequences Ti,m and Tj,m can be efficiently computed using the
following equations:
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df1 = 0; dfi =
ti+m−1 − ti−1

2
(4.1)

dg1 = 0; dgi = (ti+m−1 − µi) + (ti−1 − µi−1) (4.2)

Cov1,j =

m−1∑
k=0

(t1+k − µ1)(tj+k − µj) (4.3)

Cov i,j = Cov i−1,j−1 + dfi · dgj + dfj · dgi (4.4)

normi =
1

||Ti,m − µi||
(4.5)

Pi,j = Cov i,j · normi · normj (4.6)

di,j =
√
2 ·m · (1− Pi,j) (4.7)

where µi is the mean of Ti,m. Basically, the distance between subsequences i
and j is computed in Equation 4.7 using the Pearson correlation. In turn, Pear-
son is obtained in Equation 4.6 from the covariance of the pair of subsequences
(Equation 4.4) and the norms of both subsequences (Equation 4.5). Equation 4.4
computes the non-scaled covariance for the range of indexes 2 ≤ i ≤ n, i < j ≤ n
based on the initialization performed in Equation 4.3. Note that indexes i and j
start at 1, as done in related works [66, 67] for the sake of simplifying notation.

Algorithm 2 shows the Matrix Profile sequential implementation of the ma-
trix profile computation using Pearson correlation. In lines 1-3 we initialize n
(length of T ), the matrix profile, MP , the matrix profile index, I and the set
of Diagonals that must be traversed. In line 4, we pre-compute dfi, dgi,normi

and Cov1,j , for Exclusion Zone, EZ < i < n, as described in the appendix,
which are stored in their corresponding vectors to avoid repeating unnecessary
computations. The outer loop (line 5) traverses the diagonals whereas the inner
loop (line 6) processes each element of the diagonal in O(1). The values Cov i,j ,
Pi,j and di,j are not stored, but computed as C, P and d and later discarded
after they are used to update MP and I in lines 12-13. These two checks of
lines 12-13 are needed because although we traverse only the upper-triangular
submatrix (because di,j == dj,i), MP i = min(Di) and Ii can be different to
MP j = min(Dj) and Ij respectively.

For the FPGA and heterogeneous implementation, some relevant optimiza-
tions were applied to this algorithm:

Instead of comparing with di,j looking for the min(Di), we can just look
for the largest Pi,j . That way we save some floating point operations and
a square root. Now, the MP vector temporary stores Pearson correlations
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Algorithm 2: The Matrix Profile algorithm using Pearson Correlation
Input: A time series T, m and EZ
Output: Matrix Profile MP, Matrix Profile Index I

1 n← Length(T )

2 MP ←∞, I ← zeros
3 Diagonals← (EZ + 1 : n−m+ 1)

4 dfi, dgi,normi,Cov1,j ← preCompute(T,m,EZ)

5 for k in Diagonals do
6 for i← 1 to length(k) do
7 j ← i+ k − 1

8 if i == 1 then C ← Cov1,k
9 else C ← C + dfi · dgj + dfj · dgi

10 P ← C · normi · normj

11 d←
√
2 ·m · (1− P )

12 if d < MP i then MP i ← d, Ii ← j

13 if d < MP j then MP j ← d, Ij ← i

14 return MP, I

and at the end of computation motifs can be identified by the largest values,
and discords by the smallest ones. If we really need the distance values, a
quick traversal of MP applying Equation 4.7 produces the Matrix Profile
as we have defined in the previous section.

The FPGA architecture excels at regular computations with the simplest
control flow. We can remove the conditional expression (line 8 in Algo-
rithm 2) using loop peeling, this is, unwinding the first iteration from the
loop. The host (CPU) can take care of this first iteration and correspond-
ingly update MP and I. This first iteration consumes less than 0.001% of
the total execution time in our experiments. As a result, we save FPGA
resources which translates into more Matrix Profile kernels (IPs) fitting into
the FPGA fabric.

Our heterogeneous implementation of Matrix Profile for CPU+FPGA plat-
forms splits the Diagonals parallel iteration space in chunks of diagonals.
Each thread (one per CPU core) and each FPGA IP (or FPGA kernel) can
process different chunks in parallel. Each non-overlapping chunk of diago-
nals is identified by the range [begin, end). Each CPU thread has a private
copy of MP and I using TBB’s combinable class that provides thread-local
storage and a user-friendly reduction method. Each FPGA IP also has a
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private copy of MP and I, now using the High Bandwidth Memory banks
available in our FPGA device. The required reduction phase that results in
the final MP and I, consumes less than 0.09% of the total execution time,
according to our experiments. The implementation details of the reduction
operation are explained in Chapter 3, although in that Chapter we targeted
a CPU+GPU platform and here we can have up to 40 FPGA IPs instead
of a single GPU.

Algorithm 3 shows the pseudocode of the host code, that basically takes
care of the initialization1 (lines 1-4 in Algorithm 2) and then it precomputes
the first iteration of the i-loop for all the diagonals. These computations are
run sequentially but in our experiments the worst case consumes only 0.13%
of the total execution time. The other 99.87% of the time is consumed in the
heterogeneous_parallel_for call provided by our HBB library (Heteroge-
neous Building Blocks) [146] that we describe in section 4.2.

Algorithm 3: Matrix Profile Host
1 n← Length(T )

2 MP ← −∞, I ← zeros
3 Diagonals← (EZ + 1 : n−m+ 1)

4 dfi, dgi,normi,Cov1,j ← preCompute(T,m,EZ)

5 for k in Diagonals do
6 P ← Cov1,k · norm1 · normk

7 if P > MP1 then MP1 ← P, I1 ← k

8 if P > MPk then MPk ← P, Ik ← 1

9 heterogenous_parallel_for(Diagonals, Body)
10 return MP, I

As we describe later, this heterogeneous_parallel_for function re-
quires a Body object that, among other things, encapsulates how to process a
chunk of iterations (diagonals in this case) on the CPU and on the accelerator.
Algorithm 4 shows the FPGA kernel implementation that takes cares of a chunk
of diagonals in the range [begin, end). Each FPGA kernel receives the initialized
variables and writes in private MP and I arrays executing the i-loop starting at
iteration i = 2. Note that we now compute and store the Pearson correlation
instead of the distance.

1Note that in contrast to Algorithm 2, now MP is initialized with −∞ because it now stores
Pearson correlations instead of distances.
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Algorithm 4: Matrix Profile FPGA Kernel
Input: MP, I, Cov, df, dg, norm, begin, end
Output: MP and I

1 for k ← begin to end− 1 do
2 C ← Cov1,k
3 for i← 2 to length(k) do
4 j ← i+ k − 1

5 C ← C + dfi · dgj + dfj · dgi
6 P ← C · normi · normj

7 if P > MP i then MP i ← P, Ii ← j

8 if P > MP j then MP j ← P, Ij ← i

9 return MP, I

The FPGA kernel is implemented in OpenCL and compiled into an FPGA bit-
stream using the Intel aoc compiler. As recommended in the FPGA optimization
guide [161], we follow a single-task approach (also known as single work-item),
in which the OpenCL kernel resembles a sequential C implementation. For these
type of kernels the OpenCL NDRange2 is set to (1, 1, 1), so a single thread is
invoked on each FPGA IP. This results in loop pipelining and overlapping of data
transfers and computations between loop iterations.

However, as we can see in Figure 4.1, the inner i-loop that traverses a diagonal
exhibits a loop carried dependence because iterations i and i′ can RMW (read-
modify-write) the same positions in MP and I. This dependence prevents the
pipeline implementation of the loop and results in a highly inefficient FPGA
execution.

However, a closer look at the loop body reveals that such a potential RMW
conflict can be avoided in our implementation. Figure 4.1 shows a simplification
of the pipeline execution of the i-loop, where IL is the Issue Latency (a.k.a.
Initiation Interval) or number of clock cycles between consecutive loop iterations.
We also show CL, Completion Latency that we use in section 4.2.2 to model the
kernel throughput. The figure also shows the potentially conflicting statements
D and E accessing the same MP position. Since for a given diagonal k, index j
walks through j = i + k − 1, two iterations i and i′ = i + k − 1 can RMW the
same position of MP : MPj in E and MPi′ in D. In the figure we simplify the
situation assuming that IL = 1 and statements D and E require a clock cycle,
but in general IL can be higher and the statements may require c cycles.

2In the OpenCL standard, the NDRange represents the 3D space of parallel iterations.
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Figure 4.1: Potential conflict due to loop-carried dependence in the inner loop
and pipeline execution in the FPGA.

Therefore, if we can assure that statement E of iteration i finishes before state-
ment D of i′, then the loop can be safely pipelined. Without loss of generality, if
statement E of iteration i accessMPj in the interval of cycles [t, t+c), statement
D of iteration i′ access the same position in the interval [t+ IL · (k − 1)− c, t+
IL · (k− 1)), but these two intervals do not overlap if t+ c < t+ IL · (k− 1)− c.
In other words, if c < (IL · (k − 1))/2.

In our algorithm, the first diagonal (the smallest k) is k = EZ + 1, and
EZ is 256 as recommended in the literature [21, 67]. On the other hand, the
aoc compiler reports IL ≈ 6, so the number of cycles, c, required to compute
statements D and E should be smaller than 768 cycles. This is actually the case
considering that each of these statements only includes a read operation from
HBM, a comparison and two writes in HBM memory. If a smaller EZ is advised,
we can always offload to the FPGA only the diagonals that are far enough from
the main diagonal.

Therefore, as we know that there are not loop carried dependencies in the
i-loop, we force the pipelining implementation with the Pragma("ivdep") di-
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rective just before the loop. Additionally, the FPGA kernels have been compiled
with -fp-relaxed -fpc, that according to the FPGA OpenCL programming
guide [162], result in floating-point optimizations including balanced tree hard-
ware and elimination of intermediary rounding operations.

4.1.1. Initial performance assessment

As detailed at the beginning of Chapter 4, SCAMP is the state-of-the-art
for Matrix Profile computation, ahead of SCRIMP, the previous one. However,
SCAMP has been only implemented in CPU and GPU, with no previous results
on FPGA architectures. Performance on an FPGA is highly dependent of the
kernel operations implemented. Hence, it is necessary to verify that SCAMP
is the most suitable implementation for matrix profile computation on FPGA
as well. Both alternatives, SCAMP and SCRIMP, have been implemented and
executed on the FPGA comparing their initial performances.
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Figure 4.2: Exploring the performance in SCRIMP and SCAMP only-FPGA
executions, for different number of kernel replications, NIP, and a time-series
with 217 elements.
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Figure 4.2 shows the performance results of SCRIMP and SCAMP executions
for different number of kernel replications (IPs), one of the FPGA optimizations
described in Section 4.1. The performance is measured using the Throughput, the
number of elements computed per millisecond. The result shows that SCAMP im-
proves SCRIMP in a 15.62% comparing their maximum performances. Published
results of CPU and GPU implementations of SCAMP and SCRIMP [21, 22] show
that SCAMP is faster because the first one uses less operations than SCRIMP
in order to compute the subsequences similarity. This is, SCAMP is more effi-
cient algorithmically: the Pearson correlation requires only 2 FP operations (2
multiplications) while the euclidean distance requires 9 operations (6 multiplica-
tions, 1 division and 2 subtractions). Although counter-intuitive, this difference
in the number of FP operations is not relevant in our FPGA implementations in
which an Initiation Interval (or IL in Figure 4.1) of 1 is achieved both for the
SCAMP and SCRIMP implementations. In other words, SCRIMP has a larger
latency per iteration, but it exhibits the same throughput than SCAMP, which
render both implementation equivalents for a large number of iterations. Hence,
as expected, for the same number of IPs both implementations have the same
performance, as can be seen in Figure 4.2.

However, the euclidean distance requires more FP operations which translates
in more hardware in the FPGA. That way, our FPGA can accommodate less
replicas of the SCRIMP IP (up to 38) than of the simpler SCAMP IP (up to 42).
Besides, since the number of replicas have an impact on the FPGA frequency (due
to placement and routing issues), SCRIMP maximum throughput is achieved
for 34 IPs, whereas SCAMP keeps improving performance until 42 IPs, as can
be seen in Figure 4.2. These difference in the kernel replication is what gives
SCAMP up to 15.62% of improvement in performance compare to SCRIMP in
our experiments.

4.2. Fastfit: Hierarchical Heterogeneous Scheduler

4.2.1. Scheduling engine

Our scheduler is based on the Heterogeneous Building Blocks (HBB) li-
brary [146]. It is a C++ template library based on TBB, which takes advantage of
heterogeneous processors and facilitates their usage and configuration. HBB aims
to make easier the programming for heterogeneous processors by automatically
partitioning and scheduling the workload among the CPU cores and OpenCL
capable accelerators. HBB relies on OpenCL as the accelerator back-end for the
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sake of availability, portability, and programmability features, but the scheduling
framework and policies of HBB could be easily adapted to other programming
models or high level synthesis tools. Our library (HBB) offers an abstraction
layer that hides the initialization and management details of TBB and OpenCL
constructs (contexts, command queues, device_ids, etc), thus the user can fo-
cus on his own application logic instead of dealing with thread management and
synchronizations. The current version offers a heterogeneous_parallel_-
for() function template to run on heterogeneous CPU-GPU and CPU-FPGA
systems.

Iteration Space
Token FPGA

Chunk #0
Token Core0

Chunk #1
Token Core1

Chunk #2
remaining (r)…

IP0
#0.0

IP1
#0.1

IP2
#0.2

IPn-1
#0.n-1

Token FPGA
Chunk #0

FPGA CPU

Core0
Chunk #1

Core1
Chunk #2

Core-m
Chunk …

…

…

system-level scheduler

device-level scheduler

Figure 4.3: System and device level schedulers used to partition the iteration
space.

Figure 4.3 illustrates how the proposed hierarchical heterogeneous scheduler
works. The system-level scheduler offloads chunks of iterations to the FPGA as
soon as the FPGA becomes idle, and also assigns CPU chunks to each core in
the CPU. The device-level scheduler takes care of partitioning each FPGA chunk
into sub-chunks to appropriately feed each of the FPGA IPs. The iteration space
includes: i) chunks of iterations that have already been assigned to the FPGA
(blue); ii) chunks of iterations already assigned to the CPUs (orange); and iii)
remaining iterations (white).

The system-level scheduler is designed as a two-stage pipeline, Stage1 and
Stage2, implemented on top of TBB. Thanks to the pipeline tokens we can easily
control when the FPGA or the CPU cores are idle or busy. We initialize the
pipeline object with one FPGA token and as many CPU tokens as the number of
cores available. The tokens are circulating through the pipeline, being recycled at
Stage1 entry once they exit Stage2. Depending on the arriving token, in Stage1
the size of a CPU or FPGA chunk of iterations is computed (as we explain in
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Section 4.2.2), and the chunk is extracted from the set of remaining iterations, r.
In the parallel Stage2, either the CPU core or the FPGA processes the previously
selected chunk.

We also initialize the TBB scheduler with as many worker threads as tokens
(# of CPU cores plus 1 –the FPGA–). That way, if we have one FPGA and two
CPU cores, three worker threads are able to process three chunks of iterations in
parallel. However, the FPGA can have several IPs (FPGA compute units) and
therefore processing a chunk on the FPGA involves our device-level scheduler that
evenly distributes the FPGA chunk among the available IPs (as described in Sec-
tion 4.2.3). Note that the worker thread that processes the FPGA chunk/token,
is the one: i) running the device-level partitioning; ii) offloading each sub-chunk
to each IP; and iii) blocking until all IPs have finished processing the sub-chunk.
The over-subscription of the CPU cores is negligible because, although the TBB
scheduler has one extra thread (one more than the number of cores), this thread
is usually blocked while the FPGA is working. An alternative that we discarded
consists in having one worker thread per FPGA IP and CPU core, but this results
in too much over-subscription since in our platform we can have 40 IPs and 8
CPU cores, which translates into 48 worker threads. Besides, the FPGA OpenCL
driver does not support concurrent offload requests from more than one worker
thread.

One of the major advantages of this hierarchical scheduler comes from the fact
that the implementation is optimized at two levels to fully exploit the parallel
capabilities of the CPU and the FPGA: (1) At a system-level, the parallel_-
for() implementation [163], each compute unit (FPGA or a CPU core) is rep-
resented as a token that traverses the pipeline at its own pace. Thus, we avoid
unnecessary synchronization points between compute units with different com-
puting performance. (2) At a device-level, the performance of the FPGA is
exploited by parallelizing the work assigned to the FPGA and balancing it for its
different IPs cores.

In contrast, other state-of-the-art approaches [164, 165] suffer from load unbal-
ance due to the usage of fork-join patterns with implicit synchronization points
between the CPU and the accelerator.

4.2.2. Fastfit system-level scheduling algorithm

The system-level scheduler works at runtime and is designed as a two-phase
strategy consisting of: the Training Phase, which finds the near-optimal chunk-
sizes for the FPGA and the CPU that optimize the throughput in both devices
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while ensuring load balance; and the Exploitation Phase, which keeps this peak
performance along the iteration space. Algorithm 5 depicts both phases.

A key component of the Training Phase is an analytical model that estimates
the FPGA throughput, i.e., elements per ms computed when executing a chunk
of parallel iterations. Our model assumes that an FPGA IP is internally imple-
mented as a pipeline from which it estimates the near-optimal FPGA chunksize
that maximizes the FPGA throughput. This model results in a good balance
between accuracy and simplicity. The pipeline is characterized by two latencies:
issue and completion latencies. The Issue Latency, IL, is the number of cycles
required between issuing two consecutive independent iterations, which is also
know as the Initiation Interval. On the other hand, the Completion Latency,
CL, is the number of cycles until the result of a parallel iteration is available.
Both latencies are in most cases sufficient to estimate the execution time of an
FPGA kernel: the issue latency represents the time between dispatching two con-
secutive iterations of the kernel loop, while the completion latency depends on
the depth of the pipeline and is the time required to fill it up.

Algorithm 5: Fastfit System-level scheduler

// Training Phase

Input: Frecuency (F ), δ, ρ
1 tCm

(1), tFm
(1)← Equation 4.9

2 tFm
(δ)← Equation 4.10

3 CF ← Equation 4.16 ← Equation 4.11 & Equation 4.12
4 CC ← Equation 4.19 ← Equation 4.17 & Equation 4.18
5 return CF,CC

// Exploitation Phase

Input: CF , r, ϕ
6 CF = min(CF, r)

7 CC = CF/ϕ

8 return CF,CC

As we show in Algorithm 5, the Training Phase only requires to sample the
CPU and FPGA throughput running one iteration (a diagonal in our application)
on the CPU, and two chunks of iterations on the FPGA and then recording the
corresponding execution times. In line 1, the first chunk for the FPGA and
the CPU is made of 1 iteration each one. In line 2, the second chunk, only
for the FPGA, contains a representative number of parallel iterations δ (in our
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study we find that 5% of the iteration space is enough to characterize the FPGA
throughput for our application).

Let’s suppose that we know the clock frequency of the FPGA (denoted by F
and provided by the aocl compiler in a report file). When we offload a chunk of
parallel iterations of size CF , to the FPGA, then our model estimates the time
to complete them as,

tFe
(CF ) = (CF · IL+DL) · 1

F
(4.8)

where DL represents the number of cycles required to traverse the pipeline after
issuing a parallel iteration. The Completion Latency can be defined as CL =

IL+DL. By applying Equation 4.8 to the two FPGA chunks of 1 and δ iterations,
respectively, we obtain a system of two equations and two unknowns:

tFm
(1) = tFe

(1) = (IL+DL) · 1
F

(4.9)

tFm
(δ) = tFe

(δ) = (δ · IL+DL) · 1
F

(4.10)

As we know F , δ, tFm
(1) and tFm

(δ) (lines 1 and 2 of Algorithm 5), we can
solve IL and DL as,

IL =
tFm

(δ)− tFm
(1)

δ − 1
· F (4.11)

DL = tFm
(1) · F − IL (4.12)

From Equation 4.8 and the previous expressions, we model the FPGA esti-
mated throughput, λFe , for a chunk CF of parallel iterations as,

λFe
(CF ) =

F

IL+DL/CF
(4.13)

Peak performance is attained with full pipelines, in which the completion la-
tency is hidden. Latency hiding is achieved by executing a large enough chunk of
independent iterations. Ideally, when the DL is completely hidden (DL/CF →
0), then the issue latency determines the run time and we attain peak perfor-
mance. From Equation 4.13 we compute the peak performance or ideal throughput,
that we denote λFpeak

as,
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λFpeak
=

F

IL
(4.14)

The goal of the Training Phase in our scheduler is to find a sufficiently large
chunk of parallel iterations that guarantees that the estimated FPGA throughput
is above a certain threshold of the peak performance, ρ · λFpeak

. Typically we
seek ρ values in the range [0.9, 0.99], meaning that we aim to look for chunks
that achieve throughputs that are within 90% and 99% of the peak performance.
From Eqs. 4.13 and 4.14, and for a specified ρ, we know,

F

IL+DL/CFρ
≥ ρ · F

IL
(4.15)

In other words, the near-optimal chunk size of parallel iterations that guar-
antee a throughput above a ρ threshold of the peak, CFρ, is computed as,

CFρ ≥
DL

IL
· ρ

1− ρ (4.16)

This steps can be summarized in Line 3 of Algorithm 5 where, using the
execution times computed in Lines 1-2, Eqs. 4.11 and 4.12 can be solved. These
solutions allow to solve Equation 4.16 to get the near-optimal FPGA chunk size,
CFρ.

Likewise, we can discover the optimal chunk for each CPU core from the
FPGA chunk computed above, as can be seen in Line 4 of Algorithm 5. As input
we take the execution time of one parallel iteration in the CPU tCm

(1) -already
computed- and the number of elements in the corresponding parallel iteration,
NC . This is, in fact, the number of elements in the corresponding single diagonal
of the matrix. Also, we calculate NF that represents the aggregated number
of elements in all the diagonals of chunk CFρ. From them, we compute the
throughput of the CPU and FPGA for both chunks as can be seen in Eqs. 4.17
and 4.18.

