
Department of Computer Architecture
University of Málaga

PH.D. THESIS

Compilation techniques based on shape analysis for
pointer-based programs

Adrian Tineo

Málaga, November 2008





Dr. Rafael Asenjo Plaza Dra. Marı́áAngeles González Navarro
Profesor Titular del Departamento Profesora Titular del Departamento
de Arquitectura de Computadores de Arquitectura de Computadores
de la Universidad de Málaga de la Universidad de Málaga

CERTIFICAN:

Que la memoria titulada“Compilation techniques based on shape analysis for pointer-based programs”,
ha sido realizada por D. Adrián Tineo Cabello bajo nuestra dirección en el Departamento de Arquitectura de
Computadores de la Universidad de Málaga y concluye la Tesis que presenta para optar al grado de Doctor
en Ingenierı́a de Telecomunicación.

Málaga, 1 de Septiembre de 2008

Fdo: Dr. Rafael Asenjo Plaza Fdo: Dra. Marı́aÁngeles González Navarro
Codirector de la Tesis Doctoral Codirectora de la Tesis Doctoral





To the memory of my grandmother Adriana

A la memoria de mi abuela Adriana





Acknowledgements

There is a lot of people that I would like to thank for contributing to the present work. I feel lucky for having
enjoyed their support and help.

First of all, I would like to thank my supervisors Dr. Rafael Asenjo and Dr. Angeles Navarro. In equal
measure, I must thank Dr. Francisco Corbera. All of them havebeen indispensable for the fulfillment of
this dissertation. About Rafa, I would like to stress his neverending enthusiasm. He was always optimistic
about the outcome, even when I feeling down. He is always sureabout the right motivation for the work and
the direction where it should be heading. About Angeles, I would like to highlight her attention to detail in
all aspects of the research. She was usually the one with a sharper view of affairs in our group discussions.
About Francisco, I would like to point out his unquenchable capacity for devising solutions. No matter how
odd or complicated a problem, I was constantly amazed at his ability to come up with a solution, or if that
would not be, for a step in the right direction. Angeles and Francisco have also helped me substantially with
the hardest technical issues in this dissertation.

I would also like to thank Emilio L. Zapata for all the management and for accepting me in the De-
partment of Computer Architecture, a place where I have feltat ease during the making of this dissertation.
I must also thank Carmen Donoso, always willing to help. All other colleagues in this department also
deserve mention for their conversations, support, and camaraderie: Oscar, Eladio, Felipe, Mario, Gerardo,
Julián, Javi, Sonia, Manuel, Mari Carmen, Ricardo,... thelist goes on and on.

I would like to thank the support of projects TIC2003-06623 and TIN2006-01078 of the Ministry of
Education of Spain, as well as the HPC-Europa transnationalprogramme and its partner center EPCC.

I would like to thank professor Marcelo Cintra, for being a valuable host during my stay in Edinburgh
in 2006. I value the conversations that we shared, I learned alot from them. I want to mention professor
Mike O’Boyle as well, a charismatic character full of interesting conversations both about work and life in
general. I also want to thank Dr. Diego Llanos for his good disposition and for sharing his knowledge.

Also, from my period in Edinburgh, I would like to thank all the nice people that I met there, that helped
me or encouraged me in some way or another: Catherine Inglis,Mark Bull, Chris Fench, Carla Delgado,
Sergio Pérez, Miguel, Piotr, Marta, Rumi, Cande, Carlos, Ulf, Paco,... the list is way too long. Also, I would
like to thank James Connachan for instructing me into a new way of physical education.

During my time in Spain, I have enjoyed the company and interaction with more Ph.D. students of my
generation. Countless times we shared ideas or simply chatted for some mental relief. Not all of them
continue now, but nevertheless I remember them fondly: JoseMiguel, Antoliano, Pepe, Fede, Ale, Sergio
R., Vicky, Maxi, Javi, Fran, Sergio V., Migue, Antonio, Juan, Ricardo, Siham, and Marina.

On a more personal side, there are many people who have helpedme throughout. Their company and
support has been most soothing when things were not turning out nicely. First and foremost, I want to thank
my parents. Your limitless faith and caring support is calming and refreshing. I hope I can make you proud
with this dissertation.

My family has also helped me find the required balance of spirit: Ana Mari, Rafael, Javier, Cristina,



8

Nacho, Dani, Mari Carmen, Jorge, Andrés, Loli, Marı́a Jos´e, Javi, Yolanda and Alberto. Regarding my
grandma, Adriana, recently deceased, I dedicate this dissertation to her.

The Antoni@s group also deserve special mention. It is greatthat we can keep in touch after the degree,
and share experiences about growing older and facing life’smultifaceted events: Desi, Juan, Caro T.,Álvaro,
Caro Co., Irene, Eva, Cristina, Tati, Amabel, and Vanessa. Ihope we can keep in touch many years.

I would like to mention two great sources of inspiration in mylife. Because of their knowledge and
disposition to share it, I am in debt with Dr. Yang, Jwing-Ming and Dan Docherty.

Another source of inspiration for me is my friend Carlos Suarez, and his unconditional love for music
and resistance to go through the hardest times.

The YMAA group has become my second family: Paco, Toni, Jose,Juan, Marcela, Jacinto, Rafa, Pilar,
Ángel and Marı́a José. I am also lucky to have found yet another family in the wudang tradition with Steve
from Madrid, Steve from Valencia, Lola, Miguel, Raquel, Raquelita, Rosa y Ramón.

Finally, I would like to close this acknowledgment section mentioning the most important person in my
life. Partner in the broadest sense of the word, she is the onethat makes me wake up every morning with a
smile and a willingness to outperform myself in every way. Rosa, from all the people in the world, you have
helped me the most to reach this place in time and space. All I can hope for is to keep on growing beside
you.

Compilation techniques based on shape analysis for pointer-based programs



Agradecimientos

Hay mucha gente a la que me gustarı́a agradecer su contribución al presente trabajo. Me siento afortunado
de haber disfrutado de su apoyo y ayuda.

En primer lugar, quiero agradecer a mis directores de tesis,Rafael Asenjo y MariáAngeles Navarro. En
igual medida, debo agradecer a Francisco Corbera. Todos ellos han sido indispensables para la realización
de esta tesis. Sobre Rafa, me gustarı́a destacar su inagotable entusiasmo. Siempre se ha mostrado optimista
sobre el resultado, incluso cuando yo no me sentı́a muy animado. Siempre está seguro de la motivación
adecuada para el trabajo y la dirección en la que deberı́a encaminarse. Sobre Marı́áAngeles, me gustarı́a
resaltar su cuidadosa atención a todos los aspectos de la investigación. En nuestras discusiones de grupo,
normalmente era ella la que tenı́a una visión más concretadel problema. Acerca de Francisco, me gustarı́a
apuntar su infinita capacidad para idear soluciones. No importa lo complicado o extraño del problema, me
quedaba constantemente maravillado de su habilidad para encontrar una solución, o si no era posible, un
paso en la dirección adecuada. Marı́aÁngeles y Francisco también me han ayudado significativamente con
la parte más técnica de esta tesis.

También me gustarı́a agradecer a Emilio L. Zapata, por todala gestión y por aceptarme en el Departa-
mento de Arquitectura de Computadores, un lugar donde me he sentido a gusto durante la realización de
esta tesis. Tengo que agradecer también a Carmen Donoso, siempre de buen talante para ayudarme. Todo
los demás compañeros del departamento también merecen mención por sus conversaciones, ayuda y cama-
raderı́a: Oscar, Eladio, Felipe, Mario, Gerardo, Julián,Javi, Sonia, Manuel, Mari Carmen, Ricardo,... la
lista sigue y sigue.

Me gustarı́a también agradecer el apoyo de los proyectos TIC2003-06623 y TIN2006-01078 del Minis-
terio de Educación español, ası́ como el programa transnacional HPC-Europa y su centro asociado EPCC.

Asimismo, quiero agradecer a Marcelo Cintra, por ser un valioso anfitrión durante mi estancia en Edim-
burgo en 2006. Aprendı́ mucho de las conversaciones con él.Quiero mencionar también a Mike O’Boyle,
un personaje carismático lleno de interesantes conversaciones tanto de trabajo como de la vida en general.
También quiero agradecer a Diego Llanos su buena disposición y por compartir su conocimiento.

De mi periodo en Edimburgo, me gustarı́a agradecer a todo el conjunto de personas tan agradables que
conocı́ alĺı, y que me de un modo u otro me ayudaron o apoyaron: Catherine Inglis, Mark Bull, Chris Fench,
Carla Delgado, Sergio Pérez, Miguel, Piotr, Marta, Rumi, Cande, Carlos, Ulf, Paco,... la lista es demasiado
larga. También me gustarı́a agradecer a James Connachan elinstruirme en una disciplina nueva para mı́.

Durante mi periodo en España, he disfrutado de la compañı́a y la interacción con otros estudiantes de
tesis de mi generación. En incontables ocasiones hemos compartido ideas o simplemente charlado para
aliviar un poco la mente. No todos continúan actualmente, pero aún ası́ los recuerdo con cariño: Jose
Miguel, Antoliano, Pepe, Fede, Ale, Sergio R., Vicky, Maxi,Javi, Fran, Sergio V., Migue, Antonio, Juan,
Ricardo, Siham y Marina.

En un plano más personal, hay mucha gente que me ha ayudado a lo largo del proceso. Su compañı́a y
ayuda ha sido un bálsamo cuando las cosas no saĺıan adecuadamente. En primer lugar, y sobre todo, quiero



10

agradecer a mis padres. Vuestra fe ilimitada y atento cariño son refrescantes y tranquilizadores. Espero que
os sintáis orgullosos con esta tesis.

Mi familia también me ha ayudado a encontrar el adecuado equilibrio mental: Ana Mari, Rafael, Javier,
Cristina, Nacho, Dani, Mari Carmen, Jorge, Andrés, Loli, Marı́a José, Javi, Yolanda y Alberto. En cuanto a
mi abuela Adriana, recientemente fallecida, a ella le dedico esta tesis.

El grupo de las Antoni@s también merece una mención especial. Es fantástico que podamos seguir
en contacto después de la carrera, y compartir experiencias sobre hacerse mayor y afrontar los múltiples
sucesos de la vida: Desi, Juan, Caro T.,Álvaro, Caro Co., Irene, Eva, Cristina, Tati, Amabel y Vanessa.
Espero que sigamos en contacto muchos años.

Me gustarı́a mencionar a dos grandes fuentes de inspiración en mi vida. Por su conocimiento y su
disposición a compartirlo, me siento en deuda con el Dr. Yang, Jwing-Ming y Dan Docherty.

Otra fuente de inspiración para mi es mi amigo Carlos Suárez, y su incondicional amor por la música y
su resistencia para soportar los momentos más duros.

El grupo de la YMAA se ha convertido en mi segunda familia: Paco, Toni, Jose, Juan, Marcela, Jacin-
to, Rafa, Pilar,Ángel y Marı́a José. También soy afortunado de haber encontrado otra familia más en la
tradición wudang con Steve de Madrid, Steve de Valencia, Lola, Miguel, Raquel, Raquelita, Rosa y Ramón.

Finalmente, me gustarı́a acabar esta sección de agradecimientos mencionando a la persona más impor-
tante en mi vida. Compañera en el sentido más amplio del término, ella es la razón por la que me levanto
cada dı́a con una sonrisa y con la voluntad de mejorarme a mi mismo. Rosa, de todas las personas del
mundo, tú eres la que más me ha ayudado a llegar a este lugar en el tiempo y el espacio. Todo a lo que
puedo aspirar es a seguir creciendo junto a ti.

Compilation techniques based on shape analysis for pointer-based programs



Index

Figure index ix

Table index xi

Preface xiii

1.- Introduction 1

1.1 General background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 2

1.3 Shape analysis for dependence analysis . . . . . . . . . . . . . .. . . . . . . . . . . . . . 3

1.3.1 Shape analysis within the heap analysis framework . . .. . . . . . . . . . . . . . . 4

1.4 Preprocessing for shape analysis: the Cetus framework .. . . . . . . . . . . . . . . . . . . 5

1.4.1 Simplification of complex statements . . . . . . . . . . . . . .. . . . . . . . . . . 6

1.4.2 Program instrumentation . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 7

1.4.3 Extraction of pointer statements and flow information. . . . . . . . . . . . . . . . . 8

1.5 Outline of this dissertation . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 8

2.- Intraprocedural shape analysis 11

2.1 Our approach to shape analysis . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 11

2.2 Registering possible combinations of links: coexistent links sets . . . . . . . . . . . . . . . 13

2.3 A formal description of shape analysis . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 16

2.3.1 Concrete heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 17

2.3.2 Abstract heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 18

2.3.2.1 Selector links with attributes . . . . . . . . . . . . . . . . .. . . . . . . . . 20

2.3.2.2 Coexistent links sets . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 21

2.3.2.3 Shape graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 22

2.3.2.4 Reduced set of shape graphs . . . . . . . . . . . . . . . . . . . . .. . . . . 24

2.4 Data-flow equations and worklist algorithm . . . . . . . . . . .. . . . . . . . . . . . . . . 26

2.5 Abstract semantics and operations . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 27

2.5.1 Running example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 27

i



ii INDEX

2.5.2 Creating new elements . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 28

2.5.3 Creating a recursive data structure . . . . . . . . . . . . . . .. . . . . . . . . . . . 29

2.5.4 Traversing a recursive data structure . . . . . . . . . . . . .. . . . . . . . . . . . . 31

2.5.5 Freeing memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 33

2.6 Modeling pointer arrays: multiselectors . . . . . . . . . . . .. . . . . . . . . . . . . . . . 34

2.7 Analysis refinement: properties . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 36

2.8 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 39

2.9 Related work in heap analysis . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 45

2.10 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 47

2.10.1 Benchmarks and tests . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 48

2.10.2 Comparison with predictions of the complexity study. . . . . . . . . . . . . . . . . 51

2.10.3 Improving the analysis performance . . . . . . . . . . . . . .. . . . . . . . . . . . 52

2.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 53

3.- Interprocedural shape analysis 55

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 55

3.2 Extensions for interprocedural analysis . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 56

3.2.1 New statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 57

3.2.2 Recursive Flow Links . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 59

3.2.2.1 Recursive flow links in the concrete domain . . . . . . . .. . . . . . . . . 61

3.2.2.2 Recursive flow links in the abstract domain . . . . . . . .. . . . . . . . . . 62

3.2.3 Context change rules . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 63

3.2.3.1 Non-recursive call-to-start rule . . . . . . . . . . . . . .. . . . . . . . . . 63

3.2.3.2 Recursive call-to-start rule . . . . . . . . . . . . . . . . . .. . . . . . . . . 64

3.2.3.3 Recursive return-to-call . . . . . . . . . . . . . . . . . . . . .. . . . . . . 66

3.2.3.4 Non-recursive return-to-call . . . . . . . . . . . . . . . . .. . . . . . . . . 66

3.2.3.5 Keeping track of a reduced number of recursive flow links . . . . . . . . . . 69

3.2.3.6 Limitations in the use of recursive flow links . . . . . .. . . . . . . . . . . 69

3.2.4 Data-flow equations and worklist algorithm . . . . . . . . .. . . . . . . . . . . . . 71

3.3 Reuse of function summaries . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 74

3.4 Refining interprocedural analysis . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 80

3.4.1 Previous call property to separate traversed and non-traversed nodes . . . . . . . . . 80

3.4.2 Force pseudostatements to filter out improper contexts . . . . . . . . . . . . . . . . 82

3.4.3 Paired selectors property . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 87

3.5 Related work in interprocedural shape analysis . . . . . . .. . . . . . . . . . . . . . . . . 92

3.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 93

3.6.1 Interprocedural suite for comparison with related work . . . . . . . . . . . . . . . . 93

3.6.2 More realistic benchmarks . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 94

Compilation techniques based on shape analysis for pointer-based programs



INDEX iii

3.6.3 Doubly-linked structures . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 96

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 97

4.- Data dependence analysis 99

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 99

4.1.1 Traversal patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 99

4.2 Data dependence detection for1-waytraversal patterns . . . . . . . . . . . . . . . . . . . . 100

4.2.1 Stage one (1-way): identify heap accessing statements . . . . . . . . . . . . . . . . 102

4.2.2 Stage two (1-way): create dependence groups . . . . . . . . . . . . . . . . . . . . . 103

4.2.3 Stage three (1-way): add touch pseudostatements . . . . . . . . . . . . . . . . . . . 105

4.2.4 Stage four (1-way): shape analysis with touch property . . . . . . . . . . . . . . . . 106

4.2.5 Stage five (1-way): dependence test . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2.6 Zero distance data dependences . . . . . . . . . . . . . . . . . . .. . . . . . . . . 109

4.2.6.1 Detecting zero distance data dependences in loops .. . . . . . . . . . . . . 110

4.2.6.2 Detecting zero distance data dependences in recursive functions . . . . . . . 114

4.3 Data dependence detection forn-waystraversal patterns . . . . . . . . . . . . . . . . . . . . 119

4.3.1 Stage one (n-ways): perform recursive function cloning . . . . . . . . . . . . . . . . 120

4.3.2 Stage two (n-ways): add dynamic touch pseudostatements . . . . . . . . . . . . . . 121

4.3.3 Stage three (n-ways): shape analysis with dynamic touch property . . . . . . . . . . 125

4.3.4 Stage four (n-ways): dependence test . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.3.5 Further considerations . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 128

4.4 Related work in dependence analysis . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 129

4.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 130

4.5.1 Benchmarks and tests . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 130

4.5.2 Cost of dependence test over shape analysis . . . . . . . . .. . . . . . . . . . . . . 133

4.5.3 Further instrumentation with untouch pseudostatements . . . . . . . . . . . . . . . 135

4.5.4 Scalability of the dependence detection scheme forn-waystraversal patterns . . . . 136

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 136

5.- Conclusions 139

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 139

5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 140

Appendices 143

A.- Shape analysis algorithms 143

B.- Shape graph summaries for thereverse() function 159

University of Málaga



iv INDEX

C.- Resumen de la tesis doctoral en castellano 163

C.1 Introducción general . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 163

C.2 Motivación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 164

C.3 Análisis de forma para el análisis de dependencias . . .. . . . . . . . . . . . . . . . . . . . 165

C.3.1 El análisis de forma dentro delsistema de ańalisis del heap. . . . . . . . . . . . . . 166

C.4 Análisis de forma intraprocedural . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 167

C.5 Análisis de forma interprocedural . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 168

C.6 Análisis de dependencias . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 169

C.7 Conclusiones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 170

C.8 Trabajo futuro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 171

Bibliography 173

Compilation techniques based on shape analysis for pointer-based programs



List of Figures

1.1 Heap analysis framework to report information to a code transformation block. . . . . . . . 3

1.2 The use of shape analysis for heap-induced data dependence detection. . . . . . . . . . . . . 4

1.3 Program preprocessing, shape analysis and client analysis within the heap analysis framework. 4

1.4 Modules of program preprocessing for shape analysis, designed within the Cetus infrastruc-
ture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5

1.5 Example of the use of force pseudostatements to filter outunrealistic graphs. . . . . . . . . . 7

2.1 Analysing a loop until a fixed-point is reached in the graphs. . . . . . . . . . . . . . . . . . 12

2.2 (a) Summarization allows to bind the structure; (b) materialization is used to focus on the
regions currently accessed. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 13

2.3 Different shape graphs for a statement are grouped into aRSSG. . . . . . . . . . . . . . . . 14

2.4 Hierarchical view of the elements in a shape graph. . . . . .. . . . . . . . . . . . . . . . . 15

2.5 Coexistent links sets (cls’s) describe possible connections that may exist between nodes in
a shape graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 16

2.6 Simple statements and definitions.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Excerpt of a program where a recursive data type is declared and later used to build a singly-
linked list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 17

2.8 A singly-linked list of four elements in the concrete domain. . . . . . . . . . . . . . . . . . 18

2.9 The singly-linked list used as example in the concrete and abstract domain representations. . 19

2.10 Different attributes and their role for precise heap abstraction. . . . . . . . . . . . . . . . . . 21

2.11 (a) Check whether two nodes are compatible; (b) Check whether a node is unreachable in
the current graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 23

2.12 Graphs in normal form around a pointer aliasing operation. . . . . . . . . . . . . . . . . . . 23

2.13 Check whether two shape graphs are compatible. . . . . . . .. . . . . . . . . . . . . . . . 24

2.14 Joining compatible shape graphs in aRSSG. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.15 (a) The operator
⊔RSSG as theJoin RSSG() function; (b)Summarize RSSG() function. 25

2.16 Data-flow equations for intraprocedural analysis. . . .. . . . . . . . . . . . . . . . . . . . 26

2.17 The worklist algorithm. It computes theRSSGs• at each program point. . . . . . . . . . . . 27

2.18 Running example to introduce shape analysis operations: iteratively create, reverse and
delete a singly-linked list. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 28

2.19 Creating a new element through the malloc statement andits associatedXNew() function. . 29

2.20 Use of theXSelY() andXY() functions to create a recursive data structure. . . . . . . . . 30

v



vi LIST OF FIGURES

2.21 Traversing a recursive data structure with theXYSel() function. . . . . . . . . . . . . . . 32

2.22 Destructive update in a recursive data structure, using theXselY() function, and its im-
plicit XSelNULL() function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.23 Freeing memory using theFreeX() function. . . . . . . . . . . . . . . . . . . . . . . . . 34

2.24 Three variants of a sparse matrix data structure based on pointer-array in both the concrete
and abstract domains: (a)one-to-onerelationship for several lists of elements of typeN; (b)
one-to-onerelationship for just one list; and (c)many-to-onerelationship for one list. . . . . 35

2.25 Em3d’s data structure in the concrete domain (a), and the abstract domain without properties
(b), with typeproperty (c), and withsiteproperty (d). . . . . . . . . . . . . . . . . . . . . . 37

2.26 (a) Check whether two nodes are compatible, incorporating the properties check; (b) Check
whether two nodes are compatible with regards to a certain property. . . . . . . . . . . . . . 40

2.27 Graphical User Interface for shape analysis. . . . . . . . .. . . . . . . . . . . . . . . . . . 47

2.28 Data structures for the benchmarks considered for intraprocedural shape analysis. . . . . . . 49

3.1 Running example for presentation of interprocedural analysis. . . . . . . . . . . . . . . . . 56

3.2 The use of the Activation Record Stack (ARS) for recursive function analysis. . . . . . . . . 57

3.3 New statements for interprocedural support.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 A 4-element list after the 4th invocation toreverse(): (a) with ARS, (b) with recursive
flow links, and (c) its shape graph. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 59

3.5 Extended sets for pointers and selectors in interprocedural analysis.. . . . . . . . . . . . . . . . . 60

3.6 Example of shape graph transformation by theCTSnrec rule. . . . . . . . . . . . . . . . . . 63

3.7 TheCTSnrec() function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.8 Example of graph transformation by theCTSrec rule. . . . . . . . . . . . . . . . . . . . . . 65

3.9 TheCTSrec() function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.10 Example of graph transformation by theRTCrec rule. . . . . . . . . . . . . . . . . . . . . . 66

3.11 TheRTCrec() function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.12 Example of graph transformation by theRTCnrec rule. . . . . . . . . . . . . . . . . . . . . 67

3.13 TheRTCnrec() function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.14 Thereverse() recursive function instrumented with theexcludeRFPTR directive in
bold typeface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 70

3.15 (a) A function to create a binary tree whose pointerl cannot be traced by our technique. (b)
A rearranged version of the same function that works in the same way and that is adequately
supported. Rearranged statements appear in bold. . . . . . . . .. . . . . . . . . . . . . . . 71

3.16 Data-flow equations for interprocedural support. . . . .. . . . . . . . . . . . . . . . . . . . 71

3.17 The extended worklist algorithm for interprocedural support. It computes theRSSGs• at
each program point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 72

3.18 TheWorklist rec algorithm for recursive support. It computes theRSSGs• at each
statement function point. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 74

3.19 Storing pair of input-outputRSSG for the analysis ofreverse(), after splitting incoming
shape graph by reachability of reaching and non-reaching pointers. . . . . . . . . . . . . . . 76

3.20 Example of function summary reuse when callingreverse()with a new list. . . . . . . . 77

Compilation techniques based on shape analysis for pointer-based programs



LIST OF FIGURES vii

3.21 TheTabulate() algorithm to calculate and reuse function summaries. . . . . .. . . . . 78

3.22 TheSplit by reachability() algorithm that gets the reachable part of a graph for
the given accessing pointers. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 79

3.23 An arbitrary long singly-linked list being traversed in a recursive function in (a) the concrete
domain, (b) the abstract domainwithout the PC property, and (c) the abstract domainwith
the PC property. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 81

3.24 The recursive version of the call-to-start rule extended to support the previous call (PC)
property, with the statements in bold. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 82

3.25 The recursive version of the return-to-call rule extended to support the previous call (PC)
property, with the statements in bold. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 83

3.26 TheTreeAdd() recursive function instrumented with theforce pseudostatements that
allow proper context filtering displayed in bold typeface. .. . . . . . . . . . . . . . . . . . 84

3.27 A binary tree abstracted to the abstract domain, and then used for returning to the left side
call in TreeAdd(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.28 The use of force pseudostatements to filter out impropercontexts when returning to different
call sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 85

3.29 General scenario of applying force pseudostatements to filter out improper contexts for re-
cursive analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 86

3.30 (a) A shape graph found at the return statement inTreeAdd(). (b) The shape graph
obtained after applyingRTCrec for the left side call and subsequent force pseudostatements
over the graph in (a). (c) A possible concretizacion of the graph in (b) for the concrete
domain. Note how the relation betweenleft andtrfsel may be lost. . . . . . . . . . . . . 88

3.31 (a) A shape graph found at the return statement inTreeAdd(), with PS info. (b) The
shape graph obtained after applyingRTCrec for the left side call and subsequent force pseu-
dostatements over the graph in (a). (c) A possible concretizacion of the graph in (b) for the
concrete domain. Note how the relation betweenleft andtrfsel is preserved. . . . . . . 90

3.32 TheCompatible Property() featuring properties:type, site, touch, PC, andPS. 91

3.33 The data structures used for the recursive benchmarks from Olden: (a)16-TreeAdd and
18-Bisort; (b) 17-Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1 Examples of dynamic data structures and traversals. We find the1-way traversal pattern
for (a), (b) and (c), and the2-ways traversal pattern for (d). . . . . . . . . . . . . . . . . . 101

4.2 Presentation of our heap analysis framework featuring the five stages for data dependence
analysis for the1-waytraversal pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3 Running example for data dependence detection featuring a1-waytraversal pattern. . . . . . 103

4.4 The function used bystage one (1-way)to identify heap accessing statements. . . . . . . . . 104

4.5 The function used bystage two (1-way)to create dependence groups. . . . . . . . . . . . . 104

4.6 The function used bystage three (1-way)to add touch pseudostatements. . . . . . . . . . . . 105

4.7 Running example instrumented with touch pseudostatements in bold typeface. . . . . . . . . 106

4.8 TheTouch() function for annotating access labels in nodes. Access pairs are created too. . 107

4.9 The process of access labels annotation instage four (1-way). . . . . . . . . . . . . . . . . . 108

4.10 The function used bystage five (1-way)to identify data dependences due to heap accesses. . 109

University of Málaga



viii LIST OF FIGURES

4.11 Variation of the running example that presents a zero distance data dependence in loopL1. . 111

4.12 A list of lists data structure, its abstraction and several shape graphs achieved during the
analysis instage four (1-way). The access labels include the iteration vector information for
discriminating zero distance dependences in loops. . . . . . .. . . . . . . . . . . . . . . . 112

4.13 TheDep test lcd0() function with further elaboration to detect zero distance loop-
carried dependences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 113

4.14 Variation of the running example that presents a zero distance data dependence in recursive
functiontraverse header(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.15 TheUntouch() function for clearing annotations in nodes. . . . . . . . . . . . . .. . . . 116

4.16 Variation of the running example using recursive functions, instrumented withtouchand
untouch pseudostatements, displayed in bold typeface. . . . . . . . . . . . . . . . . . . . . 117

4.17 Presentation of our heap analysis framework displaying the four stages used for data depen-
dence analysis inn-waystraversal patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.18 TheTreeAdd() function used as running example for then-ways traversal pattern. . . . 120

4.19 TheTreeAdd() function in (a) the initial version, (b) performing function cloning of depth
one, and (c) performing function cloning of depth two. . . . . .. . . . . . . . . . . . . . . 122

4.20 The function used bystage one (n-ways)to perform recursive function cloning. . . . . . . . 123

4.21 TheTreeAdd() function, and its two clones for the 2-threads analysis, instrumented with
dynamic touch, label settingandlabel unsettingpseudostatements, shown in bold typeface. . 124

