Department of Computer Architecture
University of Malaga

UNIVERSIDAD
DE MALAGA

PH.D. THESIS

Compilation techniques based on shape analysis for
pointer-based programs

Adrian Tineo
Malaga, November 2008

Dr. Rafael Asenjo Plaza Dra. Marﬁmgeles Gonzalez Navarro

Profesor Titular del Departamento Profesora Titular dgdddamento

de Arquitectura de Computadores de Arquitectura de Cordptda

de la Universidad de Méalaga de la Universidad de Malaga
CERTIFICAN:

Que la memoria titulad&Compilation technigues based on shape analysis for poibssed programs;
ha sido realizada por D. Adrian Tineo Cabello bajo nuestexdion en el Departamento de Arquitectura de
Computadores de la Universidad de Malaga y concluye lsTps presenta para optar al grado de Doctor
en Ingenieria de Telecomunicacion.

Malaga, 1 de Septiembre de 2008

Fdo: Dr. Rafael Asenjo Plaza Fdo: Dra. MafRngeles Gonzalez Navarro
Codirector de la Tesis Doctoral Codirectora de la Tesis @att

To the memory of my grandmother Adriana

A la memoria de mi abuela Adriana

Acknowledgements

There is a lot of people that | would like to thank for conttibg to the present work. | feel lucky for having
enjoyed their support and help.

First of all, | would like to thank my supervisors Dr. Rafaeténjo and Dr. Angeles Navarro. In equal
measure, | must thank Dr. Francisco Corbera. All of them Hmaen indispensable for the fulfillment of
this dissertation. About Rafa, | would like to stress hiseremding enthusiasm. He was always optimistic
about the outcome, even when | feeling down. He is alwaysawat the right motivation for the work and
the direction where it should be heading. About Angeles, uldidike to highlight her attention to detail in
all aspects of the research. She was usually the one withrpeshaew of affairs in our group discussions.
About Francisco, | would like to point out his unquenchaldparity for devising solutions. No matter how
odd or complicated a problem, | was constantly amazed athilisyato come up with a solution, or if that
would not be, for a step in the right direction. Angeles arahiéisco have also helped me substantially with
the hardest technical issues in this dissertation.

| would also like to thank Emilio L. Zapata for all the managarthand for accepting me in the De-
partment of Computer Architecture, a place where | haveatediase during the making of this dissertation.
| must also thank Carmen Donoso, always willing to help. AHay colleagues in this department also
deserve mention for their conversations, support, and @dede: Oscar, Eladio, Felipe, Mario, Gerardo,
Julian, Javi, Sonia, Manuel, Mari Carmen, Ricardo,...ligtegoes on and on.

| would like to thank the support of projects TIC2003-0662®1 &IN2006-01078 of the Ministry of
Education of Spain, as well as the HPC-Europa transnatimagiramme and its partner center EPCC.

I would like to thank professor Marcelo Cintra, for being duadble host during my stay in Edinburgh
in 2006. | value the conversations that we shared, | learrietfeom them. | want to mention professor
Mike O’Boyle as well, a charismatic character full of intstiag conversations both about work and life in
general. | also want to thank Dr. Diego Llanos for his googbdsition and for sharing his knowledge.

Also, from my period in Edinburgh, | would like to thank allgmice people that | met there, that helped
me or encouraged me in some way or another: Catherine Indéigg Bull, Chris Fench, Carla Delgado,
Sergio Pérez, Miguel, Piotr, Marta, Rumi, Cande, Carld§,Raco,... the list is way too long. Also, | would
like to thank James Connachan for instructing me into a neyafi@hysical education.

During my time in Spain, | have enjoyed the company and icteya with more Ph.D. students of my
generation. Countless times we shared ideas or simplyech&dt some mental relief. Not all of them
continue now, but nevertheless | remember them fondly: Btigeel, Antoliano, Pepe, Fede, Ale, Sergio
R., Vicky, Maxi, Javi, Fran, Sergio V., Migue, Antonio, Jydicardo, Siham, and Marina.

On a more personal side, there are many people who have halpddroughout. Their company and
support has been most soothing when things were not turningicely. First and foremost, | want to thank
my parents. Your limitless faith and caring support is calgnand refreshing. | hope | can make you proud
with this dissertation.

My family has also helped me find the required balance oftspitha Mari, Rafael, Javier, Cristina,

Nacho, Dani, Mari Carmen, Jorge, Andrés, Loli, MariaeJo#vi, Yolanda and Alberto. Regarding my
grandma, Adriana, recently deceased, | dedicate thisrthsiem to her.

The Antoni@s group also deserve special mention. Itis ghedtve can keep in touch after the degree,
and share experiences about growing older and facing fifaltifaceted events: Desi, Juan, CaroAlvaro,
Caro Co., Irene, Eva, Cristina, Tati, Amabel, and Vaneshape we can keep in touch many years.

| would like to mention two great sources of inspiration in lifg. Because of their knowledge and
disposition to share it, | am in debt with Dr. Yang, Jwing-Miand Dan Docherty.

Another source of inspiration for me is my friend Carlos ®zamlmnd his unconditional love for music
and resistance to go through the hardest times.

The YMAA group has become my second family: Paco, Toni, Jbsan, Marcela, Jacinto, Rafa, Pilar,
Angel and Maria José. | am also lucky to have found yet arddmily in the wudang tradition with Steve
from Madrid, Steve from Valencia, Lola, Miguel, Raquel, Ralita, Rosa y Ramon.

Finally, I would like to close this acknowledgment sectiorntioning the most important person in my
life. Partner in the broadest sense of the word, she is thehatenakes me wake up every morning with a
smile and a willingness to outperform myself in every ways&drom all the people in the world, you have
helped me the most to reach this place in time and space. Al Ihope for is to keep on growing beside
you.

Compilation techniques based on shape analysis for pdiatsed programs

Agradecimientos

Hay mucha gente a la que me gustaria agradecer su conbrnbalcpresente trabajo. Me siento afortunado
de haber disfrutado de su apoyo y ayuda.

En primer lugar, quiero agradecer a mis directores de Rsisel Asenjo y Maridngeles Navarro. En
igual medida, debo agradecer a Francisco Corbera. Todwsshelh sido indispensables para la realizacion
de esta tesis. Sobre Rafa, me gustaria destacar su inegetalsiasmo. Siempre se ha mostrado optimista
sobre el resultado, incluso cuando yo no me sentia muy aoim8iempre esta seguro de la motivacion
adecuada para el trabajo y la direccion en la que debet@menarse. Sobre Marfangeles, me gustaria
resaltar su cuidadosa atencion a todos los aspectos deskigacion. En nuestras discusiones de grupo,
normalmente era ella la que tenia una visibn mas condedtaroblema. Acerca de Francisco, me gustaria
apuntar su infinita capacidad para idear soluciones. Norit@pm complicado o extrafio del problema, me
guedaba constantemente maravillado de su habilidad pacmtear una solucién, o si no era posible, un
paso en la direccion adecuada. Ma[k’mgeles y Francisco también me han ayudado significatiaéeneson
la parte mas técnica de esta tesis.

También me gustaria agradecer a Emilio L. Zapata, porleodastion y por aceptarme en el Departa-
mento de Arquitectura de Computadores, un lugar donde mertigle a gusto durante la realizacion de
esta tesis. Tengo que agradecer también a Carmen Donesmreide buen talante para ayudarme. Todo
los demas comparieros del departamento también merem@idn por sus conversaciones, ayuda y cama-
raderia: Oscar, Eladio, Felipe, Mario, Gerardo, Julifavi, Sonia, Manuel, Mari Carmen, Ricardo,... la
lista sigue y sigue.

Me gustaria también agradecer el apoyo de los proyecto2003-06623 y TIN2006-01078 del Minis-
terio de Educacion espafiol, asi como el programa traiwsral HPC-Europa y su centro asociado EPCC.

Asimismo, quiero agradecer a Marcelo Cintra, por ser urosalanfitrion durante mi estancia en Edim-
burgo en 2006. Aprendi mucho de las conversaciones capudtro mencionar también a Mike O’Boyle,
un personaje carismatico lleno de interesantes conversactanto de trabajo como de la vida en general.
También quiero agradecer a Diego Llanos su buena dispasygbor compartir su conocimiento.

De mi periodo en Edimburgo, me gustaria agradecer a todongimto de personas tan agradables que
conoci alli, y gue me de un modo u otro me ayudaron o apoy&atherine Inglis, Mark Bull, Chris Fench,
Carla Delgado, Sergio Pérez, Miguel, Piotr, Marta, Runain@e, Carlos, Ulf, Paco,... la lista es demasiado
larga. También me gustaria agradecer a James Connadhnatr@lme en una disciplina nueva para mi.

Durante mi periodo en Espafia, he disfrutado de la corapafd interaccion con otros estudiantes de
tesis de mi generacion. En incontables ocasiones hemoparbdo ideas o simplemente charlado para
aliviar un poco la mente. No todos continlan actualmengeo pin asi los recuerdo con carifio: Jose
Miguel, Antoliano, Pepe, Fede, Ale, Sergio R., Vicky, Malyvi, Fran, Sergio V., Migue, Antonio, Juan,
Ricardo, Siham y Marina.

En un plano mas personal, hay mucha gente que me ha ayudadrgo del proceso. Su compafiia y
ayuda ha sido un balsamo cuando las cosas no salian adewrteé. En primer lugar, y sobre todo, quiero

10

agradecer a mis padres. Vuestra fe ilimitada y atento @& refrescantes y tranquilizadores. Espero que
0s sintais orgullosos con esta tesis.

Mi familia también me ha ayudado a encontrar el adecuadtileimmental: Ana Mari, Rafael, Javier,
Cristina, Nacho, Dani, Mari Carmen, Jorge, Andrés, LolarM Joség, Javi, Yolanda y Alberto. En cuanto a
mi abuela Adriana, recientemente fallecida, a ella le dedsata tesis.

El grupo de las Antoni@s también merece una mencion espees fantastico que podamos seguir
en contacto después de la carrera, y compartir expergesolare hacerse mayor y afrontar los multiples
sucesos de la vida: Desi, Juan, Caro,&ﬂv,aro, Caro Co., Irene, Eva, Cristina, Tati, Amabel y Vasaes
Espero que sigamos en contacto muchos afos.

Me gustaria mencionar a dos grandes fuentes de inspir&eiémi vida. Por su conocimiento y su
disposicion a compartirlo, me siento en deuda con el DrgyYawing-Ming y Dan Docherty.

Otra fuente de inspiracion para mi es mi amigo Carlos Sy&rseu incondicional amor por la masica y
su resistencia para soportar los momentos mas duros.

El grupo de la YMAA se ha convertido en mi segunda familia: d?doni, Jose, Juan, Marcela, Jacin-
to, Rafa, PilarAngel y Maria José. También soy afortunado de haber eéragim otra familia mas en la
tradicion wudang con Steve de Madrid, Steve de Valencila, IMiguel, Raquel, Raquelita, Rosa y Ramon.

Finalmente, me gustaria acabar esta seccion de agraeetsimencionando a la persona mas impor-
tante en mi vida. Compafera en el sentido mas amplio dein®, ella es la razén por la que me levanto
cada dia con una sonrisa y con la voluntad de mejorarme a smmi Rosa, de todas las personas del
mundo, tU eres la que mas me ha ayudado a llegar a este lugditiempo y el espacio. Todo a lo que
puedo aspirar es a seguir creciendo junto a ti.

Compilation techniques based on shape analysis for pdiatsed programs

Index

Figure index iX
Table index Xi
Preface Xiii
1.- Introduction 1
1.1 Generalbackground e 1
1.2 Motivation e e e 2
1.3 Shape analysis for dependence analysis 3
1.3.1 Shape analysis within the heap analysis framework 4
1.4 Preprocessing for shape analysis: the Cetus framewark 5
1.4.1 Simplification of complex statements 6
1.4.2 Programinstrumentation e e 7
1.4.3 Extraction of pointer statements and flow information. 8
1.5 Outline ofthisdissertation 8
2.- Intraprocedural shape analysis 11
2.1 Ourapproachtoshapeanalysis i 11
2.2 Registering possible combinations of links: coexislieks sets 13
2.3 Aformal description of shape analysis oo 16
231 Concreteheap. e e e e e 17
2.3.2 Abstractheap 18
2.3.2.1 Selector links with attributes 20
2.3.2.2 Coexistentlinkssets 21
2.3.2.3 Shapegraphs e 22
2.3.2.4 Reduced setofshapegraphs 24
2.4 Data-flow equations and worklist algorithm 26
2.5 Abstract semantics and operations e e e 27
251 Runningexample e e 27

ii INDEX
2.5.2 Creatingnewelements e 28
2.5.3 Creating arecursive data structure ew oo 29
2.5.4 Traversing arecursive data structure e 31
255 Freeingmemory e 33

2.6 Modeling pointer arrays: multiselectors 0o 34

2.7 Analysis refinement: properties e e e 36

2.8 Complexity e e 39

2.9 Relatedworkinheapanalysis 45

2.10 Experimentalresults e e a7

2.10.1 Benchmarksandtests. e 48

2.10.2 Comparison with predictions of the complexity study 51

2.10.3 Improving the analysis performance 52

211 SUMMANY e e e e e 53

3.- Interprocedural shape analysis 55

3.1 Introduction e 55

3.2 Extensions for interprocedural analysis oo 56

3.21 Newstatements e e e e 57

3.2.2 Recursive FlowLinks 59

3.2.2.1 Recursive flow links in the concrete domain 61

3.2.2.2 Recursive flow links in the abstract domain 62

3.2.3 Contextchangerules e 63

3.2.3.1 Non-recursive call-to-startrule 63

3.2.3.2 Recursive call-to-startrule 64

3.2.3.3 Recursivereturn-to-call 66

3.2.3.4 Non-recursive return-to-call 66

3.2.3.5 Keeping track of a reduced number of recursive flowsli. 69

3.2.3.6 Limitations in the use of recursive flowlinks 69

3.2.4 Data-flow equations and worklist algorithm 71

3.3 Reuseof function summaries e 74

3.4 Refining interprocedural analysis o 80
3.4.1 Previous call property to separate traversed andmagarsed nodes 80

3.4.2 Force pseudostatements to filter out impropercantext 82

3.4.3 Pairedselectors property e e e 87

3.5 Related work in interprocedural shape analysis 92

3.6 Experimentalresults e 93

3.6.1 Interprocedural suite for comparison with relatedkwvo 93

3.6.2 Morerealisticbenchmarks L 94

Compilation techniques based on shape analysis for pdiatsed programs

INDEX

3.7

3.6.3 Doubly-linked structures e e

SUMMANY . . o e e e e e e e

4.- Data dependence analysis

4.1

4.2

4.3

4.4
4.5

4.6

Introduction e e
4.1.1 Traversal patterns e e
Data dependence detection fewaytraversal patterns
4.2.1 Stage one (1-way)dentify heap accessing statements
4.2.2 Stage two (1-way)create dependence groups i e e
4.2.3 Stage three (1-waypdd touch pseudostatements
4.2.4 Stage four (1-way)shape analysis with touch property
4.2.5 Stage five (1-waydependencetest
4.2.6 Zero distance data dependences

4.2.6.1 Detecting zero distance data dependencesinloaps...

4.2.6.2 Detecting zero distance data dependences in mectuactions
Data dependence detection fiewaystraversal patterns
4.3.1 Stage one (n-waysperform recursive functioncloning
4.3.2 Stage two (n-wayshdd dynamic touch pseudostatements
4.3.3 Stage three (n-waysyhape analysis with dynamic touch property
4.3.4 Stage four (n-waysdependencetest
4.3.5 Further considerations
Related work in dependence analysis L
Experimental results e e e
451 Benchmarksandtests. e
4.5.2 Cost of dependence test over shape analysis L.
4.5.3 Further instrumentation with untouch pseudostatésne.
4.5.4 Scalability of the dependence detection scheme-foaystraversal patterns

SUMMANY e e e e e e e e e e

5.- Conclusions

5.1
5.2

CoNCIUSIONS o e e e

Future work e e e e e e

Appendices

A.- Shape analysis algorithms

B.- Shape graph summaries for the ever se() function

96
97

139

139

140

143

143

159

University of Malaga

INDEX

C.- Resumen de la tesis doctoral en castellano 163
C.1 Introduccibn general e e 163
C.2 Motivacibn e e 164
C.3 Analisis de forma para el analisis de dependencias . - 165

C.3.1 Elanalisis de forma dentro da$tema de afisisdelheap 166

C.4 Analisis de formaintraprocedural e 167
C.5 Anaélisis de formainterprocedural e 168
C.6 Analisisdedependencias e e e 169
C.7 Conclusiones 170
C.8 Trabajofuturo e e e e e 171
173

Bibliography

Compilation techniques based on shape analysis for pdiatsed programs

List of Figures

1.1 Heap analysis framework to report information to a codedformation block. 3
1.2 The use of shape analysis for heap-induced data depgendetection. 4
1.3 Program preprocessing, shape analysis and clientssmalithin the heap analysis framework. 4
1.4 Modules of program preprocessing for shape analysssgmuled within the Cetus infrastruc-

UM, . . e e 5
1.5 Example of the use of force pseudostatements to filtemmnaalistic graphs. 7
2.1 Analysing aloop until a fixed-pointisreachedinthesap. 12
2.2 (a) Summarization allows to bind the structure; (b) maligation is used to focus on the
regions currently accessed. e 13
2.3 Different shape graphs for a statement are grouped IR&s&. 14
2.4 Hierarchical view of the elements ina shapegraph. 15
2.5 Coexistent links setg[s’s) describe possible connections that may exist betwedasim
ashapegraph. e e e 16
2.6 Simple statements and definitions.. L. L 17
2.7 Excerpt of a program where a recursive data type is dmtkand later used to build a singly-
linked list. e e e 17
2.8 Asingly-linked list of four elements inthe concretedom 18

2.9 The singly-linked list used as example in the concreteadostract domain representations. . 19

2.10 Different attributes and their role for precise heagtraotion. 21
2.11 (a) Check whether two nodes are compatible; (b) Cheakhveh a node is unreachable in

the currentgraph. L e 23
2.12 Graphs in normal form around a pointer aliasingopamati. 23
2.13 Check whether two shape graphs are compatible. 24
2.14 Joining compatible shape graphs RE6G. 25
2.15 (a) The operatdr|™SC as theJoi n_-RSSE) function; (b)Sunmar i ze RSSE) function. 25
2.16 Data-flow equations for intraprocedural analysis. 26
2.17 The worklist algorithm. It computes tRSSG*® at each program point. 27

2.18 Running example to introduce shape analysis opegatidaratively create, reverse and
delete asingly-linked list. e e e 28

2.19 Creating a new element through the malloc statemenit@adsociatekNew() function. . 29
2.20 Use of theXSel Y() andXY() functions to create a recursive data structure. 30

Vi LIST OF FIGURES
2.21 Traversing a recursive data structure withXiv&el () function. 32
2.22 Destructive update in a recursive data structure gusieXsel Y() function, and its im-

plicit XSel NULL() function. 33
2.23 Freeing memory using th& eeX() function. oL 34

2.24 Three variants of a sparse matrix data structure basedioter-array in both the concrete
and abstract domains: (ahe-to-oneelationship for several lists of elements of tyigg(b)

one-to-ongaelationship for just one list; and (a)any-to-oneelationship foronelist. 35
2.25 EnBd’s data structure in the concrete domain (a), and the albstoacain without properties

(b), with typeproperty (c), and wittsiteproperty (d). 37
2.26 (a) Check whether two nodes are compatible, incoripgrétie properties check; (b) Check

whether two nodes are compatible with regardsto a certapepty. 40
2.27 Graphical User Interface for shape analysis. o ... a7
2.28 Data structures for the benchmarks considered fagrdcedural shape analysis. 49
3.1 Running example for presentation of interproceduralyasis. 56
3.2 The use of the Activation Record Stack (ARS) for rec@rginction analysis. 57
3.3 New statements for interprocedural support.o 58

3.4 A 4d-element list after the 4th invocationtever se() : (a) with ARS, (b) with recursive

flow links, and (c) its shape graph. e 59
3.5 Extended sets for pointers and selectors in interprocédoedysis.. 60
3.6 Example of shape graph transformation by@i&,,ec rule. 63
3.7 TheCTSprec() function. e 64
3.8 Example of graph transformation by t8&S;ec rule. L. 65
3.9 TheCTSiec() function. o e e 65
3.10 Example of graph transformation by tREC, ¢c rule. 66
3.11 TheRTG () function. e e 67
3.12 Example of graph transformation by tREC;ec rule. 67
3.13 TheRTGyrec() function. e 68
3.14 Ther ever se() recursive function instrumented with teexcl udeRFPTR directive in

bold typeface. e e 70

3.15 (@) A function to create a binary tree whose poihteannot be traced by our technique. (b)
A rearranged version of the same function that works in theesaay and that is adequately

supported. Rearranged statements appearinbold. 71
3.16 Data-flow equations for interprocedural support. 71
3.17 The extended worklist algorithm for interprocedunabort. It computes th&SSG* at

each programpoint. e 72
3.18 TheWor kl i st rec algorithm for recursive support. It computes tRESG* at each

statement function point. L e e e 74
3.19 Storing pair of input-outptRSSGfor the analysis of ever se() , after splitting incoming

shape graph by reachability of reaching and non-reachimgeys. 76
3.20 Example of function summary reuse when callimyer se() withanewlist. 77

Compilation techniques based on shape analysis for pdiatsed programs

LIST OF FIGURES Vii

3.21 TheTabul at e() algorithm to calculate and reuse function summaries. 78

3.22 TheSpl it by reachability() algorithm that gets the reachable part of a graph for
the given accessing pointers. e 79

3.23 An arbitrary long singly-linked list being traversahi recursive function in (a) the concrete
domain, (b) the abstract domaivithoutthe PC property, and (c) the abstract domaith
the PCproperty. e e 81

3.24 The recursive version of the call-to-start rule exeshtb support the previous call (PC)
property, with the statementsinbold. 82

3.25 The recursive version of the return-to-call rule edtghto support the previous call (PC)
property, with the statementsinbold. 83

3.26 TheTr eeAdd() recursive function instrumented with tfier ce pseudostatements that
allow proper context filtering displayed in bold typeface.. 84

3.27 A binary tree abstracted to the abstract domain, andubed for returning to the left side
callinTreeAdd() o o e 85

3.28 The use of force pseudostatements to filter out imprograexts when returning to different
call sites. e 85

3.29 General scenario of applying force pseudostatemeritisetr out improper contexts for re-
cursive analysis. e e e e e e 86

3.30 (a) A shape graph found at the return statemerfirieeAdd() . (b) The shape graph
obtained after applyinTGC; ¢¢ for the left side call and subsequent force pseudostatament
over the graph in (a). (c) A possible concretizacion of thapbrin (b) for the concrete
domain. Note how the relation betwekeaf t andt (g¢ maybelost. 88

3.31 (a) A shape graph found at the return statemeritriee Add() , with PS info. (b) The
shape graph obtained after applylRGC: ¢ for the left side call and subsequent force pseu-
dostatements over the graph in (a). (c) A possible conatn of the graph in (b) for the
concrete domain. Note how the relation betweefit andt ;s is preserved. a0

3.32 TheConpati bl e Property() featuring propertiest ype, si t e,t ouch, PC, andPS. 91
3.33 The data structures used for the recursive benchmamks®lden: (a)16- Tr eeAdd and

18-Bisort;(b)17-Power. e 95
4.1 Examples of dynamic data structures and traversals. MiagHel- way traversal pattern

for (a), (b) and (c), and th2- ways traversal patternfor(d). 101
4.2 Presentation of our heap analysis framework featuhedive stages for data dependence

analysis for thel-waytraversal pattern. 102
4.3 Running example for data dependence detection fegtatinvaytraversal pattern. 103
4.4 The function used bstage one (1-wayp identify heap accessing statements. 104
4.5 The function used bstage two (1-way)o create dependence groups. 104
4.6 The function used bstage three (1-wayp add touch pseudostatements. 105
4.7 Running example instrumented with touch pseudostatenie bold typeface. 106

4.8 TheTouch() function for annotating access labels in nodes. Access padrcreated too. . 107
4.9 The process of access labels annotatistage four (1-way). 108

4.10 The function used bstage five (1-waylo identify data dependences due to heap accesses. . 109

University of Malaga

viii

LIST OF FIGURES

4.11 Variation of the running example that presents a zestadce data dependence in lddp. . 111

4.12 Alist of lists data structure, its abstraction and several shape grapiesvad during the
analysis instage four (1-way)The access labels include the iteration vector informafioo

discriminating zero distance dependencesinloops. 112
4.13 TheDep_test | cdO() function with further elaboration to detect zero distancept

carried dependences. e e e e e e 113
4.14 Variation of the running example that presents a zestanite data dependence in recursive

functiontraverse_header (). e 115
4.15 TheUnt ouch() function for clearing annotationsinnodes.116
4.16 Variation of the running example using recursive fioms, instrumented witlhouchand

untouch pseudostatementlisplayed in bold typeface. 117
4.17 Presentation of our heap analysis framework dispigtyia four stages used for data depen-

dence analysis in-waystraversal patterns. 0. 119
4.18 TheTr eeAdd() function used as running example for threways traversal pattern. . . . 120
4.19 TheTr eeAdd() function in (a) the initial version, (b) performing functi@loning of depth

one, and (c) performing function cloning of depthtwo. 122
4.20 The function used bstage one (n-waysd perform recursive function cloning. 123

4.21 TheTr eeAdd() function, and its two clones for the 2-threads analysidrumsented with
dynamic touchlabel settingandlabel unsettingpseudostatements, shown in bold typeface. . 124

4.22 The function used bstage two (n-waysp add dynamic touch instrumentation. 125
4.23 The tree resulting from the analysisTafee Add() with two clones, with nodes annotated

with dynamic touch labels. o 126
4,24 TheSet Dt ouchLb(), Unset Dt ouchLb(), andDt ouch() functions to perform the

adequate annotations in nodes $taige three (n-ways). 127
4.25 The function that checks dependencesfaraystraversal patterns. 128
A.1l TheXNULL() function. e 143
A.2 TheXNew() function. Statements involved in the management of prasedre shown in

bold. e 144
A.3 TheUpdateproperty() function. 144
Ad XY() function. 48
A5 FreeX() function. e 145
A6 Xsel Y() function. e 146
A7 Summarize SE) function. 147
A.8 XSel NULL() function. 148
A9 XYSel () function. e 149
A.10 Thedoi n_.SE) function. Statements involved in the management of pragseare shown

inbold. 150
A.1l1 Thedoi n_Property() function. 151
Al2Split() function. e 151
A.l3Normal i ze SE) function. 152

Compilation techniques based on shape analysis for pdiatsed programs

LIST OF FIGURES iX

A.14 Part one of three of thbhat eri al i ze_Node() function. Statements involved in the

management of properties are showninbold. 153
A.15 Part two of three of th®hat eri al i ze Node() function. 154
A.16 Part three of three of thdat eri al i ze Node() function. 155
A.17 Partone of two of th€or ce() function. 156
A.18 Part two of two of thé=or ce() function. 157
B.1 Ther everse() recursive function to reverse a singly-linked list. 159
B.2 Output summaries for the recursive analysise¥erse().. 161
C.1 Sistema de analisis de¢éappara proporcionar informacion a un bloque de transforéraci

decodigo. e e 165
C.2 Eluso del analisis de forma para la deteccién de depmias de datos enleéap 166
C.3 Preprocesado del programa, analisis de forma y &ndliisnte dentro dedistema de atlisis

delheap. e e 167
C.4 \Vista jerarquica de los elementos deungrafodeforma. 168

University of Malaga

List of Tables

11

1.2

2.1

2.2

2.3

2.4

2.5

3.1

3.2

3.3
3.4

4.1
4.2

4.3
4.4

4.5

4.6

Examples of complex expressions and the simplificajmrformed by the shape analysis
PreEProCESSING PASS. '« v v v v v v e e e e e e e e e e e e e e e e e 6

Statements extracted by the shape analysis preprodessbape analysisc, y, andz are
pointers to recursive data typesel is a pointer field (or selector) of recursive data type,

dat a is a data field of recursive datatype. 9
Parameters of our complexity study. oo 44
The codes tested for intraprocedural analysis, withrioseabout performance, and size of
problem. The testing platform is a 3GHz Pentium 4 with 1IGBRAM 50
The codes tested for intraprocedural analysis, witlarpaters that relate to shape graph
complexity. e e e e e 50

Comparisons of maximum number of graphs and numbet efs measured versus pre-
dicted by the complexity study. 52

Measures for thd- Matri x x Vector and5- Matri x x Matri x benchmarks in
four versions each ul | ,si te,pruned andpruned & site. 53

Comparison of analysis times and required memory betteeapproach of Rinetzky et. al.
and our method, for a small suite of recursive algorithmstanipulate singly-linked lists

and binary trees. Time is measured in seconds, spaceinMB. 9%
Metrics of performance and problem size for recursiviebaarks from Olden. The testing
platform is a 3GHz Pentium 4 with 1IGBRAM. cu..... 95
Shape graph complexity measures for recursive programs. 96
The sparse matrix benchmarks compared in their simged(s) and doubly-linked(d) ver-
SIONS. . . . e e 97
Summary of benchmark programs used for our data depeadests. 130
Performance and problem size for the benchmarks usedefmendence detection. The
testing platform is a 3GHz Pentium 4 with 1IGBRAM. 132
Shape graph complexity for the benchmarks used for digpee detection. 133

Increment in several measures of the shape analysiarmesited for dependence test with
regardstojustthe shapeanalysis. e ... 134

Measures for th2- Runni ng_ex_r ec and7- Power benchmarks, considering the touch
instrumented versiort §, and the touch-untouch instrumented version)(. 135

Measures for thé- Tr eeAdd and8- Bi sort benchmarks, considering the versions tai-
lored for two threadsZ- t h) and four threads4-th). 136

Xi

Preface

Parallel computing is nothing new. It has been around forynyaars now. However, the way we perceive
it, as a society, has changed. From its beginning of neargnee fiction promise, to the current state of
ubiquitous multiprocessing, the parallel architectuned parallel programming paradigms have been many.
As eloquent professor Lawrence Rauchwerger pointed usitREAC summer school of 2007, most of
them have died. There has also been a cycle. In the 80’s,thirgysounding parallel was fashionable.
In the 90’s it was something different, as was rememberedspeaial panel in LCPC’07 entitletWhat
have we learned after 20 LCPCs?Funding was cut-off, and the researchers devoting thai to parallel
computing were left with a dilemma: change topic to move wwarmer sun of funding, or stick to their
guns in the best possible way and wait for a second rise ofatedlplism fever.

It seems that those who waited were ahead of their time. Nawtiprocessors are everywhere, from
high-end supercomputers to portable devices. There isa gremise for everyone working in parallel
computing. At the same time, there is a great pressure onit@spThe time to provide quality parallel
code is now. The hardware is ready to take it. The challengevisfor the compiler community to provide
it.

Among the most daring challenges in parallel computinggigethe automatic parallelization of irregu-
lar applications. There are not so many people working a ®dme of the groups that succeeded in works
tailored for regular applications, never turned to extenddapt their approaches for irregular applications.
| often wonder why. | suspect they thought the problem washtaral, or at least that it would not pay off
in the short term. They decided to invest their time and nessuin some other problem meaningful for the
compiler scientific community.

In this Ph.D. dissertation we look toward one of the tougloégiroblems in parallel computing: the
automatic parallelization of pointer-based applicatiaith dynamic recursive data structures. The problem
is so tough, that we deal solely with a technique to extrdarination from the heap to detect data depen-
dences. We will leave for future work the task of generatiagpfiel code based on the information provided
by our approach.

It was just a few days after the 11th of March of 2004. Spain stdsshocked due to the horrid
terrorist attack of the trains in Madrid. A day we will neverdet. People were still finding their way into
processing the strong feelings of disgust, fright, pditimcredulity, and anger. My way of doing so was
reading through the pages of the Ph.D. thesis of Dr. FramdBarbera [1], the seed work for the present
manuscript. In a weekend, amidst the national turmoil aretal/confusion, | had to decide whether | took
the position of Ph.D. student to continue work in the field ledyge analysis for dynamic data structures or
whether | continued my search for a job in the private see®rvas my first intention when | finished the
engineering degree. Needless to say, | took up the opptrtufibday, the world is not a safer place. At
least, | feel relieved that the goal | set myself that time esrto fruition.

At first, | had to get acquainted with all the nuances of sucbrapglex analysis technique. Gradually,
| grasped its meaning and extended the experimental worledawut so far. This produced some worthy
publications ([2], [3], [4], [5]) and introduced me in the wa of international conferences. This work

XV Preface

was invaluable for me to understand the complexity of shayadyais and its validity for data dependence
detection of heap-induced data dependences.

Then, the goal was to redefine the shape analysis strategy scoatch to include the novel idea of
storing links existing simultaneously over heap-allodateemory pieces in groups, a notion we baptised as
coexistent links setel s). This concept is the single most defining characteristiowfapproach and is
covered in detalil in chapter 2 of this dissertation. This kka was elaborated and extended in [6], [7] and
[8].

| call this period of the Ph.D. resear¢the sweet start” | was enjoying most of what | was doing
and all our efforts were corresponded with worthy publmagi, often with encouraging reviews. Next in
my well-defined schedule, was to add interprocedural suppasur new shape analysis technique based
oncl s’s. Chapter 3 of this dissertation details the mechanisrolied for this extension. From the first
research into related work, to the design, implementatiod,tests, this would take me nearly 2 years, being
by far the most challenging period in the making of this ditsg@n.

In between this period, | paid a 3 months visit to the Schodhédrmatics in the University of Edin-
burgh, funded by the HPC-Europa programme. There, Dr. Digggoos, my host Dr. Marcelo Cintra and |
designed a scheme for speculative parallelization of poibhsed applications. The resulting work, though
preliminary, was featured in [9] and [10]. | call this peritithe happy exile”. Not only it served me to
deepen my understanding of parallel programming and rézeghe pitfalls of exploiting parallelism in
pointer-based programs, but | was also lucky to share myitiSeotland with a most pleasurable company
of other young researchers from Europe. Insiders from tbgram told us that somehow we had formed
one of the most animated groups among all visitors ever.

After coming back from Edinburgh, | resumed work in the ipteccedural extensions for our shape
analysis technique. | call this peridthe real world”. Bruce Dickinson, singer and songwriter, put it quite
simply: “the real world can leave you hanging by a threadit surely did that for me, as our efforts were
systematically rejected in the ICS’'07, PACT'07, SAS'07daPoPP’07 conferences. | tried (although
sometimes it was hard) to keep my spirit high and continuekingrat full throttle despite the adversities.
By the time we got a poster in ACACES’07 [11], another postet. CPC’'07 [12] and a full article in
IPDPS’08 [13], we had already moved into the data dependanalysis, subject of chapter 4.

The present work rounds up with conclusions and ideas fardutork in chapter 5. Then, follow some
appendixes with some technical details, and the Spanismsauyor this dissertation.

When doing research, you often find that your ideas are ndiyreaw. Hopefully, you can add a
different point of view that leads to an improved result. ®imes, what you need to solve was done just
fine by people before you. As I close this preface, | find thaatitieel was already described in 1987 by
the drummer and songwriter, Neil Peart, when he wrote theiogeverse for the sontrhe Mission”:

“Hold your fire,
keep it burning bright.
Hold the flame
'till the dream ignites.
A spirit with a vision
is a dream with a mission”.

Compilation techniques based on shape analysis for pdiatsed programs

Introduction

1.1 General background

The scientific community agrees that we have reached thdamndtera: dual- and quad-core processors
are now common in desktop computers, and manufacturerdntieé target 80-cores processors in their

roadmap. Furthermore, multiprocessor architectures rabdu middle-size enterprises, research centers,
and national organizations, as they are quickly becomiagrthinstream in computer architecture.

Single-core architectures cannot cope with Moore’s law fddncrement performance. As we reach
the limits of monoprocessor architectures, increasingggaensumption (and the associated cooling cost)
starts to outweigh the growingly smaller improvements irfggenance. There seems to be a better way: go
multiprocessing. Examples of this trend are the Intel'stéieo Duo architecture for laptops, and IBM's
Roadrunner system, the most powerful supercomputer irakitgtu The latter is the world's first hybrid
supercomputer, connecting 6,562 dual-core AMD Opteropschs well as 12,240 Cell chips. Not only
multiprocessors are becoming widespread, but heterogsragchitectures are emerging too. Rather than a
fad of our time, multiprocessors are here to stay.

The key issue now is obtaining good software performana@aatbst so that we can exploit all available
hardware. Currently, the most common way to obtain progrfamthese multiprocessor architectures is by
explicitly writing parallel algorithms that rely on threiad schemes or message passing libraries. There is a
major hindrance with this approach, and it is the increadieplopment cost. Although there is a growing
number of languages and libraries trying to popularize lfgdqarogramming (e.g., [15], [16], [17]), expert
parallel programmers are invariably sought-after, mordww®to the variety of available architectures and
parallel programming paradigms.

We are witnessing a change of course: fromHiigh Performance Computingnainly concerned with
reducing run times and achieving speedup by whatever mezressary, to théligh Productivity Com-
puting which seeks to obtain attractive performance improvemenit more importantly, with shorter
development costs.

!As indicated by the Top 500 Supercomputer list (www.topB@g).in June 2008.

2 Chapter 1. Introduction

For years, a versatile and powerful parallelizing comgilas been the chimera of the compiler commu-
nity. The goal is to able to identify and exploit parallelismsequential programs in an automated basis,
a process entirely driven by the compiler. This approachpnagen successful for regular applications,
mainly in Fortran [18], but irregular applications stillgmgreat challenges.

In particular, data structures based on dynamic memory eceisaed through pointers are beyond the
scope of current compilers. They are ineffective when itesto optimizing pointer-based applications for
modern multiprocessors. This limitation is mainly causgdheir inability to extract the required informa-
tion from the source code. In general, they are unable tdddt& opportunities to exploit parallelism and
locality in dynamic data structures. For that, a preciseiiigson of what heap-allocated memory locations
are accessed and how they are managed is absolutely reqDingdthen we will be able to advance in the
automatic parallelization of irregular programs.

1.2 Motivation

The problem we want to solve is the automatic parallelizatid codes based on heap-stored dynamic,
recursive data structures. This is a very tough and unsgiva@olem. Finding its solution would have a big
impact since dynamic data structures are widely used in rimeegular codes and multiprocessor/multicore
architectures are very common nowadays.

Dynamic data structures are those allocated at run time ecebssed through heap-directed pointers.
More often than not, those structures are also recursiveeiseénse that each heap element has pointer fields
that can point to other heap elements, thus forming comnrantstes such as linked lists, Direct Acyclic
Graphs (DAG) or trees. These structures are commonly uspdiinter-based, irregular applications, and
they pose significant challenges for current compiler aialgasses, due to the alias problem.

The problem of calculating pointer-induced aliases mustddeed so that compilers can safely disam-
biguate memory references. A basic step in the automatadlpliration process is the detection of parallel
loops or parallel function calls using a data dependende $sh a dependence test requires information
about the properties of the data structures traversed indps or in function bodies. We are convinced that,
for the purpose of dependence analysis in the context ofcapioins that deal with dynamic data structures,
a very precise description of the heap must be obtained.

There is a body of work based goints-to analysige.g., [19], or [20]). Its main focus is toward
detecting aliases relationships between pointers. Fearnne, Salcianu [21] builds points-to graphs that
represent relationships between heap elements and ietem for incomplete parts of a program. His
analysis is tested for some simple clients for object oggémdnguages, such as finding out methods that do
not modify global objectspurity analysi3, and detecting objects that are captured within a methddrars
can be allocated in the stacktéck allocation analys)s

In our approach, we considshape analysisis the base technique for achieving a characterization of
data structures in the heap. Unlike points-to analysisnigcles, which are mainly concerned on must- and
may-alias sets, shape analysis is concerned abowhéygeof the data structure. This allows for a more
precise characterization of data structures in the heaph Brecision is a must for more complex client
analysis, such as data dependence analysis. With shapeation, it it possible to identify conflicting and
non-conflicting accesses in traversals of heap elemerdsptherwise are not differentiated in a points-to
analysis.

We envision a heap analysis framework, based on shape &nay#s cornerstone, whose purpose is
to draw topological and temporal information about rearsiata structures. Such a framework would
be oriented toward the detection of parallel loops and ferinction calls. The final goal is to generate

Compilation techniques based on shape analysis for pdiatsed programs

1.3. Shape analysis for dependence analysis 3

threaded, parallel versions of sequential legacy codeis.fildmework would prove invaluable in the current
scenario brimmed with off-the-shelf multiprocessors, ahhaire becoming widely available to the average
user in the form of multicore systems.

We present a gross view of such a framework in Fig. 1.1. Thp healysis framework statically derives
information from a sequential pointer-based applicatidiis framework should be coupled with a code
transformation block that makes proper use of that infoionab yield an optimized version of the original
program. For our purposes, such optimization is relatedutoraatic parallelism for achieving run time
speedup.

Analysis

Input output Cod Optimized
Heap analysis ode ———

program " fraenewo?ﬂlk "| transformation program

Y

Figure 1.1: Heap analysis framework to report informatma tode transformation block.

1.3 Shape analysis for dependence analysis

Shape analysis is a heap analysis technique that consideration available at compile-time to provide
detailed information about the heap for pointer-based namg. This is done by extracting information
about theshapeor connectivity of heap elements.

The information derived from the shape analysis of a poibgesed application can be used for several
purposes like: (i) data dependence analysis, by detergifittvo accesses may reach the same memory
location; (ii) locality exploitation, by capturing the wagemory locations are traversed to determine when
they are likely to be contiguous in memory; (iii) program ifieation, to provide correctness guarantees
about heap manipulating programs, and (iv) programmeratipie help detecting incorrect pointer usage
or documenting complex data structures. In this dissertatve will deal exclusively with the use of shape
analysis for data dependence analysis, although otheansgmssible.

In our approach to shape analysis, we use shape abstraetiprsssed as graphs to model the heap.
Graph-based shape analysis is a very detailed pointersasabchnique that is regarded as context-, flow-,
and field-sensitive. As a consequence, it is usually mucteroastly than other approaches to heap analysis,
like points-to analysis.

Let us present now an intuitive idea of how a graph-basedeshaplysis can be used to find access
conflict in a typical pointer-chasing loop. The main idea im data dependence test scheme is to carry out
the abstract interpretation of the statements of the aedlyaop, abstracting the accessed heap locations
with nodes of shape graphs and annotating these nodes aidwéte information.

The code in Fig. 1.2 creates a singly-linked list and thewenses it, copying thelat a field of the
element pointed to by pointer, to the element pointed to by pointer The overall effect of this algorithm
is to shift values in the list one position toward the headteNww there is a potential loop-carried data
dependence, betwe&3: val =g- >dat a, that reads thdat a field, andS4: p- >dat a=val , that writes
toit.

Our test symbolically executes the code abstracting the statictures in shape graphs. For example,
sg! is the shape graph that abstracts the list created at stat&heUsingabstract interpretatiorj22], the
abstract semanticef each statement update the shape graph resulting fronreéh®ps statement. In this

University of Malaga

4 Chapter 1. Introduction

process, memory locations that are read and/or writtenraretated accordingly. In this example, the read
access of statemeB8 is annotated aRS3 in the shape graphs, whereas the write access of statS#ént
annotated a¥\64. The second symbolic execution of statem®#t p- >dat a=val produces shape graph
sg®. Within this shape graph we can detect that a memory locatisrbeen read in an iteration and written
in the next one, causing a loop-carried dependence due tieaafter-read (WAR) access.

1R sgt
Sl: l=p=create list();
S2: g=p>nxt; L\ i >: g ’

Ll: while (g!=NULL) {

Iteration 1 lteration 2

(P a9 O P J ’

50 vategedatan] jl g w @

- [P q sgl O | ‘11 ’

(e | lTeifred

S5 p=q S N o9 () erte after Read

’ Wsd :‘ " loop carried depend.

T et DETECTED
S6: q:p—>nxt,) "l P sg
Lete &

Figure 1.2: The use of shape analysis for heap-induced éatendence detection.

S4: p->data=val;y ‘

1.3.1 Shape analysis within the heap analysis framework

We expand now on the concept of the heap analysis framewtsddirced earlier. Fig. 1.3 presents a view
of different modules interacting within the heap analysisrfework.

Heap analysis framework

Shape analyzer
package
Pointer :
SAP statements and ' fShap? _
Input Shape Analysi flow info iinformation|) Analysis result
program = (Shape Analysi$ | Shape analyzer |= Client analysis ——t—s(e.g., parallelizable loops,
Preprocessor) H : or functions)

Shape
i graphs

Visualization
tool

F=======

Figure 1.3: Program preprocessing, shape analysis amd alalysis within the heap analysis framework.

First, the input program enters the SAP module, which stédmdShape Analysis PreprocessoAs it
name suggests, it is responsible for performing prepraugdasks on the program required for its shape
analysis. The result of this module is the set of pointeregtaints that deal with the heap, and the flow
information that governs the way those statements are teg:authe program.

That information is the input for thehape analyzetool, within the shape analyzer packageAlso

Compilation techniques based on shape analysis for pdiatsed programs

1.4. Preprocessing for shape analysis: the Cetus framework 5

within this package we find @isualization too[23] that is used to visualize the shape graphs obtained and
help debug the technique.

As a result of the execution of the shape analyzer, we withiobadshape characterizationf dynamic
data structures. That information can be put to usellgnt analyses For example, alata dependence
testcould be such a client: it can consider shape informationbined with heap access information to
detect dependences in pointer-based applications. Thksres the client are then offered as output of the
framework. For instance, a data dependence test clientl cepbrt parallelizable loops or functions to a
parallelization framework, external to the heap analysimmework.

We will deal with theshape analyzein detail in chapters 2 and 3. We present a data dependerice tes
as client analysis for the use of our shape analysis techrilguhapter 4. Now, we will focus on the SAP
module, and the preprocessing tasks required for propgesizalysis.

1.4 Preprocessing for shape analysis: the Cetus framework

Some preprocessing is required for the shape analysis aigagm. We have designed the required pre-
processing passes within the extendable Cetus framewdtk (Ztus is a compiler infrastructure designed
for source-to-source program transformation. It can parpeogram to a well-defined IR, perform some

transformations, and emit the result as a new source program approach is useful for performing trans-

formations in programs that can be later compiled and ruh @iproduction compiler. Cetus can parse C,
C++, and Java, although we only target C programs.

Cetus is specially aimed toward the development of conipiigtasses of high-level nature. This is so
because its IR is close to the source code, which is suitablednsformations related to heap analysis.
Tackling heap analysis at lower levels in the compilatioocpss is usually more difficult because we lack
enough information.

Cetus is written in Java and its source code is publicly atséél under a non-restrictive license. This
has allowed us to design some custom passes over its IR wrmpesbme simple program transformations,
annotations and translation. Furthermore, our extenddds@eamework fits seamlessly with our shape
analyzer implementation, also designed in Java.

Fig. 1.4 displays the insides of the SAP module presentdiealt is composed of several modules.
First, the input program is parsed with Cetus. The resuttdtiginal program in the Cetus IR format, where
we can perform some simple passes, structured in threesst@gaimplification of complex statements, (ii)
program instrumentation, and (iii) extraction of pointeatements and flow information. At some points
in the process, the resulting state of the program can bdeshdptionally as a new source code with the
transformations applied so far.

SAP (Shape Analysis Preprocessor)
""""""""""""""""" CewsR T T TTTTTTS
with simplified Heap pointer stmts,

1
1 . :
Cetus IR . stmts & instrumentation pseudostmts,
1 Cetus IR with simplified instrumentation and flow info
1

1
1
tmt: E. f !
Simplification stmts pseudostmt xtraction o 1
Prlggruatm 1 Cetus parser of complex inst}r:urrc‘)nggr?tr;‘tion : pUr stmts & 1 Shape analyzer
. statements : ' flow info .
1 . (optional) v (optional)]
: Cetus emitter Cetus emitter :
! 1

Simplified source Simplified source
program program instrumented
with SAP directives

Figure 1.4: Modules of program preprocessing for shapeyaisaldesigned within the Cetus infrastructure.

University of Malaga

6 Chapter 1. Introduction

1.4.1 Simplification of complex statements

The first pass within the shape analysis preprocessing sigethe simplification of complex statements.
The purpose of this pass is obtaining an equivalent verdidinecinput program but with a shorter variety
of expressions, so that we can deal with the features of tigiege more effectively.

We target sequential C programs for our analysis. The yagiletl complexity of expressions that are
legal in ANSI C [25] is significant. We do not support all thafieres of the language. In particular, we do
not support pointer casting, pointer arithmetic, functpminters, or the address-of operator (&). In other
words, the type of declared pointers must be known and fixadlttee access through pointers has to follow
a pointer chasing path, with no calculation of pointers Haseadding values over a base pointer address.
Programs using this kind of mechanisms must be rewrittenamdho avoid them or discarded for their
analysis.

We focus on a subset of C for our analysis: assigning statsnievolving pointers to dynamic data
types, loops and branching statements, function calls etodr statements. Additionally, we need to make
sure in the preprocessing stage that statements involoirggrs use onl\simple access pathse., they
only have one level of indirection. Also, we need to ensuat #ipointer is not read and written in the same
statement, that conditions in loops are simple pointer k$eand that there are no nested function calls.

These kinds of expressions are substituted for a simplsioreby a custom pass designed in the Cetus
infrastructure. An example of such expressions and ttesiistormations can be seen in Table 1.1. Note that
we employ additional pointer variables when needed. Sime@timber of assigned pointers in our analysis
is relevant, as we shall see in the complexity study of chahtere nullify these temporal pointer variables
as soon as they are not needed.

Thanks to the simplification of complex statements perfatineour preprocessing pass, the number of
different statements that need to be supported by our shebeses technique, and therefore their associated
abstract semantics, is lower. This makes the formulatioaunfanalysis simpler and involves no loss of
generality.

Original statements | Simplified statements
Turn complex access paths into simple access paths

t np=y- >nxt;

X=y- >nxt - >dwn; X=t np- >dwn;
t mp=NULL;

Turn updating statements into two separate read and waitersents
t mp=x- >nxt ;

X=X- >nXt ; X=t np;
t mp=NULL;

Simplify complex conditions for branches, loops, and fiorctalls
nav=x- >nxt ;

i f(nav!=NULL)

Decompose nested function calls

t mp=f 002(x) ;
fool(foo2(x)); fool(tnp);

t mp=NULL;

i f(nav=x->nxt)

Table 1.1: Examples of complex expressions and the singtiibies performed by the shape analysis pre-
processing pass.

Compilation techniques based on shape analysis for pdiatsed programs

1.4. Preprocessing for shape analysis: the Cetus framework 7

1.4.2 Program instrumentation

Shape analysis can benefit from certain information thabeaseduced from the statements in the program.
In that case, it is worthwhile to communicate that informatito the shape analyzer tool for improved
precision or functionality. The second pass in our shapdysisapreprocessor module can annotate that
information in the source code. Such annotations use thenmmpr agma nomenclature, followed by the
SAP keyword and the name of a directive.

The process is simple: the simplified representation of rarmgstatements in Cetus IR format is tra-
versed, looking for opportunities to add SAP directivese Tésult can then be emitted as a new code thanks
to the source-to-source translation capabilities of Cefinis emitted code can be run with the same result
as the original program, as the SAP directives will be igddrg the compiler.

EMPTY
GRAPH

—, D,
e, 1, . if (condl) !

T[x@@} B

#pragma SAP.force (z!=NULL) #pragma SAP.force (z==NULL)
x->nxt=z; X->nxt=y;

‘ (o] [ee—aY

Figure 1.5: Example of the use of force pseudostatementieiodiut unrealistic graphs.

Some directives provide information to the next stages apshanalysis preprocessing about the way
the statements must be considered for the internal opesatimt most directives are translated ipseu-
dostatementshat will be later abstractly interpreted by the shape amaalyor a specific effect. One of
such pseudostatements is floece pseudostatemenindicated in a force directive of the for#pr agma

University of Malaga

8 Chapter 1. Introduction

SAP. f orce(condi ti on),wherecondi ti onis a boolean condition involving pointers. The possible
conditions arec==NULL, x! =NULL,x- >sel ==NULL,x- >sel ! =NULL,x- >sel ==y, orx- >sel ! =y,
wherex andy are pointers to recursive data typgek andt 2, respectively, andel is a pointer field (also
calledselecto) to typet 2, declared irt 1.

The force pseudostatement is used to filter out unrealistiplgs according to pointer test conditions,
mainly in branches and loops. Consider the example of Fig. L shows a simple code as a control flow
graph with twoi f branches. Let us assume thaty andz are pointers to a list data type. The first condi-
tional block creates a third element pointed tozoif a certain arithmetic condition holds. This condition
is not known at compile-time, so both branches must be ceremidby the analysis. At the join point af-
ter the firsti f, there are two possibilities of graph abstractions. Thkea tnter in the next conditional
block. However, it is clear from its conditiorz { =NULL) that only one graph is suitable for each branch.
At the join point after the secoridf , we would have four different graphs, according to difféféow paths
of the analysis. Two of them are correct, the other two areossible, and thus render the analysis im-
precise. To prevent this situation, ther ce(z! =NULL) pseudostatement (inserted by the preprocessing
directive#pr agma SAP. f or ce(z! =NULL)), filters out the graph where is assigned to a node, and
the f or ce(z==NULL) pseudostatement (expressed in directipr agma SAP. f orce(z==NULL))
filters out the graph where is not assigned to any node. With the use of simple force pseueéostaits,
inappropriate graphs are eliminated, preserving accureitye analysis.

Force pseudostatements are just one of several pseudostdseavailable. Another kind is theuch
pseudostatementvhich is used to annotate access information in nodes gfesgeaphs. This is useful
for data dependence analysis. For instance R&& and\W54 labels from Fig. 1.2 are annotated by touch
pseudostatements. The touch pseudostatement and otitedrpseudostatements will be covered in detail
in chapter 4. The key issue here is that all of the pseudoséates needed in our approach are introduced in
the same way, i.e., through SAP directives in the source.code

1.4.3 Extraction of pointer statements and flow information

The final stage of our preprocessing scheme for shape amahygilves the translation of the required
statements from Cetus internal IR to the format requiredhieyshape analyzer tool. This translation must
account for all kinds of statements considered by the shaglgsis technique.

The shape analyzer tool operates by modifying shape grajglosding to the abstract semantics of the
statements dealing with pointers (as well as the pseu@oséaits introduced in the instrumentation phase).
The flow of the analysis is in turn based on the flow imposed byfainction calls, loops, and branches in
the program.

The statements considered for the shape analysis techaigudisplayed in Table 1.2. They are sorted
as those required for intraprocedural analysis, integmtaocal analysis and data dependence test, which is
the order in which we will present the shape analysis caipiaiin this dissertation, in chapters 2, 3, and 4,
respectively.

1.5 Outline of this dissertation

The rest of this dissertation is organized in the followinayw

e Chapter 2 explains in more detail our approach to shape sinahased on shape graphs. For this
chapter, we focus on the design of the shape analysis fapimmtcedural programs, i.e., without

Compilation techniques based on shape analysis for pdiatsed programs

1.5. Outline of this dissertation 9

Statements for intraprocedural analysis (chapter 2)

Pointer nullification stmt. X=NULL;

Heap element creation stmt. x=mal | oc(...);

Heap element removal stmt. free(x);

Pointer aliasing stmt. X=Y;

Selector nullification stmt. x->sel =NULL;

Selector assignment stmt. x->sel =y;

Traversing stmt. x=y- >sel ;

Loop stmt. e.g.wile(){ ..}

Branch stmt. eg.if(){. .}
Statements for interprocedural analysis (chapter 3)

Function call stmt. x=foo(y, z,...);

Return stmt. return(x);

Function header foo(x,y,..){..}
Statements for data dependence analysis (chapter 4)

Heap read access to a data field val =x- >dat a;

Heap write access to a data field x->dat a=val ;

Table 1.2: Statements extracted by the shape analysisopessor for shape analysig., y, andz are
pointers to recursive data typesel is a pointer field (or selector) of recursive data tygat a is a data
field of recursive data type.

support for functions yet. In particular, the abstract satica and data-flow equations needed for
correct shape analysis of programs are explained.

e Chapter 3 deals with the extensions of the technique destiibchapter 2 to provide full interpro-
cedural support. In particular, we introduce the mechasisgquired for shape analysis in recursive
algorithms.

e Chapter 4 puts to use the technique completed in chapter thdodetection of heap-induced data
dependences. We identify different patterns used to tsavdynamic data structures, and devise
mechanisms to identify data dependences due to heap axzdesisem.

e Chapter 5 discusses the main contributions of this diggmmtand poses ideas for future work.

Related work and experimental results are discussed witkiscope of each of these chapters. On top
of that, we have deferred some specific content to the appemdor your reference, to avoid detracting
from the overall readability. In particular, appendix A tains some algorithms for the shape analysis
technique described in chapter2, appendix B containsldétdéscription of the shape graphs obtained after
the analysis of a recursive function that reverses a siligkgd list, and appendix C contains a summary of
this dissertation in Spanish, as partial fulfillment of tequirements for the mention of “Doctor Europeus”.

University of Malaga

Intraprocedural shape
analysis

2.1 Our approach to shape analysis

Our approach to shape analysis is based on construstiage graphs These are graphs made of three
base elements: (pointers in particular, those that point to recursive data typedaded in the program;
(i) nodes which represent dynamically allocated memory pieces;(afidedges that connect pointers to
nodes or nodes with other nodes. The purpose of a shape grdphrépresent the mashapefeatures
of dynamic, recursive data structures. Such features atoidentify the structures as lists, or trees, for
example, including information about the presence or ateser cycles, the kind of locations reachable
from a pointer, and so forth.

The analysis works by symbolically executing the pointeteshents in the analyzed program. Each
pointer statement modifies an input shape graph to produoetant shape graph, in a way that accurately
represents the effect of the statement at run time. ForriostaFig. 2.1 sketches how graphs change when
analysing the pointer statements that create a singlgdidist. A malloc statement, such & and S3,
produces the creation of a new node, which abstracts a mepiecg allocated at run time. Statement
S4: p- >nxt =a is used to connect the node pointed to ywvith the node pointed to bgp. Aliasing
statements, such &2 andS5, produce a pointer to be updated so that it points to the notegal to by
another pointer. Each kind of pointer statement has itscéeteal behavior for thehape graph domajn
that imitates or simulates the behavior of the statemerdutian at run time. The way in which a pointer
statement modifies the shape graphs is defined abgtact semanticsThe process of actually modifying
a shape graph according to those abstract semantics id ab&ract interpretatiorj22].

Our shape analysis algorithm is designed as an iteratiwefttat analysis. The statements in the pro-
gram are symbolically executed in an iterative fashioryedriby the branches and loops in the program,
for the intraprocedural part of the analysis. In this preci® shape graphs are changed according to the
abstract semantics of the statements analyzed. This grooainues until the shape graphs reach a station-
ary state, where further abstract interpretation prodnocasew information. Such state is referred to as the
algorithmfixed point

Tightly related to the fixed point in our algorithm, is the oot of summarization Summarization is
the process that merges nodes in the shape graph when thegarded asimilar enoughby the analysis.

11

12

Chapter 2. Intraprocedural shape analysis

S1: l=malloc();

S2: p=1;

11

Iteration 1 Iteration 2 Iteration 3 Iteration 4

b i | (B[oo o e | fodaie]

S5:

“# Summarization

=

7 ab

—~ DD

)

} Fixen(.imboint

Figure 2.1: Analysing a loop until a fixed-point is reachedhia graphs.

Similarity or compatibility of nodes is determined by pointer alias relationships afastableproperties
The summarization process binds the shape graphs, byrgritie number of nodes they may have. Ad-
ditionally, summarization prevents the graphs from chaggindlessly in the course of iterative abstract
interpretation, thus allowing the fixed point condition ®ieached.

For instance, in Fig. 2.1, we find that summarization occtith@processing db5: p=a in symbolic
iteration 3. This makes it possible for the analysis to reaftked point in the next symbolic iteration, where
we obtain the same shape graph. New symbolic iterationsedbthp would not produce new information,
so the analysis can terminate.

Summarizing implies losing information in favor of a bouddepresentation. We provide as well a dual
operation to focus over previously summarized nodeaterialization This operation can regain precision
where pointer accesses are occurring because it perfstmorgy updatgd26] [27], discarding unnecessary
links in most situations. However, highly connected and mamized graphs can make impossible for the
materialization operation to recover exactly the origiivdts, leaving some conservative ones.

The whole idea of summarization/materialization, is tadfohfold the structure in the shape graph,
depending on the part of the structure that is being acce3$wdpart of the structure that is being accessed
by pointers becomefcusedor unfolded while the part of the structure that is not directly acdassby
pointers becomesummarizedr folded Fig. 2.2(a) shows an example of summarization in a singked
list: when thep pointer is aliased witla, two nodes in the middle of the list are no longer directlyessible
by pointers and are summarized into a so-calathmary nodeConversely, Fig. 2.2(b) shows a traversal
of a singly-linked list where a summary node is focused byemiaizing a new node, which represents
precisely the memory location pointed to by poirpen that moment of the program execution.

The basic criterion to merge nodes is therefore to summalizbe nodes that are not pointed to by
pointers, and thus, are not directly accessible by them. édew we provide a configurable set of prop-
erties, which are valuable for fine-tuning summarizationiglens in the cases where this basic criterion
is insufficient to provide the requested accuracy. Progeidie a key instrument to control how precisely
shape graphs capture the features of the memory configuratio

At any point during the analysis, there may be several diffeshape graphs for a statement, to capture
all possible memory configurations that can reach that retate from different flow paths. In fact, we
associate not just a single shape graph, but a group of theauety statement and for every symbolic
iteration. We call such a groupraduced set of shape grapfRSSG). A RSSGcan contain just one shape
graph, and act as arapperfor it within the analysis, but in general, RSSG will contain several shape

Compilation techniques based on shape analysis for pdiatsed programs

2.2. Registering possible combinations of links: coexistimks sets 13

l~©~lc>ba—t> -

l a Materialization |
©
! %@@
Q

. -~“Summarization

1->nxt

P

a_P IS

1@% @D DO

(a) (b)

Figure 2.2: (a) Summarization allows to bind the struct(ing materialization is used to focus on the regions
currently accessed.

graphs that are regarded different enough That is the case of mutually exclusive pointer arrangement
in the shape graphs. Conversely, similacompatiblegraphs in aRSSG arejoined to bind the number of
graphs within &RSSG.