λC =
NC

tCm
(1)

(4.17)

λF =
NF

(CFρ · IL+DL)/F
(4.18)

With this, the relative speed of the FPGA over the CPU is ϕ = λF

λC
. It is

advisable that the FPGA and CPU cores take the same time to compute their
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corresponding chunks, which results in the recommended CPU chunk size, CC,
which can be approximately computed as:

CC =
CFρ
ϕ

(4.19)

After the first computation of chunk sizes CF and CC, the scheduler transitions
to the Exploitation Phase (lines 6-8 in Algorithm 5), where we keep processing
chunks of iterations on the CPU cores and FPGA and measuring the actual re-
sulting throughput to update the relative speed among devices, ϕ. If the number
of remaining iterations, r, is large enough, CF is kept as computed in the Ex-
ploitation Phase but when there are not enough iterations to feed the FPGA with
CF iterations, then the remaining, r, are assigned as an FPGA chunk instead
(see line 6). CC is recomputed each time to adapt to changes in ϕ (see line 7).

FPGA is mostly used for regular codes where the workload remains constant
throughout the iteration space and, therefore, the throughput. Due to this regu-
larity, in most cases it is unnecessary to spend time controlling and recomputing
the optimal chunksize from time to time to ensure the throughput do not de-
crease, as others schedulers designed for irregular codes does [146].

This is one of the strengths of Fastfit. Thanks to a very short Training Phase
(only two chunk executions for FPGA and one for CPU) Fastfit can estimate
the chunksize for an optimal throughput for FPGA and CPU and spend most
of the execution time in the Exploitation Phase. In comparison with Logfit,
Fastfit also avoids the overhead of recomputing the optimal accelerator chunksize
and achieves a nearly ideal performance as we will analyze in detail later on in
Section 5.4.

4.2.2.1. Fine tuning chunk size for Matrix Profile

In the previous section we have estimated a near-optimal FPGA chunk size,
CFρ, that delivers an FPGA throughput close to the theoretical maximum. For
any problem in which the geometry of the chunk is not an issue or the user
does not have additional information about that, the previously computed chunk
size can be a reasonable solution for the remainder of the application execution.
However, we are aware that our problem exhibits a triangular geometry as can
be seen in Figure 4.4, and our goal is, once the optimal chunk size has been found
in the Training Phase, to guarantee that each new chunk assigned to the FPGA
always computes the same workload.
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Let’s suppose that the first FPGA chunk size found in the Training Phase,
CFρ, traverses diagonals in the range [x0, x1), accounting all of them to NF
elements. In the example of Figure 4.4, the next chunk of iterations, CC, is
computed on the CPU. Let’s assume we transition to the Exploitation Phase and
that a new FPGA chunk size, CF , has to be computed. Let’s note that, in order
to keep the desired FPGA throughput, we also have to keep almost constant the
workload of all the FPGA chunks. So now, the problem is computing the next
CF given that the first diagonal of the new chunk is xb, so that the number of
total elements in this chunk is also NF .

Distance 
matrix, D

x0

Exclusion Zone

x1 xb xe mpl

NF

NC

NF

Nr ye

yb

y1

y0

CF! CC CF r

(FPGA)

(CPU)

(FPGA)

Figure 4.4: Correction in the chunk size due to the triangular geometry of the
problem.

The number of iterations/diagonals in CF is CF = xe − xb, for the new
range [xb, xe). Note that the index of the last diagonal is mpl = n−m+ 1 (see
Section 4.1). Figure 4.4 shows that xi = mpl − yi + 1 where yi is the number of
elements in diagonal xi. Since consecutive diagonals only differ in one element, in
the chunk CFρ the aggregation of the first and last diagonal is sum = y0+y1+1.
This sum is equal to the aggregation of the adjacent interior diagonals, it is
sum = y0 − 1 + y1 + 2, and so on. This results in,
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NF =
CFρ
2
· (y0 + y1 + 1) (4.20)

Now we want to compute CF and xe, knowing NF , xb and that CF = xe −
xb = yb − ye, using the same equation for the CF chunk:

NF =
CF

2
· (yb + ye + 1) =

CF

2
· (2 · yb − CF + 1) (4.21)

that is a quadratic equation from which we can easily solve CF and later xe.
That way, during the Exploitation Phase, we ensure that the number of elements
computed on each FPGA chunk remain almost equal and that the FPGA yields
an almost constant throughput as we validate in Section 4.4.

In our experiments, when activating this fine tuning of the chunk size in
our scheduler we observe a 1% improvement in the performance w.r.t. the not
geometrically aware scheduler (the default one).

4.2.3. Fastfit device-level scheduling algorithm

As introduced in Section 4.1, the FPGA can actually include NIP compute
units (or IPs) that work in parallel. The goal of the device-level scheduler is to
partition each FPGA chunk of CF iterations among the NIP IPs.

A naive distribution that disregard the geometry of our problem, would be the
Block partition that just distributes the matrix diagonals in equal sub-chunks:
chunkIP = CF

NIP
. This is the default policy in our scheduler. However, as we

validate in Section 4.4, a better approach to perform the partition, which we call
Balanced, do consider the number of elements in each diagonal.

Starting from Equation 4.21, the NF elements of the FPGA chunk CF have
to be partitioned into NIP sub-chunks, CF0, CF1, . . . CFNIP−1, each one with
approximately NF /NIP elements. Therefore we can compute each sub-chunk
iteratively by following this expression,

NF
NIP

=
CFi
2
· (2 · ybi − CFi + 1) ∀i ∈ {0 . . . NIP − 1} (4.22)

from which each CFi can be computed starting with i = 0 and yb0 = yb, and
updating at each step ybi = ybi−1

+ CFi. With this Balanced partition strategy
each IP gets approximately the same number of elements (±1 diagonal). In
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our experiments this translates into a negligible unbalance among IPs (less than
10−5%).

4.3. HBM exploitation

In case there are available resources on the FPGA fabric to instantiate several
replicated FPGA IPs, we must tackle the issue of carefully placing and distribut-
ing among the HBM banks the data that each one of these IPs accesses, in order
to efficiently exploit the memory bandwidth offered by the banks. Previous ver-
sions of the FPGA SDK for OpenCL compiler offered an optimization based on
the generation of multiple compute units for enabling kernel replication through
pragma and attribute __attribute__((num_compute_units()). To em-
ulate this feature, we replicate the kernel in the OpenCL source code NIP times
using C macros. This way the compiler implements each replicated kernel or
FPGA IP as an unique pipeline.

One difference of the kernel replication with respect to the compute units
compiler generation is that there is not a hardware scheduler unit built in the
FPGA. That is the reason why we implement the device-level scheduler (see Sec-
tion 4.2.3) responsible for the partition of the FPGA chunk and the dispatch of
the corresponding sub-chunks among the different IPs. Another key difference
of our kernel replication strategy is that it allows us to control the HBM bank
where each IP will access local data. Trivially, one IP can access its local data
from one HBM bank. Thus, by increasing the number of replicated IPs, each one
accessing data from a different HMB bank, we can achieve higher throughput
when exploiting the aggregated memory bandwidth of the concurrent memory
banks. However, increasing the number of active memory banks rises power con-
sumption and requires additional FPGA resources to orchestrate all the bank’s
memory accesses. In case that one IP does not exhaust the available bank band-
width, then two (or more) IPs could have allocated their data on one HBM bank.
This bank sharing solution would optimize the memory bandwidth usage of each
HBM bank, reduce the number of active HBMs, and decrease power consump-
tion and FPGA resources, while obtaining the maximum aggregated bandwidth
achievable for a given number of replicated IPs.

In this section we present a methodology that allows us to: i) select the
optimal number of IPs that can access each bank in order to ensure optimal
memory bandwidth usage of a HBM bank; and also ii) set the minimum number
of active banks that ensure the maximum aggregated memory bandwidth for
a given number of IPs. This methodology is based on a model of the HBM
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bandwidth usage that we explain next. Figure 4.5 illustrates the accuracy of our
model and its applicability.

4.3.1. Modeling bandwidth usage for HBM
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Figure 4.5: Model estimation and performance evaluation for 24 IPs and different
number of HBMs: (a) Comparing ideal and measured aggregated memory band-
width vs application throughput -the higher the better-; (b) Comparing Power
dissipation vs energy consumption -the lower the better-.
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Let’s start by modeling the memory bandwidth usage when one IP accesses
data from one HBM bank and let’s assume that the number of replicated IPs is
given as NIP. The aocl compiler reports the frequency, FNIP(j = 1) at which this
implementation is synthesized, where j represents the number of IPs per memory
bank (1 in this case). Being W the width (Bytes) of one HBM bank, then we
can estimate the ideal bandwidth per IP and per bank as,

BWideal(j = 1) = FNIP(j = 1) ·W (4.23)

Using the FPGA Dynamic Profiler for OpenCL tool [161] we obtain BWm(j =

1), the measured memory bandwidth per IP and per HBM bank in our imple-
mentation. Now, we can define the memory bandwidth usage per IP and per
HBM module, σ, as

σ =
BWm(j = 1)

BWideal(j = 1)
(4.24)

Through exhaustive experimentation with different implementations in which
we keep NIP fixed but increase the number of IPs that can access one HBM mod-
ule (j > 1) while decreasing the number of active HMB modules, i (i = NIP/j),
we find that factor σ represents a good estimation of the memory bus occupancy
while the bus is not saturated, because the measured memory bandwidth per
HBM bank increases linearly with the number of IPs per bank. Thus, we model
or estimate the memory bandwidth per HBM as,

BW (j ≥ 1) = j ·BWm(j = 1)

= j · σ ·BWideal(j = 1)
(4.25)

In case of bus saturation, there is not headroom for one additional IP accessing
data from a HBM module, in other words, the maximum achievable bandwidth
per bank is,

BWmax = (1− σ) ·BWideal(j = 1) (4.26)

In summary, from Eqs. 4.25 and 4.26 we compute the aggregated memory
bandwidth for i HMB modules as,

ABW (i, j ≥ 1) = j · σ ·BWideal(j = 1) · i
≤ (1− σ) ·BWideal(j = 1) · i

(4.27)



4.3. HBM exploitation 89

Figure 4.5 represents a case of study when NIP = 24, where the IPs are
distributed among different number of memory banks (i): from 24 HBM banks
(i.e. j = 1) to 2 HBM banks (j = 12). The experimental setup is detailed in
Section 4.4.1.

In Figure 4.5(a), lines depict the aggregated memory bandwidth (MB/s) for
different number of HBM modules. The dashed line is the aggregated memory
bandwidth from Equation 4.27, while the solid line is the actual aggregated mem-
ory bandwidth measured for each configuration. The values for i = 24 represent
in fact BWideal(j = 1) (Equation 4.23) and the measured BWmeas(j = 1), which
our model uses to compute σ (Equation 4.24). As we see, the model predicts
accurately the behavior of the HBM system, being the deviation below 11%.
The figure also shows the application throughput (elements/ms), and that the
aggregated memory bandwidth is a good proxy of the performance behavior.

Figure 4.5(b) depicts measured power (Watts) -lines- and energy (Joules)
-bars-. The main power components (due to the IPs and the UIB3 bus con-
sumption) demonstrate that decreasing the number of HBM banks reduce power
consumption. Thus, it is advisable to deploy the minimum number of memory
banks that guarantees optimal memory bandwidth usage. This is our definition
of optimal number of memory banks. As shown in Figure 4.5(a), maximum mem-
ory bandwidth is sustained from 24 to 6 banks. In fact, the energy consumption
is the minimum for the same range of memory banks. Reducing the number
of HBM modules below 6 increases the number of IPs per memory bank, which
causes the saturation of each module memory bandwidth. As a consequence, both
the aggregated memory bandwidth (thus, throughput) and energy consumption
degrade.

With this model we compute the optimal number of memory banks. From
Eqs. 4.25 and 4.26 we firstly find the optimal number of IPs per bank, jopt, that is
the maximum number of IPs that can access data from one HBM module without
saturating the bus (ensuring this way optimal memory bandwidth usage),

jopt = max(j, 1) : j ≤
⌊
1− σ
σ

⌋
(4.28)

Once we have found the optimal number of IPs per HBM bank, we calcu-
late the optimal number of memory banks that ensure the maximum aggregated
memory bandwidth as,

3Universal Interface Bus that powers the HBM DRAM.
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iopt =

⌈
NIP

iopt

⌉
(4.29)

In our case of study we find that σ = 0, 167, so jopt = 4 and iopt = 6. From
Figure 4.5(a) we corroborate this finding.

Please note that in the experimental section we have follow this methodology
for selecting the optimal number of active HBM banks and optimal number of
IPs per bank for any given number of IPs.

4.4. Experimental results

4.4.1. Experimental setup

The experimental evaluation has been conducted on a CPU+FPGA platform.

The processor architecture and software details of each platform can be found
in Tables 4.1 and 4.2, respectively.

Table 4.1: Platform details.

Microarchitecture CPU Intel Core

Processor i7-7820X

Number of cores 8

Clock Speed 3.6 GHz

Max Turbo Frequency 4.50 GHz

Main memory 128GB DDR4

Cache L3 11 MB

Litography 14 nm

Max TDP 140 W

Microarchitecture FPGA Intel Stratix 10 MX

Main memory 16GB HBM

HBM Memory Banks 32 banks (512MB per bank)

All results (performance, energy, and profiling metrics) report the median
value of 5 runs. The performance metric is throughput (elements per millisecond)
and energy is reported in Joules. The normalized standard deviation for through-
put (energy) measurements is always below 3% (4%). Unless otherwise stated,
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Table 4.2: Software details (CPU & FPGA).

Operating System CentOS 7.2.1511

Intel FPGA SDK for OpenCL version 19.3

Intel OpenCL 1.0

Intel TBB and VTune 2020 Update 3

Processor Counter Monitor 201902

GCC Compiler 4.8.5.

our heterogeneous runs simultaneously exploit 8 CPU cores and, as motivated
in section 4.4.2.1, 40 IP/FPGA compute units. Energy results were obtained
using the Processor Counter Monitor (PCM) library for the CPU part, and a the
self-developed Stratix-Monitor library [166] for the FPGA device.

We consider 4 time series of different sizes: 217 (131072), 218 (262144), 219

(524188) and 220 (1048576). These time series are random-walk time series that
are commonly used for benchmarking in time series analysis algorithms [167].

The Fastfit scheduler discussed in section 4.2.2 is invoked with ρ = 0.99 and
δ = 0.2%, and it is compared with three previous schedulers that were initially
devised for CPU+GPU platforms [146]:

Static: it splits the iteration space in two chunks at once: one for the CPU
cores and the other for the accelerator. The size of these two chunks is
user-defined and provided via the offload_ratio input argument. If
offload_ratio=0 (0%) the CPU process the whole iteration space, and
so does the FPGA if it is equal to 1 (100%). The CPU chunk is di-
vided in equally sized sub-chunks for each CPU core, i.e. chunkCore =

chunkCPU/NumCores.

Dynamic: it lazily splits the iteration space dynamically. Each time the
FPGA is idle, it takes a chunk from the iteration space. The size of
this chunk is user-provided using the chunkFPGA input argument. The
CPU cores also take chunks of the iteration space, but now chunkCore =

chunkFPGA/ϕ where ϕ is the relative speed of the FPGA w.r.t. the CPU
core (i.e. if the FPGA is 2x faster than a CPU core, ϕ = 2, so chunkCore
is half the size of chunkFPGA). A guided self-scheduling [168] is used when
there are not enough remaining iterations to enforce the previous equations.

Logfit : it also dynamically splits the iteration space, but the user does not
provide a constant chunkFPGA size. On the contrary, this chunkFPGA size
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is now an adaptive variable that is automatically computed by the scheduler
following a logarithmic fitting strategy that has been proved beneficial for
irregular codes on CPU+GPU systems [146].

4.4.2. FPGA-only evaluation

In this subsection, we evaluate the performance of our schedulers when the
FPGA is the only device computing the matrix profile. Heterogeneous executions
are considered in the next subsection.

4.4.2.1. Kernel replication exploration

One of the FPGA optimizations described in 4.1 was kernel replication [161].
This optimization results in a better utilization of the FPGA resources, leading to
performance gains if there is enough bandwidth to feed all the replicated kernels or
IPs. We explore the performance for different number of replicated IPs applying
the methodology given in section 4.3 for selecting the optimal number of active
HBM banks and optimal number of IPs per bank for each case. The results for
time series input 220 are shown in Figure 4.6. The maximum number of IPs that
fit in our FPGA is 42, but as can be seen in Figure 4.6 maximum performance
is obtained for 40 IPs. Smaller time series exhibited the same behavior. Unless
explicitly stated, from now on, we fix the number of FPGA IPs to NIP = 40.

4.4.2.2. Fixed-point arithmetic approach

During the development of our FPGA implementation we also considered the
possibility of using fixed-point arithmetic instead of floating-point, since fixed-
point could report better performance and/or energy consumption. We have
manually implemented fixed-point arithmetic using bit shifting. The float vari-
ables are converted to integers by bit shifting, then we operate on them and
convert them back to float at the end of the calculation. We tried with different
number of bits for the decimal part of the number, in order to optimize accu-
racy. Figure 4.7 shows the performance of fixed-point arithmetic compare to
floating-point arithmetic.

As the fixed-point implementation do not use the floating-point hardware
units available in the FPGA, more FPGA logic blocks are necessary to implement
the fixed-point version which results in a maximum number of IP replications of
14 IPs. As detailed in Section 4.4.2.1, the floating-point implementation can
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Figure 4.6: Exploring the number of kernel replications, NIP, for the 220 time-
series and only-FPGA execution.

accomodate up to 42 IPs. Fixed-point arithmetic improves floating-point up to
164.11% when comparing the same # of IPs, 14, but it achieves only 12.95% of
improvement when comparing their maximum performance (14 IPs in fixed-point
vs 40 IPs in floating-point). However, the problem of fixed-point arithmetic is the
accuracy loss. Even with all the combinations of bits for decimal and integer part
we tried, we could not achieve 100% of accuracy in results. This is a restriction of
our design that we can not avoid, as we can not miss any motif or discord in the
matrix profile computation. In FPGA, designing fixed-point arithmetic can be
achieved if it is manually implemented using HDL (Hardware Description Level).
However, our work focus on performance productivity from the programmer point
of view, applying only HLS (High Level Synthesis), so we have not considered a
manual implementation of fixed-point arithmetic. Hence, with this accuracy loss,
even though the is an small improvement in performance when using fixed-point,
we kept the floating-point implementation as the only one valid for our FPGA
implementation in the rest of the work.



94 Chapter 4. Time series on Heterogeneous CPU + FPGA processors

1 2 4 8 10 14 40
# Kernel replications

0.0

0.5

1.0

1.5

2.0

T
h

ro
u

gh
p

u
t

(E
le

m
en

ts
/m

s)

×106

Fixed-point

Floating-point

Figure 4.7: Exploring the performance of Fixed-point arithmetic versus Floating-
point arithmetic for a 220 time-series, only-FPGA execution and varying the
number of kernel replications, NIP.

4.4.2.3. Evaluation of partition strategies at device-level

As explained in section 4.2.3, once the system-level scheduler assigns an FPGA
chunk to the FPGA, the device-level scheduler has to partition this chunk among
the different IPs. In this section, we quantitatively validate the throughput im-
provements due to the use of our proposed Balanced partition strategy with
respect to a naive Block one that is not aware of the different diagonal lengths.

Figure 4.8 shows the impact in the throughput for the different system-level
schedulers: Dynamic, Logfit and Fastfit. Although in this experiment only the
FPGA is used (there are no CPU cores collaborating in the computation), we
assess these three system-level schedulers since they produce different FPGA
chunk sizes as well as a significant number of chunks. In the figure, we plot
the throughput of the FPGA for the Dynamic scheduler when configured with
FPGA chunk sizes from 26 to 220 (being 220 the whole iteration space in our
largest time series). Since Logfit produces variable FPGA chunk sizes during the
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Figure 4.8: Device-level scheduler exploration for different schedulers and a time
series size of 220. X-axis represents the FPGA chunk size and the Y-axis the
throughput. The higher the better.

computation, the average chunk size is shown in Figure 4.8, while for the Fastfit
scheduler we depict the FPGA chunk size found in the Training Phase. Note that
since Logfit and Fastfit schedulers compute the FPGA chunk size depending on
the FPGA throughput, using Balanced or Block partition strategy in the device-
level scheduler, may have an impact on the FPGA chunk sizes found, as well as
on performance.

Figure 4.8 evidences that the workload unbalance of the Block partition can
have a remarkable impact on the throughput, especially for large FPGA chunk
sizes, as we see in the Dynamic scheduler for chunk sizes larger than 214. On the
other hand, when using the Block strategy, Logfit and Fastfit tend to find smaller
FPGA chunk sizes than using Balanced. This is because the FPGA throughput
measured during the training (in both schedulers) is smaller due to load unbalance
among the IPs which results in sub-optimal chunk size estimation.

In the three schedulers, using the Balanced partition strategy always achieves
the best performance. In summary, Balanced results in 97.37% better throughput
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than Block for the highest chunk size in the Dynamic scheduler, and 18.66% and
16.45% improvements in throughput for Logfit and Fastfit, respectively. This
result motivates us to keep using the Balanced partition strategy in the rest of
the evaluation.

4.4.2.4. Validation of Fastfit model

In this subsection, we validate the Fastfit model described in section 4.2.2.
This model is devised to predict the FPGA throughput for any FPGA chunk
size. For it, after obtaining F , IL and DL, we use equation 4.18 to compute the
throughput for any chunk size CF . Figure 4.9 shows the estimated throughput
(Model) computed for ρ = 0.99 vs. the actual measured one (Dynamic) for
different FPGA chunk sizes and different number of replicated IPs for the 217

time series.
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Figure 4.9: Comparison of Fastfit model simulation, Dynamic and Fastfit exe-
cutions for time series size 217. X-axis represents the FPGA chunk size and the
Y-axis the throughput. The higher the better.
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In addition, in the figure we mark with a green star the throughput for the
estimated near-optimal FGPA chunk size, CFρ, obtained after the Training Phase
in a real execution of Fastfit. It is worth remarking that: i) the model is accurate,
especially for smaller number of IPs where the device-level scheduler overhead
and potential load unbalance among IPs have a less noticeable impact on the real
throughput; ii) the execution of Fastfit end up using an FPGA chunk size that
results in an almost optimal throughput. For instance, the throughput predicted
by the model for the near-optimal chunk size is between 97%-99% of the actual
measured throughput for the selected chunk size. Similar accuracy was achieved
for different input sizes; iii) the FPGA chunk sizes found leave room for CPU
collaboration and CPU+FPGA heterogeneous co-execution; and iv) all in all, our
model allows to obtain the desired throughput out of the FPGA without having
to perform the manual exploration required by Dynamic.