4.22 The function used bystage two (n-ways)to add dynamic touch instrumentation. . . . . . . . 125

4.23 The tree resulting from the analysis ofTreeAdd()with two clones, with nodes annotated
with dynamic touch labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 126

4.24 TheSetDtouchLb(), UnsetDtouchLb(), andDtouch() functions to perform the
adequate annotations in nodes forstage three (n-ways). . . . . . . . . . . . . . . . . . . . . 127

4.25 The function that checks dependences forn-waystraversal patterns. . . . . . . . . . . . . . 128

A.1 TheXNULL() function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.2 TheXNew() function. Statements involved in the management of properties are shown in
bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 144

A.3 TheUpdate property() function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.4 XY() function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.5 FreeX() function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.6 XselY() function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.7 Summarize SG() function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.8 XSelNULL() function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

A.9 XYSel() function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.10 TheJoin SG() function. Statements involved in the management of properties are shown
in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 150

A.11 TheJoin Property() function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.12 Split() function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.13 Normalize SG() function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Compilation techniques based on shape analysis for pointer-based programs



LIST OF FIGURES ix

A.14 Part one of three of theMaterialize Node() function. Statements involved in the
management of properties are shown in bold. . . . . . . . . . . . . . .. . . . . . . . . . . 153

A.15 Part two of three of theMaterialize Node() function. . . . . . . . . . . . . . . . . . . 154

A.16 Part three of three of theMaterialize Node() function. . . . . . . . . . . . . . . . . . 155

A.17 Part one of two of theForce() function. . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A.18 Part two of two of theForce() function. . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

B.1 Thereverse() recursive function to reverse a singly-linked list. . . . . . .. . . . . . . . 159

B.2 Output summaries for the recursive analysis ofreverse(). . . . . . . . . . . . . . . . . . 161

C.1 Sistema de análisis delheappara proporcionar información a un bloque de transformación
de código. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 165

C.2 El uso del análisis de forma para la detección de dependencias de datos en elheap. . . . . . 166

C.3 Preprocesado del programa, análisis de forma y análisis cliente dentro delsistema de ańalisis
del heap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

C.4 Vista jerárquica de los elementos de un grafo de forma. .. . . . . . . . . . . . . . . . . . . 168

University of Málaga





List of Tables

1.1 Examples of complex expressions and the simplificationsperformed by the shape analysis
preprocessing pass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 6

1.2 Statements extracted by the shape analysis preprocessor for shape analysis.x, y, andz are
pointers to recursive data types,sel is a pointer field (or selector) of recursive data type,
data is a data field of recursive data type. . . . . . . . . . . . . . . . . . . . .. . . . . . . 9

2.1 Parameters of our complexity study. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 44

2.2 The codes tested for intraprocedural analysis, with metrics about performance, and size of
problem. The testing platform is a 3GHz Pentium 4 with 1GB RAM. . . . . . . . . . . . . . 50

2.3 The codes tested for intraprocedural analysis, with parameters that relate to shape graph
complexity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 50

2.4 Comparisons of maximum number of graphs and number ofcls’s measured versus pre-
dicted by the complexity study. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 52

2.5 Measures for the4-Matrix x Vector and 5-Matrix x Matrix benchmarks in
four versions each:full, site, pruned andpruned & site. . . . . . . . . . . . . . 53

3.1 Comparison of analysis times and required memory between the approach of Rinetzky et. al.
and our method, for a small suite of recursive algorithms that manipulate singly-linked lists
and binary trees. Time is measured in seconds, space in MB. . .. . . . . . . . . . . . . . . 94

3.2 Metrics of performance and problem size for recursive benchmarks from Olden. The testing
platform is a 3GHz Pentium 4 with 1GB RAM. . . . . . . . . . . . . . . . . .. . . . . . . 95

3.3 Shape graph complexity measures for recursive programs. . . . . . . . . . . . . . . . . . . 96

3.4 The sparse matrix benchmarks compared in their singly-linked(s) and doubly-linked(d) ver-
sions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 97

4.1 Summary of benchmark programs used for our data dependence tests. . . . . . . . . . . . . 130

4.2 Performance and problem size for the benchmarks used fordependence detection. The
testing platform is a 3GHz Pentium 4 with 1GB RAM. . . . . . . . . . .. . . . . . . . . . 132

4.3 Shape graph complexity for the benchmarks used for dependence detection. . . . . . . . . . 133

4.4 Increment in several measures of the shape analysis instrumented for dependence test with
regards to just the shape analysis. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 134

4.5 Measures for the2-Running ex rec and7-Power benchmarks, considering the touch
instrumented version (t), and the touch-untouch instrumented version (tu). . . . . . . . . . 135

4.6 Measures for the6-TreeAdd and8-Bisort benchmarks, considering the versions tai-
lored for two threads (2-th) and four threads (4-th). . . . . . . . . . . . . . . . . . . . . 136

xi





Preface

Parallel computing is nothing new. It has been around for many years now. However, the way we perceive
it, as a society, has changed. From its beginning of nearly science fiction promise, to the current state of
ubiquitous multiprocessing, the parallel architectures and parallel programming paradigms have been many.
As eloquent professor Lawrence Rauchwerger pointed us in the HIPEAC summer school of 2007, most of
them have died. There has also been a cycle. In the 80’s, everything sounding parallel was fashionable.
In the 90’s it was something different, as was remembered in aspecial panel in LCPC’07 entitled“What
have we learned after 20 LCPCs?”. Funding was cut-off, and the researchers devoting their time to parallel
computing were left with a dilemma: change topic to move to the warmer sun of funding, or stick to their
guns in the best possible way and wait for a second rise of the parallelism fever.

It seems that those who waited were ahead of their time. Now, multiprocessors are everywhere, from
high-end supercomputers to portable devices. There is a great promise for everyone working in parallel
computing. At the same time, there is a great pressure on compilers. The time to provide quality parallel
code is now. The hardware is ready to take it. The challenge isnow for the compiler community to provide
it.

Among the most daring challenges in parallel computing, there is the automatic parallelization of irregu-
lar applications. There are not so many people working on this. Some of the groups that succeeded in works
tailored for regular applications, never turned to extend or adapt their approaches for irregular applications.
I often wonder why. I suspect they thought the problem was toohard, or at least that it would not pay off
in the short term. They decided to invest their time and resources in some other problem meaningful for the
compiler scientific community.

In this Ph.D. dissertation we look toward one of the toughestof problems in parallel computing: the
automatic parallelization of pointer-based applicationswith dynamic recursive data structures. The problem
is so tough, that we deal solely with a technique to extract information from the heap to detect data depen-
dences. We will leave for future work the task of generating parallel code based on the information provided
by our approach.

It was just a few days after the 11th of March of 2004. Spain wasstill shocked due to the horrid
terrorist attack of the trains in Madrid. A day we will never forget. People were still finding their way into
processing the strong feelings of disgust, fright, political incredulity, and anger. My way of doing so was
reading through the pages of the Ph.D. thesis of Dr. Francisco Corbera [1], the seed work for the present
manuscript. In a weekend, amidst the national turmoil and overall confusion, I had to decide whether I took
the position of Ph.D. student to continue work in the field of shape analysis for dynamic data structures or
whether I continued my search for a job in the private sector,as was my first intention when I finished the
engineering degree. Needless to say, I took up the opportunity. Today, the world is not a safer place. At
least, I feel relieved that the goal I set myself that time comes to fruition.

At first, I had to get acquainted with all the nuances of such a complex analysis technique. Gradually,
I grasped its meaning and extended the experimental work carried out so far. This produced some worthy
publications ([2], [3], [4], [5]) and introduced me in the world of international conferences. This work



xiv Preface

was invaluable for me to understand the complexity of shape analysis and its validity for data dependence
detection of heap-induced data dependences.

Then, the goal was to redefine the shape analysis strategy from scratch to include the novel idea of
storing links existing simultaneously over heap-allocated memory pieces in groups, a notion we baptised as
coexistent links sets(cls). This concept is the single most defining characteristic ofour approach and is
covered in detail in chapter 2 of this dissertation. This keyidea was elaborated and extended in [6], [7] and
[8].

I call this period of the Ph.D. research“the sweet start”. I was enjoying most of what I was doing
and all our efforts were corresponded with worthy publications, often with encouraging reviews. Next in
my well-defined schedule, was to add interprocedural support to our new shape analysis technique based
on cls’s. Chapter 3 of this dissertation details the mechanism involved for this extension. From the first
research into related work, to the design, implementation,and tests, this would take me nearly 2 years, being
by far the most challenging period in the making of this dissertation.

In between this period, I paid a 3 months visit to the School ofInformatics in the University of Edin-
burgh, funded by the HPC-Europa programme. There, Dr. DiegoLlanos, my host Dr. Marcelo Cintra and I
designed a scheme for speculative parallelization of pointer-based applications. The resulting work, though
preliminary, was featured in [9] and [10]. I call this period“the happy exile”. Not only it served me to
deepen my understanding of parallel programming and recognize the pitfalls of exploiting parallelism in
pointer-based programs, but I was also lucky to share my timein Scotland with a most pleasurable company
of other young researchers from Europe. Insiders from the program told us that somehow we had formed
one of the most animated groups among all visitors ever.

After coming back from Edinburgh, I resumed work in the interprocedural extensions for our shape
analysis technique. I call this period“the real world” . Bruce Dickinson, singer and songwriter, put it quite
simply: “the real world can leave you hanging by a thread”. It surely did that for me, as our efforts were
systematically rejected in the ICS’07, PACT’07, SAS’07, and PPoPP’07 conferences. I tried (although
sometimes it was hard) to keep my spirit high and continue working at full throttle despite the adversities.
By the time we got a poster in ACACES’07 [11], another poster in LCPC’07 [12] and a full article in
IPDPS’08 [13], we had already moved into the data dependenceanalysis, subject of chapter 4.

The present work rounds up with conclusions and ideas for future work in chapter 5. Then, follow some
appendixes with some technical details, and the Spanish summary for this dissertation.

When doing research, you often find that your ideas are not really new. Hopefully, you can add a
different point of view that leads to an improved result. Sometimes, what you need to solve was done just
fine by people before you. As I close this preface, I find that what I feel was already described in 1987 by
the drummer and songwriter, Neil Peart, when he wrote the opening verse for the song“The Mission”:

“Hold your fire,
keep it burning bright.

Hold the flame
’till the dream ignites.
A spirit with a vision

is a dream with a mission”.

Compilation techniques based on shape analysis for pointer-based programs



1 Introduction

1.1 General background

The scientific community agrees that we have reached the multicore era: dual- and quad-core processors
are now common in desktop computers, and manufacturers likeIntel target 80-cores processors in their
roadmap. Furthermore, multiprocessor architectures abound in middle-size enterprises, research centers,
and national organizations, as they are quickly becoming the mainstream in computer architecture.

Single-core architectures cannot cope with Moore’s law [14] to increment performance. As we reach
the limits of monoprocessor architectures, increasing power consumption (and the associated cooling cost)
starts to outweigh the growingly smaller improvements in performance. There seems to be a better way: go
multiprocessing. Examples of this trend are the Intel’s Centrino Duo architecture for laptops, and IBM’s
Roadrunner system, the most powerful supercomputer in actuality1. The latter is the world’s first hybrid
supercomputer, connecting 6,562 dual-core AMD Opteron chips as well as 12,240 Cell chips. Not only
multiprocessors are becoming widespread, but heterogeneous architectures are emerging too. Rather than a
fad of our time, multiprocessors are here to stay.

The key issue now is obtaining good software performance at low cost so that we can exploit all available
hardware. Currently, the most common way to obtain programsfor these multiprocessor architectures is by
explicitly writing parallel algorithms that rely on threading schemes or message passing libraries. There is a
major hindrance with this approach, and it is the increasingdevelopment cost. Although there is a growing
number of languages and libraries trying to popularize parallel programming (e.g., [15], [16], [17]), expert
parallel programmers are invariably sought-after, more sodue to the variety of available architectures and
parallel programming paradigms.

We are witnessing a change of course: from theHigh Performance Computing, mainly concerned with
reducing run times and achieving speedup by whatever means necessary, to theHigh Productivity Com-
puting, which seeks to obtain attractive performance improvements, but more importantly, with shorter
development costs.

1As indicated by the Top 500 Supercomputer list (www.top500.org) in June 2008.

1



2 Chapter 1. Introduction

For years, a versatile and powerful parallelizing compilerhas been the chimera of the compiler commu-
nity. The goal is to able to identify and exploit parallelismin sequential programs in an automated basis,
a process entirely driven by the compiler. This approach hasproven successful for regular applications,
mainly in Fortran [18], but irregular applications still pose great challenges.

In particular, data structures based on dynamic memory and accessed through pointers are beyond the
scope of current compilers. They are ineffective when it comes to optimizing pointer-based applications for
modern multiprocessors. This limitation is mainly caused by their inability to extract the required informa-
tion from the source code. In general, they are unable to locate the opportunities to exploit parallelism and
locality in dynamic data structures. For that, a precise description of what heap-allocated memory locations
are accessed and how they are managed is absolutely required. Only then we will be able to advance in the
automatic parallelization of irregular programs.

1.2 Motivation

The problem we want to solve is the automatic parallelization of codes based on heap-stored dynamic,
recursive data structures. This is a very tough and unsolvedproblem. Finding its solution would have a big
impact since dynamic data structures are widely used in manyirregular codes and multiprocessor/multicore
architectures are very common nowadays.

Dynamic data structures are those allocated at run time and accessed through heap-directed pointers.
More often than not, those structures are also recursive in the sense that each heap element has pointer fields
that can point to other heap elements, thus forming common structures such as linked lists, Direct Acyclic
Graphs (DAG) or trees. These structures are commonly used inpointer-based, irregular applications, and
they pose significant challenges for current compiler analysis passes, due to the alias problem.

The problem of calculating pointer-induced aliases must besolved so that compilers can safely disam-
biguate memory references. A basic step in the automatic parallelization process is the detection of parallel
loops or parallel function calls using a data dependence test. Such a dependence test requires information
about the properties of the data structures traversed in theloops or in function bodies. We are convinced that,
for the purpose of dependence analysis in the context of applications that deal with dynamic data structures,
a very precise description of the heap must be obtained.

There is a body of work based onpoints-to analysis(e.g., [19], or [20]). Its main focus is toward
detecting aliases relationships between pointers. For instance, Salcianu [21] builds points-to graphs that
represent relationships between heap elements and pointers, even for incomplete parts of a program. His
analysis is tested for some simple clients for object oriented languages, such as finding out methods that do
not modify global objects (purity analysis), and detecting objects that are captured within a method and thus
can be allocated in the stack (stack allocation analysis).

In our approach, we considershape analysisas the base technique for achieving a characterization of
data structures in the heap. Unlike points-to analysis techniques, which are mainly concerned on must- and
may-alias sets, shape analysis is concerned about theshapeof the data structure. This allows for a more
precise characterization of data structures in the heap. Such precision is a must for more complex client
analysis, such as data dependence analysis. With shape information, it it possible to identify conflicting and
non-conflicting accesses in traversals of heap elements, that otherwise are not differentiated in a points-to
analysis.

We envision a heap analysis framework, based on shape analysis as its cornerstone, whose purpose is
to draw topological and temporal information about recursive data structures. Such a framework would
be oriented toward the detection of parallel loops and parallel function calls. The final goal is to generate

Compilation techniques based on shape analysis for pointer-based programs



1.3. Shape analysis for dependence analysis 3

threaded, parallel versions of sequential legacy codes. This framework would prove invaluable in the current
scenario brimmed with off-the-shelf multiprocessors, which are becoming widely available to the average
user in the form of multicore systems.

We present a gross view of such a framework in Fig. 1.1. The heap analysis framework statically derives
information from a sequential pointer-based application.This framework should be coupled with a code
transformation block that makes proper use of that information to yield an optimized version of the original
program. For our purposes, such optimization is related to automatic parallelism for achieving run time
speedup.

Figure 1.1: Heap analysis framework to report information to a code transformation block.

1.3 Shape analysis for dependence analysis

Shape analysis is a heap analysis technique that considers information available at compile-time to provide
detailed information about the heap for pointer-based programs. This is done by extracting information
about theshapeor connectivity of heap elements.

The information derived from the shape analysis of a pointer-based application can be used for several
purposes like: (i) data dependence analysis, by determining if two accesses may reach the same memory
location; (ii) locality exploitation, by capturing the waymemory locations are traversed to determine when
they are likely to be contiguous in memory; (iii) program verification, to provide correctness guarantees
about heap manipulating programs, and (iv) programmer support, to help detecting incorrect pointer usage
or documenting complex data structures. In this dissertation, we will deal exclusively with the use of shape
analysis for data dependence analysis, although other usesare possible.

In our approach to shape analysis, we use shape abstractionsexpressed as graphs to model the heap.
Graph-based shape analysis is a very detailed pointer analysis technique that is regarded as context-, flow-,
and field-sensitive. As a consequence, it is usually much more costly than other approaches to heap analysis,
like points-to analysis.

Let us present now an intuitive idea of how a graph-based shape analysis can be used to find access
conflict in a typical pointer-chasing loop. The main idea in our data dependence test scheme is to carry out
the abstract interpretation of the statements of the analyzed loop, abstracting the accessed heap locations
with nodes of shape graphs and annotating these nodes with read/write information.

The code in Fig. 1.2 creates a singly-linked list and then traverses it, copying thedata field of the
element pointed to by pointerq, to the element pointed to by pointerp. The overall effect of this algorithm
is to shift values in the list one position toward the head. Note how there is a potential loop-carried data
dependence, betweenS3:val=q->data, that reads thedata field, andS4:p->data=val, that writes
to it.

Our test symbolically executes the code abstracting the data structures in shape graphs. For example,
sg1 is the shape graph that abstracts the list created at statement S1. Usingabstract interpretation[22], the
abstract semanticsof each statement update the shape graph resulting from the previous statement. In this

University of Málaga



4 Chapter 1. Introduction

process, memory locations that are read and/or written are annotated accordingly. In this example, the read
access of statementS3 is annotated asRS3 in the shape graphs, whereas the write access of statementS4 is
annotated asWS4. The second symbolic execution of statementS4:p->data=val produces shape graph
sg8. Within this shape graph we can detect that a memory locationhas been read in an iteration and written
in the next one, causing a loop-carried dependence due to a write-after-read (WAR) access.

Figure 1.2: The use of shape analysis for heap-induced data dependence detection.

1.3.1 Shape analysis within the heap analysis framework

We expand now on the concept of the heap analysis framework introduced earlier. Fig. 1.3 presents a view
of different modules interacting within the heap analysis framework.

Figure 1.3: Program preprocessing, shape analysis and client analysis within the heap analysis framework.

First, the input program enters the SAP module, which standsfor Shape Analysis Preprocessor. As it
name suggests, it is responsible for performing preprocessing tasks on the program required for its shape
analysis. The result of this module is the set of pointer statements that deal with the heap, and the flow
information that governs the way those statements are executed in the program.

That information is the input for theshape analyzertool, within theshape analyzer package. Also

Compilation techniques based on shape analysis for pointer-based programs



1.4. Preprocessing for shape analysis: the Cetus framework 5

within this package we find avisualization tool[23] that is used to visualize the shape graphs obtained and
help debug the technique.

As a result of the execution of the shape analyzer, we will obtain ashape characterizationof dynamic
data structures. That information can be put to use byclient analyses. For example, adata dependence
testcould be such a client: it can consider shape information combined with heap access information to
detect dependences in pointer-based applications. The results of the client are then offered as output of the
framework. For instance, a data dependence test client could report parallelizable loops or functions to a
parallelization framework, external to the heap analysis framework.

We will deal with theshape analyzerin detail in chapters 2 and 3. We present a data dependence test
as client analysis for the use of our shape analysis technique in chapter 4. Now, we will focus on the SAP
module, and the preprocessing tasks required for proper shape analysis.

1.4 Preprocessing for shape analysis: the Cetus framework

Some preprocessing is required for the shape analysis of a program. We have designed the required pre-
processing passes within the extendable Cetus framework [24]. Cetus is a compiler infrastructure designed
for source-to-source program transformation. It can parsea program to a well-defined IR, perform some
transformations, and emit the result as a new source program. This approach is useful for performing trans-
formations in programs that can be later compiled and run with a production compiler. Cetus can parse C,
C++, and Java, although we only target C programs.

Cetus is specially aimed toward the development of compilation passes of high-level nature. This is so
because its IR is close to the source code, which is suitable for transformations related to heap analysis.
Tackling heap analysis at lower levels in the compilation process is usually more difficult because we lack
enough information.

Cetus is written in Java and its source code is publicly available under a non-restrictive license. This
has allowed us to design some custom passes over its IR to perform some simple program transformations,
annotations and translation. Furthermore, our extended Cetus framework fits seamlessly with our shape
analyzer implementation, also designed in Java.

Fig. 1.4 displays the insides of the SAP module presented earlier. It is composed of several modules.
First, the input program is parsed with Cetus. The result is the original program in the Cetus IR format, where
we can perform some simple passes, structured in three stages: (i) simplification of complex statements, (ii)
program instrumentation, and (iii) extraction of pointer statements and flow information. At some points
in the process, the resulting state of the program can be emitted optionally as a new source code with the
transformations applied so far.

Figure 1.4: Modules of program preprocessing for shape analysis, designed within the Cetus infrastructure.

University of Málaga



6 Chapter 1. Introduction

1.4.1 Simplification of complex statements

The first pass within the shape analysis preprocessing scheme is the simplification of complex statements.
The purpose of this pass is obtaining an equivalent version of the input program but with a shorter variety
of expressions, so that we can deal with the features of the language more effectively.

We target sequential C programs for our analysis. The variety and complexity of expressions that are
legal in ANSI C [25] is significant. We do not support all the features of the language. In particular, we do
not support pointer casting, pointer arithmetic, functionpointers, or the address-of operator (&). In other
words, the type of declared pointers must be known and fixed, and the access through pointers has to follow
a pointer chasing path, with no calculation of pointers based on adding values over a base pointer address.
Programs using this kind of mechanisms must be rewritten by hand to avoid them or discarded for their
analysis.

We focus on a subset of C for our analysis: assigning statements involving pointers to dynamic data
types, loops and branching statements, function calls and return statements. Additionally, we need to make
sure in the preprocessing stage that statements involving pointers use onlysimple access paths, i.e., they
only have one level of indirection. Also, we need to ensure that a pointer is not read and written in the same
statement, that conditions in loops are simple pointer checks, and that there are no nested function calls.

These kinds of expressions are substituted for a simpler version by a custom pass designed in the Cetus
infrastructure. An example of such expressions and their transformations can be seen in Table 1.1. Note that
we employ additional pointer variables when needed. Since the number of assigned pointers in our analysis
is relevant, as we shall see in the complexity study of chapter 2, we nullify these temporal pointer variables
as soon as they are not needed.

Thanks to the simplification of complex statements performed in our preprocessing pass, the number of
different statements that need to be supported by our shape analysis technique, and therefore their associated
abstract semantics, is lower. This makes the formulation ofour analysis simpler and involves no loss of
generality.

Original statements Simplified statements
Turn complex access paths into simple access paths

x=y->nxt->dwn;
tmp=y->nxt;
x=tmp->dwn;
tmp=NULL;

Turn updating statements into two separate read and write statements

x=x->nxt;
tmp=x->nxt;
x=tmp;
tmp=NULL;

Simplify complex conditions for branches, loops, and function calls

if(nav=x->nxt)
nav=x->nxt;
if(nav!=NULL)

Decompose nested function calls

foo1(foo2(x));
tmp=foo2(x);
foo1(tmp);
tmp=NULL;

Table 1.1: Examples of complex expressions and the simplifications performed by the shape analysis pre-
processing pass.

Compilation techniques based on shape analysis for pointer-based programs



1.4. Preprocessing for shape analysis: the Cetus framework 7

1.4.2 Program instrumentation

Shape analysis can benefit from certain information that canbe deduced from the statements in the program.
In that case, it is worthwhile to communicate that information to the shape analyzer tool for improved
precision or functionality. The second pass in our shape analysis preprocessor module can annotate that
information in the source code. Such annotations use the commonpragma nomenclature, followed by the
SAP keyword and the name of a directive.

The process is simple: the simplified representation of program statements in Cetus IR format is tra-
versed, looking for opportunities to add SAP directives. The result can then be emitted as a new code thanks
to the source-to-source translation capabilities of Cetus. This emitted code can be run with the same result
as the original program, as the SAP directives will be ignored by the compiler.

Figure 1.5: Example of the use of force pseudostatements to filter out unrealistic graphs.

Some directives provide information to the next stages of shape analysis preprocessing about the way
the statements must be considered for the internal operations, but most directives are translated intopseu-
dostatementsthat will be later abstractly interpreted by the shape analyzer for a specific effect. One of
such pseudostatements is theforce pseudostatement, indicated in a force directive of the form#pragma

University of Málaga



8 Chapter 1. Introduction

SAP.force(condition), wherecondition is a boolean condition involving pointers. The possible
conditions arex==NULL,x!=NULL,x->sel==NULL,x->sel!=NULL,x->sel==y, orx->sel!=y,
wherex andy are pointers to recursive data typest1 andt2, respectively, andsel is a pointer field (also
calledselector) to typet2, declared int1.

The force pseudostatement is used to filter out unrealistic graphs according to pointer test conditions,
mainly in branches and loops. Consider the example of Fig. 1.5. It shows a simple code as a control flow
graph with twoif branches. Let us assume thatx, y andz are pointers to a list data type. The first condi-
tional block creates a third element pointed to byz if a certain arithmetic condition holds. This condition
is not known at compile-time, so both branches must be considered by the analysis. At the join point af-
ter the firstif, there are two possibilities of graph abstractions. These then enter in the next conditional
block. However, it is clear from its condition (z!=NULL) that only one graph is suitable for each branch.
At the join point after the secondif, we would have four different graphs, according to different flow paths
of the analysis. Two of them are correct, the other two are impossible, and thus render the analysis im-
precise. To prevent this situation, theforce(z!=NULL) pseudostatement (inserted by the preprocessing
directive#pragma SAP.force(z!=NULL)), filters out the graph wherez is assigned to a node, and
the force(z==NULL) pseudostatement (expressed in directive#pragma SAP.force(z==NULL))
filters out the graph wherez is not assigned to any node. With the use of simple force pseudostatements,
inappropriate graphs are eliminated, preserving accuracyin the analysis.

Force pseudostatements are just one of several pseudostatements available. Another kind is thetouch
pseudostatement, which is used to annotate access information in nodes of shape graphs. This is useful
for data dependence analysis. For instance, theRS3 andWS4 labels from Fig. 1.2 are annotated by touch
pseudostatements. The touch pseudostatement and other related pseudostatements will be covered in detail
in chapter 4. The key issue here is that all of the pseudostatements needed in our approach are introduced in
the same way, i.e., through SAP directives in the source code.

1.4.3 Extraction of pointer statements and flow information

The final stage of our preprocessing scheme for shape analysis involves the translation of the required
statements from Cetus internal IR to the format required by the shape analyzer tool. This translation must
account for all kinds of statements considered by the shape analysis technique.

The shape analyzer tool operates by modifying shape graphs according to the abstract semantics of the
statements dealing with pointers (as well as the pseudostatements introduced in the instrumentation phase).
The flow of the analysis is in turn based on the flow imposed by the function calls, loops, and branches in
the program.

The statements considered for the shape analysis techniqueare displayed in Table 1.2. They are sorted
as those required for intraprocedural analysis, interprocedural analysis and data dependence test, which is
the order in which we will present the shape analysis capabilities in this dissertation, in chapters 2, 3, and 4,
respectively.

1.5 Outline of this dissertation

The rest of this dissertation is organized in the following way:

• Chapter 2 explains in more detail our approach to shape analysis based on shape graphs. For this
chapter, we focus on the design of the shape analysis for intraprocedural programs, i.e., without

Compilation techniques based on shape analysis for pointer-based programs



1.5. Outline of this dissertation 9

Statements for intraprocedural analysis (chapter 2)
Pointer nullification stmt. x=NULL;
Heap element creation stmt. x=malloc(. . .);
Heap element removal stmt. free(x);
Pointer aliasing stmt. x=y;
Selector nullification stmt. x->sel=NULL;
Selector assignment stmt. x->sel=y;
Traversing stmt. x=y->sel;
Loop stmt. e.g.,while(){. . .}
Branch stmt. e.g.,if(){. . .}

Statements for interprocedural analysis (chapter 3)
Function call stmt. x=foo(y,z,. . .);
Return stmt. return(x);
Function header foo(x,y,. . .){. . .}

Statements for data dependence analysis (chapter 4)
Heap read access to a data field val=x->data;
Heap write access to a data field x->data=val;

Table 1.2: Statements extracted by the shape analysis preprocessor for shape analysis.x, y, andz are
pointers to recursive data types,sel is a pointer field (or selector) of recursive data type,data is a data
field of recursive data type.

support for functions yet. In particular, the abstract semantics and data-flow equations needed for
correct shape analysis of programs are explained.