Fig. 2.3 shows the shape graphs generated during the analyaipiece of code with three branches.
Reduced sets of shape graphs flB85G° to RSSG, just serve as wrappers for shape graph8 to sg@.
At the join point in the CFG though, the tempoRSSG gathers the shape graphs resulting from the
three different branches. Shape grapld® andsg!! are compatible because they have the same pointer
arrangementx, y andz are all pointing to nodes). Accordingly, they are joineddenfisg'2 in RSSG,
the resulting reduced set of shape graphs for this exampigh®contrary, the shape graph resulting from
the first branch is stored as a separate gragh?, because pointer is not assigned in it.

The final result of our analysis is the set of shape graphsdisstribe the state of the heap for every
statement and by following any possible flow path in the progr These results are always conservative,
meaning that a super-set for all possible shape graphsaagsent the program heap, is constructed.

Termination of the analysis is guaranteed by the existehtteesummarization of nodes and the joining
of graphs: (i) similar nodes amimmarizedo bind each shape graph; and (ii) shape graphs with the same
alias relationships between pointers goimed to bind eachRSSG. Since the number of pointer variables
to recursive data types declared in the program is fixed aod/krat compile time, the number of graphs
per statement is limited by the different and mutually egitle combinations of pointer over nodes. The
theoretical maximum number of nodes per graph and graphfR®86G, and its impact on the analysis
complexity is further discussed in section 2.8.

2.2 Registering possible combinations of links: coexistéhnks sets

A program dealing with dynamic data structures performstimme allocation of memory pieces, that we
call memory locations Those locations are accessed and connected through rgoiréore precisely,
stack-based heap-directed pointes simply pointers are used to access the structure, hedp-based
heap-directed pointersvhich we callselectorsare used to interconnect the heap-allocated elementh. Suc
interconnected elements creadeursive data structuresuch as linked lists or trees.

We callmemory configuratioto the memory arrangement of the heap at a given point dunpmggram
execution. As we have mentioned, our approach to shapesimadbased on building shape graphs. These
shape graphs abstract memory configurations arising inrthlyzed program.

University of Malaga

14 Chapter 2. Intraprocedural shape analysis

RSSGO

sg0
EMPTY
GRAPH

— o000

x=malloc () ;
y=malloc () ;
z=malloc () ;

Y N
if (condl)
RSSG3 RSSG?
sg3 sg?
#= O v~ = @Dy B 2 -
x->nxt=z;
RSSG®
s sq5
* vy 2 L
N
y->nxt=z; RSSGE
RSSG’ sg®
. sq’ [x v,z]
5Dt Y DD
18t branch m\Zj 2" pranch 3" branch

T RSSG?'
[J
L3
[}

9 S = DR -
RSSG R Graph joining
Sg12

—@, vy

Figure 2.3: Different shape graphs for a statement are gino aRSSG.

The approach to shape analysis described so far is not stibByadifferent from others found in the
literature, such as [28], [26], [27], or [29]. Here, we irdtxe the main aspect that sets our technique
apart from related work: the codification of possible coninég patterns between nodes with the use of
coexistent links sets.

Let us first introduce what are the elements that constihdeshape graphs. Fig. 2.4 shows a hierarchi-
cal view of those elements. At the lowest level we havepdinters used as access points to the structures;
(i) nodes used to represent heap-allocated pieces of memory; andgliectors used to link nodes. Com-
bining these base elements together, we can create two kiredations: pointer links(pl 's), which are
links between pointers and nodes; a@lector links(sl 's), which are links between nodes through a se-
lector. Finally,pl 's andsl| 's can be combined together to forrnexistent links sefg! s's), that describe
combinations opl 's ands| 's that may exissimultaneouslyver a node.

The following example will help us introduce the concept oéxistent links sets. Fig. 2.5 showg!3,
the final graph that joins the effects of the second and thiashdh in the example in Fig. 2.3. This time

Compilation techniques based on shape analysis for pdiatsed programs

2.2. Registering possible combinations of links: coexistimks sets 15

Coexistent links set (c1s)
pll sl1

clslni=<pll,slly>
clslnz <sll >

/SN

Pomterllnk (p1) Selector link (s1)
pll . Sll .
pll = <ptr,nl> sll = <nl,sel,nl>
Pointers Nodes Selectors

ptr @ sel

Figure 2.4: Hierarchical view of the elements in a shapelgrap

the shape graph also displays the pointer links, selectks nd coexistent links sets within it. We can see
there are three nodes, labeledl, n2 andn3. Each one is pointed to by a different pointar;y, andz,
respectively. Acl s describes the links that may reach and leave a node in the npeahstraction. In the
examplecl s1y; istelling us thahl supportpl 1=<x, n1>andsl 1=<n1, nxt, NULL>. Alternatively,

cl s2,1 also featurepl 1 but this timesl 4=<n1, nxt, n3>tells us that fronn1, by following nxt , we
could also reach another memory location, abstracteaidyNo other combination of links is possible for
this node, because there are no morsj 1.

Similarly, cl s1,2=<pl 2, sl 24> indicates thah2 may abstract a memory location that is reached
through pointery and that connects to other location abstractednBythrough thenxt selector of
sl 2=<n2, nxt, n3>. There is another chance, and it is that the location poitddsy y does not point
to any other location, and that is captured withs 2,,=<pl 2, sl 5,>. Thecl s’s for n3 in turn indicate
thatn3 can be reached in two ways: @ s1,3=<pl 3, sl 2;, sl 3,>, noden3 is reached frorm2, while
incl s2n3=<pl 3, sl 4i, sl 35>, noden3 is reached froom1.

Selector links ¢l ’s) have a meaning on their own: they represent links betweees through selectors.
However, when used in the context of a coexistent links ¢bty; are complemented withttributesto
correctly describe the connectivity pattern between noded-ig. 2.5 two attributes are considered: (i)
incoming(i), assl 2; incl s1,3, which indicates an incoming link to the memory locationressgnted by
n3; and (ii) outgoing(0), ass! 1, in cl s1,1, which indicates an outgoing link from the memory location
represented bgil.

Coexistent links sets register possible connectivitygoatt between heap-allocated elements. In general,
they providemayinformation, i.e., they record connectivity patterns timaty exist in the heap. In the case
where there is more than omé s for a node, then one of them (and only one) will hold for any haf t
memory locations abstracted. When there is only ©ng for a node, the information it provides is certain
(mustinformation). Coexistent links sets also provide definitenmustinformation about what cannot hold.

In other words, connectivity patterns that hanat been registered in argl s for a node are impossible for
the memory locations abstracted in the node.

For examplen3 cannot be reached both fromi and n2 because that possibility is not contemplated
either bycl s1,3 orcl s2,3. Likewise, there is no chance thaB is not pointed to by someaxt selector:

University of Malaga

16 Chapter 2. Intraprocedural shape analysis

eithercl s1,3 orcl s2,3 must hold, although at compile time, we do not know which one.

Another aspect related td s’s is that their information can be used to chednnectivity coherenda
the graph. This means thet s’s in a node must find enatchin thecl s’s for the nodes it connects to. For
example, consider the case tkats 2,1 from sg12 would be dropped. Such a graph would not be coherent
regarding it s’s becausel s2,3 is expecting somel sj 41 to connect to it vias| 4.

1)

sl4
pll=<x,nl> sll=<nl,nxt,NULL> clslyi=<pll,slle>
pl2=<y,n2> sl2=<n2,nxt,n3> cls2p1=<pll, sldo>
pl3=<z,n3> s13=<n3, nxt,NULL> clslyp=<pl2,sl2,>
sld4=<nl,nxt,n3> cls2n2=<pl2,sl5,>
s15=<n2, nxt, NULL> clslp3=<pl3,sl2;,sl13,>
\ cls2p3=<pl3,sld;, s13c>

Figure 2.5: Coexistent links setsl(s’s) describe possible connections that may exist betwedesm a
shape graph.

Coexistent links sets are also a neat way to capture diffemnbination of links over memory locations
in a single graph. Such a compact representation of the héaggaonnection is key to building a precise yet
affordable shape analysis technique.

2.3 A formal description of shape analysis

We have presented an informal view of our shape analysigegirand its main motivation in the previous
sections. Now, let us delve deeper into the description pfexhnique, through more formal definitions.

For this chapter we will only cover the formulation of an aprocedural version of our shape analysis
strategy, i.e., we assume the program has no function gadlsheerefore no context changes. This strategy
is capable of analyzing single-function programs, or paotg with inlined procedures. Recursive functions
cannot be inlined and therefore are not supported by thaigaeh described in this chapter. Extensions for
interprocedural analysis, including recursive functjomsl be covered in chapter 3.

To formalize the description of our model, we use the simpégements and definitions shown in
Fig. 2.6. We only consider statements dealing with pointerghe ones shown in the figure (they are
C-like imperative statements with dynamic allocation)cdngse other complex pointer statements can be
transformed into several of these simple pointer statesriara preprocessing stage, as seen in section 1.4.1.

We assume that the data types of all pointer variables ardicityp declared. A data
type is comprised by some data fields, and some pointer fieldsich we call selectors
t=<fieldl,field2,...,fieldn,sell,sel2,..,selnmr. SEL' is the set of selectors for type
t , beingSEL! # () for recursive data typeSEL is the set of all the selectors defined in the program.

As an example, let us consider the program excerpt of Fig.i@.C syntax. In it, we find the dec-
laration of a recursive data typet r uct node, which is comprised by a data field namedt a, and
a selector (or pointer field), namexckt . Next, a piece of themi n() function follows, where a singly-

Compilation techniques based on shape analysis for pdiatsed programs

2.3. A formal description of shape analysis 17

programs: pr og € P, P=<STMI, PTR, TYPE, SEL>

statements: s € STMI, s::= x=NULL| x=mal | oc()|free(x)]|x=y
| x- >sel =NULL| x- >sel =y| x=y- >sel

pointer variables: x,y € PTR

data types: t €e TYPE

selectors fields: sel € SEL

Figure 2.6:Simple statements and definitions.

linked list is created. We numerate the pointer statemdwatishave abstract semantics associated to them.
The information provided by flow statements, such asahil e loop is embedded in the data-flow equa-
tions that drive the iterative analysis (more informatiarsection 2.4). For this example program we have
STMI={st. 1-st. 8},PTR={l i st, p, q,r }, TYPE={struct node} andSEL={nxt }.

/1 Declare recursive type "node"
struct node{
i nt data;
struct node *nxt;
} xlist,*p,*q,*r;
int main(){

i nt cont=0;
/]l Create a singly-linked Iist
1: list=(struct node *)rmalloc(...);
2: p=list;
L1: while(cont ++<NUMELEM {
3: g=(struct node *)malloc(...);
g- >dat a=cont ;
4: p- >nxt =q;
3: p=a;
}
6: p- >nxt =NULL;
7: p=NULL;
8: q=NULL,;

[...]

Figure 2.7: Excerpt of a program where a recursive data tygeclared and later used to build a singly-
linked list.

Next, we present how memory states that occur in the prograralstracted by our model. For that, we
differentiate between theoncrete domainfor run time memory configurations, and tabstract domain
for the shape graph abstractions.

2.3.1 Concrete heap

The heap information present at run time belongs tocthrcrete domaimand is described amemory con-
figurations nc. That information is abstracted for its analysis in giestract domainin the form ofshape
graphs sg.

In the concrete domain, memory locations represent singépallocated memory pieces. We use
pointer links in the concrete domaiipl c) and selector links in the concrete domafal c) to describe

University of Malaga

18 Chapter 2. Intraprocedural shape analysis

the relations between pointers and memory locations, atwlelea memory locations through selectors,
respectively. Based on the example program of Fig. 2.7, wepresent a linked list of four elements in
our representation of the concrete domain, in Fig. 2.8. Heesexplicitly display the information for the
concrete pointer links and concrete selector links.

mc? plel=<1,11>
slcl=<11,nxt, 12>
. plcl ¢) slcl) sle2) slc3 slc4 slc2=<12,nxt, 13>
LS el 22] 13] {18 1 cic3-<13,nxe, 145
slc4=<14,nxt, NULL>

Figure 2.8: A singly-linked list of four elements in the coete domain.

We model the concrete heap as a set of memory locatioas.. We incorporate some instrumental
functions in the concrete domain. For instance, we definéotlaéfunction7: (PTR U SEL) — TYPE
to compute the type for each pointer or selector as:

Vx € PTRvsel ¢ SEL,dt € TYPE| 7(x)=t V7 (sel)=t.

Initially, we define two mapping functior® M andSM*¢ to model the relations of pointers variables
and selector fields to memory locatiorRM* andS M€ are partial functions that can be defined as follows:

Pointer Map (in the concrete domain): PM¢ PTR— L
Selector Map (in the concrete domain)SM*®: L x SEL — (L U NULL)

e P M° maps a pointer variabbe to the location pointed to byx:
Vx e PTR 3l €L| PM(x)=I.

We use the tupl@l c=<x, n>, which we nameointer link in the concrete domaito represent this
binary relation. The set of all pointer links in the concrétenain is nameéLc.

e SM° models points-to relations between locatibrisand! 2, through selectosel :
VIilelstT(l1)=t AVsel ¢ SEL',312€c (L U NULL)| SM(I 1, sel)=l2.

We use a tuplsl c=<I 1, sel , | 2>, which we nameselector link in the concrete domaito repre-
sent this relation. The set of all concrete selector linkhéconcrete domain is call&lc.

Our concrete heap is modeled as a directed multi-graph. dtmauh for a concrete heap graph is the
setMC c P(L) x P(PLc) x P(SLc) . Each graph of our concrete domain is what we call a memory
configurationnt' € MC and it is represented as a tupte’ =<L', PLc', SLc' > with L' c L, PLc' C
PLc andSLc' ¢ SLc. Ata given program statemest we can represent our concrete hea|d\éi§={m:i
Vv path from entry tcs }.

2.3.2 Abstract heap

Our abstract domain is based on shape graphs. The base efenmur representation of the abstract heap
is the noden. In a shape graph, each node may represent a set of memotiphsctom the concrete
domain, whereas each edge may represent a pointer variadlged of selectors with the same name.

1In this work we will use the notatio®(A) to represent the power set of get

Compilation techniques based on shape analysis for pdiatsed programs

2.3. A formal description of shape analysis 19

The set of all the nodes in the graphNsand includes a special node namdd_L, designating “no
location”. In a graph, the number of nodes is bounded bysthremarizatiorpolicy. The base policy states
that nodes are distinguishable by the set of pointer vagtatilat point to them. Two nodes are said to be
compatible if they are indistinguishable in the representation. Marrecisely, they will be compatible if
they are pointed to by the same set of pointers. In particalamemory locations that are not pointed to by
pointers are represented by a single summary node. Thisypeih be refined for a greater differentiation
of nodes with the use gdroperties but to simplify the presentation and until further notiag will use this
simple summarization policy. Therefore, the domain forribdes isN={P(PTR) U {NULL}}.

plcl=<1,11>
slcl=<11l,nxt, 12>
plcl slcl slc2 slc3 slcd slc2=<12,nxt,13>

Concrete list—*[L]]—'[12 H 13]—»[14]—i slc3=<13,nxt, 14>

mc?!

Domain slc4=<14,nxt, NULL>

134

Shape K ClSlnl:; clslnzg: clsan..': cls3n2',~':
Graph ---¢ ° » Pe P

Abstraction

pll=<1l,nl> clsl,;=<pll,slle>
Abstract _ _
sll=<nl,nxt,n2> clslyy=<sll;,sl2>

Domain listp11511512 sl2=<n2,nxt,n2> cls2,,=<s12;,s812,>
s13 s13=<n2,nxt,NULL> cls3n2=<s12;,513,>

Figure 2.9: The singly-linked list used as example in theccet® and abstract domain representations.

A shape graph is displayed as a set of nodes, pointer linlketeelinks, and coexistent links sets, the
latter grouping pointer links and selector links in the &lale combinations for every node. Let us present
now an example of how these elements in the abstract domaipuartogether to capture a recursive data
structure. For that, we consider the singly-linked listt tiva presented in the concrete domain in Fig. 2.8.
The abstraction of such a list in the abstract domain is pteddn Fig. 2.9. All three memory locatioh2,
| 3 andl 4 translate intan2, because they are not pointed to by pointers. Accordindlytranslates intm1,
pointed to by pointet i st . Note that a selector link in the abstract domain can reptesseral instances
of selector links in the concrete domain. Such is the cass®l @=<n2, nxt , n2>, which accounts for
sl c2 andsl c3.

Despite this reduction in the number of matching elemehtspe graplsg* contains, within the coexis-
tent links setsall the information present in the memory configuration! (although, as a result of being a
conservative abstractiong?! represents a list of or morelist elements). Note that there may be more than
one coexistent links set for a node. Since a node can represagral memory locations, its coexistent links
sets must contain all the possibilities of links existinghnse memory locations. For example, coexistent
links sets for node2 (cl sln,, ¢l s242, Cl $3,3), represent the three different connectivity patterns for
the memory locations abstracted by neode Attributesincoming(i) andoutgoing(o) are used within the
coexistent link sets to accurately express the possibleeztions in the structure.

It must be stressed thatl 2 in Fig. 2.9 does not involve a cycle in the structure. For exam
cl s2n2=<sl 2, sl 2,> indicates than2 can represent a memory location that is reached from another
location abstracted bg2, and leaves for another destination also abstracted2y\being the origin and
destinationdifferentmemory locations (albeit represented in the same nodehelase of a direct cycle
(i.e., a memory location that points to itself) in the sturet a new attribute is introduced, as will be seen
shortly.

Now we define three mapping functiods\t, PM*, SM? to model the relationship between memory

University of Malaga

20 Chapter 2. Intraprocedural shape analysis

locations and nodes in the concrete and abstract domairelbasithe connections of pointers variables and
selectors to nodes in the abstract heap. The mapping fasafidt and P M® are total functions, while
SM*? is a multivalued function. They can be defined as follows:

Location Map : LM:L— N
Pointer Map (in the abstract domain) :PM“ PTR— N
Selector Map (in the abstract domain)SM“: N x SEL — N

e LM assigns a node to a concrete memory locatidn V1 € L,3n e N LM(I]) =n.

e PM* maps a pointer variabbe which points to a locatioh in the concrete domain, to a hoddn
the abstract domain:

VPME(x)=l c MC,3neNs.t.LM(|)=n] PM*(X)=n.

We use the tupl@l =<x, n>, which we nameointer link to represent this binary relation. The set
of all pointer links in the abstract domain is nanfed

e SM® models points to relations between locatidris and| j through selector fieldel in the
concrete domain, as relations between nadkeandn?2 in the abstract domain:

vV SM(li,sel)=lj ¢ MC, 3 nl € (NN{NULL}) A 3 n2 € Nsit. LM(li)=nl A
LM(1])=n2] SM*(nl, sel)=n2.

Again, we use a tuplel =<n1, sel , n2>, which now we nameelector linkto represent this rela-
tion. The set of all selector links in the abstract domairgitec SL.

The novelty of our approach is that we keep the informatiaoualbonnectivity and aliasing in a node-
oriented fashion. For it, we build new instrumentation domaathat when added to the nodes in the abstract
heap will improve the accuracy of the connectivity and aligénformation.

2.3.2.1 Selector links with attributes

We have already shown that selector links are complemenittdatiributes in the context of coexistent
links sets. Attributes are used to define how a particulagcset link relates to the nodes that are linked
through it. So far, we have introduced the incoming and datgattributes in an intuitive fashion. Now,
we define them more formally, and complete the descriptidh tio new attributes that are used to capture
cyclic linksandsharing

Fig. 2.10 is meant as an example to present the role of therelif kinds of attributes within coexistent
links sets to capture information in the heap accuratelyaid\gwe present the information both in the
concrete and abstract domains. In particular, we will lootha newly introduced cycliocc() and shareds)
attributes. Note that location? andl 3 are summarized in the node. Concrete selector linksl ¢c1 and
sl c2 translate tes| 1 andsl 2 respectively, since they refer to different selectorst(andpr v). Note
thatsl 1 andsl 2 appear in different! sj 2 so they camot coexist, which precisely captures the fact that
following nxt or prv from nl leads to different locations. Howevesi ¢3 andsl c4 (both usingnxt)
are mapped intsl 3. That way,sl| 35 in cl s1,3 indicates that you can point to a location represented
by noden3 from more than one different locations represented in nitlby following the same selector
(nxt). On the other handgsl 4. in cl s1,3 expresses that the locatidb@ represented im3 is pointing
to itself. Note the difference withl s2,,=<sl 2;, sl 24> in Fig. 2.9, which indicates that one location
represented in node2 is pointing to adifferentlocation represented in the same node.

Compilation techniques based on shape analysis for pdiatsed programs

2.3. A formal description of shape analysis 21

slcl=<11,nxt, 12>
slc2=<11,prv, 13>
plcl=<x, 11> slc3=<12,nxt, 14>
plc2=<y, 14> slcd4=<13,nxt, 14>
slch=<14,nxt, 14>

clslni clsln;".____':.‘:ls%z ,"clsln3

/ng_? pll=<x,nl> I
] Ly pl2=<y,n3> clslyi=<pll, sllo, sl2o>
v vy \ PG

pll sll 313 ‘.~ sll=<nl,nxt,n2> clslpnz=<slli,sl3c>

X @@ p12 Y sl2=<nl,prv,n2> cls2n2=<sl2i,sl3o>
sl2 s13=<n2,nxt,n3> clsln3=<pl2,sl3s,sldc>

sl4=<n3,nxt,n3>

N %

Figure 2.10: Different attributes and their role for precigeap abstraction.

We define a set of attribute8TT={i , 0, c, s}, where each elemeat t € ATT codifies information
about the direction of a selector link when it is related tooalen From the seATT we define a new
domainATTSL=P(ATT) , where each element of this new domaint s| € ATTSL represents a possible
combination of attributes that describe the charactesisif a selector link when it is associated to a node.
Operatory stands for the join operation in tA& TSL domain.

In particular, from the set of all selector linkSl. and fromATTSL we define the domaiBL = SL
x ATTSL. An elements| 4 in this domain, which we call aelector link with attributesis represented
as atuplesl 51 =<sl, att sl >, wheresl € SL andatt sl € ATTSL. Note that we choose to represent
a selector link with several attributes as several seldictks with just one attribute each. For example, we
write cl s2p,=<sl 2;, sl 24>, rather tharcl s2,,=<sl 2; ,>, to improve readability of shape graphs.

2.3.2.2 Coexistent links sets

The key feature of our model is the ability to maintain the regtivity and aliasing information that can

coexist in an abstract node, even when the node represéisti®di memory locations with different con-

nection patterns. This is achieved throughdbexistent links setbstraction. The domain of our coexistent
links set abstraction is defined in terms of a mapping fundafi6 M as follows:

Coexistent Links Map : CLM: N— P(PL) x P(SLatt)

CLM is a multivalued function which maps, for a nodegone or more components, each one called a
coexistent links setl sp: Vn € N,CLM(n) ={cl s,}. A coexistent links set| s, codifies an aliasing
and connectivity pattern for that node, and it is defined Hovis:

cl sp={PLy, SLn}
where:

PL,={pl € PLs.t.pl =<x, n>}
SLn ={sl att € SLatt S.t.sl art =<<nl, sel , n2>, att sl > being(nl=n VvV n2=n)}

Regarding the attributes codifiedattt sl , they are obtained from the concrete domain, in particular
from L and the set of selector links in the concrete dom&lrt;. These attributes have meaning when they
are interpreted in al s, context (i.e. associated with a node), as we expose next.

University of Malaga

22 Chapter 2. Intraprocedural shape analysis

Letcl sh={PL,, SL,} be. For eacts| 51 =<<nl, sel , n2>, attsl > € SL, we can find one of
the following cases:

fF11£A12A3slcy(ll,sel,) Adslco(l2,sel,l) st (LM(11)=LM(]2)=nlA
LM(])=n2=n) = s cattsl

else

If11#£12A3dslc=<l1,sel,l12>st (LM(I1)=n1 A LM(]2)=n2=n) =i €
attsl.

If11#12A3slc=<I1,sel,l2>st (LM(I1)=nl=n A LM(]|2)=n2) = 0 €
attsl.

If 11=12=l Adslc=<l,sel,l>st(LM(]l)=nl=n2=n) =-c €attsl.

The set of all thee| s, associated to a nodeis calledCLS,,. In addition, for every nodes defined in
our abstract heap, we can create theGe3={CLS,,Vn € N}.

2.3.2.3 Shape graphs

Our abstract heap is modeled as a directed multi-graph. @imaith for an abstract heap graph is theS@t
c P(N) x P(CLS). Each element of this domaisg' € SGis what we call ashape graphwhich we
represent as a tupkg' =<N' , CLS' >, with N ¢ NandCLS' ={CLS,,vyne N } c CLS.

We restrict this abstract domain by definingnarmal formof the shape graphs. To help us describe
the normal form of a graph we use tlenpat i bl e Node() andUnr eachabl e() functions, shown
in Fig. 2.11. TheConpati bl e_Node(nl, n2, CLS,1, CLS,2) function returns TRUE ihl andn2
are compatible, and thus, can be summarized into a single. deUnr eachabl e(n1, sg') function
returns TRUE ifn1 cannot be reached either directly by a pointer or indireitttpugh a path formed by a
pointer link and some selector links in graph' . Otherwise, it returns FALSE.

We say that a shape grapy' =<N' , CLS' > is in normal form if:

1. Ithas no compatible node3n1,n2 ¢ N s.t.Conpat i bl e_Node(n1, n2, CLSp1, CLSn2) =TRUE
2. It has no unreachable nodésnl € N s.t.Unr eachabl e(n1, sg') =TRUE

3. Each pointer variable unambiguously pointgust onenode: vV n1, n2 € N s.t. n1 # n2, If 3
pl 1=<x, n1>C CLS,; = A pl 2=<x, n2>C CLSy,

4. The selector links of connected nodes, are coherentiare givencl s, € CLSy1, every incoming
or sharedi(| s) selector link with attributess| 4 ¢, is matchedby an outgoing @) sl 4t in another
node,n2 and viceversa¥ n1,n2 e N s.t.n1 #n2, If 3sl 5y =<<nl, sel k, n2>, attsl >c
CLS, 1 = 3sl at1=<<nl, sel k, n2>, attsl’>cC CLSy,

Fig. 2.12 shows the aliasing of pointers in the traversalsifigly-linked list. It is the example introduced
in Fig. 2.2(a), only expanded to show all the informationhivitthe shape graph, featuring the pointer links,
the selector links and the coexistent links sets. This elasipows the process of abstract interpretation
for an incoming graph and aliasing statempat.. The input and output shape grapksg,! andsg?, are
in normal form because (i) they have no compatible nodesth@y have no unreachable nodes, (iii) each
pointer points to just one node, and (iv) selector links arkecent throughout. On the other hand, the
intermediate graptsg?, is not in normal form, as there are compatible nodes thaharenerged, namely
n2 andn3.

Compilation techniques based on shape analysis for pdiatsed programs

2.3. A formal description of shape analysis

Conpat i bl e_Node()
Input:n1, n2, CLS,1, CLSy:
2 nodes and theal s’s

Output: TRUE/FALSE

If (Vpl 1=<x, n1>cC CLS;1,
I pl 2=<x, N2> C CLSp2) A
(Vpl 2=<y, n2> C CLS,;,,
Jpl 1=<y, n1>c CLS,1)),
return(TRUE)
else
returnALSE)
end

(@)

Figure 2.11: (a) Check whether two nodes are compatibleCltgEck whether a node is unreachable in the

current graph.

Unr eachabl e()
Input:n1,sg' =<N, CLS > # A node and a shape graph
Output: TRUE/FALSE

If ((3pl 1=<x,nl>C CLS 1)V
(3n2 e N s.t.3pl 2=<x, N2> C CLSp2 A
sl ati=<<n2,seli,na> attsli={0}>CCLS;; A
3sl arrj=<<na, selj,nb> attslj={o}>C CLSu A ...
... A3sl ark=<<nk, sel k, n1>, att sl k={o0}>>C CLSx)),
returnALSE)
else
return(TRUE)
end

(b)

-

N

pll=<1,nl>
pl2=<a,n3>
pl3=<p,n4>

59

1 \
a
pl2 ppl3
pll sll sl2 sl3 s14
1 @G~
sll=<nl,nxt,n2>
s12=<n2,nxt,n3>
s13=<n3, nxt,nd>
sl4=<n4,nxt,NULL>

clsl,;=<pll,slly>
clslp=<sll;,sl2,>
clslp=<pl2,sl2;,s13,>
clsln=<pl3,sl3;,sl4,>

\ 4

-

N

1

pll=<1l,nl>
pl2=<a,n4d>
pl3=<p,n4d>

a
pl2

pll.sn.s12®s13sl4

P
pl3

~

sgh

sll=<nl,nxt,n2>
sl2=<n2,nxt,n3>
s13=<n3, nxt,nd>
sl4=<n4,nxt, NULL>

clsl, ;=<pll,slly>
clslnp=<sll;,sl2,>
clslys=<sl2;,s13.,>
clslns=<pl2,pl3,sl3;,514,>

-

N

sg2 a p

pl2 pl3

pll 513 514
1 -GGG

pll=<1l,nl> sll=<nl,nxt,n2> clsl,;=<pll,slle>
pl2=<a,n4> s12=<n2,nxt,n4d> clslny=<sll;,s13,>
pl3=<p,n4> s13=<n2,nxt,n2> cls2,,=<s13;,812,>

~

clsln=<pl2,pl3,sl2;,sl4,>

J

sl4=<n4,nxt,NULL>

Figure 2.12: Graphs in normal form around a pointer aliasipgration.

University of Malaga

24 Chapter 2. Intraprocedural shape analysis

2.3.2.4 Reduced set of shape graphs

We call areduced set of shape graphsthe set of shape graphs that represents the state of theahaa
given program statemest RSSG={sg' € SGs.t.sg' is in normal forn}.

Again, we impose a restriction in this set of graphs, andtias the set is imormal form The constraint
that a reduced set of shape grap®SG is in normal form ensures that each gragji € RSSG represents
a different alias configuration.

More formally, we say that a reduced set of shape graRBSG={sg' } is in normal form if it has no
compatible shape graph#:ssg!, sg? € RSSG s.t. Conpat i bl e SE sg?, sg?) =TRUE.

Conpati bl e.SEH)
Input: sgt=<N!, CLS'> sg?=<N?, CLS?*> # Two shape graphs
Output: TRUE/FALSE

If ((Vni €N, 3pl =<x, ni >C CLS, A3nj €N s.t.Conpati bl e.Node(ni, nj, CLSy, CLSy) =TRUE) A
(¥nj € N2, 3pl =<y, nj>CCLS; A3ni €N s.tConpatibleNode(nj,ni, CLSy, CLSy)=TRUE)),
return(TRUE)
else
returnAL SE)
end

Figure 2.13: Check whether two shape graphs are compatible.

The auxiliary functionConpat i bl e S sg?', sg?) is described now in Fig. 2.13. The function
checks that for each node of grapg! pointed to by a pointer (or set of pointers), there is anotioele of
graphsg? pointed to by the same pointer (or set of pointers). The sarmaekcis done for all the nodes in
graphsg?. In other words, the function checks that all the nodes pdirb by pointer variables in graphs
sg! andsg? are compatible. In this case, we would say that the two graphsompatible, and they could
bejoinedin a newsummary graphClearly, only the graphs with the same alias relationsbgsbe joined.

Let us revisit the example of Fig. 2.3. We expand the inforomabf the finalRSSGs in the new
Fig. 2.14, withcl s information. For readability, we omit the explicit desc¢igm of pointer links and
selector links, which can be easily guessed by looking aslia@e graphs.

When a join point in the CFG is found, tlRSSGs resulting from the different flow paths are joined.
This is done by calling thdoi n_RSSE) function, shown in Fig. 2.15(a). This function join graphsrh
different RSSGs by adding them to a working shape graph BSSG' (RSSG in our example), and
then summarizing it with th&ummar i ze RSSE) function (Fig. 2.15(b)). Th&ummari ze RSSEH)
function checks whether its inplRSSG is in normal form. This is done by checking for compati-
ble shape graphs with th@onpat i bl e S) function presented earlier (Fig. 2.13). In this example,
Conpat i bl e SE sgt? sg'!) = TRUE, i.e.,sg'® andsg!! are compatible. Therefol@SSG is not
in normal form.

Compatible shape graphs must be joined. This is done witRlthen_SGE) function. This latter
function can be found for your reference in Appendix A. Here, will just state its overall behavior: to
pair matching nodes between graphs, and to@dsl information. In this examplenl, n2, andn3, the
nodes pointed by the, y, andz pointers respectively, are compatible on a one-to-ones lisiveers g1°
andsg!!. Thereforesg!® in RSSE contains those same three nodes pointed to by the samerpointe

Compilation techniques based on shape analysis for pdiatsed programs

2.3. A formal description of shape analysis

25

Additionally, all the information from the! s’s in sg1° andsg!?! is added to capture the fact tha® can
be reached from2 or n1. This is reflected upon thel s'sin sg'3.

RSSG®

RSSG’ RSSG8

sgb

clsly=<pll,sllo>
clslyy=<pl2,s120>
clsly3=<pl3, s12i,s135>

sll s12

clslp=<pll,sllo>

sg’
= 2\ p13
1 P
sll s12 s13

sg® z

p13
3

clsly=<pll,sllo>
clslyy=<pl2,s120>
clsly3=<pl3,sll;,sl3c>

clslpy=<pl2,s120>

pl2

y clsly=<pll,sllo>
clslyy=<pl2,sl20>

clslp3=<pl3,sl2i,sl3y> 3

s11
clsly=<pll,sllo>
clslyy=<pl2,sl20>

s12

18t branch 2nd branch/L 3 branch
l_lSG
RSSG?'
Sgg Sglo

clsly=<pll,sllo>
clslpy=<pl2,sl2o>
1 clslpz=<pl3,slli, s13>

Z
" pl3
pl P
G, v @I,
T sll 7s12 Ys13

clsly=<pll, sllo>
clslyy=<pl2, 120>

RSSG?
12
&Y clsly=<pll,sllo>
pl pl cls2n1=<pll, sldo>
% y cls1p,=<pl12, 5120>
sll s12

cls2n2=<p12, 150>
clsly3=<pl3,sl2;,s13c>
cls2,3=<pl3,s14;,5130>

Figure 2.14: Joining compatible shape graphs RESG.

Joi n.RSSQ() (| %)
Input: RSSG', RSSG
Two reduced sets of shape graphs
Output: RSSG*
A reduced set of shape graphs in normal fo

RSSG‘=f)
CreateRSSGE =RSSG! U RSSG?
RSSG‘=Sunmar i ze_RSSGRSSG")
return@SSE)

end

(@)

Figure 2.15: (a) The operatp™>® as theJoi n_

Sunmari ze_RSSE)
Input: RSSG'
A reduced set of shape graphs
rmOutput: RSSG*
A reduced set of shape graphs in normal form

RSSG=()
forallsg' € RSSGH
If (3sg’ € RSSG*
s.t.Conpat i bl e SEsg', sg/) =TRUE),
RSSG=RSSG‘- sg' UJoi n.SEsg', sg!)

else
RSSG‘=RSSG‘ U sg¢'
endfor
return@SSE)
end

(b)

RSSE) function; (b)Suntari ze_RSSE) function.

University of Malaga

26 Chapter 2. Intraprocedural shape analysis

2.4 Data-flow equations and worklist algorithm

We consider two kinds of statements for our analysis: (is¢hthat allocate, free, traverse, or connect
memory locations through pointers, and (ii) those thatrdeitee the control flow of the program, such as
whi | e loops ori f branches. Both kinds of statements must be modeled withitechinique for effective
analysis. We associate some abstract semantics to evegnsta in the first category. Shape graphs are
modified according to those abstract semantics. The effélse®econd kind of statements is reflected upon
the data-flow equations. The information they provide dritree iterative analysis.

We formulate our analysis as a data-flow analysis that coespaireduced set of shape graphs at each
program point. For each statement in the prograng STMT, we define two program pointsis is the
program point befors, andse is the program point aftes. The result of the analysis far is a reduced
set of shape graphRSSG*® befores, andRSSG* after that. Lefpr ed() map statements to their prede-
cessor statements in the control flow (these can be easilputeeh from the syntactic structure of control
statements). Fig. 2.16 shows the data-flow equations fointnaprocedural shape analysis.

[JOIN]: RSSG™S = | 55 oq(s) RSSCG*

[TRANSF]: RSSG* = AS,(RSSG'S), where
ASs: ; =x=nuLL(RSSG) = | |5 Srseers XNULL(sQ', x)
ASs: : =x=nal | oc() (RSSG*®) = UngiSSRSSG'S XNew(sg', x)
ASs. : =t 1 ee(x) (RSSC™®) = | |5 Srasers Fr eeX(sg', x)
ASs:: =x=y(RSSG*®) = U?gingsse-s XY(sg', X, y)
ASs: ; =x- >sel =NULL(RSSC™®) = | [So cpssers XSel NULL(sg', x, sel)
ASs. . =x- >sel =y (RSSG™S) = UES’F’EGRSSG.S Xsel Y(sg', x, sel ,y)
ASs. . =x=y- >sel (RSSC™S) = |_|§;S§RSSG.S XYSel (sg', x, vy, sel)

Figure 2.16: Data-flow equations for intraprocedural asialy

We model the analysis of statements which have some asstahttract semantics by computing a
transfer function for each one. To simplify the formal deforis of the transfer functions, we use the
functions XNULL () , XNew(), FreeX(), XY(), XSel NULL(), Xsel Y() andXYSel () to describe
the transformations that take place in the abstract heam walsgmple pointer statemeatis interpreted.
These functions are detailed in the following sections. fmeratoﬂ_|RSSG represents the join operation in
theRSSGdomain, and is described as functidai n_.RSSE) (Fig. 2.15(a)).

We present in Fig. 2.17 a worklist algorithm to solve the elde equations presented in Fig. 2.16. The
input of our worklist algorithm is a prografand an initialRSSG "=(), whereas the output is tHRSSG°!t
resultant at the exit program point, assuming that the exittps statemersr € STMT. This algorithm also
computes the resultaRSSG® at each program point. Lines 1-3 perform the initializatiwhere theRSSG
at the input of the program entry point (in our case staterserg STMT) is initialized withRSSG ". Next,
the algorithm processes the worklist using the loop defimelihes 4-12. At each iteration, it removes,
in program lexicographic order, a statement for the workt®mputes the join of th&SSGs from the
predecessors as the statement inpute(d(s)), and then it applies the corresponding transfer function.

The worklist algorithm is responsible for achieving a fixeddrp for the analysis, and therefore it guar-
antees its termination. The analysis will continue itexdti while the shape graphs obtained keep changing.

Compilation techniques based on shape analysis for pdiatsed programs

2.5. Abstract semantics and operations 27

Line 8 in the worklist algorithm checks whether tRESG® obtained after the analysis of a statement has
changed. If it has changed, then new information has beeedattdor subtracted from the shape graphs
and the analysis must continue. The analysis continues tiyngdhe successors of statemeatin the
CFG (ucc(s)) to the worklist. If there is no change, it means that furtinéerpretation of pointer state-
ments will not change the graphs either. This is guarantgatidonode summarization and graph joining
mechanisms. In such a case we have achieved a fixed pointhyeatalysis terminates.

Vor kl i st ()
Input: P=<STMT, PTR, TYPE, SEL>,RSSG" # A program and an inpulRSSG
Output: RSSG*!" # TheRSSGat the exit program point

Create=STMI'

RSSG*$¢=RSSG "

Vs € STMI — RSSG*=()

repeat
Removes from Win lexicographic order
RSSG™=| |q cor eq(s) RSSC *
RSSG*=AS,(RSSG*®)
If (RSSG* has changed),

foralls’ € succ(s),

10: WEW U s’

1L endfor

12: until (W=0)

13 RSSG''=RSSG'*

14: returnRSSG')

end

Figure 2.17: The worklist algorithm. It computes tRESG® at each program point.

2.5 Abstract semantics and operations

Our analysis works by symbolically executing the abstractantics of pointer statements. In this section
we describe, at high level, the abstract semantics aseddiateach statement. For a full reference of the
operations involved in this section, please refer to AppeAd

2.5.1 Running example

To ease the presentation of the shape analysis abstraattsesnave will use the example code in Fig. 2.18.

It expands on the code excerpt presented in Fig. 2.7. Besidasing a singly-linked list, it then reverses it
and finally frees its space. Once again, pointer statembeatdive abstract semantics associated to them,
and thus are modeled through transfer functions, are niedb@&his simple example will help us explain the
details that are involved in the shape analysis operatidfeswill present such information by considering
common tasks performed in programs that make use of reeudsita structures. More precisely, we will
cover: (i) the creation of new elements; (ii) linking alrgacreated elements to create a recursive data
structure; (iii) traversing a recursive data structurea] éw) freeing memory.

University of Malaga

28 Chapter 2. Intraprocedural shape analysis

. i | =
/] Declare recursive type "node" L2: whil e(p! =NULL) {

. | =
struct node{ 12: #Br agma -SAP.for ce(p! =NULL)
: . 13: g=p- >nxt ;
int data;
14: p->nxt =r;
struct node *nxt; e
; . 15: r=p;
} oxlist,*p, xq, *r; 16 -
int main(){ ') P=a:
int cont=0; . ——
/'l Create a singly-linked I|ist 17 #Er agrrfa SAP. force(p==NULL)
. 18: q=NULL;
1: l'ist=(struct node *)malloc(...); T
2: p_l i st: 19: list=r;
L1: whil e(cont ++<NUMELEM { 20: r=NULL ,
/'l Delete the |ist
3: g=(struct node *)nmalloc(...); 21: p=l i st:
" - >dat accont 22: 1ist=NULL;
. p~ =t =a: L3: whi | e(p! =NULL) {
’) p=d: 23: #pragnma SAP. f or ce(p! =NULL)
6: p- >nxt =NULL; ;‘51 ?r:Ze(>n;(t ;
7: p=NULL; . s P
8: g=NULL; 27: q:NiJLL'
/1 lteratively reverse the I|ist)) '
9: p=list; . __
10: li st =NULL: 28: fgtr 3?:111-SAP. force(p==NULL)
11: r =NULL;) !

Figure 2.18: Running example to introduce shape analygsatipns: iteratively create, reverse and delete
a singly-linked list.

2.5.2 Creating new elements

Statement Function Brief description

x=mal | oc() XNew() Nullify pointer x; and create a hew node pointed tobyinitializing
the selectors ix’s type toNULL

X=NULL XNULL() Nullify pointer x; and summarize resulting graph.

Pointer programs that use dynamic data structures nee@atecelements during program execution.
These elements can then be interconnected to form recusBivetures that are commonly traversed in
pointer-chasing loops or recursive function calls. The §itsp is therefore to be able to create new elements
in the heap. In our approach, a new node is created in the gegphsentation of the heap each time a
malloc statement is encountered in the analysis.

Let us consider malloc statemestit. 3: g=mal | oc() in Fig. 2.18. It creates a new node in our graph-
based heap representation. This new node represents therynkcation that would have been created
at run time by the program in this statement. To make thintgrésting, let us present this operation at
the fourth symbolic iteration of the loop, so four elemendaséalready been created. The new graph that
reaches the fourth symbolic iterationstf. 3: g=nal | oc() comes from the third iteration aft . 5: p=q.

It is shown assg?! in Fig. 2.19. It shows the list created so far, and phandq pointers are aliased as a
result ofst. 5. Thenal | oc statement calls th¥New() function. As a first step, the pointer used to
allocate the new memory piece is nullified, by callXyULL() . This function removes the pointer link
pl 3=<q, n3> from the coexistent links sets far3, i.e., CLSy3={cl s1l,3}. At the end, it checks for
compatible nodes, summarizing the graph if necessarye(thier no compatible nodes in this case). The

Compilation techniques based on shape analysis for pdiatsed programs

2.5. Abstract semantics and operations 29

result issg” in Fig. 2.19, an intermediate step of the abstract semafuticst . 3: q=mal | oc().

Coming back to th&XNew() function, a new node4 is created. The selectors for its type (jostt in
this case) are initialized, and a singles 1,4 is created, with the pointer lingl 3=<q, n4> and selector
link with attributess| 55t =<<n4, nxt, NULL>, o>. The final result is shown aasgz in Fig. 2.19.

1 clsly=<pll,sllo> RSSGSEI*=RSSGYY

s
g p d c1lsl,=<sll;,sl2e>

sl2 .
12 13 cls2pp=<slli,sl30>
listpllsll‘p cls3,,=<s1li,s12,> o000
813 s14 cls3n2=<s12i,s130c>

clslpz=<pl2,pl3,s13;,s1l4:>

Z ~ Nullify g (xNull(sgl,q))]
5 —~
o o
T A clslp=<pll,sllc>
— S n
Ry J w2 p clslpy=<sll;, s12o>
Z = i >
£ — pll sl1 p]_2 ClS2n27<Slll,Sl3o
é) s13 14 cls3p2=<s12;,s13c>
- S+% c1s1,3=<pl2,s13;,5140>
i)
@ | Create new node J
RSSGSL

clslyi=<pll,sllc>
clslypy=<sll;,sl2s>

IS 2
g o g
pll sll pl2 cls2ny=<slli, s130>
liSt @ @ @ @ cls3,=<sll;,s12,> (X X)
s13 sl4 515 cls3nz=<s12j,s130>

clslnyz=<pl2,sl13;,sl4:>
clsl,g=<pl3,sl5,>

Figure 2.19: Creating a new element through the mallocrs&te and its associatetNew() function.

2.5.3 Creating a recursive data structure

Statement Function Brief description
X->sel =y XSel Y() Split graph byx- >sel ; nullify x- >sel link; establish link betweer
node pointed to by to node pointed to by through selectosel ; and
summarize all resulting graphs to form outR8SG.

X=y XY() Nullify pointer x; and pointx to the node pointed to by.

Once elements are created in the heap, they can be linkagythe®lectors to form recursive data struc-
tures. Let us continue the example after the creation of ftie diement in the list{g* in Fig. 2.20).
St . 4: p- >nxt =q links the node pointed bp to the newly created node pointed to Qy through se-
lector nxt . This is done by calling th&sel Y() function. This function starts by splitting the graph
by the p- >nxt path and then nullifying it. Sinc@- >nxt leads toNULL, this has no effect here.
Then, it creates the selector lirsk 4=<n3, nxt, n4>, which is updated as selector link with attributes
sl 4,11 =<<n3, nxt, n4>, 0> in CLS,3, and added asl 45;:=<<n3, nxt, n4>,i >in CLS,4. The
result issg? in Fig. 2.20.

University of Malaga

30

Chapter 2. Intraprocedural shape analysis

=q;

t4: p->nxt
(XSelY (sg!,p,nxt,q))

S

p=q;

St5:
(XY (sg2,p,q))

St3 st4
RSSGy, =RSSG® 1)

list

clslpi=<pll,sllo>

o 13
P clslpp=<slli,sl20> coo
@ cls2,,=<s12;,513,>
clslp3=<pl2,s13;,sld,>

clslpg=<pl3,sl5,>

St4d St5
RSSGiy, =RSSG*{L;

XNULL (sg?, p)

v
sg? _
°) q clsly=<pll,sllo>
sl2 pl2 13 clslpo=<slli,sl20>
. ‘ P cls2,,=<s512;,s13:> (XX}
list o @ o @ clsl,y=<pl2,sl3;i,sldo>
pll sll 13 sl4 sl5 clslpg=<pl3,slé;,sl5>
-
Nullify p
v
sgh _
clslpyi=<pll,sllo>

clslpp=<slli,sl2o0>
cls2,5,=<512;,513,>
clslp3=<s13i,s14,>
sl5 clslpg=<pl3,sl4;,sl5:>

Summarize graph

sgB q

e)“
i
[9)
) S
[y
fie]
=
w
)
i

clslyy=<pll,sllo>
clslpp=<slli,sl20>
cls2p5=<s512;,s14>

list o cls3,,=<s12;,s12,>
pll s1ll clslng=<pl3,sldi,sl5,>
Assign p
StSe
1 | RSSGYL,
sg3

q P
s12 \€l3p14

-)

clslpyi=<pll,sllo>

clslpp=<slli,sl2o0>
cls2p5=<s512;,s14,>
cls3,,=<812;,512,> oo
clslng=<pl3,pld4,sld;,sl5:>

Figure 2.20: Use of th¥Sel Y() andXY() functions to create a recursive data structure.

Next, pointerp is made to point tay, advancing in the list, witlst . 5: p=q. This is done by call-

ing the XY() function. As a first step, the assigned pointey,is nullified. For that, the analysis calls
XNULL(sg?, p) . The result issg” (Fig. 2.20), where the pointer linkl 2=<p, n3> has been removed.
sg” is not in normal form, ag2 andn3 are now compatible (not pointed to by any pointers). As phrt o
the p nullification process, this circumstance is checked andetmodes are summarized, produceuf.

Compilation techniques based on shape analysis for pdiatsed programs

2.5. Abstract semantics and operations 31

Finally, the abstract semantics of the alias stateraént5: p=q is completed by creating the pointer link
pl 4=<p, n4>, and adding it to every coexistent links setGhS,4. The result can be observed sg® in
Fig. 2.20.

2.5.4 Traversing a recursive data structure

Statement Function Brief description
x=y- >sel XYSel () Nullify pointer x; split graph byy- >sel ; materialize new node from
node pointed to by- >sel ; assignx to the materialized node; and
summarize all resulting graphs to form outR8SG.
x->sel =NULL XSel NULL() | Splitgraph byx- >sel ; materialize new node from node pointed to py
x->sel ; nullify selectorsel from node pointed to byx; normalize
graphs (i.e., remove unreachable elements); and sumnarizsult-
ing graphs to form outplRSSG.

A crucial part in pointer-based programs is the traversakofirsive data structures. It is common that
pointer applications have sections where recursive deiatates are created, and sections where they are
traversed while computing some result. Sometimes, tralseeedso include structure modification such as
creation of new elements, deletion of elements or reamangf links. It is in the traversal of a structure
where the information provided by a shape analysis teclenigjput to the test. In our running example for
this section, lines 1-8 involve the creation of the list, lines 9—20 involve the traversal of the list, where
the structure is modified.

Let us skip forward in the analysis of our running exampleg(F2.18), while we consider the loop
L2, where the list created ih1l is reversed. Fig. 2.21 shows the graph that reaches the cséteoation
of st. 13: g=p- >nxt . The first element of the list is pointed to by andp andq are aliased over the
second element in the lisBt . 12: f or ce(p! =NULL) is a pseudostatement that prevents graphs where
p is NULL to be analyzed within the loop. As the loop conditionLif is p! =NULL, it is clear that such
graphs do not correspond to realistic memory configuratiosige the loop.

St . 13: g=p- >nxt, calls theXYSel () function. As a first step, the pointer which is to be assigned,
q, is nullified by callingXNULL(sg?, q) . The result is then split bp- >nxt . This means that a new
working graph will be generated for each possiblesj > with a selector link with attributes of the kind
sl a1 =<<n2, nxt, na>, att sl ={o| c}>. Each split graph deletes the information that does noteorr
spond to the link followed. The results a&¢g® (no more elements after2) andsg®© (1 or more elements
aftern2).

After splitting, a new node is materialized from the nodenpedl to byp- >nxt . Sincesg® points to
NULL throughp- >nxt , this has no effect fosgB. However, insg® a new noden4, is materialized from
n3. Noden3 is asummary nod¢hat represents different kinds of memory locations (asynaarcoexistent
links sets describe its connectivity). The materializatiperation uses all available information within the
coexistent links sets in3 (and that of properties if there were any) to yield an aceunaaterialization for
n4. For instance, we can determine that there is no self-lirde 0¥ or that a link betweem2 andn3
must not exist, ag2 was pointing tqust onelocation represented hy3. After the materialization oh4,
the pointerg can be made to point to it, creating the pointer lplk2=<q, n4>. Finally, the graphs are
summarized by calling functioBummar i ze RSSG() (which has no effect in this case), and the resulting
RSSG™ 3¢ is generated.

The example continues by performingdastructive updat¢hroughst . 14: p- >nxt =r (Fig. 2.22).
This kind of statement is typical from pointer applicatiorisinvolves breaking a link and establishing a

University of Malaga

32 Chapter 2. Intraprocedural shape analysis

tl2e esSt13

RSSGS 5 *=RSSG%,

sg! clsly=<pll, sllo>
clsly,=<pll,pl2,s12,>
pll sll p12 1 215 c1824=<pll,pl2,sl3o>
r-@—| o) @ @ clslpz=<s12i,sldo> oo
pll cls2,3=<s121,5150>
s13 cls3p3=<sldj, sldo>
clsdp3=<sl4dj,sl5o>

Nullify o -l
y (XNULL (sgl, q))

sgA clslp=<pll, sllo>

s14 Clslnpp=<pll,sl2e>

pll sll sl2 <515 c1s2n2=<pll, s130>
r—®—| o) @ o clslnz=<sl2i,sldo>
pll cls2p3=<s12;,s15,>

s13 cls3p3=<slds, sldo>

cls4p3=<sl4i,s150,>

Split by p->nxt Split by p->nxt

clsly=<pll, sllo>

sgB® nl
g sg°¢ clslyy=<pll, sl2,>
clslp3=<sl2i,sldo>

pll sll =
- » R
o1l clslpp=<pll,sl3o pll sll S12 40515 cls3,s=<slds, sléo>
s13 r ppll @ cls4ny=<sl4j, s150>

clslpg=<sl2i,sldo>
cls2,4=<s12;,s13>

R c
Ko .
| d Materialize new node Materialize new node
I
(S
.3 +
: ?) sgD clsly=<pll, sl2o>
hedli)]
a5
e

sl5
pll sll sl2 sl13 <Vs16 clsl,3=<sl3;,s15,>
r_@—| P @ o @ Cls2n3=<s13;, s160>
pll cls3n3=<s515i,5150>
sl4d clsdn3=<sl5i,s16o>
Assign pointer g
v

clsly=<pll, sl2o>
sgk clslpg=<pl2,sl2i,sldo>
cls2,4=<pl2,s12i,513,>

q
pll s1l1l s12 plZSl3 2l6clslnjz<slsl,slsa>
r_@—| P @ @ @ Cls2n3=<513;, 5160>
pll cls3p3=<s515i, 515>
sl4 clsdn3=<s15;,5164,>

Summarize resulting graphs
I (Summarize RSSG())
—— -
v v RSSGY"
7 ng clslpy=<pll, sl2o>
sg clslng=<pl2,sl2i,sl4o>
g 5 1 cls2,,=<pl2,s12;i,s13,>

1 sl15
P11 11 clslm=<pll,sllo> pll s11 s12 % 513 Y 916 CLoIns=<s131,5150> PP
p Th clslnp=<pll, sl3c> r—@—| P @ 0 @ C152,3=<s135,5160>
B3 pll Cls3n3=<5151,5150>
sl4 clsdn3=<s15i,s16o>

Figure 2.21: Traversing a recursive data structure with<¥i®el () function.

new one. It is performed by calling thésel Y() function. First, the graph is split by- >nxt so that
the nullification of the link can be performed accurately,iahhis done by theXxSel NULL() function.
Continuing with theRSSG™ 13°, we see that the splitting of graph and node materializatiave no ef-
fect here, as the node pointed to py>nxt is alreadyfocusedand pointed to by pointeg. Then, the
link betweenn2 andn3 can be nullified. For that, the selector lisk 2=<n2, nxt, n3> is turned to
sl 2=<n2, nxt , NULL>, updating the sefLS3 in the process. The subsequent summarization of graphs

Compilation techniques based on shape analysis for pdiatsed programs

2.5. Abstract semantics and operations

33

RSSG 5 *=RSSG* S

pll

sll

sgt! 592

P p12

clslp=<pll,sllo>
clslpy=<pl2, 512>

P pl2 l2qpl3 4 5
s
G G-
s

clsly=<pll,slle>
clslyy=<pl2,sl2,>
clslp3=<pl3,sl2i,sl30>
cls2,3=<pl3,s12;,s514,>
clslpy=<sldj, s15:>
cls2p4=<sl4dj, sl6o>
cls3,4=<515;, 150>
cls4p4=<s15;, 165>

Split by p->nxt

Splitby p->nxt

Materialize node from p->nxt

Materialize node from p->nxt

Nullify p->nxt

| Nullify p->nxt

L

q13 sl4 5
S

clslyy=<pll,sllo>
clslyy=<pl2,s12,>
clslp3=<pl3,sl30>
cls2,3=<pl3,sldp>
clslpg=<sldj, s15,>
cls2p4=<s14;,s160>
cls3,4=<s15;,5150>
clsdps=<s15;,s8165>

sgh
b

XSelNULL (sg, p, nxt)

pl2

pll
=—4D
sl2

sll

=r;

p->nxt

Link p->nxt to nl

Link p->nxt to nl

v

Stl4:
(XSelY (sg,p,nxt, r)

A 4

< 13 15
S
Y s14 H
@ sl6
s13

clsly=<pll,sl2;i,sllo>
clslpy=<pl2,s12,>
clslp3=<pl3, sl3o0>
cls2,3=<pl3,slds>
clslpg=<sldi, s15,>
cls2p4=<sl4i,sl6o>
cls3,4=<s15;, 150>
cls4p4=<s15;,s16,>

sg® g
pl2

sqgC
p
pll
r DG
sl2
sll

it P p12
£ 2D
sl2

sll clslyy=<pll, sl2;j,sllo>

clslpy=<pl2,sl2o>

Summarize resulting graphs
(Summarize RSSG())

\ 2
sg3

! clsly =<pll,sl2i,sllo> RSSG‘?&;'

gq clslpy=<pl2,sl2,>
pl3 s15
GpGan)
s16
s13

Figure 2.22: Destructive update in a recursive data strectising theXsel Y() function, and its implicit
XSel NULL() function.

59
11 pl2

b
p
r

sll

pll P pl2

r DG
sl2

s11 clsly=<pll,sl2i,slle>
clsly,=<pl2,s12,>

clslpg=<sl4j, s15,>
cls2py4=<s514;,51605>
cls3,4=<s515;,515,>
cls4ps=<s15;,516,>

within XSel NULL() has no effect here. After that, the new selector BhkR=<n2, nxt , n1>is created
andCLS;,; andCLS,, are updated accordingly. The result does not need to be stipatiandRSS 5§ %4‘
is generated as output for this statement.

2.5.5 Freeing memory

Function
FreeX()

Statement
free(x)

Brief description
Remove node pointed to by, removing as well inconsistent selector
links that point to the freed node, if any.

University of Malaga

34 Chapter 2. Intraprocedural shape analysis

Once a recursive structure is no longer needed, a prograndeaiocate the unneeded elements to
release resources. Typically a traversal of the structupeiformed freeing its elements. Such a traversal is
performed in lood_3 for our running example (Fig. 2.18).

Let us consider the graphs fBSSGﬁ %5‘, shown in Fig. 2.23. As results of analysing the first itenati
for st . 24: g=p- >nxt , there are two possibilitiesg?, with no more elements after that pointed togay
andsg?, where more elements still exist in the list. By calling freeeX() function, the node pointed to
by p is freed, i.e., removed from the graph, along with its asgedi coexistent links sets.

It is worth to notice that thér eeX() function also removes inconsistent selector links thapaneting
to the freed node, if there are any. This is done to preservereace of the resulting graphs, and is safe to
do as long as we assumede correctnessSince our approach is not toward verification, we assuntdtiba
code has no memory related bugs and therefore there aremmwry leaker NULL-pointer dereferencing

RSSG3L**=RSSG S

1sly1=<pll,sllo>
sgl sg2 c nl
d g clslyp,=<pl2,sll;,sl2,>

g9
pl2 514 cls2,,=<pl2,sll;,sl3c>
ppll sll pll S 12" clsiys=<s12i,sldo>
p @ 18 cls2,3=<s12;,s515,>
<13 SI9 C1s83p3=<s143, s140>

1s1,,=<pll, sllo>
C+SIn1=SPLl, 810 clsdp3=<sldi, sl50>

ow
2 o
S)) o
52
o
O]
n O
jj “~

I
n <

v A 4 RSSGSlttZlSo
sg3 sg*

clsly=<pl2,sl2,>

4 pl2 sld cls2,,=<pl2,s13,>
EMPTY s12 —<) clslys=<sl2i,sl40>
GRAPH @ @ cls2,3=<512;,515,>
o S15 c153,5=<s143, 5140>

clsdp3=<sld;,sl5s>

Figure 2.23: Freeing memory using theeeX() function.

2.6 Modeling pointer arrays: multiselectors

Within pointer-based programs, pointer arrays are comynoséd. They can be either of a fixed size, as
specified by the array declaration in the program, or dynaliyi@allocated at run time with size according
to the program input. Whatever the case, we model a pointay as a node with multiselector A multi-
selector is a special kind of selector that may point to sdvaemory locationsimultaneouslywhereas a
regular selector can only point to osmglememory location at a time.

Essentially, a pointer array can be thought of as a summatg.rorepresents several memory locations
that are allocated together in an array. Each of these metonoagions has a selector to point to other
memory locations. For the node abstracting the pointeyawa just have one selector that can point to an
indefinite number of other memory locations abstracted éngifaph. In this manner, we are not restricted
by the size of the array, which anyway is not known in the cdslymamically allocated arrays.

In the context of coexistent links sets, we may need to com@ie the meaning of attributes incoming
(i) and sharedq) for a selector link, if it is based on a multiselector. Thall Wwe the case when more

Compilation techniques based on shape analysis for pdiatsed programs

2.6. Modeling pointer arrays: multiselectors 35

than one selector link in the concrete domain is represdneaiselector link in the abstract domain. The
modified attributes are (i)m(incoming from multiple locatioswhich means that, within a summary node,
the selector link is incoming on @ne-to-onebasis from the node abstracting the pointer array, andg i)
(shared from multiple locatiopswhich means that the selector link is incoming imany-to-onébasis.