Although it was initially devised for CPU+GPU platforms and irregular al-
gorithms, Logfit [146] is a related scheduler that can also save the exploration
time that was needed with Dynamic. Both Logfit and Fastfit avoid the manual
exploration of a suitable chunk size using a two phases scheme: a Training phase
and a Exploitation phase. However Logfit spends more time than Fastfit in the
Training Phase and continuously recompute new FPGA chunk sizes during the
Exploitation phase, which can suppose additional overhead. In particular, the
Training phase of Logfit requires more time because it samples the throughput
obtained with monotonically increasing chunk sizes until the throughput stop
growing. Using four of the previous samples, it computes the logarithmic func-
tion that fit these samples and with this it can select the near-optimal accelerator
chunk size (see [146] for more details). The pipeline architecture of FPGA IPs
allows the Fastfit simple model to be accurate enough with only two throughput
samples and no logarithmic fitting.

In order to better understand the different behavior between Logfit and Fastfit,
Figure 4.10 shows the evolution of the throughput (Throughput) and FPGA
chunk size using two metrics: number of diagonals per chunk (Chunksize=CF )
and number of total elements in the chunk (accumulating all the elements of all
the diagonals in the chunk, # of Elements/Chunk=NF ). In Figure 4.10(a)
we can see a glitch, in the Chunksize and # of Elements/Chunk curves,
at the beginning of the iteration space were several samples are needed until we
can move on to the Exploitation phase. In Figure 4.10(b), although it is hardly
noticeable, we only test two different chunks sizes that let us to quickly move to
the next phase.

The Exploitation phase of Logfit is also more complex and introduces more
overhead since it keeps adapting the accelerator chunk size to suits to through-
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Figure 4.10: Logfit and Fastfit evolution of the throughput, FPGA chunk size and
total number of elements of the chunks for the 220 time series. X-axis represents
the iteration space.

put changes that can be frequent in irregular codes. However, the Exploitation
phase of Fastfit assumes the code is regular and that the chunk size estimated in
the previous phase is valid for the whole iteration space. As we can see in Fig-
ure 4.10(b), Fastfit sustains a more stable throughput and an almost constant #
of Elements/Chunk that is directly proportional to the workload per chunk
of iterations and higher than the workload per chunk assigned by Logfit. This
explains the higher average throughput observed in FasFit. Note that in both
schedulers, the chunk size increases to keep the # of Elements constant since
the diagonals are becoming shorter as we sweep the iteration space. Also note
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that the throughput can take a performance hit at the end of the iteration space
when there are not enough iterations to fully utilize the FPGA pipeline.

4.4.3. Evaluation of heterogeneous CPU+FPGA executions

In this section, we validate the four system-level heterogeneous schedulers,
Static, Dynamic, Logfit and Fastfit when using both the CPU (8 cores) and the
FPGA co-executing simultaneously. We first focus on the obtained performance
and later on the energy efficiency.

4.4.3.1. Heterogeneous scalability
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Figure 4.11: Heterogeneous Performance Scalability using Fastfit. Speedup for
different Input Size respect to 1 Core-CPU. The higher the better.

Before analyzing the heterogeneous schedulers implementations, it is inter-
esting to show the scalability of the heterogeneous execution. Figure 4.11 shows
the speedup obtained for 4 time series sizes and 9 configurations: 0-1 that is the
FPGA-only implementation (0 CPU cores and 1 FPGA), and x− 1 being x the
number of cores that goes from 1 to 8. The FPGA alone yields up to 6x better
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performance (for the larger time series), but the speedup keep increasing when
adding CPU cores to help in the computation. The scalability with the number
of cores is not linear (around 6x for 8 cores) due to parallel overheads, memory
and cache sharing issues (SCAMP is a memory bound application) and also due
to the CPU frequency reductions that are imposed when more cores are working.

4.4.3.2. Performance analysis
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Figure 4.12: Throughput for Static and different time series. X-axis represents
the percentage of iterations (as a ratio) offloaded to the FPGA. The higher the
better.

Remember that Static requires that the user provides an offload_ratio
stating the percentage of iterations offloaded to the FPGA. Figure 4.12 shows
the throughput obtained for offload_ratio between 0 (only CPU execution)
and 1 (only FPGA execution) and four time series with different sizes. After
this manual exploration, we found that the smaller time series exhibit maximum
throughput when 30% of the iteration space is computed on the FPGA, but for
larger time series it is better to offload 40% of the iteration space to the FPGA
and compute the rest on the CPU. Different time series may require different
offload_ratio values and a more precise search might pay off (in steps of 1%
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instead of 10% as in the figure) although more time should be devoted to the
exploration.

As we saw in Figure 4.8, Dynamic also requires an offline profiling in order to
find a suitable FPGA chunk size, that for the 220 time series ends up being 213

diagonals. Note that larger chunk sizes result in similar throughput but makes
less likely to achieve CPU+FPGA work-sharing and load balance. Logfit and
Fastfit automatically find, without user intervention, the suitable sizes for the
FPGA and the CPU cores, at a small training overhead.
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Figure 4.13: Throughput comparison for all schedulers and 220 input using the
FPGA and 8 CPU cores. The numbers inside the bars indicate the percentage
of Elements (not diagonals) computed on the FPGA (bottom) and CPU (top).
The numbers above the bars are the percentage of performance degradation with
respect to the ideal throughput (CPU only + FPGA only throughput) represented
as an horizontal line.

In order to compare the performance of all the evaluated schedulers, Fig-
ure 4.13 shows a throughput comparison for the best results obtained with each
scheduler and the 220 time series. The number inside the bars indicates the per-
centage of Elements processed on each device (FPGA-CPU), so the CPU-only and
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FPGA-only executions show 0-100 and 100-0, respectively. Note that although
in Static we set offload_ratio=0.4 which distributes 40% of the iterations
(diagonals) to the FPGA and 60% to the CPU, the FPGA ends up processing
64% of the Distance Matrix Elements since the first 40% of the diagonals are
larger than the remaining 60%. The upper orange horizontal line indicates the
Ideal throughput, estimated as the aggregation of the CPU-only throughput and
the FPGA-only one. This ideal throughput does not account for the unbalance
and scheduling overheads so it is an upper bound used to quantitatively estimate
the impact of these overheads.

The best Dynamic execution is obtained for FPGA chunksize equal to 8192,
chunkFPGA=213 as we saw in Figure 4.8. With this manual configuration it
only looses 0.83% of performance w.r.t. the ideal due to the partitioning over-
head, although it requires the offline exploration to find the best chunkFPGA
input argument. Logfit departs 5.28% of the ideal due to the scheduler overhead
(training and logarithmic re-fitting) that were mentioned in section 4.4.2.4. How-
ever Fastfit delivers almost ideal performance, automatically finding a very good
initial FPGA chunksize of 9,455 diagonals. Subsequent FPGA chunk sizes are
updated just to maintain a constant workload (number of Elements) as explained
in section 4.2.2.1. This small difference with respect to Dynamic makes Fastfit
delivers a slightly better throughput, highlighting an almost negligible overhead
(0.6%). Similar results have been obtained for different input sizes. This finding,
along with the advantage of avoiding the manual search of a near-optimal FPGA
chunk size, turn Fastfit into an excellent scheduler for co-execution of regular
algorithms on CPU+FPGA platforms.

4.4.3.3. Energy analysis

Figure 4.14 depicts a breakdown of energy efficiency (in Elements per Joule)
and energy consumption (in Joules) in the same conditions explained in the pre-
vious section. FPGA energy is measured thanks to an in-house library (publicly
available [166]) built on top of the BMC (Board Management Controller) library
provided by the FPGA vendor (BittWare). Energy efficiency has been computed
dividing the number of computed elements by the total number of Joules con-
sumed.

First, paying attention to the one-device only results at the left of Figure 4.14,
it can be observed that the FPGA exhibits the highest energy efficiency and the
lowest energy consumption. The CPU requires almost 3x more energy to carry
out the same computation. Now, the energy consumed by the heterogeneous
schedulers is roughly proportional to the workload processed by each device (CPU
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Figure 4.14: Energy metrics for all schedulers and 220 time series using the FPGA
and 8 CPU cores. Solid bars represent the Energy efficiency (the higher the bet-
ter), whereas patterned bars depict Energy consumption (the lower the better).

and FPGA) as pointed out in Figure 4.13. For example, Static offload more work
to the FPGA (64% of the elements) and consequently exhibits better energy
efficiency than Dynamic, Logfit and Fastfit. Actually, energy consumption and
energy efficiency in these last three schedulers are similar. Due to Logfit being the
slowest of the last three schedulers, it also consumes more energy than Dynamic
and Fastfit.

Table 1 includes the relevant data already presented in previous charts. Sum-
marizing, Fastfit is the best scheduler if our goal is to achieve maximum perfor-
mance. Although Dynamic also achieves good results, let’s recall that in this case
the user needs to explore offline exhaustively all possible chunk sizes to find the
near optimal, whereas in Fastfit the best chunk size is automatically discovered
at runtime. On the other hand, if the target is energy consumption, it is better
to switch off the computation on the CPU cores and resort to the FPGA-only
execution. Again, similar conclusions can be obtained for different input sizes.
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Table 4.3: Summary of performance, energy consumption and energy efficiency.
Diff. represents the degradation with respect ideal or best. The optimal imple-
mentation for each criterion in boldface.

CPU

8 cores

FPGA

Only
Static Dynamic Logfit Fastfit

Throughput

(Elements/ms)
1.97 · 106 1.83 · 106 2.86 · 106 3.7 · 106 3.6 · 106 3.78 · 106

%Diff. Ideal

Throughput

(CPU+GPU)

-48.19% -51.81% -24.72% -0.83% -5.28% -0.6%

Energy

consumption

(Joules)

3.34 · 104 1.18 · 104 1.87 · 104 2.07 · 104 2.11 · 104 2.08 · 104

%Diff Best

Energy

consumption

182.32% 0.0% 57.88% 75.47% 78.11% 75.78%

Energy

efficiency

(Elements/J)

1.64 · 107 4.67 · 107 2.93 · 107 2.64 · 107 2.6 · 107 2.67 · 107

%Diff Best

Energy

efficiency

-64.58% 0.0% -36.66% -43.01% -43.86% -43.11%

4.4.4. OpenCL vs oneAPI implementation

In this section we present the evaluation of the productivity from a program-
mer point of view between OpenCL and oneAPI rather than the runtime perfor-
mance. By the time this work was developed, there was no BSP (Board Support
Package) compatible with oneAPI for our FPGA. Hence, this work have been
developed using OpenCL as a programming model for our heterogeneous imple-
mentation. As detailed in Section 2.3.2, oneAPI is an open, cross-architecture
programming model developed by Intel with the objective to unify the code devel-
opment for different heterogeneous architectures. The main goal is to be able to
write the same code and compile it for different architectures, making life easier
for programmers of heterogeneous platforms [169].

The metrics used to compare the programmer productivity using OpenCL
and oneAPI are the Programming Effort and Cyclomatic complexity. The Pro-
gramming Effort (PE ) is a function of: (1) the number of unique operands and
unique operators; (2) the total number of operands and operators. The operators
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Figure 4.15: Comparison between oneAPI and OpenCL in terms of Cyclomatic
Complexity and Programming Effort for the code of this project. Solid bars
represent Programming Effort metric, while pattern bar represent Cyclomatic
complexity metric. The lower the better.

are the symbols that affect to the value of the operands, while the operands are
the identifiers and constants. The Cyclomatic complexity (CC ) is the number of
predicates plus one. Higher values for PE and CC indicate that it is more com-
plicated for a programmer to code such program. The research by [170] tackle
this same analysis for a Value Iteration Problem on a CPU + GPU heterogeneous
platform, achieving interesting results with a 5.1x difference in PE but similar
CC for the oneAPI and OpenCL implementations.

Figure 4.15 present the results of our comparison between oneAPI and OpenCL
using PE and CC. Our analysis shows that in terms of PE, OpenCL presents 5.3x
more PE than oneAPI, while in terms of CC this difference is reduced to 3.3x.
Using both metrics we conclude that the oneAPI implementation is much easier
to implement. As a future work we will propose to also evaluate the performance
of the oneAPI implementation once a oneAPI compatible BSP is released for our
FPGA.
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4.5. Conclusions

In this chapter, we study the problem of efficiently executing a state-of-the-
art time series algorithm class -The Matrix Profile- on a heterogeneous platform
comprised of CPU + High Performance FPGA with integrated HBM (High Band-
width Memory). The geometry of the algorithm (a triangular matrix walk) and
the FPGA capabilities pose two challenges. First, several replicated IPs can be
instantiated in the FPGA fabric, so load balance is an issue not only at system-
level (CPU+FPGA), but also at device-level (FPGA IPs). Second, the data that
each one of these IPs accesses must be carefully placed among the HBM banks
in order to efficiently exploit the memory bandwidth offered by the banks while
optimizing power consumption.

To tackle the first challenge we propose a novel hierarchical scheduler named
Fastfit, to efficiently balance the workload in the heterogeneous system while en-
suring near-optimal throughput. Our scheduler consists of a two level scheduling
engine:

1. The system-level scheduler, which leverages an analytical model of the
FPGA pipeline IPs, is used to find the near-optimal FPGA chunk size
that guarantees optimal FPGA throughput and from that the CPU chunk
size that ensures load balance among devices.

2. A geometry-aware device-level scheduler, which is responsible for the ef-
fective partitioning of the FPGA chunk into sub-chunks assigned to each
FPGA IP. To deal with the second challenge we propose a methodology
based on a model of the HBM bandwidth usage that allows us to set the
minimum number of active banks that ensure the maximum aggregated
memory bandwidth for a given number of IPs.

Through exhaustive evaluation, we validate the accuracy of our models, the
efficiency of our intra-device partition strategies and the performance and energy
efficiency of our Fastfit heterogeneous scheduler, finding that it outperforms state-
of-the-art previous schedulers by achieving up to 99.4% of ideal performance.

Summarizing, the main contributions of this chapter are:

We present an efficient heterogeneous CPU + FPGA implementation that
reduces the execution time, contributing with, to the best of our knowledge,
the first FPGA implementation of a matrix profile algorithm using High
Level Synthesis, HLS, that reduces energy consumption with respect to the
only-CPU approach.
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We develop a methodology based on a analytical model to optimize the
memory bandwidth usage of HBM Banks. Our model finds the minimum
number of HBM banks to ensure maximum bandwidth while reducing power
consumption.

We propose a hierarchical scheduler, named Fastfit, that: (1) at inter-device
level an analytical model calculates a near optimal partitioning of the work
for the FPGA and the CPU cores, that efficiently balances the workload
among devices; and (2) at intra-device level, it uses a custom static partition
of the diagonals of the matrix profile to balance workload for all FPGA IPs,
so that they finish their assigned partition at the same time.





5
Skyline computation on
Heterogeneous CPU +
GPU processors

In the previous two chapters, we propose scheduling strategies to efficiently
optimize time series computation through the matrix profile algorithm, using dif-
ferent heterogeneous architectures: CPU + GPU and CPU + FPGA. However, in
this chapter, we tackle a different massive data application: The skyline problem.
The skyline, initially introduced in [86], is an optimization operator widely used
for multi-criteria decision making. It allows to minimize a n-dimensional dataset
into the smallest subset, usually using as a reduction metric the minimum value
for each dimension. In order to increase the skyline performance, it is key to
avoid the all-to-all comparison between points. To that end, two approaches are
usually adopted: (1) sorting-based or (2) partitioning-based. The main disad-
vantage of sorting-based algorithms is that for high dimensional skylines, the
methodology generates a large candidate buffer, causing performance degrada-
tion due to brute-force quadratic search. State-of-the-art sequential algorithms
use recursive, point-based partitioning approaches. The current state-of-the-art
multi-core algorithm, Hybrid [23], is a point-based method that dynamically con-
structs a quad-tree with the skyline points. One optimization of this algorithm
is that it flattens the tree into an array structure for better access patterns,
and also it processes points in blocks (tiles) to improve parallelism. However,
point-based strategies are not well suited to heterogeneous architectures. For in-
stance, in [23] the tree is constructed on the fly, incrementally, and sequentially,
so frequent synchronization points are necessary to accommodate the sequential
insert phase, a strategy that adversely affects performance on the GPU. More-
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over, the uncontrolled branching in the tree traversal tends to serialize execution
within each warp on account of branch divergence. On the other hand, the cur-
rent state-of-the-art algorithm for GPU architectures, SkyAlign [24], is based
on a statically-defined quad-tree, being the key algorithmic idea that points are
physically sorted by grid cells and statically partitioned, and threads are mapped
onto that sorted layout. Besides, the actual computation is loosely ordered with d
carefully placed synchronization points (being d the number of dimensions). This
type of order simultaneously achieves good spatial locality, homogeneity within
warps, and independence among threads, in particular when the number of di-
mensions (d) is high. This strategy creates more predictable tree traversals that
minimizes branch divergence. As a novelty in our work, as we are targeting an in-
tegrated GPU, we have designed a new implementation of the SkyAlign algorithm
based on SYCL [43]. SYCL allows us to use the same algorithm and source code
both on the CPU and the GPU (contrary to CUDA), obtaining reasonable per-
formance on both devices. SYCL advocates for the single source code approach,
which enables to target multiple devices using the same programming model
in order to have a cleaner, portable, and more easy to maintain applications. In
our implementations, we leverage oneAPI [45] that is a promising framework that
simplifies programming heterogeneous architectures by providing several libraries
and a unified programming language DPC++ (Data Parallel C++) [46] able to
target CPUs, GPUs and FPGAs. DPC++ incorporates the SYCL language and
extensions for Unified Shared Memory (USM), ordered queues, reductions and
subgroups, which we exploit to take advantage of architectural features on our
heterogeneous platform.

The mentioned skyline algorithms are designed to compute skylines over static
datasets rather than dynamic ones that occur in data streaming environments.
Dynamic data streaming represents a continuous stream of received data points.
In the append-only data streams, sets of data points are removed when they ex-
pire. For instance, such type of streams are those of wireless sensors networks,
where the data collected prior a specific time interval are discarded because they
are not representative in comparison with the new readings of sensors. In that
context, current sequential or parallel approaches [110, 108, 109, 171] compute
the skyline on sliding windows for the n most recent points that arrive, produc-
ing a stream of skyline updates with the arrival of new points. In the context of
analytic applications that process multi-source data streaming queries, or appli-
cations in data exploration and multi-criteria decision making that project the
multi-dimensional data into different subset of the attributes (i.e., some subspaces
of interest) [95, 172], we find that the data stream is provided with diverse in-
dependent queries for each of which the computation of the skyline operator is
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required. Examples include the development of smart technologies in the context
of the rapid advancement in the Internet of Things (IoT) ecosystem.

In this chapter we tackle the problem of computing the skyline operator over
a stream of independent data queries using as target architecture a heteroge-
neous system comprised of a multi-core CPU and an integrated GPU, which to
the best of our knowledge it has not yet been addressed. In our work, we pro-
pose a heterogeneous graph-based engine, called SkyFlow based on oneAPI [45],
which is capable of efficiently schedule the data queries computations among the
devices while ensuring near-optimal throughput. Our proposal adapts to dif-
ferent streaming scenarios using two heterogeneous approaches: Coarse-grained
(SkyFlow-CG) and Fine-grained (SkyFlow-FG).

SkyFlow-CG computes concurrently one query per device. In this work, we
experimentally validate the performance of our SYCL implementations, both on
the GPU and the CPU finding that although the SYCL code is portable, it
is not “performance portable” because it performs better on the GPU than on
the CPU. In fact, as we will see in Section 5.1.5, for our platform the original
OpenMP-based Hybrid implementation is faster than the SYCL-based SkyAlign
on the CPU. Thus, SkyFlow-CG adopts a hybrid strategy: each device runs the
algorithm best suited to the specific features of the corresponding device, it is,
Hybrid on the CPU (implemented with OpenMP) and SkyAlign on the GPU
(implemented with SYCL). During our research, we found that specific datasets
perform better under Hybrid on the CPU than under SkyAlign on the GPU, or
vice versa, depending on the distribution of points in the dataset and its spa-
tial structure, size, or number of dimensions. Thus, as we aim at optimizing
system performance and resource utilization in the context of a stream of inde-
pendent data queries, we must devise a scheduling strategy that at runtime is
able to consider the arriving data query characteristics and the occupancy of the
resources to dispatch the skyline computation to the appropriate device. In this
chapter we propose different scheduling strategies and evaluate and discuss their
performance and optimality for different streaming scenarios.

On the other hand, SkyFlow-FG represents a heterogeneous CPU+GPU so-
lution for the skyline computation in which each single dataset query is split
between the CPU and the GPU devices. For it, we start from the SYCL-based
SkyAlign implementation that runs both on the CPU and GPU. The main chal-
lenge now is to find the optimal dataset partition for each arriving data query at
runtime. We also evaluate different partitioning strategies for different streaming
scenarios.
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In our experimental evaluations we find that our heterogeneous approaches
always outperform baselines implementations that only use one device. In fact,
they outperform only-GPU and only-CPU baselines up to 5.19x and 6.86x, respec-
tively. These results tell us that exploiting both devices with our heterogeneous
solutions is usually more profitable than using just one device. We will also dis-
cuss under which streaming scenarios is advantageous to use SkyFlow-CG, and
in which ones SkyFlow-FG delivers better results.

The rest of the chapter is organized as follows. Section 5.1 introduces the
required background and the skyline algorithms. Section 5.2 presents our het-
erogeneous approaches for computing the skyline over a stream of data queries.
Section 5.3 describes the schedulers and partitioning strategies devised to opti-
mize the heterogeneous solutions. Section 5.4 discusses the experimental results,
ending with conclusions in Section 5.5.

5.1. Theoretical Background

5.1.1. Definitions

Let’s compute the skyline corresponding to the dataset (or data query) S of
n points, pi, with d dimensions. The value of pi in a given dimension δ is known
as pi[δ].

Definition 1: Dominance.

A point p dominates another q, p ≺ q, if the following condition is satisfied:
∀i ∈ [0, d − 1] : p[i] ≤ q[i] and ∃j ∈ [0, d − 1] : p[j] < q[j]; that is, for every
dimension, p is less than or equal to q and there exists at least one dimension in
which p is strictly less than q. This operation is called dominance test (DT ).

Definition 2: Skyline. A skyline can thus be defined as the subset of points
in a dataset S that are not dominated by any other point in the dataset, i.e.,
SKY (S) = {p ∈ S | @q ∈ S : q ≺ p}.

Definition 3: Incomparability. Two points p, q ∈ S, are incomparable,
p ∼ q, if p ⊀ q and q ⊀ p, that is, if p and q do not dominate each other.