• Chapter 3 deals with the extensions of the technique described in chapter 2 to provide full interpro-
cedural support. In particular, we introduce the mechanisms required for shape analysis in recursive
algorithms.

• Chapter 4 puts to use the technique completed in chapter 3 forthe detection of heap-induced data
dependences. We identify different patterns used to traverse dynamic data structures, and devise
mechanisms to identify data dependences due to heap accesses in them.

• Chapter 5 discusses the main contributions of this dissertation and poses ideas for future work.

Related work and experimental results are discussed withinthe scope of each of these chapters. On top
of that, we have deferred some specific content to the appendices for your reference, to avoid detracting
from the overall readability. In particular, appendix A contains some algorithms for the shape analysis
technique described in chapter2, appendix B contains detailed description of the shape graphs obtained after
the analysis of a recursive function that reverses a singly-linked list, and appendix C contains a summary of
this dissertation in Spanish, as partial fulfillment of the requirements for the mention of “Doctor Europeus”.

University of Málaga





2 Intraprocedural shape
analysis

2.1 Our approach to shape analysis

Our approach to shape analysis is based on constructingshape graphs. These are graphs made of three
base elements: (i)pointers, in particular, those that point to recursive data types declared in the program;
(ii) nodes, which represent dynamically allocated memory pieces; and(iii) edges, that connect pointers to
nodes or nodes with other nodes. The purpose of a shape graph is to represent the mainshapefeatures
of dynamic, recursive data structures. Such features allowto identify the structures as lists, or trees, for
example, including information about the presence or absence of cycles, the kind of locations reachable
from a pointer, and so forth.

The analysis works by symbolically executing the pointer statements in the analyzed program. Each
pointer statement modifies an input shape graph to produce anoutput shape graph, in a way that accurately
represents the effect of the statement at run time. For instance, Fig. 2.1 sketches how graphs change when
analysing the pointer statements that create a singly-linked list. A malloc statement, such asS1 andS3,
produces the creation of a new node, which abstracts a memorypiece allocated at run time. Statement
S4:p->nxt=a is used to connect the node pointed to byp with the node pointed to bya. Aliasing
statements, such asS2 andS5, produce a pointer to be updated so that it points to the node pointed to by
another pointer. Each kind of pointer statement has its associated behavior for theshape graph domain,
that imitates or simulates the behavior of the statement execution at run time. The way in which a pointer
statement modifies the shape graphs is defined by itsabstract semantics. The process of actually modifying
a shape graph according to those abstract semantics is called abstract interpretation[22].

Our shape analysis algorithm is designed as an iterative data-flow analysis. The statements in the pro-
gram are symbolically executed in an iterative fashion, driven by the branches and loops in the program,
for the intraprocedural part of the analysis. In this process the shape graphs are changed according to the
abstract semantics of the statements analyzed. This process continues until the shape graphs reach a station-
ary state, where further abstract interpretation producesno new information. Such state is referred to as the
algorithmfixed point.

Tightly related to the fixed point in our algorithm, is the notion of summarization. Summarization is
the process that merges nodes in the shape graph when they areregarded assimilar enoughby the analysis.

11



12 Chapter 2. Intraprocedural shape analysis

Figure 2.1: Analysing a loop until a fixed-point is reached inthe graphs.

Similarity or compatibilityof nodes is determined by pointer alias relationships and adjustableproperties.
The summarization process binds the shape graphs, by limiting the number of nodes they may have. Ad-
ditionally, summarization prevents the graphs from changing endlessly in the course of iterative abstract
interpretation, thus allowing the fixed point condition to be reached.

For instance, in Fig. 2.1, we find that summarization occurs at the processing ofS5:p=a in symbolic
iteration 3. This makes it possible for the analysis to reacha fixed point in the next symbolic iteration, where
we obtain the same shape graph. New symbolic iterations of the loop would not produce new information,
so the analysis can terminate.

Summarizing implies losing information in favor of a bounded representation. We provide as well a dual
operation to focus over previously summarized nodes:materialization. This operation can regain precision
where pointer accesses are occurring because it performsstrong update[26] [27], discarding unnecessary
links in most situations. However, highly connected and summarized graphs can make impossible for the
materialization operation to recover exactly the originallinks, leaving some conservative ones.

The whole idea of summarization/materialization, is to fold/unfold the structure in the shape graph,
depending on the part of the structure that is being accessed. The part of the structure that is being accessed
by pointers becomesfocusedor unfolded, while the part of the structure that is not directly accessible by
pointers becomessummarizedor folded. Fig. 2.2(a) shows an example of summarization in a singly-linked
list: when thep pointer is aliased witha, two nodes in the middle of the list are no longer directly accessible
by pointers and are summarized into a so-calledsummary node. Conversely, Fig. 2.2(b) shows a traversal
of a singly-linked list where a summary node is focused by materializing a new node, which represents
precisely the memory location pointed to by pointerp in that moment of the program execution.

The basic criterion to merge nodes is therefore to summarizeall the nodes that are not pointed to by
pointers, and thus, are not directly accessible by them. However, we provide a configurable set of prop-
erties, which are valuable for fine-tuning summarization decisions in the cases where this basic criterion
is insufficient to provide the requested accuracy. Properties are a key instrument to control how precisely
shape graphs capture the features of the memory configuration.

At any point during the analysis, there may be several different shape graphs for a statement, to capture
all possible memory configurations that can reach that statement from different flow paths. In fact, we
associate not just a single shape graph, but a group of them toevery statement and for every symbolic
iteration. We call such a group areduced set of shape graphs(RSSG). A RSSG can contain just one shape
graph, and act as awrapper for it within the analysis, but in general, aRSSG will contain several shape

Compilation techniques based on shape analysis for pointer-based programs



2.2. Registering possible combinations of links: coexistent links sets 13

Figure 2.2: (a) Summarization allows to bind the structure;(b) materialization is used to focus on the regions
currently accessed.

graphs that are regarded asdifferent enough. That is the case of mutually exclusive pointer arrangements
in the shape graphs. Conversely, similar orcompatiblegraphs in aRSSG are joined to bind the number of
graphs within aRSSG.

Fig. 2.3 shows the shape graphs generated during the analysis of a piece of code with three branches.
Reduced sets of shape graphs fromRSSG0 to RSSG8, just serve as wrappers for shape graphssg0 to sg8.
At the join point in the CFG though, the temporalRSSG9’ gathers the shape graphs resulting from the
three different branches. Shape graphssg10 andsg11 are compatible because they have the same pointer
arrangement (x, y andz are all pointing to nodes). Accordingly, they are joined to form sg13 in RSSG9,
the resulting reduced set of shape graphs for this example. On the contrary, the shape graph resulting from
the first branch is stored as a separate graph,sg12, because pointerz is not assigned in it.

The final result of our analysis is the set of shape graphs thatdescribe the state of the heap for every
statement and by following any possible flow path in the program. These results are always conservative,
meaning that a super-set for all possible shape graphs that represent the program heap, is constructed.

Termination of the analysis is guaranteed by the existence of the summarization of nodes and the joining
of graphs: (i) similar nodes aresummarizedto bind each shape graph; and (ii) shape graphs with the same
alias relationships between pointers arejoined to bind eachRSSG. Since the number of pointer variables
to recursive data types declared in the program is fixed and known at compile time, the number of graphs
per statement is limited by the different and mutually exclusive combinations of pointer over nodes. The
theoretical maximum number of nodes per graph and graphs perRSSG, and its impact on the analysis
complexity is further discussed in section 2.8.

2.2 Registering possible combinations of links: coexistent links sets

A program dealing with dynamic data structures performs runtime allocation of memory pieces, that we
call memory locations. Those locations are accessed and connected through pointers. More precisely,
stack-based heap-directed pointers, or simply pointers, are used to access the structure, andheap-based
heap-directed pointers, which we callselectors, are used to interconnect the heap-allocated elements. Such
interconnected elements createrecursive data structures, such as linked lists or trees.

We callmemory configurationto the memory arrangement of the heap at a given point during aprogram
execution. As we have mentioned, our approach to shape analysis is based on building shape graphs. These
shape graphs abstract memory configurations arising in the analyzed program.

University of Málaga



14 Chapter 2. Intraprocedural shape analysis

Figure 2.3: Different shape graphs for a statement are grouped into aRSSG.

The approach to shape analysis described so far is not substantially different from others found in the
literature, such as [28], [26], [27], or [29]. Here, we introduce the main aspect that sets our technique
apart from related work: the codification of possible connectivity patterns between nodes with the use of
coexistent links sets.

Let us first introduce what are the elements that constitute the shape graphs. Fig. 2.4 shows a hierarchi-
cal view of those elements. At the lowest level we have: (i)pointers, used as access points to the structures;
(ii) nodes, used to represent heap-allocated pieces of memory; and (iii) selectors, used to link nodes. Com-
bining these base elements together, we can create two kind of relations: pointer links(pl’s), which are
links between pointers and nodes; andselector links(sl’s), which are links between nodes through a se-
lector. Finally,pl’s andsl’s can be combined together to formcoexistent links sets(cls’s), that describe
combinations ofpl’s andsl’s that may existsimultaneouslyover a node.

The following example will help us introduce the concept of coexistent links sets. Fig. 2.5 showssg13,
the final graph that joins the effects of the second and third branch in the example in Fig. 2.3. This time

Compilation techniques based on shape analysis for pointer-based programs



2.2. Registering possible combinations of links: coexistent links sets 15

Figure 2.4: Hierarchical view of the elements in a shape graph.

the shape graph also displays the pointer links, selector links and coexistent links sets within it. We can see
there are three nodes, labeledn1, n2 andn3. Each one is pointed to by a different pointer:x, y, andz,
respectively. Acls describes the links that may reach and leave a node in the memory abstraction. In the
example,cls1n1 is telling us thatn1 supportspl1=<x,n1>andsl1=<n1,nxt,NULL>. Alternatively,
cls2n1 also featurespl1 but this timesl4=<n1,nxt,n3> tells us that fromn1, by following nxt, we
could also reach another memory location, abstracted byn3. No other combination of links is possible for
this node, because there are no moreclsjn1.

Similarly, cls1n2=<pl2,sl2o> indicates thatn2 may abstract a memory location that is reached
through pointery and that connects to other location abstracted byn3 through thenxt selector of
sl2=<n2,nxt,n3>. There is another chance, and it is that the location pointedto by y does not point
to any other location, and that is captured withcls2n2=<pl2,sl5o>. Thecls’s for n3 in turn indicate
thatn3 can be reached in two ways: incls1n3=<pl3,sl2i,sl3o>, noden3 is reached fromn2, while
in cls2n3=<pl3,sl4i,sl3o>, noden3 is reached fromn1.

Selector links (sl’s) have a meaning on their own: they represent links betweennodes through selectors.
However, when used in the context of a coexistent links sets,they are complemented withattributes to
correctly describe the connectivity pattern between nodes. In Fig. 2.5 two attributes are considered: (i)
incoming(i), assl2i in cls1n3, which indicates an incoming link to the memory location represented by
n3; and (ii) outgoing(o), assl1o in cls1n1, which indicates an outgoing link from the memory location
represented byn1.

Coexistent links sets register possible connectivity patterns between heap-allocated elements. In general,
they providemayinformation, i.e., they record connectivity patterns thatmay exist in the heap. In the case
where there is more than onecls for a node, then one of them (and only one) will hold for any of the
memory locations abstracted. When there is only onecls for a node, the information it provides is certain
(mustinformation). Coexistent links sets also provide definite or mustinformation about what cannot hold.
In other words, connectivity patterns that havenot been registered in anycls for a node are impossible for
the memory locations abstracted in the node.

For example,n3 cannot be reached both fromn1 andn2 because that possibility is not contemplated
either bycls1n3 or cls2n3. Likewise, there is no chance thatn3 is not pointed to by somenxt selector:

University of Málaga



16 Chapter 2. Intraprocedural shape analysis

eithercls1n3 or cls2n3 must hold, although at compile time, we do not know which one.

Another aspect related tocls’s is that their information can be used to checkconnectivity coherencein
the graph. This means thatcls’s in a node must find amatchin thecls’s for the nodes it connects to. For
example, consider the case thatcls2n1 from sg13 would be dropped. Such a graph would not be coherent
regarding itscls’s becausecls2n3 is expecting someclsjn1 to connect to it viasl4.

Figure 2.5: Coexistent links sets (cls’s) describe possible connections that may exist between nodes in a
shape graph.

Coexistent links sets are also a neat way to capture different combination of links over memory locations
in a single graph. Such a compact representation of the heap interconnection is key to building a precise yet
affordable shape analysis technique.

2.3 A formal description of shape analysis

We have presented an informal view of our shape analysis strategy and its main motivation in the previous
sections. Now, let us delve deeper into the description of our technique, through more formal definitions.

For this chapter we will only cover the formulation of an intraprocedural version of our shape analysis
strategy, i.e., we assume the program has no function calls and therefore no context changes. This strategy
is capable of analyzing single-function programs, or programs with inlined procedures. Recursive functions
cannot be inlined and therefore are not supported by the technique described in this chapter. Extensions for
interprocedural analysis, including recursive functions, will be covered in chapter 3.

To formalize the description of our model, we use the simple statements and definitions shown in
Fig. 2.6. We only consider statements dealing with pointersas the ones shown in the figure (they are
C-like imperative statements with dynamic allocation), because other complex pointer statements can be
transformed into several of these simple pointer statements in a preprocessing stage, as seen in section 1.4.1.

We assume that the data types of all pointer variables are explicitly declared. A data
type is comprised by some data fields, and some pointer fields,which we call selectors:
t=<field1,field2,. . .,fieldn,sel1,sel2,. . .,selm>. SELt is the set of selectors for type
t, beingSELt 6= ∅ for recursive data types.SEL is the set of all the selectors defined in the program.

As an example, let us consider the program excerpt of Fig. 2.7, in C syntax. In it, we find the dec-
laration of a recursive data type,struct node, which is comprised by a data field nameddata, and
a selector (or pointer field), namednxt. Next, a piece of themain() function follows, where a singly-

Compilation techniques based on shape analysis for pointer-based programs



2.3. A formal description of shape analysis 17

programs: prog ∈ P, P=<STMT,PTR,TYPE,SEL>
statements: s ∈ STMT, s::= x=NULL|x=malloc()|free(x)|x=y

|x->sel=NULL|x->sel=y|x=y->sel
pointer variables: x,y ∈ PTR
data types: t ∈ TYPE
selectors fields: sel ∈ SEL

Figure 2.6:Simple statements and definitions.

linked list is created. We numerate the pointer statements that have abstract semantics associated to them.
The information provided by flow statements, such as thewhile loop is embedded in the data-flow equa-
tions that drive the iterative analysis (more information in section 2.4). For this example program we have
STMT={st.1-st.8},PTR={list,p,q,r},TYPE={struct node} andSEL={nxt}.

// Declare recursive type "node"
struct node{

int data;
struct node *nxt;

} *list,*p,*q,*r;
int main(){

int cont=0;
// Create a singly-linked list

1: list=(struct node *)malloc(...);
2: p=list;

L1: while(cont++<NUM ELEM){
3: q=(struct node *)malloc(...);

q->data=cont;
4: p->nxt=q;
5: p=q;

}

6: p->nxt=NULL;
7: p=NULL;
8: q=NULL;

[...]
}

Figure 2.7: Excerpt of a program where a recursive data type is declared and later used to build a singly-
linked list.

Next, we present how memory states that occur in the program are abstracted by our model. For that, we
differentiate between theconcrete domain, for run time memory configurations, and theabstract domain,
for the shape graph abstractions.

2.3.1 Concrete heap

The heap information present at run time belongs to theconcrete domainand is described asmemory con-
figurations, mc. That information is abstracted for its analysis in theabstract domain, in the form ofshape
graphs, sg.

In the concrete domain, memory locations represent single heap-allocated memory pieces. We use
pointer links in the concrete domain(plc) and selector links in the concrete domain(slc) to describe

University of Málaga



18 Chapter 2. Intraprocedural shape analysis

the relations between pointers and memory locations, and between memory locations through selectors,
respectively. Based on the example program of Fig. 2.7, we now present a linked list of four elements in
our representation of the concrete domain, in Fig. 2.8. Here, we explicitly display the information for the
concrete pointer links and concrete selector links.

Figure 2.8: A singly-linked list of four elements in the concrete domain.

We model the concrete heap as a set of memory locationsl ∈ L. We incorporate some instrumental
functions in the concrete domain. For instance, we define thetotal functionT : (PTR ∪ SEL) −→ TYPE
to compute the type for each pointer or selector as:

∀ x ∈ PTR ∨ sel ∈ SEL, ∃ t ∈ TYPE|T (x)=t ∨ T (sel)=t.

Initially, we define two mapping functionsPMc andSMc to model the relations of pointers variables
and selector fields to memory locations.PMc andSMc are partial functions that can be defined as follows:

Pointer Map (in the concrete domain): PMc: PTR −→ L

Selector Map (in the concrete domain):SMc: L × SEL −→ (L ∪ NULL)

• PMc maps a pointer variablex to the locationl pointed to byx:

∀ x ∈ PTR, ∃ l ∈ L|PMc(x)=l.

We use the tupleplc=<x,n>, which we namepointer link in the concrete domain, to represent this
binary relation. The set of all pointer links in the concretedomain is namedPLc.

• SMc models points-to relations between locationsl1 andl2, through selectorsel:

∀ l1 ∈ L s.t.T (l1)=t ∧ ∀ sel ∈ SELt, ∃ l2 ∈ (L ∪ NULL)|SMc(l1,sel)=l2.

We use a tupleslc=<l1,sel,l2>, which we nameselector link in the concrete domain, to repre-
sent this relation. The set of all concrete selector links inthe concrete domain is calledSLc.

Our concrete heap is modeled as a directed multi-graph. The domain for a concrete heap graph is the
setMC ⊂ P(L) × P(PLc) × P(SLc)1. Each graph of our concrete domain is what we call a memory
configurationmci ∈ MC and it is represented as a tuplemci=<Li,PLci,SLci> with Li ⊂ L, PLci ⊂

PLc andSLci ⊂ SLc. At a given program statements, we can represent our concrete heap as:MCs={mci

∀ path from entry tos}.

2.3.2 Abstract heap

Our abstract domain is based on shape graphs. The base element for our representation of the abstract heap
is the node,n. In a shape graph, each node may represent a set of memory locations from the concrete
domain, whereas each edge may represent a pointer variable or a set of selectors with the same name.

1In this work we will use the notationP(A) to represent the power set of setA.

Compilation techniques based on shape analysis for pointer-based programs



2.3. A formal description of shape analysis 19

The set of all the nodes in the graph isN, and includes a special node namedNULL, designating “no
location”. In a graph, the number of nodes is bounded by thesummarizationpolicy. The base policy states
that nodes are distinguishable by the set of pointer variables that point to them. Two nodes are said to be
compatible, if they are indistinguishable in the representation. Moreprecisely, they will be compatible if
they are pointed to by the same set of pointers. In particular, all memory locations that are not pointed to by
pointers are represented by a single summary node. This policy can be refined for a greater differentiation
of nodes with the use ofproperties, but to simplify the presentation and until further notice,we will use this
simple summarization policy. Therefore, the domain for thenodes isN={P(PTR) ∪ {NULL}}.

Figure 2.9: The singly-linked list used as example in the concrete and abstract domain representations.

A shape graph is displayed as a set of nodes, pointer links, selector links, and coexistent links sets, the
latter grouping pointer links and selector links in the available combinations for every node. Let us present
now an example of how these elements in the abstract domain are put together to capture a recursive data
structure. For that, we consider the singly-linked list that we presented in the concrete domain in Fig. 2.8.
The abstraction of such a list in the abstract domain is presented in Fig. 2.9. All three memory locationsl2,
l3 andl4 translate inton2, because they are not pointed to by pointers. Accordingly,l1 translates inton1,
pointed to by pointerlist. Note that a selector link in the abstract domain can represent several instances
of selector links in the concrete domain. Such is the case ofsl2=<n2,nxt,n2>, which accounts for
slc2 andslc3.

Despite this reduction in the number of matching elements, shape graphsg1 contains, within the coexis-
tent links sets,all the information present in the memory configuration,mc1 (although, as a result of being a
conservative abstraction,sg1 represents a list of4 or morelist elements). Note that there may be more than
one coexistent links set for a node. Since a node can represent several memory locations, its coexistent links
sets must contain all the possibilities of links existing inthose memory locations. For example, coexistent
links sets for noden2 (cls1n2, cls2n2, cls3n3), represent the three different connectivity patterns for
the memory locations abstracted by noden2. Attributesincoming(i) andoutgoing(o) are used within the
coexistent link sets to accurately express the possible connections in the structure.

It must be stressed thatsl2 in Fig. 2.9 does not involve a cycle in the structure. For example,
cls2n2=<sl2i,sl2o> indicates thatn2 can represent a memory location that is reached from another
location abstracted byn2, and leaves for another destination also abstracted byn2, being the origin and
destinationdifferentmemory locations (albeit represented in the same node). In the case of a direct cycle
(i.e., a memory location that points to itself) in the structure, a new attribute is introduced, as will be seen
shortly.

Now we define three mapping functionsLM, PMa, SMa to model the relationship between memory

University of Málaga



20 Chapter 2. Intraprocedural shape analysis

locations and nodes in the concrete and abstract domain, as well as the connections of pointers variables and
selectors to nodes in the abstract heap. The mapping functionsLM andPMa are total functions, while
SMa is a multivalued function. They can be defined as follows:

Location Map : LM: L −→ N

Pointer Map (in the abstract domain) :PMa: PTR −→ N

Selector Map (in the abstract domain):SMa: N × SEL −→ N

• LM assigns a noden to a concrete memory locationl: ∀ l ∈ L, ∃ n ∈ N|LM(l)=n.

• PMa maps a pointer variablex which points to a locationl in the concrete domain, to a noden in
the abstract domain:

∀ PMc(x)=l⊂ MC, ∃ n ∈ N s.t.LM(l)=n|PMa(x)=n.

We use the tuplepl=<x,n>, which we namepointer link, to represent this binary relation. The set
of all pointer links in the abstract domain is namedPL.

• SMa models points to relations between locationsli andlj through selector fieldsel in the
concrete domain, as relations between nodesn1 andn2 in the abstract domain:

∀ SMc(li,sel)=lj ⊂ MC, ∃ n1 ∈ (N-{NULL}) ∧ ∃ n2 ∈ N s.t. LM(li)=n1 ∧

LM(lj)=n2|SMa(n1,sel)=n2.

Again, we use a tuplesl=<n1,sel,n2>, which now we nameselector linkto represent this rela-
tion. The set of all selector links in the abstract domain is calledSL.

The novelty of our approach is that we keep the information about connectivity and aliasing in a node-
oriented fashion. For it, we build new instrumentation domains, that when added to the nodes in the abstract
heap will improve the accuracy of the connectivity and aliasing information.

2.3.2.1 Selector links with attributes

We have already shown that selector links are complemented with attributes in the context of coexistent
links sets. Attributes are used to define how a particular selector link relates to the nodes that are linked
through it. So far, we have introduced the incoming and outgoing attributes in an intuitive fashion. Now,
we define them more formally, and complete the description with two new attributes that are used to capture
cyclic linksandsharing.

Fig. 2.10 is meant as an example to present the role of the different kinds of attributes within coexistent
links sets to capture information in the heap accurately. Again, we present the information both in the
concrete and abstract domains. In particular, we will look at the newly introduced cyclic (c) and shared (s)
attributes. Note that locationsl2 andl3 are summarized in the noden2. Concrete selector linksslc1 and
slc2 translate tosl1 andsl2 respectively, since they refer to different selectors (nxt andprv). Note
thatsl1 andsl2 appear in differentclsjn2 so they cannot coexist, which precisely captures the fact that
following nxt or prv from n1 leads to different locations. However,slc3 andslc4 (both usingnxt)
are mapped intosl3. That way,sl3s in cls1n3 indicates that you can point to a location represented
by noden3 from more than one different locations represented in noden2 by following the same selector
(nxt). On the other hand,sl4c in cls1n3 expresses that the locationl4 represented inn3 is pointing
to itself. Note the difference withcls2n2=<sl2i,sl2o> in Fig. 2.9, which indicates that one location
represented in noden2 is pointing to adifferent location represented in the same node.

Compilation techniques based on shape analysis for pointer-based programs



2.3. A formal description of shape analysis 21

Figure 2.10: Different attributes and their role for precise heap abstraction.

We define a set of attributes,ATT={i,o,c,s}, where each elementatt ∈ ATT codifies information
about the direction of a selector link when it is related to a node. From the setATT we define a new
domainATTSL=P(ATT), where each element of this new domainattsl ∈ ATTSL represents a possible
combination of attributes that describe the characteristics of a selector link when it is associated to a node.
Operator⊎ stands for the join operation in theATTSL domain.

In particular, from the set of all selector links,SL and fromATTSL we define the domainSLatt= SL
× ATTSL. An elementslatt in this domain, which we call aselector link with attributes, is represented
as a tupleslatt=<sl,attsl>, wheresl ∈ SL andattsl ∈ ATTSL. Note that we choose to represent
a selector link with several attributes as several selectorlinks with just one attribute each. For example, we
write cls2n2=<sl2i,sl2o>, rather thancls2n2=<sl2io>, to improve readability of shape graphs.

2.3.2.2 Coexistent links sets

The key feature of our model is the ability to maintain the connectivity and aliasing information that can
coexist in an abstract node, even when the node represents different memory locations with different con-
nection patterns. This is achieved through thecoexistent links setabstraction. The domain of our coexistent
links set abstraction is defined in terms of a mapping function CLM as follows:

Coexistent Links Map : CLM: N −→ P(PL) × P(SLatt)

CLM is a multivalued function which maps, for a noden, one or more components, each one called a
coexistent links set, clsn: ∀ n ∈ N, CLM(n)={clsn}. A coexistent links set,clsn, codifies an aliasing
and connectivity pattern for that node, and it is defined as follows:

clsn={PLn,SLn}

where:

PLn = {pl ∈ PL s.t.pl=<x,n>}
SLn = {slatt ∈ SLatt s.t.slatt =<<n1,sel,n2>,attsl>, being(n1=n ∨ n2=n)}

Regarding the attributes codified atattsl, they are obtained from the concrete domain, in particular
from L and the set of selector links in the concrete domain,SLc. These attributes have meaning when they
are interpreted in aclsn context (i.e. associated with a node), as we expose next.

University of Málaga



22 Chapter 2. Intraprocedural shape analysis

Let clsn={PLn,SLn} be. For eachslatt=<<n1,sel,n2>,attsl> ∈ SLn we can find one of
the following cases:

If l1 6= l2 ∧ ∃ slc1(l1,sel,l) ∧ ∃ slc2(l2,sel,l) s.t. (LM(l1)=LM(l2)=n1 ∧

LM(l)=n2=n)=⇒ s ∈ attsl

else

If l1 6= l2 ∧ ∃ slc=<l1,sel,l2> s.t. (LM(l1)=n1 ∧ LM(l2)=n2=n) =⇒ i ∈

attsl.

If l1 6= l2 ∧ ∃ slc=<l1,sel,l2> s.t. (LM(l1)=n1=n ∧ LM(l2)=n2) =⇒ o ∈

attsl.

If l1=l2=l ∧ ∃ slc=<l,sel,l> s.t.(LM(l)=n1=n2=n)=⇒ c ∈ attsl.

The set of all theclsn associated to a noden is calledCLSn. In addition, for every nodesn defined in
our abstract heap, we can create the setCLS={CLSn,∀n ∈ N}.

2.3.2.3 Shape graphs

Our abstract heap is modeled as a directed multi-graph. The domain for an abstract heap graph is the setSG
⊂ P(N) × P(CLS). Each element of this domain,sgi ∈ SG is what we call ashape graph, which we
represent as a tuplesgi=<Ni,CLSi>, with Ni ⊂ N andCLSi={CLSn,∀n ∈ Ni} ⊂ CLS.

We restrict this abstract domain by defining anormal formof the shape graphs. To help us describe
the normal form of a graph we use theCompatible Node() andUnreachable() functions, shown
in Fig. 2.11. TheCompatible Node(n1,n2,CLSn1,CLSn2) function returns TRUE ifn1 andn2
are compatible, and thus, can be summarized into a single node. TheUnreachable(n1,sgi) function
returns TRUE ifn1 cannot be reached either directly by a pointer or indirectlythrough a path formed by a
pointer link and some selector links in graphsgi. Otherwise, it returns FALSE.