The use of the modifiedmands mattributes, along with the idea of using a node and a muttiset
to abstract a pointer array are exemplified in Fig. 2.24. Tigisre shows three variants of a sparse matrix
data structure based on pointer arMyvhich points test r uct node memory locations. Each variant is
shown both in the concrete and abstract domains.

mcl Sg

s —— | |

|M[size—l]

csll,;=<pll,slly, sl2s>
clsl,,=<sllip,sl3,>
cls2,,=<s13;,s13>
cls3,,=<s13;,s1l4,>

(a)
next
mc? sg?
M—b[*N *N *N oo *N]
[Mro1 M1y [mi2) Misize-1)
- - = csll=<pll,slly, sl2o>
o000
clsl,,=<sll;,sl3,>
(b) cls2,,=<s13i,s13c>
cls3,,=<sl13;,sl4,>
mc3 sg3
M _" *N *N | *N X *N]
prro) A1y Jmr2) M[size-1]
csll,;=<pll,slly, sl2s>
e00
clsl ,=<sllgy,sl3s>
(C) cls2,,=<s13;,s13>
cls3,,=<s13;,s14,>

Figure 2.24: Three variants of a sparse matrix data streidtased on pointer-array in both the concrete
and abstract domains: (ane-to-onerelationship for several lists of elements of tyle(b) one-to-one
relationship for just one list; and (o)any-to-oneelationship for one list.

In !, each memory location within the array (labeled &8 can point to the head of a list et r uct

University of Malaga

36 Chapter 2. Intraprocedural shape analysis

node locations (labeled aN) or to NULL. Shape graplsg! shows our abstraction for this first structure:
nl abstracts thévl pointer array, andh2 abstract thest ruct node elements, whereas selector links
sl 1=<n1, M], n2>andsl 2=<n1, M], NULL> abstract the two kinds of connections from the array.
Coexistent links setl s1,:=<pl 1, sl 1., sl 2,> indicates that, froom1, the multiselectoM] points
both toNULL and to memory locations abstracted by nad2 (remember that a multiselector can point
to several locations simultaneously). However, the keyofabere iscl s1p,=<sl 1j m sl 35>, which
indicates that, from the pointer array abstractednly multiselectorM] may point to several memory
locations represented by summary nad® but it does so on ane-to-onebasis. This is tantamount to
saying that an indetermined number of locations within tirayapoint to the same number sf r uct
node elements, and nst r uct node element is pointed to by more than one location in the array.

Fig. 2.24(b) displaysrc?, where only the first location within the array pointsstor uct node el-
ements. The rest of locations within the array poinitdLL. The abstract representation of this structure
is sg?, which is almost the same agj!, except forcl s1,,=<sl 1;, sl 3,>, shown in bold. Thix| s
indicates that only one location from the array is pointiogst r uct node element.

Finally, Fig. 2.24(c) witmt 23, shows a case where a listsfr uct node elements is pointed to from
more than one memory location in the pointer array. Thisfiected incl s1,,=<sl 1sm Sl 3¢>, which
indicates that there is at least oser uct node element which is pointed to by multiselectigf] from
several locations in the array, effectively creatingany-to-onegelationship.

The concept of multiselectors to model pointer arrays wasdiuced in [1]. Here, we adapt its main
ideas in the context of coexistent links sets. New statesnaed to be introduced in our abstract semantics.
These arex- >nsel [i] =NULL, x- >nsel [i] =y andy=x->mnsel [i]. They roughly work like the
statementx- >sel =NULL, x- >sel =y andy=x- >sel presented before, but with minor extensions to
support multiselectors. The=nal | oc() statement is sensitive to the kind of location allocatedetiver
astruct element or a pointer array, initializing the selector/nseliectors accordingly.

2.7 Analysis refinement: properties

During the analysis, memory locations in the heap are meigfedsummary nodes avoid unbounded
recursive data structures, being the summarization icnitéo join compatible nodes. Obviously, the node
summarization operation may suppose some loss of acciBg@efault, our analysis finds two compatible
nodes when the set of pointer links associated with them {fie pointer variables pointing to a node) is the
same in both nodes. Let us recall that in our initial abstnaetp representation, the abstract domain for the
nodes is defined a&={P(PTR) U {NULL}}, making the nodes distinguishable only by the set of pointer
variables which point to them.

This way of summarizing effectively groups together evevganot pointed to by pointers. In certain
situations, and depending on the client analysis, this reayltin over-conservative shape graphs. In order
to avoid aggressive summarizations, we canpe@erties Properties annotate information in the nodes
that is considered by the compatibility check. Nodes whasegrties values are not compatible, will not
be compatible either with regards to summarization, evémeif are pointed to by the same set of pointers.

To introduce the role of properties, we will consider an egbmstructure, drawn from thien8d bench-
mark in the Olden suite [30]. It is formed by two singly-linkdists for the electric) and magnetic fields
(H), respectively. Each element in a list points to the nexinelat in the same list through timext selec-
tor, and to other elements in the other list throughttbenodes[] andf r omnodes[] pointer arrays.

A simplified version ofEn8d’s structure, showing only theext andt o_nodes[] links, is shown in
Fig. 2.25(a) for the concrete domain. The_nodes[] pointer array is used to point to a variable number

Compilation techniques based on shape analysis for pdiatsed programs

2.7. Analysis refinement: properties

sl8

(b)

clslpi=<pll,sl8ip,sllo,sl2:>
clslpyy=<pl2,s19in,s130,s514>

(to_nodes (1) <16 Clsl, 3=<sllj,s17in,5150,5165>
(to_nodes) ¢c1s2,3=<5133,517im, S150,516,>
s19 s17 cls3,3=<s15i,517im, s156,516,>
(to_nodesl]) (to_nodes[]) clsdps=<sl6i,sl7o>
(to_nodes) s110 n3 1 o
(next) eoe
H
E clslpy1=<pll,sl8iy,sllo,s12:>
clslno=<pl2,s19in,s130,s514:>
s12 (to romss(]) clsly3=<slli, s17:m, s150,516,>
(to nodes) — s15
- (to nsold7es[]) (next) cls2,3=<s13i,517in,s1506,5166>
(C) = cl1s343=<s15i,5174im,s150,516,>
16 (X X]
a1a (to_nodes) <§é>l<g> clslpg=<sl2;i,sl7o>
(to_nodes) s19 cls2,4=<s14i,s17,>
(to nodes|[]) nd
- sl3 cls3p4=<s16i,s17:,>
H (next)
(X T]
12 clsl 1=<pll,sl13ip,s1llo,s1l40>
(next) clslpo=<sll;i,sl14in,s155,5120>
13 (XY}
F (next) clslys=<sld;, sl7o>
n3= ir o
cls2,3=<s15;,s816,>
(d) s113 sll4 '1'1 _
(to_nodes) (to_nodes[]) Clslns=<pl2,sl6im,slllo,s180>
clslpns=<s18;i,517im,S1125,519,>
17
sl6 (to nsodes[]) oo
(to_nodes[]) - clslpg=<slll;i,slld,>
s19 cls2pne=<s112;,s113:>
(next) oo
H

Figure 2.25:EnBd’s data structure in the concrete dom
(b), with typeproperty (c), and wittsite property (d).

ain (a), and the alvstomoain without properties

University of Malaga

38 Chapter 2. Intraprocedural shape analysis

of elements in the opposite list, although for simplicitye hvave shown just two connections per array.

It is not determined at compile time what neighboring eletmarach element will link to, but one
important shape characteristic is preserved: the eleniertdist only connect through itso_nodes| |
pointer array to elements in thather list, effectively forming abipartite structure. This is the key shape
characteristic that allowBnBd to be parallelized. Therefore, if we aim to provide some shapstraction
for this structure that is useful for a subsequent deperadanalysis, we must be able to capture its bipartite
feature.

Fig. 2.25(b) shows the shape graph abstraction of the strjctvithout properties. All memory lo-
cations within the dotted lines in (a) are abstracted by no@le Somecl s’s are shown for this shape
graph. They reflect some interesting characteristics insthecture, namely: (i) the lists are not cyclic
through next , as there is nal s with two incomingsl 's for selectornext ; (ii) there are pointer
array elements that are reached throdghnodes from one location onlyand point to other nodes
through multiselectot o_nodes[] (as described bgl s4,3=<sl 6;, sl 7,>); and (iii) elements in the
lists can be reached from various locations within one oed\pointer array elements (as described by
cl s3n3=<sl 5;, sl 7im sl 54, sl 6,> for example).

However, we do not have information about the origin of tiddito a list elemeribeyondthe pointer
array that points to it. That pointer array could belong tstdlement in the other list, which respects the
bipartite feature of the structure, or it could belong toghee list, which breaks the bipartite feature. Since
we must be conservative according to the information thahae collected in the analysis, it is clear that
the shape abstraction in Fig. 2.25(b) is not suitable fot@asguent dependence analysisEoBd.

We would like to refine our abstraction &hB8d’s data structure so that we can preserve its bipartite
feature. First, let us consider thge property which annotates information about the data type absttacte
in the node. The result of abstracting tBeB8d data structure with the use of the type property is depicted
in Fig. 2.25(c). Here the node4 now abstracts all the pointer arrays separately from theslements.
Although this graph gives a clearer visual representatichestructure, it does not provide new informa-
tion. All the characteristics that we discovered in Fig52&) still hold, but we cannot yet guarantee that the
elements in a list do not link to other elements within the sdist through it 0_nodes pointer array.

Next, we will consider thaite property which annotates the nodes with information about the ation
site, specifically its statement number. The shape grapkseptation oEnd’s data structure with the use
of the site property is shown in Fig. 2.25(d). Here, we asstiratthere is a different allocation site for the
elements in the two lists. Within this chapter we focus oreiptocedural shape analysis, therefore to analyze
EnB8d we implicitly assume inlining of functions. In such scewathe previous assumption clearly holds.
Here, the elements in the two lists and the pointer arrays ffe elements in the two lists are separated, as
they were allocated in different statements of the prograin S6 in the figure). This abstraction provides
enough separation as to guarantee that the elements incalljstonnect to the elements in the other list
through itst o_nodes pointer array (for example)3 does not connect back tdl or n2). Using the site
property allows us to preserve the bipartite featurensd.

There is another important property that we can introduce:hietouch property It is used to label
nodes with access information along the process of abstitecpretation. During the analysis of the traver-
sal of a recursive data structure, the touch property carsbed to separate in the abstraction the elements
that have been accessed from those not yet accessed. Thisia tor dependence analysis. The use of the
touch property for dependence analysis will be further @qal in chapter 4.

Depending on the data structure abstracted and the cliahtsas, different properties might be required
for the requested precision. For example, we require theofiiee site property for the data dependence
analysis ofEnBd’s data structure. With properties, we can adjust the ghifitthe technique to accurately

Compilation techniques based on shape analysis for pdiatsed programs

2.8. Complexity 39

represent complex data structures. However, this comega@dtathere will be more nodes per graph, as
can be seen in Fig. 2.25. Properties can be used isolateccomihination (e.g., typandtouch).

From a formulation point of view, we define a set of properB&OP={t ype, si t e, t ouch}, where
each elemenpr op € PROP will identify one property that can be incorporated to oualgsis through
specific compilation flags. Here, we describe the generahdveork to incorporate these (or even new)
properties. For each property, we define new instrumemtationains:

e Piype=TYPEIs the domain for the propertyr op=t ype, and it is defined as a set that contains the
type objects declared in the program:

Ptype={Ptype S-t.Ptype € TYPE}

e P is the domain for the propertyr op=si t e and it is defined as a set that contains the malloc
statements defined in the program:

Psite = {Psite S:t.Psite=S € STMI' A s: : =x=mal | oc() }

Note that separation of nodes induced by the type propeitggficitly included in the site property,
as different data types of memory locations are necessaltilgated at different allocation sites.
Therefore, we could think of the type property as a more eslasersion of the site property.

e Letl Dbe the set of identifiers declared during the preprocessisg of the analysis. These identifiers
are defined in touch pseudostatememsech is the domain for the propertyr op=t ouch and is
defined as a set that contains a set of identifiers:

Ptouch = P(1 D) = {ptouch S.t.Ptouch C | D}

Now, we can extend the definition of the abstract domain femtbdes adl= (P(PTR) U {NULL}) x
Ptype X Psite X Ptouch. This makes the nodes distinguishable through the set afgrovariables which
point to them and the values of the properties annotateddh pade. For each property, we can define a
mapping functioPP M, op(n) as follows:

Property Map : PPMprop: N— Pprop
where,V pr op € PROP, Py op represents the domain for the corresponding property.

The introduction of the node properties, will affect somehs# main operations of our analysis, spe-
cially those that deal with nodes. In particul@pnpati bl e Node() is now redefined as shown in
Fig. 2.26(a). It checks that two nodes are compatible (andesummarized) when the set of pointer links
is the same in both nodesdtheir properties are compatible. Precisely, this is donibyuxiliary function
Compati bl e Property() (Fig. 2.26(b)) which checks if properfgr op € PROP is compatible for
the two nodesil andn?2. For thetype siteandtouchproperties introduced here, the compatibility criterion
is simple: two nodes will be compatible with regards to anyheflse properties if they have the same value
for the property.

2.8 Complexity

In this section, we will focus firstly on the computation oétimain parameters which will help us to find the
complexity of our method. Let us keep in mind that we are gdéingompute the worst case behavior. One

University of Malaga

40 Chapter 2. Intraprocedural shape analysis

Conpat i bl e_Node()

Input:nl,n2, CLSy;, CLSy: Conpati bl e_Property()
2 nodes and theltLS's Input:n1, n2, pr op € PROP
Output: TRUE/FAL SE # Two nodes and a property

Output: TRUE/FALSE
If (Vpl 1=<x, n1>cC CLS;1,

Ipl 2=<x, n2> C CLSy2) A If (pr op==t ype Vv prop==si t eV prop==t ouch)
(Vpl 2=<y, n2> C CLSy3, returnPP My op(N1) ==PPMpop(N2)

Jpl 1=<y, n1>C CLSy) A end

(V prop € PROP,

Conpati bl e_Property(nl, n2, prop) ==TRUE)),
return (TRUE)
else
return FALSE)
end

() (b)

Figure 2.26: (a) Check whether two nodes are compatibl@rjrcating the properties check; (b) Check
whether two nodes are compatible with regards to a certaipapty.

of the parameters of interest, is the maximum number of sigagyghs generated by our approach. After
a given program statemest, such number of graphs are included iRR&SG®, and it depends on the
number of ways of partitioning the live pointer variablegheit point. For instance, if the set of live pointer
variables is{p1, p2, p3}, i.e. three live pointer variables, we could find the follogsishape graphs:

e One graph with one nodel pointed to by{p1, p2, p3}.

e Three graphs with two nodesl & n2, pointed to by:

- {p1, p2} & {p3}
- {pl, p3} & {p2}
- {p2, p3} & {p1}

e One graph with three noded & n2 & n3, pointed to by{pl} & {p2} & {p3}, respectively.

We firstly have to compute the number of ways of partitioningetiof j elements (in our casg,live
pointer variables) intd: blocks (in this case, nodes). Such a number is named the yitiber of Bell,
B(j), and can be computed from\(j) = >, _, S(J, k), whereS(j, k) is the Stirling number of the second

kind [31], k
e 808 = g o1 () -1y

=0

As we are interested in computing the maximum number of sheaehs generated by our approach, we
should consider all the possibilities due to different coliow paths, because different paths can establish
different alias relationships between pointer variableg &t us recall that each shape graph iREEG
represents a different alias configuration. For instancpath could generate graphs with just one live
pointer variable, another path could generate graphs withive pointer variables, etc. Assuming that
represents the maximum number of live pointer variablesyatprogram point, the maximum number of

Compilation techniques based on shape analysis for pdiatsed programs

2.8. Complexity 41

graphs generated at a point should be the sum of all the wayartifioning j live pointer variables, from
j=1till j = nv, i.e.,zgﬁl B(j).
We will assume that dead pointer variables are nullified, & soon as a pointer value is not going to

be read before it is re-assigned, it is made to poimitthL, so that it does not point to any node. This way
it will not contribute to a larger number of shape graphs.

In addition, we should consider the number of propertieduated in the shape analysisp, as well
as the range of the values for each propertyrange that we define ds: rp;. In this case, each value
for each property can contribute with a new graph, thereffoeenumber of graphs should be multiplied by
[22321 ij]. In the case that no properties are considered in the asatiigihnp = 1 andrp = 0.

Let us not forget that we are computing the maximum numbehayps graphs for RSSGat a program
pointse, i.e. for each statement. With all of this, theaximum number of graphs per statement which
we nameNg,, could be estimated as we indicate in Eq. 2.1. An obvious wagotnpute themaximum
number of graphs generated for the analyzed code, which we will naifage would be obtained multiplying
Ny, by the number of statements analyzed in the prograstint, as we see in Eq. 2.2.

nv

Ng, = [2%5]- 37 B()) (2.2)
j=1
Ng = nstmt- Ng, = nstmt - [22321“’]’} . ZB(]') (2.2)
j=1

There are other interesting parameters that give us moedattinformation about how complex the
shape graphs are and that are measurable: for instance hoywnodes does a graph have and how inter-
connected these nodes are. About the number of nodes, watenested in computing an upper bound, i.e.
the maximum size of a shape graph. In other wordsptbgimum number of nodes per graph which we
will name Nn. It depends on the maximum number of live pointer variables,because, in a worst case,
when none of the pointers are aliased, then each one coulttpa different nodeNn depends too on the
number of properties considereay and the range of the values for each propertyi.e. 0 : rp;, because
each value for each property can contribute as a new nodé.alVif this, Nn can be estimated as we show
in Eq. 2.3.

Nn = nv + 2252175 (2.3)

About how interconnected the nodes are, we should compatentximum number ofl s -selector
links- and the maximum number ofl s’s (coexistent links sets), which are precisely the paransethat
encode this information in our approach. We will namertteximum number of sl ’s per node, asNsl,, 4
and themaximum number of sl ’s per graph, as Nsl. The former depends on the maximum number of
selector or pointer fields declared in the most complex dat&tsire,nl. It depends too on the maximum
number of nodes, to which any node can be connected througleeta link, i.e. Nn — 1. As the links
that can coexist in a given node can be incoming from any athde, outgoing to any other node, or a link
to/from itself, then the maximum number of selector linksaafiven type could be - Nn — 1. Therefore,
Nsl,0q. Can be computed as we see in EQ. 2V41,,4. (Nn) denotes the maximum number of selector links
when we consider that the number of noded/is The maximum number «fl 's per graph should be the
sum of all the selector links per node when we iterativelyiporateNsl,,.q.(j) for each new node, from
j = 1till Nn, as we see in Eq. 2.6.

University of Malaga

42 Chapter 2. Intraprocedural shape analysis

Nslpoge = Nslyoge(Nn) =nl-(2-Nn—1) (2.4)
Nn Nn

Nsl = > Nslyoge(j) = > nl-(2-j—1) = (2.5)
Jj=1 Jj=1

= nl-(2-Nn—-1)-(Nn—-1) (2.6)

However, the most important parameter is the maximum nuwlers’s. A ¢l s contains pointer links
and selector links with attributes. As a shape graph repteseparticular alias configuration, the number
of pointer links is fixed. The variations come from the sededinks with attributes. For instance, for a
node, the maximum number of selector links with attributepethds on the combination of the maximum
number of selector links that can coexist in the node (exatuthe links from/to itself, i.e2Vslhode—nl gee
Eg. 2.4), as well as the number of variations due to the ateiys™ . Let us see this last factor in detail: in
acl s there could be five different states representing the atg#hfor each selector link from/to the same
node: (i) the selector link does not appear, (ii) it is justaming @t t sl ={i } or attsl ={s}), (iii) it
is just outgoing &t t sl ={0}), (iv) it is just cyclic @t t sl ={c}) and (v) it is a summary node with the
same incoming and outgoing linkat(t sl ={i , o}, attsl ={i, c}, orattsl ={s, o}, attsl ={s, c}
for a shared summary node). With all of this, we could complégemaximum number of cl s’s for a
node namedNcls, 4., By EQ. 2.7. Clearly, thenaximum number of cl s’s per graph namedNcls, can
be computed from Eq. 2.7 ardn (the maximum number of nodes) as we see in Eq. 2.8.

NClSnode — (QNSZnOde—TLl) . 5nl — (22~nl~(NTL—1)) . 57’Ll (27)
Ncls = Nelspoge - Nn = [(22'"1'(]\/"*1)) -5"@ -Nn (2.8)

Eq. 2.7 is a first approximation that gives us a worst caserdpped for the estimation of the maximum
number oft| s’s for a node when there is not available information aboetthta structures. However, such
a number can be greatly reduced when we have some informeattiom the data structures. Till now, we
have assumed that all the selector links can be incomingdmatgoing from a node. But, in@ s that
represents a real data structure, there is as most, a maximarber of “real” incoming selector links.
We will call nli to this important piece of information. For instance, inagdy-linked listnli = 1, in a
doubly-linked listnli = 2, or in a binary treenl: = 1. With this information we have to compute all the
cl s’s that are combinations due to the selector links withfattes that are incoming in a node, multiplied
by combinations due to the selector links with attributest ttan be outgoing from the node. In a node, we
know that there could be at most: (a) - (Nn — 1) selector links from other (different) nodes (cases in
which attribute is{i } or {0}), plus (b)n! selector links from the same node with attribateplus (c)nl
selector links from the same node that represent incomidgbatgoing in a summary node (cases in which
attributes are{i , o} or {s, 0} or {i, c} or {s, c}). Thus, there could bel - (Nn + 1) selector links
with attributes in a node. From them, at most, only would appear as incoming selector links iclas.
Therefore, the computation of the combination of the selelatks with attributes that are incoming in a
node yields the following:

nli nl-(Nn-+1
Z((N >>

j=1 J

From thenl - (Nn + 1) selector links with attributes that there could be in a negeknow that in al s
there could be frond till n/ outgoing links. Thus, for the computation of the combinatad the selector
links with attributes that are outgoing from a node we comisttle expression:

Compilation techniques based on shape analysis for pdiatsed programs

2.8. Complexity 43

ol nl-(Nn+1
S

k=0

In other words, a more accurate estimation for the compmurtadf the maximum number afl s’s,
Nclsnoge, 1S given by Eq. 2.9. Again, the maximum numberadfs’s per graph, namedvcls, can be
computed from Eqg. 2.9 and the maximum number of nodes,as we see in Eq. 2.10.

nli nl
Nels, . — Z (nl . (Nn + 1)) ‘ Z (nl . (J\Zz + 1)) 2.9)

j=1 J k=0
Ncls = Nclsyoqe - N (2.10)

For instance, working with a singly-linked lists, we knovatih! = 1 andnli = 1, so applying Eq. 2.10
we could getO(Nn?) as the maximum number of different s’s per graph. With a doubly linked list,
wherenl = 2 andnli = 2, for Eq. 2.10 we could geD(Nn°), whereas for a binary tree we should get
O(Nn%).

To take into account the effect of multiselectors in the nmaxin number otl s’s in a node, we would
need to consider theinst factor for the term describing the maximum number of selelit&s with at-
tributes in a node, i.eninst-nl(Nn+1). The factominst stands for the maximum numberioktantiations
of multiselectorghat may occur in the program [32], beimgnst = 1 for no instantiations.

Other parameter of our abstraction, that could be interggt compute is thenaximum number of
pl 's per node, and we will name it a&Vpl,,,q4.- It depends on the number of live pointer variables, and
it can be easily computed as we can see in Eq. 2.11.nTdsemum number of pl 's per graph, named
Npl, is represented in Eq. 2.12. As we assume thatRBSG will be in normal form, then each pointer
variable can appear only once on each graph, theréfpte= Npl,, e

Nplpoge = nv (2.11)
Npl Nplyode = v (2.12)

Table 2.1 summarizes the main parameters used in our coityptxdy, as well as their definitions and
their values.

Now, our goal is to estimate the worst theoretical perforoesof our shape analysis framework. Roughly,
the cost of analyzing a pointer statement will depend on dis¢ af the corresponding transfer function, and
more concretely it will depend on the operations that thestfier function invokes. We would like to start
summarizing the dominant costs for the main operationsdhatransfer functions call. These costs can
safely be deduced from the algorithms presented in Appehdsor the estimation of these dominant costs,
we assume a worst case scenario: each shape graph congainaximum number of node#/¢), the max-
imum number ofsl 's (Nsl) and the maximum number afl s's (Ncis). Let us see then the costs for the
main operations:

e TheSunmari ze_SE) operation has a computational cost given®yVn + Nn - Nclsyoq4e), due to
the fist and second forall, respectively . We can easily dedhat the dominant cost for this operation
can be estimated &3(Nn - Nelsyoq.) = O(Nels).

University of Malaga

44

Chapter 2. Intraprocedural shape analysis

Parameter || Definition Value
nstmt number of statements to be analyzed

nv maximum number of live pointer variables at any program poin

nl maximum number of selectors - or pointer fields- declaretiéndata structures

nli maximum number of “real” incoming links in the data struetsir

np number of properties considered in the shape analysis by default 1
D) upper value in the range of the values for propgrty : rp, by default 0
Ng, maximum number of graphs per statement Eq. 2.1

Ng maximum number of graphs Eq. 2.2

Nn maximum number of nodes per graph Eq. 2.3
Nslyode maximum number 0§l 's per node Eq.2.4

Nsl maximum number o§l 's per graph Eq. 2.6
Nclspode maximum number of| s’s per node Eq. 2.9
Ncls maximum number of| s’s per graph Eq. 2.10
Nplyode maximum number opl 's per node Eq.2.11
Npl maximum number opl 's per graph Eqg. 2.12

Table 2.1: Parameters of our complexity study.

The Nor mal i ze_SG() operation depends basically on two findings: (i) find unrehéh nodes,
which has a cost 0O (Nn - log(Nn)) and (i) findcl s’s with incoherent selector links, which has
a cost of O(Ncls - log(Ncls)). In other words, the computational cost is dominated0gyVn -
log(Nn) 4+ Ncls - log(Ncls)). As we know from Egs. 2.3 and 2.10cls >> Nn, therefore, the cost
of this operation is dominated Wy(Nclis - log(Ncls)).

The Spl it () operation depends on finding a nhode and then creating a nes §pa eachcl s
of that node. When creating the new graphs,Xoe mal i ze_SGE) function is called. Clearly, it
presents a cost given BY(Nn + Ncls,oqe - (Nels - log(Nels))). Simplifying, The dominant cost of
this operation can be expressed¥sVcls,qq4e - (Ncls - log(Ncls))).

The Mat eri al i ze_Node() operation has a cost @ (2 - Nn + 2 - Ncls,oq.) for the two first
nodes finding and the creation of thé s’s of the new materialized node (ther eate CLS
forall). Next, theCreate CLS' y; forall has a cost given b¥)(Ncis,ode - Nslnode), Whereas the
Create CLS j forall presents a cost given bY(Nn - Nclsyoge - Nsluoge). Finally, a call to
the Nor mal i ze_SQ() function will have a cost 00 (Ncls - log(Ncls)). In summary, the cost of
the materialization is given b@(2 - Nn + 2 - Nnclspoge + Nelsnoge * NSlhode + Nn - Nelspoge
Nslpoqe + Nels - log(Nels)). As Nn - Nelspoge = Nels, and from Egs. 2.4 and 2.10 we deduce that
Nslpoge < log(Ncls), we can approximate the dominant cost for this operatian(@écls-log(Ncls)).

Now that we know the dominant costs of the main operationg;omid estimate the costs for the transfer

functions. In Appendix A we present the formulation of ourergtions as functions. The goal of such
formulation is to present in a clear and formal context, therations involved in our analysis. However, we
should remark that those functions are different from oafiraplementations. In other words, the dominant
cost of each transfer function depends on the algorithmeamphted. We present here a short indication
of these costs. For the estimation of these dominant costiawe assumed again a worst case scenario:
the maximum number of shape graphs included RS$G'® is Ng, (see Eq. 2.1). In the computation

Compilation techniques based on shape analysis for pdiatsed programs

2.9. Related work in heap analysis 45

of the dominant costs of our real implementations of thesfiemfunctions we have included the operator
| |R®SC which roughly has a cost given b9 (Ng,). For instance, the statementsNULL, x=new and
x=y call to theSummari ze_SE) operation. In our implementation, the cost for these statémis
given byO(Ng, - Ncls). However, the statements >sel =NULL, x- >sel =y andx=y- >sel call to the
Split(),MaterializeNode() andNormal i ze_SE) operations and, roughly, they present a cost
given byO(Ng, - Ncls - log(Ncls)). Clearly, the complexity is dominated by the transfer fiorcof these
last statements, so our method has a complexity @Yy, - Ncls - log(Ncls)).

The fixed point requires that the transfer functions be apglintil the graphs iIRSSG** do not change
any more. However, we have considered the maximum numbeossille graphs, nodes| 's andcl s’s
so the complexity to reach the fixed point is included in thevjmus discussion.

Summarizing, we find that the complexity of our approach ddpeon the upper bounds éfg, and
Ncls. From Eq. 2.10 we know tha¥cis has a polynomial behaviorO(Nn?) for a singly-linked list,
O(Nn®) for a doubly linked list, ... Ignoring the properties, frong.22.3 we know thatVn = nv + 1.
Therefore, roughly we can approximate an upper bound foi\isle parameter a®((nv)*), wherek is a
constant that depends on the maximum number of links in toetsres analyzed, and is the maximum
number of live pointer variables. On the other hand, fromZE#jwhich represent the theoretical maximum
value for Ng,, again ignoring the properties, we can notice that dependseosum of the numbers of Bell,
> 21 B(j) < nv - B(nv). From [33], we know that the asymptotic limit of numbers ofiBg,

B(nv) < 1 . ()\(n,u))m)Jrl/Q . e)\(m;)fm)fl

V()
being\(nv) = % with W (nv) as the Lambert W-function. That limit, very roughly is muoker than
nv™, SO we can approximate an upper boundVgf, asO(nv - nv™). In other words, taking into account
the upper bounds faNcls and theNg, parameters, our approach would have a exponential behgiviem
by O(nv™**), as a worst case. However, we think that the important isateesis the worst case reached
in practice, and how often? We will address these questioasdtion 2.10.

2.9 Related work in heap analysis

In the past few years pointer analysis has attracted a gesditod attention. A lot of studies have focused
on stack-pointer analysis, like [34] and [35], while otharsre related to our work, have focused on heap-
pointer analysis. Both fields require different technigaganalysis.

We can find methods based on deriving information from thg@mm to describe the heap as predefined
structures. Among them, we acknowledge the work of Ghiyakadren [36], and Hwang and Saltz [37].
This kind of approach is callestorelessas it does not keep a representation for the heap in evaensat
in the program.

Ghiya and Hendren [36] use access paths in path matriceggd@gioarse characterization of structures
in the heap. They use matrices to encode information abals fl@@m one pointer to another, and to record
possible interferences of heap objects through differemters. The information derived from the matrices
is used to estimate the shape of the data structure aceefsilnl a pointer, sorting it abreg DAG or Cycle
The case foCyclestands for any structure containing cycles, with no furtfistinction.

Hwang and Saltz [37] use the base classification from Ghiga-endren for a primary characterization
of the heap. They also build def-use chains for the pointerthé program to derive information from
the “shape” of the traversal of the structure. This allowenthto identify non-cyclic traversals of cyclic
structures, for example. However, the analysis does nok Wdhe structure is modified in the loop of

University of Malaga

46 Chapter 2. Intraprocedural shape analysis

study.

There is another body of work ([38], [39], [40], [41]) thatassseparation logic to describe the shape of
data structures through recursively defined predicatemeSuf these works rely on pre-defined recursive
predicates [38], [41], whereas [40],[39] resort to induetsynthesis to infer recursive shape invariants. [40]
is suitable for list-processing programs limiting the sla$ analyzable programs, whereas [39] can handle
more general data structures, specially data types wighlike backbone.

More related to our approach though, there are a number lofigaees that use some variety of graph
to maintain information from the heap. These approachesisually referred to astored-basedbecause
some representation is kept for the objects allocated ihdlag for every analyzed statement.

Some early works progressed in the understanding of théresgents for precise heap abstractions. For
example, Jones and Muchnick [42] use a set of graphs for adiestpaction in a simple language. There
are labels for sharing and cycles. Graphs are boundddlinyiting, i.e., elements beyonkl indirections
are summarized. Larus and Hilfinger [43] extend on k-limiggdphs by introducing path expressions to
build so-callecalias graphs Horwitz, Pfeiffer, and Reps [44] work with storage grapdasother variation of
k-limited graphs used to determine conflicts between hestpraents. Chase, Wegman, and Zadeck [28] do
not rely on k-limiting to bind theiStorage Shape Graphlut rather, create a node for every pointer and for
every allocation site in the program. They are able to perfsirong updatén certain situations, a process
that may exchange links in a node in a definite way. Later,JRllevChien, and Karamcheti [26] extend the
model of Chase et. al to manage cycles with Miistract Storage Graphdn general, all these techniques
suffer from serious limitations in the kind of analyzableustures, and perform very complex operations.
Besides, the definite actions liktrong updatere rare, more so as information becomes summarized during
the analysis.

Sagiv, Reps, and Wilhelm [27] improve on these previousreffoThey also make use of graphs to
capture the heap. However, th&8tatic Shape Graphdifferentiate nodes by the pointers that point to
them. They are able to perforstrong nullificationin all situations thanks to a very precise materialization
operation. Overall, they provide significant improvemewgrathe previous works but they still are unable
to correctly analyze complex structures, and the analysigptexity hinders scalability.

Later, Sagiv, Reps, and Wilhelm [29] devised a method t@msite different shape analyzers according
to a set of specifiegredicates Such predicates can take one of three valtreg; falsg or unknown hence
the 3-valued logic that is used as the core of the method. Wik produced an implementation known
as TVLA (Tri-Valued Logic Analyzer) [45], which spawned sgal shape analysis strategies ([46], [47],
[48], [49], [50]), each using a specific set of predicatesdpecific purposes. The main works stemmed
from TVLA will be discussed in the next chapter, as they uselthse 3-valued analyzer approach with
extensions to deal with interprocedural analysis.

Marron et. al [51], [52] combine some of the previous ideasaime up with another graph based shape
analysis technique. From Ghiya and Hendren [36], they both® idea of specifying predefined shapes,
albeit with a greater range of shapaingleton list, tree, multipathandcycle From Sagiv et. al [27] they
use the ideas of abstract interpretation, abstract secsafuti pointer statements, graph operations, and
materialization (now calledefinement They are able to obtain fast analysis times for relatiaaynplex
structures in Java programs modified to use collectionrigsahat have been previously characterized for
the analysis.

Hackett and Rugina [53] describe a novel shape graph abstraauilt on top of a region points-to
analysis. Their analysis is based on local reasoning od@rictual heap locations, callg¢dackedlocations.
By avoiding to analyze the heap as a whole, they can achiexstamalysis (less than a minute for tens of
thousands of C code for a bug detection extension). Howthar,analysis relies heavily on the underlying
points-to analysis. If it cannot determine enough disjoégfions, the analysis is worthless.

Compilation techniques based on shape analysis for pdiatsed programs

2.10. Experimental results 47

The work by Sagiv et al. [27] was the first to successfully comalabstract interpretation based on
abstract semantics for pointer statements in a framewattkiicorporated the materialization operation for
strong nullification These concepts were used as the base for the work of CoAssajo, and Zapata [54].
They augmented the analysis precision by adding severphgrer statement and introduced the use of
properties in nodes to be able to separate summary nodesleBethis work provided explicit support for
pointer arrays, modeled as multiselectors, an aspectatedléy previous works.

The shape analysis technique described in this chaptespgéu in the work by Corbera et al. [54], [1].
It borrows the main ideas of abstract interpretation, wstldlgorithm, summarization/materialization, sev-
eral graphs per statement, use of properties to fine tunenttigsis precision,and modeling of pointer arrays
as multiselectors. The main contribution here regardimgpievious work and the intraprocedural aspect of
shape analysis is the addition of the coexistent links s&tattion for a more compact representation, and
a new Java-based implementation ready for further devedopnit should be noted that our approach does
not suppose any characteristic of the data structure nariltaessume the behavior of operations over it.

2.10 Experimental results

We have implemented the algorithms presented in this chajitigin our heap analysis framework, written
in Java. We focus on the analysis of C sequential programs.thAlneeded preprocessing passes are
performed with custom-made passes built upon Cetus [58lessribed in chapter 1.

DCAUMA
File Edit View Cetus ShapeAnalyzer Graphs Configuration Help

nnaap)r n(Ere

SAFP Code Graphs |/Time measurement

MStE_It5_1.dot| ZoomIn | Zoom..

01-createR_sap.c
struct node *tmp;
struct node *I;

struct node *create({ Iter: 1 Graphs: 3 Shapegraph CLss

tmp = MULL, Iter: 1 Graphs: 1 TIEsI

if){ Iter: 1 Graphs: 1

tl = create(; ker. O Craphs O 1 {FLZ, 5L7 o, SLSao}

tmp = malloc)); [er: 5 GCraphs: S T
tmp-=n =11, [er 5 Graphs: 5

telse{
} CLS=2(3):

return tmp; Iter: & Graphs: & - (SLS1, SL30, STdn}
} Touck: {[} {SLGL SL30, SLdo}

{5L5i, SL30, SLEo}

[y mst6_nz_1 dot ¢ [JSentence 5; tmp = malloci;

¢ [Iteration 3 ¢ [] heration 5
[y mst6_nz_1.dot [y msts_is 1 dot 4y rpEObLS)
? [] Iteration 4 3 Children ’r

[y Mste_it4_1.dot ¢ [CSentence 7; return tmp;
¢ [heration 5 ¢ [Iteration & Touse () LB o
Cymste_it5_1.dot [Mst7_1t6_1.dot

L1, 518, SL1o, SL20
FL1, 5L, SL1o, SLS0,

Sentence &; tmp-=n = t1; [Sentence 6; tmp->n = t1; {5Léia, SL3ok
¢ [teration 1 ¢ [teration 5 o thlﬁLT HmpECH
[y mste_n1_1.dot [y Mst6_its _1.dot
¢ [hteration 2 [Parents - CLEsML):
Touch: {I}

"'SL3 HmpPChSLa)

null

S0 using SGArraylist

Starting analysis with an empty graph set.
Analysis time: 0.641 seconds.
Total memory : 34.5625 ME.

Figure 2.27: Graphical User Interface for shape analysis.

University of Malaga

48 Chapter 2. Intraprocedural shape analysis

We have also implemented a GUI to enable a friendly use of loapes analyzer tool. In Fig. 2.27 we
can see one of the available windows in which the “Graphsidaklected. In that tab we have the analyzed
code with each statement annotated with information régarttie number of times that statement has been
symbolically executed and the numbeisaf's associated with it. We also provide the links to each giaph
information about the parents and children of each one ofitlas well as the graphical view of the graphs
and itscl s’s. There is also a “SAP code” tab (SAP stands for Shape ApalRzeprocessing). This tab is
very useful to compare the original C code and the prepredegsrsion resulting from the Cetus compiler
pass. This preprocessing takes care of the insertion cf fiseudostatements and other transformations and
simplifications that have to be performed to optimize thepshanalysis.

2.10.1 Benchmarks and tests

We have considered six programs for the tests in this secfiba structures they use include singly-linked
lists, binary trees, n-ary trees, sparse matrices, spacerg, and highly interconnected bipartite graphs.
We outline them next:

e 1- Runni ng exanpl e. This benchmark analyzes the running example used for Kaipter, i.e.,
the program in Fig. 2.18. It creates, traverses, and thestadel singly-linked list. The singly-
linked list is depicted in Fig. 2.28(a). The purpose of thémthmark is to provide a baseline for the
allocation, traversal and disposal of a simple recursita daucture.

e 2-Bi nary tree. This benchmark creates and traverses a binary tree, amemyion data structure
used in pointer-based applications, shown in Fig. 2.28(lhe tree is created as it is traversed from
the root within a loop. The resulting tree needs not be baldnice., in general not all leaves will be
found at the same depth of the tree.

e 3-N-ary tree. Creation and traversal of a tree based on pointer arraygsfahildren. The
number of children for each tree element is not known at ctanjpne. Fig. 2.28(c) depicts this data
structure. Like the previous benchmark, the tree is creadetis traversed from its root within a loop.

e 4-Matrix X Vector. Creation of a sparse matrMand a sparse vect, plus the generation
of the output vectoR=MkV. The output vector is created along the traversaMand V. Sparse
structures are those where the majority of its elements en@ ZThis kind of structures are usually
represented as pointer-based data structures, wherehenhoh-zero elements are stored, with some
additional information for the location of the element viiitthe structure. For example, for the sparse
matrix, each element has its value within the matrix, bub aldditional information for its row and
column. Note that this is different from a matrix represéotaas a bidimensional array, where
all zero elements would consume storage in memory. An exaimipa sparse matrix and a sparse
vector is shown in Fig. 2.28(d). This benchmark is a kernelosimon programs manipulating sparse
matrices. The product itself features three nested loops.

e 5-Matrix x Matrix. Creation of sparse matricddl andM2, plus the generation of the output
matrix M3=MLxM2. The output matrix is created along the traversaMbfandM2. The sparse ma-
trices used are of the same data type as the matrix used fdr et ri x x Vect or benchmark.
This benchmark is used to help understand the effect of gddiore complexity to the data structure
andthe control flow of the program, with regards to theMat ri x x Vect or benchmark, as the
product now features three matrices and a nest of four loops.

e 6- EnBd. Program from the Olden suite [30], that creates two sitigked lists for the electrical and
magnetic fields, and then links each element in a list to séeements in the other list, creating a

Compilation techniques based on shape analysis for pdiatsed programs

2.10. Experimental results 49

bipartite graph. This example has been used in the litaxd8¥], [51], as a key example for shape
analysis, due to its heavily interconnected structure. b data structure is shown in Fig. 2.28(e).

These codes do not include functions. In the cage &nBd, functions were inlined by a preprocessing
pass into a single body.

@ |

M —>[idxh:1]—-[idxh:2 }—-[idxh:3]—-[idxh:4]—| \Y%
1 |

(d) idxr=2 idxr=1 idxr=3
val=3 val=5 val=2

idxr=3
val=4

Figure 2.28: Data structures for the benchmarks considerddtraprocedural shape analysis.

The purpose of the experimental results for the intrapro@dversion of our shape analysis tool is
twofold: first, to test its ability to capture different kistf dynamic data structures that are common in
pointer-based applications; second, to ponder over the gihered in the experiments so that we can
understand better the strong and weak points in the techniqu

Our technique was able to capture accurately all the datatstes in these benchmarks. This means
that the lists do not contain cycles, a tree child does nattgoi its parent, the columns in a matrix are
independentEnBd’s graph is bipartite, etc. It should be noted that we are &bleapture the structures
even when they are created during the traversal of the sarapather structure, like in th2- Bi nary
tree,3-N-ary tree,4-Matrix x Vector and5- Matrix x Matrix benchmarks. This is not
possible for some related approaches, like [37].

All data structures where accurately represented in oyseskigaphs without the use of any property,
except for thes- EnBd benchmark that uses tisite property. Refer to section 2.7 for a discussion about
the way we capture the structureGn En3d.

Once we have checked the ability of our shape analysis gyr&ecapture the data structures tested, our
next concern involves the performance of our implementatio Table 2.2 we show some metrics regarding

University of Malaga

50

Chapter 2. Intraprocedural shape analysis

performance of the analysis and size of the problem. Thecilsimn shows analysis time in seconds. The
testing platform is a 3GHz Pentium 4 with 1GB RAM. The secoallimin shows the memory used by the
analysis. Then, we show the number of statements in thegmo@ode st nts. column), the number of
analyzed statements until a fixed point is reacheth{ yzed st nts. column) and the number of shape
graphs generated during the analyShdpe gr aphs column).

Benchmar k Ti me Space | Code stnts. Anal yzed stnts. Shape graphs
1- Runni ng exanpl e 0.78 s | 1.9 MB 28 84 108
2-Binary tree 0.49 s | 1.9 MB 27 254 331
3-N-ary tree 0.13 s | 1.9 MB 20 135 225
4-Matrix x Vector 3.44 s | 2.8 MB 95 1,071 3,398
5-Matrix x Matrix | 47.75 s | 5.9 MB 128 3,682 14, 611
6- En8d 18.45 s | 5.5 MB 175 1, 267 2,014

Table 2.2: The codes tested for intraprocedural analystk, metrics about performance, and size of prob-
lem. The testing platform is a 3GHz Pentium 4 with 1GB RAM.

We see that the analysis times range from less than a secanf@é\woseconds, clocking under a minute
in any case. Thé- Mat ri x x Matri x benchmark takes the longest to be analyzed, with 47.75 decon
The memory used by the analyzer fits in less than 2 MB for thdlermaenchmarks, peaking at 5.9 MB for
5-Matri x x Matri x. The programs used are relatively small in size, in the samger as works in the
literature, with only6- EnBd having near 200 statements to analyze. It should be notegthohat the size
compiled at theCode St nts. column makes reference to the statements that are analyzibe lshape
analyzer, as affecting heap structures. In general, thgrgno may have many more statements that do not
affect the heap and thus are not considered for this methe.value of theAnal yzed st s. column
indicates the number of statements that have been analyzetii by the analysis. Some statements would
have been analyzed several times until a fixed point is readhar example, th&- Matri x x Matri x
benchmark repeatedly iterates over its 128 analyzablerstatts, reaching a total of 3,682 analyzed state-
ments. Regarding the total number of graphs for the analysiseach into the thousands for the moderately
complex programs, which hints about the complexity of ttlnbéque and the accuracy that goes with it.

We will consider more information about these experimentshied some light into the limiting factors
of the analysis. For that, we have compiled Table 2.3, whigsgnts information about the complexity
of the shape graphs obtained. Next to each benchmark, wiaylige shape graph per code statement,
the average number of nodes per shape graph (with maximumrémieses), and the average number of
coexistent links sets per shape graph (with maximum in paeses).

Benchmar k Sg’s per code stnt. Avg. nodes per sg (max) | Avg. cls’'s per sg (max)
1- Runni ng exanpl e 3. 86 2.41 (4) 4.89 (10)
2-Binary tree 12. 26 2.78 (4) 24.41 (87)
3-N-ary tree 11. 25 2.50 (4) 6.16 (15)
4-Matrix x Vector 35.77 5.75 (9) 30.89 (67)
5-Matrix x Matrix 114. 15 8.34 (12) 52.36 (109)
6- En8d 7.24 8. 75(12) 74.40 (267)

Table 2.3: The codes tested for intraprocedural analydtb, parameters that relate to shape graph com-
plexity.

The metric of shape graphs per code statement gives a maedgsheeaverage number of shape graphs
that are used to represent the different heap states foralyzable statement in the program. This value
ranges from less than 4 shape graphs per code statemdntRomnni ng exanpl e to more than a hun-
dred for5- Matri x x Matri x. The average number of nodesdrs’s per shape graph indicate the

Compilation techniques based on shape analysis for pdiatsed programs

2.10. Experimental results 51

complexity of the shape graphs for each benchmark, and tieegieectly related to the abstracted data
structure. Since the data structure GrEnBd is the most complex (see Fig. 2.28(e)), its values for these
metrics are the highest. Note also the peak in shape grapplexity achieved with 12 nodes and 267
cl s’s.

We can draw some conclusions from the measures in Table 8.Zabte 2.3:

e The analysis time is largely dependent on the number of shamghs generated. That is why
5-Matrix x Matri x, with over 14,000 generated graphs, takes the longest tgzanaAddi-
tionally, the number of shape graphs is directly dependpohuhe number of analyzed statements.
More iterations in the analysis provoke more shape graphegister heap states at the different sym-
bolic iterations during the analysis. A deep loop nest ltke 4-loop nest found fob- Mat ri x x
Mat ri x can make the number of shape graphs skyrocket very easiyta®s a lot of symbolic
iterations to find a fixed point. Note ho#+ Mat ri x x Vect or, with a similar algorithm and sim-
ilar data structures but a 3-loop nest, produces below Dfithe shape graphs with about 1/3rd of
the analyzed statements in a much shorter time.

e More complex data structures, create shape graphs with nooles and morel s’s, as can be seen
for 6- EnBd. Shape graph complexity, which is directly related to theplexity of the abstracted
data structure, also affects the analysis time. For examyhiide there is not much difference between
the number of analyzed statements4eivat ri x x Vect or and6- En8d, with about a thousand
each, the analysis times differ from 3.44 to 18.45 secondss difference is caused by the more
complex structure irb- En8d, with 8.75 nodes and 74.4f] s’s per graph in average, against 5.75
nodes and 30.881 s’s in average ford- Matri x x Vector. In both cases, a similar number
of statements is analyzed by the tool, but the shape graph®-fénB8d are more complex. This
complexity taxes the abstract semantics operations, whlahlonger to complete.

Overall, we believe that the experimental results preseméee provide evidence that the shape analysis
based on the coexistent links set abstraction is precisklsycorrect abstractions, and does so at reasonable
cost. Next, we consider whether the measures obtained mitarsio the worst case predicted by the
complexity study in section 2.8.

2.10.2 Comparison with predictions of the complexity study

Let us recall that the two dominant factors for the analysimglexity are the maximum number of shape
graphs,Ng, and the maximum number ofl s’s per graph,Ncls. In Table 2.4 we display the maximum
values measured against the maximum values predicted lmpthplexity analysis. The maximum number
of graphs,Ng, is calculated according to Eq.2.2 in section 2.8, wherghe number of live pointer variables
is calculated foreachstatement to give a more adjusted value, rather than coimgidiés maximum value
for all statements in the program. The numbecbf&’s is calculated according to Eq.2.9. In this formula,
nli, the maximum number of incoming links to the nodes in thecstme isnli = 1 for all tests, except
6- EnBd with nli = 3. The maximum number of selectors declared for a tygeranges frorn! = 1 for

1- Runni ng exanpl e tonl = 3 for 6- EnBd.

For the larger benchmarké; Matri x x Vector,5-Matrix x Matri x,and6- EnB8d, the mea-
sured value is a negligible percentage of the theoreticaswwase, both in the number of shape graphs for
the whole analysis and the numberadfs’s per graph. Even for the simpler benchmarks Runni ng
exanpl e,2-Binary tree,and3-N-ary tree, the values measured are just a small percentage of
the values predicted.

University of Malaga

52

Chapter 2. Intraprocedural shape analysis

Benchmar k Ng neas. Ng pred. Ng neas./ pred. Ncls neas. Necls pred. Ncls meas. / pred.
1- Runni ng exanpl e 108 409 26.4% 10 120 8.3%
2-Binary tree 331 1,977 16.7% 87 4740 1.8%
3-Nary tree 225 605 37.2% 15 110 13.63%
4-Matrix x Vector 3,398 | >1.0-10° 0.3% 67 4,220 1.6%
5-Matrix x Matrix 14,611 | >4.8-108 < 0.0% 109 9,152 1.2%
6- En8d 2,014 | >7.8-106 < 0.0% 267 | >1.8-10% < 0.0%

Table 2.4: Comparisons of maximum number of graphs and nuofld s’s measured versus predicted by
the complexity study.

These results provide evidence that the analysis behatbdaviless complexity than the theoretical
worst case. Even so, we are aware that we deal with a complbritie that is likely to be too expensive
for medium or large applications. In this regard, we thinkndy be a valuable tool to analyze fragments of
programs. Next, we will look at ways to improve the analyssfgrmance.

2.10.3 Improving the analysis performance

Both the complexity study and the experiments conductedrsefeal that the number of generated graphs
is crucial for the analysis performance. In this regaehd pointer nullificatiorhelps to reduce the number

of shape graphs, as the different possibilities for poiateangements are also reduced. This produces an
improvement in performance over a version of the programldaaes dead pointers assigned. In our tests,
we have manually performed dead pointer nullification as pathe program preprocessing prior to the
analysis. However, more mechanisms to improve the anglgsisermance would be desirable.

Another aspect that should be considered is the separdtiwues in the abstraction due to the effect of
properties. Adding properties produces more nodes to beskgyarate, i.e. not summarized. This increases
the number of nodes in shape graphs, which has a burdenig efi the shape analysis operations. How-
ever, it is sometimes the case that node separation can irescleaner” analyses, where nodes that stand
for clearly different memory locations are not merged. Td¢as lead to a quicker way to the fixed point
and/or fewer graphs per shape graph set.

However, the chief issue is in trying to reduce the numbettatements to analyze. Sometimes, there
are heap statements that are analyzed by the techniqueothat grovoke any change in the data structure,
and therefore their net effect amounts to nothing for thérabson obtained. Such is the case in traversals
that do not modify the data structure. It would be relevanoiar technique to avoid analyzing such parts of
the program, running instead ovepaunedversion of the program.

To measure the impact of these two ideas, namely (i) usingepties for cleaner analysis, and (ii)
pruning to reduce analyzable statements, we have condoutesl experiments over the base benchmarks
4-Matri x x Vector and5-Matrix x Matrix. We have gathered some information for four ver-
sion of eachy(f ul 1), for the program as tested previous{)si t €) , for the base program analyzed with
the site property(pr uned) , for the pruned version of the program; applr uned & si t e) where the
site property is used in the analysis of the pruned versidgheoprogram. The results are shown in Table 2.5.

It should be noted that the use of the site property forah&htri x x Vector and5- Matri x
x Mat ri x benchmarks is not required to accurately capture the stegtcreated and traversed, but it
is considered solely for its impact on performance. Amorgdtailable properties, the site property was
chosen because it provides the greater separation of ndemsthe pruned versions we have manually
discarded for its analysis the statements in the produttatiganot related to the construction of the output
vector/matrix.

Compilation techniques based on shape analysis for pdiatsed programs

2.11. Summary 53

Benchmar k Ti me Space | Code stnts. Anal yzed stnts. Shape graphs
4-Matrix x Vector (full) 3.44 s | 2.8 MB 95 1,071 3, 398
4-Matrix x Vector (site) 2.56 s | 2.8 MB 95 989 2,413
4-Matrix x Vector (pruned) 0.25 s | 1.9 MB 75 531 594
4-Matrix x Vector (pruned & site) 0.28 s | 1.9 MB 75 551 612
5-Matrix x Matrix (full) 47.75 s | 5.9 MB 128 3,682 14, 611
5-Matrix x Matrix (site) 30.58 s | 3.7 MB 128 3, 819 9, 619
5-Matrix x Matrix (pruned) 3.72 s | 3.3 MB 114 1, 300 2,405
5-Matrix x Matrix (pruned & site) 3.97 s | 2.7 MB 114 1, 463 2,299

Table 2.5: Measures for thé&- Matri x x Vector and5-Matri x x Matri x benchmarks in four
versions eachf ul | ,si t e, pruned andpruned & site.

Regarding the use of properties for better performance, bgerve in Table 2.5 a slight improvement
for 4-Matri x x Vector (site) inthe analysis time, the number of analyzed statements land t
number of generated graphs, as a result of achieving the figed slightly faster. Fobs- Matri x X
Matri x (site),thereisimprovement in analysis time, memory consumedyandrated graphs. Here
the fixed point takes slightly longer to achieve with a few emetatements analyzed, but the number of
generated graphs has dropped nearly 5,000 graphs. Thisisaguence of not mixing nodes from different
structures in the deep loop nests, which creates fewer gfraphs in a shape graph set.

Regarding the use of pruning for reducing the number of aadl statements, we see how the pruned
versions of the benchmarks have improved in all measurestbedull version. The graphs obtained as
abstractions for the data structures are the same for betfulhand pruned versions of each benchmark.
Analysis times have improved dramatically as we have cldrigem a 3-loop nest to a single loop in
4-Matri x x Vector (pruned) andfrom a 4-loop nest to a 2-loop nestGnMatri x x Matri x
(pruned). Memory consumption has also decreased, the analyzednstat® to the fixed point have
halved and the number of generated graphs has decreaseu &romes. It is remarkable the impact on
performance measures due to removing just a few lines of fmvdeese benchmarks.

Finally, the combination of both the pruning and use of thie property introduce a slight overhead
over the pruned version, which indicates that the prunirgdiseady achieved a version that is very toler-
able by the technique and adding properties only adds manpleaity with no payback in performance.
Evensob-Matrix x Matrix (pruned & site) improves on memory consumption and number
of generated graphs with regards to the pruned version.

The results in Table 2.5 prove that it is possible to obtajnificant improvement in performance for the
same shape abstraction, specially if pruning of the prodfamssible. We think that an automatic compiler
pass to prune programs in this way would be an interestingesutor future work.

2.11 Summary
In this chapter we have presented the following content:

¢ Inthe first place, we have provided a general outline of opragch to heap analysis abstracting heap
states as shape graphs (section 2.1).

¢ We have described a high-level view of the key concept of istent links sets (section 2.2).

e Then, we entered into a formal description of our shape gedgsttraction, first defining a concrete
heap model, then its matching abstract heap model (sect®n 2

University of Malaga

54 Chapter 2. Intraprocedural shape analysis

e Next, we describe our data-flow equations, and the worklggairdhm that implements them (sec-
tion 2.4).

e The abstract semantics and operations for the analysidsarel@scribed (section 2.5), featuring ex-
amples for common operations carried over dynamic datatsties.

e We also describe our approach for dealing with pointer ariayghape graphs (section 2.6).
e We describe the extendable mechanism of properties foingfireap abstractions (section 2.7).

e A complexity study for the technique is undertaken as walt{ien 2.8). It identifies the leading
parameters for worst-case behavior of the analysis.

e We have identified and described meaningful related worleaphanalysis (section 2.9).

¢ Finally, we have conducted some tests that provide expetahevidence that our technique yields
correct abstractions for a variety of common recursive gitectures featured in some selected bench-
marks (section 2.10). We have also collected informatiooutiperformance, problem size, shape
graph complexity and have extracted conclusions from theselts, including comparison with the
theoretical worst case for complexity. We conclude by hiopton how to improve performance by
pruning certain parts in the analyzed programs that are irrelewaobtain the shape abstractions.

At this point, we feel encouraged to continue our work to mteviull interprocedural support, with aims
to complete a precise shape analysis tool suitable for dimee detection in pointer-based applications.

Compilation techniques based on shape analysis for pdiatsed programs

Interprocedural shape
analysis

3.1 Introduction

Support for interprocedural programs in shape analysisilisaschallenge, especially in the presence of
recursive functions. Yet traversing recursive data stmast with recursive algorithms is very common, as
some structures, such as trees, are expressed in a way tked ihaatural to traverse them in a recursive
fashion. The main issue that we face when analyzing re@ufsinctions is the problem of tracking the
state of pointer parameters in context changes. For nangige context changes, it is enough to know the
relationship between actual and formal pointer paramebersuch a case, the context change can be easily
translated to the shape graph domain.

However, when dealing with pointer formal parameters inurgge functions, it is not so simple: the
same pointer variable must be tracked along a sequencedfiriitd recursive calls. The name of the pointer
is the same, but depending on the call, it can point to diffel@cations. Those locations must be tracked so
that we know where the pointer was pointing to when returfiiom a recursive call.

Therefore, to keep track of a pointer formal parameter wel neehange itsiaming schemenot only
we need to know its name, but also some information thatagiiato the particular call where it belongs to.
The same can be said for pointers defined in the recursivéidnnioody, thelocal pointers Such pointers
are redefined for every call, i.e., their scope belongs amby ¢ertain recursive function call, yet they must
be correctly assigned upon return of the recursive callsahsue.

At run time, this is done by keeping different registers ia Activation Record StackARS). Among
other information, the ARS keeps the state of pointer agitaeameters and local pointers before a call, so
that when returning from the call, they can be properly rigagsl. Keep in mind that a compile-time pointer
analysis technique cannot know the number of times a regufanction will be called, yet a fixed point
must be reached for the analysis, even in the presence deppiarameters and local pointers. This makes
it tricky to reach a fixed point shape graph abstraction fourgive functions and, at the same time, keep a
precise abstraction.

To help us explain the concepts in this chapter, let us inttechow an example program that creates
and reverses a singly-linked list. Actually, this creatioml reversal provide the same result than the running

55

56 Chapter 3. Interprocedural shape analysis

example in chapter 2. For this chapter though, we will foaushe recursive functionever se() and the
extensions introduced for its analysis within our framewatig. 3.1 shows the code considered here.

struct node *reverse(struct node *x) {
struct node xy, *xz;

/1 Declare recursive type "node" 4: Z=X->nxt ;
struct node{ i f(z!=NULL){
i nt data; 5: #pragma SAP. force(z! =NULL)
struct node *nxt; 6: y=reverse(z);
} 7: #pragma SAP. f or ce(x! =NULL)
int main(int argc, char argv[]){ 8: X->nxt =NULL;
struct node =list,*r; 9: Z- >nxt =x;
1: list=create.list(SIZE); tel se{
2: r=reverse(list); 10: #pragm SAP. f or ce(z==NULL)
3: return 1, 11: y=X;
} }
12: return vy,
}

Figure 3.1: Running example for presentation of interpdocal analysis.

Fig. 3.2 exemplifies the different kinds of context chandest tve may encounter, and how the ARS
is used to keep record of pointer state so they can be reabwdten returning from the calls. In (a) we
show a non-recursive context change in the concrete domaiinvoker ever se() from nai n() , with
a singly-linked list of four elements. A new register foever se() is added on top of the ARS for the
context change. Note how each register in the ARS keeps fihieriation about the locations that the local
pointers are pointing to. In (b), there is a recursive cantéange from the first call toever se() to
the second call. Unlike the first call, which was invoked frami n() , this is a recursive call, as it is
called fromr ever se() . A new register for ever se() is added to the ARS. In (c), we return from the
second call to ever se() to the first call, after having reversed memory locatib@s!| 3 andl 4. As the
uppermost register of the ARS is removed, the record belawsésl to reestablish local pointersand z
(y is assigned at the call sitef . 6: y=r ever se(z)). Finally, in Fig. 3.2 (d), the return to theai n()
function is performed, with the list completely reversedd dhe last record for ever se() is removed
from the ARS.

For simplicity in formal-actual parameter matching, we dx allow pointer formal parameters to be
modified within the function body. This involves no loss ohgeality as it is always possible to comply
with this condition with additional pointer variables. Alswve consider pointers passed by-value. Passing a
reference to a pointer (pass by-reference) actually imgbs/double indirection and shall not be considered
here.