The smaller the number of DT s, the better the work-efficiency and the faster
the skyline computation. In the worst case, for a dataset of size n, the algo-
rithm will have quadratic cost with n · (n − 1)/2 DT s. Avoiding DT s resulting
in incomparability reduces the computational cost of the problem. Sorting and
partitioning based algorithms work towards this goal. In sorting-based algo-
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rithms, traversing the sorted points reduces the number of DT operations. In
partitioning-based, a partitioning of the space avoids DT between points that
are known to be incomparable because their corresponding partitions are also
incomparable.

Figure 5.1 shows a partitioning-based example with a small dataset comprising
only 4 points out of which A, B and D belong to the skyline set. As we can see,
a DT between pairs of points A and C and A and D is unnecessary since A is
in region M = 01 that dominates in X-axis, but C and D are in region M = 10

that dominates in Y-axis, resulting in the incomparability of all the points in
both regions. On the other hand, a DT between points C and D is required
because both are in the same region M=10 and, hence, comparable. The point C
is dominated in both dimensions by the point D and deleted as a skyline point.
Finally, a DT between points A and B results in a incomparability since point A
dominates in X-axis while point B dominates in Y-axis. The same result comes
when comparing points B and D. The median mask M and quartile mask Q will
be covered in detail in Sect. 5.1.3.

Point M Q

A 01 10

B 11 00

C 10 11

D 10 10

Q=11

x

y

x

C

A

M=11

D

B

M=00 M=10c2

c1

x

x

c3

M=01

Q=01
Q=00 Q=10

Figure 5.1: Dataset and skyline example. Skyline points are A, B and D. Pivot
points, ci, and mask values, median mask M and quartile mask Q, represent
the static space partitioning created. The X-axis (Y-axis) is the first (second)
dimension.

As introduced in Sect. 2, this work is based on two skyline algorithms: (1)
Hybrid [23] initially implemented in OpenMP [173] is the state-of-the-art for
multi-core CPU architectures. We will refer to it as OpenMP-CPU. And (2)
SkyAlign [24] initially developed in CUDA [174] is the state-of-the-art for GPU
architectures, having considerable potential for scalability and heterogeneous im-
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plementation. We have ported the implementation to SYCL, because the in-
tegrated GPU does not support CUDA, so from now on, we will refer to it as
SYCL-GPU. Depending on the dataset, the CPU algorithm can be faster than the
GPU one, or the other way around. Next, we briefly introduce both algorithms
and compare their performance.

5.1.2. OpenMP-CPU algorithm

Algorithm 6 sketches the CPU algorithm, which combines two techniques to
save DT s: sorting and partitioning.

Algorithm 6: OpenMP-CPU algorithm
Input: S=Dataset of n points p and d dimensions.
Output: Skyline of S: SKY (S)

1 SKY (S)← ∅
2 Prefilter, partition and sort S
3 while S 6= ∅ do
4 Q← next α points of S
5 S ← S\Q
6 foreach i ∈ [0, Q.size) (in parallel) do
7 if ∃p ∈ SKY (S) : p ≺ Q[i] then
8 Mark Q[i] as dominated
9 Remove dominated Q[i] from Q

10 foreach i ∈ [0, Q.size) (in parallel) do
11 if ∃j ∈ [0, i) : Q[j] ≺ Q[i] then
12 Mark Q[i] as dominated
13 Remove dominated Q[i] from Q

14 Append Q to SKY (S)

15 return SKY (S)

The algorithm is divided into three blocks. The first one is represented by
the line 2 that carries out a prefiltering, partitioning and sorting steps that we
describe next. (1) Prefiltering performs a fast parallel comparison of points
in chunks according to their Manhattan norm (L1), easily pruning dominated
points; (2) Partitioning does the partition of the multi-dimensional space based
on a pivot point, pv. The pv is the point with the median value of L1, which
must necessarily be a skyline point. A mask, m, is assigned to each point for each
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dimension such that, m[i] = (p[i] < pv[i]?0 : 1)1. pv divides the dataset into 2d

regions so that the binary mask of each point identifies its corresponding region.
Avoiding comparisons between points in incomparable regions reduces the DT s
needed. (3) Sorting is carried out according to the binary mask and the L1
norm. This sorting maintains the property that p ⊀ q if p precedes q in the sort
order. See more details in [23].

After this preprocessing, the resulting dataset, S, is traversed in blocks of
α points (line 4). A study carried out in Sect.VII-C of [23] fixed the optimal
size of alpha in 1024 (see [23] for more details). Each block, Q, is processed by
two consecutive parallel loops. A first parallel stage (lines 6-8) compares each
point p of the block with the points of the global skyline known so far, to check
if any of them dominates p. After the parallel stage, a synchronization stage
sequentially eliminates dominated points from the iteration space (line 9). The
second parallel stage (lines 10-12), compares the surviving points of the previous
stage among them. The second synchronization stage sequentially eliminates
dominated points in line 13. The points that pass through this two sieves are
added to the global skyline, SKY (S), in line 14. Thanks to the partitioning stage,
binary mask comparisons are used to reduce the number of the more expensive
DT operations. The sorting stage ensures that: 1) once a point is appended to the
SKY (S) it will not leave this set since no subsequent point in S will dominate it;
and 2) points that are likely pruning others are processed earlier (which remove
the DT operations corresponding to these early pruned points).

This process is repeated for all the blocks in S updating the global skyline
after processing each block. Although not explicitly indicated in Algorithm 6,
vectorization is used for the implementation of the DT operations (lines 7 and 11).

5.1.3. SYCL-GPU algorithm

The SYCL-GPU follows a different approach in order to avoid the synchro-
nization stages that keep a global skyline in the OpenMP-CPU algorithm. On
the GPU these synchronization steps have a higher impact on performance. As in
the OpenMP-CPU alternative, similar optimizations are also considered: static
space partitioning and dataset sorting.

1C language ternary operator: m[i]=0 if condition holds, and 1 otherwise.
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5.1.3.1. Space partitioning

The partitioning divides each dimension of the dataset in quartiles and me-
dian. This is, three global pivot points (instead of just one as in OpenMP-CPU )
are defined for each dimension: first quartile, c1, median, c2, and second quartile,
c3 (see Figure 5.1). All GPU threads share the information of these three defined
global pivot points. It should be noted that these points are probably virtual (i.e.
c1, c2, and c3 may not belong to the dataset as it happens with the pivot point
in the OpenMP-CPU algorithm). This partitioning results in binary masks to
classify the dataset points in two nested levels. At the first level, a binary mask
M is assigned to each point, corresponding to its position relative to the median
(equivalent to the pivot point in the OpenMP-CPU ). On a second level, another
binary mask Q is assigned, corresponding to its position relative to the first or
third quartile (whichever is relevant for each point). The process is repeated for
each dimension. These two binary masks per point ease locating each point’s
partition.

Figure 5.1 shows an example with a dataset of 4 points partitioned according
to the quartiles and median points. Formally, we define the assignment of binary
mask values to points using space partitioning. Let us denote ciδ the i quartile
of the δ dimension, with c2δ being the median. If we start from an example point
pi, we can have the following mask configurations, depending on where the point
is located with respect to the median and the quartiles:

Mi[δ] = 0, Qi[δ] = 0⇔ pi[δ] < c1δ

Mi[δ] = 0, Qi[δ] = 1⇔ pi[δ] ∈ [c1δ, c2δ)

Mi[δ] = 1, Qi[δ] = 0⇔ pi[δ] ∈ [c2δ, c3δ)

Mi[δ] = 1, Qi[δ] = 1⇔ pi[δ] ≥ c3δ
For example, point B has median maskMB = 11 because in its x dimension it

is above the median value, c2x, and in the y dimension is also above the median,
c2y. Its quartile mask is QB = 00 because in the x dimension is below the c3x
quartile, and below the c3y quartile as well for the y dimension.

Once the partitioning and binary masks have been defined, the next step is
to establish the equations on which the MT will be based. The purpose of these
equations is to establish non-dominance relations, which avoid having to perform
DT operations.
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There are two levels of application of these equations: 3 equations where
only the median is required and if these fail, two additional equations where the
quartile masks are consulted.

Let us assume points pi and pj , with binary median masks Mi and Mj . We
have the order information, |Mj | and |Mi|, that is, the number of bits of the
masks with value 1. The equations using the first level of information (just the
median), are:

(Mj |Mi) > Mi ⇒ pj ⊀ pi (5.1)

|Mi| < |Mj | ⇒ pj ⊀ pi (5.2)

|Mi| = |Mj |,Mi 6=Mj ⇒ pj ∼ pi (5.3)

The equation 5.1 tests whether Mj has any bit set to 1 that is not in Mi. If
that is the case then there exists some dimension in which pi[δ] < pj [δ] and hence
pj ⊀ pi. In Figure 5.1 it can be seen how this equation is satisfied for points A
and B.

The equation 5.2 covers the particular case of the equation 5.1 where Mj has
more bits set to 1 than Mi. In this case the equation 5.1 is also satisfied and the
same conclusion is reached. Again this equation can be checked in Figure 5.1 for
points A and B.

Likewise, the equation 5.3 is another special case, where the order of both
masks is the same. Under this assumption, and in the case that the masks are
not equal (that they do not have the same bits set to 1), it necessarily causes
that both points are incomparable. This equation is applied to points A and C
or points A and D in Figure 5.1.

For cases where the median-level binary masks Mj and Mi do not determine
a non-dominance relationship (pj ⊀ pi), the quartile-level binary masks (Qi and
Qj) are applied with these two equations:

Mj �Mi, (((Mj | ∼Mi)&Qj)|Qi) > Qi

⇒ pj ⊀ pi
(5.4)

Mj =Mi, (Qj |Qi) > Qi ⇒ pj ⊀ pi (5.5)
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The equation 5.4 approximates the equation 5.1, starting from the prior
knowledge of the median masks Mj � Mi, which states that Mj [δ] ≤ Mi[δ] ∀δ.
The expressionMj | ∼Mi gives results for dimensions whereMj =Mi, so it indi-
cates in which dimensions the points pj and pi are on the same side of the median.
These would be the dimensions for which the above median-level equations would
not give a result in this case (in the others it would be satisfied that pj < pi).
(Mj |Mi)&Qj selects the bits that cannot be solved by the median mask equations
and in which pj is greater than the quartile. If pi is less than the quartile for any
of these cases, then pj ⊀ pi. In Figure 5.1 this relationship can be seen for points
B and C to determine that pC ⊀ pB . At first, pC is better than pB for the second
dimension and equal for the first, with respect to the median of each dimension.
Hence, the first assumption is satisfied, MC � MB . If we look at the equation,
we have that (MC | ∼ MB)&QC = 10, and that ((MC | ∼ MB)&QC)|QB = 10,
which is greater than QB = 00. These result also can be demonstrated visually as
we see that pC is above pB in the quartile. The equation is satisfied and therefore
pC ⊀ pB .

The equation 5.5 is a particular case of the equations 5.4, where the median
masks are equal and therefore (Mj |Mi)&Qj = Qj . This can be seen in Figure 5.1
for points C and D, with identical median mask (MC = MD = 10). Applying
the equation we get QC |QD = 11|10 = 11, and, hence, 11 > QD. Therefore,
pC ⊀ pD.

5.1.3.2. Algorithm description

Once the points have been classified according to their region in the space
(identified by both masksM andQ) we can leverage the fact that points located in
incomparable regions are also incomparable and avoid the corresponding DT. In
essence, we trade DT s forMT s (mask tests). Note thatMT s are computationally
cheaper than DT s since they only perform one binary operation between two
integers, while a DT requires 2·d operations (see Definition 1). The sorting step
has the same advantages that we mentioned in the previous section.

Algorithm 7 presents a description of the GPU algorithm. For a more precise
explanation we refer the reader to [24]. The algorithm is divided in two main
stages: (1) preprocessing; and (2) the main loop.

Preprocessing: The preprocessing includes prefiltering, partitioning and
sorting. Prefiltering is carried out in lines 1-10. The idea is to first find a
threshold, τ , that is calculated as the minimum of the maximum value in all
the dimensions of each point. For example, in the Table of Figure 2.12, the
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Algorithm 7: SYCL-GPU algorithm
Input: S=Dataset of n points p and d dimensions.
Output: Skyline of S SKY (S)

1 τ ← minp∈S(maxi∈[0,d)(p[i]))

2 S ← {p ∈ S|∃i ∈ [0, d) : p[i] ≤ τ}
3 foreach dimension δ ∈ [0, d) do
4 Sort S by dimension δ
5 ciδ ← S[bi ∗ |S|/4c][δ], i ∈ 1, 2, 3

6 foreach point pi ∈ S (in parallel) do
7 foreach dimension δ ∈ [0, d) do
8 Mi[δ]← (pi[δ] > c2δ)

9 Qi[δ]← (pi[δ] > (Mi[δ]? c3δ : c1δ))

10 Sort S according to M and |M |
11 foreach levels l ∈ [0, d)] do
12 foreach point pi ∈ S (in parallel) do
13 if |Mi| > l then
14 foreach M : |M | = l ∧ (M |Mi) =Mi do
15 foreach pj ∈ S, Mj =M do
16 if (((Mj | ∼Mi)&Qj)|Qi) > Qi then
17 if pj ≺ pi then
18 Mark pi dominated; terminate thread
19 else
20 foreach point pj ∈ S, Mj =Mi do
21 if (Qj |Qi) = Qi then
22 if pj ≺ pi then
23 Mark pi dominated; terminate thread
24 Remove dominated points from S

25 SKY(S) ← SKY(S) ∪{pi ∈ S : |Mi| = l}
26 return SKY (S)

maximum values are computed by row, resulting in the vector {3, 3, 2}, from with
the minimum is τ = 2. In parallel, each point is compared with the threshold and
if it has no value less than the threshold, that point is dominated and eliminated.
For example, in Figure 2.12, point A does not have any value smaller than 2, so
it is pruned. Once this prefiltering of points finishes, the static partitioning is
created (lines 3-9). In lines 3-5 the medians and quartiles are calculated, assigning
the binary masks (median and quartile) to each point in lines 6-9. Finally the
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dataset is sorted according to M and |M | in line 10 so that the data layout
matches the control flow described next.

Main loop: The algorithm’s main loop goes from lines 11 to 25. A detailed
explanation of the main loop can be found in [24] but for what matters in this
chapter, suffices it to say that the outer sequential loop with iterator l, level, has
d iterations (line 11). In each iteration, a parallel loop compares every point,
pi, with the rest of the points, and those with median mask of order2 l and
non dominated (not pruned by MT equations 5.1-5.5 or DT) are progressively3

added to the skyline solution. First, the median masks, M , are used (lines 13-15
and line 20). If the median mask does not help, then the quartile masks, Q,
are compared (line 16 and 21). Only if both MT fail, the corresponding DT is
carried out (line 17 and 22). If the point is dominated (line 18 and 23), it is
marked as dominated, and the thread terminated. At the end of each iteration
of the outer loop, the dominated points are removed. The non-dominated points
for that order are added to the skyline.

Note that the update of SKY (S) (line 25) requires a synchronization at each
outer iteration, but contrary to the OpenMP-CPU, the number of synchronization
points is equal to the number of dimensions, which is smaller than the number
of synchronization points in OpenMP-CPU for large datasets.

5.1.4. SYCL-GPU migration from CUDA to oneAPI

The GPU algorithm was initially developed in CUDA [24]. The code has been
migrated from CUDA to oneAPI. Since oneAPI is a multi-device language, the
current implementation of the algorithm allows its execution on any Intel device
(CPU, GPU or FPGA). We took advantage of this feature of oneAPI to imple-
ment SkyFlow for both CPUs and GPUs, and to combine both implementations
in a heterogeneous GPU + CPU version as we will see later.

To facilitate the migration of the original CUDA code the Intel DPC++ Com-
patibility Tool (DPCT) [175] has been used. Intel has developed this new tool
to automate the conversion of CUDA code to oneAPI. DPCT allows conversion
from individual source codes to entire projects via command line, with a rea-
sonably high automatic conversion coverage (over 80% of the CUDA source code
was automatically converted to oneAPI in our experience). DPCT also generates

2Being the order of the median masks, |Mi|, the number of 1’s in the mask Mi (i.e. |Mi| ==
l)

3Progressive skyline algorithms yield solution points on the go, in contrast to algorithms
that provide the solution at once after completion.
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comments in the generated source code (and in the terminal) to facilitate debug-
ging and conversion of the parts of the code that the tool could not translate
automatically. In our case, the tool could generate almost all the structure of the
oneAPI code. However, the more complex parts of the code (such as the main
loop) required manual intervention. The reason is that the original CUDA version
uses CUDA libraries and tools with no direct equivalent in oneAPI. Specifically,
the original code uses the BOOST library for thread handling and the THRUST
library for processing specific functions (such as sort and parallel_reduce). In
our implementation, all BOOST functions have been successfully ported using the
Standard Template Library (STL) and C++17. Likewise, GPU-parallelized func-
tions with THRUST have been migrated to existing equivalents in the oneAPI
Data Parallel Library (DPL).

5.1.5. Initial performance assessment

Up to now we have seen two different implementations that solve the same
problem: computing the skyline of a dataset (or data query). OpenMP-CPU
is optimized for the CPU, whereas SYCL-GPU comes from a GPU optimized
CUDA code. However, now that we have the GPU version written in SYCL,
we can take advantage of the portability exhibited by SYCL implementations.
In SYCL the computation is enqueued to a device, which is configured using
a device_selector object. Just by changing the device_selector from
GPU to CPU and re-compiling, the SYCL code can run on the CPU. This means,
that we actually have three versions: OpenMP-CPU, SYCL-GPU and SYCL-
CPU, being the last two the same implementation but targeting different devices.

Remember that our overarching goal is to accelerate the skyline computation
on a heterogeneous CPU+GPU architecture. This requires first to assess the
performance of the three versions. To this end, we have executed the three
implementations on a octa-core Intel i9-9900K CPU that includes an integrated
GPU (more details of the test-bed in Section 5.4).

Figure 5.2 shows the execution times for OpenMP-CPU, SYCL-GPU and
SYCL-CPU algorithms and four datasets (described in Section 5.4). For each
dataset, the subfigure on the left fixes d = 8 and changes n from 1 · 106 to
8 · 106. The right subfigure fixes n = 8 · 106 and changes d from 4 to 10. From
the plots we can conclude two main takeaway messages. First, that there is no
device (CPU or GPU) that always dominates the other. Depending on several
factors (points distribution in the dataset, n and d) the CPU or the GPU can
be the fastest device. Second, out of the two CPU implementations (OpenMP-
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Figure 5.2: Execution time for the three implementations (OpenMP-CPU, SYCL-GPU,
SYCL-CPU ) and four datasets (the lower the better).

CPU and SYCL-CPU), the OpenMP-CPU is usually faster (except for House
and Covertype datasets and larger values of n and/or d). Although the SYCL
implementation is portable, it is not “performance portable” and considering that
it was developed with the GPU in mind (it derives from a CUDA implementation)
it is not optimized for the CPU architecture in this platform. Therefore, from
now on, we will use the OpenMP-CPU version on the CPU and the SYCL-GPU
version on the GPU, unless contrary stated.

A work-efficiency study conducted in [24] reports that, for higher dimension
datasets, SkyAlign requires less DT s than Hybrid. In these cases, Hybrid carries
out more DT operations (less work-efficiency) for the sake of exploiting more
parallelism. Thus, the SkyAlign algorithm (and SYCL-GPU ) strives to offer
both more parallelism and work-efficiency for higher dimension datasets. There-
fore, except for Weather dataset, we corroborate that SYCL-GPU outperforms
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OpenMP-CPU for high dimensionality queries. A deeper study of the behaviour
of SYCL-GPU for the Weather dataset shows that: (1) the preprocessing stage
is not able to prefilter any point before entering the main loop; and (2) in the
main loop the number of MT s is significantly smaller than in the other datasets
and, hence, higher the number of DT s. This degrades the work-efficiency of
SYCL-GPU, causing higher execution times in comparison to OpenMP-CPU.

On the contrary, the OpenMP-CPU algorithm is less affected by the spatial
distribution of the points. Its two parallel loops exhibit more regularity than
the SYCL-GPU algorithm’s main loop. The fact that OpenMP-CPU processes
the dataset in blocks results in a better use of the cache hierarchy. Besides,
the CPU is less affected by data and control divergence. On the other hand,
the prefiltering step is less aggressive than in the SYCL-GPU one. To sum up,
the skyline computation is highly irregular, heavily depending on the dataset
configuration (distribution of points in the space, size, number of dimensions)
and on the particular algorithm and target architecture.

5.2. SkyFlow: Heterogeneous Skyline over a stream
of data queries

Now that we have an efficient implementation of the skyline algorithm for the
CPU (OpenMP-CPU ) and the GPU (SYCL-GPU ), our goal is to devise an op-
timal graph-based engine to deal with a stream of data queries on a CPU+GPU
architecture, like the Intel i9-9900K described in Section 5.4. To this end, we rely
on the FlowGraph classes provided by the Threading Building Block library [47]
(part of the oneAPI [45] framework), that is cleverly designed to ease the opti-
mization of data flow problems.

In the following sections we describe several data flow solutions, including
the only-CPU and only-GPU baseline as well as two CPU+GPU heterogeneous
approaches.

5.2.1. Baseline SkyFlow

As a baseline, we have developed a “single-device” version of our data flow
approach, SkyFlow-CPU and SkyFlow-GPU, that only exploit the CPU or the
GPU, respectively. Figure 5.3 shows the FlowGraph that we describe next.
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Figure 5.3: Structure of the baseline SkyFlow graphs.

As we see in the figure, the graph is composed of a number of nodes connected
by edges that we classify in three main sections: (1) Source, (2) Execution, and
(3) Output.

Source: It comprises a source_node, a token buffer and a join_-
node. The source_node generates the stream of data queries from which we
require the skyline. However the stream is not fed directly into the graph to
avoid oversubscribing the HW if the input data rate is much higher than the
processing data rate. The idea is to rely on a token-based approach to limit
the resource consumption. To that end, a buffer is pre-filled with a number
of tokens and a join_node will forward a dataset (or data query) down
the graph only if it can be paired with a token. That way, the maximum
number of data queries in flight is limited to the number of tokens. At
the output node, the token is recycled back into the buffer so that a new
dataset can be injected into the Execution section of the graph.

Execution: In this baseline solution, it contains a single function_node
that computes the skyline. The SkyFlow-CPU configures this node to run
the OpenMP-CPU algorithm whereas the SkyFlow-GPU runs the SYCL-
GPU code.