We say that a shape graphsgi=<Ni,CLSi> is in normal form if:

1. It has no compatible nodes:∄ n1,n2∈ Ni s.t.Compatible Node(n1,n2,CLSn1,CLSn2)=TRUE

2. It has no unreachable nodes:∄ n1 ∈ Ni s.t.Unreachable(n1,sgi)=TRUE

3. Each pointer variable unambiguously points tojust onenode: ∀ n1, n2 ∈ Ni s.t. n1 6= n2, If ∃

pl1=<x,n1>⊂ CLSn1 =⇒ ∄ pl2=<x,n2>⊂ CLSn2

4. The selector links of connected nodes, are coherent, i.e., for a givenclsn1 ⊂ CLSn1, every incoming
or shared (i|s) selector link with attributes,slatt, is matchedby an outgoing (o) slatt in another
node,n2 and viceversa :∀ n1, n2 ∈ Ni s.t. n1 6= n2, If ∃ slatt=<<n1,selk,n2>,attsl>⊂

CLSn1 =⇒ ∃ slatt=<<n1,selk,n2>,attsl’>⊂ CLSn2

Fig. 2.12 shows the aliasing of pointers in the traversal of asingly-linked list. It is the example introduced
in Fig. 2.2(a), only expanded to show all the information within the shape graph, featuring the pointer links,
the selector links and the coexistent links sets. This example shows the process of abstract interpretation
for an incoming graph and aliasing statementp=a. The input and output shape graphs,sg1 andsg2, are
in normal form because (i) they have no compatible nodes, (ii) they have no unreachable nodes, (iii) each
pointer points to just one node, and (iv) selector links are coherent throughout. On the other hand, the
intermediate graph,sgA, is not in normal form, as there are compatible nodes that arenot merged, namely
n2 andn3.

Compilation techniques based on shape analysis for pointer-based programs



2.3. A formal description of shape analysis 23

Compatible Node()
Input:n1, n2, CLSn1, CLSn2

# 2 nodes and theircls’s
Output:TRUE/FALSE

If ((∀ pl1=<x,n1>⊂ CLSn1,
∃ pl2=<x,n2>⊂ CLSn2) ∧
(∀ pl2=<y,n2>⊂ CLSn2,
∃ pl1=<y,n1>⊂ CLSn1 )),

return(TRUE)
else

return(FALSE)
end

Unreachable()
Input:n1, sgi=<Ni,CLSi> # A node and a shape graph
Output:TRUE/FALSE

If ( (∃ pl1=<x,n1>⊂ CLSn1) ∨
(∃ n2 ∈ Ni s.t.∃ pl2=<x,n2>⊂ CLSn2 ∧
∃ slatti=<<n2,seli,na>,attsli={o}>⊂ CLSn1 ∧
∃ slattj=<<na,selj,nb>,attslj={o}>⊂ CLSna ∧ . . .

. . . ∧ ∃ slattk=<<nk,selk,n1>,attslk={o}>>⊂ CLSnk) ),
return(FALSE)

else
return(TRUE)

end

(a) (b)

Figure 2.11: (a) Check whether two nodes are compatible; (b)Check whether a node is unreachable in the
current graph.

Figure 2.12: Graphs in normal form around a pointer aliasingoperation.

University of Málaga



24 Chapter 2. Intraprocedural shape analysis

2.3.2.4 Reduced set of shape graphs

We call areduced set of shape graphsto the set of shape graphs that represents the state of the heap at a
given program statements: RSSGs={sgi ∈ SG s.t.sgi is in normal form}.

Again, we impose a restriction in this set of graphs, and it isthat the set is innormal form. The constraint
that a reduced set of shape graphsRSSGs is in normal form ensures that each graphsgi ∈ RSSGs represents
a different alias configuration.

More formally, we say that a reduced set of shape graphs,RSSGs={sgi} is in normal form if it has no
compatible shape graphs:∄ sg1, sg2 ∈ RSSGs s.t.Compatible SG(sg1,sg2)=TRUE.

Compatible SG()
Input: sg1=<N1,CLS1>,sg2=<N2,CLS2> # Two shape graphs
Output:TRUE/FALSE

If ( (∀ ni ∈ N1, ∃ pl=<x,ni>⊂ CLSni ∧ ∃ nj ∈ N2 s.t.Compatible Node(ni,nj,CLSni,CLSnj)=TRUE) ∧
(∀ nj ∈ N2, ∃ pl=<y,nj>⊂ CLSnj ∧ ∃ ni ∈ N1 s.t.Compatible Node(nj,ni,CLSnj,CLSni)=TRUE) ),

return(TRUE)
else

return(FALSE)
end

Figure 2.13: Check whether two shape graphs are compatible.

The auxiliary functionCompatible SG(sg1,sg2) is described now in Fig. 2.13. The function
checks that for each node of graphsg1 pointed to by a pointer (or set of pointers), there is anothernode of
graphsg2 pointed to by the same pointer (or set of pointers). The same check is done for all the nodes in
graphsg2. In other words, the function checks that all the nodes pointed to by pointer variables in graphs
sg1 andsg2 are compatible. In this case, we would say that the two graphsare compatible, and they could
be joined in a newsummary graph. Clearly, only the graphs with the same alias relationshipscan be joined.

Let us revisit the example of Fig. 2.3. We expand the information of the finalRSSG’s in the new
Fig. 2.14, withcls information. For readability, we omit the explicit description of pointer links and
selector links, which can be easily guessed by looking at theshape graphs.

When a join point in the CFG is found, theRSSG’s resulting from the different flow paths are joined.
This is done by calling theJoin RSSG() function, shown in Fig. 2.15(a). This function join graphs from
different RSSG’s by adding them to a working shape graph setRSSGk’ (RSSG9’ in our example), and
then summarizing it with theSummarize RSSG() function (Fig. 2.15(b)). TheSummarize RSSG()
function checks whether its inputRSSG1 is in normal form. This is done by checking for compati-
ble shape graphs with theCompatible SG() function presented earlier (Fig. 2.13). In this example,
Compatible SG(sg10,sg11)= TRUE, i.e.,sg10 andsg11 are compatible. ThereforeRSSG9’ is not
in normal form.

Compatible shape graphs must be joined. This is done with theJoin SG() function. This latter
function can be found for your reference in Appendix A. Here,we will just state its overall behavior: to
pair matching nodes between graphs, and to addcls information. In this example,n1, n2, andn3, the
nodes pointed by thex, y, andz pointers respectively, are compatible on a one-to-one basis betweensg10

andsg11. Thereforesg13 in RSSG9 contains those same three nodes pointed to by the same pointers.

Compilation techniques based on shape analysis for pointer-based programs



2.3. A formal description of shape analysis 25

Additionally, all the information from thecls’s in sg10 andsg11 is added to capture the fact thatn3 can
be reached fromn2 or n1. This is reflected upon thecls’s in sg13.

Figure 2.14: Joining compatible shape graphs in aRSSG.

Join RSSG() (
⊔RSSG )

Input:RSSG1, RSSG2

# Two reduced sets of shape graphs
Output:RSSGk

# A reduced set of shape graphs in normal form

RSSGk=∅
CreateRSSGk’=RSSG1 ∪ RSSG2

RSSGk=Summarize RSSG(RSSGk’)
return(RSSGk)
end

Summarize RSSG()
Input:RSSG1

# A reduced set of shape graphs
Output:RSSGk

# A reduced set of shape graphs in normal form

RSSGk=∅
forall sgi ∈ RSSG1

If (∃ sgj ∈ RSSGk

s.t.Compatible SG(sgi,sgj)=TRUE),
RSSGk=RSSGk-sgi ∪ Join SG(sgi,sgj)

else
RSSGk=RSSGk ∪ sgi

endfor
return(RSSGk)
end

(a) (b)

Figure 2.15: (a) The operator
⊔RSSG as theJoin RSSG() function; (b)Summarize RSSG() function.

University of Málaga



26 Chapter 2. Intraprocedural shape analysis

2.4 Data-flow equations and worklist algorithm

We consider two kinds of statements for our analysis: (i) those that allocate, free, traverse, or connect
memory locations through pointers, and (ii) those that determine the control flow of the program, such as
while loops orif branches. Both kinds of statements must be modeled within our technique for effective
analysis. We associate some abstract semantics to every statement in the first category. Shape graphs are
modified according to those abstract semantics. The effect of the second kind of statements is reflected upon
the data-flow equations. The information they provide drives the iterative analysis.

We formulate our analysis as a data-flow analysis that computes a reduced set of shape graphs at each
program point. For each statement in the program,s ∈ STMT, we define two program points:•s is the
program point befores, ands• is the program point afters. The result of the analysis fors is a reduced
set of shape graphs,RSSG•s befores, andRSSGs• after that. Letpred() map statements to their prede-
cessor statements in the control flow (these can be easily computed from the syntactic structure of control
statements). Fig. 2.16 shows the data-flow equations for ourintraprocedural shape analysis.

[JOIN]: RSSG•s =
⊔RSSG
s’∈pred(s) RSSG

s’•

[TRANSF]: RSSGs• = ASs(RSSG•s), where

ASs::=x=NULL(RSSG•s) =
⊔RSSG
sgi∈RSSG•s XNULL(sgi,x)

ASs::=x=malloc()(RSSG•s) =
⊔RSSG
sgi∈RSSG•s XNew(sg

i,x)

ASs::=free(x)(RSSG•s) =
⊔RSSG
sgi∈RSSG•s FreeX(sg

i,x)

ASs::=x=y(RSSG•s) =
⊔RSSG
sgi∈RSSG•s XY(sg

i,x,y)

ASs::=x->sel=NULL(RSSG•s) =
⊔RSSG
sgi∈RSSG•s XSelNULL(sg

i,x,sel)

ASs::=x->sel=y(RSSG•s) =
⊔RSSG
sgi∈RSSG•s XselY(sg

i,x,sel,y)

ASs::=x=y->sel(RSSG•s) =
⊔RSSG
sgi∈RSSG•s XYSel(sg

i,x,y,sel)

Figure 2.16: Data-flow equations for intraprocedural analysis.

We model the analysis of statements which have some associated abstract semantics by computing a
transfer function for each one. To simplify the formal definitions of the transfer functions, we use the
functionsXNULL(), XNew(), FreeX(), XY(), XSelNULL(), XselY() andXYSel() to describe
the transformations that take place in the abstract heap when a simple pointer statements is interpreted.
These functions are detailed in the following sections. Theoperator

⊔RSSG represents the join operation in
theRSSG domain, and is described as functionJoin RSSG() (Fig. 2.15(a)).

We present in Fig. 2.17 a worklist algorithm to solve the data-flow equations presented in Fig. 2.16. The
input of our worklist algorithm is a programP and an initialRSSGin=∅, whereas the output is theRSSGout

resultant at the exit program point, assuming that the exit point is statementsr ∈ STMT. This algorithm also
computes the resultantRSSGs• at each program point. Lines 1–3 perform the initialization, where theRSSG
at the input of the program entry point (in our case statementse ∈ STMT) is initialized withRSSGin. Next,
the algorithm processes the worklist using the loop defined in lines 4–12. At each iteration, it removes,
in program lexicographic order, a statement for the worklist, computes the join of theRSSG’s from the
predecessors as the statement input (pred(s)), and then it applies the corresponding transfer function.

The worklist algorithm is responsible for achieving a fixed point for the analysis, and therefore it guar-
antees its termination. The analysis will continue iteratively while the shape graphs obtained keep changing.

Compilation techniques based on shape analysis for pointer-based programs



2.5. Abstract semantics and operations 27

Line 8 in the worklist algorithm checks whether theRSSGs• obtained after the analysis of a statement has
changed. If it has changed, then new information has been added to or subtracted from the shape graphs
and the analysis must continue. The analysis continues by adding the successors of statementss in the
CFG (succ(s)) to the worklist. If there is no change, it means that furtherinterpretation of pointer state-
ments will not change the graphs either. This is guaranteed by the node summarization and graph joining
mechanisms. In such a case we have achieved a fixed point, and the analysis terminates.

Worklist()
Input:P=<STMT,PTR,TYPE,SEL>,RSSGin # A program and an inputRSSG
Output:RSSGout # TheRSSG at the exit program point

1: CreateW=STMT
2: RSSG•se=RSSGin

3: ∀ s ∈ STMT→ RSSGs•=∅
4: repeat
5: Removes fromW in lexicographic order
6: RSSG•s=

⊔RSSG
s’∈pred(s) RSSG

s’•

7: RSSGs•=ASs(RSSG•s)

8: If (RSSGs• has changed),
9: forall s’ ∈ succ(s),
10: W=W ∪ s’
11: endfor
12: until (W=∅)
13: RSSGout=RSSGsr•

14: return(RSSGout)
end

Figure 2.17: The worklist algorithm. It computes theRSSGs• at each program point.

2.5 Abstract semantics and operations

Our analysis works by symbolically executing the abstract semantics of pointer statements. In this section
we describe, at high level, the abstract semantics associated to each statement. For a full reference of the
operations involved in this section, please refer to Appendix A.

2.5.1 Running example

To ease the presentation of the shape analysis abstract semantics, we will use the example code in Fig. 2.18.
It expands on the code excerpt presented in Fig. 2.7. Besidescreating a singly-linked list, it then reverses it
and finally frees its space. Once again, pointer statements that have abstract semantics associated to them,
and thus are modeled through transfer functions, are numbered. This simple example will help us explain the
details that are involved in the shape analysis operations.We will present such information by considering
common tasks performed in programs that make use of recursive data structures. More precisely, we will
cover: (i) the creation of new elements; (ii) linking already created elements to create a recursive data
structure; (iii) traversing a recursive data structure; and (iv) freeing memory.

University of Málaga



28 Chapter 2. Intraprocedural shape analysis

// Declare recursive type "node"
struct node{

int data;
struct node *nxt;

} *list,*p,*q,*r;
int main(){

int cont=0;
// Create a singly-linked list

1: list=(struct node *)malloc(...);
2: p=list;

L1: while(cont++<NUM ELEM){
3: q=(struct node *)malloc(...);

q->data=cont;
4: p->nxt=q;
5: p=q;

}

6: p->nxt=NULL;
7: p=NULL;
8: q=NULL;

// Iteratively reverse the list
9: p=list;
10: list=NULL;
11: r=NULL;

L2: while(p!=NULL){
12: #pragma SAP.force(p!=NULL)
13: q=p->nxt;
14: p->nxt=r;
15: r=p;
16: p=q;

}

17: #pragma SAP.force(p==NULL)
18: q=NULL;
19: list=r;
20: r=NULL;

// Delete the list
21: p=list;
22: list=NULL;

L3: while(p!=NULL){
23: #pragma SAP.force(p!=NULL)
24: q=p->nxt;
25: free(p);
26: p=q;
27: q=NULL;

}

28: #pragma SAP.force(p==NULL)
return 1;

}

Figure 2.18: Running example to introduce shape analysis operations: iteratively create, reverse and delete
a singly-linked list.

2.5.2 Creating new elements

Statement Function Brief description
x=malloc() XNew() Nullify pointer x; and create a new node pointed to byx, initializing

the selectors inx’s type toNULL
x=NULL XNULL() Nullify pointerx; and summarize resulting graph.

Pointer programs that use dynamic data structures need to create elements during program execution.
These elements can then be interconnected to form recursivestructures that are commonly traversed in
pointer-chasing loops or recursive function calls. The first step is therefore to be able to create new elements
in the heap. In our approach, a new node is created in the graphrepresentation of the heap each time a
malloc statement is encountered in the analysis.

Let us consider malloc statementst.3:q=malloc() in Fig. 2.18. It creates a new node in our graph-
based heap representation. This new node represents the memory location that would have been created
at run time by the program in this statement. To make things interesting, let us present this operation at
the fourth symbolic iteration of the loop, so four elements have already been created. The new graph that
reaches the fourth symbolic iteration ofst.3:q=malloc()comes from the third iteration ofst.5:p=q.
It is shown assg1 in Fig. 2.19. It shows the list created so far, and thep andq pointers are aliased as a
result ofst. 5. Themalloc statement calls theXNew() function. As a first step, the pointer used to
allocate the new memory piece is nullified, by callingXNULL(). This function removes the pointer link
pl3=<q,n3> from the coexistent links sets forn3, i.e., CLSn3={cls1n3}. At the end, it checks for
compatible nodes, summarizing the graph if necessary (there are no compatible nodes in this case). The

Compilation techniques based on shape analysis for pointer-based programs



2.5. Abstract semantics and operations 29

result issgA in Fig. 2.19, an intermediate step of the abstract semanticsfor st.3:q=malloc().

Coming back to theXNew() function, a new noden4 is created. The selectors for its type (justnxt in
this case) are initialized, and a singlecls1n4 is created, with the pointer linkpl3=<q,n4> and selector
link with attributessl5att=<<n4,nxt,NULL>,o>. The final result is shown assg2 in Fig. 2.19.

Figure 2.19: Creating a new element through the malloc statement and its associatedXNew() function.

2.5.3 Creating a recursive data structure

Statement Function Brief description
x->sel=y XSelY() Split graph byx->sel; nullify x->sel link; establish link between

node pointed to byx to node pointed to byy through selectorsel; and
summarize all resulting graphs to form outputRSSG.

x=y XY() Nullify pointerx; and pointx to the node pointed to byy.

Once elements are created in the heap, they can be linked through selectors to form recursive data struc-
tures. Let us continue the example after the creation of the fifth element in the list (sg1 in Fig. 2.20).
St.4:p->nxt=q links the node pointed byp to the newly created node pointed to byq, through se-
lector nxt. This is done by calling theXselY() function. This function starts by splitting the graph
by the p->nxt path and then nullifying it. Sincep->nxt leads toNULL, this has no effect here.
Then, it creates the selector linksl4=<n3,nxt,n4>, which is updated as selector link with attributes
sl4att=<<n3,nxt,n4>,o> in CLSn3, and added assl4att=<<n3,nxt,n4>,i> in CLSn4. The
result issg2 in Fig. 2.20.

University of Málaga



30 Chapter 2. Intraprocedural shape analysis

Figure 2.20: Use of theXSelY() andXY() functions to create a recursive data structure.

Next, pointerp is made to point toq, advancing in the list, withst.5:p=q. This is done by call-
ing theXY() function. As a first step, the assigned pointer,p, is nullified. For that, the analysis calls
XNULL(sg2,p). The result issgA (Fig. 2.20), where the pointer linkpl2=<p,n3> has been removed.
sgA is not in normal form, asn2 andn3 are now compatible (not pointed to by any pointers). As part of
thep nullification process, this circumstance is checked and these nodes are summarized, producingsgB.

Compilation techniques based on shape analysis for pointer-based programs



2.5. Abstract semantics and operations 31

Finally, the abstract semantics of the alias statementst.5:p=q is completed by creating the pointer link
pl4=<p,n4>, and adding it to every coexistent links set inCLSn4. The result can be observed assg3 in
Fig. 2.20.

2.5.4 Traversing a recursive data structure

Statement Function Brief description
x=y->sel XYSel() Nullify pointer x; split graph byy->sel; materialize new node from

node pointed to byy->sel; assignx to the materialized node; and
summarize all resulting graphs to form outputRSSG.

x->sel=NULL XSelNULL() Split graph byx->sel; materialize new node from node pointed to by
x->sel; nullify selectorsel from node pointed to byx; normalize
graphs (i.e., remove unreachable elements); and summarizeall result-
ing graphs to form outputRSSG.

A crucial part in pointer-based programs is the traversal ofrecursive data structures. It is common that
pointer applications have sections where recursive data structures are created, and sections where they are
traversed while computing some result. Sometimes, traversals also include structure modification such as
creation of new elements, deletion of elements or rearranging of links. It is in the traversal of a structure
where the information provided by a shape analysis technique is put to the test. In our running example for
this section, lines 1–8 involve the creation of the list, while lines 9–20 involve the traversal of the list, where
the structure is modified.

Let us skip forward in the analysis of our running example (Fig. 2.18), while we consider the loop
L2, where the list created inL1 is reversed. Fig. 2.21 shows the graph that reaches the second iteration
of st.13:q=p->nxt. The first element of the list is pointed to byr, andp andq are aliased over the
second element in the list.St.12:force(p!=NULL) is a pseudostatement that prevents graphs where
p is NULL to be analyzed within the loop. As the loop condition inL2 is p!=NULL, it is clear that such
graphs do not correspond to realistic memory configurationsinside the loop.

St.13:q=p->nxt, calls theXYSel() function. As a first step, the pointer which is to be assigned,
q, is nullified by callingXNULL(sg1,q). The result is then split byp->nxt. This means that a new
working graph will be generated for each possibleclsjn2 with a selector link with attributes of the kind
slatt=<<n2,nxt,na>,attsl={o|c}>. Each split graph deletes the information that does not corre-
spond to the link followed. The results aresgB (no more elements aftern2) andsgC (1 or more elements
aftern2).

After splitting, a new node is materialized from the node pointed to byp->nxt. SincesgB points to
NULL throughp->nxt, this has no effect forsgB. However, insgD a new node,n4, is materialized from
n3. Noden3 is asummary nodethat represents different kinds of memory locations (as many as coexistent
links sets describe its connectivity). The materialization operation uses all available information within the
coexistent links sets inn3 (and that of properties if there were any) to yield an accurate materialization for
n4. For instance, we can determine that there is no self-link over n4 or that a link betweenn2 andn3
must not exist, asn2 was pointing tojust onelocation represented byn3. After the materialization ofn4,
the pointerq can be made to point to it, creating the pointer linkpl2=<q,n4>. Finally, the graphs are
summarized by calling functionSummarize RSSG() (which has no effect in this case), and the resulting
RSSGSt13•it2 is generated.

The example continues by performing adestructive updatethroughst.14:p->nxt=r (Fig. 2.22).
This kind of statement is typical from pointer applications. It involves breaking a link and establishing a

University of Málaga



32 Chapter 2. Intraprocedural shape analysis

Figure 2.21: Traversing a recursive data structure with theXYSel() function.

new one. It is performed by calling theXselY() function. First, the graph is split byp->nxt so that
the nullification of the link can be performed accurately, which is done by theXSelNULL() function.
Continuing with theRSSGSt13•it2 , we see that the splitting of graph and node materializationhave no ef-
fect here, as the node pointed to byp->nxt is alreadyfocusedand pointed to by pointerq. Then, the
link betweenn2 andn3 can be nullified. For that, the selector linksl2=<n2,nxt,n3> is turned to
sl2=<n2,nxt,NULL>, updating the setCLSn3 in the process. The subsequent summarization of graphs

Compilation techniques based on shape analysis for pointer-based programs



2.5. Abstract semantics and operations 33

Figure 2.22: Destructive update in a recursive data structure, using theXselY() function, and its implicit
XSelNULL() function.

within XSelNULL() has no effect here. After that, the new selector linksl2=<n2,nxt,n1> is created
andCLSn1 andCLSn2 are updated accordingly. The result does not need to be summarized andRSSGSt14•it2

is generated as output for this statement.

2.5.5 Freeing memory

Statement Function Brief description
free(x) FreeX() Remove node pointed to byx, removing as well inconsistent selector

links that point to the freed node, if any.

University of Málaga



34 Chapter 2. Intraprocedural shape analysis

Once a recursive structure is no longer needed, a program candeallocate the unneeded elements to
release resources. Typically a traversal of the structure is performed freeing its elements. Such a traversal is
performed in loopL3 for our running example (Fig. 2.18).

Let us consider the graphs forRSSGSt25•it1 , shown in Fig. 2.23. As results of analysing the first iteration
for st.24:q=p->nxt, there are two possibilities:sg1, with no more elements after that pointed to byp,
andsg2, where more elements still exist in the list. By calling theFreeX() function, the node pointed to
by p is freed, i.e., removed from the graph, along with its associated coexistent links sets.

It is worth to notice that theFreeX() function also removes inconsistent selector links that arepointing
to the freed node, if there are any. This is done to preserve coherence of the resulting graphs, and is safe to
do as long as we assumecode correctness. Since our approach is not toward verification, we assume that the
code has no memory related bugs and therefore there are nomemory leaksor NULL-pointer dereferencing.

Figure 2.23: Freeing memory using theFreeX() function.

2.6 Modeling pointer arrays: multiselectors

Within pointer-based programs, pointer arrays are commonly used. They can be either of a fixed size, as
specified by the array declaration in the program, or dynamically allocated at run time with size according
to the program input. Whatever the case, we model a pointer array as a node with amultiselector. A multi-
selector is a special kind of selector that may point to several memory locationssimultaneously, whereas a
regular selector can only point to onesinglememory location at a time.

Essentially, a pointer array can be thought of as a summary node. It represents several memory locations
that are allocated together in an array. Each of these memorylocations has a selector to point to other
memory locations. For the node abstracting the pointer array, we just have one selector that can point to an
indefinite number of other memory locations abstracted in the graph. In this manner, we are not restricted
by the size of the array, which anyway is not known in the case of dynamically allocated arrays.

In the context of coexistent links sets, we may need to complement the meaning of attributes incoming
(i) and shared (s) for a selector link, if it is based on a multiselector. That will be the case when more

Compilation techniques based on shape analysis for pointer-based programs



2.6. Modeling pointer arrays: multiselectors 35

than one selector link in the concrete domain is representedby a selector link in the abstract domain. The
modified attributes are (i)im (incoming from multiple locations), which means that, within a summary node,
the selector link is incoming on aone-to-onebasis from the node abstracting the pointer array, and (ii)sm
(shared from multiple locations), which means that the selector link is incoming in amany-to-onebasis.

The use of the modifiedim andsm attributes, along with the idea of using a node and a multiselector
to abstract a pointer array are exemplified in Fig. 2.24. Thisfigure shows three variants of a sparse matrix
data structure based on pointer arrayM, which points tostruct node memory locations. Each variant is
shown both in the concrete and abstract domains.

Figure 2.24: Three variants of a sparse matrix data structure based on pointer-array in both the concrete
and abstract domains: (a)one-to-onerelationship for several lists of elements of typeN; (b) one-to-one
relationship for just one list; and (c)many-to-onerelationship for one list.

In mc1, each memory location within the array (labeled as*N) can point to the head of a list ofstruct

University of Málaga



36 Chapter 2. Intraprocedural shape analysis

node locations (labeled asN) or to NULL. Shape graphsg1 shows our abstraction for this first structure:
n1 abstracts theM pointer array, andn2 abstract thestruct node elements, whereas selector links
sl1=<n1,M[],n2> andsl2=<n1,M[],NULL> abstract the two kinds of connections from the array.
Coexistent links setcls1n1=<pl1,sl1o,sl2o> indicates that, fromn1, the multiselectorM[] points
both toNULL and to memory locations abstracted by noden2 (remember that a multiselector can point
to several locations simultaneously). However, the key factor here iscls1n2=<sl1im,sl3o>, which
indicates that, from the pointer array abstracted byn1, multiselectorM[] may point to several memory
locations represented by summary noden2, but it does so on aone-to-onebasis. This is tantamount to
saying that an indetermined number of locations within the array point to the same number ofstruct
node elements, and nostruct node element is pointed to by more than one location in the array.

Fig. 2.24(b) displaysmc2, where only the first location within the array points tostruct node el-
ements. The rest of locations within the array point toNULL. The abstract representation of this structure
is sg2, which is almost the same assg1, except forcls1n2=<sl1i,sl3o>, shown in bold. Thiscls
indicates that only one location from the array is pointing to astruct node element.

Finally, Fig. 2.24(c) withmc3, shows a case where a list ofstruct node elements is pointed to from
more than one memory location in the pointer array. This is reflected incls1n2=<sl1sm,sl3o>, which
indicates that there is at least onestruct node element which is pointed to by multiselectorM[] from
several locations in the array, effectively creating amany-to-onerelationship.

The concept of multiselectors to model pointer arrays was introduced in [1]. Here, we adapt its main
ideas in the context of coexistent links sets. New statements need to be introduced in our abstract semantics.
These arex->msel[i]=NULL, x->msel[i]=y andy=x->msel[i]. They roughly work like the
statementsx->sel=NULL, x->sel=y andy=x->sel presented before, but with minor extensions to
support multiselectors. Thex=malloc() statement is sensitive to the kind of location allocated, whether
astruct element or a pointer array, initializing the selector/multiselectors accordingly.