3.2 Extensions for interprocedural analysis

The way we have constructed interprocedural support wibimshape analysis framework is by extending
on the base, intraprocedural technique, as described ptetha. This allows us to take advantage of the
already existing abstraction, abstract semantics opasatind data-flow equations.

To support interprocedural programs, including recur$ivections, we extend on four different axes:
() new statements to include function calls and returrssifi#) new elements within the graph to capture

Compilation techniques based on shape analysis for pdiatsed programs

3.2. Extensions for interprocedural analysis 57

st.2: r=reverse(list):; |::> struct node *reverse(struct node *x)
Tist—{ 11 {12 }of 13 o 14 x—f 11 o 12 P 13 o 14

reverse ()

list—11 x—11

ARS main ()
list—>11

ARS

st.6: y=reverse(z); I::> struct node *reverse(struct node *x)

Z X
~ \
x —{ 1 J-{ 12 J~{ 13 J+{ 12 J ({2 {5 -{u

reverse () reverse ()
x—»11 x—»12

(b) z—>12 reverse ()
main () x—11
list—11 72— 12

= Lol

is
ARS

st.12: return y; c———"> st.6: y=reverse(z);

X z y X z Yy
NN\ \ NN\ N\
[11@12)-—[13)-—[14] Ill}\—/—[lzj-—[mj-—[ul
(c) reverse () re:ﬁsfl()
e =
y—14 y—14
re:iSfl() lirg{a:ﬂv(il
z— 12 ARS
main()
list—11
ARS
st.12: return y; I:{> st.2: r=reverse(list);
x\ z\ v liS\t‘ r \
N\
11 e 12 f{ 13 o 14] 11 Je—{ 12 e 13 e 14]
(d) reVe_J’.;Sfl() —ps
X .
= il
L, -
ARS

Figure 3.2: The use of the Activation Record Stack (ARS) émursive function analysis.

information from theActivation Record StacfARS), (iii) context change rules, that determine graphgra
formation when entering to or exiting from a function, ang éxtended data-flow equations and associated
worklist algorithm.

3.2.1 New statements

We extend the type of analyzable statements to includedhé () andr et ur n() of these functions (see
Fig. 3.3). Accordingly, the definition of a prografis now extended to include the set of functions that

University of Malaga

58 Chapter 3. Interprocedural shape analysis

use pointers to recursive data structures. Such functimsantained ifFUN. Function pointers are not
supported. We designakN: ,n, to the set of functions that are directly called in the bodfuoictionf un,
andSTMTs y, to the statements in the bodyfofin, including function calls.

An important detail is that we distinguish between non-rsise and recursive call sites. The set of
call statements defined in non-recursive call sites is d&le | nrec, Whereas the set of call statements
defined in recursive call sites is call&d, | rec. Return statements can, therefore, return to recursive or
non-recursive call sites. The set of return statements eléfiar the functions in the program is called

Sreturn-

programs: prog € P, P=<FUN, STMT, PTR, TYPE, SEL>

functions: f un € FUN, FUN=<FUN yn, STMT¢ yn, PTR, TYPE, SEL>

statements: s € STMI, s::= x=NULL| x=mal | oc() | free(x)|x=y
| x- >sel =NULL| x- >sel =y| x=y- >sel
| x=cal | ()| return(y)

Figure 3.3:New statements for interprocedural support.

It is straightforward to see that, for the example in Fig. ,3.ve have the follow-
ing sets available: FUN={create.list,reverse, main}, FUN everse={r ever se},
FUNmin={create. ist,reverse}, STMl;everse={St.4-st. 12}, STMI g n={st. 1-st. 3},
where only the statements that have abstract semanticatimper associated to them are numbered. The
information provided by the statements related to the @nogflow, such as loops, branches, and function
headers, is considered in the data-flow equations.

The introduction of functions in our technique gives risaéov instrumentation mapping functions that
account for (i) the relationship of pointers to the functiomhere they are declared, (ii) actual and formal
pointer parameters correspondence, and (iii) the matatfitize pointer returned by a return statement and
the one assigned at a call site.

Local Pointers Map: LPM: FUN — PTR
Actual-Formal Ptrs Map: AFPM: (Scal| nrec U Scall rec) XFUN — PTRXxPTR
Ret to Assigned Ptr Map: RAPM: (Scall nrec U Scall rec) XFUN — (PTRiynxPTR) U 0

e LPM is a multivalued function that maps for a functibun € FUN, the set of local pointers
associated with it, i.e. the formal and local pointer vaeatteclared within the body of the function:

VfuneFUN, LPM(fun)={l ptr € PTR, beingl pt r a pointer formal parameter or local pointer
variable defined fof un}.

o AFPMis amultivalued partial function that maps for a call stadens (beings a non-recursive or
arecursive call, i.es € Sca| | nrec U Scal | rec) and the functiof un € FUNcalled bys, the set
of matching pointer actuabft r) and formal { pt r) parameter pairs:

VS € (Sca| | _.nrec U Sca| | _rec), belngf un FUNC&”Ed bys, AfPM(S, f Un) :{<apt r, f pt r >,
whereaptr € PTRis an actual parameter in statementandf ptr € PTR;,, is a formal pa-
rameter inf un}.

For example,AFPM(st. 6, reverse) =<z, x>. Sometimes, we just need the set of actual

Compilation techniques based on shape analysis for pdiatsed programs

3.2. Extensions for interprocedural analysis 59

pointer parametersapt r) for a call statemens. We will nameAPTR; to that set. It can easily
be deduced frordFPM(s, fun).

e RAPM is a partial map that computes, for a call statense(iieings a non-recursive or a recursive
call, i.e.s € Scal| nrec U Scal| rec) and the functiof un € FUNcalled bys, the corresponding
pointer returned at the exit pointét pt r) vs. the pointer assigned at the call sas§pt r):

V' s € (Scall nrec U Scallrec) being fun € FUN called by s, RAPM(s, fun)=
<retptr,assptr>, whereretptr € PTR, is the pointer returned at the exit point fofin
andassptr € PTRis the pointer assigned at statementin the case that the function does not
return a pointer, then this function giv@sFor our exampleRAPM(st. 2, rever se) =<y, r >,

3.2.2 Recursive Flow Links

We have stated the problem of tracking the state of formaltpoparameters and local pointers in a sequence
of recursive calls. A proper naming scheme is required fes¢hpointers in the analysis. In our approach,
we abstract the information of the ARS by using a new kindrik iver the base shape graph representation,
that we callrecursive flow links Recursive flow links do not represent actual links existmthe program
data structure but rathérace the arrangement of pointer formal parameters and localtg@airalong the
recursive, interprocedural control flow. This is done witlotkinds of recursive flow linksrecursive flow
pointer links(r f pl) andrecursive flow selector linkg f sl).

reverse ()
x—14

reverse =
x_'l3() plcl=<x,14>

1 X
(a) reverse () e plcl slcl=<11l,nxt, 12>
x—12 slc2=<12,nxt, 13>

re;lfffl() [il]ﬁ'[i]LCZ'[1L]LC\?’[14]s—l|C4 slc3=<13,nxt, 14>

main() slc4=<14,nxt,NULL>
list—11

ARS

Y

i mct rfslc2 rfslc3 X~rfptr rfsl 4X Pt

i rfslcl LY P N SN . grfplcl QS © plcl SlCl:<ll'nXt'12>

S— AN - : slca | slc2=<12,nxt, 13>
(b) [11]SlCl[12]slc2l 13 — 14]_| slc3=<13,nxt, 14>
AU . slc4=<14,nxt,NULL>
i rfplcl=<xrtptr, 13>
“M rfslcl=<ll,Xrfscl, ®> rfslc3=<13,Xrfsel, 12>
i rfslc2=<12,xrfsel, 11> rfslc4=<14,Xrfsel, ®> |

rfpll=<xXrfptr,n2>) S " pll=<x,n3>
— r r
rfsll=<nl, Xrfsel,®> rfe11 LES12 rfs13 érfppll rfsld |p11 sll=<nl,nxt,nl>
(c) rfsl2=<nl, xrfsel, nl> SN s12=<nl,nxt,n2>

rfsl3=<n2, Xrfsel,nNl> slc=<n2,nxt,n3>

rfsl4=<n3, Xrfsel, ®> sl4=<n3, nxt,NULL>

clsly=<sll;,rfsl3;,s12,,rfsl2,> clsly=<rfpll,sl2i,sl30,rfsl3c>
cls2,,=<rfsl2i,rfsll,, sll,> clslys=<pll,sl3i,sldey, rfsldy>

Figure 3.4: A 4-element list after the 4th invocatiorrtever se() : (a) with ARS, (b) with recursive flow
links, and (c) its shape graph.

Fig. 3.4(a) shows the concrete domain version of our sitigked list at the fourth invocation of
reverse(). The ARS keeps information about the state of pointers inipus calls. In (b) we dis-

University of Malaga

60 Chapter 3. Interprocedural shape analysis

play how the same list can be represented with the aidaifrsive flow links in the concrete domaiwhich
are shown in dashed edges;t,:r marks the location that was pointing to in the previous call, i.e., at
the third invocation of everse() . Xr¢ptr iS arecursive flow pointer It is not defined in the original
program, but has been introduced by our analysis to trackahations of pointer formal parameteralong
the interprocedural control flow: f pl c1=<X,¢ptr, | 3> is arecursive flow pointer link in the concrete
domain(r f pl ¢), which is defined in the same way as a regydamter link in the concrete domaibput
based on @&ecursive flow pointerather than a regular pointer.

We also need to keep track of the location of the formal patamxein the invocations of ever se()
prior to the previous one, i.e., trackigbeyond the immediately previous call. For that, we sirsive
flow selector links in the concrete domaifsl ¢c3, rfsl c2 andrfsl cl. They are, not surprisingly,
based onecursive flow selectonsather than regular selectors. For examples| c3=<I 3, X tsel, | 2>,
based on recursive flow selectqrs se| , indicates that two calls back in the ARSwas pointing td 2.

The location denoted by is representing thBIULL location for the recursive flow path. Following the
trace through a recursive flow selector link wiihas destination would not correspond to any activation
record in the succession of recursive calls, and therefawddwnot render any realistic memory configura-
tion. For exampler f sl c1=<I 1, X;tsel, ®> indicates thak is not defined beyond three previous calls to
reverse().

In Fig. 3.4(c) we have abstracted the memory location fropinflo the abstract domain. Here, we must
provide a bound representation. We build now the recursoxe iinformation intorecursive flow pointer
links (r f pl) andrecursive flow selector link§ f sl). Memory locationd 1 andl 2 are now abstracted as
nodenl, and this is reflected inf sl 2=<n1, X;¢sel, N1>. Coexistent links sets include now pl 's and
r f sl 's with attributes as a natural addition.

To sum up, we have introduced recursive flow pointerp:r and recursive flow selectot, ¢ se to
track the locationx has pointed to in previous calls of the recursive functi@ver se() . They are used
to build recursive flow pointer linkgr f pl) andrecursive flow selector link§ f sl). For the time being,
let us assume that we only need this new kind of links for fonpa@ametex. More information about this
aspect can be found in section 3.2.3.5.

The main advantage of this approach is that it allows us teerail the existing operations that deal with
graphs, becausecursive flow linksare treated just ggointer linksor selector links with regards to node
summarization, materialization, graph joining, etc.

Let us see how these new elements are considered in oureatatgn. Along with the existing set
of pointers,PTR, we now define a new set of recursive flow pointddBBPTR. BesidesSEL for selectors,
we include the seRFSEL for recursive flow selectors. Fig. 3.5 presents the exteseesifor pointers and
selectors in interprocedural analysis. The type objectsaie as they were presented in chapter 2.

pointer variables: x € PTR, X;tptr € RFPTR
type objects: t e TYPE
selectors fields: sel € SEL, sel risel € RFSEL

Figure 3.5:Extended sets for pointers and selectors in interprocéduosdysis.

We namePTR; y,, to the set of pointer formal parameteasd local pointer variables associated with
functionf un. GLBis the set of global pointer&. B C PTR. For the example in Fig. 3. BTRwi n={l i st, r },
PTR everse={X, Y, 2}, andGLB=0).

RFPTR: un, and RFSEL¢, contain the set of recursive flow pointers and recursive flelgctors re-
spectively, for functionf un. We only need to use recursive flow links to track those painteat can-

Compilation techniques based on shape analysis for pdiatsed programs

3.2. Extensions for interprocedural analysis 61

not be recovered by thgointer matchingnduced by the context changes. In the worst case, we need a
rfptr-rfsel pair for every pointer formal parameter or local pointeriafle in a recursive function.
However, it is usually the case that only one pointer needsettraced. For the example discussed here,
RFPTR: everse={Xrfptr } @aNdRFSELever se={Xrtsel }-

The following mapping functions are introduced to identi§ations between a recursive flow pointer
and (i) the pointer it tracks along the interprocedural manfiow, and (i) its associated recursive flow
selector.

Recursive Flow Pointer to Pointer Map: RFPPM: RFPTR: yn — PTR un
Recursive Flow Pointer to recursive flow Selector MaR FPSM: RFPTR; yn — RFSEL¢ yn

e RFPPM maps a recursive flow pointer in functidrun to the pointer it tracks recursively in the
same function.

Vrfptr € RFPTRiyn, 3 ptr € PTRryn | rfptr is the recursive flow pointer that tracks the
location ofpt r in the previous recursive call foun.

For exampleRFPP M everse(Xrfptr) =X.

e RFPSM maps a recursive flow pointer in functiérun to its matching recursive flow selector.

Vrfptr € RFPTR yn, 3rfsel € RFSELsyn | rfsel is the recursive flow selector that tracks
pointerpt r =RFPPM;un(rf ptr) beyond the previous recursive callftan.

For exampleRFPS M everse(Xrfptr) =Xrfsel -

3.2.2.1 Recursive flow links in the concrete domain

The process of instrumenting the information from the ARS the concrete domain makes use of two new
partial functions R FPM* andRFSME€.

Recursive Flow Pointer Map (in the concrete domain)R FP M. RFPTRyn, — L
Recursive Flow Selector Map (in the concrete domainR FSM¢: LxRFSEL ;, — (L U NULL)

e RFPM¢° maps a recursive flow pointerf pt r € RFPTR: ,, to the locationl pointed to by the
tracked pointept r in the immediately previous pending call (previous context

V rfptr € RFPTRiyn, 3 ptr € PTRyn st. RFPPM(rfptr)=ptr A 3| € L |
RFPME(rfptr)=l APM(ptr) =l inthe immediately previous pending call.

The P M° mapping was defined in chapter 2. As a reminder, it maps aguouatiablept r to the

locationl it points to. We use the tuplef pl c=<r f pt r, | >, which we nameecursive flow pointer
link in the concrete domajro represent this binary relation. The set of all recurflive pointer links

in the concrete domain is namefPLc.

o RFSM¢° models the path (between locatidn$ andl 2) tracked for a formal or local pointest r
€ PTRy yn through two consecutive previous pending calls. Let usrasstinat we nam@c; to a
pending call angbc; - 1 to the immediately previous pending call:

University of Malaga

62 Chapter 3. Interprocedural shape analysis

V 12 € L st PM-(ptr)=l2 in a previous pending callpcy, 3 rfptr s.t.
RFPPM(rfptr)=ptr A311e (LUNULL)s.t. PM(x) =l 1inthe immediately previous
pending calpci. 1| RFSME(12,rfsel)=l LARFPSM(rfptr)=rfsel.

We use a tuple f sl c=<I 2, rfsel , | 1>, which we nameecursive flow selector link in the con-
crete domainto represent this relation. The set of all recursive floveat®ir links in the concrete
domain is calledrFSLc.

The domain for a graph in our concrete heap is theMetC P(L) xP(PLc U RFPLc)xP(SLc U
RFSLc). Each memory configuration of our concrete domairt € MC, is now represented as a tuple
nc' =<L', PL¢! U RFPLc', SLc U RFSLc!>with L' c L, PLc! c PLc,SLc! C SLc and the new
setsRFPLc' ¢ RFPLc andRFSLc! c RFSLc. Fig. 3.4(b) shows the memory configuration for (a) with
the information of the ARS reflected as the appropriate seeaiflow links.

3.2.2.2 Recursive flow links in the abstract domain

Similarly, to model the information provided by the ARS irr@lstract domain, we include two new partial
functions, RFPM*» and RFSM* which model, on each function call, a trace of the nodes wkandh
formal and local pointer was pointing to in the previous pegaalls in a stack of recursive calls. They are
defined as follows:

Recursive Flow Pointer Map (in the abstract domain)R FPM*: RFPTR yn — N
Recursive Flow Selector Map (in the abstract domaifR FSM*®: NxRFSEL¢ yn — N

o RFPM* maps a recursive flow pointerff pt r € RFPTRs y, to the noden pointed to by the tracked
pointerpt r in the immediately previous pending call (previous corjtext

vV rfptr € RFPTRiyn, 3 ptr € PTRyy st RFPPM(rfptr)=ptr A 3 n € N|
RFPM(rfptr)=nAPM*ptr)=nintheimmediately previous pending call.

We use the tuple f pl =<r f pt r, n>, which we nameecursive flow pointer linkto represent this
binary relation. The set of all recursive flow pointer linksnamedRFPL.

o RFSM® models the path (between nodets andn?2) tracked for a formal or local pointgyt r €
PTR: un through two or more consecutive previous pending calls usetssume that we narpe; to
a pending call angc; . ; to the immediately previous pending call:

VY n2 € (NNNULL) s.t. PM?(ptr)=n2 in a previous pending calpc;, 3 rfptr s.t.
RFPPM(rfptr)=ptr A 3nl e Ns.t. PM* ptr)=nlin the immediately previous pend-
ingcallpcy.1 | RFSM?*n2,rfsel)=n1 ANRFPSM(rfptr)=rfsel.

We use a tuple f sl =<n2, r f sel , n1>, which we nameaecursive flow selector linko represent
this relation. The set of all recursive flow selector linksaled RFSL.

Coexistent links sets are now naturally expanded to inctbdenew elements. First, we group pointer
links and recursive flow pointer link&L U RFPL. Then, selector links are grouped with recursive flow
selector links,SL U RFSL, to augment the domain of the selector links with attribut8k,;: =(SL U
RFSL) xATTSL. The new domain for coexistent links setsCisM: N — P(PL U RFPL)xP(SLat ().
Therefore, a coexistent links sgkt s, for noden is redefined as:

Compilation techniques based on shape analysis for pdiatsed programs

3.2. Extensions for interprocedural analysis 63

cl sp,={PLy, SLn}

where:
PL, = {pl € PLs.t.pl =<x,n>} U {rfpl € RFPLs.t.rfpl=<X;fptr, N>}
SL, = {slatt € SLatt S.t.sl art=<<nl, sel,n2> attsl>v

Sl a1 =<<nl, Xrfsel, N2>, at t sl >, being 1=n v n2=n)}

Obviously, the domain for an abstract graph is theS§&getC P(N) xP(CLS) , and each element of this
domain, a shape gragy' € SG, is a tuplesg' =<N , CLS' >, as previously defined.

Fig. 3.4(c) shows the abstract domain representation oflB)should note that in the case th&=n1
in ther f sl , then more than two consecutive pending calls are repreddayt this relation: in this case, all
the pending calls for whic®® M“(x) =n1=n2 are represented by just one recursive flow selector link. For
exampler f sl 2=<n1, X;¢sel, N1> in Fig. 3.4(c) stands for the tracing of pointeralongtwo previous
recursive calls, as indicated by s1,1=<..., rf sl 2¢,>andcl s2,;=<rfsl 2;,rfsl 1,, ...>.

3.2.3 Context change rules

The analysis at function calls must account for the assigrokactual to formal parameters and for the
change of analysis domain between the caller and the cdilaeit, shape graphs are transformed into the
appropriate context while flowing in and out of functions bg tontext change rulesxamely thecall-to-
start (CTS) rule, and theeturn-to-call (RTC) rule.

The call-to-start rule determines how the recursive flokdim the shape graphs are transformed from
a function call to the context inside the function. On theeothand, the return-to-call rule transforms the
heap abstraction returned by a function to the appropraéest at the calling site. Each of these rules has
a recursive CTS; ¢c andRTC; ¢¢) and non-recursiveQT Sprec aNdRTGCy, c) Version. Next, we will cover
each of these rules showing their algorithms and illustgathem with examples.

3.2.3.1 Non-recursive call-to-start rule

The non-recursive call-to-start rul€TS, ¢c) determines how a shape graph is changed when entering a
new function context. Such a case occurs wherer se() is called from tharai n() function. The list
passed as argument is then transformed to the callee comtestcase is illustrated by Fig. 3.6.

st.2: r=reverse(list); |::> struct node *reverse(struct node *x)

sg* sg®

List , Setwmnens T g, s
n2= i o S, \ n2= 0 or o

pll sl1 S13 cls2y,=<s12;,s513c> Xpllsl @ 13 c1s2,,=<s12;, 5130, rfsl2o>
@ cls3,,=<s12;,512,> cls3,,=<s812;,812,,rfs12,>

cls4dpp=<sll;,sl3o> clsdpp=<sll;,sl3,,rfsl2,>

[sgB = CTS,....(sq*, {x,y,2},<list,x>) j

Figure 3.6: Example of shape graph transformation bydh8,, ¢c rule.

The algorithm that explains this context change is shownign &7. First, pointer formal parameters
are assigned to the pointer actual parameters, which amenthiified as they fall out of scope (unless they
are global pointer variables). In this example (Fig. 3.€}ual parameteri st is exchanged for pointer
formal parametex.

University of Malaga

64 Chapter 3. Interprocedural shape analysis

CTSnrec()
Input: sgt=<N!, CLS'>, PTR yn, AFPM(s, f un)
A shape graph, formal and local ptrs farn, and set of pairsapt r, f pt r > of call sites
Output: RSSG¢
A reduced set of shape graphs

RSSG=sg?

forall x € APTRg # APTR; is the set of actual pointers in the call strat.
Find the paiaptr, f ptr>e AFPM(s, fun) s.t.x=aptr
RSSG*=| [y crese XY(sQ’ , fptr, aptr) #fptr=aptr

If (aptr ¢ GLB),
RSSG'=| [fog crese XNULL(sQ’ ", aptr) #aptr=NULL
else
RSSG'=RSSG
RSSG=RSSG*
endfor
If(3s’ € STMuyns.t.S" € Scall rec) # The case whehun will include a recursive call site
forallr f sel € RFSEL¢yn,
forallsg' =<N', CLS > € RSS@,
forallnj e N, # Initialize X, ¢ se; for all nodes in all graphs
Creates| ' 5i1=<<nj,rfsel, e> attsl’ ={o}>
forall cl spj={PLpj, SLpj } € CLSy (beingCLS,; C CLS')
SLn] :SLnj usl’ att
endfor
endfor
endfor
endfor
RSSG‘=RSSG
return@RSSG)
end

Figure 3.7: TheCTSprec() function.

Then, if the callee is a recursive function, a recursive fleleaor link initialization phase takes place:
we create a f sl from every node te, which is added with the output attribute)(to everycl s in the
node, i.e.sl ' gt =<<nj,rfsel, &> attsl’ ={o}>is added for evergl sp; € CLS;;. This is done
for every recursive flow selector containedRRSEL . For our exampleRFSEL eyer se={Xrsel }, and
rfsl 1andrfsl 2 are added to thel s’s for n1 andn2 respectively. The shape graph obtainged®, is
now ready to be analyzed within the contexr@&ver se() .

3.2.3.2 Recursive call-to-start rule

The recursive version of the call-to-start rulgTS;) determines the context change in a graph that en-
counters a recursive function call,c Sca | rec. It works differently from the non-recursive version as the
change of context does not involve a change in pointer nanmes thange in the state of the same pointers
within a new recursive context. Fig. 3.8 shows such a cortkahge when callingever se() for the
third time in our running example. The algorithm that ddsesithe changes in the shape graph is found in
Fig. 3.9

Compilation techniques based on shape analysis for pdiatsed programs

3.2. Extensions for interprocedural analysis 65

st.6: y=reverse(z); I:> struct node *reverse (struct node *x)

Xegper X z sgh

rfslll i
GG (08D

clsl, ;=<rfpll,sll,, rfslls>

clslpy=<pll,sll;,sl2,,rfsl2,> clsly=<rfsl2;,sll,, rfslls>
clslpy=<pl2,sl2;,sl3,, rfsl3y> clslpp=<rfpll,sll;,sl2,,rfsl2,>
clslps=<s13;,sldo, rfsldo> clsly3=<pll,sl2;,s13q,rfs13s>

clslpg=<s13;i,sl40,rfsldo>

(Sg® = CTSrec (597 {X'Y'Z}'<Z'X>)j

Figure 3.8: Example of graph transformation by @S, ¢ rule.

CTSI’ EC()
Input: sgt=<N!, CLS'>, PTR; yn, AFPM(s, fun)
A shape graph, formal and local ptrs farn and set of pairsapt r, f pt r > of call sites
Output: RSSG*
A reduced set of shape graphs

RSSG=sg?

forallr f ptr € RFPTR
Findptr andrfsel st RFPPM(rfptr)=ptr andRFPSM(rfptr)=rfsel
RSSG*=| [y cresrXSel Y(sg' , ptr,rfsel, riptr) #ptr->rfsel=rfptr

RSSG'=| [log crese XY(sQ' ", rfptr, ptr) #riptr=ptr
RSSG=| [fsg crsser XNULL(SQ" " ", ptr) #pt r=NULL
endfor

forall x € APTRg
Find the pai<aptr, f ptr>¢c AFPM(s, fun) s.t.x=aptr
RSSG*=| [y crese XY(SQ’ , fptr, aptr) #fptr=aptr
If (aptr ¢ GLB),
RSSG'=| [og» crese XNULL(Sg’ ", aptr) #aptr=NULL
else
RSSG'=RSSG
RSSG=RSSG'
endfor
RSSG‘=RSSE
return@SSa)
end

Figure 3.9: TheCTS, ¢c() function.

First, for every recursive flow pointerd pt r € RFPTR;y, considered for the function, we assign it to
the node pointed to by the tracked poinpér , prior to the change of context. Also the associated regirsi
flow selector f sel is used to leave atrace the the previous node fqt r . When the trace is established,
the tracked pointept r can be nullified. Its value for the new context will be set ie tiext phase of this
algorithm.

University of Malaga

66 Chapter 3. Interprocedural shape analysis

In this example, only is traced along the interprocedural control flow.slg® from Fig. 3.8,r f sl 2
is set betweem2 andnl, to keep track of the location whexewas pointing to two calls back in the ARS.
Then,X, ¢ ptr is made to point tm2 in sg&. This step is completed by nullifying. Next in the algorithm,
actual and formal parameters are matched. Pointer formaimerx is assigned tm3 in sg®, which was
pointed to by actual parameterin sg”. Sincez is not a global pointer, it is nullified for the new context.

3.2.3.3 Recursive return-to-call

The recursive return-to-call rul&k{ G ¢¢) describes the context change when returning to a recucsive
Fig. 3.10 shows such a context change when returning frorthtte call tor ever se() . The algorithm
that describes these changes is depicted in Fig. 3.11.

st.12: return y; I::> st.6: y=reverse(z):;

clsl,;=<rfpll,sll,, rfslly>
clslpp=<pll,sll;,sl2,, rfsl2,>
clsl,3=<pl2,s12;,s13;,rfsl3,>
clslyy=<pl3,sl3,,rfsld,>

clsly=<rfsl2;,sll,, rfslly>
clslpp=<rfpll,sll;,sl2,,rfsl2,>
clsly3=<pll,sl2;,s13;,rfsl3,>
clslpy=<pl2,pl3,sl3,,rfsld,>

C sg® = RTCrec(sgA’{XIYIZ}I<ZIX>’<yly>)j

Figure 3.10: Example of graph transformation by R¥&C; ¢ rule.

First, the pointer assigned at the recursive call staterasrstpt r , is made to point to the node pointed
to by the pointer returned by the function return statemeat,pt r. In the example we showcase here,
this involves no change assspt r =r et pt r =y. Then, actual parameters from the previous context are
recovered by matching with formal parameters with #&PAM mapping: z now points ton3 in sg®
(Fig. 3.10), the node that its matching formal paramgtevas pointing to insg”. Remember that we do
not allow pointer formal parameters to be modified (see ae@il).

Finally, the previous state of recursive flow links is restbix in sg® points ton2, which was pointed to
by X fptr in sg” and, from the new state &f recursive flow pointex, ¢ ptr follows through thex- >X; ¢ se
path ton1. The recursive flow selector linkf sl 2 from sg” is nullified now, once its path has been
followed.

3.2.3.4 Non-recursive return-to-call

The non-recursive version of the return-to-call ruRE G, ¢c) is the last context change rule. It performs
the appropriate context change when returning to a nornrsizeucall sites € Sca) | nrec. Let us consider
now thesg” shape graph in Fig. 3.12. It is one of thenction summariesbtained in the analysis of
reverse(). Itis achieved at the fixed point for the analysis of the fioxct On top of that, it is a
shape graph that is eligible for the non-recursive retusnit @epresents a heap state for the first call to
reverse(). This can be easily deduced by the fact that recursive flowtgiox, ¢t is not assigned.
This means that could not have been assigned at a previous recursive calla fedl reference of all the
summary shape graphs resulting from the analysiseofer se() , please refer to Appendix B.

Compilation techniques based on shape analysis for pdiatsed programs

3.2. Extensions for interprocedural analysis 67

RTGrec()
Input: sgt=<N!, CLS'>, PTR ypn, AFPM(s, fun), RAPM(s, fun)
A shape graph, formal and local ptrs faun, set of pairs<apt r, f pt r > of call sites,
and the corresponding et prt, asspt r > pair
Output: RSSG¢
A reduced set of shape graphs

RSSG'=XY(sg!, assptr,retptr) #assptr=retptr
RSSG=RSSG
forall x € APTR # APTR; is the set of actual pointers in the call strat.

Find the paiaptr, f ptr>¢c AFPM(s, fun) s.t.x=aptr
RSSG*=| [crese XY(SQ’ , aptr, fptr) #aptr=fptr
RSSG =RSSG

endfor

forallr f ptr € RFPTR yn
Findptr andrfsel st RFPPM(rfptr)=ptr andRFPSM(rfptr)=rfsel
RSSG4=|_|5§§,G, crese XY(sg’ ", ptr,rfptr) #ptr=rfptr

RSSGSZL]\FEZ,G, s crssa XYSel (sg’ '’ rfptr, ptr,rfsel) #riptr=ptr->rfsel

RSSG€=|_|5§§,G,,,€RSS@XSeI NULL(sg """, ptr,rfsel) #ptr->rfsel =NULL

RSSG=RSSG?
endfor
RSSG'=RSSG
return@SSE)

end

Figure 3.11: ThérTC ¢c() function.

st.12: return y; I:> st.2: r=reverse(list);

sg?

sg®

clslpyy=<pll,sl2i,sll,, rfslle> 3
list r clsly=<pll,sl2i,slly>

clslpy=<pl2,s13;,s512,,rfs12,>

cls2,,=<pl2, 5164, 5120, rfs12o> pll P12 clsiy,=<sldi, s12o>

clsl,3=<sl5;j,s130,rfsl3s> cls2n2=<sl4di,sl3o0>

cls2n3=<s515i,5140,rfsl3c> o @ @ cls3n2=<s13;,513,>
s1l 12 sl4

cls3p3=<s14;,5130,rfsl3,> cls4,y=<s513;,512,>
clsdp3=<sldj,sldo, rfsl3s> sl3 clslp3=<pl2,sld,>

clslpy=<pl3,s15,,rfsld>
cls2y4=<pl3,sl60,rfsldo>

C sg® = RTcnIec(sgA,{x,y,z},<list,x>,<y,r>))

Figure 3.12: Example of graph transformation by R¥&C,, ¢ rule.

Fig. 3.13 presents the algorithm that explains the stepdvied for RTG,;ec. First, the shape graph
is checked for validity. If the shape graph contains afiyt r for the function which is still assigned,
it represents heap states beyond the non-recursive cdietoetursive function, and does not represent
heap states that must exit the function. On the other haral| iff pt r s in the function are nullified,
then we can proceed with the context change to exit the famctin that case, the next step is to alias the
assigned pointerasspt r, with the pointer returned by the function return statemeset pt r. In our
exampler is made to point tm3 in sg® (Fig. 3.12), the node that the returned pointewvas pointing to
in sg”. Then, theAFP.M mapping is used to determine the matching of actual and foparameters.

University of Malaga

68 Chapter 3. Interprocedural shape analysis

RTcnrec()
Input: sg*=<N!, CLS'>, PTR; yn, AFPM(s, fun), RAPM(s, f un)
A shape graph, formal and local ptrs faun, set of pairs<apt r, f pt r > of call sites,
and the corresponding et prt, asspt r > pair
Output: RSSG¢
A reduced set of shape graphs

If (3rfpl Cclsy st.clsy CCLS beingrfpl =<rfptr, nj>withrfptr € RFPTR)

RSSG=()
else
RSSG'=XY(sg!, assptr,retptr) #assptr=retptr
RSSG=RSSG!
forall x € APTR # APTR; is the set of actual pointers in the call strat.

Find the pai<aptr, f ptr>¢c AFPM(s, fun) s.t.x=aptr
RSSG=| (oo crese XY(SQ' , aptr, fptr) #aptr=fptr

RSSG=RSSG®
endfor
forall x € PTRs yn,
RSSG*=| [fog crese XNULL(SQ’ ", X) #x=NULL

RSSG=RSSG
endfor
forallr f sel € RFSEL;¢ yn,
RSSG=()
forallsg' =<N, CLS' > € RSSG
forallnj € N # Removex;,;se for all nodes in all graphs
forall cl spj ={PLpj, SLpnj } € CLSy; (beingCLS,; C CLS'),
Findsl att1 C cl spj beingsl at1=<<nk, rf sel , np>, att sl 1>
SLnj =SLnj- sl att1
endfor
endfor
RSSG*=RSSG U sg'
endfor
RSSG=RSSG?
endfor
RSSG'=RSSG
return@SSE)
end

Figure 3.13: ThdrTGC,;ec() function.

AFPM(st. 2, reverse)={<list, x>} makes us pointi st to the nodex was pointing to, at the
head of the list.

When returning from a non-recursive call, all pointers ia fthnction fall out of scope so they must be
nullified. That is why we remove, y andz from the graph. As a consequence of nullifying this pointers
some nodes become compatible and the graph is summarizeestrye the normal form. Once we leave
the recursive flow of the analysis, the recursive flow setelatis that were introduced i€@TS, ;¢ are no
longer needed, and they are removed.

Compilation techniques based on shape analysis for pdiatsed programs

3.2. Extensions for interprocedural analysis 69

3.2.3.5 Keeping track of a reduced number of recursive flow tiks

So far we have overlooked the issue of selecting the promersize flow links for a recursive function.
This was done for the sake of simplicity when presenting nsee flow links and the context change rules.
Here, we address the subject in detail.

In our approach, we have chosen to abstract the informatigtirvie require from the ARS as an exten-
sion to the links that exist in our shape graph domain. Thikawdt easy for us to accommodate recursive
analysis by introducing new links that are treated just astieg links, so we do not need to change our
abstract semantics operations. However, the drawbaclaisith introduce more complexity in the graph,
by adding elements that do not correspond to actual heapeatsmmnstead they abstract information that is
related to the recursive flow of the analysis.

The pointers that are tracked along the interprocedurdysisgrovide key information for the context
change algorithms to work properly. As the reader may havieet) the content of th&FPTR;, and
RFSEL; 4, sets is checked in these algorithms, to determine the iigeutsw links that are generated in
the call-to-start rules and followed in the return-to-cales.

As previously mentioned, in the worst case, for a recursivetionf un, we need to traceverypointer
in PTRs un, i.€., its locally defined pointers and pointer formal pagéens. In fact, a naive approach might
do just that. However, the shape graphs would be unnedgssamplicated, because ongomepointers
need to be traced. The rest can be safely deduced by the astufdrmal parameters matching and the
assigned pointer vs. returned pointer matching impligibgurring at context changes. In particular, only
the pointers within a recursive functidrun that are not actual parameters of a recursive cdluo neither
they are assigned at any recursive call site, are traced.ig hore formally expressed as:

e Vptr e PTR yn AV'S € Scall rec Calling tof un, s.t.ptr ¢ APTRs A ptr #assptr,the pointer
assigned as, 3rfptr € RFPTRsyn s.t. RFPPM(rfptr)=ptr Adrfsel € RFSELf, S.t.
RFPSM(rfptr)=rfsel.

For example, let us apply this criterion to all the local peis for reverse(),
PTR everse={X, Y, Z}. There is only one recursive call site for this functiat,. 6: y=r ever se(z),
where APTRs; g={z} andassptr=y. Pointerx does not belong t®APTRs; ¢, nor it is assptr,
therefore a recursive flow pointer and recursive flow setettost exist forx. Conversely, pointey is the
assigned pointegsspt r, and pointerz belongs toAPTRs: . g, SO no recursive flow pointers or recursive
flow selectors are needed for them.

Usually, just one pointer needs to be traced: the formalmatar used to navigate the structure. In the
rever se() examplex is such a pointer. Carrying just one recursive flow pointercursive flow selector
pair, such afptr - Xrfsel , fOr a recursive function is not a heavy burden for our anglys

On a practical note, the seR~PTR:,, and RFSEL¢ ,, are built according to information provided
externally to the analysis. This is done through a specigpnarcessing directive callekcl udeRFPTR.
The original code is instrumented to feature this directiielding the code for ever se() shown in
Fig. 3.14. Within the function body the directitf@r agma SAP. excl udeRFPTR(y, z) indicates to the
preprocessing pass built onto Cetus that poinfeasdz do not need to be traced along the interprocedural
flow of the analysis.

3.2.3.6 Limitations in the use of recursive flow links

The mechanism to analyze recursive functions based onsieeutow links and context change rules has a
limitation on the kind of functions that it can analyze. Ie tiresence of more than one recursive call to the

University of Malaga

70 Chapter 3. Interprocedural shape analysis

struct node * reverse(struct node *x){
struct node *y, xZz;
#pragma SAP. excl udeRFPTR(y, z)

1: Z=X->nxt;
2: X->nxt =NULL,;
i f(z!=NULL){
3: #pragma SAP. f orce(z! =NULL)
4: y=reverse(z);
5: #pragma SAP. f or ce(x! =NULL)
6: Z->nxt =Xx;
tel se{
7: #pragma SAP. f or ce(z==NULL)
8: y=X;
}
9: return vy,
}

Figure 3.14: The ever se() recursive function instrumented with teecl udeRFPTRdirective in bold
typeface.

same function, pointers that are matched as actual parem@tassigned pointers at a recursive call site,
may be untraceable in a subsequent recursive call whereatieayot used as actual parameters. In such a
case, it will not be possible to recover those pointers wieturming from a recursive call, and the analysis
cannot proceed.

More specifically, we characterize the cases that are unstggpby the the following check:

e Letsl ands2 € S¢4 1| rec be two recursive call sites férun, and lets1 precedes2 in the function
lexicographic order. If @ ptr € PTRy 4y S.t.ptr € APTRSs; V pt r =asspt r, pointer assigned at
s1) Aptr ¢ APTRSs, A ptr islive afters2) —> the analysis cannot trage r and it must abort.

This check is performed at the Cetus preprocessing pass,tprihe shape analysis. In the case where
we encounter a recursive function that cannot be analyhedintalysis cannot be performed.

Consider the example of Fig. 3.15(a). It shows a recursivactfon to create a binary tree,
create_tree(),where pointen is traced with recursive flow links. This function featuremtrecursive
function calls, one to create the left subtree and anotheregiate the right subtree. When returning from the
call to the left side, pointdr points to the root of a subtree that will be used as the lefddbr the current
location pointed to by, therefore it is dive value (it will be read before it is reassignedkilted). The call
for the right side is performed immediately after the calthe left side, though. Sindeis a local pointer,
it is nullified on the context chang€TS; ec). Therefore, it will not be possible to recover it when reiong
from the right side call. Note that not everr &ptr - r f sel pair forl , or evenr, would fix this, as we
would not know how to leave the trace for a pointer that hag/abbeen assigned when encountering a new
left side call in the next recursive call.

Fortunately and according to our experience, these caselseceewritten to an equivalent version that
avoids the problem, just by reordering a few statements iayathat preserves the program behavior. This
has been done in the code shown in Fig. 3.15(b), where trengtats in bold typeface have been rearranged.
Here, the subtree reached througrs linked as left subtree af, just after returning from the left side call.
Once this is dond, is no longer needed (it idead, and can be nullified. Then, the right side call can be

Compilation techniques based on shape analysis for pdiatsed programs

3.2. Extensions for interprocedural analysis

71

struct treenode *create_tree(int depth){
struct tree_node *n, x|, *r;
#pragma SAP. excl udeRFPTR(I , r)
i f(dept h>0) {
n=(struct treenode *)malloc(...);
| =create_tree(depth-1);
r=createtree(depth-1);
n->lft=l;
| =NULL;
n->r gh=r;
r=NULL;
tel se{
n=NULL;
}

return n;

(@)

struct treenode *create_tree(int depth){

struct tree_node *n, *|, *r;
#pragma SAP. excl udeRFPTR(I , r)
i f(dept h>0) {
n=(struct treenode *)malloc(...);
| =create_tree(depth-1);
n->lft=l;
| =NULL;
r=createtree(depth-1);
n->r gh=r;
r=NULL;
tel se{
n=NULL;
}

return n;

(b)

Figure 3.15: (a) A function to create a binary tree whose tgoin cannot be traced by our technique. (b)
A rearranged version of the same function that works in tieesway and that is adequately supported.
Rearranged statements appear in bold.

performed with no trouble. In the context of current comsijehis transformation is very simple and can
be performed by a previous step in the compilation process.

3.2.4 Data-flow equations and worklist algorithm

The data-flow equations presented in chapter 2, for intagohaeral analysis, accounted for the behavior
of loops and branches, e.ghi | e andi f statements. These statements do not have associatedccabstra
semantics operations, and therefore do not modify the shegg@hs, but rather drive the analysis toward
its fixed point. Branch statements contemplate the incorshmape graph for all branches and later join
the results. Loop statements iterate the analysis of thensents within their body until the shape graphs
change no more.

For interprocedural analysis we need to model the effectinétion calls and return statements, as we
have mentioned earlier. Upon finding a call statement, thetesd appropriate for the function body is
adopted, and upon finding a return statement, the contexteofaller is recovered. The analysis is now
entitled to find a fixed point for recursive functions as well.

[ENTRYprec] : RSSG™®1un =1 Nses,y | o0 (RSSG™) =
= LlngSngRsse-s CTSnrec(sg', PTR un, AFPM(s, fun))
[ENTRY, cc] 1 RSSGS€'wn =| Nocs,,,, ;o (RSSG™) =
= UE;SSRSSG-S CTSrec(sg', PTRiun, AFPM(s, fun))
[EXl Tnrec] : RSSG*=QUTscs .y e (RSSG*S fun) =
= U?gingsse-srfun RTChrec(SQ', PTR un, AFPM(s, fun), RAPM(s, fun))
[EXI Trec] : RSSG*=QUTses,, | o (RSSGST fun) =
= IS Crssersrrun RTGrec(5G', PTRiun, AFPM(s, fun), RAPM(s, fun))

Figure 3.16: Data-flow equations for interprocedural suppo

University of Malaga

72 Chapter 3. Interprocedural shape analysis

Worklist()
Input: P=<FUN, STMT, PTR, TYPE, SEL>, FUN=<FUN; yn, STMT¢ un, PTR, TYPE, SEL>, RSSG "
A program or a non-recursive function and an inR88G
Output: RSSGUt
TheRSSGat the exit program point

1: Create=STMI
2: RSSG's¢=RSSG "
3. Vs e STMI — RSSG*=()
4: repeat
5: Removes from Win lexicographic order
6: RSSG™=| |- onr eq(s) RSSCG™'
7: Case §),
8: S € Scal | nrec
9: Letf un € FUN, be the function called by
10: RSSG*=Tabul at e(s, <FUNt yn, STMT¢yn, PTR, TYPE, SEL>, RSSG*S€fun)
11 break
12 S € Scal | rec
13: Letf un € FUN, be the function called by
14: RSSG*® =] Nses., | ;o (RSSG™®)
15: RSSG*=Wor kl i st .r ec(<FUNt 4, STMT¢ yn, PTR, TYPE, SEL>, RSSG*S¢fun)
16: break
17 S € Sreturn)
18: TABt yn(CUR.TAB' ") =RSSG*®
19: Lets’ € Scali nrec, b€ the non-recursive call site that calfedn
20: RSSGUt =RSSG**=QUT¢' ¢5.,; oo (RSSG®)
21 succ(s) =0
22: break
23 default
24: RSSG*=ASs (RSSG*®)
25: break
26: If (RSSG** has changed),
27 foralls’ € succ(s),
28: WEWU s’
29: endfor
30: until (W£0)
31 returnRSSGU)
end

Figure 3.17: The extended worklist algorithm for interprdaral support. It computes tlRSSG® at each
program point.

The process of finding a fixed point in the analysis of intecpdural programs is controlled by the inter-
procedural data-flow equations. We present them now in Flg. 3'’hey augment the intraprocedural data-
flow equations presented in chapter 2. Basically, we preasentlifferent equations for the ENTRY/EXIT
data-flow transfers from the caller to the callee and fronctikee to the caller. We distinguish between non-
recursive and recursive calls and returns. In these newtiegaawe assume théin is the function called
by statemens, ses yn the entry point af un andsr ¢y, the return point of un. Equationd ENTRY; ec]
and[ENTRY;¢c] perform the transfer from the caller to the callee in the a#ds® non-recursive or a re-
cursive call, respectively; EquatiofEXI Trrec] and[EXI T,ec] transfer the analysis back to the caller.

Compilation techniques based on shape analysis for pdiatsed programs

3.2. Extensions for interprocedural analysis 73

Context change rules are used according t&aHERY/ EXI T and recursive/non-recursive character of each
eqguation.

We present in Fig. 3.17 the extended worklist algorithm fivieg the data-flow equations presented.
The input of our worklist algorithm is a prograPhwith functions, or a functiofrUN with its corresponding
functions, and an inpuieduced set of shape grapHRSSG ". The initial set is empty, i.e RSSG "=(.
The output of the algorithm is tHRSSG!! resultant at the exit program or function point. Withoutslas
generality we assume that there is only one return point oh faction. The algorithm also computes the
resultantRSSG*® at each program point.

Our algorithm processes the worklist using the main loopnéeffiin lines 4-30. We can see that the
algorithm is sensitive to the type of statement being preeggline 7). Ifs € Scal| nrec, i-€., itis a non-
recursive call (lines 8-11) th€abul at e() algorithm is called with the call site statement, the funmti
to enter and th&SSG available at that point. Th€abul at e() function transforms the incoming shape
graphs to the context inside the function called, checkirsimilar contexts have been analyzed before. If
they have, then a previoustgbulated outputs returned, so that the same graphs are not reanalyzec If th
incoming graphs have not been analyzed before, a new imstantteWor kl i st () algorithm is called
for the current function. Th&abul at e() function will be covered in detail in section 3.3.

In the case of a recursive call statement, ise§ Scal| rec (lines 12-16), the current shape graphs
are first put into the new context, then a new worklist aldgnitfor the recursive function is called,
Wor kl i st rec() (Fig. 3.18). We shall discuss this algorithm shortly.

In the case of a return statement, i£.£ S;eturn (lines 17-22), found within &br kI i st () algo-
rithm, it means that we have found the end of the body of thetfan being analyzed by the algorithm.
The shape graphs obtained are tabulated for future referand then adapted for the context suitable when
returning to the calling statement. To mark the end of thdyaigafor the current function, the successor set
for the return statement is set to empsycc(s) =0).

If the analyzed statement is another statement (not a imctll or return statement, lines 23-25), then
the appropriate abstract semantics is applied, as presentbapter 2. If the graphs change, the successors
of the analyzed statement are added to the worklist. If thphg do not change, this means we have reached
a fixed point and the analysis of the function has finished.

Let us now continue with the process of interproceduralyaigby contemplating thébr kl i st rec()
algorithm (Fig. 3.18). It operates similarly Yr ki i st () , again considering different cases according to
the currently analyzed statement. In the case of a nonsgiweucall statement or gular statement (not a
function call nor a return statement), it works in the samg than thewor ki i st () algorithm.

The specific behavior comes when encountering a recursiVesitaor a return statement. For the
recursive call site (lines 12-15), the incoming shape ggaphb first transformed to the appropriate context
with theCTS; ¢ rule (called withinl Nses_,,, ... ())- Then, the entry point of the function is set as successor
for the current statement, so that the function body can be/aed again for the new context.

On the other hand, when encountering a return statemeas (i6i—20), we must return to the recursive
call site that called the current function. The graphs arteimto the correct context witlRTG ¢¢ (called
within QUTs' s, ... ()), andall the recursive call sites for the function are set as succesgsthe analy-
sis. Thus, we propagate the result obtained at the retutenstat to every possible recursive call that may
have called the function. Keep in mind that the context cbams been performed according to the actual
call statement consideresl, € Scai| rec-

University of Malaga

74 Chapter 3. Interprocedural shape analysis

Workl i st rec()
Input: FUNS<FUN; yn, STMT¢un, PTR, TYPE, SEL>, RSSG" # Arec.f un € FUNand an inpuRSSG

Output: RSSGUt # TheRSSGat the exit program point

1: Create=STMItyn
2: RSSG'séu=RSSG "
3: Vs e STMItyn — RSSG*=()
4: repeat
5: Removes from Win lexicographic order
6: RSSG™=| |5 ey ea(s) RSSCG™'*
7: Case §),
8: S € Scal | nrec
9: Letf 00 € FUN yn, be the function called by
10: RSSG*=Tabul at e('s, <FUN o0, STMT¢ o0, PTR, TYPE, SEL>, RSSG*S¢fe°)
11 break
12 S € Scal | rec
13: RSSG*S€ =] Nses..) 1o (RSSGC™S)
14: succ(s) =Setun
15: break
16: S € Sreturn
17: Let{s’ € Scall_rec C STMItyn} # The recursive call sites &un
18: RSSG'' =RSSG**=| |, €Suar1 20 MTs' (RSSG™)
19: succ(s)={succ(s’) V s’ € Scallrec C STMTiun}
20: break
21: default
22 RSSG *=AS;(RSSG*®)
23 break
24: If (RSSG** has changed),
25: foralls’ € succ(s),
26: WWU s’
27: endfor
28 until (W£0)
29: returnRSSGU)

end

Figure 3.18: Thar ki i st r ec algorithm for recursive support. It computes RR8BSG® at each state-
ment function point.

3.3 Reuse of function summaries

In the context of interprocedural analysis, it is importembe able to reuse the computed effect of functions
that have already been analyzed, a technique sometimeserbfe asmemoization If we store the input-
output abstractions obtained for the analysis of a functiban we can reuse the computed result for an
equivalent input. For a complex technique like shape arglysuse of function summaries is particularly
useful, because it may save repetition of costly analyses.

Our implementation employs a tabulation algorithm simitaf48], recording function summaries for
reuse under equivalent calling contexts. This task is perdd by theTabul at e() algorithm. Every
time a non-recursive call statement is encountered,THieul at e() algorithm is invoked. It starts by
dividing or splitting the heap representation according to tbachability of actual parameters ia and
global pointers. This way, for each incoming shape graphohbieain two graphs: (i) theeachable graph

Compilation techniques based on shape analysis for pdiatsed programs

3.3. Reuse of function summaries 75

which abstracts the part of the heap accessible throughutietién call actual parameter8RTRs) and

global pointers @.B), by following any pointer-chasing path from them; and (iig unreachable graph
which abstracts the part of the heap thaiésaccessible inside the function called $yor equivalently, the
part of the heap accessible through the rest of pointerseiptbgram PTR- {APTRs U GLB}).

Let us present the basic procedure for reusing function sames Fig. 3.19 and Fig. 3.20 present a
scenario where two singly-linked lists are reversed, whth recursive ever se() function presented in
this chapter. We start withg?, the shape graph that captures both lists, pointed to byersim andb. For
simplicity, only some graphs in the figures featuredhe’s associated with them, the rest of the graphs will
be just shown as nodes and link-edges. ¥he’s in sg* (Fig. 3.19) show that the two lists are independent
and that there are no cycles in them, because there is natlanwith two incomings| ’s.

When encountering the non-recursive calt ®ver se() , the shape graph is split by reachabilig,g*
is split starting froma, the pointer actual parameter used for the call. The resuhé singly-linked list
reached frome, in sg2. The same shape graphg! is split considering the reachability from the rest
of pointers, i.e.b, r 1 andr 2, yielding sg®, which stands for the list reached from(r 1 andr 2 are
not yet assigned at this point). This way, only the part ofieap abstraction that is reachable inside the
rever se() function, and thus can be affected by it, is actually passet de analyzed.

Once we have obtained the reachable gragff, it is put into context with th&CTS,, e rule, yielding
sg?. Next, ther ever se() function is analyzed using thébr ki i st rec() algorithm as previously
explained. We already presented® as one possible result for the analysis efver se() for the input
of a singly-linked list. There are more possible shape ggdphthis analysis (see Appendix B), but for
simplicity let us continue the example with just®. At this point, we now store the input-output pair
registered for this analysis run oéver se() , TAB; ever se(RSSG®) =RSSG*. The shape graphs obtained
are then put into context with tHeT Gy, ¢ rule. Each of the graphs obtained is joined with the unrdaleha
graph split before the calsg®. As a consequence, we obtaig’, which is the heap abstraction of the
reversed list whose head is now pointed torldy and the list pointed to by. The box in dashed line
contains the overall effect of the analysisraf=r ever se(a) , whereRSSG' is received as input and
RSS@ is the resulting output. Pointeris now longer required (it now points to the tail of the firstjiand
can be nullified, to obtaisg®.

The example continues with a second non-recursive calletoer se() in Fig. 3.20. This time we
invoker ever se() for the list pointed to byb, r 2=r ever se(b) . The reachable grapsg®, contains
only the list pointed to by, while the unreachable graph contains the list pointed tobya andr 2 are
not assigned). The input graph for the analysis@Ver se() ,sg'?, is the same that was registered when
reversing the first list, so we can use the previously compresult, RSSG'°=TAB; ¢yer se(RSSG) , thus
saving the analysis time ofever se() . Again, the result is put into context by tR¥C, ¢ rule, and then
joined with the unreachable graph to produce the final reggif in RSSGL2. Again, the dashed-line box
captures the effect of2=r ever se(b) , with inputRSSG’ and outputRSSG'?. This analysis runs faster
than that ofr 1=r ever se(a) , because it does not need to analyzver se() again. Finally, pointeb
can be nullified to produce the final resultRBSG!3, with the two lists reversed.

TheTabul at e() algorithm is depicted in Fig. 3.21. This algorithm is invdkany time the analysis
encounters a non-recursive call statemer, Scal | nrec. Each incoming shape graph in the inR8SG "
is split by its reachingAPTRs U GLB) and non-reachingRTR- {APTRs U GLB}) pointers. In this way,
we obtain the reachable graply” and unreachable grapty". The reachable shape graph is wrapped into
areduced set of shape graf®8SG for the context change bPT Sy, ec due inl Nses..ii e () - The input
RSSG is kept inCUR_TAB' " for future tabulation.

If the input RSSG was already used for a previous analysis, the st®88G is obtained without
reanalyzing the function. If the inptRSSG has not yet been analyzed, then we proceed normally by

University of Malaga

76 Chapter 3. Interprocedural shape analysis

RSSG'

clsly=<pll, slle>
clslpy=<sllj, s130>
cls2p;=<s12, 513>
cls3p=<513, 513>
clsdpz=<s13i,sldo>
clslyy=<pl2,s12,>

rl=reverse(a) ;

RSSG’ RSSG®
Split by reachability(sg',{a}) ng CTS,,Iec(sgz, {x,vy,2},<a,x>) sg4
S g)
a2 x—GD—GD

, Split_by reachability(sg*, {b,rl,r2})

for reverse ()
b—@—G)

RSSG®

2 a rl RTCpyec (595, {X,y,2},<a, x>,<y, rl>) . , ;
@SG oo N \ R X e0e
Store pair > 5 \ \
2 @ @@ p

TAB (RSSG®) = RssG*

reverse

3 |
59 Run analysis |

_—

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

RSSG®

clsly=<pll,slle>
clslpp=<slly, s130>
c1s2,=<512j, 513>
c1835,=<5133, 513>
Clsdnp=<s13i, s1do>
clsly3=<pl2, s120>
clslpa=<pl3,sld;, s15,>

RSSG’

clsly=<pll,slle>
11;,5130>

clsdnp=<s13i,sldo>
clslyy=<pl2, sl2e>

Figure 3.19: Storing pair of input-outplRSSG for the analysis of ever se() , after splitting incoming
shape graph by reachability of reaching and non-reachingeys.

invoking theWor ki i st () algorithm for the function called bg € Scai| nrec. When that invocation

of theWor kl i st () algorithm finds its return statement, then the tabulatiom PaR TAB' "- RSSG'S

is established (line 18 in Fig. 3.17). Note that we store tklation foreachincoming shape graph in
Tabul at e() (wrapped inCUR_TAB' "), which maximizes the possibilities of reuse. Whateverdase

the resultingRSSG* is obtainedTabul at e() continues by joining each of the shape graphs that capture
the behavior of the function with the unreachable shapehgsaped previoushgg". The results accumulate

Compilation techniques based on shape analysis for pdiatsed programs

3.3. Reuse of function summaries 77

RSSG'

n1=<pll,sllo>
2=<s11j,s130>
<s512i,5135> eee
<s13j,5135>
n2=<s13;,s140>
51,3=<pl2, 5125>

r2=reverse (b) ;

RTCprec (59%%, {%,v,2},<b, x>,<y, r2>)

(:])

GG

I_ RSSG RSSG? |
| Split by reachability(sg®?, {b}) sg® CTSprec (9%, {%,y,2},<b, x>) sgtt
: ’ oo ’ 00 |

| b—CaD—(n2) *—(D—(n2) |
| ”Splitibyireachability(sg“, {a,rl,r2})

sglo Use tabulated output |

RsSG® = TAB,__ ... (RSSG®)
A reverse

| 1 —G@D—@2)
| Resal! RSSGY° |
| Sg13 sglz |

i
cls1y3=<pl2,s120>
clslpg=<pl3,sld;,sl5,>

RSSG

Figure 3.20: Example of function summary reuse when calieger se() with a new list.

in the finalRSSG Ut .

The splitting process is performed by ti8pl it by reachability() algorithm, featured in
Fig. 3.22. It takes as input a shape graph and a seeaching pointers It performs a cleanup
of the input shape graph so that only the portion of the atistneap that is reachable through these
reaching pointers is left. The approach for this algorittsrincremental, i.e. we start with an empty
graph, and we add elements as we follow the possible patins fine reaching pointers. For every
reaching pointemptri, we first add the nodel it directly points to, and its coexistent links sets,

University of Malaga

78 Chapter 3. Interprocedural shape analysis

Tabul at e()
Input: s, FUN=<FUN; yn, STMT¢ yn, PTR, TYPE, SEL>, RSSG "
A non-recursive function call statement, the called fiorcand an inpuRSSG

Output: RSSGU # TheRSSG after the function analysis

1. RSSGU=(
2: forallsg’ € RSSG"
3: sg'=<N, CLS'>=Spl i t by_reachability(sg, APTRs U GLB)
4: If (N # 0 A CLS" # ()
5: sgU=Spl it by reachability(sg, PTR {APTRs U GLB})
6: else
7: sg'=sg'; NU=(); CLS"=0); sgU=<N', CLS">
8: RSSGE =sg'
9: RSSG =1 Nees,,, ... (RSSA)
10: CUR.TAB' "=RSSG # KeepRSSG for future tabulation
11 If (RSSG € TABFEYS)
12: RSSG =TAB; yn(RSSG) # Get tabulated output
13: RSSG'=0UTs(RSSG)
14: else
15: RSSG'=Wor kl i st (<FUN un, STMTtun, PTR, TYPE, SEL>, RSSG)
16: forall sg¢ € RSSG*
17: sg'=Joi n_SE sg", sg¥)
18: RSSGU' =RSSG*'t U sg*
19: endfor
20: endfor
21: returnRSSG')

end

Figure 3.21: Th&abul at e() algorithm to calculate and reuse function summaries.

CLS, (lines 3-5). Then, we find all the selector links with atttdmi that stem from it, i.e., every
Sl a1 =<<ni, sel , n2>, att sl ={o}>. We add the nod@2 reached through eadhl 4, and their
cl spo’s that feature a reaching path froni, i.e., the added!| s, must have a selector links with at-
tributes of the formsl 41 =<<nl, sel , n2>, att sl ={i | c| s}>. Now, taking as a starting point the
newly added nodes2’s, we repeat the process considering new paths reachirthéo wodes in the graph.
This iterative process continues until the whole input grag?!, has been scanned (lines 10-20).

For example, consider the spliting process farg! in Fig. 3.19. By calling
Split_by_reachability(sgl, {a}), we obtain insg? the portion of the heap that is accessible
inside of ther 1=r ever se(a) call, sincea is the only pointer used as actual parameter, and there are no
global pointers. The rest of the heap abstraction is catkbly calling the same algorithm, with a different
set of pointersSpl i t by reachabi I ity(sg?, {b, r1,r2}).Insg® we obtain the part of the heap
abstraction that is effectively unreachable insiderthher ever se(a) call.

It should be noted though that not all input shape graphs eaplit. Whenever a shape graph represents
memory locations that are found both in the reachable andaghable graphs, then the graph cannot be
safely split, because it could not be reconstructed by alsifopr graph operationJi n_.SG)). This is
similar to the concept ofutpointpresented in [48], but more restrictive. In the case of suchitpoint the
analysis must proceed with the whole shape graph and wit$selikely to reuse function summaries.

This situation is checked in the last part of i@ i t _by_r eachabi | i t y() algorithm (lines 22-23,

Compilation techniques based on shape analysis for pdiatsed programs

3.3. Reuse of function summaries 79

Split by reachability()
Input: sg*=<Nt, CLS'>, PTR! # A shape graph and a pointer set
Output:sgk=<NK, CLS*> # Output shape graph as split by the function

1. N=(; CLSK=0

2: forallptri € PTR!