Output : Finally, the last node takes care of saving the resulting skyline,
optionally checks that the computation is correct and recycles the token to
enable the processing of a new dataset. It is also possible to use this node
to merge several partial skylines in the case a dataset is partitioned into
several blocks and processed separately by SkyFlow.

On our current platform with a multi-core CPU and an integrated GPU we
have validated that over-subscription is avoided by having just two tokens: one
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computing a skyline, and a second in the queue waiting to be dispatched as soon
as the device becomes available. In SkyFlow-CPU the OpenMP-CPU parallel
algorithm takes care of fully utilizing all the CPU cores.

5.2.2. Coarse-Grained Heterogeneous SkyFlow

For our first heterogeneous approach we follow the easiest strategy that con-
sists in combining in the Execution section the GPU and CPU algorithms con-
currently, as depicted in Figure 5.4.
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Figure 5.4: Structure of Coarse-Grained SkyFlow graph, SkyFlow-CG.

We call this version Coarse-Grained SkyFlow, SkyFlow-CG, because it com-
putes a whole dataset (or data query) either on the GPU or on the CPU. In
the next section we describe a Fine-Grained approach in which a single dataset
is split between the CPU and the GPU. Note that the Execution section now
begins by a dispatch node that, for each dataset, decides whether it should
be processed by the SYCL-GPU or the OpenMP-CPU algorithms. The number
of tokens should be incremented in order to allow for at least two data queries
in flight. Contrary to the join node, the indexer node (that comes after the
GPU and CPU nodes) asynchronously passes incoming tokens to the next node
without waiting for an input at each entry port, that way enabling that CPU
tokens and GPU tokens traverse the flow graph at its own pace. This means
that the resulting skylines can be computed out-of-order, but this is not a prob-
lem if we tag each result with the ID of the corresponding data query. If the
output order is relevant it is always possible to insert before the output node a
sequencer node [47] that would reorder the skyline results.
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Assuming that the application bottleneck is in the Execution section (the one
we are optimizing by exploiting both the CPU and the GPU at the same time),
we implement two queues in the dispatch node (one per device). Now the
problem is to feed these two queues so that the total execution time is mini-
mized (throughput maximized). Two scheduling strategies have been considered
and will be covered next: Work Conserving scheduling (WC) and Heterogeneous
Earliest Finish Time (HEFT).

The goal of a Work Conserving scheduling is to keep all the scheduled devices
busy. To that end, it strives to keep the queues of the devices with the same length
(number of pending tasks). In our implementation we maintain two queues,
GPUq and CPUq. An arriving data query will be enqueued in the shortest queue.
If both queues have the same length, we have validated a tie-break heuristic that
enqueues a data query in the CPUq when its dimension, d, is smaller than 6
(since in our experiments it is probable that lower dimension datasets run faster
on the CPU, as we can see in Figure 5.2), and enqueued in GPUq otherwise.

However, as we discussed in Section 5.1.5, this highly irregular problem is
solved in very disparate execution times, sometimes smaller on the CPU or on
the GPU, depending on many factors. If we want to optimize the execution time,
keeping busy both devices is not enough because we could want to send the data
query to the optimal device, so a more elaborated strategy is necessary to feed
each device with the more suitable datasets. In this regard, the Heterogeneous
Earliest Finish Time [176] is an interesting alternative. This scheduling policy
also takes into account the “expected” execution time of a dataset in order to feed
the queues. Now, it is not the length of the queue the relevant factor, but the
expected accumulated execution time of all the data queries enqueued in each
queue, GPUt and CPUt, and the expected execution time of the arriving data
query both on the GPU and CPU, tgpu and tcpu. This is, an arriving data query
will be enqueued in the queue in which it will finish earlier. More precisely, if
GPUt + tgpu < CPUt + tcpu the data query will be enqueued in GPUq, and the
other way around.

This HEFT policy poses two challenges, though. First we need an accurate
enough estimation of the data query execution time. We propose a heuristic
(detailed in Section 5.3.1) that can infer the total execution time after sampling
the time required to compute a first chunk of points of the dataset, both on
the GPU and on the CPU. Considering that the skyline computation for our
datasets takes more than a second, we can afford to invest around 10 ms in
precomputing the first chunk of a dataset in order to estimate the total execution
time. Moreover, the result obtained after this precomputation is not wasted,
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but saved and never re-computed later on, so as we will see in the experimental
evaluation, this strategy pays off well.

The second challenge is that estimating tgpu and tcpu is not possible if the GPU
and the CPU are already busy processing data queries. This problem is tackled
by batching the incoming data queries so that we conduct the precomputation
and estimate total execution times for all the datasets in the batch. When the
last data query of either the GPU or the CPU queue is launched, a new batch of
data queries is sampled and HEFT is run to map them on the right queue. This
not only avoids having to wait for the GPU to become idle to run HEFT, but
also helps HEFT in having a farther view into the “future”, which makes HEFT
more profitable.

5.2.3. Fine-Grained Heterogeneous SkyFlow

We also wanted to explore a different heterogeneous approach in which the
GPU and the CPU are more tightly coupled. Instead of having two different data
queries being processed simultaneously on the GPU and CPU with the SkyFlow-
CG implementation, the idea now is to have a single dataset partitioned so that
the GPU and the CPU collaborate in the skyline computation of this data query.
We call this version Fine-Grained SkyFlow, SkyFlow-FG, and the corresponding
flow graph is depicted in Figure 5.5.
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Figure 5.5: Structure of the Fine-Grained SkyFlow graph, SkyFlow-FG.

The starting point is the SYCL-GPU implementation that was described in
Section 5.1.3. As we said, the code listed in Algorithm7 comprises two main
stages: (1) pre-processing (lines 1-10); and (2) the main loop (lines 11- 25) that
has d iterations (kernel invocations). The idea now is to efficiently distribute the
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computation between the GPU and the CPU, provided that the SYCL code is
portable so that the SYCL-CPU version can run on the CPU.

The preprocessing stage only accounts for around 10% of the execution time,
and it is more than 10x faster on the GPU than on the CPU. Therefore, the
slowest stage in the flow graph of Figure 5.5 is not the preprocess one which
means that the preprocessing time gets hidden (one dataset is preprocessed and
ready to be dispatched while the previous dataset is being computed). With all
this, it is advisable to only exploit the GPU during this small fraction of the
execution time.

However, the remaining 90% of the time is consumed in the main loop in which
the same kernel in invoked d times (it depends on the number of dimensions).
Provided that the kernel (lines 12-23 in Algorithm 7) is executed over a range
of (independent) points, it is possible to partition this range so that a number
of sub-ranges (or chunks) are executed by SYCL-GPU and the rest by SYCL-
CPU. This implies constructing two SYCL queues, one targeting the GPU and
the other attached to the CPU device (see [46] for details on constructing device
queues). It also requires merging the output of the GPU partial computation with
the CPU one. Both devices write in private copies of the result array (GPU_-
array and CPU_array in Figure 5.5) in which dominated points are marked with
ones (line 23 in Alg .7). Once both arrays have been fully written (note the
join node after the CPU+GPU stage, instead of the indexer node used in
Figure 5.4), the merge node reduces them into the GPU_array. Marked points
in this summarized array are pruned from the dataset (line 24 in Algorithm7).

Moreover, this Fine-Grained implementation also requires finding the right
partition of the iteration space, so that load unbalance is avoided. Again, the
join node after the CPU+GPU stage synchronizes both devices so the slowest
one sets the stage time. The dispatch, CPU+GPU execution and merge, is re-
peated d times which reinforces the load balance requirement. The dispatch
node takes care of computing the right partitioning. As we will see in the next
section, a dynamic partitioning will be necessary to consider that the optimal
partition depends on the relative speed of each device, which can change for each
dimension (out of d) and during the traversal of each dimension. This dynamic
partitioning splits the iteration space into chunks of constant size. These chunks
are processed on demand by the CPU and GPU devices (the device that becomes
idle takes the next chunk until the iteration space is completed).
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5.3. Coarse-Grained and Fine-Grained optimiza-
tions

5.3.1. Model for estimating Coarse-Grained execution times

As stated in subsection 5.2.2, the HEFT strategy requires the estimation of
the execution times on the GPU and the CPU, tgpu and tcpu, for each dataset in
an incoming batch of data queries. In this section we provide the details of the
model that computes those times, which are shown in Algorithm 8. This model
estimates the execution time of a dataset by profiling a small chunk of iterations
both on the OpenMP-CPU and SYCL-GPU nodes.

Algorithm 8: Coarse-Grained HEFT model
Input: S=Dataset of n points and d dimensions;
Chcpu, Chgpu=CPU and GPU chunks.
Output: tcpu, tgpu= estimated CPU and GPU times for S.

1 (tc, ncpu)=launch_OpenMP-CPU (Chcpu)
2 ([tg0 : tgd−1

], [ng0 : ngd−1
], ngpu)=launch_SYCL-GPU (Chgpu)

3 λc ← Eq. 5.6
4 tcpu ← Eq. 5.7
5 foreach iteration i ∈ [0, d) do
6 Fi ← Eq. 5.9; mgi ← Eq. 5.10
7 λgi ← Eq. 5.8
8 tgpu ← Eq. 5.11
9 return (tgpu, tcpu)

In Algorithm 8 we see that the heuristic to compute our model starts launching
two chunks: Chcpu on the OpenMP-CPU node and Chgpu on the SYCL-GPU
one (lines 1-2). The size of the chunk to perform the profiling is tuned at runtime.
In our approach, by default it is set to 1% of the dataset size. We have found
that if the reported time is around 10 ms, then the sample will typically help to
provide an accurate estimation in our model. In the case that the chunk runtime
is below 10 ms, then a new chunk twice the size of the previous one is launched.
This process repeats until the reported processing time is above 10 ms.

It is important to note that the work computed in this profiling stage is not
wasted because the points computed in these chunks are recorded and counted
for the complete execution later.
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For the Chcpu chunk we record the execution time, tc, and points explored,
ncpu. These results are used to calculate the throughput of the CPU chunk as we
see in Equation 5.6. For it, we assume a worst-case scenario in which all points
of the chunk are compared when computing the OpenMP-CPU algorithm.

λc =
(ncpu · (ncpu − 1))/2

tc
(5.6)

The estimated execution time on the CPU for dataset S, tcpu, can be com-
puted with Equation 5.7, where again we assume a worst-case scenario where all
points of the dataset (n) are compared. In Section 5.4.2 we analyze the accuracy
of our assumption and provide results that indicate the estimated vs measured
execution times for the OpenMP-CPU algorithm are always within the range
±10% in our datasets.

tcpu =
(n · (n− 1))/2

λc
(5.7)

For the Chgpu chunk we now record the execution time, tgi , and points ex-
plored, ngi , in each iteration i of the main loop that traverses the d dimensions
of the dataset (lines 11-25 in the SYCL-GPU algorithm). We also record the
size of the GPU chunk, ngpu. In the SYCL-GPU algorithm, at the end of each
iteration of d loop, the dominated points are removed, so fewer points enter into
the next iteration. We use this information (and the time per iteration) to com-
pute the throughput of the GPU chunk as we see in lines 5-7 in Algorithm 8. In
particular, we compute the GPU throughput for each dimension i, λgi as we see
in Equation 5.8, where we assume a worst-case scenario in which all the recorded
points in the corresponding dimension (ngi) are compared.

λgi =
(ngi · (ngi − 1))/2

tgi
(5.8)

From the information collected from the GPU chunk profiling, we can compute
the ratio of points filtered when going from dimension i− 1 to dimension i. This
ratio, Fi, is shown in Equation 5.9.

Fi =


ng0
ngpu

if i == 0

ngi
ngi−1

otherwise
(5.9)
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From this ratio of filtered points, Fi, assuming an uniform distribution of the
pruning of points for each dimension, we can extrapolate the number of points
that will enter into each iteration of the d loop.

This number of estimated points per iteration, mgi is computed by Equa-
tion 5.10.

mgi =

{
n · F0 if i == 0

mgi−1 · Fi otherwise
(5.10)

Both the GPU throughput and estimated number of points for each dimension
i, λgi and mgi respectively, are used to compute the estimated execution time on
the GPU for dataset S, tgpu, as we shown in Equation 5.11. Again, we assume
a worst-case scenario where all the estimated points in each dimension (mgi)
are compared. In Section 5.4.2 we analyze the accuracy of our assumptions and
provide results that indicate that the estimated vs actual execution times for the
SYCL-GPU algorithm are within ±2% in our datasets.

tgpu =

d−1∑
i=0

(mgi · (mgi − 1))/2

λgi
(5.11)

5.3.2. Strategy for the Fine-Grained partitioning

As stated in Section 5.2.3, the main kernel of the SkyFlow-FG approach,
which is launched d times to process the points of the dataset, can be partitioned
into sub-ranges (or chunks) of independent points, which can be computed con-
currently: while one chunk is computed by the SYCL-CPU node, another one
can be computed by the SYCL-GPU node. We conducted a preliminary study in
which we did not partition the datasets among the devices. Instead, we launched
the main kernel d times on one node (either on the CPU or on the GPU), without
partitioning the points explored in each dimension, and measured the throughput
per dimension d. We conducted this analysis for different configurations of our
datasets (with different dataset sizes and dimensions) on our platform of refer-
ence (octa-core Intel i9-9900K CPU with integrated GPU, more details in Sec-
tion 5.4.1). For instance, on Table 5.1 we show the GPU and CPU throughputs
(ThGPU, ThCPU) for the NBA dataset with a configuration of 2 Million points
and 7 dimensions. In addition to the throughput per dimension, we compute the
total throughput and the relative speed or ratio ThGPU/ThCPU per dimension
(column Ratio). As we see, the relative speed fluctuates for each dimension.
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A similar result was reported for other datasets and configurations. Thus, the
partitioning strategy must be carefully designed to consider this behavior.

In this context, a dynamic partitioning strategy seems suitable.

d ThGPU ThCPU Ratio
1 7.08 · 1011 5.88 · 1011 1.20
2 5.96 · 1010 4.25 · 1010 1.40
3 4.13 · 1010 2.80 · 1010 1.47
4 3.98 · 1010 2.34 · 1010 1.70
5 3.24 · 1010 1.77 · 1010 1.83
6 1.53 · 1010 7.24 · 109 2.11
7 2.76 · 109 1.58 · 109 1.75

Total 6.65 · 1011 5.35 · 1011 1.24

Table 5.1: Throughput per dimension for the main kernel on the SYCL-GPU
and SYCL-CPU nodes (the higher the better). NBA dataset with n = 2M and
d = 7.

In fact, in Figure 5.6 we explore the behavior of a dynamic partitioning strat-
egy that feeds the SYCL-CPU (or SYCL-GPU ) node with chunks of points and
see how the chunk size affects performance. In particular, we show the through-
put on the CPU (or the GPU) device, for the first dimension traversal (d = 1)
of the main kernel when a dynamic strategy partitions the iteration space in 10,
20, 30 and 40 chunks.

As we see in the figure, the throughput per chunk throughout the iteration
space is highly variable in both devices. The same behavior is observed for the
rest of dimensions of the main kernel, other datasets and configurations. This
result points out that adaptive or predictive strategies based on the profiling of
previous chunk samples can be misleading at this level of work granularity. So,
it confirms that a dynamic partition strategy with a carefully selected chunk size
must be adopted. From the figure we note that when the number of chunks is
smaller, i.e. the chunk size is bigger, the measured GPU throughput tend to be
higher. In fact, the GPU throughput degrades around 2% when the number of
chunks doubles (i.e. the chunk size is halved). However, the CPU throughput
tends to be independent of the chunk size. This result confirms that the SkyAlign
algorithm at the core of the SYCL-GPU and SYCL-CPU implementations better
exploits GPU architecture features such as coalesced memory accesses -thanks to
the padding and re-packing of the main data structures-, as well as divergence
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Figure 5.6: Throughput per chunk when using a dynamic partition with 10, 20, 30 and
40 chunks for the first dimension traversal of the main kernel on the SYCL-CPU or the
SYCL-GPU node (the higher the better). NBA dataset with n = 2M and d = 7.

minimization -thanks to the static mapping of the threads that in any given warp
ensures that they work on a small set of aligned data blocks-.

In our SkyFlow-FG approach, the dispatch node (see Figure 5.5) keeps track of
the sub-range of points (chunks of Chunk_size iterations) assigned to each device
for each dimension d that is traversed. This node is responsible for sending chunks
to the SYCL-GPU and SYCL-CPU nodes once the previous chunk computation
has finished on the corresponding device. The last sub-range of the iteration
space (containing at most Chunk_size iterations) is partitioned again to keep
balance among devices in the final stage of the computation. In any case, when
designing our heterogeneous dynamic strategy we have to seek a trade-off chunk
size: big enough to fully exploit the GPU micro-architecture features and to
enable a near-optimal GPU throughput, but small enough to provide a sufficient
number of chunks able to feed both devices while balancing the workload at the
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end of each dimension computation. Let’s note in Figure 5.5 that although the
chunks of iterations can be assigned asynchronously to the SYCL-GPU /SYCL-
CPU nodes, after the computation of all chunks by those nodes there is a join
node that synchronizes both devices.

In Section 5.4.3 we experimentally explore the performance of our heteroge-
neous dynamic strategy when selecting different chunk sizes for our datasets.

5.4. Experimental results

5.4.1. Experimental setting

The processor architecture and software details of each platform can be found
in Tables 5.2 and 5.3, respectively.

Table 5.2: Platform details .

Microarchitecture

Processor i9-9900K 3.6 GHz

Number of cores 8

Clock Speed 3.6 GHz

Max Turbo Frequency 5.0 GHz

Main memory 32GB DDR4

Cache L3 16 MB

Litography 14 nm

Max TDP 95 W

Intel Graphics GPU UHD Graphics 630

Number of GPU Compute Units 24

GPU Base Frequency 350 MHz

GPU Max Dynamic Frequency 1.2 GHz

CPU executions for OpenMP or SYCL algorithms use 8 threads. Times are
measured using the chrono library [177]. The results shown in this section cor-
respond to the median of 11 runs. Time measured do include all algorithms ex-
ecution from the beginning to the end including memory allocation and release,
transfers between host and device, sequential and parallel parts of the code, but
do not include reading input files into CPU memory and checking results with
gold execution.
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Table 5.3: Software details.

Operating System Ubuntu 20.04.3 LTS

SYCL Intel(R) oneAPI DPC++/C++ Compiler 2021.4.0

OpenMP g++ 9.3.0

Vectorization AVX2

optimization flags -O2 -fopenmp -std=c++17

We conduct the experimental evaluation of our proposals using four real
datasets, widely used in the skyline research literature: House [178], NBA [179],
Covertype [180], Weather [181].

House (HH): This dataset [178] reports in each row one household from
US and the percentage distribution of the income in different categories
(e.g., rent/mortgage, electricity, etc).

Basketball (NBA): This NBA basketball league dataset [179] records
in each row one player’s statistics from one season (e.g., points scored,
free throws made, etc). While traditional statistics analysis in sports study
players individually, the skyline allows to identify players that do not excels
in any particular attribute but have well global performance along the set
of attributes (which will correspond to a skyline point). Therefore, this
dataset is one of the most widely used in skyline research.

Weather (WE): The WE dataset [181] covers weather variables such as
monthly precipitation, latitude, longitude and elevation in each row for
different terrestrial positions around globe. Each row records 10’ latitude/-
longitude cell. The weather variables between the captured cells are highly
dependent, since the meteorological conditions are very similar in the cells
corresponding to the same regions. Thus, the WE dataset presents highly
dependent attributes whose results are very interesting to be compared with
other real dataset.

Covertype (CT): This CT dataset [180] shows cartographic variables for
900 square meters grid cells of the Roosevelt National Forest in Colorado,
USA. According skyline research, this dataset is very challenging, since
many points share the extreme values. Thus, the skyline is larger in this
dataset than in the others.

For each dataset we can define different configurations changing the number
of dimensions and points. In particular, the number of dimensions can go from
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4 to 10 and the datasize from 1 Million to 8 Million points. This makes a total
of 224 dataset configurations, from which we will illustrate the most relevant
findings in the next sections.

5.4.2. Evaluation of CG-HEFT Model accuracy

This section evaluates the accuracy of the time estimation model discussed in
the Coarse-Grained HEFT Heuristic detailed in Section 5.3.1 and Algorithm 8.
Let’s remember that the HEFT scheduling heuristic is used by the SkyFlow-CG
approach to allocate any arriving data query on the queue that guarantees to
finish earlier. For that, it must be estimated the execution times for comput-
ing the skyline of the incoming dataset, both under the SYCL-GPU /OpenMP-
CPU algorithm (on the GPU and CPU device, respectively). For the evaluation
of our model, we run the 224 dataset configurations first on the SYCL-GPU
node (assuming that the OpenMP-CPU node is not available), and then on the
OpenMP-CPU node (assuming now that the SYCL-GPU one is not available).
For each experiment and configuration, we record the time estimated by our
model (Est-XXX) and the actual execution time after the skyline computation
(Meas-XXX), both on the GPU and CPU devices. In Figure 5.7 we show a subset
of these times. For each dataset, the subfigure on the left fixes d = 8 and changes
n from 1 · 106 to 8 · 106. The right subfigure changes d from 4 to 10 for a fixed
n = 8 · 106.

From Figure 5.7 we see that the estimated and actual measured times are very
close, both on the GPU and CPU (SYCL-GPU and OpenMP-CPU algorithms,
respectively). In particular for the SYCL-GPU results, the difference goes from
[-1.2%,0.23%] for House, [-1.6%,0.61%] for NBA, [-1.8%,0.83%] for Covertype
and [-1.9%,2%] for Weather. Now, for the OpenMP-CPU experiments the range
goes from [-6.93%,7.2%] for House, [-8.28%,9.72%] for NBA, [-10.18%,10.45%] for
Covertype and [-10.3%,10.5%] for Weather. A negative value means the model
overestimates the actual measured time, while a positive one indicates that the
model underestimates it. Although the accuracy is slightly worse for OpenMP-
CPU compared to SYCL-GPU, our model is still accurate enough for the CG-
HEFT scheduling heuristic. We base this claim in the fact that, for any given
arriving data query the difference between the actual execution times on each
device is much higher (from 1.5x to 4x) than the ± 10% of inaccuracy incurred
by the model when making the decision to enqueue on one device. In other words,
our model always selects the appropriate queue.
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Figure 5.7: Estimated vs actual measured times for the SYCL-GPU and OpenMP-CPU
algorithms and four datasets (the lower the better).