2.7 Analysis refinement: properties

During the analysis, memory locations in the heap are mergedinto summary nodesto avoid unbounded
recursive data structures, being the summarization criterion to join compatible nodes. Obviously, the node
summarization operation may suppose some loss of accuracy.By default, our analysis finds two compatible
nodes when the set of pointer links associated with them (i.e., the pointer variables pointing to a node) is the
same in both nodes. Let us recall that in our initial abstractheap representation, the abstract domain for the
nodes is defined asN={P(PTR) ∪ {NULL}}, making the nodes distinguishable only by the set of pointer
variables which point to them.

This way of summarizing effectively groups together every node not pointed to by pointers. In certain
situations, and depending on the client analysis, this may result in over-conservative shape graphs. In order
to avoid aggressive summarizations, we can useproperties. Properties annotate information in the nodes
that is considered by the compatibility check. Nodes whose properties values are not compatible, will not
be compatible either with regards to summarization, even ifthey are pointed to by the same set of pointers.

To introduce the role of properties, we will consider an example structure, drawn from theEm3d bench-
mark in the Olden suite [30]. It is formed by two singly-linked lists for the electric (E) and magnetic fields
(H), respectively. Each element in a list points to the next element in the same list through thenext selec-
tor, and to other elements in the other list through theto nodes[] andfrom nodes[] pointer arrays.
A simplified version ofEm3d’s structure, showing only thenext andto nodes[] links, is shown in
Fig. 2.25(a) for the concrete domain. Theto nodes[] pointer array is used to point to a variable number

Compilation techniques based on shape analysis for pointer-based programs



2.7. Analysis refinement: properties 37

Figure 2.25:Em3d’s data structure in the concrete domain (a), and the abstract domain without properties
(b), with typeproperty (c), and withsiteproperty (d).

University of Málaga



38 Chapter 2. Intraprocedural shape analysis

of elements in the opposite list, although for simplicity, we have shown just two connections per array.

It is not determined at compile time what neighboring elements each element will link to, but one
important shape characteristic is preserved: the elementsin a list only connect through itsto nodes[]
pointer array to elements in theother list, effectively forming abipartite structure. This is the key shape
characteristic that allowsEm3d to be parallelized. Therefore, if we aim to provide some shape abstraction
for this structure that is useful for a subsequent dependence analysis, we must be able to capture its bipartite
feature.

Fig. 2.25(b) shows the shape graph abstraction of the structure, without properties. All memory lo-
cations within the dotted lines in (a) are abstracted by noden3. Somecls’s are shown for this shape
graph. They reflect some interesting characteristics in thestructure, namely: (i) the lists are not cyclic
through next, as there is nocls with two incoming sl’s for selectornext; (ii) there are pointer
array elements that are reached throughto nodes from one location onlyand point to other nodes
through multiselectorto nodes[] (as described bycls4n3=<sl6i,sl7o>); and (iii) elements in the
lists can be reached from various locations within one or several pointer array elements (as described by
cls3n3=<sl5i,sl7im,sl5o,sl6o> for example).

However, we do not have information about the origin of the links to a list elementbeyondthe pointer
array that points to it. That pointer array could belong to a list element in the other list, which respects the
bipartite feature of the structure, or it could belong to thesame list, which breaks the bipartite feature. Since
we must be conservative according to the information that wehave collected in the analysis, it is clear that
the shape abstraction in Fig. 2.25(b) is not suitable for a subsequent dependence analysis forEm3d.

We would like to refine our abstraction ofEm3d’s data structure so that we can preserve its bipartite
feature. First, let us consider thetype property, which annotates information about the data type abstracted
in the node. The result of abstracting theEm3d data structure with the use of the type property is depicted
in Fig. 2.25(c). Here the noden4 now abstracts all the pointer arrays separately from the list elements.
Although this graph gives a clearer visual representation of the structure, it does not provide new informa-
tion. All the characteristics that we discovered in Fig. 2.25(a) still hold, but we cannot yet guarantee that the
elements in a list do not link to other elements within the same list through itsto nodes pointer array.

Next, we will consider thesite property, which annotates the nodes with information about the allocation
site, specifically its statement number. The shape graph representation ofEm3d’s data structure with the use
of the site property is shown in Fig. 2.25(d). Here, we assumethat there is a different allocation site for the
elements in the two lists. Within this chapter we focus on intraprocedural shape analysis, therefore to analyze
Em3d we implicitly assume inlining of functions. In such scenario, the previous assumption clearly holds.
Here, the elements in the two lists and the pointer arrays from the elements in the two lists are separated, as
they were allocated in different statements of the program (S1 toS6 in the figure). This abstraction provides
enough separation as to guarantee that the elements in a listonly connect to the elements in the other list
through itsto nodes pointer array (for example,n3 does not connect back ton1 or n2). Using the site
property allows us to preserve the bipartite feature inEm3d.

There is another important property that we can introduce here: thetouch property. It is used to label
nodes with access information along the process of abstractinterpretation. During the analysis of the traver-
sal of a recursive data structure, the touch property can be used to separate in the abstraction the elements
that have been accessed from those not yet accessed. This is crucial for dependence analysis. The use of the
touch property for dependence analysis will be further explored in chapter 4.

Depending on the data structure abstracted and the client analyses, different properties might be required
for the requested precision. For example, we require the useof the site property for the data dependence
analysis ofEm3d’s data structure. With properties, we can adjust the ability of the technique to accurately

Compilation techniques based on shape analysis for pointer-based programs



2.8. Complexity 39

represent complex data structures. However, this comes at acost: there will be more nodes per graph, as
can be seen in Fig. 2.25. Properties can be used isolated or incombination (e.g., typeand touch).

From a formulation point of view, we define a set of propertiesPROP={type,site,touch}, where
each elementprop ∈ PROP will identify one property that can be incorporated to our analysis through
specific compilation flags. Here, we describe the general framework to incorporate these (or even new)
properties. For each property, we define new instrumentation domains:

• Ptype=TYPE is the domain for the propertyprop=type, and it is defined as a set that contains the
type objects declared in the program:

Ptype={ptype s.t.ptype ∈ TYPE}

• Psite is the domain for the propertyprop=site and it is defined as a set that contains the malloc
statements defined in the program:

Psite = {psite s.t.psite=s ∈ STMT ∧ s::=x=malloc()}

Note that separation of nodes induced by the type property isimplicitly included in the site property,
as different data types of memory locations are necessarilyallocated at different allocation sites.
Therefore, we could think of the type property as a more relaxed version of the site property.

• LetID be the set of identifiers declared during the preprocessing pass of the analysis. These identifiers
are defined in touch pseudostatements.Ptouch is the domain for the propertyprop=touch and is
defined as a set that contains a set of identifiers:

Ptouch = P(ID) = {ptouch s.t.ptouch ⊂ ID}

Now, we can extend the definition of the abstract domain for the nodes asN = (P(PTR) ∪ {NULL}) ×
Ptype × Psite × Ptouch. This makes the nodes distinguishable through the set of pointer variables which
point to them and the values of the properties annotated in each node. For each property, we can define a
mapping functionPPMprop(n) as follows:

Property Map : PPMprop: N −→ Pprop

where,∀ prop ∈ PROP, Pprop represents the domain for the corresponding property.

The introduction of the node properties, will affect some ofthe main operations of our analysis, spe-
cially those that deal with nodes. In particular,Compatible Node() is now redefined as shown in
Fig. 2.26(a). It checks that two nodes are compatible (and can be summarized) when the set of pointer links
is the same in both nodesandtheir properties are compatible. Precisely, this is done bythe auxiliary function
Compatible Property() (Fig. 2.26(b)) which checks if propertyprop ∈ PROP is compatible for
the two nodesn1 andn2. For thetype, siteandtouchproperties introduced here, the compatibility criterion
is simple: two nodes will be compatible with regards to any ofthese properties if they have the same value
for the property.

2.8 Complexity

In this section, we will focus firstly on the computation of the main parameters which will help us to find the
complexity of our method. Let us keep in mind that we are goingto compute the worst case behavior. One

University of Málaga



40 Chapter 2. Intraprocedural shape analysis

Compatible Node()
Input:n1, n2, CLSn1, CLSn2

# 2 nodes and theirCLS’s
Output:TRUE/FALSE

If ((∀ pl1=<x,n1>⊂ CLSn1,
∃ pl2=<x,n2>⊂ CLSn2) ∧
(∀ pl2=<y,n2>⊂ CLSn2,
∃ pl1=<y,n1>⊂ CLSn1) ∧
(∀ prop ∈ PROP,
Compatible Property(n1,n2,prop)==TRUE )),

return (TRUE)
else

return (FALSE)
end

Compatible Property()
Input:n1, n2, prop ∈ PROP

# Two nodes and a property
Output:TRUE/FALSE

If (prop==type ∨ prop==site ∨ prop==touch)
returnPPMprop(n1) == PPMprop(n2)

end

(a) (b)

Figure 2.26: (a) Check whether two nodes are compatible, incorporating the properties check; (b) Check
whether two nodes are compatible with regards to a certain property.

of the parameters of interest, is the maximum number of shapegraphs generated by our approach. After
a given program statements•, such number of graphs are included in aRSSGs•, and it depends on the
number of ways of partitioning the live pointer variables atthat point. For instance, if the set of live pointer
variables is{p1,p2,p3}, i.e. three live pointer variables, we could find the following shape graphs:

• One graph with one noden1 pointed to by{p1,p2,p3}.

• Three graphs with two nodes:n1 & n2, pointed to by:

– {p1,p2} & {p3}

– {p1,p3} & {p2}

– {p2,p3} & {p1}

• One graph with three nodesn1 & n2 & n3, pointed to by{p1} & {p2} & {p3}, respectively.

We firstly have to compute the number of ways of partitioning aset ofj elements (in our case,j live
pointer variables) intok blocks (in this case, nodes). Such a number is named the j-th number of Bell,
B(j), and can be computed fromB(j) =

∑j
k=1 S(j, k), whereS(j, k) is the Stirling number of the second

kind [31],
S(j, k) =

1

k!
·

k
∑

l=0

(−1)l ·

(

k

l

)

· (k − l)j

As we are interested in computing the maximum number of shapegraphs generated by our approach, we
should consider all the possibilities due to different control flow paths, because different paths can establish
different alias relationships between pointer variables and let us recall that each shape graph in aRSSG
represents a different alias configuration. For instance, apath could generate graphs with just one live
pointer variable, another path could generate graphs with two live pointer variables, etc. Assuming thatnv

represents the maximum number of live pointer variables at any program point, the maximum number of

Compilation techniques based on shape analysis for pointer-based programs



2.8. Complexity 41

graphs generated at a point should be the sum of all the ways ofpartitioningj live pointer variables, from
j = 1 till j = nv , i.e.,

∑nv
j=1 B(j).

We will assume that dead pointer variables are nullified, i.e., as soon as a pointer value is not going to
be read before it is re-assigned, it is made to point toNULL, so that it does not point to any node. This way
it will not contribute to a larger number of shape graphs.

In addition, we should consider the number of properties evaluated in the shape analysis,np, as well
as the range of the values for each propertypj , range that we define as0 : rpj . In this case, each value
for each property can contribute with a new graph, thereforethe number of graphs should be multiplied by
[

2
Pnp

j=1
rpj
]

. In the case that no properties are considered in the analysis, thennp = 1 andrp = 0.

Let us not forget that we are computing the maximum number of shape graphs for aRSSG at a program
points•, i.e. for each statement. With all of this, themaximum number of graphs per statement, which
we nameNgs, could be estimated as we indicate in Eq. 2.1. An obvious way to compute themaximum
number of graphsgenerated for the analyzed code, which we will nameNg, would be obtained multiplying
Ngs by the number of statements analyzed in the program,nstmt , as we see in Eq. 2.2.

Ngs =
[

2
Pnp

j=1
rpj
]

·
nv
∑

j=1

B(j) (2.1)

Ng = nstmt · Ngs = nstmt ·
[

2
Pnp

j=1
rpj
]

·
nv
∑

j=1

B(j) (2.2)

There are other interesting parameters that give us more detailed information about how complex the
shape graphs are and that are measurable: for instance how many nodes does a graph have and how inter-
connected these nodes are. About the number of nodes, we are interested in computing an upper bound, i.e.
the maximum size of a shape graph. In other words, themaximum number of nodes per graph, which we
will nameNn. It depends on the maximum number of live pointer variables,nv , because, in a worst case,
when none of the pointers are aliased, then each one could point to a different node.Nn depends too on the
number of properties considered,np and the range of the values for each propertypj, i.e. 0 : rpj , because
each value for each property can contribute as a new node. With all of this,Nn can be estimated as we show
in Eq. 2.3.

Nn = nv + 2
Pnp

j=1
rpj (2.3)

About how interconnected the nodes are, we should compute the maximum number ofsl’s -selector
links- and the maximum number ofcls’s (coexistent links sets), which are precisely the parameters that
encode this information in our approach. We will name themaximum number of sl’s per node, asNslnode

and themaximum number of sl’s per graph, asNsl . The former depends on the maximum number of
selector or pointer fields declared in the most complex data structure,nl . It depends too on the maximum
number of nodes, to which any node can be connected through a selector link, i.e.Nn − 1. As the links
that can coexist in a given node can be incoming from any othernode, outgoing to any other node, or a link
to/from itself, then the maximum number of selector links ofa given type could be2 · Nn − 1. Therefore,
Nslnode can be computed as we see in Eq. 2.4.Nslnode (Nn) denotes the maximum number of selector links
when we consider that the number of nodes isNn. The maximum number ofsl’s per graph should be the
sum of all the selector links per node when we iteratively incorporateNslnode(j) for each new node, from
j = 1 till Nn, as we see in Eq. 2.6.

University of Málaga



42 Chapter 2. Intraprocedural shape analysis

Nslnode = Nslnode(Nn) = nl · (2 · Nn − 1) (2.4)

Nsl =

Nn
∑

j=1

Nslnode(j) =

Nn
∑

j=1

nl · (2 · j − 1) = (2.5)

= nl · (2 · Nn − 1) · (Nn − 1) (2.6)

However, the most important parameter is the maximum numberof cls’s. A cls contains pointer links
and selector links with attributes. As a shape graph represents a particular alias configuration, the number
of pointer links is fixed. The variations come from the selector links with attributes. For instance, for a
node, the maximum number of selector links with attributes depends on the combination of the maximum
number of selector links that can coexist in the node (excluding the links from/to itself, i.e.2Nslnode−nl , see
Eq. 2.4), as well as the number of variations due to the attributes,5nl . Let us see this last factor in detail: in
acls there could be five different states representing the attributes for each selector link from/to the same
node: (i) the selector link does not appear, (ii) it is just incoming (attsl={i} or attsl={s}), (iii) it
is just outgoing (attsl={o}), (iv) it is just cyclic (attsl={c}) and (v) it is a summary node with the
same incoming and outgoing link (attsl={i,o}, attsl={i,c}, or attsl={s,o}, attsl={s,c}
for a shared summary node). With all of this, we could computethe maximum number of cls’s for a
node, namedNclsnode , by Eq. 2.7. Clearly, themaximum number of cls’s per graph namedNcls , can
be computed from Eq. 2.7 andNn (the maximum number of nodes) as we see in Eq. 2.8.

Nclsnode =
(

2Nslnode−nl
)

· 5nl =
(

22·nl ·(Nn−1)
)

· 5nl (2.7)

Ncls = Nclsnode · Nn =
[(

22·nl ·(Nn−1)
)

· 5nl
]

· Nn (2.8)

Eq. 2.7 is a first approximation that gives us a worst case upper bound for the estimation of the maximum
number ofcls’s for a node when there is not available information about the data structures. However, such
a number can be greatly reduced when we have some informationabout the data structures. Till now, we
have assumed that all the selector links can be incoming to and outgoing from a node. But, in acls that
represents a real data structure, there is as most, a maximumnumber of “real” incoming selector links.
We will call nli to this important piece of information. For instance, in a singly-linked listnli = 1, in a
doubly-linked listnli = 2, or in a binary treenli = 1. With this information we have to compute all the
cls’s that are combinations due to the selector links with attributes that are incoming in a node, multiplied
by combinations due to the selector links with attributes that can be outgoing from the node. In a node, we
know that there could be at most: (a)nl · (Nn − 1) selector links from other (different) nodes (cases in
which attribute is{i} or {o}), plus (b)nl selector links from the same node with attributec, plus (c)nl

selector links from the same node that represent incoming and outgoing in a summary node (cases in which
attributes are{i,o} or {s,o} or {i,c} or {s,c}). Thus, there could benl · (Nn + 1) selector links
with attributes in a node. From them, at most, onlynli would appear as incoming selector links in acls.
Therefore, the computation of the combination of the selector links with attributes that are incoming in a
node yields the following:

nli
∑

j=1

(

nl · (Nn + 1)

j

)

From thenl · (Nn +1) selector links with attributes that there could be in a node,we know that in acls
there could be from0 till nl outgoing links. Thus, for the computation of the combination of the selector
links with attributes that are outgoing from a node we consider the expression:

Compilation techniques based on shape analysis for pointer-based programs



2.8. Complexity 43

nl
∑

k=0

(

nl · (Nn + 1)

k

)

In other words, a more accurate estimation for the computation of the maximum number ofcls’s,
Nclsnode , is given by Eq. 2.9. Again, the maximum number ofcls’s per graph, namedNcls, can be
computed from Eq. 2.9 and the maximum number of nodes,Nn, as we see in Eq. 2.10.

Nclsnode =

nli
∑

j=1

(

nl · (Nn + 1)

j

)

·
nl
∑

k=0

(

nl · (Nn + 1)

k

)

(2.9)

Ncls = Nclsnode · Nn (2.10)

For instance, working with a singly-linked lists, we know thatnl = 1 andnli = 1, so applying Eq. 2.10
we could getO(Nn3) as the maximum number of differentcls’s per graph. With a doubly linked list,
wherenl = 2 andnli = 2, for Eq. 2.10 we could getO(Nn5), whereas for a binary tree we should get
O(Nn4).

To take into account the effect of multiselectors in the maximum number ofcls’s in a node, we would
need to consider theninst factor for the term describing the maximum number of selector links with at-
tributes in a node, i.e.,ninst ·nl(Nn+1). The factorninst stands for the maximum number ofinstantiations
of multiselectorsthat may occur in the program [32], beingninst = 1 for no instantiations.

Other parameter of our abstraction, that could be interesting to compute is themaximum number of
pl’s per node, and we will name it asNplnode . It depends on the number of live pointer variables,nv , and
it can be easily computed as we can see in Eq. 2.11. Themaximum number of pl’s per graph, named
Npl , is represented in Eq. 2.12. As we assume that anyRSSG will be in normal form, then each pointer
variable can appear only once on each graph, thereforeNpl = Nplnode .

Nplnode = nv (2.11)

Npl = Nplnode = nv (2.12)

Table 2.1 summarizes the main parameters used in our complexity study, as well as their definitions and
their values.

Now, our goal is to estimate the worst theoretical performance of our shape analysis framework. Roughly,
the cost of analyzing a pointer statement will depend on the cost of the corresponding transfer function, and
more concretely it will depend on the operations that the transfer function invokes. We would like to start
summarizing the dominant costs for the main operations thatour transfer functions call. These costs can
safely be deduced from the algorithms presented in AppendixA. For the estimation of these dominant costs,
we assume a worst case scenario: each shape graph contains the maximum number of nodes (Nn), the max-
imum number ofsl’s (Nsl ) and the maximum number ofcls’s (Ncls). Let us see then the costs for the
main operations:

• TheSummarize SG() operation has a computational cost given byO(Nn +Nn ·Nclsnode ), due to
the fist and second forall, respectively . We can easily deduce, that the dominant cost for this operation
can be estimated asO(Nn · Nclsnode) = O(Ncls).

University of Málaga



44 Chapter 2. Intraprocedural shape analysis

Parameter Definition Value

nstmt number of statements to be analyzed

nv maximum number of live pointer variables at any program point

nl maximum number of selectors - or pointer fields- declared in the data structures

nli maximum number of “real” incoming links in the data structures

np number of properties considered in the shape analysis by default 1

rpj upper value in the range of the values for propertyj, 0 : rpj by default 0

Ngs maximum number of graphs per statements Eq. 2.1

Ng maximum number of graphs Eq. 2.2

Nn maximum number of nodes per graph Eq. 2.3

Nslnode maximum number ofsl’s per node Eq. 2.4

Nsl maximum number ofsl’s per graph Eq. 2.6

Nclsnode maximum number ofcls’s per node Eq. 2.9

Ncls maximum number ofcls’s per graph Eq. 2.10

Nplnode maximum number ofpl’s per node Eq. 2.11

Npl maximum number ofpl’s per graph Eq. 2.12

Table 2.1: Parameters of our complexity study.

• The Normalize SG() operation depends basically on two findings: (i) find unreachable nodes,
which has a cost ofO(Nn · log(Nn)) and (ii) findcls’s with incoherent selector links, which has
a cost ofO(Ncls · log(Ncls)). In other words, the computational cost is dominated byO(Nn ·

log(Nn) + Ncls · log(Ncls)). As we know from Eqs. 2.3 and 2.10,Ncls >> Nn, therefore, the cost
of this operation is dominated byO(Ncls · log(Ncls)).

• The Split() operation depends on finding a node and then creating a new graph for eachcls
of that node. When creating the new graphs, theNormalize SG() function is called. Clearly, it
presents a cost given byO(Nn + Nclsnode · (Ncls · log(Ncls))). Simplifying, The dominant cost of
this operation can be expressed asO(Nclsnode · (Ncls · log(Ncls))).

• The Materialize Node() operation has a cost ofO(2 · Nn + 2 · Nclsnode) for the two first
nodes finding and the creation of thecls’s of the new materialized node (theCreate CLS’nm
forall). Next, theCreate CLS’nj forall has a cost given byO(Nclsnode · Nslnode), whereas the
Create CLS’nk forall presents a cost given byO(Nn · Nclsnode · Nslnode). Finally, a call to
theNormalize SG() function will have a cost ofO(Ncls · log(Ncls)). In summary, the cost of
the materialization is given byO(2 · Nn + 2 · Nnclsnode + Nclsnode · Nslnode + Nn · Nclsnode ·

Nslnode + Ncls · log(Ncls)). As Nn · Nclsnode = Ncls , and from Eqs. 2.4 and 2.10 we deduce that
Nslnode < log(Ncls), we can approximate the dominant cost for this operation asO(Ncls ·log(Ncls)).

Now that we know the dominant costs of the main operations, wecould estimate the costs for the transfer
functions. In Appendix A we present the formulation of our operations as functions. The goal of such
formulation is to present in a clear and formal context, the operations involved in our analysis. However, we
should remark that those functions are different from our real implementations. In other words, the dominant
cost of each transfer function depends on the algorithm implemented. We present here a short indication
of these costs. For the estimation of these dominant costs, we have assumed again a worst case scenario:
the maximum number of shape graphs included in aRSSG•s is Ngs (see Eq. 2.1). In the computation

Compilation techniques based on shape analysis for pointer-based programs



2.9. Related work in heap analysis 45

of the dominant costs of our real implementations of the transfer functions we have included the operator
⊔RSSG which roughly has a cost given byO(Ngs). For instance, the statementsx=NULL, x=new and
x=y call to theSummarize SG() operation. In our implementation, the cost for these statements is
given byO(Ngs ·Ncls). However, the statementsx->sel=NULL,x->sel=y andx=y->sel call to the
Split(), Materialize Node() andNormalize SG() operations and, roughly, they present a cost
given byO(Ngs · Ncls · log(Ncls)). Clearly, the complexity is dominated by the transfer function of these
last statements, so our method has a complexity ofO(Ngs · Ncls · log(Ncls)).

The fixed point requires that the transfer functions be applied until the graphs inRSSGs• do not change
any more. However, we have considered the maximum number of possible graphs, nodes,sl’s andcls’s
so the complexity to reach the fixed point is included in the previous discussion.

Summarizing, we find that the complexity of our approach depends on the upper bounds ofNgs and
Ncls. From Eq. 2.10 we know thatNcls has a polynomial behavior:O(Nn3) for a singly-linked list,
O(Nn5) for a doubly linked list, ... Ignoring the properties, from Eq. 2.3 we know thatNn = nv + 1.
Therefore, roughly we can approximate an upper bound for theNcls parameter asO((nv )k), wherek is a
constant that depends on the maximum number of links in the structures analyzed, andnv is the maximum
number of live pointer variables. On the other hand, from Eq.2.1 which represent the theoretical maximum
value forNgs, again ignoring the properties, we can notice that depends on the sum of the numbers of Bell,
∑nv

j=1 B(j) < nv · B(nv). From [33], we know that the asymptotic limit of numbers of Bell is,

B(nv) <
1

√

(nv)
· (λ(nv ))nv+1/2 · eλ(nv)−nv−1

beingλ(nv ) = nv
W (nv) , with W (nv) as the Lambert W-function. That limit, very roughly is much lower than

nvnv , so we can approximate an upper bound ofNgs asO(nv · nvnv ). In other words, taking into account
the upper bounds forNcls and theNgs parameters, our approach would have a exponential behaviorgiven
by O(nvnv+k), as a worst case. However, we think that the important issuesare: is the worst case reached
in practice, and how often? We will address these questions in section 2.10.

2.9 Related work in heap analysis

In the past few years pointer analysis has attracted a great deal of attention. A lot of studies have focused
on stack-pointer analysis, like [34] and [35], while others, more related to our work, have focused on heap-
pointer analysis. Both fields require different techniquesof analysis.

We can find methods based on deriving information from the program to describe the heap as predefined
structures. Among them, we acknowledge the work of Ghiya andHendren [36], and Hwang and Saltz [37].
This kind of approach is calledstoreless, as it does not keep a representation for the heap in every statement
in the program.

Ghiya and Hendren [36] use access paths in path matrices to give a coarse characterization of structures
in the heap. They use matrices to encode information about paths from one pointer to another, and to record
possible interferences of heap objects through different pointers. The information derived from the matrices
is used to estimate the shape of the data structure accessible from a pointer, sorting it asTree, DAGor Cycle.
The case forCyclestands for any structure containing cycles, with no furtherdistinction.

Hwang and Saltz [37] use the base classification from Ghiya and Hendren for a primary characterization
of the heap. They also build def-use chains for the pointers in the program to derive information from
the “shape” of the traversal of the structure. This allows them to identify non-cyclic traversals of cyclic
structures, for example. However, the analysis does not work if the structure is modified in the loop of

University of Málaga



46 Chapter 2. Intraprocedural shape analysis

study.

There is another body of work ([38], [39], [40], [41]) that uses separation logic to describe the shape of
data structures through recursively defined predicates. Some of these works rely on pre-defined recursive
predicates [38], [41], whereas [40],[39] resort to inductive synthesis to infer recursive shape invariants. [40]
is suitable for list-processing programs limiting the class of analyzable programs, whereas [39] can handle
more general data structures, specially data types with tree-like backbone.

More related to our approach though, there are a number of techniques that use some variety of graph
to maintain information from the heap. These approaches areusually referred to asstored-based, because
some representation is kept for the objects allocated in theheap for every analyzed statement.

Some early works progressed in the understanding of the requirements for precise heap abstractions. For
example, Jones and Muchnick [42] use a set of graphs for a heapabstraction in a simple language. There
are labels for sharing and cycles. Graphs are bounded byk-limiting, i.e., elements beyondk indirections
are summarized. Larus and Hilfinger [43] extend on k-limitedgraphs by introducing path expressions to
build so-calledalias graphs. Horwitz, Pfeiffer, and Reps [44] work with storage graphs,another variation of
k-limited graphs used to determine conflicts between heap statements. Chase, Wegman, and Zadeck [28] do
not rely on k-limiting to bind theirStorage Shape Graphs, but rather, create a node for every pointer and for
every allocation site in the program. They are able to perform strong updatein certain situations, a process
that may exchange links in a node in a definite way. Later, Plevyak, Chien, and Karamcheti [26] extend the
model of Chase et. al to manage cycles with theAbstract Storage Graphs. In general, all these techniques
suffer from serious limitations in the kind of analyzable structures, and perform very complex operations.
Besides, the definite actions likestrong updateare rare, more so as information becomes summarized during
the analysis.

Sagiv, Reps, and Wilhelm [27] improve on these previous efforts. They also make use of graphs to
capture the heap. However, theirStatic Shape Graphsdifferentiate nodes by the pointers that point to
them. They are able to performstrong nullificationin all situations thanks to a very precise materialization
operation. Overall, they provide significant improvement over the previous works but they still are unable
to correctly analyze complex structures, and the analysis complexity hinders scalability.

Later, Sagiv, Reps, and Wilhelm [29] devised a method to instantiate different shape analyzers according
to a set of specifiedpredicates. Such predicates can take one of three values:true, false, or unknown, hence
the 3-valued logic that is used as the core of the method. Thiswork produced an implementation known
as TVLA (Tri-Valued Logic Analyzer) [45], which spawned several shape analysis strategies ([46], [47],
[48], [49], [50]), each using a specific set of predicates forspecific purposes. The main works stemmed
from TVLA will be discussed in the next chapter, as they use the base 3-valued analyzer approach with
extensions to deal with interprocedural analysis.