3: Findni € Nts.t.3pl 1=<ptri, ni >c CLSy

4: NE=NK U ni

5: CLSK=CLSK U CLS;

6: SL*=()

7 forall cl spi ={PLni, SLni } € CLSyi s.t.sl a1 =<<ni, sel , n2>, att sl ={0}> € Sl
8: SL*=SL* Usl a¢

9: endfor

10: repeat

11 Removes| 4 =<<nl, sel , n2>, att sl ={o}>from SL*

12: NK=NK U n2

13: forall cl sn2={PLnz, SLn2} € CLSq2 S.t.sl a1 =<<nl, sel ,n2> attsl ={i|c|s}> €SLn
14: CLSK=CLS* Ucl spy

15: endfor

16: forall cl sp2={PLp2, SLnz2} € CLSq2 S.t. sl 511 =<<n2, sel , n3>, att sl ={o}>¢€ SL;,
17: cLsk=cLSk ucl sy

18: SL*=SL* Usl at

19: endfor

20: until (SL*=0)

21: endfor

Now check that all reaching pointer-chasing paths arecggifained in the graph
22 If((IptrlePTRs.t
(ptrl¢ PTR' A Jpl =<ptrl, nk>c PLpg s.t.cl spk={PLnk, SLnk} € CLS¥, nk € N))
v(@EnleN st
(N1 ¢ N€ A Tsl gr=<<nl, sel,n2> att={i | s}>¢c Sl s.t.cl S;2={PLn2, SLn2} € CLS¥, n2 € N¥)))
23: NK=0); CLSK=0) # Return empty graph, as it could not be safely split
24: returnggk=<NK, CLS*>)
end

Figure 3.22: Thespl i t by_reachabi | i ty() algorithm that gets the reachable part of a graph for the
given accessing pointers.

Fig. 3.22). If a pointer other than the pointers used as ifgauhe algorithm points to a node contained in the
outputsgk, or if acl s has reaching paths from both the reaching pointers and theaaching pointers,
then the graph cannot be split and an empty graph is returfibid. case is considered fabul at e()
(lines 4-7 in Fig. 3.21), to continue the analysis with an smmreachable graph and the whole graph as
the reachable graph.

Consider the example displayed in Fig. 3.19 if we tried totsgd)’ by the reachability of pointeb
as is due in call statemen®=r ever se(b) . In such a case, the graph could not be safely split because
non-reaching pointeat is pointing to a node reachable from reaching poibtefhe reader could argue that
the node pointed to by belongs to the first list, while points to a second, independent list. However, due
to the summarization involved in the graph, such infornai®not guaranteed, arsy’ could also stand
for a situation wher@ points to the last element of the second list. Anyhow, thermftion that the lists
are not shared and that there are no cycles is still presémvie cl s’s for sg’. By nullifying pointera,

University of Malaga

80 Chapter 3. Interprocedural shape analysis

which isdead(no longer used), we obtagg®, which can be safely split and allows us to reuse the effect
of the previous analysis ofever se() . Incidentally, this example hints us of the importance dfifying
dead pointer variables in our approach.

3.4 Refining interprocedural analysis

The extensions described so far allow us to extend the imtcagural shape analysis technique presented in
chapter 2 to support interprocedural programs with reeerkinctions. However, the analysis of recursive
functions may be faced with situations where very consawvahape graph abstractions are obtained, yield-
ing the analysis too imprecise for our purposes. In thisigectve present some mechanisms to alleviate
such problems.

3.4.1 Previous call property to separate traversed and notraversed nodes

In our approach, the natural method of refining a heap abinais by using properties. For interprocedural
analysis, we introduce a new property calpgdvious call propertyr simply PC property It takes the value
of a set of pointer variables tracked along the recursivdyaisa For example, a node annotated with the
PC={x} property value is known to have been pointed to by poirtera previous recursive call. The basic
function of the PC property is to separate the nodes that baga left behind along a recursive traversal
from the nodes that are yet to be traversed.

Let us consider the example of Fig. 3.23(a). It shows anraryilong singly-linked list in the concrete
domain, being traversed in a recursive functiaec _f un() . In particular, the state presented here is the
state found at the start of an arbitrary deep recursive afiély the context change. Pointerpoints to the
currently accessed elemeRt, ¢ r points to the element in the list pointed to byn the previous recursive
call, and the recursive flow selector links in the concretmadior f sl c’s, in dotted lines, maintain the trace
of x along former recursive calls.

In (b) in the same figure, we show the shape graph abstracttbowt the PC property. All the memory
locations contained within the boxes in dashed lines inf@phstracted bg3, because they are not pointed
to by pointers and we do not consider any property at thistpdlnden3 abstracts the elements in the list
that have been traversed through the recursive aaligell asthe elements that are yet to be traversed. We
display thecl s’s for n3 that capture some particular locations from (a). This regméation introduces a
shape feature that we would like to avoid: there is the pdggithat further down the list, by following
through thenxt selector, we find an element that points to another one thraud sl , which is indicative
of an element that was traversed in a previous call. Thisis#se if we follow frontl s2,3=<..., sl 2¢>
tocl s4n3=<sl 2, ..., rfsl 2,>, for example.

In Fig. 3.23(c) we show the graph abstraction for (a) congidethe PC property. Now, the nodes that
have been involved in the recursive traversal, more prigcisemse that have been previously pointed to by
X, are annotated with theC={x } property. For improved presentation, the nodes with th€pFoperty
value to an empty set of pointers are shown as nodes withowtta@ion. In this example, the PC property
unables the nodes that represent the traversed elemergsstorimarized with the nodes that represent the
rest of elements. This graph is more precise since it doemtiotluce inconsistent information related to
interprocedural flow.

Hence, the previous call property is now added to the indidldefined in chapter 2, now updated as
PROP={t ype, si t e, touch, PC}. The new instrumentation domain for the PC property is ddfae
follows:

Compilation techniques based on shape analysis for pdiatsed programs

3.4. Refining interprocedural analysis 81

erptr X

rec_fun (x) {
]
@) 7z = x->nxt; v ¢ % b = ’ S >
rec_fun(z); eeo _’[lk—BH x>]—"[g1 H Iy]‘—’[g1 H Tyio]—' oeo

00 .

clslyy=<slli,sl2o, rfslle®
cls2,3=<s512;,512,, rfsll >&"

. Tecls3,3=<s12;, rfsl3i, sldo, rfsl2,>

Teepclsdpy=<sl2;, rfsl2;,sl2,, rfsl2y>

clsly=<rfsll;,rfsl2,,slly>
cls2p1=<rfsll;,sll;,rfsll,, slly>
cls3,1=<rfsl3;,sll;i,rfsll,, sl2,>
clslyp=<rfpll,sl2;,sl3,,rfsl3,>
clslp3=<pll,sl3;,sld,, rfslds>
clslpg=<sl4;,rfslbo,sl6s>
cls2p4=<s8164,5165,rfsl5,>
cls3,4=<s816;,s515,,rfsl5,>

Figure 3.23: An arbitrary long singly-linked list being ¥eased in a recursive function in (a) the concrete
domain, (b) the abstract domaivithoutthe PC property, and (c) the abstract domaith the PC property.

e Ppcisthe domain for the properfyr op=PCand it is defined as a set that contains the tracked pointers
defined for the program:

Ppc={ppc S.t.ppc € PTRAJrfptr € RFPTR| RFPPM(rfptr) =ppc}

For the PC property the compatibility is defined as equalifyttee set of pointers contained
in the property, i.e., two nodesl and n2 are compatible with regards to the PC propeity
PPMpc(nl) =PPMpc(n2).

The information pertaining to the PC property is added inGf&; ¢ rule. When creating a node in a
malloc statement, its set of properties is initialized.Ha tase of the PC property, it is initializedpec=0.
Each time a recursive flow pointer advances in a structuvertsal, pointing to a node, the PC property
value is updated fon. In particular, the algorithm fo€TS; ¢ presented in Fig. 3.9 is modified as shown in
Fig. 3.24 to support the changes required by the PC property.

On the other hand, the PC property annotations are removéteiRTC ¢ rule. In the process of
returning from a recursive call, recursive flow pointers galin the opposite direction of the traversal.
The nodes they were pointing to are then cleared of theirgrée in their values of the PC property. The
algorithm presented in Fig. 3.11 fBTC, ¢ is modified for this purpose in Fig. 3.25.

University of Malaga

82 Chapter 3. Interprocedural shape analysis

CTSrec()
Input: sgt=<N!, CLS'>, PTR; yn, AFPM(s, fun)
A shape graph, formal and local ptrs farn and set of pairsapt r, f pt r > of call sites
Output: RSSG*
A reduced set of shape graphs

RSSG=sg?
forallr f ptr € RFPTR
Findptr andrfsel st RFPPM(rfptr)=ptr andRFPSM(rfptr)=rfsel
RSSG3:|_]5§§,66RSSGZXSeI Y(sg' ,ptr,rfsel,rfptr) #ptr->rfsel=rfptr
RSSG4=|_|5§§,G, crese XY(sg' ", rfptr,ptr) #riptr=ptr
If (ppc € PROP)
forall sg' =<N, CLS' > € RSSG
Findnk e N s.t. 3rfpl 1=<rfptr, nk>C CLSy (beingCLS,x € CLS')
PP Mepc(nk) =PPMpc(nk) Urfptr
endfor
RSSG=| [fog crsse XNULL(sQ’ " ", ptr) #pt r =NULL
endfor
forall x € APTRs
Find the paiaptr, f ptr>ec AFPM(s, fun) s.t.x=aptr
RSSG3:|_]5§§,GeRSSGZXY(sg’ ,fptr,aptr) #fptr=aptr
If (aptr ¢ GLB),
RSSG'=| [fso" creseXNULL(sQ" ", aptr) #aptr=NULL
else
RSSG'=RSSG*
RSSG*=RSSG*
endfor
RSSG'=RSSE
return@SSG)
end

Figure 3.24: The recursive version of the call-to-stareé reiktended to support the previous call (PC) prop-
erty, with the statements in bold.

3.4.2 Force pseudostatements to filter out improper contest

In our analysis, the results obtained in return statememtsetursive functions are first transformed accord-
ing to theRTC; ¢ rule of context change, and then considered for the anadydise successors of every
recursive call site in the function (lines 16-20 in Fig. 3.18

Therefore, our technique offers limited context-senitivit is fully context-sensitive as long as there
are no more than one recursive call site for a function. Ifdtse more, then the contexts from the different
recursive call sites are merged for the recursive analySigr technique accumulates shape graphs that
result from different flow paths in theet ur n statement. For correct analysis, all these shape graphs mus
be considered for all possible flow paths of the program, adawsot have information about what call site
performed the call. This can yield the analysis too impeéis the purposes of dependence detection. We
can use certaiforce pseudostatemertts palliate this problem.

Let us consider now a binary tree dynamic data structure.32®% shows recursive functidrr eeAdd()
that performs a depth-first traverse of such a binary tredingdhe values from left and right children and

Compilation techniques based on shape analysis for pdiatsed programs

3.4. Refining interprocedural analysis 83

RTGrec()
Input: sgt=<N!, CLS'>, PTR ypn, AFPM(s, fun), RAPM(s, fun)
A shape graph, formal and local ptrs faun, set of pairs<apt r, f pt r > of call sites,
and the corresponding et prt, asspt r > pair
Output: RSSG¢
A reduced set of shape graphs

RSSG'=XY(sg!, assptr,retptr) #assptr=retptr
RSSG=RSSG
forall x € APTR # APTR; is the set of actual pointers in the call strat.

Find the paiaptr, f ptr>¢c AFPM(s, fun) s.t.x=aptr
RSSG*=| |G crese XY(SQ’ , aptr, fptr) #aptr=fptr
RSSE=RSSG?
endfor
forallr f ptr € RFPTR yn
Findptr andrfsel st RFPPM(rfptr)=ptr andRFPSM(rfptr)=rfsel
RSSG'=| [ioe crese XY(SQ’ ", ptr, rfptr) #ptr=rfptr
If(prc € PROP)
forall sg' =<N, CLS' > € RSSG'
Find nk e N s.t. 3rfpl 1=<rfptr, nk>C CLSy (beingCLS,x € CLS')
PPMpc(nk) =PPMpc(nk)-rfptr
endfor

RSSG5=|_|5§§,G, s crsse XYSel (sg’ '’ , rfptr, ptr,rfsel) #riptr=ptr->rfsel

RSSG=| [fo5" + creseXSel NULL(sg’ "’ ", ptr, rfsel) #ptr->rfsel =NULL

RSSG =RSSG
endfor
RSSG‘=RSSG
return@SSE)

end

Figure 3.25: The recursive version of the return-to-calé rextended to support the previous call (PC)
property, with the statements in bold.

storing them in the current tree element. As a result of thlez@tion of Tr eeAdd() , the root of the tree
contains the sum of all the values in the tree. This functsdrawn from thel'r eeAdd Olden benchmark
suite [30], but modified to write in every tree node the valb&amed as the sum of the values of the left and
right children, like in [56].

Statements 1 and 2 are typical force pseudostatementshaeeproper abstractions in each branch of
thei f (t ==NULL) statement. Pseudostatements in bold though are addecetafilt improper contexts
in recursive analysis.

In Fig. 3.27,ntc ! shows the memory configuration for a binary tree pointed tpdigitert . Shape graph
sg? shows the shape graph abstraction for the binary tree. Nmteali elements within the dashed-line
box innc?! are abstracted in2 in sg?, as we use no properties for this abstraction. Also note tigtin
thecl s’sin sg?, there is the possibility that the tree is not balancedaiteee node may have one left child
and no right child, and viceversa, so we are actually altstgaoot just a typical balanced binary tree but
also other variations of trees with whatever number of chitdollowing different paths from the root.

The shape graptig! is found at the function entry at the beginning of freeeAdd() analysis. After

University of Malaga

84 Chapter 3. Interprocedural shape analysis

int TreeAdd (struct tree *t){
int total .val,val ue,leftval,rightval;
struct tree *tleft,~tright;
#pragma SAP. excl udeRFPTR(t 1l eft, tri ght)
if (t==NULL) {

1: #pragma SAP. force(t==NULL)

t ot al _val =0;

tel se{

2: #pragma SAP.force(t!=NULL)
3: tleft=t->left;
4: | ef tval =TreeAdd(t!l eft);
5: #pragma SAP.force(t!=NULL)
6: #pragnma SAP.force(t->left==tleft)
7 tleft=NULL;
8: tright=t->right;
9: ri ghtval =TreeAdd(tright);
10: #pragm SAP. force(t!=NULL)
11: #pragma SAP.force(t->right==tright)
12: tri ght =NULL;

val ue=t - >val ;
t ot al .val =val ue+l ef t val +ri ght val ;
t->val =t ot al .val ;

}

13: return total _val ;

Figure 3.26: Thelr eeAdd() recursive function instrumented with ttieor ce pseudostatements that
allow proper context filtering displayed in bold typeface.

traversing the whole tree and adding the values, we obt@rstime shape graph as the final result of the
analysis, at the return statement of the first, non-recairsadl of Tr eeAdd() . During the process of
achieving the fixed point for all statements in the functioalyy sg* is transformed by th&TG, ¢ rule and
used for the analysis of the successors of the recursiveiteglat statements 4 and 9, like every other shape
graph that reaches the function return statement.

For example, if we apply thBTGC, ¢ rule oversg? returning to the left side call site, we obtasiy?.
Note that sincesg! has no pointet , ¢ ptr assigned, then the tracked pointemwould not be assigned either
insg?. However, such a graph would be inappropriate as returnegdmursivecall toTr eeAdd() , where
t should be assigned to the current tree node. We can filtesitnation with the force pseudostatements
st . 5=st. 10=#pragna SAP. force(t!=NULL). These force pseudostatements prevent the graphs
wheret is not assigned from being analyzed by the successors oféatinsive call sites (st. 4 and st. 9).

Considering the left side call, we can safely use the camditi! =NULL for the pseudostatements,
because (i) we read successfullyin st . 3: tl eft=t->l eft (under assumption of code correctness)
and (ii) we know that could not be modified by another recursive call because itdsa variable for the
current context and it was not modified betwedn 3 andst . 5. Similarly, we can use the same condition
for the right side call.

Let us elaborate further, by considering a possible memonfiguration at the return statement of the
Tr eeAdd() function. In particularpe? in Fig. 3.28. This state is found when traversing througH taet
selector twice from the root element. Reaching the retuatesient for this configuration means that we

Compilation techniques based on shape analysis for pdiatsed programs

3.4. Refining interprocedural analysis 85

t 1 tleft _ ,
sg sg
pll
o

rfslly @

sl s12 sll s12
(left) (right) (left) (right)
sl3 sl4 s13 sl4
(left)(right) (left) (rlght)

sl5 sl6

(Left) (rignt) £ 3E

clsly=<pll,sll,,sl2,,rfsllo>
clslpp=<sllj,sl3,,sl4o,rfsl2o>
cls2,,=<s12;,5130,5140,rfsl2:>
cls3,2=<s13;,5130,5140,rfsl2:>
cls4n2=<sl14;,s13,,81l4,,rfs12:>
cls5p2=<s13;,513,,5160,rfsl2,>
cls6y,=<s13;,5150,8140,rfsl20>
cls7p2=<s13i,5150,8160,rfsl2:>
cls8pp=<s14i,s13,,5160,rfsl2,>
cls9,p=<s14i,s150,5140,rfsl2,>
cls10,,=<s14;,s155,5160,rfs12:>

clsly=<pll,sll,, sl2,,rfsllo>
clslpp=<sll;,sl3,,sl4o,rfsl2o>
cls2,,=<s12;,5130,5140,rfsl2:>
cls3,,=<s13;,s135,s140,rfsl2o>
clsd4n2=<sl4;,s13,5,s514,,rfsl2,>
cls5p2=<s13;,5135,5160,rfsl2,>
cls6,2=<s13;,5150,5140,rfsl20>
cls7p2=<s813;,s5150,5160,rfsl2,>
cls8pp=<s14i,s135,5160,rfsl2,>
cls9o=<s14i,5150,8140,rfsl2:>
cls10,,=<s14;,s5155,5160,rfs12:>

Abstraction from concrete to abstract domain

Return to left side call,
st.4: leftval=TreeAdd(tleft)
RTCrec (sgt, {t, tleft, tright},<tleft, t>,0)

Figure 3.27: A binary tree abstracted to the abstract donaaith then used for returning to the left side call
in Tr eeAdd() .

Abstraction from concrete to abstract domain

clsly=<rfpll,slli,sl3,,s12,,rfsllo>
clslnp=<pll, s13;,s15,,5160, rfs12c>
cls2,y=<pll,sl3;,sl4o,5150,rfsl2,>
cls3p,=<pll,sl3;j,sl4s,5175,rfsl2,>
cls4n2=<pll,sl3i,sl6g,s170,rfsl2,>

Return to left side call, Return to right side call,
st.4: leftval=TreeAdd(tleft) st.9: rightval=TreeAdd (tright)
RTCyec (S9°, {t, tleft, tright},<tleft,t>,Q) RTC,..(s9%, {t,tleft,tright},<tright,t>,Q)

sgt

clsly=<pl2,sll;,sl3,,s12,, rfsllo>\/

Figure 3.28: The use of force pseudostatements to filtemopitdper contexts when returning to different

call sites.

have already traversed the left and right children ftd3nand stored in it the sum of the reachable elements

clslnp=<pll, s13;,s15,,5160, rfsl2c>
c152n2:<p11,513;,5140,5150,rf5120>\/
cls3p,=<pll, s13;,8140,5170, rfs12,>
clsdnz=<pll, s13i, 5160, 517, rf5125>y/
.ee »
i
1
/
/
/
/
//
cls's validated by —-
st.6: fpragma SAP.force (t->left==tleft)

clsly=<pl2,sll;, s13,, 812, rfsllo> X
clslpp=<pll,sl3;,sl5,, 5160, rfs12:> X
cls2p,=<pll,sl3;,sldo,s15,,rfsl2,> X
cls3,,=<pll,s13;,sl4e, 5170, rfs12,> X
clsdn2=<pll,sl3;i,sl6e,517,,rfs125> X
.ee)

-

cls's removed by ———
st.11l: #pragma SAP.force (t->right==tright)

from| 3. The shape graph that corresponds to this memory configorists g°.

University of Malaga

86 Chapter 3. Interprocedural shape analysis

As discussed previously, in our scheme every shape grapineltat the return statement of a recursive
function must be passed to the recursive call sites as dy@sesult of a previous recursive call. If we con-
sidersg? for the change of context to the left side recursive call@ite. 4), we obtainsg*, wheret | ef t
now points to the node pointed to byin the previous contexs@?). On the other hand, if we consideg?
for the change of context to the right side recursive ll.(9), we obtainsg®, wheret r i ght now points
to the node pointed to by in the previous context.

However,sg® does not make sense as a valid shape graph abstraction feudbessors of the right
side call, becauser i ght now points to the node reached through>| ef t , not throught - >ri ght . A
mirror case would happen if we had traversed through et , thenr i ght path from the root imt?,
and we were trying to return to the left side call. In other @8rwe may mix contexts resulting from the
left side call as returning to the right side call and viceeer

We can prevensg® from progressing through the successors of the right sitldogaising the force
pseudostatemergt . 11: #pragnma SAP. force(t->right==tright). Everycls from CLSy1
andCLS,, features selector linkl 3, which connect$11 to n2 throughl ef t . As a consequence, these
sets are left empty, because ailos in them satisfies the condition expressed by the force pstagment.
The subsequent normalization process yields an empty gtia@tefore no new graph progresses frog?
to be analyzed by the next successors of the right side call.

By the same mechanism, pseudostatersént6: #pr agma SAP. force(t->l eft==t | eft) fil-
ters out improper shape graphs for the successors of tredeftall site. Note though thag* in Fig. 3.28
is a valid shape graph to return to the left side call. Thipshgraph is not filtered out byt . 6, as it ver-
ifies that throught - >I ef t we find the node pointed to iyl ef t . Therefore, we are achieving a proper
filtering of contexts between the left and right side callsr & full reference on the behavior of the force
pseudostatements, you can refer to Appendix A.

fun(fpl, fp2, ...){
tr: x=y->sel ;
rcs: fun(x,ap2, ...);

f1: #pragma SAP. force(y! =NULL)
f2: #pragm SAP. f or ce(y- >sel ==x)

return;

Figure 3.29: General scenario of applying force pseudastants to filter out improper contexts for recur-
sive analysis.

Next, we will establish the conditions that we need to safetprporate these force pseudostatements to
filter out improper contexts for recursive analysis. Fos fhirpose, we consider the generalized presentation
of a recursive functiori un() in Fig. 3.29. It features a traversing statement lab¢ledand a recursive
call site labeled cs, that recursively call§ un() with the acquireck as actual parameter. This scenario is
typical of recursive traversals of dynamic data structufé® two kinds of force pseudostatements discussed
in this section are added as the first successors of the taligth labelsf 1 andf 2, to filter out improper
contexts for recursive analysis.

For the scheme presented in Fig. 3.29, force pseudostaterdateledf 1 is correct if the following
conditions hold:

Compilation techniques based on shape analysis for pdiatsed programs

3.4. Refining interprocedural analysis 87

e Pointery is not written killed) betweert r andr cs.

e Pointery is a local pointer or formal parameter foun() ,i.e.,y € PTRsyn.

Firstly, consider that the access througin t r ensures thay is notNULL at that statement, since we
assume code correctness and therefore no NULL dereferaneesxpected. Then, we need to guarantee
thaty is not modified from the point where it is used to assigrtio the moment the force pseudostatement
f 1 is analyzed. Note that we consider actual parameters pagsgdue, so even ip2inrcsisy, it will
not be modified as it is a local or formal parametef im() .

Force pseudostatemein? is safe to apply if the following conditions hold:

e Pointersx andy are not writtenKilled) betweert r andr cs.
e Pointersx andy are local or formal parameter foun() ,i.e.,x,y € PTRs yn.

e There is no write through selecteel either in the body of un() or in any function called from
fun().

This way we ensure thatandy are not modified betweernr andr cs. Furthermore, no write through
thesel may be performed so that the conditipn>sel ==x can hold safely. Of course, it might be the
case that some value througlel is written that does not affect the condition we are congidehere.
However, since the insertion of the force pseudostateniemsrformed in the Cetus-based preprocessing
phase, we do not have access to shape information at this pbiese conditions could be overly restrictive,
but they work just fine for typical recursive traversals ohdgnic data structures.

3.4.3 Paired selectors property

There is yet another undesired effect that occurs in reaiesialysis, particularly with tree-like data struc-
tures. This effect is found for summary nodes that abstmgtral jumps back of a tracked pointer along
recursive flow path and some other selectors related to it.

Consider shape grapg? in Fig. 3.30. It shows a possible abstraction found at thermestatement
of theTr eeAdd() function (Fig. 3.26), where we have followed an uncertaimbar of calls through the
left child from the root, reachingl as the node pointed to hyin the immediately previous call. From
there, we may have taken the left or right path and traverdideachildren belown1 in the tree, beingn2
the node pointed to by the current value of poirtterNote how inn4 we have accumulated the memory
locations that have been traversed through the left chilld. déhe previous locations of pointerare traced
back by the recursive flow selectdfs se; .

We return now to the previous context, by calliR§C; ¢, obtainingsg? (still Fig. 3.30). In the process
of returning to the previous context at the left call sité,ef t now points to the node previously pointed
to by t, t now points to the node previously pointed to bys iy, andt (¢ ptr points to a new node
materialized from the summary noaet in sg®. To sum up, we have traced back to the shape graph
abstraction in the context of the previous left side resersall.

Consider nowcl s2,4 in sgt. Recursive flow selector linkf sl 1 and selector links| 1 are both
registered with the incomingnd outgoing attributes. Takef sl 1, andsl 1;, for instance. All thic| s is
saying, regarding these links, is that from the currenttionaabstracted bn4 we may go through | se|
to another location abstracted by, and that from another location abstractedngdythe current location
can be reached throudhef t . That “other location” that ¢ se) IS pointing to from the current location

University of Malaga

Chapter 3. Interprocedural shape analysis

88

rfsl2
(trese1)

clsly=<rfpll,sl2;,s13,,s514,,rfsl2,>

(X L]
clslpg=<rfsl2;,sl2,,s15,,rfsllo>
cls2p4=<rfsll;,sll;,sllo,slbo,rfslly>

Return to left side call,
st.4: leftval=TreeAdd(tleft)
RTC,ec (89!, {t, tleft, tright},<tleft, t>,J)
(including subsequent force pseudostatements)

sg?
rfsll

(trese1)

rfsl2
sll

(right) coe
clslpy=<rfpll,sl2;,sl3,,sl4,, rfsl2,> V/

clslpys=<rfsl2;,sllj,sl2,,s15,,rfsllo> V/
cls2p5=<rfsl2;i,sllij,sllo,sl5q,rfslle> ><

oo
|
cls2 g involves a loss in precision, — _ _ _ -

as it loses the relationship between
selector left and recursive flow selector t,fse1

Possible concretization from
abstract to concrete domain
L}
1

rfslc3 -
(trese1)

(c)

(tresel)

Figure 3.30: (a) A shape graph found at the return statemé@mtéeAdd() . (b) The shape graph obtained
after applyingRTC; ¢ for the left side call and subsequent force pseudostatenoeet the graph in (a). (c)
A possible concretizacion of the graph in (b) for the coreedamain. Note how the relation betwedeef t

andt tsel may be lost.

Compilation techniques based on shape analysis for pdiatsed programs

3.4. Refining interprocedural analysis 89

does not need to be the same “other location” that is poirtaak througH ef t . Thus, the materialization
operation must assume that any combination otthee andl ef t links is possible. This means we may
obtaincl s1,4 andcl s1,5 in sg?, which keep the relation that from4 we point ton5 throught el ,
and fromn5 we point ton4 throughl ef t . This matches correctly with the binary tree data structBrg
we may also getl s2,5, wheren5 is not pointing back ton4 throughl f t , but to other location also
abstracted im4.

Memory configuratiomt? in Fig. 3.30 shows @oncretizationfor this case in the concrete domain,
wherel 1 is concretized based arl s1n4 in sg? andl 3 is concretized based arl s2,5. It is easier to
see in this concretization the effect that we want to avoid.

Furthermore, this inaccuracy propagates in subsequetéxtarhanges finally producing cycles in the
tree, where children can point to their parents. This supp@sloss of accuracy in the shape of the data
structure that we need to avoid for correct shape abstraatid subsequent client analysis. The originating
factor is that thd ef t andt ;¢se links are not interrelated in the summary node. Therefdre analysis
does not have enough information to rule out the matert@izgossibilities that induce a lack of precision.

To solve this shortcoming we introduce a new property whiebgs information about how pair of
links relate to each other in a recursive data structure. &veenit thepaired selectors properfyor just PS
property. The value annotated by the property is the setefrielated pairs of selectors with their attributes.

Consider Fig. 3.31, which mirrors the case just presentedvith PS property information. lisg3
we find the same shape graphsas® in Fig. 3.30, buin1 andn4 are annotated with the PS property. The
property map establishes that fof we havePPMps(n4) ={<t rtsel i, | €ft o>, <l efti, t tsel 0>}
This means that the recursive flow seledtefse is paired with the selectof ef t in two possible ways:
when one of them is incoming from other node, the other is th&going to thatsamenode, andhot to
any other. The property establishegantractwith regards to these two links in two neighboring nodes:
for acl s that relates two neighboring nodes through any of the liskée€tor or recursive flow selector)
recorded in the PS propersy least oneof the pairings recordeghusthold.

Eachcl s for n5 in sg* must verify<t ;fse| i, | €ft o> or <l eft, t ;fsel o> to be valid. Non
conformingcl s’s were removed at the last stage of materializationdfrom n5. For examplen4 andn5
are connected, as directly neighboring nodes; bgl 2=<n4, t ;¢se1, N5> andsl 2=<n5, | ef t, n4>.
Coexistent links setl s1ps=<rfsl 2;, sl 1;, sl 2o, sl 5q, rfsl 15> in sg* in Fig. 3.30 verifies the
<trtsel i, | €f t o> relation withr f sl 2; andsl 2,. Thereforecl s1,5 passes the filtering imposed by
the PS property and it is present bottsig? (Fig. 3.30) andsg*(Fig. 3.31).

However, cls2,5=<rfsl2;,sl1j,sl1y, sl5,rfsl1,> in sg?® does not verify
<trtsel i, | eftyo> (sl 2, does not appear ikl s2,5) nor <l efti, t fsel o> (there are no links
to support that relation betweem and n5). The materialization operation takes into account these
considerations, andl s2,5 is not allowed to exist isg*. One possible concretization of shape gragh
is shown as memory configuratiorc? (Fig. 3.31(c)), where the appropriate relationship betweg el
andl ef t is preserved.

As we progress in the tree analysis, the summary noggn for the locations that have been
pointed to by instances of the tracked pointein previous recursive calls (like5 in sg#), will hold
the following value of the PS propertyP Mps(Nsurm) ={<t risel i, | €fto>, <lefti, t tsel 0>,
<trfseli,righto> <righti,t tsel_o>}. Inother words, we acknowledge the fact that the recursive
flow selector t; se is related either with theef t or ther i ght selectors.

Finally, the set of properties defined for our shape analysigategy is configured as
PROP={t ype, si t e, t ouch, PC, PS}. The new instrumentation domain for the PS property is défine
as follows:

University of Malaga

90 Chapter 3. Interprocedural shape analysis

.oe
clsly=<rfpll,sl2;,s13,,s14,,rfsl2,>
.oe

clslpg=<rfsl2;,sl2,,s15,,rfslle>
cls2,4=<rfsll;,sllij,sllo,sl50,rfslly>

Return to left side call,
st.4: leftval=TreeAdd(tleft)
RTC,.. (59°, {t,tleft, tright},<tleft, t>,Jd)
(including subsequent force pseudostatements)

4
rfsll sg
(trm;?l)
rfsl2
(trtse‘l)

clslys=<rfpll,sl2;,sl3,,sld,,rfsl2s>
(113

clslps=<rfsl2;,sll;,sl2,,sl5,,rfslle>

Possible concretization from
abstract to concrete domain

rfslc3

(treser) - pc‘:(t)
14 J%,
l rfslc2 : slc3

(tresel) (left)

(c)

Figure 3.31: (a) A shape graph found at the return statemehtéeAdd() , with PS info. (b) The shape
graph obtained after applyifg@T G ¢ for the left side call and subsequent force pseudostatenoeet the
graphin (a). (c) A possible concretizacion of the graph Jrf@gbthe concrete domain. Note how the relation
between eft andt ;tse IS preserved.

Compilation techniques based on shape analysis for pdiatsed programs

3.4. Refining interprocedural analysis 91

e Ppgs is the domain for the propertgr op=PS and it is defined as a set that contains the pairs of
selectors with attributes that establish input-outpudtiehships over nodes:

Pps={<sel 1411, Sel 2512>s.t.sel 1,sel 2 SELURFSEL,attl,att2ec{i|o} Aattl
#att2}

The compatibility criterion for the PS property is diffetehough than the equality criterion presented
so far. Two nodes1l andn2 are compatible regarding the PS property if they have sorhear the
property, or if they do not have any value for it. In the caseahpatibility, the values of the properties are
simply added to the resulting summary node. This way, we saizminformation of paired selectors at the
same time that we summarize nodes. This controls the graittiteasumber of nodes with different values
for the PS property. Th€onpat i bl e Property() function presented in chapter 2 is now completed
as shown in Fig. 3.32.

When a new node is created bynal | oc() statement, the PS value for the node is initialized to
empty, provided the PS property was activated for the aizaly¢ew values may be added to the property
when performing linking statements; >sel =y. Paired selectors are removed when they no longer hold
when performingk=y- >sel or x- >sel =NULL statements. For example, nodé in sg* (Fig. 3.31) is
materialized from summary noaes. While the PS value fon5 is PPMps(n5) ={<t ;tsel i, | ef t o>,
<lefti,trisel o >}, fornd we have jusPPMps(n4d) ={<l ef t, t rtsel o>}. Thereis noincoming
rfsl witht fse for n4, so the paixt r¢sel i, | €f t o> is clearly no longer applicable to4, and it is
removed from its PS property during the materializatioroimed in the change of context.

To sum up, we introduce theaired selectors propertip provide further finesse for node materialization
in the presence of interrelated pairs of links in summaryesodiowever, the PS property is not only useful
for recursive analysis, but also for capturing the shapaypfiata structure whose elements are linked by two
or more selectors with input-output relationships, such@subly-linked list. Doubly-linked structures pose
a challenge for shape analysis techniques. We will providengles for these structures in the experimental
section.

Conpati bl e_Property()
Input:n1, n2, pr op € PROP # two nodes and a property
Output: TRUE/ FALSE

If (pr op==t ype Vv prop==si teV prop==t ouch Vv prop==PC)
return(PP Mpr op(N1) ==PPMprop(N2))
If (pr op==PS)
If (PPMps(nl) # 0 APPMps(n2)=0)V (PPMps(nl)=0 A PPMps(n2) #0))
returnALSE)
else
return(TRUE)
end

Figure 3.32: Th&Conpati bl e Property() featuring propertiest ype, si t e,t ouch, PC, andPS.

A similar mechanism to our PS property was introduced in ¢4]led cyclelinks propertyto preserve
relationships of paired selectors, tailored for doubhkdid lists. Our PS property is less restrictive when
driving the materialization operation and that makes itadlé for the recursive analysis of trees, as well.

University of Malaga

92 Chapter 3. Interprocedural shape analysis

3.5 Related work in interprocedural shape analysis

We discuss now some related work regarding interprocediiagbe analysis. The first approaches to shape
analysis only supported programs without functions or pdoces, such as [42], [43], [44], [28], [26], [27]
or [29].

There are three main works ([46], [47], [48]) built as exiens to the 3-valued logic analyzer (TVLA)
[45], that provided interprocedural support for shapeysial Each of these works presents its own charac-
teristics. We discuss them next.

As pioneers within graph-based shape analysis, Rinetatyagiv [46] explored the idea of abstracting
the Activation Record stacks a new entity in the graphs to track the locations of pdntea sequence of
recursive calls. This simple idea and a few new predicagd gn interesting interprocedural shape analysis
technique, whose use is only reported for singly-linkets lend that suffers from scalability problems.

Jeannet et. al [47] rely on the computatiorsafnmary transformerf®r functions, by solving data-flow
equations with modified operators. This is done by using dlowcabulary of predicates to encode the
relationship between input and output states. Their arsalgsvery costly, to the point that it is unable
to complete for some simple programs that manipulate bitr@ss, due to combinatorial explosion of
possibilities in the analysis.

Rinetzky, Sagiv, and Yahav [48] improve the previous effddr interprocedural support in 3-valued
shape analyzers with a system that relies on context chamgg wpon entering to and exiting from func-
tions, and some specific predicates. The key aspect of thaliysis comes from its ability to reuse computed
function summaries by means of a powerful tabulation atigori However, there is a whole range of pro-
grams that present so-calledtpoints which involve certain patterns of node linking that areupported
by their technique.

All the works derived from the TVLA system require the des@rspecificpredicatesthat encode the
characteristics of the analyzed data structure. Althougldipates for the analysis of doubly-linked lists
were identified in [29], they are not used for the implemeatet of [46], [47], or [48]. Consequently, no
tests with doubly-linked lists are reported for these worksach of the works in TVLA requires differ-
ent predicates, albeit they share some common ones. Thepaigpe predicates are found by the analysis
designer and require expert knowledge, although [57] thices machine learning mechanisms to automat-
ically find recursive predicates.

Independently to these works based on TVLA, Hackett and iuf§i3] devised interprocedural data-
flow equations and a worklist algorithm for their modular phabstraction based dracked locations.
They are able to analyze programs for a memory leak detecliomt with significant speed. Their results
are based on the accuracy of the underlying points-to aisalgguired to build the graphs. When it fails to
detect enough disjoint regions, the shape of the data steuis not accurately detected, the number of heap
configurations rises uncontrollably and the analysis fdileey present limitations in the kind of analyzable
structures, not supporting doubly-linked lists. Latere@m and Rugina [58] design a specific approach to
handle doubly-linked lists, this time with no concern foreiprocedural support.

Gotsman, Berdine, and Cook [59] create their own interptoca shape analyzer based on separation
logic. It exploits spatial locality in the abstraction, aisdailored for use solely with linked lists (singly- or
doubly-linked) and trees. The support of another kind afcitires would require redefining the inductive
predicates used as the base for the design. It supports addunumber of cutpoints in the analysis of
recursive functions, treating them just as another paranfet the call. The number of supported cutpoints
must be specified as parameter for the analysis. The presénuoare cutpoints than the number set would
result in imprecise abstractions.

Compilation techniques based on shape analysis for pdiatsed programs

3.6. Experimental results 93

In the design of our extensions for interprocedural ang)yse have been inspired mainly by the works
of Rinetzky et. al. From [46] we borrowed the idea of abstracthe information needed for recursive anal-
ysis from theActivation Record Stackn our approach, this is done by adding new links to the abgtn.
Based on [48], we developed our own variation of the interpdoiral worklist algorithm, context change
rules, and tabulation mechanism. Finally, we also develapg own set of properties to solve some short-
comings found in the analysis. We have achieved a technigpjgosting a greater range of structures and
with better performance than any of the TVLA approaches knoas we shall see in the next section. It
must be stressed that although our work shares ideas witfMbhA framework we provide a new, unrelated
shape analysis technique.

Regardingexpressivenessome of these works can provide more information about #te structures
than our approach. For example, [48] recognizes that angditinction returns a permutation of elements in
the input, and [47] is able to find out that reversing a liscewields the same list. However, we think that
kind of information is tailored fowerificationclients and is not so important for data dependence detgctio
which is our main concern.

In our approach, we do not impose a restriction on the kindratture to analyze, being able to obtain
correct abstractions for structures that cannot be pigadedras pure trees or lists. In the case of cutpoints,
our analysis is not able to reuse computed summaries for idmy but it is able to continue the anal-
ysis with the whole heap. This results in slower analysisdoyiports a greater variety of structures and
algorithms.

3.6 Experimental results

We have expanded the shape analyzer implementation oferh2ptith the elements introduced in this
chapter, to fully support interprocedural, recursive paogs based on dynamic data structures. We have
conducted some experiments with the augmented shape analyd we describe the results and reflect
upon them in the present section.

3.6.1 Interprocedural suite for comparison with related wak

We first conducted some experiments over a simple interguyeésuite. The purposes for these tests were:
(i) to prove that the algorithm obtains precise memory alositons in a variety of recursive algorithms that
manipulate common dynamic data structures, and (ii) to oredss performance in terms of analysis time
and required memory compared to [48], a landmark relatedk Wt improves upon previous efforts in
[46] and [47]. We have considered some small programs tredtwdigh singly-linked lists or binary trees.
These programs are also tested in [48], which allows us &bksih a common ground for comparison. All
programs are complete, in the sense that they include theaéitbn of the structures used. For this analysis,
the propertieprevious call(PC) andpaired selectorgPS) were used.

Both [48] and our method are able to determine that the iaagsiof the structure are preserved after
the call to the recursive functions. This means that for ifteests, if the function is called with an acyclic
singly-linked list, then the output is also an acyclic siatjhked list, i.e., no cycles have been introduced in
the list. For the tree tests, if the input is an unshared bitvae (no child has 2 parents), we verify that the
shape is preserved at the output.

We show the results for these experiments in Table 3.1. Nexath program we display a short
description of it. The two last columns in the table preséiat comparison in analysis time (measured
in seconds) and memory consumed (measured in MB) betweaedbts presented in [48] and our own

University of Malaga

94 Chapter 3. Interprocedural shape analysis

results. The testing platform for [48] is a Pentium M 1.5 GHithml GB. Our platform is very similar:

a Pentium M 1.6 GHz with 224 MB. In all cases our method runsigmicantly shorter times, while
obtaining shape graphs that model precisely the effecteofabursive functions. The memory consumed
fits in a block of 1.9 MB for all the list tests. For the tree teist never goes above 4 MB. In every case, our
need for memory is clearly less than that of [48].

Benchnar k | Description | Time[48]/this | Space[48]/this
Programs that create and nmani pul ate singly-linked lists
1-createlL Creates a singly-linked list 9.3/ 0.09 2.3/ 1.9
2-findL Finds an element in a |ist 37.1/ 0.49 3.6/ 1.9
3-insertlL Inserts an element in a list 46.8 / 0.38 5.4/ 1.9
4-del etelL Del etes an element in a list 35.8 / 0.37 3.9/ 1.9
5- appendL Appends a list at the end of another 22.5 / 0.56 3.9 /1.9
6-reverselL Reverses a list (exanple in Fig. 3.1) 21.0/ 0.36 3.4 /1.9
7-revAppL Reverses a |ist appending reversed part 41.7 | 0.45 4.3 /1.9
8-splicelL Splices a list into another 33.6 / 0.48 4.8 /1.9
9-splicex2L Splices 2 lists into a 3rd 36.5/ 1.25 5.0 /1.9
Programs that create and nani pul ate binary trees
10-createT Creates a binary tree 14.3 / 5.02 2.6 /1.9
11-insertT Inserts an elenent in tree 49.6 / 19.4 5.6 / 3.2
12-findT Finds an element in tree 105.7 / 31.45 6.5/ 4.0
13-height T Finds out tree height 76.1 / 15.90 5.4/ 2.9
14-spliceLeftT | Add tree as leftnost child 35.7 / 6.28 5.3 /7 2.1
15-rotateT Exchange children in every node 57.1 /6.12 4.9 /2.2

Table 3.1: Comparison of analysis times and required metmeryeen the approach of Rinetzky et. al. and
our method, for a small suite of recursive algorithms thahimaate singly-linked lists and binary trees.
Time is measured in seconds, space in MB.

Another difference between the proposal in [48] and ouris, ke asymptotic complexity of the compi-
lation algorithms. For programs without global variablesing nv the maximum number of pointer formal
parameters and local pointer variables, the worst case domplexity for [48] isO(2(2™)), whereas in
our case we have found it is lower than(nv™). Although our technique is still very complex, these
experimental results indicate that the worst case behayimot reached in practice.

3.6.2 More realistic benchmarks

Once we have checked that our approach yields correct shspetions in recursive algorithms dealing
with dynamic data structures and that it compares favorabhelated work, our next concern is for the
analysis of more realistic benchmarks. For that, we havsidered the following recursive programs from
the Olden suite [30]:

1. TreeAdd. Already presented in this chapter (section 3.4.2), thigiiam creates and then traverses
a binary tree (Fig.3.33(a)) summing values along the tealerThe partial sums of the subtrees are
written in every node in the tree, as in [56].

2. Power . This program creates and then traverses a multileveltatejadepicted in Fig.3.33(b). The
struct root (R)element points to an undetermined humbesof uct | at eral (L) elements
through a pointer array. Each of teér uct | at er al elements connect recursively to other ele-
ments of the same type, forming singly-linked lists. Besjamct. element points to a singly-linked

Compilation techniques based on shape analysis for pdiatsed programs

95

3.6. Experimental results

list of st ruct branch (B) elements, which in turn point to seversi r uct | eave (Lv) ele-
ments through a pointer array. This programs features a learsgructure in a complex control flow
of nested recursion (recursive functions that call to otieeursive functions), as each level in the
structure is traversed.

3. Bi sort. Thisis another benchmark from Olden that creates and mkatgs a binary tree (Fig.3.33(a)).
This program features a recursive function that travefsedree once and calls to another recursive
function that repeatedly traverses the subtrees from tiremtuevel. This programs presents another
case of nested recursion, with the additional complexitjnaf recursive calls per recursive function
(one for each branch of the tree).

The results gathered for ti&- Tr eeAdd, 17- Power , and18- Bi sor t benchmarks are displayed in
Tables 3.2 and 3.3. In every case the dynamic data strucmeesorrectly captured, preserving the defining
shape characteristics. The testing platform for these itest 3GHz Pentium 4 with 1GB RAM. These three
programs are analyzed with thesvious callandpaired selectorproperties enabled, for adequate recursive
analysis. Additionallyl7- Power uses thdype propertyto differentiate between types of elements in the
structure (Fig.3.33(b)).

R. struct root

L. struct lateral
B. struct branch
Lv. struct leave

(b)

(=] (=] e e T e
o0
ﬂ =1 ot Eﬂ! T T=11 - OT=T] =T -

Figure 3.33: The data structures used for the recursivehmeaiks from Olden: (al6- Tr eeAdd and
18-Bi sort; (b)17- Power .

Benchmar k Ti me Space | Code stnts. Anal yzed stnts. Shape graphs
16- Tr eeAdd 6.33 s | 3.9 MB 31 2,163 5,763
17- Power 8.13 s | 6.4 MB 68 3,541 6,172
18- Bi sort 1 m39.47 s | 9.2 MB 50 11, 716 39, 811

Table 3.2: Metrics of performance and problem size for rgigarbenchmarks from Olden. The testing
platform is a 3GHz Pentium 4 with 1GB RAM.

University of Malaga

96 Chapter 3. Interprocedural shape analysis

Benchmar k Sg’s per code stnt. Avg. nodes per sg (max) | Avg. cls's per sg (nmax)
16- Tr eeAdd 185. 90 3.38 (5) 28.03 (92)
17- Power 90. 76 7.68 (11) 28.56 (49)
18- Bi sort 1,426.71 5.50 (7) 62.51 (128)

Table 3.3: Shape graph complexity measures for recursogrgms.

We observe analysis times in the range of seconds, 18tBi sort clocking above one minute. The
memory consumed takes a few megabytes, under 10 in the wamst dhe number of generated graphs
is well into the thousands, peaking at nearly 40,0001f8+ Bi sort . The ratio of shape graphs per code
statement$g’ s per code stnt. in Table 3.3) is higher than the intraprocedural tests frwapter
2. The complexity of the graphs is in the range of the numberodes ana| s’s already registered for the
intraprocedural tests in chapter 2.

The results from Tables 3.2 and 3.3, and the comparison hgthesults of the intraprocedural programs
in chapter 2, allow us to draw the following observations:

e As stated previously, the analysis time depends on the nuofbgenerated graphs, which in turn
is affected mainly by the amount of analyzed statements. nthmber of shape graphs per code
statement is higher than in the examples for intraprocéduralysis, explored in chapter 2. This is
specially so for the programs featuring more than one raaucall per recursive function, as it is the
case for the benchmarks manipulating tree8-(Tr eeAdd and18- Bi sort). Naturally, the fixed
point takes longer to achieve when there are more possitinrpoints for the shape graphs obtained
at a return statement in a recursive function.

e The complexity of the shape graphs is mainly determined byd#ta structure abstracted. For exam-
ple, the data structure ih7- Power is more complex than that df6- Tr eeAdd, and that explains
why the first presents more nodes arics’s per graph than the latter. In these tests though, we also
find that the size of shape graphs is affected by the way thetate is traversed. Consider the binary
tree data structure used hy- Tr eeAdd and18- Bi sort . Both programs make use of the same
data structure. However, the double traversal performeBinBi sort uses more pointers to tra-
verse the tree and therefore the graphs are more complgxhdve more nodes and marés’s per
node than those df6- Tr eeAdd. The maximum number of nodes is reached @ Power , the
benchmark with the most complex structure, but still the imann incl s’sis found forl8- Bi sor t
due to its double traversal with two nested recursive fomsti

As conclusion, the tests presented so far provide evidemateour extensions for recursive analysis
over the base technique based on coexistent links set yieldsct abstractions for common dynamic data
structures in a variety of recursive algorithms. This &iillds in the case of structures several levels deep like
that of17- Power and nested recursive calls featuring two recursive catlifypetion, like in18- Bi sort .
Besides, the analysis cost is lower than that of comparadpeoaches [48], [46] and [47].

3.6.3 Doubly-linked structures

As the last experiments for this section, we wanted to tesability of thepaired selectors propertyp deal
with doubly-linked structures. For that, we have run sparse matrix by sparse vectandsparse matrix
by sparse matribenchmarks presented in chapter 2, in a new version basedutntyeinked lists, rather
than singly-linked lists. The results for these tests amwshin Table 3.4. The singly-linked list version
of these benchmarkdvat ri x x Vector(s) andMatri x x Matri x(s)) are compiled here next

Compilation techniques based on shape analysis for pdiatsed programs

3.7. Summary 97

to the doubly-linked versionsl@- Matri x x Vector (d) and20-Matrix x Matri x(d)) of the
same benchmarks for easier comparison.

The base version used for these programs is the pruned wevdiich avoids analyzing the statements
that are not involved in the structure creation. The doliblged versions use thaaired selectors property
to correctly manage the doubly-linked character of thecsting, and thesite propertyfor separating nodes
from different structures. To isolate better the effect o paired selectors propertythe singly-linked
versions of the sparse matrix benchmarks also ussitbg@roperty although it is not necessary for correct
shape abstractions.

Note that in the previous tests in this section, the use op#ied selectors propertwas necessary for
correct recursive analysis, as the data structures becdoubly linked” when we add recursive flow links.
Forl19-Matri x x Vector(d) and20- Matrix x Matri x(d) however, itis used to correctly cap-
ture thestructure not thecontrol flow

Benchmar k Ti me Space Sgs | Avg. nodes / sg (max) | Avg. cls's / sg (max)
Matrix x Vector(s) 0.28 s | 1.9 MB 612 5.19 (9) 16.22 (33)
19-Matrix x Vector(d) | 0.66 s | 2.4 MB | 1,096 6.25 (10) 17.76 (35)
Matrix x Matrix(s) 3.97 s | 2.7 MB | 2,299 9.43 (15) 43. 49 (83)
20-Matrix x Matrix(d) | 8.97 s | 4.4 MB | 3,804 10. 89 (18) 46.65 (108)

Table 3.4: The sparse matrix benchmarks compared in tmgjlysiinked(s) and doubly-linked(d) versions.

With the use of thepaired selectors properfydoubly-linked structures are correctly captured in these
tests. The results in Table 3.4 indicate an increment inyeverasure of the analysis cost and complexity.
The doubly-linked structures present a small increase apetyraph size, with about one more node per
graph in average, and a slightly bigger numbecb&’s per graph. Likewise, more shape graphs need to
be generated to achieve the fixed point for the analysis. ¥tha small overhead in performance, now we
are able to correctly capture doubly-linked data strustimeadjusting the properties in the analysis. Let us
recall that doubly-linked structures are not dealt with48][or [53].

3.7 Summary

In this chapter we have covered the following issues:

e We have extended a working shape analysis strategy baseakgistent links set to add interproce-
dural support (section 3.2). This has been done by adding:
— new analyzable statements for function calls and functiarn statements (section 3.2.1)

— recursive flow linksto simulate recursive control flow with links in the shape pis (sec-
tion 3.2.2)

— context change rulet® determine the shape graph transformations upon enttriagd exiting
from functions (section 3.2.3)

— updated data-flow equations and new worklist algorithmtised.2.4)

e We have provided a tabulation mechanism that allows theysisaio reuse the computed effect for
functions in the case of similar input (section 3.3).

¢ We have identified common cases where the analysis losesipreand have devised refining mech-
anisms to solve them (section 3.4). Namely we have propd¢eetbiowing:

University of Malaga

98 Chapter 3. Interprocedural shape analysis

— previous call propertyo separate in the abstraction portions of the heap thatlese traversed
from parts that have not yet been traversed (section 3.4.1)

— force pseudostatemertts filter out improper shape graphs abstractions in the poesef more
than one recursive call in a recursive function (section2}.4

— paired selectors propertio achieve precision when several connections exist betwesmory
locations abstracted in a summary node (section 3.4.3)

¢ We have presented related work in the field of interprocédheap analysis, highlighting strong and
weak points (section 3.5).

e We have collected experimental evidence that our technyigleds correct shape abstractions for
common dynamic data structures in a variety of recursivetmarks (section 3.6). Furthermore, the
cost of the analysis compares favorably to related work.

Next, we will use the shape analysis technique describearssfa key tool for data dependence analysis
in pointer-based applications.

Compilation techniques based on shape analysis for pdiatsed programs

Data dependence
analysis

4.1 Introduction

Optimizing and parallelizing compilers rely upon accurstitic disambiguation of memory references, i.e.
determining at compile time if two given memory referencleggs access disjoint memory locations. This
problem, known as data dependences detection is cruciakimus compiler optimizations such as instruc-
tion scheduling, data-cache optimizations, loop tramsédions, automatic vectorization and parallelization.
Unfortunately the presence of alias in pointer-based catbdges memory disambiguation a non-trivial is-
sue.

Knowledge about the shape of the data structure accessibhdieap-directed pointers, provides critical
information for disambiguating heap accesses origindtiog them, and hence to determine that there are
no data dependences between iterations of a loop or betviéerewt function calls. In that regard, shape
analysis can provide such knowledge.

We have conducted our research to develop an accurate asatileshape analysis technique that
can be used as the base tool for a dependence test. We foche detéction of data dependences due
to heap-directed pointers in dynamic data structures ind@mamon scenarios: (i) loops, by identifying
dependences that may arise between two iterations of a loop-¢arried dependences), and (ii) function
calls, by identifying conflicting accesses in differentigal

In our approach, we annotate information about read/wittess during the abstract interpretation
of possibly conflicting pointer statements. This is donehwite touch property This property records
the history of accesses over nodes. This history is createdgdabstract interpretation, as the analysis
progresses toward the fixed point. The heap accesses tiheseghare then used to detect data dependences.

4.1.1 Traversal patterns

We identify two different patterns for the purpose of heagticed data dependence detection, according
to the way the data structure is traversed: 1h@ayand n-waystraversal patterns. For that we consider
how many selectors or pointer fields are traversed in a singlersal step A traversal step indicates the

99

100 Chapter 4. Data dependence analysis

traversal of the data structure involved by one iteratiom tdop, or by one run of the body of a recursive
function.

e The 1-waytraversal pattern is found when the structure is traversefibllowing only oneselector
(or pointer field) for a single traversal step. Thevaytraversal pattern is usually found in loops and
recursive functions with just one recursive call in its body

e The n-waystraversal pattern is found when the structure is traversetbllowing more than one
(namelyn) selectors (or pointer fields) for a single traversal steje fi-waystraversal pattern is
typically found in recursive functions with more than oneussive call through different selectors
within its body.

Fig. 4.1 shows some examples of heap-allocated data gtsctind traversal algorithms. In every
example, the memory locations that have already been axtasthe traversal are filled with a line pattern.
For instance, Fig. 4.1(a) shows a singly-linked list and ways to traverse it, one based in a loop, the other
based on a recursive function. Note that in each step of #lerisal (iteration of the loop or recursive call),
we follow just one selector, in particulaxt . These are examples of thevaytraversal pattern. Fig. 4.1(b)
shows dist of listsdata structure traversed by a piece of code made of two niestesl. The outer loog, 1,
traverses thbeader elements (labeleHl) through theimxt Hselector, while the inner loof,2, traverses
the node elements (labeledl, and filled with a different pattern to indicate that they &maversed by a
different loop) through theinxt Nselector. This is another case of thavaytraversal pattern, as each loop
traverses the structure through one selector for eachrsavaep.

Fig. 4.1(c) shows a binary tree data structure, traversedrbgursive function that takes the left or right
child in each call, depending on some condition. This is laotase of th&-waytraversal pattern, as each
function call produces the traversal to advance through oné selector (although the selector may change
betweenl ft andr gh). Note how the selectors traversed in this example are tfms®l through the
r->rgh->|ft->|ft path. Finally, Fig. 4.1(d) presents the same binary treeetsed with a recursive
function that calls itself through the left and right chédrfor each recursive call, i.e., for each traversal
step, thus establishingZzawaystraversal pattern. Here, many more locations have beeerseg up to the
point shown in the example.

Note that the traversal pattern is not determined solelyhbydata structure, but it depends as well on
the algorithm used to traverse the structure. This way,eadad be traversed with tiewaypattern or the
2-wayspattern. Of course, if a structure has only one kind of sefecttraverse it, such as a singly-linked
list, then it only supportd-waytraversal patterns.

We have elaborated two distinct approaches to detect melyoéd data dependences for the aforemen-
tioned traversal patterns. Next, we shall address thenraeha It should be noted that in this work we
focus on the detection of heap accesseatata fields although the technique described can easily be adapted
for pointer fields(selectors), as well.

4.2 Data dependence detection fat-waytraversal patterns

Let us establish now a view of our heap analysis frameworkipally configured for dependence analysis
of 1-waytraversal patterns. Such a view is displayed at Fig. 4.2. kyaroze the whole process of data
dependences detection fbiwaytraversal patterns in five stages. The figure maps thesesstagalifferent
modules.

For stage onave take the IR resulting from parsing the input program wigius, and use it to identify
heap accessing statements. These statements are then tesmadbtage twaandstage threeof the process.

Compilation techniques based on shape analysis for pdiatsed programs

4.2. Data dependence detection fewaytraversal patterns 101

Traversal based on loop Traversal based on recursive function

n
J, while (n!=NULL) { rec_traverse (struct node *n) {
(a) 1 S R = DXt Xy // do work if (n!=NULL) {
¥ 2 6. e, oo n=n->nxt; // do work
} m=n->nxt;

rec_traverse (m) ;

}

return;

r
Ll: while (r!=NULL) {

TEanXtH pmmmaanx th ,L, // do work
R s s

ldwn ldwn ldwn p=r->dwn;
TN N TN L2: while (p!=NULL) {
(b) F\ :Tr;g(tN F\ :ilnxth F\ :iln\g(tN // do work
SN SN SN =p-> tN;
Ry Ry Raey—-p | prpTnE
R nxtN *nxtN lnxtN rer—>nxtH;
RNk }

rec_ traverse (struct node *t) {
if (t!=NULL) {

// do work

if (cond) {
tnxt=t->1ft;

}else{
tnxt=t->rgh;

}

rec_ traverse (tnxt);

}

return;

rec traverse (struct node *t) {
if (£t !=NULL) {
// do work
tl=t->1ft;
rec_ traverse(tl);
tr=t->rgh;
rec traverse (tr);

return;

Figure 4.1: Examples of dynamic data structures and traleerdVe find thel- way traversal pattern for
(a), (b) and (c), and th2- ways traversal pattern for (d).

Stage twdorms groups of possibly conflicting accesses, dependence groupdn stage threewe add a
touch pseudostatement for every heap accessing statateatified instage ongand found in a dependence
group created istage two

The result ofstage threés a version of the original program instrumented with topshudostatements.
This instrumented version of the program is parsed agaiobtain the pointer statements and control flow

University of Malaga

102 Chapter 4. Data dependence analysis

information to conduct the shape analysisstiage four The shape analysis stage fouris performed with
the touch property enabled so that the touch pseudostaterave effect. Upon abstract interpretation of
these pseudostatements, nodes in the shape graphs ar@asngth access information. The result is the
set ofaccess pairsi.e., pairs of accessing statements registered over the sade.

Heap analysis framework (7-way)

Stage
Touch instrumented
program Add touch
pseudostmt.
: Stage (aD Stage <2>
Identification of Create
Input ~_: | (p%?gnsg) heap accessing dependence
program . Cetus IR statements Heap accessing groups Dependence :
statements groups Stage ! Heap-induced
H] . data dependences
; |, Dependence : in loops or
! Cetus IR Recursive data N test 1 recursive functions
for touch types 1 (1-way traversal)
i instrumented —_ Stage (4
i program Shape analysis Shape analysis :
pre;:)r;::;:mg Pointer with touch proparty Access pairs
statements and enabled P
flow info

Figure 4.2: Presentation of our heap analysis framewotkifiegy the five stages for data dependence anal-
ysis for thel-waytraversal pattern.

Finally, stage fiveof the process performs the data dependence test, by congidbe dependence
groups obtained fromatage thregand the access pairs obtained fretage four As a result, we will obtain
the dependences due to heap accesses found for the loops radisive functions in the program.

To explain our approach to detect data dependences due pioabeasses iti-waytraversal patterns,
we will recover the motivating example that we presentedhiapter 1 of this dissertation. We will use it
to describe the different stages involved in the data deparebs detection. Fig. 4.3 shows the code for the
example in simple pointer statements.