5.4.3. Evaluation of the partition strategy in Fine-Grained
Heterogeneous SkyFlow

In this section we analyze the performance of the heterogeneous dynamic
partition strategy proposed in Section 5.3.2 whose goal is to find the near-optimal
workload assigned to the SYCL-GPU and SYCL-CPU nodes in order to optimize
the throughput in the SkyFlow-FG approach. As discussed in the mentioned
section, this strategy asynchronously assigns chunks of iterations to the GPU
and CPU devices for each traversal d of the main loop. The critical design issue
is to find a chunk size big enough to ensure a near-optimal GPU throughput,
but small enough to provide a sufficient number of chunks able to feed both
devices while balancing the workload at the end of each iteration of the d loop.
In Figure 5.6 we showed the evolution of the throughput per chunk on each
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device when setting different number of chunks (and therefore different chunk
sizes) in a dynamic partitioning on a configuration of the NBA dataset. Now in
Figure 5.8, for the same dataset configuration, we show the average throughput
when running the dynamic partitioning only on the SYCL-CPU node (ThCPU),
only on the SYCL-GPU node (ThGPU), and compare them with the average
throughput when running the heterogeneous dynamic partitioning on the SYLC-
CPU+SYCL-GPU nodes (ThCPU+GPU). Also, we depict an ideal throughput
(Ideal) computed as the aggregation of the throughputs on the CPU and GPU
without partitioning, so the partitioning overhead and load unbalance between
devices is factored out.
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Figure 5.8: Average throughput for the dynamic partitioning strategy in the
SkyFlow-FG approach and different number of chunks (the higher the better).
Device-only executions (ThCPU, ThGPU) are compared with heterogeneous exe-
cution (ThCPU+GPU) and ideal throughput (Ideal). The values represent the
percentage of performance degradation of the heterogeneous CPU+GPU execu-
tion with respect to the ideal throughput (the lower the better). NBA dataset
with 2M points and 7 dimensions.

As explained in Section 5.3.2, whereas the ThCPU is constant regardless the
number of chunks, the ThGPU tends to slightly degrade when increasing the
number of chunks (i.e., when reducing the chunk size). The GPU throughput
degrades slightly: around 2% when the number of chunks is doubled. Interest-
ingly, the heterogeneous ThCPU+GPU increases from 10 to 20 chunks, and then
it degrades slightly from 30 onward (less than 1%). The values we see in the fig-
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ure (the percentage of performance degradation of the heterogeneous execution
with respect to the ideal throughput) helps to quantify, in part, the impact of
load unbalance on the heterogeneous performance, because smaller chunks tend
to minimize the unbalance. As we see, when the number of chunks is small (10,
i.e. bigger chunks), load unbalance is the main factor that explains the 5.7%
of performance degradation. Increasing the number of chunks to 20 (decreasing
chunk size) reduces load unbalance to 1.95% (the sweet spot for this dataset con-
figuration). However, from 30 chunks onward we see again degradation of the
heterogeneous throughput compared to the ideal: now the minimization of the
load balance is not compensated by the degradation of the GPU throughput due
to smaller chunks. We conducted an exhaustive exploration of the optimal num-
ber of chunks (chunk size) for each dataset and configuration, and the optimal
values that were found are used for the results of the SkyFlow-FG approach that
we present in the next section.

5.4.4. Evaluation of heterogeneous SkyFlow approaches

In this section we present performance results of the SkyFlow approaches that
we introduce in Section 5.2. We measure the performance when streaming 100
data queries and record the median of 11 runs. One stream of data queries con-
sist of mixed configurations (dataset size and dimensions) of the same dataset.
As explained in Section 5.1.5, the performance of the skyline computation of a
data query is highly irregular, heavily depending on the dataset configuration,
algorithm and device. Thus, to thoroughly study the efficiency of our propos-
als, we evaluate two streaming scenarios: Random (R) and Unbalanced (U).
Whereas the Random scenario contains a random distribution of data queries, the
Unbalanced scenario contains only data queries that run faster using SYCL-
GPU than OpenMP-CPU. The second column of Table 5.4 provides details of the
number of data queries that are faster with SYCL-GPU and with OpenMP-CPU
under the R scenario for each dataset. The table also reports the mean times (in
seconds) that the baselines SkyFlow-GPU and SkyFlow-CPU archive for the R
and U stream scenarios.

The performance improvement of our heterogeneous proposals: SkyFlow-CG
under WC scheduling (SkyFlow-CG WC), SkyFlow-CG under HEFT schedul-
ing (SkyFlow-CG WC) and SkyFlow-FG under optimal dynamic partitioning
(SkyFlow-FG), are presented in Figure 5.9 for the two streaming scenarios (R
-patterned bars- and U -solid bars-) in our four datasets. The performance im-
provement is presented as the speedup of each heterogeneous proposal vs. the
baseline SkyFlow-GPU and the baseline SkyFlow-CPU (see Figure 5.3), for both
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Table 5.4: Data queries mix for scenario R; Mean times (sec.) for baselines
SkyFlow-GPU and SkyFlow-CPU (the lower the better) for scenarios R and U in
our four datasets.

Dataset R: GPU-
CPU queries

R: SkyFlow-
GPU time

R: SkyFlow-
CPU time

U: SkyFlow-
GPU time

U: SkyFlow-
CPU time

NBA 44-56 2596.70 2464.87 4659.91 8719.60

House 38-62 894.04 890.81 701.56 4841.28

Covertype 13-87 3041.16 4032.88 4495.52 24311.40

Weather 22-78 1927.74 3040.70 2100.33 7438.54

streaming scenarios (named R-GPU, U-GPU and R-CPU, U-CPU respectively).
Evaluating the performance improvement of the heterogeneous implementations
against the homogeneous baselines helps us to quantify the gain of heterogeneous
implementations compared to single-devices ones in complex streaming scenarios.

As we see in Figure 5.9, our heterogeneous approaches always outperform
SkyFlow-GPU and SkyFlow-CPU baselines in the two streaming scenarios and
four datasets. In fact, they outperform GPU and CPU baselines up to 5.19x
and 6.86x, respectively. This result tells us that exploiting both devices with
our heterogeneous solutions is usually more profitable than using just one device.
Even if the device selected for the arriving data query is not the optimal one
(CG approaches), or even if we partition the data points among devices (FG
approach). For the U scenario, all the data queries are faster on the SYCL-GPU
node, so the times for the baseline SkyFlow-CPU always take longer than for the
SkyFlow-GPU (see the last two columns in Table 5.4). Thus, any heterogeneous
approach that considers the GPU for this stream of data queries will show an
important speedup when compared to SkyFlow-CPU (U-CPU) vs the speedup
that we obtain when compared to SkyFlow-GPU (U-GPU) (see yellow solid bars
vs blue solid bars). Regarding the R scenario (the patterned bards), the speedup
against baseline SkyFlow-CPU (R-CPU) and SkyFlow-GPU (R-GPU) tend to be
similar for NBA and House datasets, because the stream of data queries takes
similar time in both datasets, while for Covertype and Weather datasets the
speedup against SkyFlow-CPU is higher than the speedup against SkyFlow-GPU,
because the times for SkyFlow-CPU take longer than for the SkyFlow-GPU in
these cases (see third and fourth columns in Table 5.4). In any case, in the next
subsections we discuss the main findings for our heterogeneous approaches.
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Figure 5.9: Performance improvement of SkyFlow proposals for the four datasets and
two streaming scenarios: R for random and U for unbalanced. The improvement is
computed as a speedup vs the baseline SkyFlow-GPU (-GPU) and the baseline SkyFlow-
CPU (-CPU). Oracle represents the optimal scheduling of queries for the SkyFlow-CG
approach, which has been evaluated offline. The higher the better.

5.4.4.1. Analysis of Coarse-Grained heterogeneous scheduling strate-
gies

The SkyFlow-CG is a hybrid approach that considers two skyline algorithmic
implementations that are optimal for each one of the two devices we target in
this work: SYCL-GPU and OpenMP-CPU. As illustrated in Section 5.1.5, in our
platform the optimal algorithm-device depends on characteristics of the arriving
data query. The scheduling strategies proposed in Section 5.2.2, WC and HEFT,
allocate any arriving data query either on the SYCL-GPU or the OpenMP-CPU
queue following two different goals. The WC policy tries to keep the length of
the queues equalized (same number of pending tasks) independently of which
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algorithm-device is best suited for the arriving query. By contrast, the HEFT
strategy enqueues the incoming query in the queue in which it will finish earlier.
While WC has minimum scheduling overhead and ensures that the devices are
not idle if there are data queries ready, the HEFT strategy tries to optimize the
system throughput. For the HEFT strategy and for the two streaming scenarios
and the four datasets evaluated in this work, we have found that a batching size
of 5 data queries (to perform the estimation of the expected times for the data
queries in the batch) provides a good trade-off between the overhead due to the
precomputation required for the times estimations and the likelihood that one of
the devices becomes idle when one of the queues runs out of queries.

From Figure 5.9 we see that HEFT strategy always outperforms WC in all
scenarios and datasets. Although WC scheduling minimizes the idle time on each
device, it introduces a scheduling inefficiency by enqueueing queries in the non-
optimal device. This inefficiency has a larger impact in the R scenario, where
HEFT outperforms WC by 2.73x, 1.67x, 3.32x and 2.36 for NBA, House, Cover-
type and Weather, respectively. However, in the U scenario, HEFT outperforms
WC by 1.02x, 1.04x, 1.08x and 1.07x, respectively, what demonstrates that even
for non favorable situations HEFT still makes better scheduling decisions than
WC. Another remarkable finding is that in the HEFT experiments we measure
a time standard-deviation that goes from 0.17% to 0.47%, while in the WC runs
it goes from 0.85% to 6.5%. These results point to the fact that HEFT also
produces more stable executions.

Interestingly, in the most unfavorable scenario, that is U streaming, WC
achieves improvements between 1.08x and 1.46x when compared to the optimal
baseline SkyFlow-GPU. This corroborates the fact that from the point of view
of the whole system performance, trying to keep both devices busy is still more
beneficial that leaving the CPU idle, even if the CPU runs queries for which it is
not the best device.

To measure the efficiency of our HEFT scheduling heuristic, we compare its
performance with an Oracle approach that first computes offline the optimal de-
vice for each data query and uses this information to enqueue the query. Oracle
also avoids the overhead of precomputing the expected execution time on any
device for any incoming data query. Thus, Oracle represents the ideal peak per-
formance for any CG scheduling policy. The results show that the performance
of HEFT is below Oracle in 6.08%, 4.84%, 5.14%, 5.14% for NBA, House, Cover-
type and Weather, respectively. As we see, our scheduling heuristic introduces a
low overhead while ensuring a near-optimal scheduling of data queries.
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5.4.4.2. Study of Coarse-Grained vs Fine-Grained approaches

In this section we compare the performance of the SkyFlow-FG approach
with the SkyFlow-CG HEFT, since the last one always outperforms SkyFlow-
CG WC. Let’s recall that in SkyFlow-FG, the workload of each data query is
dynamically partitioned between the SYCL-GPU and SYCL-CPU nodes, and
that the size (and number) of data chunks must be carefully selected, as we
discussed in subsection 5.4.3. From Figure 5.9 we see that SkyFlow-CG HEFT
always outperforms SkyFlow-FG in the R scenario, because SkyFlow-CG HEFT
takes advantage of the better adaptation of each specific query to the most suit-
able algorithm-device. However, fine-grained work partition in SkyFlow-FG does
not pay off for the execution of queries with suboptimal performance under the
SYCL algorithm.

On the other hand, in the U scenario we get some interesting results. In
this case all the queries run faster under the SYCL algorithm. SkyFlow-FG will
achieve optimal performance for all the queries, while SkyFlow-CG HEFT will
degrade performance when executing queries in the OpenMP-CPU node. In this
scenario SkyFlow-FG outperforms SkyFlow-CG HEFT by 1.22x, 1.5x, 1.27x and
1.37x for NBA, House, Covertype and Weather, respectively. In other words,
when the incoming data queries run faster on the GPU device (SYCL) it can be
advantageous to exploit a dynamic fine grain partition of the workload of each
query between the GPU and CPU devices.

5.5. Conclusions

The skyline is an optimization operator widely used for multi-criteria deci-
sion making. It allows minimizing an n-dimensional dataset into its smallest
subset. In this work we present SkyFlow, the first heterogeneous CPU+GPU
graph-based engine for skyline computation on a stream of data queries. Two
data flow approaches, Coarse-grained and Fine-grained, have been proposed for
different streaming scenarios. Coarse-grained aims to keep in parallel the compu-
tation of two queries using a hybrid solution with two state-of-the-art skyline al-
gorithms: one optimized for CPU and another for GPU. We also propose a model
to estimate at runtime the computation time of any arriving data query. This
estimation is used by a heuristic to schedule the data query on the device queue
in which it will finish earlier. On the other hand, Fine-grained splits one query
computation between CPU and GPU. Our experimental results show that in
our streaming scenarios and datasets, our heterogeneous CPU+GPU approaches
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always outperform previous only-CPU and only-GPU state-of-the-art implemen-
tations up to 6.86x and 5.19x, respectively, and they fall below 6% of ideal peak
performance at most. We also evaluate the suitability of Coarse-grained vs Fine-
Grained in two different streaming scenarios: random and unbalanced.

Summarizing, the main contributions of this chapter are:

We contribute, to the best of our knowledge, with the first heterogeneous
implementation for skyline computation. We port from CUDA to oneAPI
the state-of-the-art algorithm, splitting the computation between CPU and
GPU. We also contribute with a dynamic partitioning heuristic to optimize
performance between devices.

We propose two heterogeneous implementations for skyline computation
over a streaming of data queries: Coarse-grained and Fine-grained. Coarse-
grained keeps two skyline computation in parallel, one per device, while in
Fine-grained a single skyline computation is split between CPU and GPU.
We validate the suitability of each implementation for different streaming
scenarios.

We present two policies for balancing workloads between devices in the
Coarse-grained approach. Each device has a queue assigned for enqueueing
queries. The first approach keeps devices busy offloading queries in the
shortest queue. The second approach estimates the execution time for the
input query on each device. To such end, we develop a model that estimates
the execution time of an input query with negligible overhead, by sampling
a small chunks of points at runtime. That estimated time is used to balance
the workload considering the accumulated estimated execution times in each
queue.



6 Concluding Remarks

This chapter summarises the findings of this thesis. We propose several run-
time strategies for optimizing two irregular massive data applications in hetero-
geneous architectures: the Matrix Profile and the skyline computation over a
strem of data queries. Our goal is exploring programming models that allow us
to minimize the user’s programming effort while getting the most out of these
applications performance when ported to accelerator-based heterogeneous plat-
forms.

Section 6.1 summarizes the contributions presented in the publications de-
rived from the central chapters of this thesis. Section 6.2 details the limitations
encountered after the completion of the work. Section 6.3 focuses on the future
lines of research that would be the natural continuation of this thesis.

6.1. Contributions

Chapter 3 explores different alternatives to optimally map the Matrix Profile
algorithm onto commodity processors featuring several CPU cores and an inte-
grated GPU. We first validated that in homogeneous scenarios (only CPU cores)
a dynamic partitioning of the iteration space (diagonals) based on oneTBB and
work stealing outperforms (by up to 11.3%) an ideal static distribution that
evenly distributes, a priori, the number of elements.

A further step to better exploit the heterogeneous chips consists in also of-
floading part of the computational burden to the GPU. With this in mind, we
propose HetMP, based on oneTBB, an extension of a previous library developed

145
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by our research group, which offers an easy abstraction layer and provides sev-
eral scheduling strategies that exploit the Shared Virtual Memory (SVM) feature
available in OpenCL 2.1, as well as different solutions to the workload balance
among devices. We develop and analyze two versions of the Matrix Profile ker-
nel, NonAtomic (faster but unsafe) and Atomic (slower but precise), concluding
that the Atomic version only incurs in up to 8.9% of performance degradation
w.r.t. the NonAtomic one for the GPU only execution. Three alternatives to dis-
tribute the workload between the CPU and the GPU have been evaluated (Static,
Dynamic and LogFit), finding that the most productive one is LogFit when an
exact solution is required. However, if the magnitude to minimize is the energy
consumption, offloading all the computation to the GPU is advisable. For future
work we plan to extend the heterogeneous scheduler so that it can be instructed
to minimize energy or a performance/energy tradeoff, instead of always seeking
maximum performance.

Chapter 3 has been elaborated on the basis of the following publications:

Time Series collaborative execution on CPU + GPU chips.
Jose Carlos Romero, Angeles Navarro, Andrés Rodríguez, Rafael Asenjo and
Murray Cole
In HPC-Europa3 Transnational Access Meeting (TAM), Edinburgh, Scoth-
land, October 2018. (International Conference).

Time Series heterogeneous Co-execution on CPU + GPU chips.
Jose Carlos Romero, Angeles Navarro, Andrés Rodríguez, Rafael Asenjo and
Murray Cole
In 19th International Conference Computational and Mathematical Methods
in Science and Engineering (CMMSE), Cadiz, Spain, July 2019. (Interna-
tional Conference).

ScrimpCo: scalable matrix profile on commodity heterogeneous
processors.
Jose Carlos Romero, Antonio Vilches, Angeles Navarro, Andrés Rodríguez
and Rafael Asenjo.
In The Journal of Supercomputing volume 76, pages 9189–9210 , February
2020. DOI: 10.1007/s11227-020-03199-w. JCR T1/Q2 Journal. Category:



6.1. Contributions 147

Computer Science, Theory and Methods. Ranking category 33/110. Impact
Factor: 2.474).

Chapter 4 proposes a novel hierarchical scheduler named Fastfit, to efficiently
balance the workload in a heterogeneous FPGA-based system - that includes
banks of HBM1 - while ensuring near-optimal throughput with minimal runtime
overhead, and we have used the Matrix Profile to illustrate its applicability. Fast-
fit is a system-level scheduler based on an analytical model of the FPGA pipeline
IPs that helps us to find the FPGA chunk size that guarantees near-optimal
FPGA throughput, and from that, the CPU chunk size that ensures load balance
among devices. Besides, Fastfit includes a device-level scheduler that provides an
effective partition of the FPGA chunk into sub-chunks for each FPGA IP.

Through exhaustive evaluation, we validate the accuracy of our models and
the optimality of Fastfit for getting the near-optimal FPGA chunk size, finding
that our model prediction is within the 97%-99% of the actual measured best
throughput. We also compare different strategies for performing the device-level
partition of the FPGA chunk among IPs, finding that the Balanced strategy that
is aware of the triangular geometry of the problem improves the performance
of a naive Block one by 16.45%. We also find that a simple model of the HBM
usage bandwidth and the sharing of banks among IPs allow us to set the minimum
number of active banks that ensure the maximum aggregated memory bandwidth
while reducing power consumption.

We compare our proposed scheduler with previous scheduling strategies (Static,
Dynamic and Logfit) and we demonstrate that our new scheduler improves all
of them in terms of performance. Moreover, Fastfit is 4.68% better than Logfit,
a previous state-of-the-art adaptive scheduler that finds the near-optimal chunk
size for each device without the need of offline profiling. The reason of that im-
provement is that our new proposal avoids the logarithmic fitting overheads of
Logfit. In fact, Fastfit is only 0.6% away from the ideal heterogeneous execution.
However, if our goal is to minimize energy consumption, offloading all the work-
load to the FPGA is the best choice. Using only FPGA reduces in -57.88% the
energy consumption and improves in 36.66% the energy efficiency when compared
to Static -the second best scheduler regarding energy metrics-.

Chapter 4 has been elaborated on the basis of the following publication:

1HBM=High Memory Bandwidth
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Efficient heterogeneous Matrix Profile on a CPU + High Per-
formance FPGA with integrated HBM.
Jose Carlos Romero, Angeles Navarro, Antonio Vilches, Andrés Rodríguez,
Francisco Corbera and Rafael Asenjo.
In Future Generation Computer Systems, 125, pages 10-23, December 2021.
DOI: 10.1016/j.future.2021.06.025. JCR T1/Q1 Journal. Category: Com-
puter Science, Theory and Methods. Ranking category 7/110. Impact Fac-
tor: 7.187.

Chapter 5 tackles the problem of computing the skyline operator over a stream
of independent data queries targeting a heterogeneous architecture comprised of
a multi-core CPU and an integrated GPU. For it, we propose a heterogeneous
graph-based engine, called SkyFlow to efficiently schedule the data queries be-
tween the devices. We propose two approaches that adapt to different streaming
scenarios: Coarse-grained (SkyFlow-CG) and Fine-grained (SkyFlow-FG).

SkyFlow-CG computes concurrently one query per device, using a hybrid
approach: each device runs the algorithm best suited to the specific features of
the corresponding device. For our platform this means that the CPU runs the
state-of-the-art Hybrid algorithm - based on an OpenMP implementation-, while
GPU executes the state-of-the-art SkyAlign - based on a SYCL implementation,
novel in this work-. Although both algorithms exploit work efficiency by reducing
the number of dominance tests required during the skyline computation, for the
real datasets evaluated in our work we have found that on our system, some of
the queries perform better under OpenMP-CPU, while others under SYCL-GPU.

For the SkyFlow-CG approach we consider two scheduling strategies: Work
Conserving (SkyFlow-CGWC) and Heterogeneous Earliest Finish Time (SkyFlow-
CG HEFT). While WC aims to keep all devices busy by enqueueing any arriving
data query on the shortest device queue, the HEFT strategy tries to optimize
the system throughput by enqueuing the incoming query on the device queue in
which it will finish earlier. HEFT requires estimating at runtime the computation
time of an arriving query on each device. For it, in this chapter we introduce a
novel model that is based on an initial sampling of some points of the dataset,
executed under SYCL-GPU and OpenMP-CPU. Through exhaustive evaluation
we have found that the inaccuracy incurred by our model is within ± 10% of ac-
tual skyline computation times, and it is always smaller than the time difference
between algorithm-devices. As a result, our model always selects the optimal
device. In any case, in our evaluation of the scheduling strategies, HEFT al-
ways outperforms WC in all streaming scenarios and datasets. In particular, the
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HEFT strategy outperforms WC up to 3.32x in random scenarios that contain
a random mix of queries well suited for each algorithm-device. Moreover, when
we compare the performance of our HEFT heuristic against an Oracle strategy
that computes offline the optimal device for each query, we find that HEFT only
degrades Oracle peak performance by 6% at most. This corroborates that our
model-based heuristic introduces a low overhead while ensures the optimality of
the scheduling.