Marron et. al [51], [52] combine some of the previous ideas tocome up with another graph based shape
analysis technique. From Ghiya and Hendren [36], they borrow the idea of specifying predefined shapes,
albeit with a greater range of shapes:singleton, list, tree, multipathandcycle. From Sagiv et. al [27] they
use the ideas of abstract interpretation, abstract semantics for pointer statements, graph operations, and
materialization (now calledrefinement). They are able to obtain fast analysis times for relativelycomplex
structures in Java programs modified to use collection libraries that have been previously characterized for
the analysis.

Hackett and Rugina [53] describe a novel shape graph abstraction built on top of a region points-to
analysis. Their analysis is based on local reasoning over individual heap locations, calledtrackedlocations.
By avoiding to analyze the heap as a whole, they can achieve a fast analysis (less than a minute for tens of
thousands of C code for a bug detection extension). However,their analysis relies heavily on the underlying
points-to analysis. If it cannot determine enough disjointregions, the analysis is worthless.

Compilation techniques based on shape analysis for pointer-based programs



2.10. Experimental results 47

The work by Sagiv et al. [27] was the first to successfully combine abstract interpretation based on
abstract semantics for pointer statements in a framework that incorporated the materialization operation for
strong nullification. These concepts were used as the base for the work of Corbera,Asenjo, and Zapata [54].
They augmented the analysis precision by adding several graphs per statement and introduced the use of
properties in nodes to be able to separate summary nodes. Besides, this work provided explicit support for
pointer arrays, modeled as multiselectors, an aspect neglected by previous works.

The shape analysis technique described in this chapter is inspired in the work by Corbera et al. [54], [1].
It borrows the main ideas of abstract interpretation, worklist algorithm, summarization/materialization, sev-
eral graphs per statement, use of properties to fine tune the analysis precision,and modeling of pointer arrays
as multiselectors. The main contribution here regarding this previous work and the intraprocedural aspect of
shape analysis is the addition of the coexistent links set abstraction for a more compact representation, and
a new Java-based implementation ready for further development. It should be noted that our approach does
not suppose any characteristic of the data structure nor does it assume the behavior of operations over it.

2.10 Experimental results

We have implemented the algorithms presented in this chapter within our heap analysis framework, written
in Java. We focus on the analysis of C sequential programs. All the needed preprocessing passes are
performed with custom-made passes built upon Cetus [55], asdescribed in chapter 1.

Figure 2.27: Graphical User Interface for shape analysis.

University of Málaga



48 Chapter 2. Intraprocedural shape analysis

We have also implemented a GUI to enable a friendly use of our shape analyzer tool. In Fig. 2.27 we
can see one of the available windows in which the “Graphs” tabis selected. In that tab we have the analyzed
code with each statement annotated with information regarding the number of times that statement has been
symbolically executed and the number ofsg’s associated with it. We also provide the links to each graphand
information about the parents and children of each one of them, as well as the graphical view of the graphs
and itscls’s. There is also a “SAP code” tab (SAP stands for Shape Analyzer Preprocessing). This tab is
very useful to compare the original C code and the preprocessed version resulting from the Cetus compiler
pass. This preprocessing takes care of the insertion of force pseudostatements and other transformations and
simplifications that have to be performed to optimize the shape analysis.

2.10.1 Benchmarks and tests

We have considered six programs for the tests in this section. The structures they use include singly-linked
lists, binary trees, n-ary trees, sparse matrices, sparse vectors, and highly interconnected bipartite graphs.
We outline them next:

• 1-Running example. This benchmark analyzes the running example used for this chapter, i.e.,
the program in Fig. 2.18. It creates, traverses, and then deletes a singly-linked list. The singly-
linked list is depicted in Fig. 2.28(a). The purpose of this benchmark is to provide a baseline for the
allocation, traversal and disposal of a simple recursive data structure.

• 2-Binary tree. This benchmark creates and traverses a binary tree, a very common data structure
used in pointer-based applications, shown in Fig. 2.28(b).The tree is created as it is traversed from
the root within a loop. The resulting tree needs not be balanced, i.e., in general not all leaves will be
found at the same depth of the tree.

• 3-N-ary tree. Creation and traversal of a tree based on pointer arrays forits children. The
number of children for each tree element is not known at compile time. Fig. 2.28(c) depicts this data
structure. Like the previous benchmark, the tree is createdas it is traversed from its root within a loop.

• 4-Matrix x Vector. Creation of a sparse matrixM and a sparse vectorV, plus the generation
of the output vectorR=MxV. The output vector is created along the traversal ofM andV. Sparse
structures are those where the majority of its elements are zero. This kind of structures are usually
represented as pointer-based data structures, where only the non-zero elements are stored, with some
additional information for the location of the element within the structure. For example, for the sparse
matrix, each element has its value within the matrix, but also additional information for its row and
column. Note that this is different from a matrix representation as a bidimensional array, where
all zero elements would consume storage in memory. An example of a sparse matrix and a sparse
vector is shown in Fig. 2.28(d). This benchmark is a kernel ofcommon programs manipulating sparse
matrices. The product itself features three nested loops.

• 5-Matrix x Matrix. Creation of sparse matricesM1 andM2, plus the generation of the output
matrix M3=M1xM2. The output matrix is created along the traversal ofM1 andM2. The sparse ma-
trices used are of the same data type as the matrix used for the4-Matrix x Vector benchmark.
This benchmark is used to help understand the effect of adding more complexity to the data structure
and the control flow of the program, with regards to the4-Matrix x Vector benchmark, as the
product now features three matrices and a nest of four loops.

• 6-Em3d. Program from the Olden suite [30], that creates two singly-linked lists for the electrical and
magnetic fields, and then links each element in a list to several elements in the other list, creating a

Compilation techniques based on shape analysis for pointer-based programs



2.10. Experimental results 49

bipartite graph. This example has been used in the literature [37], [51], as a key example for shape
analysis, due to its heavily interconnected structure. Themain data structure is shown in Fig. 2.28(e).

These codes do not include functions. In the case of6-Em3d, functions were inlined by a preprocessing
pass into a single body.

Figure 2.28: Data structures for the benchmarks consideredfor intraprocedural shape analysis.

The purpose of the experimental results for the intraprocedural version of our shape analysis tool is
twofold: first, to test its ability to capture different kinds of dynamic data structures that are common in
pointer-based applications; second, to ponder over the data gathered in the experiments so that we can
understand better the strong and weak points in the technique.

Our technique was able to capture accurately all the data structures in these benchmarks. This means
that the lists do not contain cycles, a tree child does not point to its parent, the columns in a matrix are
independent,Em3d’s graph is bipartite, etc. It should be noted that we are ableto capture the structures
even when they are created during the traversal of the same oranother structure, like in the2-Binary
tree, 3-N-ary tree, 4-Matrix x Vector and5-Matrix x Matrix benchmarks. This is not
possible for some related approaches, like [37].

All data structures where accurately represented in our shape graphs without the use of any property,
except for the6-Em3d benchmark that uses thesite property. Refer to section 2.7 for a discussion about
the way we capture the structure in6-Em3d.

Once we have checked the ability of our shape analysis strategy to capture the data structures tested, our
next concern involves the performance of our implementation. In Table 2.2 we show some metrics regarding

University of Málaga



50 Chapter 2. Intraprocedural shape analysis

performance of the analysis and size of the problem. The firstcolumn shows analysis time in seconds. The
testing platform is a 3GHz Pentium 4 with 1GB RAM. The second column shows the memory used by the
analysis. Then, we show the number of statements in the program (Code stmts. column), the number of
analyzed statements until a fixed point is reached (Analyzed stmts. column) and the number of shape
graphs generated during the analysis (Shape graphs column).

Benchmark Time Space Code stmts. Analyzed stmts. Shape graphs

1-Running example 0.78 s 1.9 MB 28 84 108

2-Binary tree 0.49 s 1.9 MB 27 254 331

3-N-ary tree 0.13 s 1.9 MB 20 135 225

4-Matrix x Vector 3.44 s 2.8 MB 95 1,071 3,398

5-Matrix x Matrix 47.75 s 5.9 MB 128 3,682 14,611

6-Em3d 18.45 s 5.5 MB 175 1,267 2,014

Table 2.2: The codes tested for intraprocedural analysis, with metrics about performance, and size of prob-
lem. The testing platform is a 3GHz Pentium 4 with 1GB RAM.

We see that the analysis times range from less than a second toa few seconds, clocking under a minute
in any case. The5-Matrix x Matrix benchmark takes the longest to be analyzed, with 47.75 seconds.
The memory used by the analyzer fits in less than 2 MB for the smaller benchmarks, peaking at 5.9 MB for
5-Matrix x Matrix. The programs used are relatively small in size, in the same range as works in the
literature, with only6-Em3d having near 200 statements to analyze. It should be noted though, that the size
compiled at theCode Stmts. column makes reference to the statements that are analyzed by the shape
analyzer, as affecting heap structures. In general, the program may have many more statements that do not
affect the heap and thus are not considered for this metric. The value of theAnalyzed stmts. column
indicates the number of statements that have been analyzed in total by the analysis. Some statements would
have been analyzed several times until a fixed point is reached. For example, the5-Matrix x Matrix
benchmark repeatedly iterates over its 128 analyzable statements, reaching a total of 3,682 analyzed state-
ments. Regarding the total number of graphs for the analysis, we reach into the thousands for the moderately
complex programs, which hints about the complexity of the technique and the accuracy that goes with it.

We will consider more information about these experiments to shed some light into the limiting factors
of the analysis. For that, we have compiled Table 2.3, which presents information about the complexity
of the shape graphs obtained. Next to each benchmark, we display the shape graph per code statement,
the average number of nodes per shape graph (with maximum in parentheses), and the average number of
coexistent links sets per shape graph (with maximum in parentheses).

Benchmark Sg’s per code stmt. Avg. nodes per sg (max) Avg. cls’s per sg (max)

1-Running example 3.86 2.41 (4) 4.89 (10)

2-Binary tree 12.26 2.78 (4) 24.41 (87)

3-N-ary tree 11.25 2.50 (4) 6.16 (15)

4-Matrix x Vector 35.77 5.75 (9) 30.89 (67)

5-Matrix x Matrix 114.15 8.34 (12) 52.36 (109)

6-Em3d 7.24 8.75(12) 74.40 (267)

Table 2.3: The codes tested for intraprocedural analysis, with parameters that relate to shape graph com-
plexity.

The metric of shape graphs per code statement gives a measureof the average number of shape graphs
that are used to represent the different heap states for an analyzable statement in the program. This value
ranges from less than 4 shape graphs per code statement for1-Running example to more than a hun-
dred for5-Matrix x Matrix. The average number of nodes orcls’s per shape graph indicate the

Compilation techniques based on shape analysis for pointer-based programs



2.10. Experimental results 51

complexity of the shape graphs for each benchmark, and they are directly related to the abstracted data
structure. Since the data structure for6-Em3d is the most complex (see Fig. 2.28(e)), its values for these
metrics are the highest. Note also the peak in shape graph complexity achieved with 12 nodes and 267
cls’s.

We can draw some conclusions from the measures in Table 2.2 and Table 2.3:

• The analysis time is largely dependent on the number of shapegraphs generated. That is why
5-Matrix x Matrix, with over 14,000 generated graphs, takes the longest to analyze. Addi-
tionally, the number of shape graphs is directly dependent upon the number of analyzed statements.
More iterations in the analysis provoke more shape graphs toregister heap states at the different sym-
bolic iterations during the analysis. A deep loop nest like the 4-loop nest found for5-Matrix x
Matrix can make the number of shape graphs skyrocket very easily, asit takes a lot of symbolic
iterations to find a fixed point. Note how4-Matrix x Vector, with a similar algorithm and sim-
ilar data structures but a 3-loop nest, produces below 1/4thof the shape graphs with about 1/3rd of
the analyzed statements in a much shorter time.

• More complex data structures, create shape graphs with morenodes and morecls’s, as can be seen
for 6-Em3d. Shape graph complexity, which is directly related to the complexity of the abstracted
data structure, also affects the analysis time. For example, while there is not much difference between
the number of analyzed statements for4-Matrix x Vector and6-Em3d, with about a thousand
each, the analysis times differ from 3.44 to 18.45 seconds. This difference is caused by the more
complex structure in6-Em3d, with 8.75 nodes and 74.40cls’s per graph in average, against 5.75
nodes and 30.89cls’s in average for4-Matrix x Vector. In both cases, a similar number
of statements is analyzed by the tool, but the shape graphs for 6-Em3d are more complex. This
complexity taxes the abstract semantics operations, whichtake longer to complete.

Overall, we believe that the experimental results presented here provide evidence that the shape analysis
based on the coexistent links set abstraction is precise, yields correct abstractions, and does so at reasonable
cost. Next, we consider whether the measures obtained are similar to the worst case predicted by the
complexity study in section 2.8.

2.10.2 Comparison with predictions of the complexity study

Let us recall that the two dominant factors for the analysis complexity are the maximum number of shape
graphs,Ng, and the maximum number ofcls’s per graph,Ncls. In Table 2.4 we display the maximum
values measured against the maximum values predicted by thecomplexity analysis. The maximum number
of graphs,Ng, is calculated according to Eq.2.2 in section 2.8, wherenv , the number of live pointer variables
is calculated foreachstatement to give a more adjusted value, rather than considering its maximum value
for all statements in the program. The number ofcls’s is calculated according to Eq.2.9. In this formula,
nli , the maximum number of incoming links to the nodes in the structure isnli = 1 for all tests, except
6-Em3d with nli = 3. The maximum number of selectors declared for a type,nl , ranges fromnl = 1 for
1-Running example to nl = 3 for 6-Em3d.

For the larger benchmarks,4-Matrix x Vector,5-Matrix x Matrix, and6-Em3d, the mea-
sured value is a negligible percentage of the theoretical worst case, both in the number of shape graphs for
the whole analysis and the number ofcls’s per graph. Even for the simpler benchmarks,1-Running
example, 2-Binary tree, and3-N-ary tree, the values measured are just a small percentage of
the values predicted.

University of Málaga



52 Chapter 2. Intraprocedural shape analysis

Benchmark Ng meas. Ng pred. Ng meas./pred. Ncls meas. Ncls pred. Ncls meas./pred.

1-Running example 108 409 26.4% 10 120 8.3%

2-Binary tree 331 1, 977 16.7% 87 4740 1.8%

3-N-ary tree 225 605 37.2% 15 110 13.63%

4-Matrix x Vector 3, 398 > 1.0 · 106 0.3% 67 4, 220 1.6%

5-Matrix x Matrix 14, 611 > 4.8 · 108 < 0.0% 109 9, 152 1.2%

6-Em3d 2, 014 > 7.8 · 106 < 0.0% 267 > 1.8 · 1015 < 0.0%

Table 2.4: Comparisons of maximum number of graphs and number of cls’s measured versus predicted by
the complexity study.

These results provide evidence that the analysis behaves with far less complexity than the theoretical
worst case. Even so, we are aware that we deal with a complex technique that is likely to be too expensive
for medium or large applications. In this regard, we think itmay be a valuable tool to analyze fragments of
programs. Next, we will look at ways to improve the analysis performance.

2.10.3 Improving the analysis performance

Both the complexity study and the experiments conducted so far reveal that the number of generated graphs
is crucial for the analysis performance. In this regard,dead pointer nullificationhelps to reduce the number
of shape graphs, as the different possibilities for pointerarrangements are also reduced. This produces an
improvement in performance over a version of the program that leaves dead pointers assigned. In our tests,
we have manually performed dead pointer nullification as part of the program preprocessing prior to the
analysis. However, more mechanisms to improve the analysisperformance would be desirable.

Another aspect that should be considered is the separation of nodes in the abstraction due to the effect of
properties. Adding properties produces more nodes to be kept separate, i.e. not summarized. This increases
the number of nodes in shape graphs, which has a burdening effect on the shape analysis operations. How-
ever, it is sometimes the case that node separation can result in “cleaner” analyses, where nodes that stand
for clearly different memory locations are not merged. Thiscan lead to a quicker way to the fixed point
and/or fewer graphs per shape graph set.

However, the chief issue is in trying to reduce the number of statements to analyze. Sometimes, there
are heap statements that are analyzed by the technique that do not provoke any change in the data structure,
and therefore their net effect amounts to nothing for the abstraction obtained. Such is the case in traversals
that do not modify the data structure. It would be relevant for our technique to avoid analyzing such parts of
the program, running instead over aprunedversion of the program.

To measure the impact of these two ideas, namely (i) using properties for cleaner analysis, and (ii)
pruning to reduce analyzable statements, we have conductedmore experiments over the base benchmarks
4-Matrix x Vector and5-Matrix x Matrix. We have gathered some information for four ver-
sion of each:(full), for the program as tested previously;(site), for the base program analyzed with
the site property;(pruned), for the pruned version of the program; and(pruned & site) where the
site property is used in the analysis of the pruned version ofthe program. The results are shown in Table 2.5.

It should be noted that the use of the site property for the4-Matrix x Vector and5-Matrix
x Matrix benchmarks is not required to accurately capture the structures created and traversed, but it
is considered solely for its impact on performance. Among the available properties, the site property was
chosen because it provides the greater separation of nodes.For the pruned versions we have manually
discarded for its analysis the statements in the product that are not related to the construction of the output
vector/matrix.

Compilation techniques based on shape analysis for pointer-based programs



2.11. Summary 53

Benchmark Time Space Code stmts. Analyzed stmts. Shape graphs

4-Matrix x Vector (full) 3.44 s 2.8 MB 95 1,071 3,398

4-Matrix x Vector (site) 2.56 s 2.8 MB 95 989 2,413

4-Matrix x Vector (pruned) 0.25 s 1.9 MB 75 531 594

4-Matrix x Vector (pruned & site) 0.28 s 1.9 MB 75 551 612

5-Matrix x Matrix (full) 47.75 s 5.9 MB 128 3,682 14,611

5-Matrix x Matrix (site) 30.58 s 3.7 MB 128 3,819 9,619

5-Matrix x Matrix (pruned) 3.72 s 3.3 MB 114 1,300 2,405

5-Matrix x Matrix (pruned & site) 3.97 s 2.7 MB 114 1,463 2,299

Table 2.5: Measures for the4-Matrix x Vector and5-Matrix x Matrix benchmarks in four
versions each:full, site, pruned andpruned & site.

Regarding the use of properties for better performance, we observe in Table 2.5 a slight improvement
for 4-Matrix x Vector (site) in the analysis time, the number of analyzed statements and the
number of generated graphs, as a result of achieving the fixedpoint slightly faster. For5-Matrix x
Matrix (site), there is improvement in analysis time, memory consumed andgenerated graphs. Here
the fixed point takes slightly longer to achieve with a few more statements analyzed, but the number of
generated graphs has dropped nearly 5,000 graphs. This is a consequence of not mixing nodes from different
structures in the deep loop nests, which creates fewer shapegraphs in a shape graph set.

Regarding the use of pruning for reducing the number of analyzable statements, we see how the pruned
versions of the benchmarks have improved in all measures over the full version. The graphs obtained as
abstractions for the data structures are the same for both the full and pruned versions of each benchmark.
Analysis times have improved dramatically as we have changed from a 3-loop nest to a single loop in
4-Matrix x Vector (pruned) and from a 4-loop nest to a 2-loop nest in5-Matrix x Matrix
(pruned). Memory consumption has also decreased, the analyzed statements to the fixed point have
halved and the number of generated graphs has decreased around 6 times. It is remarkable the impact on
performance measures due to removing just a few lines of codefor these benchmarks.

Finally, the combination of both the pruning and use of the site property introduce a slight overhead
over the pruned version, which indicates that the pruning has already achieved a version that is very toler-
able by the technique and adding properties only adds more complexity with no payback in performance.
Even so,5-Matrix x Matrix (pruned & site) improves on memory consumption and number
of generated graphs with regards to the pruned version.

The results in Table 2.5 prove that it is possible to obtain significant improvement in performance for the
same shape abstraction, specially if pruning of the programif possible. We think that an automatic compiler
pass to prune programs in this way would be an interesting subject for future work.

2.11 Summary

In this chapter we have presented the following content:

• In the first place, we have provided a general outline of our approach to heap analysis abstracting heap
states as shape graphs (section 2.1).

• We have described a high-level view of the key concept of coexistent links sets (section 2.2).

• Then, we entered into a formal description of our shape graphabstraction, first defining a concrete
heap model, then its matching abstract heap model (section 2.3).

University of Málaga



54 Chapter 2. Intraprocedural shape analysis

• Next, we describe our data-flow equations, and the worklist algorithm that implements them (sec-
tion 2.4).

• The abstract semantics and operations for the analysis are also described (section 2.5), featuring ex-
amples for common operations carried over dynamic data structures.

• We also describe our approach for dealing with pointer arrays in shape graphs (section 2.6).

• We describe the extendable mechanism of properties for refining heap abstractions (section 2.7).

• A complexity study for the technique is undertaken as well (section 2.8). It identifies the leading
parameters for worst-case behavior of the analysis.

• We have identified and described meaningful related work in heap analysis (section 2.9).

• Finally, we have conducted some tests that provide experimental evidence that our technique yields
correct abstractions for a variety of common recursive datastructures featured in some selected bench-
marks (section 2.10). We have also collected information about performance, problem size, shape
graph complexity and have extracted conclusions from thoseresults, including comparison with the
theoretical worst case for complexity. We conclude by hinting on how to improve performance by
pruningcertain parts in the analyzed programs that are irrelevant to obtain the shape abstractions.

At this point, we feel encouraged to continue our work to provide full interprocedural support, with aims
to complete a precise shape analysis tool suitable for dependence detection in pointer-based applications.

Compilation techniques based on shape analysis for pointer-based programs



3 Interprocedural shape
analysis

3.1 Introduction

Support for interprocedural programs in shape analysis is still a challenge, especially in the presence of
recursive functions. Yet traversing recursive data structures with recursive algorithms is very common, as
some structures, such as trees, are expressed in a way that makes it natural to traverse them in a recursive
fashion. The main issue that we face when analyzing recursive functions is the problem of tracking the
state of pointer parameters in context changes. For non-recursive context changes, it is enough to know the
relationship between actual and formal pointer parameters. In such a case, the context change can be easily
translated to the shape graph domain.

However, when dealing with pointer formal parameters in recursive functions, it is not so simple: the
same pointer variable must be tracked along a sequence of indefinite recursive calls. The name of the pointer
is the same, but depending on the call, it can point to different locations. Those locations must be tracked so
that we know where the pointer was pointing to when returningfrom a recursive call.

Therefore, to keep track of a pointer formal parameter we need to change itsnaming scheme: not only
we need to know its name, but also some information that relates it to the particular call where it belongs to.
The same can be said for pointers defined in the recursive function body, thelocal pointers. Such pointers
are redefined for every call, i.e., their scope belongs only to a certain recursive function call, yet they must
be correctly assigned upon return of the recursive calls that ensue.

At run time, this is done by keeping different registers in the Activation Record Stack(ARS). Among
other information, the ARS keeps the state of pointer actualparameters and local pointers before a call, so
that when returning from the call, they can be properly reassigned. Keep in mind that a compile-time pointer
analysis technique cannot know the number of times a recursive function will be called, yet a fixed point
must be reached for the analysis, even in the presence of pointer parameters and local pointers. This makes
it tricky to reach a fixed point shape graph abstraction for recursive functions and, at the same time, keep a
precise abstraction.

To help us explain the concepts in this chapter, let us introduce now an example program that creates
and reverses a singly-linked list. Actually, this creationand reversal provide the same result than the running

55



56 Chapter 3. Interprocedural shape analysis

example in chapter 2. For this chapter though, we will focus on the recursive functionreverse() and the
extensions introduced for its analysis within our framework. Fig. 3.1 shows the code considered here.

// Declare recursive type "node"
struct node{

int data;
struct node *nxt;

}
int main(int argc, char argv[]){

struct node *list,*r;
1: list=create list(SIZE);
2: r=reverse(list);
3: return 1;

}

struct node *reverse(struct node *x){
struct node *y,*z;

4: z=x->nxt;
if(z!=NULL){

5: #pragma SAP.force(z!=NULL)
6: y=reverse(z);
7: #pragma SAP.force(x!=NULL)
8: x->nxt=NULL;
9: z->nxt=x;

}else{
10: #pragma SAP.force(z==NULL)
11: y=x;

}
12: return y;

}

Figure 3.1: Running example for presentation of interprocedural analysis.

Fig. 3.2 exemplifies the different kinds of context changes that we may encounter, and how the ARS
is used to keep record of pointer state so they can be recovered when returning from the calls. In (a) we
show a non-recursive context change in the concrete domain:we invokereverse() from main(), with
a singly-linked list of four elements. A new register forreverse() is added on top of the ARS for the
context change. Note how each register in the ARS keeps the information about the locations that the local
pointers are pointing to. In (b), there is a recursive context change from the first call toreverse() to
the second call. Unlike the first call, which was invoked frommain(), this is a recursive call, as it is
called fromreverse(). A new register forreverse() is added to the ARS. In (c), we return from the
second call toreverse() to the first call, after having reversed memory locationsl2, l3 andl4. As the
uppermost register of the ARS is removed, the record below isused to reestablish local pointersx andz
(y is assigned at the call site,st.6:y=reverse(z)). Finally, in Fig. 3.2 (d), the return to themain()
function is performed, with the list completely reversed, and the last record forreverse() is removed
from the ARS.

For simplicity in formal-actual parameter matching, we do not allow pointer formal parameters to be
modified within the function body. This involves no loss of generality as it is always possible to comply
with this condition with additional pointer variables. Also, we consider pointers passed by-value. Passing a
reference to a pointer (pass by-reference) actually involves a double indirection and shall not be considered
here.

3.2 Extensions for interprocedural analysis

The way we have constructed interprocedural support withinour shape analysis framework is by extending
on the base, intraprocedural technique, as described in chapter 2. This allows us to take advantage of the
already existing abstraction, abstract semantics operations and data-flow equations.

To support interprocedural programs, including recursivefunctions, we extend on four different axes:
(i) new statements to include function calls and return sites, (ii) new elements within the graph to capture

Compilation techniques based on shape analysis for pointer-based programs



3.2. Extensions for interprocedural analysis 57

Figure 3.2: The use of the Activation Record Stack (ARS) for recursive function analysis.

information from theActivation Record Stack(ARS), (iii) context change rules, that determine graph trans-
formation when entering to or exiting from a function, and (iv) extended data-flow equations and associated
worklist algorithm.

3.2.1 New statements

We extend the type of analyzable statements to include thecall() andreturn() of these functions (see
Fig. 3.3). Accordingly, the definition of a programP is now extended to include the set of functions that

University of Málaga



58 Chapter 3. Interprocedural shape analysis

use pointers to recursive data structures. Such functions are contained inFUN. Function pointers are not
supported. We designateFUNfun to the set of functions that are directly called in the body offunctionfun,
andSTMTfun to the statements in the body offun, including function calls.

An important detail is that we distinguish between non-recursive and recursive call sites. The set of
call statements defined in non-recursive call sites is called Scall nrec, whereas the set of call statements
defined in recursive call sites is calledScall rec. Return statements can, therefore, return to recursive or
non-recursive call sites. The set of return statements defined for the functions in the program is called
Sreturn.

programs: prog ∈ P, P=<FUN,STMT,PTR,TYPE,SEL>

functions: fun ∈ FUN, FUN=<FUNfun,STMTfun,PTR,TYPE,SEL>

statements: s ∈ STMT, s::= x=NULL|x=malloc()|free(x)|x=y

|x->sel=NULL|x->sel=y|x=y->sel

|x=call()|return(y)

Figure 3.3:New statements for interprocedural support.

It is straightforward to see that, for the example in Fig. 3.1, we have the follow-
ing sets available: FUN={create list,reverse,main}, FUNreverse={reverse},
FUNmain={create list,reverse}, STMTreverse={st.4-st.12}, STMTmain={st.1-st.3},
where only the statements that have abstract semantics operations associated to them are numbered. The
information provided by the statements related to the program flow, such as loops, branches, and function
headers, is considered in the data-flow equations.

The introduction of functions in our technique gives rise tonew instrumentation mapping functions that
account for (i) the relationship of pointers to the functions where they are declared, (ii) actual and formal
pointer parameters correspondence, and (iii) the matchingof the pointer returned by a return statement and
the one assigned at a call site.