This simple program traverses a singly-linked list copyihg value of one element into the previous
one, effectively shifting the values in the list toward itsaldl. Thel1 loop presents a so-calléolop-carried
dependencewhich is a dependence that exists between two differeratites in a loop. For this example,
the dependence appears as the list element read throudbrpmpin iterationi is written through pointep
in iterationi +1. This produces 8&VARdependence (Write After Read), also calledaati-dependence

We number the statements that have some abstract semantitiofi associated to them. The data flow
information is embedded in the data-flow equations thakedtie analysis. Note that statements accessing
thedat a field are not numbered. They are not recognized as one of theepstatements supported by the
technique, as explained in chapter 2. Their effect will bedeted by the touch pseudostatements inserted
in stage two

Next, we will describe in detail the five stages involved ia tletection of data dependences Xewvay
traversal patterns.

4.2.1 Stage one (1-way)dentify heap accessing statements

Stage on@f our process to detect data dependences due to heap adoesbees identifying heap accessing
statements. These are the simple pointer statements dtbbrevrite data fields of recursive data structures,
namelyx- >f i el d=dat a for a write, anddat a=x- >f i el d for a read. We assume the input program
has been normalized to contain only simple pointer statésrasndescribed in chapter 1.

Compilation techniques based on shape analysis for pdiatsed programs

4.2. Data dependence detection fewaytraversal patterns 103

/1 Declare recursive type "node"
struct node{

i nt dat a;
struct node *nxt;
}oxl,xp,oxq;
int main(){
int val;
1: | =createlist();
2: p=l ;
3: gq=p- >nxt;
L1: while(qg!=NULL) {
4: #pragma SAP. force(q! =NULL)
R1: val =q- >dat a;
WL: p- >dat a=val ;
o P=0;
6: g=p- >nxt ;
}
7: #pragma SAP. f or ce(g==NULL)
8: return;

Figure 4.3: Running example for data dependence deteaainring al-waytraversal pattern.

Note that these heap accessing statements do not haveadsdaistract semantics functions, as de-
scribed in chapter 2. They do not modify or alter gi@peof the structure in any way, therefore they are
not relevant to create and maintain shape abstractionagitive analysis. However, they perform read or
write access to heap elements, so they are completely ngfalior the purpose of dependence analysis.

Fig. 4.4 showd denti fy_heap_acc(), the function used bgtage oneo identify and label heap
accessing statements. It is designed as a pass for the @Qé&tastriicture. It traverses the program IR
looking for pointer accessing statements through poingtadiof recursive data types, i.e., those that have
pointer fields to other heap elements. Each of the heap acgestatements is marked with aocess label
which identifies a heap accessing statement as a heap vaititement\(V) or heap reading statemeiyj (),
also associating a number to it.

For our example, statememtl =g- >dat a is labeledR1, and statemernp- >dat a=val is labeled
WL, which is already shown in Fig. 4.3 for convenience.

4.2.2 Stage two (1-way)create dependence groups

Stage twoof our process to detect data dependenced faaytraversal patterns involves the creation of
groups of accesses that may produce a data dependence. dpadeesses in a program will produce a
data dependence if they access the same field in the samedgoatipri, and at least one of them is a write
access.

In stage twave creatalependence groupwhich are groups of accesses that may produce a dependence.
For that they must fulfill two conditions: (i) the access fiedldhe same, and (ii) there is at least one write
access in the group. Note that the first condition also ire@kccessing through pointers of the same data
type, as type casting is not allowed.

Fig. 4.5 present€r eat e dep_gr oups(), the function used bgtage twao create the dependence
groups. As input it receives the heap accessing statendesified instage oneand the recursive data
types in the program. First, an empty dependence group feryelield in every recursive data type

University of Malaga

104 Chapter 4. Data dependence analysis

I denti fy_heap.acc()
Input: Py r, RECTYPE # IR for the analyzed program, and the set of recursive datsty
Output: ACCSTMI # The set of heap accessing statements

ACCSTMI=0
i =0,j =0
repeat
Getst nt , the next statement i g
Case ¢tnt)
st mt is of the kindx- >f i el d=dat a,
wherex is a pointer to typé# < RECTYPEandfi el d is a data field of
Add access labél to st nt , and incremenit
ACCSTMI=ACCSTMT U st mt
break
st mt is of the kinddat a=x- >fi el d,
wherex is a pointer to typé € RECTYPEandfi el d is a data field of
Add access labd¥j tost nt, and incremenit
ACCSTMI=ACCSTMT U st nt
break
until (P, g has no more statements)
returnACCSTMI)
end

Figure 4.4: The function used lsfage one (1-wayp identify heap accessing statements.

Creat e_.dep_groups()
Input: ACCSTMI, RECTYPE # The set of heap accessing stmts, and the set of recursvéygat
Output: DEPGROUP # The set of all created dependence groups

DEPGROUP=()
forallt € RECTYPE
forall fi el d, data field int
CreateDepGr oupsjerq =0
DEPGROUP=DEPGROUP U DepGr oupsi el d
endfor
endfor
forallstmt € ACCSTMI
Get access field,i el d, and access labdl; , in st nt
DepG oupyiel g=DepG oupsielqg U Li
endfor
forall DepGr ouptijelg € DEPGROUP
If (DepGr oupytj el ¢ does not contain any label of kindt) # A heap writing access
DEPCGROUP=DEPGROUP- DepGr 0Ups; el d
endfor
returnOEPGROUP)
end

Figure 4.5: The function used Isfage two (1-waylo create dependence groups.

Compilation techniques based on shape analysis for pdiatsed programs

4.2. Data dependence detection fewaytraversal patterns 105

(DepG oupsiel g) is created. Here, we assume that the program has been imathab that the data
fields of the different data types in the program are namddrdifitly. For example, if we have two similar
types for lists] i st 1 andl i st 2, then thenxt field of both types must be named differently, sast 1
andnxt 2. All the accessing statements gatheredtage onecontribute with their access labeli(, which
may beRi or W) to the correspondin@epG oupsi el - Finally, all the dependence groups where there
are no write accessing labe\d, , are removed. Finally, the superset of all dependence groEPGROUP,

is returned.

For the running example in this section, we creaée G oupgat a={R1, WL }, as both heap accessing
statements access data fidhit a.

Note that if there are no dependence groups for a prograsiptbans that there are no heap accesses
that could potentially lead to a data dependence, so itasgstiforward to conclude that it is free of data
dependences due to heap accesses.

4.2.3 Stage three (1-way)add touch pseudostatements

We need to reflect in the analysis the effect of heap accessatgments. For this purpossage threeof

our scheme adds a touch pseudostatement for every heagiagcsstement belonging to a dependence
group created istage two A touch pseudostatementouch(x, i d) , is used to annotate the node pointed
to by pointerx with labeli d. In order to capture the effect of the heap accessing statsimhe pointer
used for a touch pseudostatement is the accessing poiténatabel is the access label.

Add_t ouch_pseudost nt ()
Input: Py r, ACCSTMI', DEPGROUP
IR for the analyzed program, the set of heap accessing,simighe set of dependence groups
Output:P’ | r
IR instrumented with touch pseudostatements

CreateP’ |r=P/r
forall st nt € ACCSTMI
Get access pointex, access field i el d, and access labdlj , in st nt
If (Li € DepGoupsielq C DEPGROUP)
Add#pragma SAP. t ouch(x, Li) directive right aftest nt in P’ | g
endfor

returnP’ | r)

end

Figure 4.6: The function used Isgage three (1-wayp add touch pseudostatements.

Fig. 4.6 shows théddd_t ouch_pseudost nt () function, which is used bgtage thrego add the
touch pseudostatements required by our technique. Theonajdta touch pseudostatement is by including
it within a pr agma directive recognizable by owhape analysis preprocessing pdsee Fig. 4.2). The
input for theAdd_t ouch_pseudost nt () algorithm is the program IR, the heap accessing statements
gathered irstage oneand the dependence groups createstage two The result is théouch instrumented
version of the program, i.e., the original source prograoiuising touch pseudostatements @sagma
directives. Note that we only add touch pseudostatementhddeap accesses that belong to a dependence
group, and thus may produce a dependence.

Fig. 4.7 shows our running example with the touch pseudastants inserted bgtage threen bold
typeface. Forexamplst . 5: #pragnma SAP. t ouch(g, R1) contains the touch pseudostatement added

University of Malaga

106 Chapter 4. Data dependence analysis

/1 Declare recursive type "node"
struct node{

i nt dat a;
struct node *nxt;
}oxl,xp,oxq;
int main(){
int val;
1: | =createlist();
2: p=l ;
3: gq=p- >nxt;
L1: while(qg!=NULL) {
4: #pragma SAP. force(q! =NULL)
R1: val =q- >dat a;
5: #pragma SAP. touch(q, R1)
WL: p- >dat a=val ;
6: #pragma SAP. t ouch(p, W)
7 p=q;
8: g=p- >nxt ;
}
9: #pragma SAP. f or ce(g==NULL)
10: return;

Figure 4.7: Running example instrumented with touch pssiadements in bold typeface.

for heap accessing statem@it: val =q- >dat a.

4.2.4 Stage four (1-way)shape analysis with touch property

The program instrumented with touch pseudostatementdtingsfrom stage thregis emitted as a new
source program, then parsed again and processed by ourafelpsis preprocessing pass. The result is the
pointer statements and flow information that are used fostiape analysis module. This shape analysis
must be conducted with the touch property enabled, so thatfflct of the touch pseudostatements inserted
in stage threecan be registered. This is the process involvedtage fourof our data dependence test
strategy.

The result that we obtain frorstage fouris the set ofaccess pairsi.e., pairs of accessing statements
registered over the same node. Whenever a new access labeltated in a node, we check for the other
accesses previously annotated in the same node. All thébfmpgsairs constructed between previously an-
notated access labedsd the newly annotated access label, that contain at least@aatess and therefore
may induce a dependence, are recorded as access pairs. ephesent pairs of accesses that may occur
over the same memory location. The order of the accessesssmped in the access pairs. This information
is meaningful for the purpose of discriminating betweeffedént types of dependences, as we shall see in
stage five

Fig. 4.8 shows th@ouch() function that expresses the abstract semantics operatidoudch pseu-
dostatementt ouch(x, t ouchjg) . It adds the ouch; ¢ label to the value of the touch property for the
nodeni , pointed to byx. For data dependence detectiblouch; 4 is the access label. It also adds ordered
access pairs made from the previous labels in the node arcuithent label. In particular, only the pairs
where one of the accesses is a write, and therefore may pr@ddependence, are stored. For this purpose,
we use thedccessPai r s set, which was initialized to empty at the beginning of thalgsis.

Compilation techniques based on shape analysis for pdiatsed programs

4.2. Data dependence detection fewaytraversal patterns 107

Touch()
Input: sgt=<N!, CLS'>,x € PTR touch;q # A shape graph, a pointer and an identifier
Output:sgk=<NK, CLS*> # A shape graph
CreateN<=N!

CreateCLSK=CLS!
Findni € N€s.t.3pl =<x, ni > C CLSy;
forall t ouch; g2 € PP My ouch(ni)
If (touch;4=W Vtouchjq=W) # If any of the labels stands for a write access
AccessPai rs=AccessPairs U <touchjgy, t ouch;y>
endfor
PP M;ouch(ni)J=PP Miouch(ni) Utouchijgqg
Createsgk=<N¢, CLS*>
returnég®)
end

Figure 4.8: ThelTouch() function for annotating access labels in nodes. Access paircreated too.

Fig. 4.9 shows how the abstract interpretation of the tows#ugostatements proceed for the running
example. Access labeR1 andW. are annotated into the nodes, and the access<pdif WL> is cre-
ated. Coexistent links sets are omitted for simplicity. tNexeach graph we find the current value of the
AccessPai r s set.

The shape graph in Fig. 4.9(a) shows a possible abstractite singly-linked list when entering the
analysis of tha.1 loop. TheAccessPai r s set is empty at this moment. In (b), we show the same shape
graph but the nodes pointed to pyandq has beernouchedby theW. andR1 access labels, respectively.
Note that since this is the firsbuch; 4 for both nodes, no access pairs can be generated. In thegitzggbe
for (c), in the same figure, we display another possible abstm at the beginning of the second symbolic
iteration ofL1. Pointersp andq have moved forward in the list. In (d), we have the graph ateew
abstract interpretation of the touch pseudostatements, iNmlen2 has been touched again, this time with
t ouchj 4 WL. Since there was another annotation withiy, and the new annotation is a write, the access
pair <R1, WL> is created, and added to thecessPai r s set. Note that the access pair preserves the
order of the accesses, i.e., the memory location abstragte@ was firstread with access labeR1, and
thenwritten with access labalM.. Finally, (e) presents the fixed point for the loop, and noeraarcess pairs
have been created.

4.2.5 Stage five (1-way)dependence test

The last stage in the process is the actual dependence tash takes as input the dependence groups
created instage threeand the access pairs collectedstiage four Fig. 4.10 shows the basic algorithm for
identifying data dependencesiawaytraversal patterns.

TheDep_t est _1way() function traverses the dependence groups available acé<hdnether any of
the collected access pairsiccLb;, AccLb,>, contains both accesses within the sdbe@G oupsj | g-
If that is the case, then a data dependence is due. The typeseds labels in the pair is then checked to
discriminate the kind of dependence: flow dependence, apgmidence or output dependence. An output
dependence is registered when two write accesses are foutitefsame memory location, whether for the
same writing statement or for different ones.

The information of the kind of dependence detected can beluse a subsequent parallelization mod-

University of Malaga

108 Chapter 4. Data dependence analysis

sgl AccessPairs=

o 1D

Beginning of 1t
symbolic iteration of 1.1

ng AccessPairs=J

®) 1 G

Atter 18t w1 access

Sg3 AccessPairs=J

P q
)
“ 1 -G~

Beginning of 2"d
symbolic iteration of L1

Sg4 AccessPairs={<Rl‘,W1>}
!
p q /
N /
\Y ‘ /
@ L =GO) —~C—C O~/
< s
<\\\\ /////
After 2" w1 access New access pair, <R1,W1>
Sg5 AccessPairs={<R1l,W1>}

@ L @@

Fixed point for L1

Figure 4.9: The process of access labels annotatistaie four (1-way)

ule, that could transform the program accordingly. For gxamin the case of an anti dependence new
storage could be added in order to solve the dependence.

Note that all access pairs where the access labels do netgoldhe same dependence group, cannot
produce a conflict since they do not access the same field hanefdre no conflict due to heap accesses

Compilation techniques based on shape analysis for pdiatsed programs

4.2. Data dependence detection fewaytraversal patterns 109

Dep-t est _1way()

Input: DEPGROUP, AccessPai rs # The dependence groups and access pairs
Output: DEP # The set of dependences found for the program
DEP=()

forall DepGr oupsi el ¢ € DEPGROUP
CreateDeps el =0
forall <AccLbq, AccLb,> € AccessPairs
If (AccLb; € DepGroupsield A AccLby € DepG oupsielq) # Acc. in samédepG oUpPsiel d
Case €Acclby, AccLb;,>)
<AccLb;=W A AcclLb,=Rj >
Deptiel g=Depsierd U Fl owDep # Flow dependence
break
<AccLbi=Rj A AcclLb,=W >
Depsiela=Depriera U Anti Dep # Anti dependence

break
<AccLb;=W A AcclLb,=W >
Deptiela=Depsiera U Qut Dep # Output dependence, same writing stmt
break
<AcclLb;=W A AcclLby,=W >
Deptiela=Depsiera U Qut Dep # Output dependence, different writing stmt
break
endfor
DEP=DEP U Depsield
endfor
returnDEP)

end

Figure 4.10: The function used lsyage five (1-waylo identify data dependences due to heap accesses.

may arise.

For our running example, the dependence gmepG oupgat a={R1, WL} was created istage three
and access pa#tR1, WL.> was gathered istage four By applying the algorithnbep_t est _1way() we
can determine that there is an anti dependence due to heagsadel andW. in loopL1.

4.2.6 Zero distance data dependences

Our technique is able to find, conservatively, every dateeddpnce due to heap accesses that may arise
in loops or recursive functions that conform to thevaytraversal pattern. On top of that, we can distin-
guish between flow, anti and output dependences. Howe\vsrpften the case that some dependences do
not inhibit parallelism of loop iterations or function calllt is the case afero distancalependences [60].
These are the dependences that arise in the same iteratoologp or the same function call. These de-
pendences are relevant for compiler transformations tivatie statement reordering within a basic block,
but they can be ignored for the purpose of coarse-grain |phzakion. Since our focus is toward depen-
dence analysis to expose thread-level parallelism in polmised programs, then it is important to be able
to determine if a dependence found by our techniqueziera distancedependence or greater-than-zero
distancedependence.

We offer a different approach to detect zero distance degrarasd for the two possible scenarios in the

University of Malaga

110 Chapter 4. Data dependence analysis

1l-waytraversal pattern: loops and recursive functions. For dépeces between iterations of a loop, we
add information about the symbolic iteration of the loophe touch annotation. For dependences between
recursive calls, sometimes it is enough with a simple inspeof the function and its heap accesses. If that
is not possible or insufficient, we can instrumentate thgam further and rerun the analysis for additional
information.

4.2.6.1 Detecting zero distance data dependences in loops

We use the concept dteration vector{60] to provide the necessary information to distinguistozatistance
dependences due to heap accesses in the context of loops.dresence of nested loops, an iteration vector
describes the current iteration for each loop. In our cdeeitération vector records the symbolic iterations
of the loops in the process of abstract interpretation tdvedixed point.

Let us consider now an example to explain how the iteratiactoreinformation is used within our
approach. Fig. 4.11 shows a variation of the running exaimngtég. 4.3. We assume thatiat of listskind
of data structure has been created and it is pointed to bygrain Such a structure is represented in the
concrete domain imc? in Fig. 4.12. The structure is formed by a singly-linked t$theader elements,
each of which points to a singly-linked list albde elements. The loop1 traverses the list dieader
elements, while th& 2 loop traverses the list afode elements, performing the same shifting of values
toward the head of the example in Fig. 4.3. Here, the accbeisland touch pseudostatements have already
been added to the program, i.e., the code shown in Fig. 4.tfeigistrumented program resulting from
stage three

In each iteration of the loop1, a differentheader element is first read through accd®k and then
written through acces#2, thus updating itval ue field. Therefore, there is no loop-carried dependence
for theheader elements in the structure, as each element is only accessdteation along the traversal
in L1. On the other hand,2 presents the same loop-carried dependence found for timnguaxample
at the beginning of this chapter, i.e., an anti dependeneetalthe fact that each node element is read in
iterationi and written in iteration +1.

The following dependence groups are created btage two for this new example:
DepG oupyal ue={R1, W2} and DepGr oupgata={R2, WL}. The technique presented so far would
report anti dependences due to access paiis V2> and<R2, WL>. We acknowledge that is important
for the purpose of loop parallelization to determine thRfL, V\2> is a zero distance dependence. For that,
we introduce the information of the iteration vector as paithe touch property information. We just need
to maintain a symbolic iteration counter for each loop in pihegram, and attach the current value of the
iteration vector when performing a touch on a node.

Considersg? in Fig. 4.12. It abstracts the data structure for this exangmt!), where we maintain
type propertyinformation to separate the nodes for both types of eleniarttge structure:node (N) and
header (H). Shape graplsg? shows the result after executing the fiitt access. Note that next to the
access label, now the touch information also records theevaf the iteration vector at the moment of
performing the touch (shown below the affected node in bolddadability). Here, we consider an iteration
vector of two coordinates, where the first one stands for ynabslic iteration of loopL1 and the second
coordinate stands fdr2’s symbolic iterations. For instance, nod# is touched byR1<1, 0> which stands
for “R1 access at first iteration dfl, outside of body ol.2”, while n2 is touched by <1, 1> which
stands for WL access at the first iteration bfL, first iteration ofL2”. The analysis continues and we find
sg?, also in Fig. 4.12. This is the resulting graph after the sddfl access. ThgR2<1, 1>, Wi<1, 2>]
access pair is found over nod8 and it is stored in thécessPai r s set.

Regarding theheader elements, shape grapgyg? shows how nodenl features the access pair

Compilation techniques based on shape analysis for pdiatsed programs

4.2. Data dependence detection fewaytraversal patterns 111

. i | =
/1 Declare recursive type "node" L2: while(qt =NULL) {

. | =
struct node{ 6: . #prégmi SAP:force(q. NULL)
int data: R2: val =g- >dat a;
struct node *nxtN: 7: #pragma SAP. touch(q, R2)
. t ot al +=val ;
b, xa; . WL p- >dat a=val ;
/1 Declare recursive type "header" '
8: #pragma SAP. t ouch(p, W)
struct header{ 9: .
int val ue; 10’_ p:q: nxt N
struct header =*nxtH;) } a=p '
} s sirr'uct node »dwn; 11: #pragma SAP. f or ce(q==NULL)
: ntmrmi O 12: p=NULL:
. 13: q=NULL,;
int total, val; W2: r->value=total;
{/ C]reate structure pointed to by "ni 14 #pragma SAP. t ouch(r, W)
e 15: s=r->nxt H;
L r=m 16: r=s;
L1: while(r!=NULL) 17: s—NiJLL'
2: #pragma SAP. force(r!=NULL) ’) - ’
R1: t ot al =r - >val ue; . .
3: #pragma SAP. t ouch(r, R1) 18: #Br ag@ SAP. f or ce(r==NULL)
19: r =NULL;
4: p=r - >dwn; .
20: return;
5: g=p->nxt N, }

Figure 4.11: Variation of the running example that presarsero distance data dependence in Ibtp

[R1<1, 0>, W\2<1, 0>] after the firstW2 access. This new access pair is recorded as well in the
AcessPai r s set. Finally,sg® shows the graph at the end of the analysis, at the returmrstate It has
accumulated the values of the iteration vector over the sampmodesn2, n3 andn4. Note that different
values of the iteration vector do not affect node compatyhii.e., they do not prevent node summarization),
but different values of the touch property (i.e., differtatiels) do affect.

Every time a touch is performed over a node which already batksaccess label, the resulting access
pairs are stored in thAccessPai r s set, now including the information of the iteration vectofd the
end of the analysis we have collected the following access:pa

[R2<1, 1>, W<, 2>], [R2<1, 2>, W<, 3>],...,[R2<1, n- 1>, WL<], n>],

[R2<2, 1>, WL<2, 2>], [R2<2, 2>, W<2, 3>],...,[R2<2, n- 1> Wi<2,n>], ...,
[RR<m 1>, WL<m 2>], [R2<m 2>, WL<m 3>], ..., [R2<m n- 1>, Wi.<m n>],

[R1<1, 0>, <1, 0>], [R1<2, 0>, W<2,0>], ..., [Rl<m 0>, W2<m 0>]

wheremandn are the number of symbolic iterations to reach the fixed poilttopsL 1 andL 2 respectively.

Once the access pairs with iteration vector informationcatkected, we may perform the dependence
test ofstage five However, this time we shall consider the information frdra tteration vector to discrimi-
nate the dependences according toDap_t est | cd0O() function in Fig. 4.13. The iteration vectors\()
annotated with each access lab&t ¢ Lb) are subtracted if the access labels belong to the same dimpeEn
group,DepGr oupsj el - The leftmost coordinate of the vector that is greater then marks the loop for
which that access pair provokes a loop-carried dependdhtiee vector resulting from the subtraction is
zero<0, 0, . .., 0>, then the access pair forms a zero distance loop-carrieehdepce| cd0, and it is
added to thd_CDO set. TheDEP set now contains all the loop-carried dependences fourtielgaazed by

University of Malaga

112

Chapter 4. Data dependence analysis

Structure in the concrete domain

Structure in the abstract domain

1
mc
sgl
nxtH
ldwn ldwn ldwn clslnp=<s12;i,s160>
cls2p2=<s13i,s160>
nxtN nxtN nxtN clslps=<slli, sldo, s13¢>
cls2p3=<sl4d;,sldy,s13c>
nxtN nxtN cls3n3=<sl4i,sl55,5130c>
- s
N
H
5 After 18t w1 access After 2nd w1 access
sg
r) AccessPairs=g sg3 AccessPairs={[R2<1,1>,Wl<1,2>]}
518 (nx
r

s19 (nxtH)

clslpni=<pll,pld,sl2o,sl70>
csllpp=<pl2,sl12i,s130>
clslp3=<pl3,s13i,s1l40>
clslpg=<sl4i,sl5s>
cls2p4=<s110;,5150>
cls3,4=<515i,815,>

csllpys=<s17;,5180,5110o>

s110 (dwn)

515 (nxtN)

516 (nxtN)

519 (nxtH)

5110 (nxtH)

clslpi=<pll,pl4,sl2o,s180>
clslpnp=<s12j,s13:>
cslly3=<pl2,s13i,sl4o>
clslpg=<pl3,sl4di,sl5:>
clslps=<s15j,s5160>
cls2p5=<s11l;,s5160>

cls3,5=<s163i,s5165>
R2<1,1> .ee
Wi<1,2>

csllpe=<s18;,s519,s111ls>

5111 (dwn)

517 (nxtN)

After 18t w2 access

AccessPairs={[R2<1,1>,Wl<1,2>],
[R2<1,2>,W1<1,3>],
.ee

[R2<1,n-1>,Wl<1,n>],
[R1<1,0>,W2<1,0>]}

$17 (nxtH)

S16 (nxtH)

clslni=<pll,pl2,sl206,s5160>
csllyp=<s12i,s13c>
clslp3=<sl3i,sldo>
cls2p3=<s14i,sl4s>

518 (nxtH)

512 (dwn)| RI<1,0>
W2<1,0>

519 (dwn)

clslp4=<s16i,s5176,519:>

Wi<1,1>

s13 N 5110 (nxtN)
13 (nxth) c182p4=<s173,5175,519,>
5111 (nxtN)
cee
csllps=<s19;,s110s>
514 (nxeN)
R2<1,1><1,2>...<1,n-1> oo
515 (nxtN) Wil<1,2><1,3>...<1,n>

At return statement
AccessPairs={[R2<1,1>,Wl<1,2>], fé}<m n-1>,Wl<m,n>1,
[R2<1,n-1>,W1<1,n>], [R1<1,0>,W2<1, 0>],

[R2<m, 1>,Wl<m, 2>], [R1<m 0>,W2<m, 0>] }

sg°

517 (nxtH)

518 (nxtH)

R1<2,0><3,0>. .
W2<2,0><3,0>..

.<m, 0>

.<m, 0>
clslni=<pll,sl2c,sl60>
csllyp=<s12i,s13c>
cls2pn2=<s19;,s13:>
clslp3=<sl3i,sldo>
cls2p3=<s14i,sl4s>

514 (nxeN) <l,n-1> .
515 (nxtN) w1<1,2><1,3>...<1,n> clslpg=<sl6i,s170,519:>
R2<2,1><2,2>...<2,n-1> ¢152,4=<517;,5175,519,>
W1<2,2><2,3>...<2,n> oo
R2<m,1><m,2>...<m,n-1>
Wl<m,62><1,3>...<m,n>

Figure 4.12: Alist of lists data structure, its abstraction and several shape graptisvad during the
analysis instage four (1-way)The access labels include the iteration vector informafiio discriminating
zero distance dependences in loops.

loop.

For example, let us consider the effect of tiep_t est | cd0() function over the previ-
ously gathered access pdiRR2<1, 1>, WL<1, 2>]. The iteration vectors are subtracted yielding
| <1, 1>-<1, 2>| =<0, 1>. In this way, we detect that theR2, WL.> access pair is a zero distance data
dependence for loophl, but may produce a loop-carried anti dependence for lddpwhich is stored in
Dep 2. On the other hand, subtracting the iteration vectors iratteess paif R1<1, 0>, W2<1, 0>] re-
sults in<0, 0> meaning that both accesses are performed in the samedteddti 1, thus the access pair
<R1, W2> is not loop-carried, and it is stored irCDO.

Compilation techniques based on shape analysis for pdiatsed programs

4.2. Data dependence detection fewaytraversal patterns 113

Dep_t est I cdO()
Input: DEPGROUP, AccessPai r s # The dependence groups and access pairs
Output: DEP, LCDO # Loop-carried dep. and zero distance dep. in loops

LCDO=()
forall | loop in the program
CreateDep, =()
endfor
forall DepGr oupsi el ¢ € DEPGROUP
forall [AccLb;<I V1>, AccLby<l V,>] € AccessPairs
If (AccLb; € DepGroupsielg A AccLby € DepG oupsierq) # Acc. in samédepG oupsiel g

|V3=||V1-|V2|=| <i 1,i2,...,iz>-<j 1,j2,...,jz>|=<k1, ko, ..., k>
Get coordinaté , 1<I <z, the left-most coordinate ihV3 greater tha®
If (I <z)

Case €Acclb;, AccLby>)
<AcclLb;=W A AcclLby,=R >
Dep,; =Dep; U Fl owbDep # Flow dependence
break
<AcclLb;=Rj A AcclLby=W >
Dep,=Dep; U Anti Dep # Anti dependence

break
<AcclLb;=W A AcclLby=W >
Dep,; =Dep; U CQut Dep # Output dependence, same writing stmt
break
<AcclLb;=W A AcclLb,=W >
Dep,; =Dep; U CQut Dep # Output dependence, different writing stmt
break
else
LCDO=LCDO0 U <AcclLbq, AccLby>
endfor
endfor
DEP=()
foralll loop in the program
If Dep| 7é 0
DEP=DEP U Dep
endfor
returnOEP, LCDO)

end

Figure 4.13: Théep_t est _| cd0() function with further elaboration to detect zero distaramplcarried
dependences.

With this technique, not only we can determine what depecetemre loop-carried, but we can also
distinguish the loop where they hold. The results of the ywislof the program in Fig. 4.11 tell us that
loop L2 has a loop-carried dependence but bt As a consequence, a subsequent parallelization client
could safely decide to exploit coarse-grain parallelisnekgcuting the iterations ibl in parallel. Keep in
mind though that a valid parallelization scheme, like the dascribed in [61], would need to solve existing
control dependencesike the one induced by pointer, which acts asiavigator or induction pointerfor
loopL1.

The approach described here is suitable for perfectly ddstgps, but it is easily extensible for imper-

University of Malaga

114 Chapter 4. Data dependence analysis

fectly nested loops just by masking the appropriate coatdmwhen subtracting the iteration vectors. For
that, we assign a coordinate for every loop, in program taygiaphic order. When subtracting the iteration
vector,l V=<...,i,...,j, ..., Kk, ...> it might happen that coordinatebelongs to a looj.k that is not
nested within a loofj of coordinatej but both loops are nested inside a ldop of coordinatei . In
that case coordinage should be masked from the subtraction so that it does nafénéeto recognize the
greater-than-zero leftmost coordinate that belongs tojibat containg k.

4.2.6.2 Detecting zero distance data dependences in recwesfunctions

When detecting data dependences due to heap accessegsiveefunctions, it is also possible to have zero
distance dependences, i.e., data dependences withinrtteefaaction call. Such a case does not prevent
parallelism at function call level, therefore it is importao discriminate these cases from dependences
carried across different calls for the purpose of parakion.

Let us present now an example to explain our approach totdetex distance dependences in recursive
functions. It is displayed in Fig. 4.14. It is the recursivasion of the program in Fig. 4.11. Again, thist
of listsdata structure, pointed to by is traversed in two axes: theeader list through thenxt Hselector
and thenode lists through thenext N selector. This time, instead of using loops for that traakense use
recursive functions r aver se_header () andtraver se_node(). Note that this is a case dfway
traversal pattern as each recursive function has only angsige call site traversing the structure through
only one selector.

The analysis of this program, by following the describedcpss in five stages, yields the access pair
<R1, WL.>, for accesses in theeader elements, angR2, 2>, for accesses in theode elements. Note
that the dependences found are the same as the iterativervdost the labels for the accesses are now
different. The way the code has been rewritten to use re@ufsinctions has changed the order of the
accesses in the program code. Remember that the accessdebrlmbered as they are foundsbgge one
(algorithm in Fig. 4.4).

As we mention, whatever the actual names of the access Jdbeldependences found are the same as
in the iterative version. These results hide the fact thatiépendence found for theader elements (in-
dicated by access paiRl, WL>) is not carried across recursive calls, and thus does nittiiqgdarallelism
at the function call level.

We require additional information to determine whether aceas pair stands for a zero distance or
greater-than-zero distance data dependence for rectisigions that conform to th&-waytraversal pat-
tern. We can obtain that information (i) directly from thegram source code, or (ii) from the analysis of
the program with further instrumentation.

Information obtained directly from the program source code

A quick inspection of the code causing dependences can soageprovide information about zero
distance dependences. All that is required for this on tladyais side is the ability to count the number of
times an access pair is found within a node. Remember ttsiage fouy the access pairs found for a node
are stored in théccessPai r s set. It is straightforward to add information about the nemtf times a
given access pair is found fenenode, and we have added that information in our implemeamtatNote
that it is different to find the same access paidiffierentnodes than finding the same access pair repeatedly
over thesamenode.

The information about the number of times that an accesdwmdgistered for the same node is consid-
ered by the dependence test modskage fivi along with some information derived from the source code

Compilation techniques based on shape analysis for pdiatsed programs

4.2. Data dependence detection fewaytraversal patterns 115

/1 Declare recursive type "node"
struct node{

int data;

struct node *nxtN;
p, *q;
/1 Declare recursive type "header"
struct header {

int val ue;

struct header *nxtH;

struct node *dwn;

int traverse_node(struct node *p){
int val 1=0, val 2=0, val 3=0;
struct node xq;

#pragma SAP. excl udeRFPTR(q)
13: g=p->nxt N,

}oemer: i f(q!=NULL) {
’ . | =
voi d traverse_header (struct header =r){ 14: Ro- 32[igg‘li’:f; orce(qt=NULL)
int total, val; 15: #pragma SAP. t ouch(g, R2)
struct node xn; . _)
struct header +s; ve: p->datazval 1;
1: #pragma SAP. excl udeRFPTR(n, s) 16: #pr a?”a SAP. touch(p, \/.\2)
17: val 2=t raver se_node(Qq);
R1l: total =r->val ue; val 3=val 1+val 2-
2: #pragma SAP. t ouch(r, Rl) el se{_ ’
3: n=r - >dwn; . L
4: val =t r aver se_node(n) ; 18: } #pragma SAP. f or ce(q==NULL)
5 n = NULL; 19: return val 3;
WL: r->val ue=t ot al +val ; }
6: #pragma SAP. touch(r, W) int main(){
7: S=r->nxt H; . -
i f(s!=NULL) { {/ C]reate structure pointed to by "ni
. . .
8: #pragma SAP. force(s! =NULL) 20: t raver se_header () ;
9: traverse_header (s); 21 return 1-
10: #pragma SAP. force(r!=NULL) '} ’
tel se{
11: #pragma SAP. f or ce(s==NULL)
}
12: return,

Figure 4.14: Variation of the running example that presentgro distance data dependence in recursive
functiont r aver se_header () .

by the preprocessing stage. In particular, we are able tdifgdeero distance heap-induced data dependence
in recursive functions witl-waytraversal pattern when:

e The access pair is found only once, at most, for any node.

e Both accesses in the access pair are done with the samerpuwihieh is local to the function, and it
suffers no modification between both accesses.

The first condition ensures that the access pair occurs oy, @t most, for any memory location in the
program. The second condition ensures that the access pagistered in the same recursive call. Although
this second condition is very restrictive and could be imptbwith further analysis at the preprocessing
stage, it works for simple recursive functions.

Consider the code for functionr aver se_header () in Fig. 4.14. Both accesses in this function,
R1 andW., are done with pointer, which is not modified between both accesses and is a localqudd
traver se_header (). Therefore, it is evident that eveheader element is going to be touched first
by theR1 access label, and then by & access label, forming access paRl, WL>. The key issue here

University of Malaga

116 Chapter 4. Data dependence analysis

is whether eheader element can be accesseubre than onca&uring the traversal, i.e., whether it can be
accessed bylifferent instance®f recursive functiort r aver se_header (). That would be the case if
there was a cycle in theeader list, for example. However, the access paiRl, WWL.> is only reported to
be found, at most once, for any given node. In such case, weafaly determine that it is a zero distance
dependence. Note that the same cannot be said felRRe\\2> access pair, as tHe2 and\W\2 accesses are
performed with different pointers in ther aver se_node() function.

Information obtained from the analysis of the program with further instrumentation

Clearly, the information from the source code is sufficientydor recursive functions that perform
both accesses in the same access pair with the same pomtie ¢ase that no useful information can be
obtained from the source code to identify zero distance deggendences in recursive functions with the
1l-waytraversal pattern, we can instrumentate the program fyrtheobtain more information about the
accesses.

We outline the process involved. First, we perform the agialgind run the dependence test as described.
If dependences result, we instrumentate the program wvitbuch pseudostatemeraad run the analysis
a second time. The new access pairs obtained will help udummevhether a dependence is of zero or
greater-than-zero distance.

An untouch pseudostatement performs the opposite operafia touch pseudostatement, i.e., it re-
moves a label from a node. Fig. 4.15 displays the abstraatardgtation function of an untouch pseudostate-
ment.

Unt ouch()
Input: sgt=<N!, CLS'>, x € PTR, t ouch; ¢ # A shape graph, a pointer and an identifier
Output:sgk=<NK, CLS*> # A shape graph

Findni € N! s.t. 3 pl =<x, ni > C CLSy
PPM;iouch(Ni) =PPM;ouch(ni) -touch;y
CreateN<=N!
CreateCLS*=CLS!
Createsgk=<N¢, CLS>
return6g)

end

Figure 4.15: TheJnt ouch() function for clearing annotations in nodes.

The key idea is to prevent touch information from passingvben recursive calls. This is prevented
by untouchingeach touch annotation before a recursive call, and reéstaty it upon return. Likewise,
before leaving the body of the function, touch annotaticesagain cleared with untouch pseudostatements
before returning to the caller. Access pairs occurring withe same function call will still be recorded in
theAccessPai r s set.

Even though the example presented for the detection of zZetande data dependences in recursive
functions (Fig. 4.14) can be successfully analyzed by drgvinformation from the source code, we will
consider it again as example for instrumentation with thiwch pseudostatements. Fig. 4.16 shows the
resulting code. The first run is performed without the untopseudostatements (code in Fig. 4.14), while
the second run uses them (code in Fig. 4.16).

This instrumentation with untouch pseudostatements iegpascheck on the program: we must make
sure that weuntouchon the same location that weuched For that we ensure that (i) the untouch is

Compilation techniques based on shape analysis for pdiatsed programs

4.2. Data dependence detection fewaytraversal patterns 117

/1 Declare recursive type "node"
struct node{

int data;

struct node *nxtN;
p, *q;
/1 Declare recursive type "header"
struct header {

int val ue;

struct header *nxtH;

struct node *dwn;

int traverse_node(struct node *p){
int val 1=0, val 2=0, val 3=0;
struct node xq;

#pragma SAP. excl udeRFPTR(q)
19: g=p->nxt N,

}oemer: i f(q!=NULL) {
’ . | =
voi d traverse_header (struct header =r){ 20: 32[i‘?g‘_ij:f; orce(qt=NULL)
int total, val; 21: #pragma SAP.touch(q, R2)
struct node xn; p- >dat a=val 1:
struct header *s; - ’
! 22: #pragma SAP. touch(p, W2
1: #pragma SAP. excl udeRFPTR(n, s) 23 #Sragma SAP. unt ouf:E(q 3?2)
t ot al =r - >val ue;) ' '
) ! 24: #pragma SAP. unt ouch(p, W)
5: ﬁ?: ?gg&n_SAP' touch(r, R1) 25: val 2=traver se_node(q);
4: V;l =tr av,erse node(n); 26: fipragma. SAP. touch(q, R2)
5: 0 —_NULL' } ’ 27: #pragma SAP. t ouch(p, W2)
) - ’ val 3=val 1+val 2;
r->val ue=t ot al +val ; Jel sef
6: #pragma SAP. touch(r, W) . L
7. s=r - >nxt H 28: } #pragma SAP. f or ce(q==NULL)
i f(s!'=NULL){
29: #pragma SAP. unt ouch(q, R2
8: #pragma SAP. force(s! =NULL) 30: #gragma SAP. unt ouchgpq) \/\2;
9: #pragma SAP. unt ouch(r, R1) 31: return val 3: '
10: #pragma SAP. unt ouch(r, W)) '
11: traverse_header (s); int main(){
12: #pragma SAP. touch(r, R1) . -
13: #pragma SAP. t ouch(r, W) {/ C]reate structure pointed to by "ni
14: #pragma SAP. force(r!=NULL) 32 " -r;':l;/er se_header () :
yel se{ . 33: return 1,
15: #pragma SAP. f or ce(s==NULL) }
}
16: #pragma SAP. unt ouch(r, R1)
17: #pragma SAP. unt ouch(r, W)
18: return;

Figure 4.16: Variation of the running example using reagrgunctions, instrumented witiouchandun-
touch pseudostatementfisplayed in bold typeface.

performed with the same accessing pointer that the touchpedermed and (ii) that pointer cannot be
modified between both pseudostatements. This aspect carfdreexl with additional pointer variables if
needed, so it involves no loss of generality.

The reasoning for this approach is simple: in the touchustianstrumented version only the access
pairs resulting from accesses in the same function calle@rded, while in the touch instrumented version
all possible access pairs are registered. Every accedhatiis found for the touch instrumented version that
is not found for the touch-untouch instrumented versiorigarnty a greater-than-zero distance data depen-
dence. Likewise, if running with touch pseudostatemengsamt produce new access pairs with regards to
the touch-untouch instrumented version, then it is cleairdl access pairs are necessarily registered within
the same function call, and therefore they are zero distdatzedependences.

University of Malaga

118 Chapter 4. Data dependence analysis

We need to define some new sets now. RetessPairs; be the set of access pairs detected as
dependences for the first run of the analysis, with the tonstrumented version of the program, and let
AccessPai r s be the set of access pairs detected as dependences fordhd saa of the analysis, with
the touch-untouch instrumented version of the program Coetb AccP(AccLb4, AccLby) be the set of
possible combinations of access labatcLb; andAccLb, that form a valid access pair, i.e., at least of
the accesses must be a write access.

Let us see now how the information gathered from both runsésluThe following assertions hold:

e Every access paikccP; € AccessPairs; s.t. AccP; ¢ AccessPair sy, is a greater-than-
zero distance data dependence.

e If AccessPairsi{=AccessPair s, then every access paliccP; € AccessPairs; is a
zero distance data dependence.

e If | AccessPai rs;| >| AccessPai r s; |, then every access paiccP; =<AccLbj, AccLby>
s.t. AccP; € AccessPairs;y A AccP; € AccessPairs;, is a zero distance data depen-
dence if and only iff AccP; # AccP; s.t. AccP; € CombAccP(AcclLb;, AccLby) A AccPj €
AccessPai r s¢.

The two first assertions are intuitive, as introduced earlibere is a trickier case though, and it affects
the access pairs that are found in both versions when the ewofilaccess pairs detected is bigger for the
touch instrumented version. In that case, the access pairare common (belong bothAzcessPai r s;
andAccessPai r sy) are zero distance data dependences. However, they migfneater-than-zero dis-
tance data dependenceswell To be certain that they are not greater-than-zero distdatsedependences,
we must assure that there are no other access pairs in theitmtimumented version that are a combination
of the access labels within the access pair considered.

For the example in Fig. 4.16AccessPai r s;={<R1, W.>, <R2, W>}, and AccessPai r s;,=
{<R1, WL >}, so applying the rules exposed, we can conclude that: (g¢hess paikR2, \\2> is a greater-
than-zero data dependence because it is not found for tisa-tmtouch instrumented version but it exists
in the touch instrumented version, and (ii) the access gRir, WL> is a zero distance data dependence
because it is found in both versions and there is no combimati its access labels that appear as an access
pair in the touch instrumented version.

Consider for a moment that threeader list would include a cycle. In that case, every element of the
header list within the cycle could be accessed repeatedly by aesd®k andW. along the traversal in
traver se header (). Consider an element that is visited for the first time in reime callj . This
element would be touched by access laiRlsandW., and the access paitR1l, WL> would be created,
just as described so far. Now consider that the same elemerdiied again in the traversal, in recursive
call k>j . The same memory location is again touched withRheandWL access labels, generating new
access pairsWL, R1> and<WL, WL> (which belong toConbAccP(R1, W)). In this case<R1, W.>
would be both a zero distance data dependence and a gtemtezdro distance data dependence, as it may
encompass th&l and\WL. accesses from thet " call, and the R1 access from th¢ t" call with the W
access from thi!" call.

Whatever the method used to determine that<R4, WWL> access pair corresponds to a zero dis-
tance data dependence (code inspection or further insttatien and reanalysis), this information can
be used by a parallelization client to exploit coarse graamalelism between different calls to the
t raver se_header () function.

Compilation techniques based on shape analysis for pdiatsed programs

4.3. Data dependence detection iewaystraversal patterns 119

4.3 Data dependence detection fan-waystraversal patterns

The approach described so far provides a useful techniqudetecting heap-induced data dependences
in a variety of programs featuring dynamic data structuréh dependences found in loops or recursive
functions traversing one selector. This applies even fetateloops or nested recursion. However, in the
presence of recursive function that traverse through nizne dne selector, shape graphs resulting from the
analysis of the different recursive flow paths can mergermétion about the heap accesses. In such case,
the approach described is not sufficient to accurately ifyecnflicting accesses.

For then-waystraversal pattern, we adopt a different approach. We parfanction cloning[62],
using a different version of a recursive function for eaelvérsal path, and then we instrument them with
dynamic touch pseudostatemernsidentify the heap accesses performed through every paghmple test
is performed afterward to identify conflicting accessesiffecknt traversal paths.

The key idea is to transform the program as if we were goingatalfelize it, i.e., we decompose the
traversal function into different versions for differendtersal paths (one for each of thevaysfollowed
in the traversal). Of course, such a decomposition woulg bel profitable for a parallelization client if
the traversal exhibited no dependences. At the moment édmpeing the program transformation, we do
not know if such dependences exist. However, we conductriihlysis over that program configuration to
identify possible dependences. If no dependences arise thie program arranged in such manner can be
parallelized without barriers or locks, as it is guarantted there are no conflicts due to heap accesses. In
other words, we assume a parallel distribution of the tsaleand then we test whether that arrangement is
parallel or not. Some implications about this approach eeudsed in section 4.3.5, but let us first introduce
the mechanisms involved.

Heap analysis framework (n-ways)

Program instrumented
with dynamic touch pseudostmt.

Stage Stage Depth for
9 @ 9 2 function cloning
Input ' Cetus Create recursive Add dynamic Parallelization
—+ (parsing) function cl touch client
program : P 9 Cetus IR | Unctionclones I proqram with pseudostmt. :
H function clones Program is
Cetus IR for * parallel /
program instrumented non-parallel

with dynamic touch

pseudostmt. Pointer St:
statements and 4@6@ Conflicting Stage

Shape analysis flow info Shape analysis functions
preprocessing with d)enamic)t,ouch Dep?ndtence
passes property enabled es

Figure 4.17: Presentation of our heap analysis framewalaying the four stages used for data depen-
dence analysis in-waystraversal patterns.

Fig. 4.17 shows the heap analysis framework configured ®rdtpendence detection of thewvays
traversal pattern. Again, we organize the process in stddesever, these stages are different from those
used for thel-waytraversal pattern in Fig. 4.2Stage ondakes the program IR as input, and a value for
the cloning depth, as specified by a parallelization clietgmmal to the framework (the user can provide it,
if such client is not available). With this informatiostage ongerforms the function cloning of recursive
functions that carry out the traversal of the dynamic datactire. The program thus obtained is then
fed tostage twowhich addsdynamic touch pseudostatemettithe heap accesses involved in the different
traversal paths. The program is emitted as source agaimptreed and transformed for its shape analysis in
stage threeThis shape analysis must have the dynamic touch propeatyl&s so that conflicting functions
can be identified. This information is then used by the depeoe test oktage fourto report whether

University of Malaga

120 Chapter 4. Data dependence analysis

int TreeAdd (struct tree *t){
int total .val,val ue,leftval,rightval;
struct tree *tleft,tright;
#pragma SAP. excl udeRFPTR(t 1 eft,tri ght)
if (t==NULL) {

1: #pragma SAP. f orce(t==NULL)

t ot al _val =0;

tel se{

2: #pragma SAP.force(t!=NULL)
3: tleft=t->left;
4: | ef tval =TreeAdd(tl eft);
5: #pragma SAP.force(t!=NULL)
6: #pragma SAP.force(t->left==tleft)
7: t | ef t =NULL,;
8: tright=t->right;
9: ri ghtval =TreeAdd(tright);
10: #pragma SAP. force(t!=NULL)
11: #pragma SAP. force(t->right==tright)
12: tri ght =NULL;

val ue=t - >val
t ot al _val =val ue+l ef t val +ri ght val
t->val =t ot al .val ;

}

13: return total _val ;

Figure 4.18: Thdr eeAdd() function used as running example for theway s traversal pattern.

the program arranged according to the specified cloninghdepparallel or not, regarding heap accesses
performed in its traversal.

As running example for this section we will use thieeeAdd() function of the benchmark of the
same name from the Olden suite [30]. This code was presamtgthpter 3 but we display its code again in
Fig. 4.18.

The data structure is a binary tree created dynamicallyryeoadl to theTr ee Add() recursive function
traverses the tree first through the left child of the curedement, then through the right child. Therefore,
this function presents a-waystraversal pattern, as the tree is traversed through bottethand right
selectors in each recursive call.

4.3.1 Stage one (n-ways)erform recursive function cloning

Stage onef the process of data dependence detectionfeaytraversal patterns performs function cloning
of recursive functions involved in the traversal of the dy@data structure. A suggested number of threads
must be specified to drive the function cloning. That is, ageg the function is parallel (which we do not
know at this stage), how many threads would we like to geadmtthe task? The results obtained at the
end of the test will tell us if it is safe to parallelize in sutianner or if dependences may arise. Although we
focus here only on the dependence detection process, tisisamiems is tailored to be used in accordance
with a parallelization client that would target the anadyfair a specific number of threads. For our purposes,
the number of threads to drive the function cloning is deteeah externally to the framework. For example,

Compilation techniques based on shape analysis for pdiatsed programs

4.3. Data dependence detection iewaystraversal patterns 121

it could be provided by the user.

Function cloningor function specializatioris the process of creating specialized copies of function
bodies [62]. In our approach, we clone the recursive functi@mt performs the traversal of the dynamic
data structure. It might be the case that such recursivdifumalso calls to other recursive functions that
perform further traversal in the structure. For simplicitye restrict the function cloning to the uppermost
recursive functions in the callgraph that perform thevaystraversal of the data structure.

Fig. 4.19(a) shows an abridged version of Tneee Add() function. It contains two recursive call sites.
By cloning with depth one, we obtain two new versions, or egrforTr eeAdd() : TreeAdd | ef t ()
andTr eeAdd_ri ght (), shown in the callgraph-like diagram of Fig. 4.19(b). Thitsite in Tr ee Add()
for the traversal over thieef t selector now call3r eeAdd | ef t (), and the call site for the traversal over
ther i ght selector now call3r eeAdd ri ght () . Now, functionTr eeAdd() is no longer recursive, and
as originating function, it is labeledTCL, which stands fonon-terminal clone The left subtree from the
root is traversed recursively with tie eeAdd_l ef t () function, and the right subtree with the recursive
functionTr eeAdd.r i ght () . Both these functions aterminal clonesmeaning that they are the deepest
clones created for the originating functidn eeAdd() , and so are labeletiCL.

This scheme is extended for a cloning depth of two, in Figo@&)l where a total of 6 clones have been
generated. Note that only the functions in the last levell@fiag (theterminal clone} are recursive, the
functions in the previous levels change their calls so they tire not recursive anymore.

This example clearly exposes the main drawback of functioniieg: it produces an exponential growth
in the number of clones as we increase the depth of the clomitaye precisely, a level of cloning depth
d, and for a traversal through selectors, requires® clones, i.e.,Zﬂzl nk clones in total up to deptd.
Therefore, we advocate for a low depth of function cloninge Pprocess of function cloning is designed so
that each resulting terminal clone is processed by onedhréhis means that a fewer number of threads,
like two or four, is preferred. Although aiming for a highemmber of threads is perfectly possible, the
analysis cost will rise exponentially, just as the numbefuattion clones.

The algorithm to perform function cloning istage onds displayed in Fig. 4.20. First, the program
IR is traversed looking for the right functions to clone. $hare the uppermost recursive functions in the
callgraph that conform to the-waystraversal pattern. Additionally, a map is created for eactursive call
site in those functions, associating them with the selettar they traverse. The functions gathered with
this method are cloned according to the number of recursille that they contain and the desired depth
of cloning. They are also labeled asn-terminalor terminal clones(NTCL or TCL), depending on the
case. The functions created at any level of cloning deptlused as cloning source for the next level. For
instance,Tr eeAdd | ef t () is cloned intoTr eeAdd | eft I eft() andTreeAdd.l eft right()
for the second level of cloning depth (Fig. 4.19(c)).

For the purposes of explaining the stages for data depeadkziection im-waystraversal patterns, we
will continue theTr ee Add example with the version tailored for two threads (Fig. 4b)p which creates
two clones of thélr eeAdd() function,Tr eeAdd_| eft () andTr eeAdd_ri ght ().

4.3.2 Stage two (n-ways)add dynamic touch pseudostatements

Once we have performed function cloning of the appropriatainrsive functions, the next stage involves
addingdynamic touch pseudostatemetaghe terminal, recursive clones. This is donestage two Since
the goal is to discriminate whether the accesses by eadtinnay reach the same memory location, rather
than just annotating all heap accesses, the way we insttuheprogram now is different to the way it was
done for thel-waytraversal pattern.

University of Malaga

122

Chapter 4. Data dependence analysis

int TreeAdd(struct tree *t){

tleft=t->left;
leftval=TreeAdd (tleft);

tright=t->right;
rightval=TreeAdd (tright) i

NTCL:int TreeAdd(struct tree *t){

tleft=t->left;
leftval=TreeAdd left (tleft);

tright=t->right;
rightval=TreeAdd right (tright);

tleft=t->left;

tright=t->right;

TCL: int TreeAdd_left (struct tree *t){
leftval=TreeAdd left(tleft);

rightval=TreeAdd left (tright) ;

TCL:int TreeAdd_right(struct tree *t){
E tleft=t->left;
———leftval=TreeAdd right (tleft);

tright=t->right;
rightval=TreeAdd_right (tright); |

Figure 4.19: Thdlr eeAdd() function in (a) the initial version, (b) performing functicloning of depth
one, and (c) performing function cloning of depth two.

NTCL: int TreeAdd(struct tree *t){

tleft=t->left;

leftval=TreeAdd_left (tleft);

tright=t->right;

rightval=TreeAdd right (tright);

NTCL:int TreeAdd left (struct tree *t){

tleft=t->left;
leftval=TreeAdd left_left (tleft);

tright=t->right;

rightval=TreeAdd left right (tright); | __

NTCL:int TreeAdd_right(struct tree *t){

tleft=t->left;

TCL:int TreeAdd left left(struct tree *t)({

tleft=t->left;
leftval=TreeAdd left left (tleft);

tright=t->right;
rightval=TreeAdd left_left (tright) ;]

leftval=TreeAdd_right_left (tleft);

tright=t->right;
rightval=TreeAdd right right (tright) ;]

TCL:int TreeAdd right right (struct tree *t)({

tleft=t->left;
leftval=TreeAdd right_right (tleft);

tright=t->right;
rightval=TreeAdd_right_right (tright) ;4

tleft=t->left;

tright=t->right;

p TCL: int TreeAdd left right(struct tree *t){

leftval=TreeAdd left right (tleft);

TCL:int TreeAdd_right_ left (struct tree *t)({

tleft=t->left;
leftval=TreeAdd_right_left (tleft);

tright=t->right;

rightval=TreeAdd_left_right (tright) ;|

rightval=TreeAdd_right_left (tright);

Compilation techniques based on shape analysis for pdiatsed programs

4.3. Data dependence detection iewaystraversal patterns 123

Creat e_cl ones()
Input: Py g, dept h # IR for the analyzed program, and desired depth of cloning
Output:P" | r # IR with cloned functions

CreateP’ |r=Pir
FUNgL =0 # Set of functions to clone
repeat
Getf un, the next function declaration statemenfin, g
If(f un is a recursive function afi-waystraversal pattern f un is not nested ifi un2 s.t.f un2 € FUNg)
FUNc.=FUNg. U fun
forall r cs, recursive call site ifi un
MAP(r cs) =sel , wheresel is the selector traversed for thes call
endfor
until (P | g has no more function declaration statements)
forallf un € FUNq
NEWFUNo=f un # Set of functions to be cloned for depth
d=1
while (d<dept h)
CreateNEWFUNy=() # Set of functions to be cloned for depth1
Incremend
endwhile
d=0
while (d<dept h)
repeat
Removecur _f un from NEWFUNy
Add labeINTCL to cur _f un
forall r cs, recursive call site iur _f un
Createcur _f un_cl one as clone otur _f un, appending selectd&AP(r cs) to the name
Update all cloned recursive call sites to aalir -f un_cl one recursively
Updater cs to callcur _f un_cl one
If (d<dept h- 1)
NEWFUNy+1=NEWFUNy+1 U cur _fun_cl one
else
Add labelTCL to cur f un_cl one
Addcur funclonetoP |r
endfor
until (NEWFUNy=())
Incrementd
endwhile
endfor

returnP’ | r)

end

Figure 4.20: The function used lsyage one (n-waysd perform recursive function cloning.

University of Malaga

124 Chapter 4. Data dependence analysis

label so that we can distinguish later possible conflictavben the accesses in different terminal clones.

A dynamic touch pseudostatemddt ouch(ptr, fi el d)) is a touch pseudostatement where the
annotation is determined by a label set bglael setting pseudostatemdsiet Lb(| abel)), prior to per-
forming a call to a terminal clone. Upon returning from a tarah clone, the label is unset withlabel
unsetting pseudostatemegninset Lb()). The terminal function clones add a dynamic touch pseatiost
ment for every heap accessing statement. These pseudostésewill write the current label in the accessed
node. That label is the name of the terminal clone that pex$ahe access, plus the access field, which is
included for the purpose of discriminating between accetseifferent parts of heap elements. It is also
possible to annotate the kind of access performed (readit@)walthough we do not consider it here, for
simplicity.

In Fig. 4.21 we show th@r eeAdd() function, and its two clones for the 2-threads version,rinst
mented with the appropriatabel setting label unsettinganddynamic touctpseudostatements. The previ-
ous level to the terminal clones (in this case Tisee Add() proper) sets a specific label for the dynamic
touch annotation before calling to each of the recursiveeso Likewise, the label is unset when returning
to the caller. The terminal clone$y eeAdd. eft () andTr eeAdd_ri ght (), include the necessary
dynamic touch pseudostatements.

The algorithm that implementstage twois shown in Fig. 4.22. It first traverses non-terminal clones
to set the label for dynamic touchs in the level of clones iptev to the terminal level. Then the terminal
clones are traversed adding a dynamic touch pseudostatéonerach heap accessing statement in them.
Also, descendants in the callgraph, i.e., the functionteddrom the terminal clones are stored in the
CGDESCESDANTS set. Finally, this set is traversed to add dynamic touch gestatements to all descen-
dants in the call graph that perform heap accesses.

NTCL:int TreeAdd(struct tree *t){

tleft=t->left;

#pragma SAP.setLb("TreeAdd left")
leftval=TreeAdd_left (tleft);
#pragma SAP.unsetLb()

tright=t->right;

#pragma SAP.setLb("TreeAdd right")
rightval=TreeAdd right (tright); —
#pragma SAP.unsetLb ()

TCL:int TreeAdd left (struct tree *t){ TCL:int TreeAdd right (struct tree *t){
tleft=t->left; [i tleft=t->left;
leftval=TreeAdd left (tleft); leftval=TreeAdd right(tleft);
tright=t->right; tright=t->right;
rightval=TreeAdd left (tright) ;] rightval=TreeAdd right (tright); _]
value=t->val; value=t->val;

#pragma SAP.dtouch (t,val) #pragma SAP.dtouch(t,val)
t->val=total val; t->val=total val;

#pragma SAP.dtouch(t,val) #pragma SAP.dtouch(t,val)

Figure 4.21: Thelr eeAdd() function, and its two clones for the 2-threads analysigrumsented with
dynamic touchlabel settingandlabel unsettingpseudostatements, shown in bold typeface.

Compilation techniques based on shape analysis for pdiatsed programs

4.3. Data dependence detection iewaystraversal patterns 125

Add_dt ouch_pseudost mt s()
Input: Py g # IR for the analyzed program
Output:P" | r # Instrumented IR

CreateP’ |r =P/ r
Process non-terminal clones
repeat
GetNTCL_f un, the next function labeled witNTCL in P’ | r
repeat
Getf cal | , the next function call statementMI'CL _f un, calling functionTCL _f un labeled withTCL
Add #pragma SAP. set Lb(TCL_f un) directive right beford cal | inP" |
Add #pragrma SAP. unset Lb() directive right aftef cal | inP' |
until (there are no more function calls in the bodyNdfCL _f un)
until (there are no more functions labelsdCL in P' | g)
Process terminal clones
CGDESCENDANTS= () # Set of callgraph descendants of terminal clones
repeat
GetTCL_f un, the next function labeled withCL in P" | g
repeat
Getst nt , the next statement iRCL _f un
Case ¢t nt)
st nmt is a heap accessing statement, se¢.nrt is of the kindx- >f i el d=dat a ordat a=x->fi el d
Add #pragma SAP. dt ouch(x, fi el d) directive right afteist nt in TCL_f un
st mt is a function call statement to functi®@GD_f un, s.t. CGD_f un#TCL_f un
CGDESCENDANT S=CGDESCENDANTS U CGD_f un
until (there are no more statements in the body G _f un)
until (there are no more functions label€@L in P’ | g)
Process callgraph descendants of terminal clones
CG:)ESCENDANTSdone = @
while (CGDESCENDANT S ()
RemoveCGD_f un from CGDESCENDANTS
CGDESCENDANT Syone =CGDESCENDANT Sgone U CGD_f un

repeat
Getst nt , the next statement iI@GD_f un
Case ¢tnt)

st nmt is a heap accessing statement, s¢.nrt is of the kindx- >f i el d=dat a ordat a=x->fi el d
Add #pragma SAP. dt ouch(x, fi el d) directive right afteist nt in CGD_f un
st nt is a function call statement to functi@GD_f un2, s.t. CGD_f un2 ¢ CGDESCENDANT Sgone
CGDESCENDANTS=CGDESCENDANTS U CGD.-f un2
until (there are no more statements in the bodgZ@D_f un)
endwhile
returnP’ | gr)
end

Figure 4.22: The function used Isyage two (n-waysp add dynamic touch instrumentation.