Secondly, the SkyFlow-FG approach dynamically partitions the workload
of each arriving data query between the SYCL-GPU and SYCL-CPU nodes.
Through careful selection of the size (and number) of data chunks sent to each
device, we have found that this fine-grained partition strategy is beneficial in a
streaming scenario where the majority of data queries run faster under the SYCL
algorithm. In this scenario SkyFlow-FG outperforms SkyFlow-CG HEFT up to
1.5x.

Chapter 5 has been elaborated on the basis of the following publication:

SkyFlow: Heterogeneous Streaming for Skyline computation us-
ing FlowGraph and oneAPI.
Jose Carlos Romero, Felipe Muñoz, Antonio Vilches, Angeles Navarro, An-
drés Rodríguez and Rafael Asenjo
In VI Congreso Nacional de Informática (CEDI), Málaga, Spain, Sep 2021.
(National Conference).

SkyFlow: Heterogeneous Streaming for Skyline computation us-
ing FlowGraph and SYCL.
Jose Carlos Romero, Angeles Navarro, Andrés Rodríguez and Rafael Asenjo
In Future Generation Computer Systems (under review), June 2022. JCR
T1/Q1 Journal. Category: Computer Science, Theory and Methods. Rank-
ing category 7/110. Impact Factor: 7.187.

6.1.1. Answer to Research Questions

Here we answer the Research Questions introduced in Chapter 1:

RQ #1: Is it possible to develop an optimal heterogeneous implementation for
the state-of-the-art Tiem Series algorithm?
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The answer to this RQ is positive, as stated in the work described on Chap-
ters 3 and 4. Chapter 3 presents the first heterogeneous implementation for the
state-of-the-art Time Series algorithm on a CPU + GPU architecture and Chap-
ter 4 extends this contribution to a CPU + FPGA architecture. We evaluate
the efficiency of three heterogeneous schedulers (Static, Dynamic and LogFit)
for our heterogeneous implementations, and propose a new scheduler specifically
designed for CPU + FPGA architectures, Fastfit.

RQ #2: Can FPGA with HBM capabilities be an efficient accelerator for
Time Eeries computation? And more specifically: Is it possible to develop a
scheduler which leverage such accelerator in an heterogeneous implementation for
the state-of-the-art Time Series algorithm?

The work developed in Chapter 4 answers this RQ positively. The experi-
mental evaluation shows that an FPGA with HBM capabilities is a competitive
accelerator for Time Series computation not only considering performance but
also energy consumption and energy efficiency. Furthermore, we also develop a
methodology based on a analytical model to optimize the memory bandwidth
usage of the HBM banks. More specifically, it is also possible to develop an
scheduler to leverage the FPGA in an heterogeneous implementation. Our ex-
perimental results show that Fastfit, our proposed scheduler, achieves up to to
99.4% of ideal performance.

RQ #3: Is it possible to develop an optimal heterogeneous implementation for
the state-of-the-art skyline algorithm and a model to optimize its performance?

The answer to this RQ is positive, as can be seen in the work developed in
Chapter 5. In the chapter we contribute, to the best of our knowledge, with the
first heterogeneous CPU + GPU implementation, based on the only-GPU state-
of-the-art algorithm, for skyline computation. Our implementation is optimized
with a dynamic partitioning to balance the workload between devices.

We propose two heterogeneous implementations for skyline computation over
a stream of data queries: Coarse-grained, using only-CPU and only-GPU state-of-
the-art implementations and Fine-grained, based on the only-GPU state-of-the-
art algorithm. Coarse-grained keeps two skyline computations in parallel, one per
device, while in Fine-grained a single skyline computation is split between the
CPU and the GPU. Our heterogeneous CPU+GPU approaches always outperform
previous only-CPU and only-GPU state-of-the-art implementations up to 6.86x
and 5.19x, respectively, and they fall below 6% of ideal peak performance at most.
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RQ #4: In the context of the skyline computation, can a multi-algorithm
scheduler be developed for a continuous streaming of datasets that maps the input
received into the best-suited device to optimize the overall system performance?

Continuing with the contributions of Chapter 5, the answer to this RQ is also
positive. We present a multi-algorithm scheduler based on the Heterogeneous
Earliest Finish Time (HEFT) strategy that keeps a queue per device. The sched-
uler estimates the execution time for the input query on each device. To such end,
we develop a model that, at runtime takes small chunks of points from a dataset
and from that extrapolates and estimates the execution time of the whole dataset
with negligible overhead. That estimated time is used to balance the workload
considering the accumulated estimated execution times on each queue. We vali-
date the suitability of the scheduler for different streaming scenarios.

6.2. Limitations

Whereas this thesis provides several contributions, it also has some limita-
tions. The first limitation is related to code portability. For the different sched-
ulers proposed in Chapter3 and 4, we require that the user provides two versions
of the kernel, one for the CPU cores and another for the GPU/FPGA acceler-
ator. However, it would be beneficial to express a unique version of the kernel
that is compiled and run on each computational device within the system. In
this regard, we are working on porting the existing OpenCL code to DPC++,
thanks to the SYCL higher-level abstraction layer that supports all of OpenCL
features. DPC++ enables the convenience, productivity, and flexibility of single-
source C++. With the kernel code embedded in the host code, programmers gain
the simplicity of coding and compilers gain the ability to analyze and optimize
across the entire program regardless of the device on which the code is to be
run. DPC++ accomplishes this through single-source multiple-compiler passes
(SMCP). With SMCP, a single source file is parsed by different compilers for
different target devices generating different device binaries. In many cases, those
binaries are combined into a single executable. In this way, we will be able to
target different devices with the same source code, such as the work conducted
in Chapter 5.

Another limitation of this thesis is that our scheduling strategies consider our
application as the only one running on the system. However, as it is so often the
case in heterogeneous architectures, several applications may be running at the
same time. As our analytical models and schedulers make this simple assumption,
they will overestimate their performance predictions, so the workload between
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devices will not be correctly balanced, which will have a negative impact on
the performance. More research should be conducted in these multi-workload
scenarios, where our dynamic and adaptive approaches could be tuned to include
the effects of competition for resources.

6.3. Future work

To conclude this thesis, we want to propose future research lines related with
our work.

As mentioned in Chapter 3, our heterogeneous scheduler is focused always
in seeking maximum performance. However, other requirements could be
used as criterion of optimality. We could extend our heterogeneous sched-
uler so it can also target the optimization of other metrics, such as energy
consumption or a performance/energy tradeoff.

Regarding Chapter 4, the accelerator studied there, an FPGA with sup-
port for HBM, uses floating-point arithmetic to perform operations. We
plan to explore the use of a fixed-point arithmetic to optimize the FPGA
kernels. Fixed-point arithmetic not only allows to perform faster operations
than floating-point ones, but also needs less hardware. This way the use
of fixed-point arithmetic would improve the FPGA implementation per-
formance and energy consumption. Moreover, recently the FPGA vendor
has released an BSP to support oneAPI in an FPGA with HMB. Hence, a
code migration from OpenCL to DPC++ can be tackled to enable the HBM
memory banks exploitation using SYCL. Also, our hierarchical scheduler,
Fastfit, could be extended to target others accelerators available in the sys-
tem, such as an integrated/discrete GPU. This way, the scheduler should
include this third device in the scheduling strategy. Finally, the scheduler
could also be extended to target other metrics, such as power consumption
or performance/power ratio, which are of particular interest when using a
low-power device such as an FPGA.

Lastly, in Chapter 5, we plan to explore the use of FPGA as an additional
accelerator device when computing the skyline operator over a stream of
queries. An FPGA with HBM banks could improve the performance of
existing FPGA implementations for skyline computations, a topic that has
not been explored. The addition of this new accelerator could lead to
combinations at runtime of Coarse-grained (SkyFlow-CG) and Fine-grained
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(SkyFlow-FG) data queries computations. For instance, two skylines could
be executing in parallel, one of them on the FPGA fully exploiting the
HBM capabilities - following the SkyFlow-CG approach-, and the second
one on the CPU + GPU - following the SkyFlow-FG approach -.





Appendix A
Resumen en español

Optimización de aplicaciones de análisis
masivo de datos en arquitecturas

heterogéneas

Desde el cambio de paradigma de las arquitecturas mononúcleo a las arqui-
tecturas multinúcleo, la arquitectura de los procesadores no ha dejado de pro-
gresar. Hoy en día, en el diseño de nuevas arquitecturas no sólo el rendimiento
se ha convertido en un requerimiento principal a tener en cuenta, sino también
el consumo de energía. En los últimos años, las arquitecturas heterogéneas se
han impuesto en todos los ámbitos de la industria: desde los superordenadores
hasta las plataformas móviles y los sistemas de IoT. El desarrollo de dispositivos
especializados (GPU, NPU, TPU, FPGA) que colaboran con las CPUs en SoC
han dado lugar a sistemas heterogéneos que han permitido no sólo una mejora
de la eficiencia energética respecto a los sistemas multinúcleo tradicionales, sino
también del rendimiento. En este trabajo se discuten los retos y fortalezas de
utilizar arquitecturas heterogéneas para optimizar el rendimiento y el consumo
de energía para resolver aplicaciones clave de análisis masivo de datos.
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A.1. Motivación

Según la ley de Moore [1], en los últimos cincuenta años el número de tran-
sistores por chip se ha duplicado cada dos años. Este hecho ha ido acompañado
de un aumento de la frecuencia y del consumo de energía que a mediados de la
década de los 2000 se hizo insostenible. Este límite llevó a estabilizar la frecuencia
para controlar la densidad de potencia consumida en el chip, apareciendo como
primera solución la arquitectura multinúcleo. Por lo que la industria cambió su
estrategia para seguir aumentando el rendimiento, pasando de aumentar la fre-
cuencia del núcleo a añadir más núcleos en un chip. Esta innovación supuso un
reto para los desarrolladores a la hora de aprovechar las nuevas arquitecturas:
esto suponía adaptar los códigos para aprovechar las capacidades multinúcleo de
los nuevos chips [2].

En la última década se ha producido una revolución en el diseño de la arquitec-
tura de los procesadores, ya que los chips han pasado de los sistemas multinúcleo
a las arquitecturas heterogéneas. Ahora los chips no contienen sólo réplicas de un
mismo núcleo (sistemas multinúcleo), sino dispositivos especializados que cola-
boran con la CPU en un SoC. Ejemplos de estos dispositivos especializados son:
GPU, FPGA, DSP, NPU and TPU.

La computación heterogénea es el paradigma por el que una aplicación se
optimiza para que la carga computacional (típicamente tareas) se reparta entre
los distintos dispositivos que integran una arquitectura heterogénea. Esta opti-
mización puede resultar compleja ya que la orquestación de las tareas entre los
dispositivos tiene que tener en cuenta la capacidad de cómputo de cada uno, los
mecanismos de sincronización entre ellos y la jerarquía de memoria. La idea clave
de este paradigma es asignar las tareas que mejor se adaptan a un dispositivo
concreto, optimizando el código para cada dispositivo utilizando funcionalidades
que el hardware o el modelo de programación exponen al programador.

En esta tesis nos centramos en las arquitecturas heterogéneas CPU + acele-
rador, como por ejemplo GPU o FPGA. Estas plataformas las utilizamos para
resolver problemas reales que representan aplicaciones de análisis masivo de da-
tos, y presentamos estrategias que en tiempo de ejecución optimizan el uso de
los recursos en estas arquitecturas. Una característica de las aplicaciones que es-
tudiamos en este trabajo es que son ïrregulares”. Los problemas irregulares son
aquellos en los que la distribución de la carga computacional varía a lo largo
del espacio de iteraciones que definen el núcleo de la aplicación. En algunos pro-
blemas la irregularidad puede ser regularizada. Esta aproximación se consigue
utilizando estrategias que permiten modelar la carga y dinámicamente en tiempo
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de ejecución encontrar la mejor distribución de trabajo entre la CPU multinúcleo
y el acelerador . En otros problemas, sin embargo, la distribución de la carga de
trabajo es completamente impredecible e incluso puede cambiar dependiendo de
los resultados anteriores o de la entrada recibida. Una posible solución en este
caso es buscar una partición dinámica y adaptativa de la carga de trabajo para
mantener el balanceo entre los dispositivos en todo momento.

En la literatura se han propuesto varios enfoques para solucionar el problema
del balanceo de la carga de trabajo. Algunos de ellos proponen una fase de entre-
namiento previa a la ejecución para averiguar la mejor distribución de la carga
de trabajo entre los dispositivos [14, 15, 16, 17]. Trabajos recientes han propuesto
soluciones para la optimización de aplicaciones irregulares utilizando un modelo
en tiempo de ejecución que es agnóstico a la aplicación que se ejecuta [18, 19].
Aunque estos enfoques obtienen un rendimiento excelente en la mayoría de los
códigos, para problemas irregulares complejos como los que abordamos en esta
tesis, una optimización general sin conocimiento de la aplicación se queda corta
para aprovechar más eficientemente los recursos de la arquitectura.

Esta tesis está motivada por el hecho de que aún no hay una implementación
eficiente para arquitecturas heterogéneas de dos problemas de análisis masivos
de datos, reales y complejos, ampliamente utilizados en diversos campos del Big
Data: las series temporales y la computación del skyline. Por un lado, para las
series temporales nos centramos en el problema de descubrimiento de similitu-
des/discordancias, tomando como punto de partida el algoritmo que representa
el estado del arte: Matrix Profile [20]. Las primeras implementaciones del Ma-
trix Profile [20] realizaban una paralelización trivial del problema, pero con una
importante carga computacional por iteración. Las implementaciones más mo-
dernas [21, 22] optimizan el cálculo secuencial del Matrix Profile reordenando y
evitando operaciones innecesarias, pero a costa de crear un problema irregular.
La carga de trabajo de estas implementaciones puede ser modelada y regularizada
en tiempo de ejecución para obtener una distribución de carga de trabajo óptima
para diferentes aceleradores, como proponemos en el capítulo 3 (para GPU) y el
capítulo 4 (FPGA).

Por otro lado, la computación del skyline es una aplicación muy irregular
sin posibilidad de modelar con precisión en tiempo de ejecución. El skyline es
un problema de optimización ampliamente utilizado para la toma de decisiones
multicriterio. En esta tesis nos centramos en el cálculo del skyline para consultas
en streaming. La carga de trabajo de cada consulta depende en gran medida de
la distribución multidimensional de los puntos. Por lo tanto, hasta que no se
recorre el espacio de iteraciones completo es imposible modelar con precisión la
carga de trabajo del conjunto de datos de la consulta. Este tipo de irregularidades
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ofrece la posibilidad de optimización utilizando una partición dinámica de grano
fino para mantener la arquitectura heterogénea ocupada mientras se mantiene el
equilibrio entre los dispositivos durante toda la ejecución. Como punto de partida
en esta tesis, tomamos los algoritmos de computación del skyline que representan
el estado del arte para CPU [23] y GPU [24], como detallaremos en el capítulo 5.

En resumen, en esta tesis se proponen modelos, estrategias de programación y
soporte en tiempo de ejecución para estas dos aplicaciones con el fin de optimizar
el rendimiento y el consumo de energía en diferentes arquitecturas heterogéneas
del tipo CPU+GPU y CPU+FPGA.

A.2. Series temporales en procesadores heterogé-
neos CPU + GPU

Una serie temporal es una colección de observaciones tomadas secuencialmen-
te, como la del electrocardiograma que se muestra en la Figura A.1.

El análisis de series temporales abarca muchos campos, desde computación
en la nube [48, 49, 50], forecasting [51, 52, 53, 54], clustering [55, 56], búsqueda
de similitudes [57], geología [58], geodesia [59], o economía [60, 61].

Time series T

i j

m
Ti,m Tj,m

time
discord

Subsequences of length m

di,j is the z-normalized euclidean distance between Ti,m and Tj,m

Figura A.1: Serie temporal de electrocardiograma T y dos subsecuencias de las
que podemos calcular la distancia di,j . El objetivo es encontrar similitudes/discor-
dancias, como la arritmia ventricular resaltada en el recuadro rojo. La notación
se define en la sección 3.1.

En particular, el descubrimiento de similitudes (motivos) o puntos críticos
(discordancias) en una serie temporal es relevante para varios de los problemas
anteriores. Las similitudes y las discordancias pueden encontrarse mediante enfo-
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ques probabilísticos [62, 63], aprendizaje automático [64] o proponiendo modelos
espaciotemporales [65].

Una solución recientemente propuesta [66] consiste en calcular primero una
puntuación para cada subsecuencia de la serie temporal, lo que da lugar a otra
serie temporal denominada Matrix Profile. Mediante una simple inspección del
Matrix Profile es sencillo identificar las similitudes y las discordancias centrándose
en los valores mínimos y máximos respectivamente. Se han propuesto varios algo-
ritmos para calcular el Matrix Profile: STAMP [66], STOMP [20], SCRIMP [21]
o SCAMP [22], que presenta un mayor grado de paralelismo. Asimismo, se han
implementado diferentes versiones de SCRIMP para portarlo a multiprocesado-
res de memoria compartida, sistemas de memoria distribuida [70], plataformas
multi-GPU [22] y procesadores Intel Xeon Phi KNL [71]. En el momento en que
se desarrolló este trabajo, SCRIMP era el algoritmo del estado del arte para
calcular el Matrix Profile.

En este capítulo se propone una implementación heterogénea de CPU + GPU
del Matrix Profile utilizando el algoritmo SCRIMP [21] como punto de partida.
Prestamos especial atención al problema de desequilibrio de carga que plantea el
algoritmo, donde cada iteración paralela tiene una carga de trabajo computacio-
nal diferente. Como explicamos más adelante, esto es una consecuencia del patrón
computacional que sigue el recorrido en diagonal de una matriz triangular donde
cada diagonal tiene una longitud diferente. Para resolver este problema, evalua-
mos la eficiencia del planificador por defecto de Threading Building Blocks [152],
TBB, que se basa en una partición dinámica del espacio de iteración y lo compa-
ramos con una distribución estática basada en una partición que estima con un
modelo analítico la carga de trabajo.

Además, contribuimos con una versión heterogénea del Matrix Profile que
distribuye dinámicamente el cómputo del Matrix Profile entre los núcleos de
la CPU y una GPU. Para ello, partimos de una plantilla paralela desarrollada
previamente [117] que implementa un planificador heterogéneo sobre TBB. Este
planificador se encarga de balancear la carga entre dispositivos, en nuestro ca-
so la CPU y GPU, y de encontrar la granularidad adecuada para los bloques
de trabajo que se procesan en cada uno. pra nuestra implementación hetero-
génea del Matrix Profile nos encontramos con el reto adicional de qeu además
es necesario incoporar un patrón parallel_reduce heterogéneo. Por ello, en este
capítulo proponemos algunas estrategias para extender nuestro anterior patrón
parallel_for para incorporar también reducciones paralelas heterogéneas. Más
concretamente, la memoria virtual compartida, SVM, se aprovecha para minimi-
zar la sobrecarga de comunicación CPU-GPU. Proponemos dos alternativas para
el código OpenCL que implementa el cómputo del Matrix Profile en la GPU.
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Una precisa pero más lenta que se basa en las operaciones atómicas de OpenCL
para garantizar la correcta implementación de las operaciones de reducción. Y
otra alternativa imprecisa pero más rápida que evita las operaciones atómicas de
OpenCL pero provoca pérdidas de precisión.

Evaluamos experimentalmente tres planificadores heterogéneos (Static, Dy-
namic y LogFit) [18] que requieren una entrada diferente del usuario. Los que
requieren información por parte del programador: Static que necesita el porcen-
taje de trabajo a descargar en la GPU, o Dynamic que requiere del tamaño del
bloque de iteraciones que debe ser enviado dinámicamente a la GPU. Y otro
planificador que no requiere intervención del programador, LogFit, que es un
plafinicador adaptativo que representa el estado del arte y que calcula automá-
ticamente la granularidad de los bloques de trabajo que se envían de manera
dinámica y adaptativa a los distintos dispositivos del sistema. Los tamaños se
calculan automáticamente, en tiempo de ejecución, en función del throughput de
cada dispositivo a lo largo de la ejecución del espacio de iteraciones, teniendo
como objetivo optimizar el throughput de cada dispositivo mientras se minimi-
za el desbalanceo. Los resultados experimentales muestran que las estrategias de
planificación dinámicas siempre mejoran el rendimiento de la partición estática,
en particular cuando el número de núcleos aumenta. Aunque el particionamiento
estático calcula analíticamente una distribución casi perfecta de las diagonales,
no puede hacer frente a las asimetrías en tiempo de ejecución de la carga en los
núcleos de la CPU, incluso cuando los experimentos se realizaron en escenarios
sin carga (no había otras aplicaciones de usuario ejecutándose en los sistemas).

Nuestro análisis del rendimiento y la eficiencia energética de las implementa-
ciones heterogéneas de CPU+GPU nos ha enseñado que:

Si la precisión no es un problema, las versiones no atómicas tienen un me-
jor rendimiento que las atómicas. En este caso, el planificador heterogéneo
Dynamic puede lograr el tiempo de ejecución más rápido. Sin embargo, el
usuario tiene que encontrar el tamaño óptimo del bloque de GPU (requiere
de un entrenamiento previo a la ejecución).

Si la precisión es un requisito, el planificador heterogéneo LogFit suele pro-
porcionar la ejecución más rápida. Como ventaja adicional, este planificador
busca automáticamente el tamaño óptimo de los bloques GPU sin interven-
ción del usuario.

Si el consumo de energía es el criterio objetivo, entonces la ejecución sólo
en GPU (tanto para las versiones sin atómicos como con atómicos) es la
recomendada.
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Nuestra implementación heterogénea nos permite alcanzar un rendimiento
casi ideal en procesadores heterogéneos que incorporan una GPU en el chip.

A.3. Series temporales en procesadores heteroge-
neos CPU + FPGA

El Capítulo 4 propone un novedoso planificador jerárquico llamado Fastfit,
para equilibrar eficientemente la carga de trabajo en un sistema heterogéneo
garantizando un rendimiento casi óptimo. Hemos utilizado SCAMP - el nuevo
estado del arte para el cálculo del Matrix Profile - para ilustrar su aplicabilidad.
Fastfit es un planificador a nivel de sistema basado en un modelo analítico del
pipeline (IP) que sintetiza un kernel en FPGA. Nuestro modelo nos ayuda a
encontrar el tamaño del bloque de trabajo que enviar a la FPGA para garantizar
un rendimiento casi óptimo de la FPGA y, a partir de él, el tamaño del bloque
que enviar a la CPU para garantizar el equilibrio de carga entre los dispositivos.
Además, Fastfit incluye un planificador a nivel de dispositivo que proporciona
una partición efectiva del bloque de la FPGA en sub-bloques para cada IP de la
FPGA, en caso de que el kernel se haya replicado.