Local Pointers Map: LPM: FUN −→ PTR

Actual-Formal Ptrs Map: AFPM: (Scall nrec ∪ Scall rec)×FUN −→ PTR×PTRfun

Ret to Assigned Ptr Map: RAPM: (Scall nrec ∪ Scall rec)×FUN −→ (PTRfun×PTR) ∪ ∅

• LPM is a multivalued function that maps for a functionfun ∈ FUN, the set of local pointers
associated with it, i.e. the formal and local pointer variables declared within the body of the function:

∀ fun ∈ FUN,LPM(fun)={lptr∈ PTR, beinglptr a pointer formal parameter or local pointer
variable defined forfun}.

• AFPM is a multivalued partial function that maps for a call statements (beings a non-recursive or
a recursive call, i.e.s ∈ Scall nrec ∪ Scall rec) and the functionfun ∈ FUN called bys, the set
of matching pointer actual (aptr) and formal (fptr) parameter pairs:

∀ s∈ (Scall nrec ∪ Scall rec), beingfun∈FUN called bys,AFPM(s,fun)={<aptr,fptr>,
whereaptr ∈ PTR is an actual parameter in statements, andfptr ∈ PTRfun is a formal pa-
rameter infun}.

For example,AFPM(st.6,reverse)=<z,x>. Sometimes, we just need the set of actual

Compilation techniques based on shape analysis for pointer-based programs



3.2. Extensions for interprocedural analysis 59

pointer parameters (aptr) for a call statements. We will nameAPTRs to that set. It can easily
be deduced fromAFPM(s,fun).

• RAPM is a partial map that computes, for a call statements (beings a non-recursive or a recursive
call, i.e. s ∈ Scall nrec ∪ Scall rec) and the functionfun ∈ FUN called bys, the corresponding
pointer returned at the exit point (retptr) vs. the pointer assigned at the call site (assptr):

∀ s ∈ (Scall nrec ∪ Scall rec), being fun ∈ FUN called by s, RAPM(s,fun)=
<retptr,assptr>, whereretptr ∈ PTRfun is the pointer returned at the exit point offun
andassptr ∈ PTR is the pointer assigned at statements. In the case that the function does not
return a pointer, then this function gives∅. For our example,RAPM(st.2,reverse)=<y,r>.

3.2.2 Recursive Flow Links

We have stated the problem of tracking the state of formal pointer parameters and local pointers in a sequence
of recursive calls. A proper naming scheme is required for these pointers in the analysis. In our approach,
we abstract the information of the ARS by using a new kind of link over the base shape graph representation,
that we callrecursive flow links. Recursive flow links do not represent actual links existingin the program
data structure but rathertrace the arrangement of pointer formal parameters and local pointers along the
recursive, interprocedural control flow. This is done with two kinds of recursive flow links:recursive flow
pointer links(rfpl) andrecursive flow selector links(rfsl).

Figure 3.4: A 4-element list after the 4th invocation toreverse(): (a) with ARS, (b) with recursive flow
links, and (c) its shape graph.

Fig. 3.4(a) shows the concrete domain version of our singly-linked list at the fourth invocation of
reverse(). The ARS keeps information about the state of pointers in previous calls. In (b) we dis-

University of Málaga



60 Chapter 3. Interprocedural shape analysis

play how the same list can be represented with the aid ofrecursive flow links in the concrete domain, which
are shown in dashed edges.xrfptr marks the location thatx was pointing to in the previous call, i.e., at
the third invocation ofreverse(). xrfptr is a recursive flow pointer. It is not defined in the original
program, but has been introduced by our analysis to track thevariations of pointer formal parameterx along
the interprocedural control flow.rfplc1=<xrfptr,l3> is a recursive flow pointer link in the concrete
domain(rfplc), which is defined in the same way as a regularpointer link in the concrete domainbut
based on arecursive flow pointerrather than a regular pointer.

We also need to keep track of the location of the formal parameterx in the invocations ofreverse()
prior to the previous one, i.e., trackingx beyond the immediately previous call. For that, we userecursive
flow selector links in the concrete domainrfslc3, rfslc2 andrfslc1. They are, not surprisingly,
based onrecursive flow selectorsrather than regular selectors. For example,rfslc3=<l3,xrfsel,l2>,
based on recursive flow selectorxrfsel, indicates that two calls back in the ARS,x was pointing tol2.

The location denoted by• is representing theNULL location for the recursive flow path. Following the
trace through a recursive flow selector link with• as destination would not correspond to any activation
record in the succession of recursive calls, and therefore would not render any realistic memory configura-
tion. For example,rfslc1=<l1,xrfsel,•> indicates thatx is not defined beyond three previous calls to
reverse().

In Fig. 3.4(c) we have abstracted the memory location from (b) into the abstract domain. Here, we must
provide a bound representation. We build now the recursive flow information intorecursive flow pointer
links (rfpl) andrecursive flow selector links(rfsl). Memory locationsl1 andl2 are now abstracted as
noden1, and this is reflected inrfsl2=<n1,xrfsel,n1>. Coexistent links sets include nowrfpl’s and
rfsl’s with attributes as a natural addition.

To sum up, we have introduced recursive flow pointerxrfptr and recursive flow selectorxrfsel to
track the locationsx has pointed to in previous calls of the recursive functionreverse(). They are used
to build recursive flow pointer links(rfpl) andrecursive flow selector links(rfsl). For the time being,
let us assume that we only need this new kind of links for formal parameterx. More information about this
aspect can be found in section 3.2.3.5.

The main advantage of this approach is that it allows us to reuse all the existing operations that deal with
graphs, becauserecursive flow linksare treated just aspointer linksor selector links, with regards to node
summarization, materialization, graph joining, etc.

Let us see how these new elements are considered in our representation. Along with the existing set
of pointers,PTR, we now define a new set of recursive flow pointers,RFPTR. BesidesSEL for selectors,
we include the setRFSEL for recursive flow selectors. Fig. 3.5 presents the extendedsets for pointers and
selectors in interprocedural analysis. The type objects remain as they were presented in chapter 2.

pointer variables: x ∈ PTR, xrfptr ∈ RFPTR
type objects: t ∈ TYPE
selectors fields: sel ∈ SEL, selrfsel ∈ RFSEL

Figure 3.5:Extended sets for pointers and selectors in interprocedural analysis.

We namePTRfun to the set of pointer formal parametersand local pointer variables associated with
functionfun. GLB is the set of global pointers,GLB⊂ PTR. For the example in Fig. 3.1,PTRmain={list,r},
PTRreverse={x,y,z}, andGLB=∅.

RFPTRfun andRFSELfun contain the set of recursive flow pointers and recursive flow selectors re-
spectively, for functionfun. We only need to use recursive flow links to track those pointers that can-

Compilation techniques based on shape analysis for pointer-based programs



3.2. Extensions for interprocedural analysis 61

not be recovered by thepointer matchinginduced by the context changes. In the worst case, we need a
rfptr-rfsel pair for every pointer formal parameter or local pointer variable in a recursive function.
However, it is usually the case that only one pointer needs tobe traced. For the example discussed here,
RFPTRreverse={xrfptr} andRFSELreverse={xrfsel}.

The following mapping functions are introduced to identifyrelations between a recursive flow pointer
and (i) the pointer it tracks along the interprocedural control flow, and (ii) its associated recursive flow
selector.

Recursive Flow Pointer to Pointer Map: RFPPM: RFPTRfun −→ PTRfun

Recursive Flow Pointer to recursive flow Selector Map:RFPSM: RFPTRfun −→ RFSELfun

• RFPPM maps a recursive flow pointer in functionfun to the pointer it tracks recursively in the
same function.

∀ rfptr ∈ RFPTRfun, ∃ ptr ∈ PTRfun | rfptr is the recursive flow pointer that tracks the
location ofptr in the previous recursive call tofun.

For example,RFPPMreverse(xrfptr)=x.

• RFPSM maps a recursive flow pointer in functionfun to its matching recursive flow selector.

∀ rfptr ∈ RFPTRfun, ∃ rfsel ∈ RFSELfun | rfsel is the recursive flow selector that tracks
pointerptr=RFPPMfun(rfptr) beyond the previous recursive call tofun.

For example,RFPSMreverse(xrfptr)=xrfsel.

3.2.2.1 Recursive flow links in the concrete domain

The process of instrumenting the information from the ARS into the concrete domain makes use of two new
partial functions,RFPMc andRFSMc.

Recursive Flow Pointer Map (in the concrete domain):RFPMc: RFPTRfun −→ L

Recursive Flow Selector Map (in the concrete domain):RFSMc: L×RFSELfun −→ (L ∪ NULL)

• RFPMc maps a recursive flow pointerrfptr ∈ RFPTRfun to the locationl pointed to by the
tracked pointerptr in the immediately previous pending call (previous context):

∀ rfptr ∈ RFPTRfun, ∃ ptr ∈ PTRfun s.t. RFPPM(rfptr)=ptr ∧ ∃ l ∈ L |
RFPMc(rfptr)=l ∧ PMc(ptr)=l in the immediately previous pending call.

ThePMc mapping was defined in chapter 2. As a reminder, it maps a pointer variableptr to the
locationl it points to. We use the tuplerfplc=<rfptr,l>, which we namerecursive flow pointer
link in the concrete domain, to represent this binary relation. The set of all recursiveflow pointer links
in the concrete domain is namedRFPLc.

• RFSMc models the path (between locationsl1 andl2) tracked for a formal or local pointerptr
∈ PTRfun through two consecutive previous pending calls. Let us assume that we namepct to a
pending call andpct-1 to the immediately previous pending call:

University of Málaga



62 Chapter 3. Interprocedural shape analysis

∀ l2 ∈ L s.t. PMc(ptr)=l2 in a previous pending callpct, ∃ rfptr s.t.
RFPPM(rfptr)=ptr ∧ ∃ l1 ∈ (L ∪ NULL) s.t. PMc(x)=l1 in the immediately previous
pending callpct-1|RFSMc(l2,rfsel)=l1∧ RFPSM(rfptr)=rfsel.

We use a tuplerfslc=<l2,rfsel,l1>, which we namerecursive flow selector link in the con-
crete domain, to represent this relation. The set of all recursive flow selector links in the concrete
domain is calledRFSLc.

The domain for a graph in our concrete heap is the setMC ⊂ P(L)×P(PLc ∪ RFPLc)×P(SLc ∪

RFSLc). Each memory configuration of our concrete domainmci ∈ MC, is now represented as a tuple
mci=<Li,PLci ∪ RFPLci,SLc ∪ RFSLci> with Li ⊂ L, PLci ⊂ PLc, SLci ⊂ SLc and the new
setsRFPLci ⊂ RFPLc andRFSLci ⊂ RFSLc. Fig. 3.4(b) shows the memory configuration for (a) with
the information of the ARS reflected as the appropriate recursive flow links.

3.2.2.2 Recursive flow links in the abstract domain

Similarly, to model the information provided by the ARS in our abstract domain, we include two new partial
functions,RFPMa andRFSMa which model, on each function call, a trace of the nodes whereeach
formal and local pointer was pointing to in the previous pending calls in a stack of recursive calls. They are
defined as follows:

Recursive Flow Pointer Map (in the abstract domain):RFPMa: RFPTRfun −→ N

Recursive Flow Selector Map (in the abstract domain):RFSMa: N×RFSELfun −→ N

• RFPMa maps a recursive flow pointerrfptr ∈ RFPTRfun to the noden pointed to by the tracked
pointerptr in the immediately previous pending call (previous context):

∀ rfptr ∈ RFPTRfun, ∃ ptr ∈ PTRfun s.t. RFPPM(rfptr)=ptr ∧ ∃ n ∈ N |
RFPMa(rfptr)=n ∧ PMa(ptr)=n in the immediately previous pending call.

We use the tuplerfpl=<rfptr,n>, which we namerecursive flow pointer link, to represent this
binary relation. The set of all recursive flow pointer links is namedRFPL.

• RFSMa models the path (between nodesn1 andn2) tracked for a formal or local pointerptr ∈

PTRfun through two or more consecutive previous pending calls. Letus assume that we namepct to
a pending call andpct-1 to the immediately previous pending call:

∀ n2 ∈ (N-NULL) s.t. PMa(ptr)=n2 in a previous pending callpct, ∃ rfptr s.t.
RFPPM(rfptr)=ptr ∧ ∃ n1 ∈ N s.t. PMa(ptr)=n1 in the immediately previous pend-
ing callpct-1 |RFSMa(n2,rfsel)=n1∧ RFPSM(rfptr)=rfsel.

We use a tuplerfsl=<n2,rfsel,n1>, which we namerecursive flow selector link, to represent
this relation. The set of all recursive flow selector links iscalledRFSL.

Coexistent links sets are now naturally expanded to includethe new elements. First, we group pointer
links and recursive flow pointer links,PL ∪ RFPL. Then, selector links are grouped with recursive flow
selector links,SL ∪ RFSL, to augment the domain of the selector links with attributes: SLatt=(SL ∪

RFSL)×ATTSL. The new domain for coexistent links sets isCLM: N −→ P(PL ∪ RFPL)×P(SLatt).
Therefore, a coexistent links setclsn for noden is redefined as:

Compilation techniques based on shape analysis for pointer-based programs



3.2. Extensions for interprocedural analysis 63

clsn={PLn,SLn}

where:

PLn = {pl ∈ PL s.t.pl=<x,n>} ∪ {rfpl ∈ RFPL s.t.rfpl=<xrfptr,n>}
SLn = {slatt ∈ SLatt s.t.slatt=<<n1,sel,n2>,attsl>∨

slatt=<<n1,xrfsel,n2>,attsl>, being (n1=n ∨ n2=n)}

Obviously, the domain for an abstract graph is the setSG ⊂ P(N)×P(CLS), and each element of this
domain, a shape graphsgi ∈ SG, is a tuplesgi=<Ni,CLSi>, as previously defined.

Fig. 3.4(c) shows the abstract domain representation of (b). We should note that in the case thatn2=n1
in therfsl, then more than two consecutive pending calls are represented by this relation: in this case, all
the pending calls for whichPMa(x)=n1=n2 are represented by just one recursive flow selector link. For
example,rfsl2=<n1,xrfsel,n1> in Fig. 3.4(c) stands for the tracing of pointerx along two previous
recursive calls, as indicated bycls1n1=<. . .,rfsl2o> andcls2n1=<rfsl2i,rfsl1o,. . .>.

3.2.3 Context change rules

The analysis at function calls must account for the assignment of actual to formal parameters and for the
change of analysis domain between the caller and the callee.For it, shape graphs are transformed into the
appropriate context while flowing in and out of functions by thecontext change rules, namely thecall-to-
start (CTS) rule, and thereturn-to-call (RTC) rule.

The call-to-start rule determines how the recursive flow links in the shape graphs are transformed from
a function call to the context inside the function. On the other hand, the return-to-call rule transforms the
heap abstraction returned by a function to the appropriate context at the calling site. Each of these rules has
a recursive (CTSrec andRTCrec) and non-recursive (CTSnrec andRTCnrec) version. Next, we will cover
each of these rules showing their algorithms and illustrating them with examples.

3.2.3.1 Non-recursive call-to-start rule

The non-recursive call-to-start rule (CTSnrec) determines how a shape graph is changed when entering a
new function context. Such a case occurs whenreverse() is called from themain() function. The list
passed as argument is then transformed to the callee context. This case is illustrated by Fig. 3.6.

Figure 3.6: Example of shape graph transformation by theCTSnrec rule.

The algorithm that explains this context change is shown in Fig. 3.7. First, pointer formal parameters
are assigned to the pointer actual parameters, which are then nullified as they fall out of scope (unless they
are global pointer variables). In this example (Fig. 3.6), actual parameterlist is exchanged for pointer
formal parameterx.

University of Málaga



64 Chapter 3. Interprocedural shape analysis

CTSnrec()
Input:sg1=<N1,CLS1>, PTRfun, AFPM(s,fun)
# A shape graph, formal and local ptrs forfun, and set of pairs<aptr,fptr> of call sites
Output:RSSGk

# A reduced set of shape graphs

RSSG2=sg1

forall x ∈ APTRs # APTRs is the set of actual pointers in the call stmt.s
Find the pair<aptr,fptr> ∈ AFPM(s,fun) s.t.x=aptr
RSSG3=

⊔RSSG
∀sg’∈RSSG2XY(sg’,fptr,aptr) # fptr=aptr

If (aptr /∈ GLB),
RSSG4=

⊔RSSG
∀sg’’∈RSSG3XNULL(sg’’,aptr) # aptr=NULL

else
RSSG4=RSSG3

RSSG2=RSSG4

endfor
If (∃ s’ ∈ STMfun s.t.s’ ∈ Scall rec), # The case whenfun will include a recursive call site

forall rfsel ∈ RFSELfun,
forall sgi=<Ni,CLSi> ∈ RSSG2,

forall nj ∈ Ni, # Initializexrfsel for all nodes in all graphs
Createsl’att=<<nj,rfsel,•>,attsl’={o}>
forall clsnj={PLnj,SLnj} ∈ CLSnj (beingCLSnj ⊂ CLSi)

SLnj=SLnj ∪ sl’att
endfor

endfor
endfor

endfor
RSSGk=RSSG2

return(RSSGk)
end

Figure 3.7: TheCTSnrec() function.

Then, if the callee is a recursive function, a recursive flow selector link initialization phase takes place:
we create arfsl from every node to•, which is added with the output attribute (o) to everycls in the
node, i.e.,sl’att=<<nj,rfsel,•>,attsl’={o}> is added for everyclsnj ∈ CLSnj. This is done
for every recursive flow selector contained inRFSELfun. For our example,RFSELreverse={xrfsel}, and
rfsl1 andrfsl2 are added to thecls’s for n1 andn2 respectively. The shape graph obtained,sgB, is
now ready to be analyzed within the context ofreverse().

3.2.3.2 Recursive call-to-start rule

The recursive version of the call-to-start rule (CTSrec) determines the context change in a graph that en-
counters a recursive function call,s ∈ Scall rec. It works differently from the non-recursive version as the
change of context does not involve a change in pointer names but a change in the state of the same pointers
within a new recursive context. Fig. 3.8 shows such a contextchange when callingreverse() for the
third time in our running example. The algorithm that describes the changes in the shape graph is found in
Fig. 3.9

Compilation techniques based on shape analysis for pointer-based programs



3.2. Extensions for interprocedural analysis 65

Figure 3.8: Example of graph transformation by theCTSrec rule.

CTSrec()
Input: sg1=<N1,CLS1>, PTRfun, AFPM(s,fun)
# A shape graph, formal and local ptrs forfun and set of pairs<aptr,fptr> of call sites
Output:RSSGk

# A reduced set of shape graphs

RSSG2=sg1

forall rfptr ∈ RFPTRfun
Findptr andrfsel s.t.RFPPM(rfptr)=ptr andRFPSM(rfptr)=rfsel
RSSG3=

⊔RSSG
∀sg’∈RSSG2XSelY(sg’,ptr,rfsel,rfptr) # ptr->rfsel=rfptr

RSSG4=
⊔RSSG

∀sg’’∈RSSG3XY(sg’’,rfptr,ptr) # rfptr=ptr

RSSG5=
⊔RSSG

∀sg’’’∈RSSG4XNULL(sg’’’,ptr) # ptr=NULL

endfor
forall x ∈ APTRs

Find the pair<aptr,fptr> ∈ AFPM(s,fun) s.t.x=aptr
RSSG3=

⊔RSSG
∀sg’∈RSSG2XY(sg’,fptr,aptr) # fptr=aptr

If (aptr /∈ GLB),
RSSG4=

⊔RSSG
∀sg’’∈RSSG3XNULL(sg’’,aptr) # aptr=NULL

else
RSSG4=RSSG3

RSSG2=RSSG4

endfor
RSSGk=RSSG2

return(RSSGk)
end

Figure 3.9: TheCTSrec() function.

First, for every recursive flow pointersrfptr ∈ RFPTRfun considered for the function, we assign it to
the node pointed to by the tracked pointerptr, prior to the change of context. Also the associated recursive
flow selectorrfsel is used to leave a trace the the previous node forrfptr. When the trace is established,
the tracked pointerptr can be nullified. Its value for the new context will be set in the next phase of this
algorithm.

University of Málaga



66 Chapter 3. Interprocedural shape analysis

In this example, onlyx is traced along the interprocedural control flow. InsgB from Fig. 3.8,rfsl2
is set betweenn2 andn1, to keep track of the location wherex was pointing to two calls back in the ARS.
Then,xrfptr is made to point ton2 in sgB. This step is completed by nullifyingx. Next in the algorithm,
actual and formal parameters are matched. Pointer formal parameterx is assigned ton3 in sgB, which was
pointed to by actual parameterz in sgA. Sincez is not a global pointer, it is nullified for the new context.

3.2.3.3 Recursive return-to-call

The recursive return-to-call rule (RTCrec) describes the context change when returning to a recursivecall.
Fig. 3.10 shows such a context change when returning from thethird call toreverse(). The algorithm
that describes these changes is depicted in Fig. 3.11.

Figure 3.10: Example of graph transformation by theRTCrec rule.

First, the pointer assigned at the recursive call statement, assptr, is made to point to the node pointed
to by the pointer returned by the function return statement,retptr. In the example we showcase here,
this involves no change asassptr=retptr=y. Then, actual parameters from the previous context are
recovered by matching with formal parameters with theAFPM mapping: z now points ton3 in sgB

(Fig. 3.10), the node that its matching formal parameterx was pointing to insgA. Remember that we do
not allow pointer formal parameters to be modified (see section 3.1).

Finally, the previous state of recursive flow links is restored:x in sgB points ton2, which was pointed to
byxrfptr in sgA and, from the new state ofx, recursive flow pointerxrfptr follows through thex->xrfsel
path ton1. The recursive flow selector linkrfsl2 from sgA is nullified now, once its path has been
followed.

3.2.3.4 Non-recursive return-to-call

The non-recursive version of the return-to-call rule (RTCnrec) is the last context change rule. It performs
the appropriate context change when returning to a non-recursive call site,s ∈ Scall nrec. Let us consider
now thesgA shape graph in Fig. 3.12. It is one of thefunction summariesobtained in the analysis of
reverse(). It is achieved at the fixed point for the analysis of the function. On top of that, it is a
shape graph that is eligible for the non-recursive return, as it represents a heap state for the first call to
reverse(). This can be easily deduced by the fact that recursive flow pointer xrfptr is not assigned.
This means thatx could not have been assigned at a previous recursive call. For a full reference of all the
summary shape graphs resulting from the analysis ofreverse(), please refer to Appendix B.

Compilation techniques based on shape analysis for pointer-based programs



3.2. Extensions for interprocedural analysis 67

RTCrec()
Input:sg1=<N1,CLS1>, PTRfun, AFPM(s,fun), RAPM(s,fun)
# A shape graph, formal and local ptrs forfun, set of pairs<aptr,fptr> of call sites,
# and the corresponding<retprt,assptr> pair
Output:RSSGk

# A reduced set of shape graphs

RSSG1=XY(sg1,assptr,retptr) # assptr=retptr
RSSG2=RSSG1

forall x ∈ APTRs # APTRs is the set of actual pointers in the call stmt.s
Find the pair<aptr,fptr> ∈ AFPM(s,fun) s.t.x=aptr
RSSG3=

⊔RSSG
∀sg’∈RSSG2XY(sg’,aptr,fptr) # aptr=fptr

RSSG2=RSSG3

endfor
forall rfptr ∈ RFPTRfun

Findptr andrfsel s.t.RFPPM(rfptr)=ptr andRFPSM(rfptr)=rfsel
RSSG4=

⊔RSSG
∀sg’’∈RSSG2XY(sg’’,ptr,rfptr) # ptr=rfptr

RSSG5=
⊔RSSG

∀sg’’’∈RSSG4XYSel(sg’’’,rfptr,ptr,rfsel) # rfptr=ptr->rfsel

RSSG6=
⊔RSSG

∀sg’’’’∈RSSG5XSelNULL(sg’’’’,ptr,rfsel) # ptr->rfsel=NULL

RSSG2=RSSG6

endfor
RSSGk=RSSG2

return(RSSGk)
end

Figure 3.11: TheRTCrec() function.

Figure 3.12: Example of graph transformation by theRTCnrec rule.

Fig. 3.13 presents the algorithm that explains the steps involved forRTCnrec. First, the shape graph
is checked for validity. If the shape graph contains anyrfptr for the function which is still assigned,
it represents heap states beyond the non-recursive call to the recursive function, and does not represent
heap states that must exit the function. On the other hand, ifall rfptr’s in the function are nullified,
then we can proceed with the context change to exit the function. In that case, the next step is to alias the
assigned pointer,assptr, with the pointer returned by the function return statement, retptr. In our
example,r is made to point ton3 in sgB (Fig. 3.12), the node that the returned pointery was pointing to
in sgA. Then, theAFPM mapping is used to determine the matching of actual and formal parameters.

University of Málaga



68 Chapter 3. Interprocedural shape analysis

RTCnrec()
Input:sg1=<N1,CLS1>, PTRfun, AFPM(s,fun), RAPM(s,fun)
# A shape graph, formal and local ptrs forfun, set of pairs<aptr,fptr> of call sites,
# and the corresponding<retprt,assptr> pair
Output:RSSGk

# A reduced set of shape graphs

If (∃ rfpl ⊂ clsnj s.t.clsnj ⊂ CLS1, beingrfpl=<rfptr,nj> with rfptr ∈ RFPTRfun)
RSSGk=∅

else
RSSG1=XY(sg1,assptr,retptr) # assptr=retptr
RSSG2=RSSG1

forall x ∈ APTRs # APTRs is the set of actual pointers in the call stmt.s
Find the pair<aptr,fptr> ∈ AFPM(s,fun) s.t.x=aptr
RSSG3=

⊔RSSG
∀sg’∈RSSG2XY(sg’,aptr,fptr) # aptr=fptr

RSSG2=RSSG3

endfor
forall x ∈ PTRfun,

RSSG3=
⊔RSSG

∀sg’’∈RSSG2XNULL(sg’’,x) # x=NULL

RSSG2=RSSG3

endfor
forall rfsel ∈ RFSELfun,

RSSG3=∅
forall sgi=<Ni,CLSi> ∈ RSSG2

forall nj ∈ Ni # Removexrfsel for all nodes in all graphs
forall clsnj={PLnj,SLnj} ∈ CLSnj (beingCLSnj ⊂ CLSi),

Findslatt1 ⊂ clsnj beingslatt1=<<nk,rfsel,np>,attsl1>
SLnj=SLnj-slatt1

endfor
endfor
RSSG3=RSSG3 ∪ sgi

endfor
RSSG2=RSSG3

endfor
RSSGk=RSSG2

return(RSSGk)
end

Figure 3.13: TheRTCnrec() function.

AFPM(st.2,reverse)={<list,x>} makes us pointlist to the nodex was pointing to, at the
head of the list.

When returning from a non-recursive call, all pointers in the function fall out of scope so they must be
nullified. That is why we removex, y andz from the graph. As a consequence of nullifying this pointers,
some nodes become compatible and the graph is summarized to preserve the normal form. Once we leave
the recursive flow of the analysis, the recursive flow selector links that were introduced inCTSnrec are no
longer needed, and they are removed.

Compilation techniques based on shape analysis for pointer-based programs



3.2. Extensions for interprocedural analysis 69

3.2.3.5 Keeping track of a reduced number of recursive flow links

So far we have overlooked the issue of selecting the proper recursive flow links for a recursive function.
This was done for the sake of simplicity when presenting recursive flow links and the context change rules.
Here, we address the subject in detail.

In our approach, we have chosen to abstract the information that we require from the ARS as an exten-
sion to the links that exist in our shape graph domain. This makes it easy for us to accommodate recursive
analysis by introducing new links that are treated just as existing links, so we do not need to change our
abstract semantics operations. However, the drawback is that we introduce more complexity in the graph,
by adding elements that do not correspond to actual heap elements. Instead they abstract information that is
related to the recursive flow of the analysis.

The pointers that are tracked along the interprocedural analysis provide key information for the context
change algorithms to work properly. As the reader may have noticed, the content of theRFPTRfun and
RFSELfun sets is checked in these algorithms, to determine the recursive flow links that are generated in
the call-to-start rules and followed in the return-to-callrules.

As previously mentioned, in the worst case, for a recursive functionfun, we need to traceeverypointer
in PTRfun, i.e., its locally defined pointers and pointer formal parameters. In fact, a naive approach might
do just that. However, the shape graphs would be unnecessarily complicated, because onlysomepointers
need to be traced. The rest can be safely deduced by the actualvs. formal parameters matching and the
assigned pointer vs. returned pointer matching implicitlyoccurring at context changes. In particular, only
the pointers within a recursive functionfun that are not actual parameters of a recursive call tofun neither
they are assigned at any recursive call site, are traced. This is more formally expressed as:

• ∀ ptr∈ PTRfun ∧ ∀ s ∈ Scall rec calling tofun, s.t.ptr /∈ APTRs ∧ ptr 6= assptr, the pointer
assigned ats, ∃ rfptr ∈ RFPTRfun s.t. RFPPM(rfptr)=ptr ∧ ∃ rfsel ∈ RFSELfun s.t.
RFPSM(rfptr)=rfsel.