4.3.3 Stage three (n-ways)xhape analysis with dynamic touch property

For stage threewe perform shape analysis with the dynamic touch proper@pked, over the instrumented
version of the program handed biage two

The clones previous to the terminal level set the name ofdimihal clone they call as label for dy-

University of Malaga

126 Chapter 4. Data dependence analysis

namic touch annotations. This name is annotated in all heapsaes performed under the call of the
terminal clone, adding the access field for purpose of disneting between accesses to different parts of
the heap elements. Once the called terminal clone retuthe alling function, the label for dynamic touch
statements is unset, thus disabling the annotation for aag hccess not performed within a terminal clone.
This process is repeated for all terminal clones called. rélalt is that nodes in the graph are annotated
only with heap accesses performed under the different teintiones, which are designed to be run by
independent threads, and expected not to interfere forepimgrallel execution.

clsl 1=<pll,slly,sl6y>
clslpp=<slli,sl25,8155>
cls2p2=<s812i,8125,8155>
(X X]
clsln3=<sl16i,51706,5110s>
cls2p3=<sl17i,58170,5110s>

s18 sl9
sl3 s14 (left) (right)

ptouch ,=PPM,, ... (n2) ={Treeadd left val}
Dtouch ;=PPM;, e (n3) ={Treeadd right val}

Figure 4.23: The tree resulting from the analysisToeeAdd() with two clones, with nodes annotated
with dynamic touch labels.

Fig. 4.23 shows the result of the analysis of Tieee Add program, as instrumented lsjage two Here
we can see that the memory locations accessed through teeedifterminal clones are different, as there
is no node sharing labels from more than one terminal clone.

Every time a dynamic touch pseudostatement is encountgrétetanalysis, the algoritht ouch()
(Fig. 4.24) is run. It checks whether the value of the glotmiablecur FunLb is set or not. If it is
set to any function name, then its value is annotated in tlie,nappending the access field in the state-
ment cur FunLb_fi el d). Otherwise, it means that we are not under the executiontefrainal clone
and we should not register heap accesses in nodes. The Vallne mur FunLb variable is set by the
Set Dt ouchLb() function and unset by thenset Dt ouchLb() function (also Fig. 4.24).

Also, in case that the same node has been previously accesded a different terminal clone, with
the same access field, the pair of terminal clones registartte previous and current labels is stored in
CONFLI CT_FUN ¢ ¢. This set will be checked iatage fourto draw dependence information.

The domain for the dynamic touch property is the same as theaitofor the regular touch property,
i.e., a set of labels defined by preprocessing directivegleasribed in chapter 2. Compatible nodes will
need to feature the same value for the dynamic touch progRetmember that all available properties must
be compatible for two nodes to be regarded as compatiblethenefore merge them in the summarization
process of shape graphs.

Compilation techniques based on shape analysis for pdiatsed programs

4.3. Data dependence detection iewaystraversal patterns 127

Set Dt ouchLb()
Input: f unLb # A function name as a label
Output: none

cur FunLb=f unLb # Set value for global vezur FunLb
return()
end

Unset Dt ouchLb()
Input: none
Output: none

cur FunLb=NULL # Unset value for globar varur FunLb
return()
end

DTouch()
Input: sgl=<N!, CLS'>, x € PTR fi el d € FI ELD # A shape graph, a pointer and a data field
Output:sgk=<NK, CLS*> # A shape graph

CreateN<=N!
CreateCLS*=CLS?
If (cur FunLb is set) # If the label for dynamic touch is set
Findni € N¢s.t.3 pl =<x, ni > C CLSy;
If (pr evFunLb_fi el d2 € PPMpouch(Ni) s.t.prevFunLbz£cur FunLb Afi el d2=fi el d)
CONFLI CT_FUNj ¢ ¢ =CONFLI CT_FUN¢j ¢ ¢ U <cur FunLb, pr evFunLb>
PP Mpouch(ni)=PPMptouch(Ni) Ucur FunLb field
Createsgk=<NK, CLS>
return6g)
end

Figure 4.24: TheSet Dt ouchLb(), Unset Dt ouchLb(), andDt ouch() functions to perform the
adequate annotations in nodes $tage three (n-ways)

4.3.4 Stage four (n-ways)dependence test

The last stage in the process of detecting heap-inducedddatendences in-waystraversal patterns in-
volves a simple check, as all the necessary information bas gathered istage three This test is per-
formed by functiorDep_t est _-nways() (Fig. 4.25). This function checks tlgONFLI CT_FUN superset,
which contains all the sets of conflicting functions sortgdabcess field.

For that, all data fields of recursive data types are consilidf a pair of conflicting functions is found,
then the program exhibits a possible dependence betweaepbeed pair of functions for the specified
data field, and for the program configuration obtainedstage one If it does not exist, then it is safe to
parallelize the program (regarding heap data accessaghiagsa different thread to each of the terminal
clones.

For theTr eeAdd example, there is no pair of terminal clones whose heap sesenay interfere, so
the test would returfrALSE, meaning that there are no dependences due to heap accedsesi@d by
TreeAddright () andTreeAddl eft ().

University of Malaga

128 Chapter 4. Data dependence analysis

Dep_t est _nways()
Input: CONFLI CT_FUN # The set of conflicting functions, sorted by accessed field
Output: TRUE/ FALSE # Is the analyzed program free of heap-induced data depeesien

forall CONFLI CT_FUN;; ¢j ¢ € CONFLI CT_FUN
If (CONFLI CT_FUN; ¢1 g # 0)
return(TRUE)
endfor
returnALSE)
end

Figure 4.25: The function that checks dependencen-waystraversal patterns.

4.3.5 Further considerations

The approach described for tlmewaystraversal pattern is based on assuming a parallel distibudf
the traversal of a dynamic data structure, and then chedkinglependences in the arrangement sug-
gested. This is useful even for traversals that perforncation, deallocation and/or structure modifica-
tion, as possibly conflicting heap accesses performed wlitferent recursive functions are stored in the
CONFLI CT_FUN;j ¢ g S€ts.

For most cases, if dependences do not arise for a distribofiowvo terminal clones, they will not arise
for any deeper traversal distribution. Cases where thisldvoat hold can be expected to be very rare.
However, in the general case, a certain parallel distdputiannot be guaranteed to hold for a larger number
of threads than those used for the analysis considered. &/aveare that this can limit the applicability
of the technique as the analysis for a deep cloning traveisaibution is probably prohibitive for most
programs, due to the analysis cost. Most commonly, the aisalyill be carried out targeting only two
threads. We believe this approach is specially valuablddiai-core architectures.

In the technique presented for the data dependence detéttimwaystraversal patterns, we have not
considered differentiation between types of dependenktegeneral, it is not possible to distinguish anti
or flow dependences. However, output dependences (two agitesses on the same location) could be
identified just by adding, (i) read/write kind of access ie Bt ouch() function, and (ii) a simple check
for two write accesses ibDep_t est _nways() . This would permit another analysis client to solve that
dependence with privatization and synchronization tesples.

The characteristics of this method favors the exploitatibroarse-grain parallelism, i.e., few threads
with a substantial workload, as opposed to many threadslittiehworkload. Of course, different programs
will benefit from different parallelization schemes. Howenit is our intuition that there is a large number
of pointer-based applications that can benefit from cograas parallelism. Some other authors suggest the
same, like Kulkarni et. al [63], who provide evidence thaarse-grain parallelism is needed for improving
the performance of irregular applications that maniputetiater-based data structures.

Other approaches rely on generation of many small taskgy@nieaversal step, and then assign them to
available threads. Such is the way favored bytthsk construct in OpenMP 3.0 [16]. This approach can
generate an enormous number of threads that can negatauppeedmall workloads. Kejariwal et. al
[64] show that the threading overhead for the parallelimatdf innermost loops from SPEC CPU2006
benchmarks [65], renders parallelization of such loopsrgwafitable. Although their work is targeted
for thread-level speculatio(TLS), this also holds for loops without dependences. Tieikk supports our
idea that parallelizing recursive functions of small wodd per traversal step, as encouraged &gk -like
constructs, is unlikely to be profitable.

Compilation techniques based on shape analysis for pdiatsed programs

4.4. Related work in dependence analysis 129

4.4 Related work in dependence analysis

Most of the related work in shape analysis that we have déscli; previous chapters is not concerned with
data dependence analysis. It is mostly concerned with etlegt analysis, mainlyerification

For instance, the works based in TVLA and 3-valued logic |[295], [46], [47], [48]) are mainly
concerned with codifying spatial shape invariant inforimrat Such information is useful for program ver-
ification clients, and the experimental results reportedh®se authors reflect this approach. They test
simple programs based on singly-linked lists or binarydresd use their shape analysis strategy to prove
code correctness and the conservation of the shape intganmtie structure in the presence of destructive
updating.

Likewise, the works in separation logic ([38], [41], [40Bq]]) are concerned in finding predicates that
encode spatial relationships between heap locations, renalso targeted by their authors toward program
verification. These works also design specific shape asadysategies for particular target data structures.
For instance, Berdine et. al [40] create a shape analyzeificpdly targeted for structures based on linked
lists (trees are not supported by definition) and use it fagréfication client that is tested with a library of a
firewire driver.

We believe that the kind of analysis that is suitable forfigation is not easily adaptable toward de-
pendence detection. Verification is mainly concerned witiving code correctness and obtaining structure
invariants and therefore cannot make any assumptions #imptogram. In our approach, we assume code
correctness, and we are not so much concerned with thelstlnovariants than actual access relationships,
which determine dependences.

Also, in our approach, we do not limit the scope of applidabibf the analyzer to a specific type of
structure. Rather, we construct shape graphs modelingetiqeih the program in a general way. This allows
us to obtain good results for programs that manipulate datatares that are not “clean” lists or trees or
a combination of some predetermined data type (e.g. li@Sgmetimes the analysis may not be precise
enough, but often properties can be used to solve such cases.

More related to our approach of using heap analysis for depaemtience are the works [56], [37] and
[66]. Ghiya and Hendren [56] proposed a test for identifydiaga dependences, relying on a characterization
of the overall data structure as the Tree, DAG or Cycle sh&pesh knowledge is used to identify possible
conflicts for the pointer access paths in the statementglaialyzed. In the case of the Cycle shape, all
precision is lost, and dependences must be conservatizebdrted.

Also using the overall structure characterization of Ti2&G or Cycle, Hwang and Saltz [37] devised

a dependence test based on the calculation of interpragedef-use chains for pointer variables. These
def-use chains allow them to assess a “shape” for the travefrthe structure. For example, their approach
is able to identify a non-cyclic traversal of a cyclic sturet. This is useful in the case of having heap
accesses that do not follow the cyclic paths in the struangdo not provoke dependences. Such a case
could not be identified by [56]. The main drawback in theseksads that they are not useful in programs
that perform destructive updates in the loops under testthier words, the structure cannot change within
the loop of study.

We first used successfully the idea of annotating heap azséssnodes in the work of [2]. Marron
et. al borrow this idea for dependence analysis on theirqudatt store heap model in [66]. They target Java
codes entirely based on manually-tuned collection liesariTheir approach is fast, partly by limiting the
discrimination of conflicting accesses. As a consequehedr, work is not adaptable to detect different kind
of dependences (anti, flow, output) or zero distance datardigmnces.

In our approach, we annotate the memory locations reacheddiyheap-directed pointer, with read/write

University of Malaga

130 Chapter 4. Data dependence analysis

information. This feature let us capture, more accuratedy tany other approach, the temporal relationship
between the statements that visit the locations of the prodreap. Our algorithm supports recursion, and
allows the data structure to be modified during the analysigh enables us to support a wide range of pro-
grams that feature loops or recursive functions that temvand create generic heap-based recursive/dynamic
data structures in programs that perform destructive @gd#&n top of that, we can distinguish among anti,
output, and flow data dependences, as well as zero-distateelependences in loops or recursive functions
that comply with thel-waytraversal pattern.

4.5 Experimental results

We have implemented the algorithms described in this chdptdneap-induced data dependence analysis
within our heap analysis framework. We have conducted soperinents that we review next.

45.1 Benchmarks and tests

We have considered eight programs for out data dependeneetida tests. They are summarized in Ta-
ble 4.1, and we present them in more detail next. Beside thehoeark name, we include the traversal
pattern featured, the data structure and the result olokdipehe test. The first two benchmarks are drawn
from the running examples of this chapter to provide a basdbr the analysis performance. The rest of
benchmarks were introduced in previous chapters.

Benchmark Traversal pattern Data structure Result
1- Runni ng-ex-l cdO 1-way (2 nested List of lists (each el ement 2 anti dependences
| oops) in the singly-linked header (1 I oop-carried
list points to another dep. for inner
singly-linked |ist of heap | oop, 1 zero dist.
el enent s) for outer |oop)
2- Runni ng_ex._r ec 1-way (2 nested rec. List of lists (each el ement 2 anti dependences
fun.) in the singly-linked header (1 I oop-carried
list points to another dep. for inner
singly-linked list of heap loop, 1 zero dist.
el enent s) for outer |oop)
3-Matrix x Vector(s) | 1-way (3 nested Singly-1linked sparse matrix No dependences
| oops) and vector
4-Matrix x Matrix(s) | 1-way (4 nested Singly-1inked sparse nmatrices No dependences
| oops) and vector
5- EnBd 1-way (2 nested 2 singly-linked lists Zero di stance anti
| oops) interconnected formng a dependence
bi partite structure
6- Tr eeAdd 2-ways (2 termnal Binary tree No dependences
cl.)
7- Power 1-way (3 nested rec. Mul til evel structure of Zero di stance anti
fun.) singly-linked lists dependences
8- Bi sort 2-ways (2 nested rec. Bi nary tree No dependences
fun., 2 termnal cl.)

Table 4.1: Summary of benchmark programs used for our dgandience tests.

1. Runni ng_ex. cdO. This is the example of Fig. 4.11. It featureksa of listsdynamic data structure
that is traversed in two nested loops, withlavay traversal pattern. The test identifies two anti
dependences, one for the outer loop, and other for the imogr. IThe mechanism of the iteration
vector described in section 4.2.6 is employed by the arsmlysirecognize the dependence of the
outer loop as a zero distance dependence, and the deperufethesinner loop as a loop-carried
dependence. This benchmark is run with tyygeandtouchproperties enabled.

Compilation techniques based on shape analysis for pdiatsed programs

4.5. Experimental results 131

2. Runni ng_ex _r ec. This is the example of Fig. 4.14. It features the same datatsre and obtains
the same results as the previous benchmark, but it is basadramersal with two nested recursive
functions, rather than two nested loops. Still, it follols 1-waytraversal pattern. The dependences
identified are the same as above. This benchmark is run vétbrévious call paired selectorstype
andtouchproperties.

3. Matrix x Vector(s). Thisis the sparse matrix by sparse vector benchmark, @ssthgly-
linked lists, presented in chapter 2. This is the versiomeuit pruning to improve performance. The
pruned part in chapter 2 features the heap accesses anfibtbarannot be obviated for the purpose
of dependence detection. The analysis reports no depezslfaradhe loop that computes the product,
as each read operation is performed over the input matrixectoy, and every writing operation is
performed on the output vector. This benchmark is run wigstte andtouchproperties enabled, and
features d-waytraversal pattern.

4, Matrix x Matrix(s). Thisis the sparse matrix by sparse matrix benchmark, baiseihgly-
linked lists, presented in chapter 2. Again, this versidoved no pruning. The structure accessed for
reading (two input matrices) is different from the struetaccessed for writing (output matrix). This
is maintained by the analysis, which correctly reports npedelences. This benchmark is run with
the siteandtouchproperties enabled, and again featurdsvaaytraversal pattern.

5. En8d. This is the Olden benchmark presented in chapter 2 as weit formed by two singly-
linked lists, where the elements in a list point to severaihrants in the other list, forming a bipartite
structure. Theeonput e_nodes() function, that computes the values of the electric and miagne
field, is instrumented for dependence detection with towsgudostatements. A zero distance anti
dependence is found as each element is read and then updatety iteration of the traversing loop,
in a 1-waypattern. This benchmark is run with teige andtouchproperties enabled.

6. Tr eeAdd. This is another benchmark from the Olden suite. It was thtoed in chapter 3, and has
been used in the present chapter as example2efvaystraversal pattern in a tree. It is cloned with
a depth of one, meaning that only two terminal clones arergéea, aiming for a 2-threads traversal
distribution. The heap accesses of the terminal clones timtesfere, and so the tested program is
reported as parallel due to heap accesses in the traversi.b@nchmark is run with thprevious
call, paired selectorsanddynamic touctproperties enabled.

7. Power . Another benchmark from Olden, it was presented in chapten8 features nested recur-
sion for al-waytraversal of a multilevel structure of singly-linked list€lements are updated in
the traversal, like irb- EnBd, thus producing zero distance anti dependences for selatalfields.
For simplicity, these data fields are grouped for this testoareduce the number of required touch
pseudostatements. As a result, finer distinction of depeawdefor different data fields is lost. Nev-
ertheless, zero distance anti dependences are discoeerh fanalysis. This benchmark is run with
thetype previous cal) paired selectorsandtouchproperties enabled.

8. Bi sort. Yet another Olden benchmark, also presented in chaptbhaB{datures &- ways traver-
sal pattern of a binary tree with two recursive functionst tharform nested traversals. Like in
6- Tr eeAdd, we perform function cloning of depth one, aiming for a 2ethmled version of the
program, separating the traversal of the left subtree flwright in the first function involved in the
traversal. Again, the heap accesses from both terminaésloio not interfere, and the program is
reported parallel for the analyzed configuration. This bemark is run with therevious call paired
selectors anddynamic touctproperties enabled.

University of Malaga

132 Chapter 4. Data dependence analysis

Benchmarks- Tr eeAdd and8- Bi sort feature2-waystraversal patterns of a binary tree. The rest
feature a variety of data structures and traversals, alwagforming to thel-way pattern. We are able to
obtain accurate dependence information for all the preselbénchmarks, identifying the access pairs and
conflicting functions where they exist.

We show some measures about performance and problem sigeefolependence analysis of these
benchmark programs in Table 4.2. We register analysis tmemory consumed, number of analyzable
statements, number of analyzed statements until the fixied igoeached, and the number of shape graphs
generated. As in previous chapters, the testing platform83&Hz Pentium 4 with 1 GB RAM.

Excluding the base te&t Runni ng_ex_ cd0, which takes less than one second, we see that some pro-
grams need a few secondd Runni ng_ex_r ec, 6- Tr eeAdd, and7- Power) while other need a few
minutes 8- Matrix x Vector(s), 4-Matrix x Matrix(s), and5- End), with 8- Bi sort
taking the longest time, with more than 45 minutes. Memomgsconption seems very reasonable with
less than 20 MB in the worst case. The longest programs are than a hundred analyzable statements
long. We only report statements that deal with the heapgeitbnstructing, traversing or accessing the
structures. Remember that touch pseudostatements medeffétt of heap accessing statements for the
data dependence analysis.

The number of analyzed statements until the fixed point ishre@ stays at just a few thousands, with
the exception ofL.- Runni ng_ex_l cdO with the lowest value, an8- Bi sort with more than 100,000
analyzed statements. The number of shape graphs variesrsoree peaking again fd- Bi sort with
more than 350,000 generated graphs.

Benchmar k Ti me Space | Code stnts. Anal yzed stnts. Shape graphs
1- Runni ng_ex.l cdO 0.41 s 1.9 MB 56 585 721
2- Runni ng_ex._r ec 20.52 s | 11.5 MB 60 3,422 8, 416
3-Matrix x Vector(s) | 2 m19.80 s 3.8 MB 97 1, 333 16, 755
4-Matrix x Matrix(s) | 9 m13.38 s 4.9 MB 131 4, 356 30, 507
5- En8d 2 mb5.88 s | 11.8 MB 178 1, 475 2,454
6- Tr eeAdd 31.42 s 7.5 MB 67 5, 332 11, 754
7- Power 12.91 s 8.4 MB 73 3, 698 6, 454
8- Bi sort 45 m6.88 s | 63.6 MB 116 107, 165 355, 003

Table 4.2: Performance and problem size for the benchmadd for dependence detection. The testing
platform is a 3GHz Pentium 4 with 1GB RAM.

More information about these experiments is gathered ineTal3. It gives some metrics related to
the complexity of the shape graphs. Next to each benchmagkiswfirst the number of touch or dynamic
touch pseudostatements used for the analysis. Remembéhneéhtauch pseudostatements are used for the
1l-waytraversal pattern dependence test, while the dynamic tpsehdostatements are used forrheays
traversal pattern dependence test. This number is a sntiadl f@ all benchmarks as it is usually just one
pointer field that may have conflict. This is not the caserfoPower , but we group the access fields in this
benchmark for simplicity. The highest value is 6 &tBi sort .

Also in Table 4.3, we show the average number of shape graphamalyzable statement, and the
average number of nodes aalls’s per graph, with the maximum values in parentheses. Thebruif
shape graphs per code statement is kept as a few hundredssgsruept fol8- Bi sort. The average
number of nodes is around 9-10 for most benchmarks, confirthett the use of more properties produces
more nodes per graph. The numbecbE’s in average is quite controlled, with only three prograresding
more than a hundredi{ Matri x x Matri x(s),5- EnB8d, and8- Bi sort).

Some insights can be drawn from the results displayed iesahl and 4.3:

e The same program written in different ways can result in \iffegrent costs for the analysis. In par-

Compilation techniques based on shape analysis for pdiatsed programs

4.5. Experimental results 133

Benchmar k (Dytouchs | Sg’s / code stnt. Avg. nodes / sg (max) | Avg. cls's / sg (max)
1- Runni ng-ex-l cd0 4 12. 88 5.98 (10) 19. 80 (46)
2- Runni ng_ex._r ec 4 140. 27 9.91 (13) 33.18 (50)
3-Matrix x Vector(s) 3 172.73 10. 38 (14) 82.86 (122)
4-Matrix x Matrix(s) 3 232. 88 14.85 (19) 118. 47 (168)
5- EnBd 3 13.78 9.38 (13) 128. 06 (556)
6- Tr eeAdd 4 175. 43 5.42 (8) 46. 95 (116)
7- Power 5 88. 41 9.90 (14) 37.80 (66)
8- Bi sort 6 3, 060. 37 8.41 (10) 107.50 (208)

Table 4.3: Shape graph complexity for the benchmarks usedkefiendence detection.

ticular, recursive algorithms are more costly, for the stiraeersal over the same data structure, than
iterative algorithms. This can be observed forRunni ng_ex_| cd0 and2- Runni ng_ex_r ec,
where the first runs 50 times faster, and takes nearly 6 tiesssshape graphs to reach the fixed point,
while reporting the same dependences.

e The dependence test f@rwaystraversal patterns is much more costly than the dependestéor
1- way traversal patterns. For instan@, Bi sort takes much more time, and many more shape
graphs tharb- End, even thougtb- EnBd has more nodes ard s's per graph, and more analyz-
able statements. Added to the cost of analyzing recursjaiims versus iterative ones; Bi sort
also needs to analyze the clones of recursive functiongjpiyihg the cost of the analysis.

e The number of nodes per graph does not grow too much despitmtich annotations labels. The
touch and dynamic touch properties increase the numberddsper graph. A bigger number of
annotation labels can exponentially increase the numbeodds, as they may register different com-
binations of labels. Luckily, heap accesses occur with tepgtand memory locations tend to be
touched with the same heap accesses, therefore limitinguimder of different combinations of an-
notation labels in nodes. The biggest number of hodes pphgsaregistered for the sparse matrix
benchmarks, with only three touch pseudostatements eachisl case, this is caused by the site
property, also used for the analysis. The use of the sitegptppenefits these benchmarks as shown
in the experimental section of chapter 2.

These tests show that the techniques presented in thisectaaptsuccessful in identifying heap-induced
data dependences for a variety of data structures and thligysi both for thel-way and 2-waystraversal
patterns. The cost has increased with regards with thetseshdwn for previous chapters. We shall explore
this issue next.

4.5.2 Cost of dependence test over shape analysis

It is clear that the dependence test poses some extra strabg technique, degrading the performance
regarding the analysis that only captures and maintainshibpe of data structures. This can be seen at
a gross level by comparing the results of tables 4.2 and 4it8, their homologues from chapters 2 and
3. However, we would like to have a quantification of that axtost to ponder the real impact of the
dependence analysis. That is the purpose of Table 4.4.

Table 4.4 presents the percentage increment in some migtritee dependence analysis with regards to
just the shape analysis. This means that the same prograbebasinalyzed twice: once with the touch or
dynamic touch property enabled, and once with that profisgbled. The program tested is the same, this
means that for the codes with function clonés Tr eeAdd and8- Bi sor t), the extended, cloned version

University of Malaga

134 Chapter 4. Data dependence analysis

Benchmar k Inc. tine | Inc. space | Inc. Sg's | Inc. nodes | Inc. cls’s
1- Runni ng_ex_l cdO 55. 6% 0% 16. 1% 27.2% 31. 9%
2- Runni ng_ex_rec 1, 059. 3% 310. 7% 380. 1% 71.2% 62. 4%
3-Matrix x Vector(s) 5,874. 4% 35. 7% 594. 4% 39. 0% 172. 0%
4-Matrix x Matrix(s) 1, 750. 8% 32. 4% 217. 2% 22.3% 127. 2%
5- EnBd 582. 3% 114. 9% 21. 9% 7.2% 11. 4%
6- Tr eeAdd 53. 1% 50. 0% 18. 9% 25.5% 20. 3%
7- Power 58. 8% 31. 2% 4.6% 28. 9% 32. 4%
8- Bi sort 838. 1% 285. 5% 344. 7% 26. 9% 60. 7%

Table 4.4: Increment in several measures of the shape aaysumented for dependence test with regards
to just the shape analysis.

is used for both runs. Only the time of the shape analysiestagonsidered, i.e., the time fetage four
(1-way)or stage three (n-ways)

The metrics we have considered for this comparison areeinent in time, increment in memory con-
sumed, increment in the total number of generated shapagragrement of nodes per graph in average,
and increment irtl s’s per graph in average. The increments in analysis time geggtly. For instance,
6- Tr eeAdd has a 53.1% increment. This means that if the shape analytie @loned version of this
program takes 20.52 seconds, the dependence test také$ Bihde time, that is, 31.42 seconds. For
3-Matrix x Vector(s) however, the increment is nearly 6,000%, showing the graaahility of
this metric.

The increment in memory consumed is more controlled, butnieeless it surpasses a 200% increment
in memory for two programs2¢ Runni ng_ex_r ec and8- Bi sort). The increment in shape graphs
is again quite variable, ranging from as little as 4.6% TelPower to nearly 600% for3- Matri x X
Vect or (s) . The increment in number of nodes per graph in average is aooteolled peaking at 71.2%
for 2- Runni ng_ex_r ec. The increment in average numberadfs’s per graph is also in a similar range
but surpassing a 100% increment for the sparse matrix bearbism

Some insights can be drawn from the results displayed ireTé:

e The increment in analysis cost in the dependence test bexrtkRmmainly analysis time, is significant
with regards to performing just the shape analysis, andd @hries a lot between different programs.
This makes it hard to predict the behavior of the analysisugh some guidelines apply, as hinted
next.

e A strong increment in the number of generated graphs predaceven greater increment in analy-
sis time. This can be seen far Runni ngex_rec,3-Matri x x Vector(s),4-Mtrix x
Matri x(s),and8-Bi sort.

e The increment in average number of nodes ahd’s per graph is quite moderate for most cases.
However, when the shape graph complexity rises above ahibicbsthe penalty in analysis time is
significant. This can be observed for En3d, where for a small increment in shape graphs, nodes
andcl s’s per graph, the analysis time increases by 582.3%. In t@eagio, the limiting factor is
the cost of the abstract semantics operations for a largeuatmod cl s's. Note that5- EnBd has
the biggest number afl s’s per graph, but more importantly the maximum value is mbant4
times the average (Table 4.3). In such a situacion even anaedimcrement ircl s’s, caused by
the instrumentation required for the dependence test, g Enpact over the abstract semantics
operation. This effect is also noticed & Mat ri x x Vect or (s), where the increment in the
number of shape graphs is not sufficient to justify the enaisniocrement in analysis time. This
benchmark is affected as well from a significant incrementlis’s per graph which places extra
burden on the shape analysis internal operations.

Compilation techniques based on shape analysis for pdiatsed programs

4.5. Experimental results 135

We have seen that being able to detect dependences comessit e are aware that the analysis
may be too costly for some purposes. In that sense, we thinlfgproach is suitable to analyze sections of
programs, or function libraries. Let us remind the readerthat we are targeting data dependences in heap
directed structures that are a challenge for current @dimilg compilers. Related work in shape analysis
is not suitable for dependence analysis, and other workepemdence analysis are not sufficiently precise
for complicated traversals and/or structures.

It should also be noted that the approach that we have taketefiendence analysis is based solely on
the capabilities of the shape analysis technique. This s@sae natural evolution of the foundational work
presented in previous chapters. We plan to continue our teodevise a more complete data dependence
detection scheme that can benefit from the shape analysigeviand try to avoid most of its associated
costs. ldeas in this respect are discussed as future wdnk inext chapter.

Now, we would like to complete our experimental resultsisecvith information of the role of untouch
pseudostatements for zero-distance data dependencdendlistion and some measures about the scalability
of our approach to data dependence analysis fonitvaystraversal pattern.

4.5.3 Further instrumentation with untouch pseudostatemats

From the tests reported for dependence analysis, therefanethat feature zero distance dependences. We
can apply the technigues presented in section 4.2.6 on them.

1- Runni ng_ex_ cd0 and5- EnBd havel-waytraversal patterns with loop traversals. The extension
of the iteration vector within touch annotations is usedhi@se tests to correctly identify the dependences
found as zero distance dependences. That mechanism hasopesgtered for the previous measures. How-
ever,2- Runni ng_ex_r ec and7- Power featurel-waytraversal patterns in recursive functions. In that
case, we need one of two mechanisms available: (i) obtatnirtf@mation from the source program, or
(i) instrument the programs further with untouch pseudt@shents. For botB- Runni ng_ex_r ec and
7- Power , the source program inspection is enough to determine lieaadcess pairs found are zero dis-
tance dependences.

For completion though, we show the measures for the touttdoh instrumented version for these
two tests, which also results in the identification of theatafences as zero distance dependences. Keep
in mind that the way of identifying zero distance dependsrinerecursivel-waytraversals by obtaining
information from the source code is not valid for all progsarwhile the method of instrumenting with
untouch pseudostatements is.

Benchmar k (Un) touchs Ti me Space | Code stnts. Anal yzed stnts. Shape graphs
2- Runni ng-ex_rec(t) 4 | 20.52 s | 11.5 MB 60 3,422 8,416
2- Runni ng_ex._rec(tu) 16 | 15.47 s 9.4 MB 72 5, 662 9, 838
7- Power (t) 5 12.91 s 8.4 MB 73 3,698 6, 454
7- Power (tu) 12 | 11.66 s 7.3 MB 80 5,330 8, 027

Table 4.5: Measures for tH&- Runni ng_ex_r ec and7- Power benchmarks, considering the touch in-
strumented versiort {, and the touch-untouch instrumented version)(

The measures of the touch-untouch instrumented versibal@d(t u)) are shown next to the measures
of the touch instrumented version (labeled now w(th) , showing the measures presented before), for
comparison. They can be found in Table 4.5. We can see thatosteof the second analysis is slightly
less than that of the touch instrumented version. This istduée fact that dependence information is
not carried across context changes, which makes the amalyspler. However, the number of generated
graphs is slightly higher, accounting for more possilgitof nodes being touched or untouched by access

University of Malaga

136 Chapter 4. Data dependence analysis

annotations.

4.5.4 Scalability of the dependence detection scheme fotwaystraversal patterns

Our dependence analysis schemerfavaystraversal patterns involves creating function clones efrttain
traversing functions. As discussed in section 4.3.5, ttlime requires creating an exponential number of
clones for a bigger number of threads intended for paraletetion. That is why we recommend targeting
this technique for few threads, unless the cost of the aisalysiot an issue.

As a hint on the scalability of the analysis for a higher numblethreads, we have conducted the
dependence analysis f6r Tr eeAdd and8- Bi sor t , tailored for four threads and measured the results.
They are compared in Table 4.6, which features the measorekd 2-threads version (labelé@-t h) ,
showing the results presented before), and the measures éfthreads version (labeléd- t h)).

Benchmar k Dt ouchs Ti me Space | Code stnts. Anal yzed stnts. Shape graphs
6- Tr eeAdd(2- t h) 4 31.42 s 7.5 MB 67 5, 332 11, 754
6- Tr eeAdd(4-t h) 8| 6 m15.84 s 19.6 MB 135 10, 337 21,134
8-Bisort(2-th) 6 | 45 m6.88 s 63.6 MB 116 107, 165 355, 003
8-Bisort(4-th) 10 1 h 51 m| 198.6 MB 170 219, 865 734,121

Table 4.6: Measures for th& Tr eeAdd and8- Bi sort benchmarks, considering the versions tailored
for two threads Z- t h) and four threads4- t h).

As expected, the analysis cost has greatly increased faretisgon with four recursive function clones.
The analysis reports no dependences again due to heapexbysthe different clones, so the programs
tested are ready to be parallelized with four threads.

4.6 Summary

This chapter concludes our efforts to apply the shape asalkyshnique based on the coexistent links sets
abstraction, with added interprocedural support, for iadpced data dependence analysis in applications
that deal with dynamic, recursive data structures. Due ¢éoviriety of ways to traverse dynamic data
structures, through one or more selectors, using loopscorsee functions, we have devised a variety of
techniques, all based on annotating heap access infom@iiaodes in shape graphs. Next, we summarize
the content presented in this chapter.

e First, we present our motivation for dependence analysdiis sfiape analysis techniques, and intro-
duce the distinction betwedniwayandn-waystraversal patterns (section 4.1).

e Next, we focused on dependence analysis on the sinipleaytraversal pattern (section 4.2). We
organize the process in five stages:

— Stage one (1-wayis in charge of identifying heap accessing statements isdliece program
(section 4.2.1).

— Stage two (1-wayrreatesdependence groupsdentifying heap accesses that may lead to a
dependence (section 4.2.2).

— Stage three (1-waygddstouch pseudostatemenisstrumenting the program for the shape anal-
ysis with heap access annotations (section 4.2.3).

Compilation techniques based on shape analysis for pdiatsed programs

4.6. Summary 137

— Stage four (1-wayperforms the shape analysis proper, creatingess pairdor heap accesses
that have been performed on the same nodes (section 4.2.4).

— Finally, stage five (1-wayjonsiders the access pairs and dependence groups toydbatifeap-
induced data dependences found, discriminating betweénoutput and flow dependences
(section 4.2.5).

— For the special cases péro distance dependenggection 4.2.6), which are rightfully detected
by our scheme, but that do not prevent parallelism, we usiédifagion vectorwithin annotations
for zero distance loop carried dependences, and two methodiscriminating zero distance
dependences in recursive functions.

o After tackling thel-waytraversal pattern, we target the more complicatedaystraversal pattern
(section 4.3). This method is organized in four stages:

— Stage one (n-way$lerforms recursivéunction cloning transforming the original program into
a version arranged for threaded execution, should it resudllel after the test (section 4.3.1).

— Stage two (n-waysp dedicated to addingynamic touchinstrumentation for the subsequent
shape analysis (section 4.3.2).

— Stage three (n-wayg)erforms the shape analysis, annotating heap accessesnpeafby the
terminal clones (section 4.3.3).

— Stage four (n-waysjonsiders the results of the shape analysis over the insimeu program to
render the arranged program as parallel or non-paralletalbeap accesses (section 4.3.4).

e We also discuss related work in dependence analysis forrgmagythat manipulate dynamic data
structures (section 4.4).

¢ Finally, we present experimental results that test ountiegle for a variety of dynamic data structures
and traversals (section 4.5). We have also characterizeektiha cost that the touch or dynamic touch
instrumentation poses for the analysis over performing thus shape analysis (section 4.5.2). The
tests are completed with information of the impact of usimgch-untouch instrumenta

University of Malaga

Conclusions

5.1 Conclusions

Our research goal lies in parallelizing compilers. In atar, we are interested in uncovering unexploited
parallelism in pointer-based applications. For that psepave have centered our efforts in the use of shape
analysis to design a precise scheme of data dependencesiandly our approach, we abstract dynami-
cally allocated data structures in the form of shape graphd,operate on them to annotate heap access
information. We use that information to report heap-indudata dependences.

Firstly, we would like to stress the defining charactersst€our work. We have shown that it is possible
to use a detailed heap analysis technique for data depemd@adysis in programs that are a challenge for
current parallelizing compilers. To our knowledge, no otigthor has used so effectively a shape analysis
technique for the purpose of data dependence detectiorograms that create and traverse dynamic data
structures. We are able to analyze programs even when tméngde¢haracteristics of the data structure are
changing amidst the traversal. When performing dependanalysis, we are able to determine the kind of
data dependences for many cases. This is a very usefulddatupptimizations related to parallelism and
locality. Let us emphasize that all these characteristiosur analysis are not present in any related work
that we are aware of.

Next, we elaborate further on our main contributions:

1. We have designed and implemented a shape analyzer basleel movel concept ofoexistent links
sets which allow to represent possible connections between engfacations in a compact form.
We have provided the necessary abstract semantics foragl p@inter statements, and the adequate
scheme of data-flow equations and worklist algorithm fori@dhg a fixed point for the analysis.
We have conducted a complete complexity study that idesittfie main sources of limitation for
the technique. We have provided experimental evidencethieatoexistent links sets abstraction is
suitable to accurately represent a variety of dynamic datatsires in the form of shape graphs. More
information can be found in chapter 2 of this dissertation.

2. We have designed the necessary mechanisms to suppomdlysia of interprocedural programs,
particularly recursive algorithms, within the coexistéinks sets shape analyzer. For this purpose,

139

140 Chapter 5. Conclusions

we have addedecursive flow linkdo the shape graphs. They codify flow information that is used
by the analysis to setup and recover the appropriate comte&h analyzing functions. We have
added support to reuse the effect of computed functionsefdain cases. We have identified some
shortcomings that limit the technique when analyzing reigarprograms, and have devised solutions
for them. Finally, we have conducted tests that provideanig that our shape analysis approach
compares favorably to related work and is able to corredyiify shape information for well-known
interprocedural benchmarks. More information can be fdarehapter 3 of this dissertation.

3. We have put to use the shape analysis technique basedxastentlinks sets and recursive flow links
for data dependence analysis in pointer-based applicatidfe distinguish between two different
traversing patterns in recursive, dynamic data structurasely thel-waytraversing pattern and the
n-waystraversing pattern. We have worked on two separate linepply dhe key idea of annotating
heap accesses in nodes to provide information about depessiéor both kinds of traversing patterns.
In the case ofl-way traversing patterns we are able to distinguish between aatput and flow
dependences. We have also faced the issue of discriminlditvgeen zero distance dependences
and greater-than-zero distance dependences. A sounddgeehmust be able to detect both types,
but for the purposes of parallelization it is important tentify zero distance dependences, which
do not hinder parallelism. Regarding thewaystraversing pattern, we have adopted the approach
of decomposing the structure traversal, generating a neddifersion of the program suitable for a
subsequent parallelization scheme. We have provided iexpetal evidence that we can detect heap-
induced data dependences in a variety of data structuresrarafsals for both traversal patterns.
Additionally, we have studied the cost inherent to the ddpene analysis versus the cost of the
shape analysis per se. More information can be found in ehdpt

5.2 Future work

It is fair to say that there is the generalized feeling witthia compiler community that shape analysis has
little to say for production compilers. The typical argurnkes in the cost of the analysis. Shape analysis is
a costly technigue by definition as it strives to achieve patgile time, very detailed information about the
arrangement of memory in the heap. The kind of knowledgeeshaplysis can obtain is beyond the scope
of other techniques, such as points-to analysis. Howehismot always clear whether that deep knowledge
can be put to use effectively.

In our opinion, the main issue with shape analysis comes fhenfack of information from the run time
context. It is a compile-time technique, and as such, it baadbpt very conservative assumptions about
the analyzed program. Therefore, as a stand-alone te@hisqurobably insufficient for realistic compiler
passes.

Despite this defining limitation, there are several diatsi that we can explore to improve and extend
our work:

e Improvement of internal operations.
The internal operations of summarization and materiatinalie at the core of our shape analysis
strategy. They control the focus of the analysis, whethderiaizing for accurate updating operations
or summarizing for bounding the size of the shape graphssd&tveo operations must be conservative
to preserve correctness of the analysis. However, it is alsgcome overly conservative, rendering
the analysis worthless for the purposes of data dependeneetidn.

We acknowledge a key fact for this limitation: there is imf@tion that is available at the moment of
summarization that cannot be recovered later during thenmdization process. We plan to improve

Compilation techniques based on shape analysis for pdiatsed programs

5.2. Future work 141

the efficacy of the materialization, considering inforroatpresent at the moment of summarization.
That information includes: (i) characteristics of thboledata structure, and not juktcal informa-
tion, like in the current approach, and (ii) theachability of its elements by the different pointers.
This would allows us to obtain a quicker and more precise wayaterialize in shape graphs.

e Interval analysis.
We advocate for the use of shape analysis as a means to analyzeertain parts of a program. In
chapter 2 we showed some results that evidencepthiaing of statements that do not affect the shape
of the data structure can greatly improve the analysis pedace. There is work in this direction that
usedef-use chaingo drive that pruning in an automated fashion [67]. With tigiproach we hope to
be able to analyze bigger programs.

e Shape information as a base tool for more sophisticated depéence tests.

Our approach to the problem of data dependence detectiantiielg based on shape analysis and
its inherent capabilities. It is based on performing alostirsterpretation of all heap-directed pointer
statements in the program, while annotating heap accessexdes of the shape graphs. However,
we consider this approach just a first approximation to tleblpm of detecting heap-induced data
dependences in programs that manipulate dynamic datdwsac Since the engine of abstract in-
terpretation is naturally of exponential complexity, tlisa very costly way to uncover heap access
conflicts. Alternatively, we can design a more subtle test thies to avoid the abstract interpretation
penalty whenever possible.

For instance, we can consider shape analysis as a base toloiaio a shape graph representation
of the heap. On top of that, we can use some other techniqueeties on the shape abstractions to
identify conflicting heap accesses. We are already workirtis direction. The key idea is to project,
or map, the access paths that can potentially lead to a depeadver the shape graphs abstractions
that define the data structure. The major drawback of thisoggh is that the data structure cannot
change in the program section where the access paths aeetpmbpver the shape graphs, otherwise
its deductions cannot be guaranteed to hold true for evesy. dareliminary results with this approach
are encouraging, leading us to believe this is the most miomfield of applicability of shape analysis
for realistic compiler passes.

e Automatic generation of parallel code.

Let us not forget the final goal of our research: the autongaiteration of parallel code. The results
of our data dependence test strategies can be used by elmattin pass that generates parallel
code. We have already identified UPC (Unified Parallel C) [B8]the language of choice for this
task. UPC is one the most promising languages for easy g@eredd parallel programs. It features

parallel constructs that can exploit parallelism in mosh#ectures today. It offers a shared mem-
ory programming model, but is able to map tasks in distritbuteemory architectures, all in a very

amenable way for the programmer. It is as simple as shariagetuired variables and adding a
upc _foral | construct to parallelize a loop, regardless of the targetitacture.

Although some problems need to be solved for the automatallpbzation of irregular applications,
a field yet unexplored with UPC, we are optimistic in the usa parallel code generation pass based
on UPC for exploiting the parallelism reported by our datpatelence test strategies.

University of Malaga

Appendix A:
Shape analysis
algorithms

XNULL()
Input: sg*=<N!, CLS'>, x € PTR # A shape graph, and a pointer variable
Output: RSSG* # A shape graph in a reduced set of shape graphs

Createli st’ [N] =0
Createli st’ [CLS] =0
Findni € N! s.t. 3 pl =<x, ni > C CLS,,
forall ¢l spj ={PLp;, SLni } € CLSy;,
CreatePL’ i =PLy; - pl # Remove the correspondipd
CreateSL’ i =SLyi
Createcl s’ i ={PL" ni, SL’ nj }
List’[CLS] =List’[CLS] Ucls’y;
List’ [N =List’ [N] Uni
endfor
forallnj e Nts.t.nj #ni,
Li st’ [CLS] =Li st’ [CLS] U CLSy;
List’ [N =List’ [N] Unj
endfor
sg“=Summari ze S List’ [N], List’ [CLS]) # Summarize compatible nodes
RSSG=sg
return@SSa)
end

Figure A.1: TheXNULL() function.

XNew()
Input: sg*=<N!, CLS'>, x € PTR # A shape graph, and a pointer variable
Output: RSSG* # A shape graph in a reduced set of shape graphs

RSSG'=XNULL(sg?', x) beingRSSG'=sg?=<N?, CLS?>>
Create a new nodep
forall pr op € PROP
PPMprop (Np) =Updat e_Property(s, prop),wheres is the malloc stmt.
endfor
CreateN=N? U np
Createpl =<x, np>
CreatePLpp=pl
CreateSLpp=0)
forallsel j € SEL' (beingZ (x) =t)
Creates| 5 ¢ =<<np, sel j, NULL>, att sl ={o}>
San:San U sl att
endfor
Createc| Spp={PLnp, SLnp}
CreateCLSyp=cl spp
CreateCLS*=CLS? U CLSyp
Createsgk=<N¢, CLS*>
RSSG=sgk
return@SSc)
end

Figure A.2: TheXNew() function. Statements involved in the management of pragseare shown in bold.

Updat e_Property()
Input: s € STMI, pr op € PROP # A statemens: : =x=new() , and a property
Output:pprop € Pprop # The value of the corresponding property

If (pr op==t ype)
Pprop=7 (X)

If (prop==site)
Pprop=S

If (pr op==t ouch Vv prop==PCV pr op==PS V pr op==Dt ouch)
pprop:@

return@pr op)

end

Figure A.3: TheUpdat e_property() function.

XY()
Input: sg*=<N!, CLS'>, x,y € PTR # A shape graph, and two pointer variables
Output: RSSG* # A shape graph in a reduced set of shape graphs

RSSG'=XNULL(sg?, x) beingRSSG'=sg?=<N?, CLS?>
Findni € N°s.t.3pl 1=<y, ni >C CLS,;; (beingCLS,; C CLS?)
Modify CLSy;
CreateCLS' j =CLSy;
forall cl sp ={PLy;, SLpn; } € CLSy;,
Createpl 1’ =<x, ni >
CreatePL’ j =PLn; Upl 1’
CreateSL’ ,j =SL;
Createcl s’ i ={PL’ i, SL' nj }
CLS i =CLS i-clspy U cl s’y
endfor
CreateN=N?
CreateCLSf=CLS?- CLS,; UCLS,
CreatesgX=<N¢, CLSK>

RSSG=sgk
return@SSc)
end
Figure A.4:XY() function.
FreeX()
Input: sgt=<N!, CLS'>, x € PTR # A shape graph, and a pointer variable
Output: RSSG¢ # A shape graph in a reduced set of shape graphs
Findni € N! s.t.3pl =<x, ni > C CLS;; (beingCLS,; c CLS!)
CreateN?=N!- ni # Remove the node
CreateCLS?=CLS!- CLS;; # Remove the correspondiagj s’s
forall nj € N?, # Remove inconsistest 's from other nodes

CreateCLS' ,j =CLS;;
forall cl snj ={PLpj, SLnj } C CLSyj s.t.3sl a1 =<<nj, sel, ni >, attsl > Ccl sy
Creates| ’ 51 =<<nj, sel , NULL>, att sl ={o}>
CreateSL’ j =SLpj - Sl art US| " att
CreatePL’ j =PL;
Createcl s’ nj={PL’ nj, SL' nj }
CLS nj =CLS nj - cl Spj U cls’ nj
endfor
endfor
N=N?
CLSk:Uan ene CLS'
Createsgk=<N¢, CLS*>
RSSG=sgX
returnRSSG)
end

Figure A.5:Fr eeX() function.

Xsel Y()
Input: sgt=<N!, CLS!>, x € PTR,sel € SEL,y € PTR # A shape graph, two pointer vars and a selector field
Output: RSSG # A reduced set of shape graphs in normal form

CreateRSSG¢ =0)
RSSG'=Spl i t (sg?, x, sel)
forallsg' =<N , CLS > € RSSG!,
RSSG=XSel NULL(sg', x, sel)
forallsg! =<N , CLS > € RSS@
Findnk € N s.t.3 pl 1=<x, nk> C CLS,k (beingCLS,x ¢ CLS)
Findnp € N s.t.(3 pl 2=<y, np>C CLSp A np # NULL) (beingCLS,, C CLS)
Modify CLSni
CreateCLS' x=CL Sk
forall ¢l spk={PLnk, SLnk} € CLS,
If (sl atr1=<<nk, sel , NULL>, att sl > C cl sn)
Creates| ' 5;¢ =<<nk, sel , np>, attsl’ >

If (nk=np)
attsl’={c}
else
attsl’ ={o}

Create SL’ nk=SLnk- Sl att1 USl ™ att
CreatePL’ nk=PL«
Createcl s’ nk={PL’ nk, SL’ nk}
CLS k=CLS k-clspucls’
endfor
Modify CL Sy,
CreateCLS' p=CLSy,
forall ¢l snp={PLnp, SLnp} € CLSy, (beingnp # nk),
Creates| ' 511 =<<nk, sel , np>, attsl’ ={i }>
CreateSL’ 1p=SLnp UsS! " art
CreatePL’ 1p=PLpp
Createcl s’ np={PL’ np, SL’ np}
CLS 1p=CLS np-ClsppuUcls’ pp
endfor
CreateN =N
CreateCLS ' =CLS - CLSyk U CLS' nk- CLSyp U CLS np
Createsg/ '=<N ', CLY ">
RSSG =RSSG U sg!’
endfor
endfor
RSSG‘=Surmar i ze_RSSG RSSG") # Summarize compatible graphs
return@SSE)
end

Figure A.6:Xsel Y() function.

Sunmari ze_SE)

Input: Li st *[N], Li st [CLS] # A list of nodes and a list afl s’s
Output:sgk=<NK, CLS*> # A normalized shape graph
NE=0)

CLS*=0

forallni € Li st [N] (beingCLSn A CLSy € List![CLS]),
If (3nj € N¢s.t.Conpati bl e.Node(ni, nj, CLSy, CLSyj) ==TRUE),
MAP(ni) =nj
else
N<=NK U ni
MAP(ni) =ni
endfor
forallnr € N¢
CreateCLS' =0
endfor
forallni € List![N],
nr =MAP(ni)
forall cl spj ={PLpi, SLn } € Li st[CLS],
CreatePL’ ,, =SL’ =0
forall pl =<x, ni > € PLy;
Createpl ' =<x, nr>
PL" o, =PL’ oy Upl’
endfor
forall sl ztt1=<<na, sel, nb>, att sl 1> SL,; #Computaattsl lwattsl 2
If (3 sl att2=<<nc, sel , nd>, attsl 2> SLy;,
s.t. MAP(na) =MAP(nc) A MAP(nb) =MAP(nd)),
If(i eattsl1Ai eattsl?2)
attsl’'=attslluattsl2 -i +s
If(i e(attsllvattsl2)Ase(attsl1vattsl?2))
attsl’=attslluattsl 2 -i
else
attsl’'=attsll1uattsl 2
Creates| ' 511 =<<MAP(na), sel , MAP(nb) >, attsl’ >
SL' nr=SL’ nr USI att
else
Creates| ' 51 =<<MAP(na), sel , MAP(nb) >, attsl 1>
SL' nr=SL" nr USI att
endfor
Createcl s’ o, ={PL’ nr, SL’ nr }
CLS +=CLS Ucl s’
endfor
endfor
LS =Uynen COLS o
return6gk=<NK, CLS*>)
end

Figure A.7:Sunmmari ze_SE) function.

XSel NULL()
Input: sg'=<N!, CLS!>, x € PTR, sel ¢ SEL # A shape graph, a pointer variable and a selector field
Output: RSSG* # A reduced set of shape graphs in normal form

CreateRSSG¢ =()
RSSG'=Spl i t (sg?, x, sel)
forallsg' =<N , CLS > € RSSG,
sgl=<N, CLS >=Mat eri al i ze_Node(sg', x, sel)
Findnk € N s.t.3 pl 1=<x, nk> C CLS,k (beingCLS,x € CLS)
Modify CLSni
CreateCLS' nk=CL Sk
forall cl spk={PLnk, SLnk} C CLSnk,

If (sl arr1=<<nk, sel , np>, attsl 1>Ccl sp)
Creates| ’ 5111=<<nk, sel , NULL>, attsl 1’ ={o}>
CreateSL’ nx=SLnk- Sl att1 USIl " att1
CreatePL’ nx=PL«

Createcl s’ nk={PL’ nk, SL’ nk}
CLS k=CLS k-clspucls’ n
Modify CLSyp
CreateCLS’ 1p=CLSy,
forall ¢l spp={PLnp, SLnp} C CLSnp (beingCLS,, C CLY),
If (3s] arr2=<<nk, sel , np>, attsl 2> Ccl syp)
CreateSL’ np=SLnp- S| att2
CreatePL’ 1p=PLpp
Createcl s” np={PL’ np, SL" np}
CLS np=CLS np-clsppucls’ pp
endfor
endfor
CreateN ' =N
CreateCLS ' =CLS - CLSy, U CLS' nk- CLSnp U CLS np
Createsgl'=<N ', CLS ">
sg/""=Nornal i ze SEsg')
RSSGA =RSSGX Usgl "
endfor
RSSG'=Sumar i ze_RSSG(RSSG'') # Summarize compatible graphs
return@SSE)
end

Figure A.8:XSel NULL() function.

XYSel ()
Input: sg*=<N!, CLS'>, x,y € PTR sel € SEL # A shape graph, two pointer variables and a selector field
Output: RSSG¢ # A reduced set of shape graphs in normal form

CreateRSSG* =)
RSSG'=XNULL(sg?, x) , beingRSSG'=sg?=<N?, CLS*>
RSSG=Spl it (sg?, vy, sel)
forallsg' =<N , CLS > € RSS&,
sgl=<N, CLS >=Materi al i ze_Node(sg', y, sel)
Findnk € N s.t. 3 pl 1=<y, nk> C CLSx (beingCLSx C CLS)
Findsl 5 t1=<<nk, sel , np>, attsl >C cl sp
If (np % NULL)
Modify CLSyp
CreateCLS' p=CLSy,
forall ¢l spp={PLnp, SLnp} € CLSyp,
Createpl ' =<x, np>
CreatePL’ 1p=PLnp Upl " np
CreateSL’ 1p=SLnp
Createcl S* np={PL’ np, SL’ np}
CLS np=CLS np-clsppucls’ pp
endfor
CreateN ' =N
CreateCLS ' =CLS - CLS,, UCLS' np
else # Caseap=NULL
CreateN ' =N
CreateCLS ' =CLS
Createsgl =<N ', CLS ">
RSSG =RSSG" Usgl’
endfor
RSSG‘=Sumar i ze_RSSG RSSG') # Summarize compatible graphs
return@SSE)
end

Figure A.9:XYSel () function.

Joi n_.SE)
Input: sgt=<N!, CLS'>, sg?=<N?, CLS?*> # Two shape graphs
Output:sgX=<NK, CLS¥> # A normalized shape graph

N<=()
CLS*=()
Join nodes
forallni e Nt,
If (3nj € NP s.t.Conpati bl e_Node(ni, nj, CLSy, CLSy) ==TRUE) ,
Create a summary node
forall pr op € PROP
PPMprop(ns)=Joi n_Property(ni,nj,prop)
endfor
N<=N¢ U ns
MAP(ni) =MAP(nj) =ns
else
N<=NK U ni
MAP(ni) =ni
endfor
forallnj € N?,
If (Ani € N s.t.Conpat i bl e Node(nj, ni, CLSy, CLSyi) ==TRUE) ,
N<=NK U nj
MAP(nj) =nj
endfor
Joincl s’s
forall nr € N¢
CreateCLS’ =0
endfor
forallni e N' v N2,
nr =MAP(ni)
forall cl sp ={PLp;, SLni } € CLSy,
CreatePL’ ,=SL’ =0
forall pl =<x, ni > € PLy;
Createpl ' =<x, nr>
PL' =PL’ oy Upl’
endfor
forall sl 511 =<<na, sel , nb>, att sl > & SL,;
Creates| ' ;i1 =<<MAP(na), sel , MAP(nb) >, att sl >
SL’ nr=SL" nr USI’ art
endfor
Createcl s’ ny={PL’ nr, SL’ nr }
CLS =CLS nr Ucl s’
endfor
endfor
LS =Uypen OLS
return6gX=<NK, CLS*>)
end

Figure A.10: TheJoi n_SE) function. Statements involved in the management of pragseare shown in
bold.

Joi n_Property()
Input: n1, n2, pr op € PROP # Two compatible nodes and a property
Output:Pprop € Pprop # The value of the corresponding property

If (pr op==t ype V prop==si te Vv prop==t ouch Vv pr op==PCV pr op==Dt ouch)
Pprop=PPMprop(Nl) #PPMprop(nNl) ==PPMpop(n2)

If(pr op==PS)
Pprop=PPMprop(N1) UPPMprop(n2)

return@pr op)

end
Figure A.11: Theloi n_Property() function.
Split()
Input: sg*=<N!, CLS!>, p € PTR, sel € SEL # A shape graph, a pointer variable and a selector field
Output: RSSG* # A set of shape graphs
RSSG'=()

Findni € N! s.t. 3pl =<p, ni > C CLSy,
Split a graph for eactbl s € CLS;
forallcl s, € CLS,i,

If (3sl arr=<<ni, sel, na>, attsl ={o] c}>€cl sy Anaz#NULL)
CreateCLSK =CLS!- CLS,; Ucl spi
CreateN< =Nt
Createsg* =<N¢', CLS¥ >
RSSG'=RSSG | J Nor mal i ze_SG(sg"')

endfor
If (Vni €N, Apl=<p,ni>cCLSy)
RSSG‘=sg?
returnRSSG)
end

Figure A.12:Spl i t () function.

Nor mal i ze _SE()
Input: sg*=<N!, CLS!> # A shape graph
Output:sgk=<N¢, CLS*> # A normalized shape graph

CreateNy' =Nt
CreateCLS =CLS!
Createsgly =sg?
i =0
repeat # Iterate unthK’ andCLSK do not change anymore
FindNu={nu € N s.t. Unr eachabl e(nu, sg¥') ==TRUE}
FindNe={ne € N s.t.CLSpe=0}
Remove unreachable and empty nodes
N =N - Nu- Ne
#cl s’s from/to unreachable and empty nodes
Findcl spp s.t. 3 sl gr1=<<nf, sel , ng>, att sl >C cl sy,
with (nf € Nu U Ne) v (ng € Nu U Ne)
#cl s’s with incoherent selector links
Findcl spe s.t.3sl a1 1=<<nc, sel , nnp, attsl 1>cCcl s,c A
A sl aii2=<<nc, sel , nnp, attsl 2> ccl spm
Findcl spg s.t. 3 sl art3=<<nm sel , nd>, attsl 3>ccl spg A
AP sl arra=<<nm sel , nd>, attsl 4>ccl sym
CLSK,1=CLSK - Uvnuenu CLSnu Uvneene CLSne - {€1 Snp}- {Cl Snc}- {cl sna}
SgF <Ny, CLSK,>
Increment
until (N =N<; ACLSK =CLSK.,) # Fixed point condition

cLSk=cLSK
return6gk=<N, CLS*>)
end

Figure A.13:Nor mal i ze_SE) function.

Mat eri al i ze_Node() (1/3)
Input: sgt=<N!, CLS'>, p € PTR, sel € SEL # A shape graph, a pointer variable and a selector field
Output:sgk=<NK, CLS*> # A shape graph

Findni € N! s.t. 3 pl =<p, ni > C CLS,
Findnj € Nt s.t.3sl g ¢1=<<ni, sel, nj>, attsl 1> C CLS
Create a new nodem
forall pr op € PROP
PP Mot op(M) =PP My op(1)
endfor
CreateN =N' U nm
foralln € N¢
CreateCLS =0
endfor
Find{cl spj C CLSy; s.t.3sl ar12=<<ni, sel, nj > attsl 2> C clsy }::={clspy st cond. A
forall cl snj ={PLyj, SLnj } S.t. cond. A, # Creat€ELS’ m
CreatePL’ ,,=SL’ =0
forall pl =<x, nj > € PLy;
Createpl ' =<x, nn»
PL" \n=PL’ nmuUpl’
endfor
forall sl 51t =<<na, sel 2, nb>, att sl > SL;
If (attsl ={c})
Creates| ’ g1 =<<nm sel 2, nnp, att sl >
SL’ nnimSL" nmU Sl att
If (att sl ={o})
Creates| ’ g1 =<<nm sel 2, nb>, attsl >
SL’ nnimSL" nmU SI " att
If(attsl={i } v{s})
Creates| ' 41t =<<na, sel 2, nnP, att sl >
SL’ nnimSL" nmU SI " att
else # Case$i , 0},{s,0},{i,c}{s,c}
Creates| ' 5t11=<<na, sel 2, nn», attsl - (o] c) >
Creates| ' 5t12=<<nm sel 2, nb>, attsl-(i|s)>
SL’ nimSL nmU Sl " arr1 Usl are2
endfor
Createcl s” np={PL’ nm SL’ nm}
CLS n=CLS nmucls’ nm
endfor

Figure A.14: Part one of three of tiMat eri al i ze Node() function. Statements involved in the man-
agement of properties are shown in bold.