A través de una evaluación exhaustiva, validamos la precisión de nuestros
modelos y la eficiencia de Fastfit para obtener el tamaño del bloque de FPGA
casi óptimo, encontrando que nuestro modelo es capaz de encontrar un bloque y
predecir entre el 97%-99% del mejor rendimiento real medido. También compa-
ramos diferentes estrategias para llevar a cabo la partición a nivel de dispositivo
del bloque de la FPGA entre IPs, encontrando que la estrategia Balanceada, que
es consciente de la geometría triangular del problema, mejora el rendimiento de
una estrategia de bloque constante - que divide el tamaño del bloque entre el
número de IPs - en un 16,45%. También proponemos que para mejor explotar
la HBM de la que dispone la FPGA con la que trabajamos, podemos utilizar un
modelo de uso del ancho de banda de la HBM, modelo que utilizamos para con-
trolar el número de bancos que se asigna a cada IP y de esta manera establecer
el número mínimo de bancos activos que garanticen el ancho de banda de la me-
moria agregada requerido por la aplicación y el tamaño de los datos de entrada,
a la vez que se reduce el consumo de energía.

Validamos experimentalmente nuestro planificador en términos de rendimien-
to y consumo de energía y lo comparamos con otros planificadores heterogéneos
anteriores que representan el estado del arte. Demostramos que nuestro nuevo
planificador mejora todas las propuestas previas en términos de rendimiento.
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Además, Fastfit es un 4,68% mejor que Logfit - el estado del arte en planifica-
ción adaptativa para dispositivos heterogéneos que no requiere intervención del
programador -. La razón de esta mejora es que nuestra nueva propuesta evita
la sobrecarga del ajuste logarítmico que realiza Logfit durante una fase de en-
trenamiento, al principio de la ejecución del lazo paralelo. De hecho, Fastfit está
a sólo un 0,6% de la ejecución heterogénea ideal - sin la sobrecarga del plani-
ficador -. Analizando el consumo de energía, se puede observar que la FPGA
presenta la mayor eficiencia energética y el menor consumo de energía. La CPU
requiere casi 3 veces más energía para realizar el mismo cálculo. Ahora bien, la
energía consumida por los planificadores heterogéneos es aproximadamente pro-
porcional a la carga de trabajo procesada por cada dispositivo (CPU y FPGA).
Por ejemplo, Static descarga más trabajo a la FPGA (64% de los elementos) y,
en consecuencia, muestra una mejor eficiencia energética que Dynamic, Logfit y
Fastfit. En realidad, el consumo de energía y la eficiencia energética en estos tres
últimos planificadores son similares. Debido a que Logfit es el más lento de los
tres últimos planificadores, también consume más energía que Dynamic y Fastfit.

En resumen, Fastfit es el mejor planificador si nuestro objetivo es conseguir
el máximo rendimiento. Aunque Dynamic también consigue buenos resultados,
recordemos que en este caso el programador necesita explorar previamente a la
ejecución, y de forma exhaustiva, todos los posibles tamaños de bloque para
encontrar el casi óptimo, mientras que en Fastfit el mejor tamaño de bloque
se descubre automáticamente en tiempo de ejecución. Sin embargo, si nuestro
objetivo es minimizar el consumo de energía, descargar toda la carga de trabajo
a la FPGA es la mejor opción. Utilizar sólo la FPGA reduce en un 75,78% el
consumo de energía y mejora en un 43,11% la eficiencia energética (Elements/J)
en comparación con Fastfit.

A.4. Cálculo del Skyline en procesadores hetero-
géneous CPU + GPU

El skyline, introducido inicialmente en [86] es un problema de optimización
ampliamente utilizado para la toma de decisiones multicriterio. Permite mini-
mizar un conjunto de datos de N dimensiones en el subconjunto más pequeño,
normalmente utilizando como métrica de reducción el valor mínimo para cada
dimensión.

Se ha aplicado en muy diversos contextos tales como preservar la privacidad
de los datos en múltiples dominios [87], el procesamiento del skyline sobre los
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datos cifrados en las bases de datos en la nube [88], en optimización de “Quality-
of-Services” de los procesos de grandes servicios, usando el skyline como método
para descubrir servicios [89, 90], o en servicios de drones para la entrega en
condiciones climáticas dinámicas [91]. También se ha aplicado en el contexto de
aprendizaje por refuerzo para mejorar la planificación adaptativa en los servicios
de computación en la nube [92], o sobre datos encriptados de múltiples fuentes
para una fusión de datos eficiente que preserve la privacidad [93], o la minería
evolutiva de la agrupación de grafos [94].
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Figura A.2: Dataset y ejemplo de skyline. Los puntos del skyline son B y C.

Figura A.2 muestra un ejemplo sencillo de un conjunto de datos y su corres-
pondiente skyline. El punto C tiene valores más bajos en sus dos dimensiones con
respecto al punto A, por lo que el punto A es eliminado del skyline por el punto
C. Por lo tanto, el skyline es el subconjunto de puntos que no son eliminados
(no tienen valores inferiores en todas sus dimensiones) por ningún otro punto
del conjunto de datos. El punto B tiene un valor menor en x que el punto C,
pero mayor en y, por lo que ninguno puede eliminar al otro y ambos, B y C,
acaban en el conjunto del skyline. Para grandes conjuntos de datos con puntos
que tienen varias dimensiones, el cálculo del skyline se convierte en una tarea
computacionalmente costosa.

Para aumentar el rendimiento del skyline, es fundamental evitar la compa-
ración de todos los puntos. Para ello, se suelen adoptar dos enfoques: (1) un
algoritmo basado en la ordenación; y (2) un algoritmo basado en la partición.
El algoritmo secuencial del estado del arte utiliza un enfoque basado en la par-
tición recursiva, que no se adapta bien a las arquitecturas heterogéneas, como
por ejemplo la GPU. Los algoritmos multinúcleo actuales explotan estrategias
de ordenación [23] que explotan más paralelismo a costa de aumentar la carga
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computacional del problema. Los algoritmos actuales para la arquitectura GPU
ofrecen una solución intermedia, siguiendo una estrategia de partición no recur-
siva, que aumenta considerablemente el coste computacional del problema, pero
también libera un paralelismo masivo (clave en las GPUs) [24]. El problema del
cálculo del skyline sobre un stream (flujo) de datos plantea retos adicionales. El
cálculo del skyline requiere el conocimiento de todo el conjunto de datos antes de
iniciar el cómputo, lo que supone un desafío cuando los datos llegan en stream.
Los enfoques secuenciales o paralelos actuales [110, 108, 109, 171] calculan el sky-
line utilizando estrategias de ventanas deslizantes sobre los puntos, produciendo
un flujo de actualizaciones del skyline con la llegada de nuevos puntos.

El Capítulo 5 aborda el problema del cálculo del skyline sobre un stream de
datos independientes en una arquitectura heterogénea compuesta por una CPU
multinúcleo y una GPU integrada. En nuestro trabajo cada entrada no es un
punto, sino un conjunto de datos completo. Así, obtenemos un flujo de salida de
un skyline por cada entrada recibida. Para ello, proponemos una solución basada
en grafos heterogéneos, denominada SkyFlow, para planificar eficientemente la
carga de trabajo entre los dispositivos. Proponemos dos enfoques que se adaptan a
diferentes escenarios de streaming : Coarse-grained (SkyFlow-CG) y Fine-grained
(SkyFlow-FG).

SkyFlow-CG calcula simultáneamente un skyline por dispositivo, utilizando
un enfoque híbrido: cada dispositivo ejecuta el algoritmo que mejor se adapta a las
características específicas de la arquitectura correspondiente. Así, la CPU ejecuta
el algoritmo del estado del arte en CPU, Hybrid - basado en una implementación
OpenMP -, mientras que la GPU ejecuta el algoritmo del estado del arte en GOU,
SkyAlign - basado en una implementación SYCL, novedosa en este trabajo -
. Aunque ambos algoritmos aprovechan la eficiencia del trabajo reduciendo el
número de pruebas de dominancia necesarias durante el cálculo del skyline, para
los conjuntos de datos reales evaluados en este trabajo hemos encontrado que
algunos de ellos rinden mejor bajo OpenMP-CPU, mientras que otros bajo SYCL-
GPU. Esto se debe a la naturaleza altamente irregular de este operador, cuya
carga computacional depende de la configuración del conjunto de datos de llegada
(distribución de puntos en el espacio, tamaño, número de dimensiones), y del
algoritmo y la arquitectura destino.

Para el enfoque SkyFlow-CG consideramos dos estrategias de planificación: la
conservación del trabajo (SkyFlow-CG WC) y el tiempo de finalización más tem-
prano heterogéneo (SkyFlow-CG HEFT). Mientras que WC tiene como objetivo
mantener todos los dispositivos ocupados enviando a la cola del dispositivo más
corta cualquier conjunto de datos que llegue, la estrategia HEFT intenta optimi-
zar el rendimiento de cada dispositivo colocando el conjunto de datos entrante
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en la cola del dispositivo en la que terminará antes, independientemente de si
un dispositivo está inactivo. HEFT requiere estimar en tiempo de ejecución del
cálculo del skyline sobre el conjunto de datos que llega a cada dispositivo. Para
ello, en este trabajo introducimos un novedoso modelo que se basa en un mues-
treo inicial de algunos puntos del conjunto de datos, ejecutado bajo SYCL-GPU
y OpenMP-CPU. A través de una evaluación exhaustiva hemos encontrado que
la inexactitud en la que incurre nuestro modelo está dentro del ± 10% de los
tiempos reales de cálculo del skyline, que siempre es menor que la diferencia de
tiempo entre algoritmos-dispositivos. En consecuencia, nuestro modelo siempre
selecciona el dispositivo apropiado. En cualquier caso, en nuestra evaluación de
las estrategias de programación, HEFT siempre supera a WC en todos los es-
cenarios de streaming y conjuntos de datos. En particular, la estrategia HEFT
supera a WC hasta 3,32 veces en escenarios que contienen una mezcla aleatoria
de conjuntos de datos que pueden ser óptimos para cada algoritmo-dispositivo.
Además, cuando comparamos el rendimiento de nuestra heurística HEFT con una
estrategia Oracle que calcula, previamente a la ejecución, el dispositivo óptimo
para cada conjunto de datos, comprobamos que HEFT sólo degrada el rendi-
miento de Oracle en un 6% como máximo. Esto corrobora que nuestra heurística
basada en el modelo introduce una baja sobrecarga, al tiempo que garantiza una
planificación casi óptima.

En segundo lugar, el enfoque SkyFlow-FG particiona dinámicamente la carga
de trabajo de cada conjunto de datos entre SYCL-GPU y SYCL-CPU. Mediante
una cuidadosa selección del tamaño (y número) de los trozos de datos enviados a
cada dispositivo, hemos comprobado que esta estrategia de partición de grano fino
es beneficiosa en un escenario de streaming en el que la mayoría de los conjuntos
de datos se ejecutan más rápidamente en GPU. En este escenario, SkyFlow-FG
mejora hasta en 2 veces el rendimiento cuando se compara con una ejecución en
solo GPU, y supera a SkyFlow-CG HEFT en 1,5 veces.

A.5. Conclusiones

Este capítulo resume los resultados de esta tesis. Proponemos un conjunto de
estrategias para optimizar en tiempo de ejecución dos aplicaciones irregulares de
análisis masivo de datos en arquitecturas heterogéneas: el Matrix Profile y el sky-
line en streaming. Nuestro objetivo es explorar modelos de programación que nos
permitan minimizar el esfuerzo de programación del usuario mientras se obtiene
el máximo rendimiento de estas aplicaciones cuando se portan a arquitecturas
heterogéneos que inclyen aceleradores.
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El Capítulo 3 explora diferentes alternativas para mapear de forma óptima
el algoritmo Matrix Profile en procesadores heterogéneos con varios núcleos de
CPU y una GPU integrada. Para aprovechar mejor esta plataforma heterogénea
podemos descargar parte de la carga computacional en la GPU. Con este obje-
tivo, proponemos HetMP, basado en TBB, que es una extensión de una librería
previamente diseñada para facilitar la implementación de aplicaciones en arqui-
tecturas heterogéneas, incluyendo ahora nuevas funcionalidades de sincronización
y así como de operaciones de reducción sobre estas arquitecturas. Proponemos y
analizamos dos versiones del kernel de Matrix Profile, NonAtomic (más rápida
pero insegura) y Atomic (más lenta pero precisa), concluyendo que la versión
Atomic sólo incurre en un 8,9% de degradación del rendimiento respecto a la
NonAtomic para la ejecución sólo en la GPU. Se han evaluado tres alternativas
para distribuir la carga de trabajo entre la CPU y la GPU (Static, Dynamic y
LogFit), encontrando que la más productiva es LogFit cuando se requiere una
solución exacta. Sin embargo, si la magnitud a minimizar es el consumo de ener-
gía, es aconsejable descargar todo el cómputo en la GPU. En futuros trabajos
ampliaremos el planificador heterogéneo para que pueda ser instruido en la opti-
mización de otras métricas, aparte de maximizar el rendimiento: por ejemplo el
minimizar el consumo de energía, o bien maximizar una métrica que represente
un compromiso entre rendimiento y energía.

En el Capítulo 4 estudiamos el problema de ejecutar eficientemente el algorit-
mo que representa el estado del arte actual para el cómputo de series temporales
-SCAMP -, que en este caso trasladamos a una plataforma heterogénea compuesta
por CPU + FPGA de alto rendimiento con bancos de memoria HBM1 integrada.
La geometría del algoritmo (una matriz triangular) y las capacidades de la FPGA
plantean dos retos. En primer lugar, se pueden instanciar varias IPs replicadas
en la estructura de la FPGA, por lo que el reparto equilibrado de la carga es
un problema no sólo a nivel del sistema (CPU+FPGA), sino también a nivel de
dispositivo (entre las IPs de la FPGA, donde cada IP representa la síntesis de
un kernel Matrix Profile ). Y en segundo lugar, los datos a los que accede cada
una de estas IPs deben ser cuidadosamente colocados entre los bancos HBM para
explotar eficientemente el ancho de banda de la memoria que ofrecen los bancos,
al tiempo que se selecciona el número mínimo de bancos activos que optimiza el
consumo de energía.

Para hacer frente al primer reto proponemos un novedoso planificador jerár-
quico llamado Fastfit, para equilibrar eficientemente la carga de trabajo en el
sistema heterogéneo, garantizando al mismo tiempo un rendimiento casi óptimo.
Nuestro planificador consta de un soporte en tiempo de ejecución de dos niveles:

1HBM=High Bandwidth Memory
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1) el nivel de sistema, que aprovecha un modelo analítico de la FPGA, para en-
contrar el tamaño casi óptimo de los bloques que se asignan a la FPGA y que han
de garantizar un rendimiento óptimo de la FPGA; y 2) el nivel de dispositivo, que
tiene en cuenta la geometría del problema y que es responsable de la partición
efectiva del bloque asignado a la FPGA en sub-bloques que se envían a cada IP
de la FPGA. Por otro lado, para hacer frente al segundo reto, proponemos una
metodología basada en un modelo de uso del ancho de banda de la¡os bancos
de HBM que nos permite establecer el número mínimo de bancos activos que
garanticen el máximo ancho de banda de la memoria agregada para un número
determinado de IPs. A través de una evaluación exhaustiva, validamos la preci-
sión de nuestros modelos, la eficiencia de nuestras estrategias de partición a nivel
de sistema y a nivel de los dispositivos, así como el rendimiento y la eficiencia
energética de nuestro planificador heterogéneo Fastfit, descubriendo que nuestra
propuesta supera a los planificadores anteriores que representan del estado del
arte, alcanzando hasta el 99,4% del rendimiento ideal.

El Capítulo 5 aborda el cómputo del operador skyline sobre un stream (flujo)
de consultas de datos independientes en una arquitectura heterogénea compues-
ta por una CPU multinúcleo y una GPU integrada. El skyline es un operador
de optimización ampliamente utilizado para la toma de decisiones multicriterio.
Permite minimizar un conjunto de datos de N dimensiones en su subconjun-
to más pequeño. En este trabajo presentamos SkyFlow, la primera solución en
tiempo de ejecución que se basa en grafos heterogéneos CPU+GPU que permite
el cómputo del skyline sobre un stream de conjuntos de datos. Se han propuesto
dos enfoques de flujo de datos, Coarse-grained y Fine-grained, para diferentes
escenarios de streaming. El objetivo de Coarse-grained es mantener el cálculo de
dos skylines en paralelo utilizando una solución híbrida con dos algoritmos de
skyline diferentes y óptimizados, uno para la CPU y otro para la GPU. También
proponemos un modelo para estimar en tiempo de ejecución del skyline sobre
cualquier conjunto de datos que llegue, estimación utilizada por una heurística
para planificar el conjunto de datos en la cola del dispositivo en el que terminará
antes, tratando de optimizar de esta manera el rendimiento global del sistema.
Por otro lado, Fine-grained divide el cómputo de un conjunto de datos entre la
CPU y la GPU. Nuestros resultados experimentales muestran que, en nuestros es-
cenarios de streaming y para los conjuntos de datos evaluados, nuestros enfoques
heterogéneos de CPU+GPU siempre superan a las implementaciones anteriores
que representan el estado del arte en un multicore CPU y en una GPU, hasta en
6,86 veces y 5,19 veces, respectivamente, y se sitúan sólo por debajo del 6% del
rendimiento máximo ideal.
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A.6. Limitaciones

Aunque esta tesis aporta varias contribuciones, también tiene algunas limi-
taciones. La primera limitación está relacionada con la portabilidad del código.
Para poder usar los planificadores propuestos en los capítulos 3 y 4, se requeriere
que el usuario proporcione dos versiones del kernel, una para los núcleos de la
CPU y otra para la GPU/FPGA. Sin embargo, sería beneficioso codificar una
única versión del kernel para que este se compile y ejecute en cada dispositivo
del sistema. En este sentido, estamos trabajando en portar el código OpenCL
existente a DPC++, utilizando para ello la capa de abstracción de alto nivel
que proporciona SYCL, puesto que soporta todas las características de OpenCL.
DPC++ permite la comodidad, la productividad y la flexibilidad del paradigma
único código fuente expresado en el estándar C++. SYCL permite que el código
del kernel quede incrustado en el código del host usando el mismo lenguaje de
programación, por lo que los programadores ganan en simplicidad al codificar la
aplicación y los compiladores ganan en capacidad de analizar y optimizar todo
el programa, independientemente del dispositivo en el que se vaya a ejecutar el
código. DPC++ logra esto a través de múltiples pases de compiladores sobre un
único fuente (SMCP). Con SMCP, un único archivo fuente es analizado por di-
ferentes compiladores para diferentes dispositivos destino, generando diferentes
binarios (uno por dispositivo). En muchos casos, esos binarios se combinan en un
único ejecutable. De este modo, podremos dirigirnos a diferentes dispositivos con
el mismo código fuente, como ilustramos por ejemplo en el trabajo realizado en
el capítulo 5.

Otra limitación de esta tesis es que nuestras estrategias de planificación con-
sideran que nuestra aplicación es la única que se ejecuta en el sistema. Sin em-
bargo, como suele ocurrir en las arquitecturas heterogéneas, puede que varias
aplicaciones estén ejecutándose al mismo tiempo. Esto supone que nuestros mo-
delos analíticos y planificadores deben de ajustarse para evitar sobreestimar las
estimaciones de rendimiento, y el que la carga de trabajo entre los dispositivos
no esté correctamente balanceada. Para ello, es necesario seguir investigando en
escenarios multi-aplicación, en los que nuestros enfoques dinámicos y adaptativos
podrían ajustarse para incluir los efectos de otras aplicaciones cuando compiten
por los recursos.
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A.7. Trabajos futuros

Para concluir esta tesis, queremos proponer futuras líneas de investigación
relacionadas con nuestro trabajo.

Como se ha mencionado en el Capítulo 3, nuestro planificador heterogéneo
está enfocado siempre a buscar el máximo rendimiento. Podríamos ampliar
nuestro planificador heterogéneo para que también pueda optimizar otras
métricas, como el consumo de energía u otra métrica derivada que considere
el rendimiento y la energía al mismo tiempo.

En cuanto al Capítulo 4, nuestro acelerador, la FPGA que integra bancos
de memoria HBM, utiliza aritmética de punto flotante para realizar las ope-
raciones. Tenemos previsto explorar el uso de aritmética de punto fijo para
optimizar la síntesis de los IPs de la FPGA. La aritmética de punto fijo
no sólo permite realizar operaciones más rápidas que las de punto flotante,
sino que también necesita menos hardware para ser implementada. De este
modo, el uso de esta aritmética mejoraría el rendimiento de la implemen-
tación de los IPs en la FPGA y su consumo de energía. Recientemente, el
fabricante ha lanzado un BSP para soportar oneAPI en la FPGA HBM.
Por lo tanto, una migración de código OpenCL a DPC++ puede abordarse,
lo que permitiría la explotación de los bancos de memoria HBM mediante
SYCL. Además, nuestro planificador jerárquico, Fastfit, podría extender-
se para incorporar otros aceleradores disponibles en el sistema, como una
GPU integrada/discreta. Para ello, el planificador debería incluir estos nue-
vos dispositivos en la estrategia de partición/planificación. Por último, el
planificador también podría ampliarse para que incorpore otras métricas,
como minimizar el consumo de energía u optimizar una métrica derivada de
relación rendimiento/energía, que son de especial interés cuando se utiliza
un dispositivo de muy bajo consumo, como una FPGA.

Por último, en el Capítulo 5, tenemos previsto explorar el uso de la FPGA
como dispositivo acelerador adicional para computar el operador skyline
sobre un stream de conjuntos de datos. Una FPGA con soporte para ban-
cos HBM podría mejorar el rendimiento de las implementaciones de FPGA
existentes para los cálculos del skyline, una aproximación que no se ha explo-
rado. La adición de este nuevo acelerador podría dar lugar a combinaciones
de ejecuciones Coarse-grained (SkyFlow-CG) con ejecuciones Fine-grained
(SkyFlow-FG). Por ejemplo, podrían ejecutarse en paralelo dos skylines,
uno de ellos en la FPGA aprovechando al máximo las capacidades de la
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HBM - siguiendo el enfoque de SkyFlow-CG -, y el segundo en la CPU -
siguiendo el enfoque SkyFlow-FG -.
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