Mat eri al i ze_Node() (2/3)

CreateCLS' ,; =CLS;;; - {cl sy s.t. cond. A # CreateCLS' y;
forall cl spj ={PLyj, SLnj } € CLS;; s.t.—~cond. A,
CreateT1=T2=T2' =T3=0
Find {sl atte=<<nj , sel 2, nj >, att sl 6> C cl sy }: : ={cl sy s.t. cond. B
forall sl 411 C cl sy s.t.—cond. E
T1=T1 Usl att
endfor
forall sl 4116 C Cl Spj s.t. cond. E
If (attsl 6 #{c})
If (c €attsl6)
T2=T2 U<<nj, sel 2, nj >, attsl 6-c>
T3=T3U<<nj,sel2,nj> attsl 6-(i|s)>
else
If({i|s,o}Ccattsl6)
T2=T2U<<nj, sel 2,nj> attsl 6-(i|s)>u<<nj, sel 2,nj>, attsl 6-0>
else
T2=T2 U<<nj, sel 2, nj >, attsl 6>
forall sl 51 =<<nj,sel 2, nj> attsl > T2
If((i]s) eattsl)
Creates| ' jy=<<nm sel 2, nj >, attsl >
else
Creates| ' 51t =<<nj, sel 2, nnP, att sl >
T2 =T2' Usl’ 4t
endfor
endfor
CreatePL’ j =PL
SL' 4 =T1UT3
for P=(00...0): (11...1) #Pis a binary vector of T2| size
SL' yj=SL' nj U{P-T2 +-P-T2" }
Createcl s’ j ={PL’ nj, SL" v }
CLS nj =CLS nj U cls’ nj
endfor
endfor

Figure A.15: Part two of three of tHéat eri al i ze Node() function.

Mat eri al i ze_Node() (3/3)

forallnk € N s.t.nk #nj , # CreateCLS' i beingnk # nj
forall ¢l spk={PLnk, SLnk} € CLS,

CreateT1=T2=T2' =T3=()

forall sl 511 3=<<nk, sel 2, nj >, att sl 3> C cl syk: : =cl sy, s.t. cond. B
Creates| ’ 5tt13=<<nk, sel 2, nnp, att sl 3>
T2=T2 USsl at3
T2' =T2' US|’ at3

endfor

forall sl t14=<<nj,sel 2, nk>,attsl4>Cclsny Asgattsl 4::=clsps.t cond. C
Creates| ' gi14=<<nm sel 2, nk>, att sl 4>
T2=T2 U sl att4
T2' =T2' US|’ 414

endfor

forall sl 515=<<nj, sel 2, nk>, attsl 5>Cclsp Aseattsl5::=cl sy s.t. cond. D
Creates| ’ ztt5=<<nm sel 2, nk>, att sl 5- s+i >
T3=T3 US| att5 US|l " atts

endfor

forall sl 3¢t C ¢l spk s.t. (< cond. BA = cond. CA — cond. D)
T1=T1 US| at

endfor

CreatePL’ nx=PL«

SL' w=T1UT3

for P=(00...0): (11...1) # P is a binary vector of T2| size

SL' =SL' w U{P-T2+-P-T2" }
Createcl s’ nk={PL’ nk, SL’ nk}
CLS =CLS . Ucls’
endfor
endfor

endfor

LS =Uyper CLS

sg =<N¢, CLS¥ >

sg“=Nor mal i ze_SE sg*’)

return6g*)

end

Figure A.16: Part three of three of tivat eri al i ze Node() function.

Force() (1/2)
Input: sg*=<N!, CLS'>, t est _condi ti on # A shape graph, and a test condition
Output:sgk=<NK, CLS*> # A shape graph

Case(est condition)
test conditi on==(x==nul |)
If (3ni e Nt s.t.3pl =<x, ni >C CLSy)
sgk=0
else
sgk=sg?
break
test conditi on==(x!=null)
If (3ni € Ns.t. 3 pl =<x, ni >C CLSy)
sgk=sg?
else
sgk=()
break
t est condi ti on==(x->sel ==nul |)
Findni € N! s.t. 3 pl =<x, ni > C CLS,,
CreateCLS' ,; =0
forallcl spj € CLSy;
If (3sl gtt=<<ni,sel,nj> attsl>cCclsp s.t.nj==NULL)
CLS ,=CLS ,j Ucl sy
endfor
CreateCLS¥ =CLS!- CLS,; UCLS
CreateN< =Nt
sg =<\, CLS¥ >
sg“=Nor mal i ze_SE sg*’)
break

Figure A.17: Part one of two of thieor ce() function.

Force() (2/2)

test condi ti on==(x->sel I =nul |)
Findni € Nt s.t.3 pl =<x, ni > C CLSy,
CreateCLS' i =0
forallcl shi € CLS,,
If (3sl gtt=<<ni, sel,nj> attsl>cclsp s.t.nj £NULL)
CLS i =CLS Ucl sy
endfor
CreateCLS® =CLS!- CLS,; UCLS'
CreateN< =Nt
sg =<N¢, CLS¥ >
sg“=Nor mal i ze_SEsg*’)
break
t est condi ti on==(x->sel ==y)
Findni € N! s.t. 3 pl =<x, ni > C CLS,,
Findnj € Nt s.t. 3 pl =<y, nj > C CLS
CreateCLS' ,; =0
forallcl shi € CLS,i,
If (3sl agtt=<<ni,sel,nj> attsl>Cclsy)
CLS i =CLS | Ucl sy
endfor
CreateCLS® =CLS!- CLS,; UCLS'
CreateN< =Nt
sg =<\, CLS¥ >
sg“=Nor mal i ze_SEsg*’)
break
test condi ti on==(x->sel ! =y)
Findni € N! s.t.3pl =<x, ni > C CLSj,
Findnj € N! s.t. 3 pl =<y, nj > C CLS
CreateCLS' i =0
forallcl shi € CLS,i,
If (3sl agrt=<<ni, sel,nk> attsl>cCclsp sit.nk#nj)
CLS i =CLS i Ucl sy
endfor
CreateCLS® =CLS!- CLS,; UCLS'
CreateN< =Nt
sg =<\, CLS¥ >
sg“=Nor mal i ze_SEsg*’)
break
return6g*)
end

Figure A.18: Part two of two of thEor ce() function.

Appendix B:

Shape graph summaries
forthe rever se()
function

Here we present all the summary shape graphs generatedef@ntdysis of the recursive function
rever se(), which reverses a singly-linked list. This recursive fumetwas used in chapter 3 as running
example to illustrate the extensions for interprocedunalysis. We reproduce the function again in Fig. B.1
for your convenience.

struct node * reverse(struct node *x){
struct node *y, xz;

4: Z=X->nxt ;

i f(z!=NULL){
5 #pragma SAP. f orce(z! =NULL)
6: y=reverse(z);
7: #pragma SAP. f or ce(x! =NULL)
8: X->nxt =NULL
9 Z- >nxt =x;

tel se{
10: #pragma SAP. f or ce(z==NULL)
11: y=X;

}
12: return vy,

Figure B.1: The ever se() recursive function to reverse a singly-linked list.

As a result of the completion of the analysisrafver se() , the analysis generates a shape graph set
composed of nine shape graphs. These graphs represenipessilgle heap state that may be found at the
return point of the function, along all stages of recursinalgsis. They are shown in Fig. B.2.

These shape graphs will be considered as the overall effabea ever se() function. However,
not all graphs are eligible to represent the effect of the-maursive call ofr ever se() , and therefore
not all of them will be converted by theTC,, ¢c rule (see section 3.2.3.4). In particular, only those shape
graphs were the recursive flow pointers used are not ass{geedhey point tdNULL), can represent heap
states that result from the analysis of the first, non-réegeirsall to the recursive function. Additionally,
the summaries for the recursive analysig efver se() are stored by the tabulation scheme for reuse in

160 Appendix B

the case of analyzing an equivalent data structure (sese:B). Next, let us review all summary shape
graphs generated farever se() . To analyze this function we used tipeevious call(PC) andpaired
selectorgPS) properties (see sections 3.4.1 and 3.4.3).

Shape grapBg? in Fig. B.2 shows the first output summary shape graph érer se() . It considers
the case of a list of length one, and the end of the first reisll. This shape graph can be used for the
RTGC,r ec rule as capturing the effect of a non-recursive call &ver se() with a list of one element.

Shape grapsg? shows a list two elements long, at the end of the second figewrall. This represents
the memory state of taking thed se branch in the last recursive call, where there is no next efgrfrom
the element pointed to by pointgr Pointerz points toNULL, and therefore there is no pointer link for it.
Note that the node pointed to byt ,¢r has thex value for the previous call (PC) property. It abstracts the
element that was pointed to by pointein the immediately previous recursive call.

Shape graplg® shows the same list of two elements of the previous figurephetrecursive call back
in the stack of recursive calls. Such call is the first, norursive call tor ever se(), where the control
flow of the program has taken thé branch, and thug is assigned.

Shape graplsg* captures a memory state where a list of length equal or gréwe three elements
reaches the last recursive call. Poirges not assigned, we have taken tiese branch, and there are no
more elements to traverse forward in the list. Note titaindn2 have the value ot for the previous call
(PC) property. In particulan2 abstracts the element pointed to by pointen the previous recursive call,
while n1 abstracts all elements previous to that.

Note that, in addition to the previous call property, nodésandn2 feature some values for the paired
selectors (PS) property. Node is related tan1 with the relation<nxt i , X sel o>, €stablished by links
sl 2=<n1, nxt, n2>andr f sl 3=<n2, X;fsel, N1>. Naturally, thenxt selector isncomington2, and
the X, ¢sel is outgoingfrom n2. Fornl, the relations of the paired selector property invodtel, sl 2,
rfsl1,rfsl 2,andrf sl 3, with values<xX;fsel i, NXt o> and<nxt i, Xrfsel o>. These values of the
PS property indicate that, within the memory locations ralesed byn1: (i) if a recursive flow selector is
incoming byx;¢sel from one location, then selectaxt is also outgoing to thagamelocation, or (i) if a
selector from one location is incoming ot , then a recursive flow selector must be outgoingbysel
to thesamelocation.

Shape graplg® shows a list of three elements returning from the secondsaeucall. It shows a list
half-reversed, where the element pointed toxbfrepresented byn?2) is reached simultaneously from the
previous and the next element in the traversal order (repted by nodersl andn3, respectively).

Shape graplsg® shows a list of three or more elements, returning from theé fisursive call. This
is a suitable graph to capture the effect of a non-recursieta r ever se() over an arbitrarily long
singly-linked list. It is the shape graph used for the exagfltheRTC,, ¢ rule in section 3.2.3.4.

Shape graplsg’ shows a list of three or more elements, returning from theultiemate recursive call.
We have followed thé f branch. The last element, pointed to byis made to point to the penultimate
element, pointed to by pointer, thus starting the reversal of the list. The noddsandn?2 represent the
first part of the list, traversed during the previous recrsialls.

Shape graplkg® shows a four-element list, returning from the second régeisall. There is only one
previous recursive call, as there are no more nodes reacfrabhnl throughx, ¢ se| . The last part of the
list (nodesn3 andn4) has already been reversed.

Shape graplsg® shows a list of more than three elements, returning from all@icecursive call. A
part of two or more elements has already been reversed (mddees, andn6), while another part of two
or more elements (nodesl, n2, andn3) is yet to be reversed, upon returning to the previous reéairs
calls.

Compilation techniques based on shape analysis for pdiatsed programs

Appendix B 161

RSSG*SH2

sgl

clsly=<pll,pl2,sll,, rfslly>

clslpyi=<rfpll,sll,, rfslly>
clslpy=<pll,pl2,sll;j,sl2,,rfsl2,>

clslpi=<rfsl3i,sl2o, rfsl2e>
cls2n1=<slli, r£s13;,512,, rfsllo>
cls3p1=<rfsllj,slle, rfsl2e>
cls4py1=<slli,rfslli,slloy, rfslly>
clslpyy=<rfpll,sl2;,s13,,rfsl3>
clslpz=<pll,pl2,sl3,, rfsld,>

{

={<Xrfsel i, NXto>, <NXtj, Xrfsel o>}
{x}
{

<nxti, Xrfsel o>} j

clsly;=<pll,sl2;,sll,, rfslle>
clslpy=<pl2,pl3,sl2,,rfsl2,> K

sg®

clslpyy=<pll,sl2i,sll,, rfslle>
clslyy=<pl2,s13;j,s12,,rfsl2,>
cls2py7=<pl2,s16;,s5120,rfsl2s>
clslp3=<sl5i,s130,rfsl3o>
cls2p3=<s15;,s140,rfsl3s>
cls3n3=<sl4j,sl3,,rfsl3o>
cls4,3=<sl4;,sld,, rfsl3,>
clslpy=<pl3,sl5,,rfsld>
cls2n4=<pl3,sl6,, rfsldo>

{x}

clslyi=<rfpll,slloy, rfslle>
clslny=<pll,sll;i,sl3;,s12,,rfsl2,>
clslp3=<pl2,pl3,sl3p,rfsl3c>

clslpyi=<rfsl3i,sl2,,rfsl2,>
cls2py1=<sllj,rfsl3;,sl2,,rfsllo>
cls3p1=<rfslli,sllo, rfsl2s>
cls4py1=<sllij,rfslli,slly, rfslly>
clslpy=<rfpll,sl2;,sl13,,rfsl3,>
cls2ny=<rfpll,sl3,, rfslds>
clsly3=<pll,sl3;i,s15;i,s1l40,rfsl5:>
c1s1n4=<pl2,pl3,sl5,, rfs16,>

x}

clslpy=<rfpll,sllo, rfsllo>
clslpyy=<pll,sll;,sl3i,sl2,,rfsl2,>
clslyz=<pl2,slé;,sl3c,rfsl3o>
clslng=<pl3,sld,, rfslé,>

PCp1=PPM, (nl)={x}

clslpg=<pl2,slé6;, slSO,rfsl6o>\

cls2,4=<pl2,s519i,5150, rfsl6o>
clsl,ys=<s18;,5160, rfsl7o>
cls2p5=<s518i,s5170,rfsl7o>
cls3p5=<s517;,s81605,rfsl7,>
cls4ps=<s17;,s17¢,rfsl7,>
clslne=<pl3,sl8,, rfsl8,>
cls2n6=<pl3,s190,rfsl8o>

clslpi=<rfsl3i,sl2q,,rfsl2o>
cls2p1=<sllj,rfsl3;,sl2,,rfslle>
erptr X A y cls3p1=<rfsll;,sllo, rfsl2o>

pl3 clsdp1=<slli,rfslli,sllo, rfslle>
clslpyy=<rfpll,sl2;,sl3,,rfsl3,>
cls2py=<rfpll,sl3,, rfsldy,>
clslpy3=<pll,sl3;,sl5;,sldo, rfsl5c>

res14irfpll
S,.l.-3 e e

PCp=PPM,c (nl) ={x}
s19 PSp1=PPMes (n1) ={<Xrfgel i, NXto>, <NXti,Xrfgel o>}
PCo=PPM;c (n2) ={x} -
\ PS;p=PPMps (n2) ={<nxti, Xrese1 o>} j

Figure B.2: Output summaries for the recursive analysisenfer se() .

University of Malaga

Appendix C:
Resumen de la tesis
doctoral en castellano

C.1 Introduccibn general

La comunidad cientifica esta de acuerdo en que hemos alb@ana era multicore: procesadores de 2y
4 nlcleos son ya comunes en ordenadores de sobremesaijcaritds como Intel planean procesadores
de 80 nicleos. Ademas, las arquitecturas multiprocesaislindan en las medianas empresas, centros de
investigacion y organizaciones estatales, conforme saenen en la tendencia principal en arquitectura de
computadores.

Las arquitecturas de un solo nlcleo ya no pueden sostenirciementos de rendimiento de la ley de
Moore [14]. Conforme nos acercamos a los limites de lasitecjuras monoprocesador, el incremento en
consumo (y su coste de refrigeracion asociado) domina a omemguantes incrementos en rendimiento.
Parece haber un modo mejor: usar multiprocesadores. Ejerdplesta tendencia son la arquitectura Cen-
trino Duo de Intel o el sistema Roadrunner de IBM, el supemaator mas potente en la actualiaBste
Gltimo es el primer supercomputador hibrido de la histarbnectando 6.562 chips AMD Opteron de doble
ndcleo, a la vez que 12.240 chips Cell. Es decir, no solortasitecturas multiprocesador se estan convir-
tiendo en comunes, sino que las arquitecturas heterog@magiezan a aparecer en sistemas de alta gama.
Mas que una moda de nuestro tiempo, los multiprocesadstas aqui para quedarse.

La clave ahora es cobmo obtener un buen rendimiento softavhego coste para que podamos explotar
todo el hardware disponible. Actualmente, la forma masiooule obtener programas para estas arqui-
tecturas multiprocesador consiste en escribir, explivinte, algoritmos paralelos que se basan en hilos
(threads) o librerias de paso de mensajes. No obstanteniaagrave limitacion con este enfoque, y se trata
del elevado coste de desarrollo. Aunque hay un creciemteeraide lenguajes y librerias que intentan popu-
larizar la programacion paralela (por ejemplo, [15], [@€]L7]), los programadores paralelos expertos son
profesionales muy demandados, mas por cuanto la variedadyditecturas y paradigmas de programacion
paralela abundan.

Estamos presenciando un cambio de tendencias: Gergutaddn de Alto Rendimient(HPC, High
Performance Computing que se ocupa principalmente de reducir tiempos de efatymdr medio de
cualquier mecanismo, hacia @omputadn de Alta ProductividadHPC, High Productivity Computing
gue busca obtener buenos incrementos en rendimiento peroasie razonable.

1Segin la lista Top500 (www.top500.0rg) en Junio de 2008.

164 Appendix C

Durante afos, un compilador paralelizador versatil yeptet ha sido la quimera de la comunidad
cientifica en materia de compilacion. El objetivo es sqrazade identificar y explotar paralelismo en
programas secuenciales de forma automatica, medianteoese completamente controlado por el com-
pilador. Este enfoque ha dado buenos resultados paraapliea regulares, sobre todo en Fortran [18],
pero las aplicaciones irregulares atn suponen desadiuficativos.

En particular, las estructuras de datos basadas en meniogimida y que se acceden con punteros
estan mas alla del ambito de la mayoria de compiladactsales. Son ineficientes cuando se trata de
optimizar aplicaciones basadas en punteros para los magépadores modernos. Esta limitacion se debe
principalmente a su incapacidad para extraer la inforomag€cesaria del programa fuente. En general, son
incapaces de localizar las oportunidades para explotatgtiamo y localidad de las estructuras de datos
dinamicas. Para ello, es absolutamente necesario disgenaa descripcion precisa de qué localizaciones
de memoria, de entre las disponibles eheslp son accedidas y de qué manera. Solo asi lograremos avanza
en la paralelizacion automatica de programas irregsilare

C.2 Motivacion

El problema que queremos resolver es la paralelizacibareatica de codigos basados en estructuras
dinamicas recursivas almacenadas eheglp Se trata de un problema aln no resuelto y desafiante. En-
contrar su solucién tendria un gran impacto ya que lasi@stas de datos dinamicas son ampliamente
utilizadas en muchos codigos irregulares y las arquitastmultiprocesador/multihilo son muy comunes
actualmente.

Las estructuras de datos dinamicas son aquellas que searese tiempo de ejecucion y son accedidas
por punteros dirigidos &leap A menudo, estas estructuras son ademé@srsivas en el sentido, de que cada
elemento deheappuede apuntar a otros elementos loehp formando estructuras como listas enlazadas,
Grafos Dirigidos Adclicos (DAG, Direct Acyclic Graph, o arboles. Estas estructuras son cominmente
utilizadas en aplicaciones irregulares basadas en psniestiponen importantes desafios para los pases de
compilacién de los compiladores actuales, debido al problde los alias.

El problema de calcular los alias debidos a punteros debé/ezse para que los compiladores puedan
desambiguar las referencias de memoria. Un paso basidopenceso de paralelizacion automatica es la
deteccion de bucles paralelos o llamadas paralelas aofweriutilizando un test de dependencias. Un test
de dependencias asi requiere informacion acerca dedagepades de las estructuras de datos recorridas
en bucles o en cuerpos de funcibn. Estamos convencidos mecésidad de una descripcion dhelap
muy precisa, para el proposito del analisis de dependsran el contexto de aplicaciones que tratan con
estructuras de datos dinamicas.

Hay todo un cuerpo de trabajo relacionado con el anghigists-tq como [19] 6 [20]. Su principal
enfoque es hacia la deteccion de relaciones de alias amterps. Por ejemplo, Salcianu [21] construye
grafospoints-toque representan relaciones entre elementohekmby los punteros, incluso para partes
incompletas de un programa. La aplicacion de su anaksieduce a algunos clientes simples de lenguajes
orientados a objetos, como el descubrimiento de métodesgmaodifican los objetos globales (analisis de
pureza), o la deteccion de objetos que son capturados e@tadony pueden alojarse, por tanto, estakk
(analisis de alojamiento en stiack.

En nuestro enfoque, consideramosmlisis de formacomo la técnica base para conseguir una caracte-
rizacion de estructuras de datos eh&hp Al contrario que las técnicas de analip@ints-tq que se ocupan
principalmente de los conjuntos deay-aliasy must-alias el analisis de forma se ocupa dedamade la
estructura de datos. Esto permite una caracterizaci@pne&isa de las estructura de datos dreab Esta

Compilation techniques based on shape analysis for pdiatsed programs

Appendix C 165

precision es necesaria para analisis clientes mas egwsptomo el analisis de dependencias de datos. Con
informacion de forma, es posible identificar accesos eflictmen recorridos de elementos erhebpque,
de otro modo, no serian diferenciados por un analisispdgbints-to

Vislumbramos ursistema de aflisis del heapbasado en analisis de forma como su elemento clave,
cuyo proposito es obtener informacion topolbgica y terapacerca de estructuras de datos recursivas. Un
sistema asi estaria orientado hacia la deteccién despdralelos y llamadas paralelas a funcion, con la
intenciobn de generar una version paralelizada con hiboardcodigo secuencial. Este sistema seria muy
valioso en el actual escenario repleto de multiprocesadimeésticos, que estan llegando rapidamente al
usuario medio en la forma de sistemas multintchealficore).

Presentamos una primera aproximacion a sistema de alisis del heapen la Fig. C.1. Su funcion
es derivar informacion de aplicaciones secuencialesdbasan punteros de forma estatica. Este sistema
deberia asociarse con un bloque de transformacion dgacqde haga un uso adecuado de esa informacion
y arroje una version optimizada del programa original. aRauestros propositos, tal optimizacion esta
relacionada con el paralelismo automatico para obtersercion del tiempo de ejecucion.

Salida del

Programa analisis T f i6 Programa
Sistema de ransformacion| ogr

de entrada andlisis del heap " decédigo | optimizado

Y

Figure C.1: Sistema de analisis dedappara proporcionar informacion a un bloque de transforéradie
codigo.

C.3 Analisis de forma para el aralisis de dependencias

El analisis de forma es una técnica de analisishéelpque considera informacion disponible en tiempo de
compilacién para arrojar informacion detallada acemddhdapen programas basados en punteros. Esto se
hace extrayendo informacion acerca déolanao la conectividad de los elementos tiebp

La informacion derivada del analisis de forma en una api@n basada en punteros puede usarse para
varios propositos como: (i) analisis de dependenciasatiesddeterminando si dos accesos pueden alcanzar
la misma localizacion de memoria; (ii) explotacion dealigad, capturando el modo en que se recorren
las localizaciones de memoria para determinar cuando éslge que estén contiguas en memoria; (iii)
verificacion de programas, para proporcionar garangasodeccion en programas que manipulahesip
y (iv) soporte al programador, para ayudar en la detecoguarduso incorrecto de punteros o documentar
estructuras de datos complejas.

En nuestro enfoque al analisis de forma, usamos abstrexite forma expresadas como grafos para
modelar eheap El analisis de forma basado en grafos es una técnicaalisiarde punteros muy detallada,
sensible al flujo, contexto y campo. Como consecuencia, lEtualmente mucho mas costosa que otros
enfoques al analisis dakap como el analisipoints-ta

A continuacibn presentamos una idea intuitiva acerca @eloneén que un analisis de forma basado en
grafos puede usarse para encontrar conflictos en los aamesogtipico bucle de recorrido por punteros. La
idea principal en nuestro esquema de deteccion de depaadeate datos es la interpretacion abstracta de
las sentencias del bucle analizado, abstrayendo lasdacalnes deheapaccedidas con nodos de grafos
de forma y anotando estos nodos con informacion de leesgatura.

University of Malaga

166 Appendix C

El codigo en la Fig. C.2 crea una lista simplemente enlazalleego la recorre, copiando el campo
dat a del elemento apuntado por el punterpal elemento apuntado por el puntgyo El efecto global
de este algoritmo es desplazar los valores en la lista urieifmo$acia el comienzo de la lista. Hay una
posible dependencia de datos er8& val =g- >dat a, que lee el campdat a, y S4: p- >dat a=val ,
que escribe en él.

Nuestro test ejecuta simbolicamente el codigo abstdrydas estructuras de datos en grafos de forma.
Por ejemplo,sg?! es el grafo de formas(@, shape graphque abstrae la lista creada en la sentefdia
Usando la interpretacion abstracta [22]séar@ntica abstractade cada sentencia actualiza el grafo de forma
resultante de la sentencia previa. En este proceso, ldizémianes de memoria que se leen y/o escriben se
anotan adecuadamente. En este ejemplo, el acceso de etarsentenci&3 es anotada comieS3 en los
grafos de forma, mientras que el acceso de escritura detens@S4 es anotada comés4. La segunda
ejecucion simbolica de la senten@4: p- >dat a=val produce el grafo de formag®. Dentro de este
grafo de forma podemos detectar que una localizacibn deomigtna sido leida en una iteracion y escrita
en la siguiente, causando una dependencia acarreada patebizla a un acceso WARV(jte-after-read
escritura tras lectura).

1R sg’
S1l: l=p=create list();
2
S2: g=p>nxt; }L\pi d i - 2 ’

L1: while(q!=NULL){ /

Iteracion 1 Iteracién 2

.. 1P q sg* ()
S3: val=g->data j jl

. 1P q sg* (O ol p D
s4: p->data—valiy” .j::t ®RSD—C - Taw "(@l’@ .

S5: PG .jl Deteccién de dependencia

acarreada por lazo debida

S6: q:p—>nxt>' "l o qi sg® .j a escritura tras lectura (WAR).

}

Figure C.2: El uso del analisis de forma para la deteccébdabendencias de datos emehp

C.3.1 Elanalisis de forma dentro delsistema de aalisis del heap

A continuacion, expandimos el concepto sistema de atlisis del heapintroducido anteriormente. La
Fig. C.3 presenta un esquema de diferentes modulos intarat® dentro dedistema de aadisis del heap

En primer lugar, el programa de entrada entra en el modulB. SAs siglas significaRreprocesador
para el Aralisis de FormgShape Analysis Preproces3o€omo su hombre sugiere, este modulo es respon-
sable de realizar las tareas de preproceso sobre el progggueridas para su analisis de forma. El resultado
de este modulo es el conjunto de sentencias de punterosiiizesabréneap y el flujo de informacion que
gobierna el modo en que esas sentencias se ejecutan enrainpaog

Esa informacion es la entrada para la herramientaadealizador de formadentro delpaquete del
analizador de forma También dentro de este paquete encontrambgiamienta de visualizagn [23],
que se usa para visualizar los grafos de forma obtenidosdaayudepurar la técnica.

Compilation techniques based on shape analysis for pdiatsed programs

Appendix C 167

Sistema de analisis del heap
M e -
Paquete del
analizador de
forma

Sentencias de

‘Informacion

unteros e : :
Programa SAP infor%acién de flujo: | Analizador de | | de forma A, Resultados del analisis
de entrada——F— (Shape Analysis ey naf|za orade | Andlisis cliente r———> (¢]., bucles paralelizables o
Preprocessor) ; orma funciones paralelizables)
. Grafos
i de forma

i |Herramienta de |:
visualizacion

........................

Figure C.3: Preprocesado del programa, analisis de foraré&lsis cliente dentro dsistema de atlisis
del heap

Como resultado de la ejecucion del analizador de formanalbemos unaaracterizacbn de forma
de estructuras de datos dinamicas. Esa informacion meydesada poanalisis clientes Por ejemplo, un
test de dependencias de datos podria ser ese cliente: guregiderar informacion de forma combinada con
informacion de accesos latappara detectar dependencias en aplicaciones basadas eropuhbs resulta-
dos del cliente son ofrecidos como salida del sistema. Bor@p, un cliente de deteccién de dependencias
de datos podria informar de bucles paralelizables o fmesigparalelizables a un sistema de paralelizacion
externo akistema de aalisis del heap

C.4 Analisis de forma intraprocedural

Nuestro acercamiento al problema del analisis de fornéatesgtado en la construccion giafos de forma

El proposito de un grafo de forma es representar las pafespcaracteristicas de forma de las estructuras
de datos dinamicas y recursivas. Estas caracteristmamsiten identificar las estructuras como listas, o
arboles, por ejemplo, incluyendo informaciébn acercaadarésencia o ausencia de ciclos, las localizaciones
alcanzables desde un puntero, etcétera.

Nuestro algoritmo de analisis de forma esta disefiadaaamanalisis iterativo de tipdata-flow Las
sentencias en el programa se ejecutan simbolicamenterba fiterativa, segln las ramas y bucles del
programa para la parte intraprocedural. En este procesgrédes de forma son transformados segln la
semantica abstracta de las sentencias analizadas. &sts@rcontinta hasta que los grafos de forma alcan-
zan un estado estacionario, donde continuar la interpbatabstracta no produce nueva informacion. Este
estado se conoce comoyrlinto fijodel algoritmo.

Estrechamente ligado a la nocion de punto fijo del algoritesta la operacion deumarizacdn. La
sumarizacion es el proceso que mezcla nodos en grafosrda farando se estima que sarficientemente
similares La similitud ocompatibilidadde nodos se determina por las relaciones de alias de pumteros
propiedadesajustables. El proceso de sumarizacion acota los grafderd®, limitando el nUmero de
nodos que pueden tener. Adicionalmente, la sumarizadiévigme el cambio sin fin de los grafos en el
transcurso de la interpretacion abstracta iterativanjiiemdo alcanzar la condicion de punto fijo.

Los grafos de forma estan constituidos por 3 elementdsdsgque se combinan para formar conjuntos
de enlaces como indica la vista jerarquica de la Fig. C.4elErivel mas bajo tenemos: (unteros que
se usan como puntos de acceso a las estructurasiofids que se usan para representar localizaciones
de memoria alojadas en bBkap y (iii) selectoreso campos puntero, que se usan para enlazar nodos.
Combinando estos elementos basicos, podemos crear deslépelacionesenlaces de punteraspointer

University of Malaga

168 Appendix C

links (pl 's), que son enlaces entre punteros y nodamlgces de selectoresselector linkgs! 's), que son
enlaces entre nodos a través de un selector. Finalmestgl ®y sl 's pueden combinarse para formar
conjuntos coexistentes de enlacesoexistent links set&! s’s), que describen combinaciones mle’s y

sl ’s que pueden existsimulineamenten un nodo.

Coexistent links set (c1s)

pll sll

clslni=<pll,slly>
clslyy=<sll;>

N\

7 AJ

Pointer link (p1) Selector link (s1)

pll sl1
(a2

pll = <ptr,nl> sll = <nl,sel,nl>

/ /N
/N S

Punteros Nodos Selectores

ptr @ sel

ptr

0
0

e

Figure C.4: Vista jerarquica de los elementos de un grafiodea.

C.5 Analisis de forma interprocedural

El soporte para los programas interprocedurales en ek&née forma es aln un desafio, especialmente
en presencia de funciones recursivas. Sin embargo, elridzate estructuras de datos recursivas con
algoritmos recursivos es muy comin, ya que algunas estasctie datos, como los arboles, se expresan en
una forma que hace natural el hecho de recorrerlas de foouesiea. El principal problema que afrontamos
cuando analizamos funciones recursivas es el problemayibtree el estado de los parametros puntero en
los cambios de contexto. Para cambios de contexto no regsirsis suficiente conocer la relacion entre los
punteros que actiian como parametros reales o formaldal &aso, el cambio de contexto puede trasladarse
facilmente al dominio de los grafos de forma.

Sin embargo, cuando manejamos parametros formales puartéunciones recursivas, no es tan simple:
la misma variable puntero debe ser seguida o registradaaggo tie la secuencia de longitud indefinida de
llamadas recursivas. El nombre del puntero es el mismo, gegendiendo de la llamada, puede apuntar a
localizaciones distintas. Estas localizaciones debdstragse para saber donde apuntaba un puntero cuando
volvemos de una llamada recursiva.

Por tanto, para mantener la pista de un parametro formaépmunecesitamos cambiar ssquema de
nombres no solo necesitamos conocer su nombre, sino tambiénalgformacion que lo relacione a la
llamada a la que pertenece. Lo mismo se necesita para losrpsirtefinidos en el cuerpo de la funcion
recursiva, lopunteros localesEstos punteros se redefinen en cada llamada, es decir,sio frartenece
solo a una cierta llamada recursiva, y deben ser correctarasignados al volver de las llamadas recursivas.

En tiempo de ejecucion, esto se realiza manteniendo difsseentradas en Blegistro de Activadin o
Activation Record StacfARS). Entre otra informacion, el ARS mantiene el estadtbdg@arametros reales
punteros y los punteros locales antes de una llamada. Deneslie, cuando volvemos de la llamada estos

Compilation techniques based on shape analysis for pdiatsed programs

Appendix C 169

punteros pueden ser correctamente reasignados. Hay qudaeque una técnica de analisis en tiempo de
compilacién no puede conocer el nUmero de veces que usifurecursiva se llamara. Aun asi el analisis
debe encontrar un punto fijo, incluso en presencia de parésmeales y actuales puntero y punteros locales.
Esto hace dificil alcanzar el punto fijo en la abstracciérfatma para funciones recursivas, al tiempo que
se mantiene la precision en la estructura.

En nuestro enfoque, abstraemos la informacion del ARSdasam nuevo tipo de enlace sobre los grafos
de forma. Denominamos a esos enlagekaces de flujo recursivo recursive flow links Estos enlaces no
representan enlaces reales en la estructura de datos gilmpinsino que trazan el camino de los parametros
formales puntero y los punteros locales a lo largo del flujerprocedural recursivo.

Adicionalmente, proporcionamos ecuacionksa-flowextendidas para el analisis interprocedural, las
sentencias de llamada y retorno de funcion y una reglas epeendinan el cambio de contexto en los grafos
cuando entran o salen de una funcion.

En el caso de repetitivos analisis de funciones con erdragmles o similares, es (til disponer de un
mecanismo de reutilizacion de resultados obtenidos ameste, en especial en una técnica costosa como el
analisis de forma. En respuesta a esta demanda, hemoaditiseri sistema que reutiliza los grafos sumarios
obtenidos en analisis previos para grafos similares caneganismo de tabulacion.

C.6 Analisis de dependencias

Hemos realizado nuestra investigacion para desarraflartécnica de analisis de forma versatil y precisa
gue pueda ser utilizada como herramienta base para un téspdedencias. Nos centramos en la deteccion
de dependencias de datos debidas a punteros que apunéapah dos escenarios habituales: (i) bucles que
recorren estructuras de datos dinamicas recursivagifidendo dependencias que pueden aparecer entre
dos iteraciones del bucle, y (ii) llamadas a funciones seas que recorren estructura de datos dinamicas,
identificando accesos en conflicto en diferentes llamadasgigas.

En nuestro enfoque, anotamos informacion acerca de acdEsdectura/escritura durante la inter-
pretacion abstracta de sentencias de punteros que pustdaerreconflicto. Esto se realiza complapiedad
touch Esta propiedad registra la historia de los accesos en tissndsta historia se crea durante la inter-
pretacion abstracta, conforme el analisis progresal@gunto fijo. Los accesos laéapobtenidos de esta
manera se usan para detectar dependencias de datos.

Identificamos dos patrones de recorrido en estructuras s danamicas: el patron de recorride
way 'y el patron de recorridm-ways segin se siga un selector o mas de un selector en el deroeila
estructura. Hemos disefiado diferentes técnicas dediftede dependencias de datos, segln el patron de
recorrido identificado.

Para el patron de recorridbway, hemos ideado un sistema en 5 fases: (i) identificacion mterseas
de accesos dieap (ii) creacion de grupos de dependencia, (iii) incorpimacde pseudosentencitmuch
(iv) analisis de forma con propiedaduch y (v) test de dependencias. Esta técnica nos permite 00 sol
detectar todas las posibles dependencias de datos delsidessas aheapen bucles y funciones recursivas
con recorridos de tipé-way, sino que nos permite ademas distinguir entre dependedeiflujo, de salida
o antidependencias. Adicionalmente, hemos disefiaductec para identificar dependencias de distancia
cero, que no inhiben el paralelismo.

Para el patron de recorrido-ways hemos ideado un sistema en 4 fases: (i) creacion de clanes d
funciones recursivas, (ii) incorporacion de pseudosems detouchdinamico, (iii) analisis de forma con
propiedad ddgouchdinamico, y (iv) test de dependencias. En este enfoqueodemnemos la funcion
objeto de nuestro estudio en clones y registramos los axe@tbeapde cada clon. Silos accesos de los

University of Malaga

170 Appendix C

distintos clones (etiquetados de modo diferente) no aparea un mismo nodo, entonces el codigo asi
descompuesto sera paralelo, no siéndolo en caso contrari

C.7 Conclusiones

Nuestro objetivo en investigacion son los compiladoraslplizadores. En particular, estamos interesados
en desvelar paralelismo desaprovechado en aplicaciosesldmen punteros. Para este propoésito, hemos
centrado nuestros esfuerzos en el uso del analisis de fmarazel disefio de un esquema preciso de analisis
de dependencias de datos. En nuestro enfoque, abstrassnestriacturas de datos que son reservadas
dinamicamente en la forma de grafos de forma, y operamoe stibs para anotar informacién acerca de
los accesos dleap Usamos esa informacion para informar de dependenciaatds en eheap

En este punto nos gustaria destacar las caracterisgfiagatias de nuestro trabajo. Hemos mostrado,
en los resultados experimentales registrados, que edgastr una técnica de analisis ebpde alta pre-
cisibn para un efectivo analisis de dependencias enamuag que suponen un desafio para los compiladores
paralelizadores actuales. Segln nuestro conocimieimg(m otro autor ha usado de forma tan efectiva las
tecnicas de analisis de forma para el proposito de lacdiéte de dependencias de datos en programas que
crean y recorren estructuras de datos dinamicas. Somaseasgde analizar programas incluso cuando las
caracteristicas de forma de la estructura de datos carehiamitad de un recorrido. Cuando realizamos
analisis de dependencias, somos capaces de detectar éetgependencias en un gran nimero de casos,
lo que es de suma utilidad para optimizaciones de paraleljsiocalidad. Nos gustaria enfatizar que todas
estas peculiaridades de nuestro analisis no estan pgesemlos trabajos relacionados que conocemos.

A continuacion detallamos nuestras principales contiines:

1. Hemos diseflado e implementado un analizador de fornzalbas el novedoso conceptoamnjun-
tos coexistentes de enlaces (coexistent links, sgig) permiten representar las conexiones posibles
entre localizaciones de memoria de un modo compacto. Herous la semantica abstracta nece-
saria para todas las sentencias de punterbeag) y el esquema adecuado de ecuaciatea-flowy
algoritmosworklist para conseguir el punto fijo para el analisis. Hemos reddizan completo estu-
dio de complejidad para identificar las principales causdstacion de la técnica. Hemos aportado
evidencia experimental de que la abstraccion de los ctoguroexistentes de enlaces es adecuada
para representar con exactitud una variedad de estructardatos dinamicas en la forma de grafos
de forma. Para mas informacion sobre estos temas, par dansulte el capitulo 2 de esta tesis (en
inglés).

2. Hemos disefiado los mecanismos necesarios para soglatelisis de programas interprocedurales,
particularmente algoritmos recursivos, dentro del aadbr de forma basado en conjuntos coexis-
tentes de enlaces. Para este prop6sito, hemos afedates de flujo recursivo (recursive flow links)
a los grafos de forma. Estos codifican informacion de flupegiutilizada por el analisis para preparar
y recuperar el contexto apropiado en el analisis de fursiohlemos afiadido soporte para reutilizar
el efecto de funciones ya analizadas para ciertos casosodieientificado algunos problemas que
limitan la técnica en el analisis de programas recursiydsemos creado soluciones para ellos. Fi-
nalmente, hemos realizado experimentos que evidencianugstro enfoque de analisis de forma se
compara favorablemente con trabajo relacionado y es capiedtificar correctamente informacion
de forma para conociddsenchmarksnterprocedurales. Mas informacion sobre estas aportes
esta disponible en el capitulo 3 (en inglés).

3. Hemos usado la técnica de analisis de forma basada @amtmsicoexistentes de enlaces y enlaces

Compilation techniques based on shape analysis for pdiatsed programs

Appendix C 171

de flujo recursivo para analisis de dependencias de dawmglieaciones basadas en punteros. Distin-
guimos entre dos patrones de recorrido en estructuras de diamicas recursivas, en concreto, los
patrones de recorridb-wayy n-ways Hemos trabajado en dos lineas separadas para aplicaala id
clave de anotar accesotsapen nodos para proporcionar informacion acerca de depeizdepara
ambos tipos de patrones de recorrido. En el caso del pag@aabrridol-way, somos capaces de
distinguir entre dependencias de flujo, salida y antidepecids. También nos hemos enfrentado a la
cuestion de discriminar entre dependencias de distaroiaycdependencias de distancia mayor que
cero. Una técnica solida debe ser capaz de detectar aipbespero para los prop6sitos de parale-
lizacibn es importante identificar dependencias de disdarero, que no inhiben el paralelismo. En
cuanto al patron de recorrideways hemos adoptado el enfoque de descomponer el recorrido de la
estructura, generando una version modificada del progradecuada para un esquema de paraleli-
zacion subsiguiente. Hemos aportado evidencia expetainga que podemos detectar dependencias
de datos inducidas enlebapen una variedad de estructura de datos y recorridos parasgratrones

de recorrido. Adicionalmente, hemos estudiado el costererite al analisis de dependencias frente
al coste del analisis de forma en si mismo. Mas infororaei respecto esta disponible en el capitulo
4 de esta tesis (en inglés).

C.8 Trabajo futuro

Es justo decir que existe la sensacion generalizada déefeocomunidad de compilacién de que el analisis
de forma tiene poco que decir para los compiladores en ped@ucEl argumento tipico esta en el elevado
coste del analisis. El analisis de forma es una técnistosa por definicibn porque se esfuerza en conseguir,
en tiempo de compilacion, informacion muy detallada e&ele la configuracion de la memoria ermebp

El tipo de conocimiento que el analisis de forma puede @btesta mas alla del enfoque de otras técnicas,
como el analisipoints-to Sin embargo, no esta siempre claro si ese conocimientprtdando puede ser
usado con eficiencia.

En nuestra opinion, el problema principal respecto alisiséde forma proviene de la falta de infor-
macion respecto al tiempo de ejecucion. Es una técnieapera exclusivamente en tiempo de compilacion,
y como tal, tiene que adoptar decisiones muy conservativéssgorogramas que analiza. Por tanto, como
técnica aislada es probablemente insuficiente para pasesmpilacion realistas.

A pesar de esta limitacion caracteristica, hay variascdiones que podemos explorar para mejorar y
extender nuestro trabajo:

e Mejora de las operaciones internas.
Las operaciones internas de sumarizacion y materiatima@cen en el nlicleo de nuestra estrategia de
analisis de forma. Controlan el enfoque del analisis ggaen la materializacion para mayor precision
en operaciones de actualizacion, o ya sea en la sumanizpara acotar el tamafio de los grafos de
forma. Estas dos operaciones deben ser conservativas neaenvar la correccion del analisis. Sin
embargo, es facil que el analisis se vuelva excesivanwmtgervador, dejando el analisis inservible
para el propbsito de la deteccion de dependencias de datos

Reconocemos el hecho clave para esta limitacion: haynr#oidon que esta disponible en el mo-
mento de la sumarizacion que no puede ser recuperada elasteden el proceso de materializacion.
Planeamos mejorar la eficacia de la materializacion, dersndo informacion presente en el mo-
mento de la sumarizacion. Esa informacion incluye: (fpcteristicas de la estructura de dagos
su conjunte no solo informacioriocal como en el enfoque actual, y (ii) alcance (reachabilityde
sus elementos a través de los diferentes punteros. Espenuogtiria obtener una forma mas rapida y

University of Malaga

172

Appendix C

precisa de materializar en los grafos de forma.

Analisis parciales.

Somos partidarios del uso del analisis de forma para amdlizicamente ciertas partes de un pro-
grama. En el capitulo 2 mostramos algunos resultados ddergian que la eliminacion de senten-
cias que no afectan a la forma de la estructura de datos pugjdeamen gran medida el rendimiento
del analisis. Hay trabajo en esta direccion que utiiadenas de definioh y usopara dirigir ese
proceso de eliminacion de sentencias de forma autom#&fda Con este enfoque esperamos poder
analizar programas mayores.

Informaci 6n de forma como herramienta base para tests de dependenciass sofisticados.

Nuestro enfoque del problema de la deteccion de deperadedeidatos esta basado enteramente en el
analisis de forma y sus capacidades inherentes. Estédanda interpretacion abstracta de todas las
sentencias de punterostaap mientras que anotamos los accesos en nodos de grafos dge Bim
embargo, consideramos este enfoque como una primera imga@&n al problema de la deteccion de
dependencias de datos erhebhpen programas que manipulan estructuras de datos dinarioaso

el motor de la interpretacion abstracta es de complejicd@dreencial por su propia naturaleza, se
trata de un modo muy costoso de revelar conflictos de accébema Alternativamente, podemos
disefiar un test mas sutil que intente evitar la penafirade la interpretacion abstracta siempre que
sea posible.

Por ejemplo, podemos considerar el analisis de forma centeiramienta base para obtener una
representacion déleapen forma de grafos. Adicionalmente, podemos utilizar dtita que se
base en la abstraccion de forma para identificar acces@apkn conflicto. Ya hemos realizado tra-
bajo en esta direccion. La idea clave es proyectar, 0 mapsautas de acceso que pueden conducir
potencialmente a una dependencia sobre los grafos de farendefinen la estructura de datos. El
mayor inconveniente de este enfoque es que la estructutaienb puede cambiar en la seccion del
programa donde las ruta de acceso se proyectan sobre los deaforma. En caso contrario, sus de-
ducciones no podrian garantizarse para todos los casesetoltados preliminares con este enfoque
son esperanzadores, llevandonos a creer que este es @ negmprometedor para la aplicacion del
analisis de forma para pases de compilacion realistas.

Generacbn automatica de ddigo paralelo.

No nos olvidemos de que el objetivo final de nuestra invesiigaes la generacion automatica de
codigo paralelo. Los resultados de nuestras estrategidstdccion de dependencias de datos pueden
usarse para un pase de compilacibn que genere codigelparah hemos identificado UP@(i-
fied Parallel Q [17], como el lenguaje adecuado para esta tarea. UPC eseaulos tenguajes mas
prometedores para la generacion sencilla de programakeles:. Dispone de construcciones parale-
las que pueden explotar paralelismo en la mayoria de egjuias actuales. Ofrece un modelo de
programacion de memoria compartida, pero es capaz de m@peas en arquitecturas de memoria
distribuida, y todo de una manera muy accesible al programats tan simple como compartir las
variables requeridas y afladir una construceipe _f or al | para paralelizar un bucle, independien-
temente de la arquitectura de destino.

Algunos problemas aln deben ser resueltos para la paeaiéin automatica de aplicaciones irregu-
lares en UPC, un campo aln inexplorado. No obstante, soptisistas acerca del uso de un pase de
generacion de codigo paralelo basado en UPC para exploparalelismo encontrado por nuestras
estrategias de deteccion de dependencias.

Compilation techniques based on shape analysis for pdiatsed programs

Bibliography

[1]

[2]

[3]

Francisco CorberaDeteccon autonatica de estructuras de datos basadas en punteRi¥D thesis,
Dpt. Computer Architecture, University of Malaga, Spai@02.

A. Navarro, F. Corbera, R. Asenjo, A. Tineo, O. Plata, &t. Zapata. A new dependence test
based on shape analysis for pointer-based cotlesiguages and Compilers for High Performance
Computing 2004 (LCPC’04) - Lecture Notes in Computer SeeBg02:394—-408, May 2005.

F. Corbera, A. Navarro, R. Asenjo, A. Tineo, and E.L. Z@apaA new loop-carried dependence de-
tection approach for pointer-based codesXWiJornadas de Paralelism@ages 432—-437, Almeria,
Spain, September 2004.

[4] A. Tineo, F. Corbera, A. Navarro, R. Asenjo, and E.L. Ziapa A novel approach for detecting

heap-based loop-carried dependencesTHa 2005 International Conference on Parallel Processing
(ICPP’05), Oslo, Norway, June 2005.

[5] A. Navarro, F. Corbera, A. Tineo, R. Asenjo, and E.L. ZapaDetecting loop-carried depedences in

programs with dynamic data structuredournal of Parallel and Distributed Computing7:47—62,
2007.

[6] A. Tineo, F. Corbera, A. Navarro, R. Asenjo, and E.L. Zapa new strategy for shape analysis based

on Coexistent Link Sets. |IRarallel Computing 2005 (ParCo’05Malaga, Spain, Sept 2005.

[7] A. Tineo, F. Corbera, A. Navarro, R. Asenjo, and E.L. Zapa Shape analysis for dynamic data

[8]

structures based on Coexistent Links Setsl12th Workshop on Compilers for Parallel Computers,
CPC 2006 A Corufia, Spain, 9-11 January 2006.

R. Castillo, A. Tineo, F. Corbera, A. Navarro, R. Asergmd E.L. Zapata. Towards a versatile pointer
analysis framework. Ifeuropean Conference on Parallel Computing (EURO-PAR) 200&sden,
Germany, 29th August - 1st September 2006.

[9] A. Tineo. Speculative parallelization of pointer-bdsapplications. Ir§cience and Supercomputing in

[10]

[11]

Europe - Report 20Q6ages 306—308. CINECA, 2007.

Adrian Tineo, Marcelo Cintra, and Diego R. Llanos. SQuative parallelization of pointer-based ap-
plications (poster). ITransnational Access Meeting 2007 (TAM'0Bblogna, Italy, June 14-15 2007.

A. Tineo, F. Corbera, A. Navarro, R. Asenjo, and E.L. @@ A compiler framework for automatic
parallelization of pointer-based codes (poster). 3kd International Summer School on Advanced
Computer Architecture and Compilation for Embedded Sys{&GACES 20071 Aquila, Italy, July
15-20 2007.

173

174 BIBLIOGRAPHY

[12] A. Tineo, F. Corbera, A. Navarro, R. Asenjo, and E.L. Z&p Tracing recursive flow paths for inter-
procedural shape analysis (poster).20th International Workshop on Languages and Compilers for
Parallel Computing (LCPC’07)Urbana, lllinois, October 11-13 2007.

[13] R. Asenjo, R. Castillo, F. Corbera, A. Navarro, A. Tinemd E.L. Zapata. Parallelizing irregular C
codes assisted by interprocedural shape analysi2ndnlEEE International Parallel & Distributed
Processing Symposium (IPDPS’08)iami, Florida, USA, April 2008.

[14] Gordon Moore. Cramming more components onto integraiecuits. Proceedings of the IEEE
86:82-85, January 1998.

[15] B.L. Chamberlain, D. Callahan, and H.P. Zima. Pargllelgrammability and the Chapel language.
International Journal of High Performance Computing Applions 21(3):291-312, 2007.

[16] OpenMP Architecture Review BoardOpenMP Application Program Interface - Version 3Nay
2008. http://www.openmp.org/mp-documents/spec30.pdf.

[17] UPC ConsortiumUPC Language Specifications, v12awrence Berkeley National Lab, 2005. Tech
Report LBNL-59208.

[18] W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoefling®. Padua, P. Petersen, W. Pottenger,
L. Rauchwerger, P. Tu, and S. Weatherford. Parallel prograng with Polaris. IEEE Computer
29(12):78-82, 12 1996.

[19] Bjarne Steensgaard. Points-to analysis in almosafitiene. INPOPL '96: Proceedings of the 23rd
ACM SIGPLAN-SIGACT symposium on Principles of programnanguages pages 32—41, New
York, NY, USA, 1996. ACM.

[20] Samuel Z. Guyer and Calvin Lin. Client-driven pointeradysis. Ininternational Static Analysis
Symposium (SAS 2003an Diego, California, USA, June 2003.

[21] Alexandru D. SalcianuPointer Analysis for Java Programs: Novel Techniques anplidations PhD
thesis, Massachusetts Institute of Technology, 2006.

[22] P. Cousot and R. Cousot. Abstract interpretation: Aiadilattice model for static analysis of pro-
grams by construction or approximation of fixpoints. Hourth ACM SIGACT-SIGPLAN symposium
on Principles of programming languaggsages 238-252, Los Angeles, California, USA, 1977.

[23] Jordi Juan Segura Dominguez. Interfaz para la optinin y paralelizacion de codigo C. Master's
thesis, Dept. Computer Architecture, July 2007.

[24] Troy A. Johnson, Sang-Ik Lee, Long Fei, Ayon Basumaldautam Upadhyaya, Rudolf Eigenmann,
and Samuel P. Midkiff. Experiences in using Cetus for sotwesource transformations. [fhe
17th International Workshop on Languages and Compilersfoallel Computing (LCPC '04)West
Lafayette, Indiana, USA, September 2004.

[25] Brian W. Kernighan and Dennis M. Ritchi&.he C Programming Languagérentice Hall, Inc., 2nd
edition, 1988.

[26] J. Plevyak, A. Chien, and V. Karamcheti. Analysis of dygric structures for efficient parallel execu-
tion. InInt'l Workshop on Languages and Compilers for Parallel Canting (LCPC’93) 1993.

[27] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysoblems in languages with destructive
updating.ACM Transactions on Programming Languages and Syst2@{%):1-50, January 1998.

Compilation techniques based on shape analysis for pdiatsed programs

BIBLIOGRAPHY 175

[28] D. Chase, M. Wegman, and F. Zadek. Analysis of pointatssaructuresin SIGPLAN Conference on
Programming Languages Design and Implementatages 296-310, 1990.

[29] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shapeyamaVvia 3-valued logicACM Transactions
on Programming Languages and Systegi$2.

[30] Martin C. Carlisle and Anne Rogers. Software cachind eemputation migration in Olden. IKCM
Symposium on Principles and Practice of Parallel ProgramgniPPoPP) July 1995.

[31] R.L. Graham, D.E. Knuth, and O. Patashni€oncrete Mathematics: A Foundation for Computer
Science. Chapter 6: Stirling numberaddison-Wesley, 2nd edition, 1994.

[32] F. Corbera, R. Asenjo, and E.L. Zapata. Towards compmifgimization of codes based on arrays
of pointers. InProc. 15th Int'l Workshop on Languages and Compilers fordhat Computing
(LCPC’02), College Park, Maryland, July 2002.

[33] L. Lovasz. Combinatorial Problems and ExerciseBlorth-Holland Publishing Co., Amsterdam, 2nd
edition, 1993.

[34] M. Hind and A. Pioli. Which pointer analysis should | @seln Int. Symp. on Software Testing and
Analysis (ISSTA '002000.

[35] R. Wilson and M.S. Lam. Efficient context-sensitive mter analysis for C programs. WCM SIG-
PLAN’'95 Conference on Programming Language Design anddmehtation La Jolla, CA, June
1995.

[36] Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a DA oyclic graph? A shape analysis for
heap-directed pointers in C. onference Record of the 23rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languagest. Petersburg, Florida, January 1996.

[37] Y. S. Hwang and J. Saltz. Identifying parallelism in grams with cyclic graphsJournal of Parallel
and Distributed Computings3(3):337-355, 2003.

[38] D. Distefano, P.W. O’'Hearn, and H. Yang. A local shapelgsis based on separation loglcecture
Notes in Computer Scienc&920:287-302, 2006. Springer-Verlag.

[39] B. Guo, N. Vachharajani, and D. August. Shape analydis iwductive recursion synthesis. RFro-
gramming Language Design and Implementation (PLDI,'@he 2007.

[40] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O'lded. Wies, and H. Yang. Shape analysis for
composite data structurekecture Notes in Computer Sciend®90:178-192, 2007.

[41] S. Magill, A. Nannevski, E. Clarke, and P. Lee. Infegimvariants in separation logic for imperative
list-procesing programs. IWorkshop on Semantics, Program Analysis and Computingdingnts
for Memory Management (SPACGBanuary 2006.

[42] N. Jones and S. Muchnick. A flexible approach to intecpdural data flow analysis and programs
with recursive data structurefn Proceedings of the ACM Symposium on Principles of Prognarg
Languagespages 66—74, 1982.

[43] J. R. Larus and P. N. Hilfinger. Detecting conflicts bedwestructure accesses. Pnoc. ACM SIG-
PLAN’88 Conference on Programming Language Design anddmgphtation) pages 21-34, July
1988.

University of Malaga

176 BIBLIOGRAPHY

[44] S. Horwitz, P. Pfeiffer, and T. Reps. Dependence aimligg pointer variables. ACM SIGPLAN
Notices 1989.

[45] T.Lev-Amiand M. Sagiv. TVLA: A system for implementirgiatic analyses. I8tatic Analysis Symp.
(SAS’00) pages 280-301, 2000.

[46] N.Rinetzky and M. Sagiv. Interprocedural shape ansligs recursive programs. [t0th International
Conference on Compiler Construction (CC'Qppages 1433-1449, Genova, Italy, April 2001.

[47] B.Jeannet, A. Loginov, T. Reps, and M. Sagiv. A relagicmpproach to interprocedural shape analysis.
In Proceedings of the 11th International Static Analysis Sysnpn (SAS'04)Verona, Italy, August
2004.

[48] N. Rinetzky, M. Sagiv, and E. Yahav. Interproceduradsh analysis for cutpoint-free programs. In
12th International Static Analysis Symposium (SAS’'DBhdon, England, September 2005.

[49] Gilad Arnold. Specialized 3-valued logic shape anialysing structure-based refinement and loose
embedding. IrStatic Analysis Symposium 2006 (SAS8&pul, Korea, August 2006.

[50] Igor Bogudlov, Tal Lev-Ami, Thomas Reps, and Mooly SadgRevamping TVLA: Making parametric
shape analysis competitive. @omputer Aided Verification 2007 (CAVQBerlin, Germany, July
2007.

[51] Mark Marron, Deepak Kapur, Darko Stefanovic, and Mdridermenegildo. A static heap analysis
for shape and connectivity. Unified memory analysis: Theliemmework. InThe 19th International
Workshop on Languages and Compilers for Parallel Compuiir@P C’06), New Orleans, Louisiana,
USA, November 2006.

[52] Mark Marron, Darko Stefanovic, Manuel HermenegildodeDeepak Kapur. Heap analysis in the
presence of collection libraries. fth ACM Workshop on Program Analysis for Software Tools and
Engineering (PASTE’075an Diego, June 2007.

[53] Brian Hackett and Radu Rugina. Region-based shapgsisalith tracked locations. IRroceedings
of the ACM SIGPLAN Symposium on Principles of Programmingguages (POPL'05)pages 310—
323, Long Beach, California, USA, 12-14 January 2005.

[54] F. Corbera, R. Asenjo, and E.L. Zapata. A framework fpotgee dynamic data structures in pointer-
based codeslransactions on Parallel and Distributed SystetB(2):151-166, 2004.

[55] Sang-lk Lee, Troy A. Johnson, and Rudolf Eigenmann.u€etan extensible compiler infrastructure
for source-to-source transformation.The 16th International Workshop on Languages and Compilers
for Parallel Computing (LCPC '03)pages 539-553, College Station, Texas, USA, October 2003.

[56] R. Ghiya, L. J. Hendren, and Y. Zhu. Detecting paraleliin C programs with recursive data struc-
tures. InProc. 1998 International Conference on Compiler Consinrgtpages 159-173, March 1998.

[57] A. Loginov, T. Reps, and M. Sagiv. Abstraction refinermeia inductive learning.Lecture Notes in
Computer Science8576, 2005. Springer-Verlag.

[58] S. Cherem and R. Rugina. Maintaining doubly-linked lisvariants in shape analysis with local
reasoning. InProceedings of the ACM Conference on Verification, Modelcking, and Abstract
Interpretation (VMCAI '07) Nice, France, January 2007.

Compilation techniques based on shape analysis for pdiatsed programs

BIBLIOGRAPHY 177

[59] Alexey Gotsman, Josh Berdine, and Byron Cook. Interpdural shape analysis with separated heap
abstractions. Iin Proceedings of the 13th International Static AnalysimBgsium (SAS’06), LNCS
4134 pages 240-260, Seoul, Korea, 2006.

[60] Steven S. MuchnickAdvanced compiler design and implementatibtorgan Kaufmann, 1997.

[61] R. Ghiya and L. J. Hendren. Putting pointer analysis tokw In Proc. 25th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languagzspes 121-133, San Diego, California,
January 1998.

[62] Keith D. Cooper, Mary W. Hall, and Ken Kennedy. Proceddioning. InComputer Languagepages
96-105, 1992.

[63] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan,Bala, and L.P Chew. Optimistic parallelism
requires abstractions. Programming Language Design and Implementation (PLDI'@ages 211—
222, June 2007.

[64] A. Kejariwal, X. Tian, M. Girkar, W. Li, H. Saito, U. Bamee, A. Nicolau, A.V. Veidenbaum, and
C.D. Polychronopoulos. Tight analysis of the performanogemtial of thread speculation using
SPEC CPU2006. IACM SIGPLAN Symposium on Principles and Practice of Par&tegramming
(PPoPP’07) pages 215-225, San Jose, California, March 2007.

[65] Standard Performance Evaluation Corporation (SPEGPEC CPU2006 Documentatior2006.
http://www.spec.org/cpu2006/Daocs/.

[66] Mark Marron, Darko Stefanovic, Deepak Kapur, and Mdridermenegildo. Identification of heap-
carried data dependence via explicit store heap modeld.ahguages and Compilers for Parallel
Computing (LCPC’08)Alberta, Canada, 2008.

[67] R.Castillo, F. Corbera, A. Navarro, R. Asenjo, and EZapata. Complete DefUse analysis in recursive
programs with dynamic data structures. Workshop on Productivity and Performance (PROPER
2008) Tools for HPC Application Developmehas Palmas de Gran Canaria (Spain), August 2008.

University of Malaga