For example, let us apply this criterion to all the local pointers for reverse(),
PTRreverse={x,y,z}. There is only one recursive call site for this function,st.6:y=reverse(z),
whereAPTRst.6={z} and assptr=y. Pointerx does not belong toAPTRst.6, nor it is assptr,
therefore a recursive flow pointer and recursive flow selector must exist forx. Conversely, pointery is the
assigned pointer,assptr, and pointerz belongs toAPTRst.6, so no recursive flow pointers or recursive
flow selectors are needed for them.

Usually, just one pointer needs to be traced: the formal parameter used to navigate the structure. In the
reverse() example,x is such a pointer. Carrying just one recursive flow pointer - recursive flow selector
pair, such asxrfptr-xrfsel, for a recursive function is not a heavy burden for our analysis.

On a practical note, the setsRFPTRfun andRFSELfun are built according to information provided
externally to the analysis. This is done through a special preprocessing directive calledexcludeRFPTR.
The original code is instrumented to feature this directive, yielding the code forreverse() shown in
Fig. 3.14. Within the function body the directive#pragma SAP.excludeRFPTR(y,z) indicates to the
preprocessing pass built onto Cetus that pointersy andz do not need to be traced along the interprocedural
flow of the analysis.

3.2.3.6 Limitations in the use of recursive flow links

The mechanism to analyze recursive functions based on recursive flow links and context change rules has a
limitation on the kind of functions that it can analyze. In the presence of more than one recursive call to the

University of Málaga



70 Chapter 3. Interprocedural shape analysis

struct node * reverse(struct node *x){
struct node *y,*z;
#pragma SAP.excludeRFPTR(y,z)

1: z=x->nxt;
2: x->nxt=NULL;

if(z!=NULL){
3: #pragma SAP.force(z!=NULL)
4: y=reverse(z);
5: #pragma SAP.force(x!=NULL)
6: z->nxt=x;

}else{
7: #pragma SAP.force(z==NULL)
8: y=x;

}
9: return y;

}

Figure 3.14: Thereverse() recursive function instrumented with theexcludeRFPTR directive in bold
typeface.

same function, pointers that are matched as actual parameters or assigned pointers at a recursive call site,
may be untraceable in a subsequent recursive call where theyare not used as actual parameters. In such a
case, it will not be possible to recover those pointers when returning from a recursive call, and the analysis
cannot proceed.

More specifically, we characterize the cases that are unsupported by the the following check:

• Let s1 ands2 ∈ Scall rec be two recursive call sites forfun, and lets1 precedes2 in the function
lexicographic order. If ((∃ ptr ∈ PTRfun s.t.ptr ∈ APTRSs1 ∨ ptr=assptr, pointer assigned at
s1) ∧ ptr /∈ APTRSs2 ∧ ptr is live afters2) =⇒ the analysis cannot traceptr and it must abort.

This check is performed at the Cetus preprocessing pass, prior to the shape analysis. In the case where
we encounter a recursive function that cannot be analyzed, the analysis cannot be performed.

Consider the example of Fig. 3.15(a). It shows a recursive function to create a binary tree,
create tree(), where pointern is traced with recursive flow links. This function features two recursive
function calls, one to create the left subtree and another tocreate the right subtree. When returning from the
call to the left side, pointerl points to the root of a subtree that will be used as the left child for the current
location pointed to byn, therefore it is alive value (it will be read before it is reassigned orkilled). The call
for the right side is performed immediately after the call tothe left side, though. Sincel is a local pointer,
it is nullified on the context change (CTSrec). Therefore, it will not be possible to recover it when returning
from the right side call. Note that not even arfptr-rfsel pair for l, or evenr, would fix this, as we
would not know how to leave the trace for a pointer that has notyet been assigned when encountering a new
left side call in the next recursive call.

Fortunately and according to our experience, these cases can be rewritten to an equivalent version that
avoids the problem, just by reordering a few statements in a way that preserves the program behavior. This
has been done in the code shown in Fig. 3.15(b), where the statements in bold typeface have been rearranged.
Here, the subtree reached throughl is linked as left subtree ofn, just after returning from the left side call.
Once this is done,l is no longer needed (it isdead), and can be nullified. Then, the right side call can be

Compilation techniques based on shape analysis for pointer-based programs



3.2. Extensions for interprocedural analysis 71

struct tree node *create tree(int depth){
struct tree node *n,*l,*r;
#pragma SAP.excludeRFPTR(l,r)
if(depth>0){

n=(struct tree node *)malloc(...);
l=create tree(depth-1);
r=create tree(depth-1);
n->lft=l;
l=NULL;
n->rgh=r;
r=NULL;

}else{
n=NULL;

}

return n;
}

struct tree node *create tree(int depth){
struct tree node *n,*l,*r;
#pragma SAP.excludeRFPTR(l,r)
if(depth>0){

n=(struct tree node *)malloc(...);
l=create tree(depth-1);
n->lft=l;
l=NULL;
r=create tree(depth-1);
n->rgh=r;
r=NULL;

}else{
n=NULL;

}

return n;
}

(a) (b)

Figure 3.15: (a) A function to create a binary tree whose pointer l cannot be traced by our technique. (b)
A rearranged version of the same function that works in the same way and that is adequately supported.
Rearranged statements appear in bold.

performed with no trouble. In the context of current compilers, this transformation is very simple and can
be performed by a previous step in the compilation process.

3.2.4 Data-flow equations and worklist algorithm

The data-flow equations presented in chapter 2, for intraprocedural analysis, accounted for the behavior
of loops and branches, e.g.,while andif statements. These statements do not have associated abstract
semantics operations, and therefore do not modify the shapegraphs, but rather drive the analysis toward
its fixed point. Branch statements contemplate the incomingshape graph for all branches and later join
the results. Loop statements iterate the analysis of the statements within their body until the shape graphs
change no more.

For interprocedural analysis we need to model the effect of function calls and return statements, as we
have mentioned earlier. Upon finding a call statement, the context appropriate for the function body is
adopted, and upon finding a return statement, the context of the caller is recovered. The analysis is now
entitled to find a fixed point for recursive functions as well.

[ENTRYnrec]:RSSG•sefun =INs∈Scall nrec(RSSG
•s)=

=
⊔RSSG
sgi∈RSSG•s CTSnrec(sg

i,PTRfun,AFPM(s,fun))

[ENTRYrec]: RSSG•sefun =INs∈Scall rec(RSSG
•s)=

=
⊔RSSG
sgi∈RSSG•s CTSrec(sg

i,PTRfun,AFPM(s,fun))

[EXITnrec]: RSSGs•=OUTs∈Scall nrec(RSSG
•srfun)=

=
⊔RSSG
sgi∈RSSG•srfun RTCnrec(sg

i,PTRfun,AFPM(s,fun),RAPM(s,fun))

[EXITrec]: RSSGs•=OUTs∈Scall rec(RSSG
•srfun)=

=
⊔RSSG
sgi∈RSSG•srfun RTCrec(sg

i,PTRfun,AFPM(s,fun),RAPM(s,fun))

Figure 3.16: Data-flow equations for interprocedural support.

University of Málaga



72 Chapter 3. Interprocedural shape analysis

Worklist()
Input:P=<FUN,STMT,PTR,TYPE,SEL>,FUN=<FUNfun,STMTfun,PTR,TYPE,SEL>, RSSGin

# A program or a non-recursive function and an inputRSSG
Output:RSSGout

# TheRSSG at the exit program point

1: CreateW=STMT
2: RSSG•se=RSSGin

3: ∀ s ∈ STMT→ RSSGs•=∅
4: repeat
5: Removes fromW in lexicographic order
6: RSSG•s=

⊔RSSG
s’∈pred(s)RSSG

s’•

7: Case (s),
8: s ∈ Scall nrec

9: Let fun ∈ FUN, be the function called bys
10: RSSGs•=Tabulate(s,<FUNfun,STMTfun,PTR,TYPE,SEL>,RSSG•sefun)
11: break
12: s ∈ Scall rec

13: Let fun ∈ FUN, be the function called bys
14: RSSG•sefun=INs∈Scall rec(RSSG

•s)
15: RSSGs•=Worklist rec(<FUNfun,STMTfun,PTR,TYPE,SEL>,RSSG•sefun)
16: break
17: s ∈ Sreturn
18: TABfun(CUR TABin)=RSSG•s

19: Let s’ ∈ Scall nrec, be the non-recursive call site that calledfun
20: RSSGout=RSSGs•=OUTs’∈Scall nrec(RSSG

•s)
21: succ(s)=∅
22: break
23: default
24: RSSGs•=ASs(RSSG•s)
25: break
26: If (RSSGs• has changed),
27: forall s’ ∈ succ(s),
28: W=W ∪ s’
29: endfor
30: until (W=∅)
31: return(RSSGout)

end

Figure 3.17: The extended worklist algorithm for interprocedural support. It computes theRSSGs• at each
program point.

The process of finding a fixed point in the analysis of interprocedural programs is controlled by the inter-
procedural data-flow equations. We present them now in Fig. 3.16. They augment the intraprocedural data-
flow equations presented in chapter 2. Basically, we presenttwo different equations for the ENTRY/EXIT
data-flow transfers from the caller to the callee and from thecallee to the caller. We distinguish between non-
recursive and recursive calls and returns. In these new equations, we assume thatfun is the function called
by statements, sefun the entry point atfun andsrfun the return point offun. Equations[ENTRYnrec]
and[ENTRYrec] perform the transfer from the caller to the callee in the caseof a non-recursive or a re-
cursive call, respectively; Equations[EXITnrec] and[EXITrec] transfer the analysis back to the caller.

Compilation techniques based on shape analysis for pointer-based programs



3.2. Extensions for interprocedural analysis 73

Context change rules are used according to theENTRY/EXIT and recursive/non-recursive character of each
equation.

We present in Fig. 3.17 the extended worklist algorithm for solving the data-flow equations presented.
The input of our worklist algorithm is a programP with functions, or a functionFUN with its corresponding
functions, and an inputreduced set of shape graphs, RSSGin. The initial set is empty, i.e.,RSSGin=∅.
The output of the algorithm is theRSSGout resultant at the exit program or function point. Without loss of
generality we assume that there is only one return point on each function. The algorithm also computes the
resultantRSSGs• at each program point.

Our algorithm processes the worklist using the main loop defined in lines 4–30. We can see that the
algorithm is sensitive to the type of statement being processed (line 7). Ifs ∈ Scall nrec, i.e., it is a non-
recursive call (lines 8–11) theTabulate() algorithm is called with the call site statement, the function
to enter and theRSSG available at that point. TheTabulate() function transforms the incoming shape
graphs to the context inside the function called, checking if similar contexts have been analyzed before. If
they have, then a previouslytabulated outputis returned, so that the same graphs are not reanalyzed. If the
incoming graphs have not been analyzed before, a new instance of theWorklist() algorithm is called
for the current function. TheTabulate() function will be covered in detail in section 3.3.

In the case of a recursive call statement, i.e.,s ∈ Scall rec (lines 12–16), the current shape graphs
are first put into the new context, then a new worklist algorithm for the recursive function is called,
Worklist rec() (Fig. 3.18). We shall discuss this algorithm shortly.

In the case of a return statement, i.e.,s ∈ Sreturn (lines 17–22), found within aWorklist() algo-
rithm, it means that we have found the end of the body of the function being analyzed by the algorithm.
The shape graphs obtained are tabulated for future reference, and then adapted for the context suitable when
returning to the calling statement. To mark the end of the analysis for the current function, the successor set
for the return statement is set to empty (succ(s)=∅).

If the analyzed statement is another statement (not a function call or return statement, lines 23–25), then
the appropriate abstract semantics is applied, as presented in chapter 2. If the graphs change, the successors
of the analyzed statement are added to the worklist. If the graphs do not change, this means we have reached
a fixed point and the analysis of the function has finished.

Let us now continue with the process of interprocedural analysis by contemplating theWorklist rec()
algorithm (Fig. 3.18). It operates similarly toWorklist(), again considering different cases according to
the currently analyzed statement. In the case of a non-recursive call statement or aregular statement (not a
function call nor a return statement), it works in the same way than theWorklist() algorithm.

The specific behavior comes when encountering a recursive call site or a return statement. For the
recursive call site (lines 12–15), the incoming shape graphs are first transformed to the appropriate context
with theCTSrec rule (called withinINs∈Scall rec()). Then, the entry point of the function is set as successor
for the current statement, so that the function body can be analyzed again for the new context.

On the other hand, when encountering a return statement (lines 16–20), we must return to the recursive
call site that called the current function. The graphs are put into the correct context withRTCrec (called
within OUTs’∈Scall rec()), andall the recursive call sites for the function are set as successors in the analy-
sis. Thus, we propagate the result obtained at the return statement to every possible recursive call that may
have called the function. Keep in mind that the context change has been performed according to the actual
call statement considered,s’ ∈ Scall rec.

University of Málaga



74 Chapter 3. Interprocedural shape analysis

Worklist rec()
Input:FUN=<FUNfun,STMTfun,PTR,TYPE,SEL>, RSSGin # A rec.fun ∈ FUN and an inputRSSG
Output:RSSGout # TheRSSG at the exit program point

1: CreateW=STMTfun
2: RSSG•sefun=RSSGin

3: ∀ s ∈ STMTfun → RSSGs•=∅
4: repeat
5: Removes fromW in lexicographic order
6: RSSG•s=

⊔RSSG
s’∈pred(s) RSSG

s’•

7: Case (s),
8: s ∈ Scall nrec

9: Let foo ∈ FUNfun, be the function called bys
10: RSSGs•=Tabulate(s,<FUNfoo,STMTfoo,PTR,TYPE,SEL>,RSSG•sefoo)
11: break
12: s ∈ Scall rec

13: RSSG•sefun=INs∈Scall rec(RSSG
•s)

14: succ(s)=sefun
15: break
16: s ∈ Sreturn
17: Let {s’ ∈ Scall rec ⊂ STMTfun} # The recursive call sites atfun
18: RSSGout=RSSGs•=

⊔

s’∈Scall rec
OUTs’(RSSG•s)

19: succ(s)={succ(s’) ∀ s’ ∈ Scall rec ⊂ STMTfun}
20: break
21: default
22: RSSGs•=ASs(RSSG•s)
23: break
24: If (RSSGs• has changed),
25: forall s’ ∈ succ(s),
26: W=W ∪ s’
27: endfor
28: until (W=∅)
29: return(RSSGout)

end

Figure 3.18: TheWorklist rec algorithm for recursive support. It computes theRSSGs• at each state-
ment function point.

3.3 Reuse of function summaries

In the context of interprocedural analysis, it is importantto be able to reuse the computed effect of functions
that have already been analyzed, a technique sometimes referred to asmemoization. If we store the input-
output abstractions obtained for the analysis of a function, then we can reuse the computed result for an
equivalent input. For a complex technique like shape analysis, reuse of function summaries is particularly
useful, because it may save repetition of costly analyses.

Our implementation employs a tabulation algorithm similarto [48], recording function summaries for
reuse under equivalent calling contexts. This task is performed by theTabulate() algorithm. Every
time a non-recursive call statement is encountered, theTabulate() algorithm is invoked. It starts by
dividing or splitting the heap representation according to thereachability of actual parameters ins and
global pointers. This way, for each incoming shape graph, weobtain two graphs: (i) thereachable graph,

Compilation techniques based on shape analysis for pointer-based programs



3.3. Reuse of function summaries 75

which abstracts the part of the heap accessible through the function call actual parameters (APTRs) and
global pointers (GLB), by following any pointer-chasing path from them; and (ii)the unreachable graph,
which abstracts the part of the heap that isnot accessible inside the function called bys, or equivalently, the
part of the heap accessible through the rest of pointers in the program (PTR-{APTRs ∪ GLB}).

Let us present the basic procedure for reusing function summaries. Fig. 3.19 and Fig. 3.20 present a
scenario where two singly-linked lists are reversed, with the recursivereverse() function presented in
this chapter. We start withsg1, the shape graph that captures both lists, pointed to by pointersa andb. For
simplicity, only some graphs in the figures feature thecls’s associated with them, the rest of the graphs will
be just shown as nodes and link-edges. Thecls’s in sg1 (Fig. 3.19) show that the two lists are independent
and that there are no cycles in them, because there is not anycls with two incomingsl’s.

When encountering the non-recursive call toreverse(), the shape graph is split by reachability:sg1

is split starting froma, the pointer actual parameter used for the call. The result is the singly-linked list
reached froma, in sg2. The same shape graph,sg1 is split considering the reachability from the rest
of pointers, i.e.,b, r1 andr2, yielding sg3, which stands for the list reached fromb (r1 andr2 are
not yet assigned at this point). This way, only the part of theheap abstraction that is reachable inside the
reverse() function, and thus can be affected by it, is actually passed on to be analyzed.

Once we have obtained the reachable graph,sg2, it is put into context with theCTSnrec rule, yielding
sg4. Next, thereverse() function is analyzed using theWorklist rec() algorithm as previously
explained. We already presentedsg5 as one possible result for the analysis ofreverse() for the input
of a singly-linked list. There are more possible shape graphs for this analysis (see Appendix B), but for
simplicity let us continue the example with justsg5. At this point, we now store the input-output pair
registered for this analysis run ofreverse(),TABreverse(RSSG3)=RSSG4. The shape graphs obtained
are then put into context with theRTCnrec rule. Each of the graphs obtained is joined with the unreachable
graph split before the call,sg3. As a consequence, we obtainsg7, which is the heap abstraction of the
reversed list whose head is now pointed to byr1 and the list pointed to byb. The box in dashed line
contains the overall effect of the analysis ofr1=reverse(a), whereRSSG1 is received as input and
RSSG6 is the resulting output. Pointera is now longer required (it now points to the tail of the first list) and
can be nullified, to obtainsg8.

The example continues with a second non-recursive call toreverse() in Fig. 3.20. This time we
invokereverse() for the list pointed to byb, r2=reverse(b). The reachable graph,sg9, contains
only the list pointed to byb, while the unreachable graph contains the list pointed to byr1 (a andr2 are
not assigned). The input graph for the analysis ofreverse(),sg11, is the same that was registered when
reversing the first list, so we can use the previously computed result,RSSG10=TABreverse(RSSG9), thus
saving the analysis time ofreverse(). Again, the result is put into context by theRTCnrec rule, and then
joined with the unreachable graph to produce the final resultsg14 in RSSG12. Again, the dashed-line box
captures the effect ofr2=reverse(b), with inputRSSG7 and outputRSSG12. This analysis runs faster
than that ofr1=reverse(a), because it does not need to analyzereverse() again. Finally, pointerb
can be nullified to produce the final result ofRSSG13, with the two lists reversed.

TheTabulate() algorithm is depicted in Fig. 3.21. This algorithm is invoked any time the analysis
encounters a non-recursive call statement,s ∈ Scall nrec. Each incoming shape graph in the inputRSSGin

is split by its reaching (APTRs ∪ GLB) and non-reaching (PTR-{APTRs ∪ GLB}) pointers. In this way,
we obtain the reachable graphsgr and unreachable graphsgu. The reachable shape graph is wrapped into
a reduced set of shape graphsRSSGr for the context change byCTSnrec due inINs∈Scall nrec(). The input
RSSGi is kept inCUR TABin for future tabulation.

If the input RSSGi was already used for a previous analysis, the storedRSSGt is obtained without
reanalyzing the function. If the inputRSSGi has not yet been analyzed, then we proceed normally by

University of Málaga



76 Chapter 3. Interprocedural shape analysis

Figure 3.19: Storing pair of input-outputRSSG for the analysis ofreverse(), after splitting incoming
shape graph by reachability of reaching and non-reaching pointers.

invoking theWorklist() algorithm for the function called bys ∈ Scall nrec. When that invocation
of the Worklist() algorithm finds its return statement, then the tabulation pair CUR TABin-RSSG•s

is established (line 18 in Fig. 3.17). Note that we store thisrelation for each incoming shape graph in
Tabulate() (wrapped inCUR TABin), which maximizes the possibilities of reuse. Whatever thecase
the resultingRSSGk is obtained,Tabulate() continues by joining each of the shape graphs that capture
the behavior of the function with the unreachable shape graph saved previously,sgu. The results accumulate

Compilation techniques based on shape analysis for pointer-based programs



3.3. Reuse of function summaries 77

Figure 3.20: Example of function summary reuse when callingreverse()with a new list.

in the finalRSSGout.

The splitting process is performed by theSplit by reachability() algorithm, featured in
Fig. 3.22. It takes as input a shape graph and a set ofreaching pointers. It performs a cleanup
of the input shape graph so that only the portion of the abstract heap that is reachable through these
reaching pointers is left. The approach for this algorithm is incremental, i.e. we start with an empty
graph, and we add elements as we follow the possible paths from the reaching pointers. For every
reaching pointerptri, we first add the noden1 it directly points to, and its coexistent links sets,

University of Málaga



78 Chapter 3. Interprocedural shape analysis

Tabulate()
Input:s, FUN=<FUNfun,STMTfun,PTR,TYPE,SEL>, RSSGin

# A non-recursive function call statement, the called function and an inputRSSG
Output:RSSGout # TheRSSG after the function analysis

1: RSSGout=∅
2: forall sgi ∈ RSSGin

3: sgr=<Nr,CLSr>=Split by reachability(sgi,APTRs ∪ GLB)
4: If (Nr 6= ∅ ∧ CLSr 6= ∅)
5: sgu=Split by reachability(sgi,PTR-{APTRs ∪ GLB})
6: else
7: sgr=sgi; Nu=∅; CLSu=∅; sgu=<Nu,CLSu>
8: RSSGr=sgr

9: RSSGi=INs∈Scall nrec(RSSG
r)

10: CUR TABin=RSSGi # KeepRSSGi for future tabulation
11: If (RSSGi ∈ TABkeysfun )
12: RSSGt=TABfun(RSSGi) # Get tabulated output
13: RSSGk=OUTs(RSSGt)
14: else
15: RSSGk=Worklist(<FUNfun,STMTfun,PTR,TYPE,SEL>,RSSGi)
16: forall sgk ∈ RSSGk

17: sg1=Join SG(sgu,sgk)
18: RSSGout=RSSGout ∪ sg1

19: endfor
20: endfor
21: return(RSSGout)

end

Figure 3.21: TheTabulate() algorithm to calculate and reuse function summaries.

CLSni (lines 3–5). Then, we find all the selector links with attributes that stem from it, i.e., every
slatt=<<ni,sel,n2>,attsl={o}>. We add the noden2 reached through eachslatt, and their
clsn2’s that feature a reaching path fromn1, i.e., the addedclsn2 must have a selector links with at-
tributes of the formslatt=<<n1,sel,n2>,attsl={i|c|s}>. Now, taking as a starting point the
newly added nodesn2’s, we repeat the process considering new paths reaching to other nodes in the graph.
This iterative process continues until the whole input graph, sg1, has been scanned (lines 10–20).

For example, consider the splitting process forsg1 in Fig. 3.19. By calling
Split by reachability(sg1,{a}), we obtain insg2 the portion of the heap that is accessible
inside of ther1=reverse(a) call, sincea is the only pointer used as actual parameter, and there are no
global pointers. The rest of the heap abstraction is collected by calling the same algorithm, with a different
set of pointers:Split by reachability(sg1,{b,r1,r2}). In sg3 we obtain the part of the heap
abstraction that is effectively unreachable inside ther1=reverse(a) call.

It should be noted though that not all input shape graphs can be split. Whenever a shape graph represents
memory locations that are found both in the reachable and unreachable graphs, then the graph cannot be
safely split, because it could not be reconstructed by a simple join graph operation (Join SG()). This is
similar to the concept ofcutpointpresented in [48], but more restrictive. In the case of such acutpoint, the
analysis must proceed with the whole shape graph and will be less likely to reuse function summaries.

This situation is checked in the last part of theSplit by reachability()algorithm (lines 22–23,

Compilation techniques based on shape analysis for pointer-based programs



3.3. Reuse of function summaries 79

Split by reachability()
Input:sg1=<N1,CLS1>, PTR1 # A shape graph and a pointer set
Output:sgk=<Nk,CLSk> # Output shape graph as split by the function

1: Nk=∅; CLSk=∅
2: forall ptri ∈ PTR1

3: Findni ∈ N1 s.t.∃ pl1=<ptri,ni> ∈ CLSni
4: Nk=Nk ∪ ni
5: CLSk=CLSk ∪ CLSni
6: SL*=∅
7: forall clsni={PLni,SLni} ∈ CLSni s.t.slatt=<<ni,sel,n2>,attsl={o}>∈ SLni
8: SL*=SL* ∪ slatt
9: endfor
10: repeat
11: Removeslatt=<<n1,sel,n2>,attsl={o}> fromSL*

12: Nk=Nk ∪ n2
13: forall clsn2={PLn2,SLn2} ∈ CLSn2 s.t.slatt=<<n1,sel,n2>,attsl={i|c|s}> ∈ SLn2
14: CLSk=CLSk ∪ clsn2
15: endfor
16: forall clsn2={PLn2,SLn2} ∈ CLSn2 s.t.slatt=<<n2,sel,n3>,attsl={o}>∈ SLn2
17: CLSk=CLSk ∪ clsn2
18: SL*=SL* ∪ slatt
19: endfor
20: until (SL*=∅)
21: endfor

# Now check that all reaching pointer-chasing paths are self-contained in the graph
22: If ((∃ ptr1 ∈ PTR s.t.

(ptr1 /∈ PTR1 ∧ ∃ pl=<ptr1,nk> ∈ PLnk s.t.clsnk={PLnk,SLnk} ∈ CLSk, nk ∈ Nk))
∨ (∃ n1 ∈ N1 s.t.

(n1 /∈ Nk ∧ ∃ slatt=<<n1,sel,n2>,att={i|s}>∈ SLn2 s.t.clsn2={PLn2,SLn2} ∈ CLSk, n2 ∈ Nk)))
23: Nk=∅; CLSk=∅ # Return empty graph, as it could not be safely split
24: return(sgk=<Nk,CLSk>)

end

Figure 3.22: TheSplit by reachability() algorithm that gets the reachable part of a graph for the
given accessing pointers.

Fig. 3.22). If a pointer other than the pointers used as inputfor the algorithm points to a node contained in the
outputsgk, or if a cls has reaching paths from both the reaching pointers and the non-reaching pointers,
then the graph cannot be split and an empty graph is returned.This case is considered inTabulate()
(lines 4–7 in Fig. 3.21), to continue the analysis with an empty unreachable graph and the whole graph as
the reachable graph.

Consider the example displayed in Fig. 3.19 if we tried to split sg7 by the reachability of pointerb
as is due in call statementr2=reverse(b). In such a case, the graph could not be safely split because
non-reaching pointera is pointing to a node reachable from reaching pointerb. The reader could argue that
the node pointed to bya belongs to the first list, whileb points to a second, independent list. However, due
to the summarization involved in the graph, such information is not guaranteed, andsg7 could also stand
for a situation wherea points to the last element of the second list. Anyhow, the information that the lists
are not shared and that there are no cycles is still preservedin thecls’s for sg7. By nullifying pointera,

University of Málaga



80 Chapter 3. Interprocedural shape analysis

which isdead(no longer used), we obtainsg8, which can be safely split and allows us to reuse the effect
of the previous analysis ofreverse(). Incidentally, this example hints us of the importance of nullifying
dead pointer variables in our approach.

3.4 Refining interprocedural analysis

The extensions described so far allow us to extend the intraprocedural shape analysis technique presented in
chapter 2 to support interprocedural programs with recursive functions. However, the analysis of recursive
functions may be faced with situations where very conservative shape graph abstractions are obtained, yield-
ing the analysis too imprecise for our purposes. In this section, we present some mechanisms to alleviate
such problems.

3.4.1 Previous call property to separate traversed and non-traversed nodes

In our approach, the natural method of refining a heap abstraction is by using properties. For interprocedural
analysis, we introduce a new property calledprevious call propertyor simplyPC property. It takes the value
of a set of pointer variables tracked along the recursive analysis. For example, a node annotated with the
PC={x} property value is known to have been pointed to by pointerx in a previous recursive call. The basic
function of the PC property is to separate the nodes that havebeen left behind along a recursive traversal
from the nodes that are yet to be traversed.

Let us consider the example of Fig. 3.23(a). It shows an arbitrary long singly-linked list in the concrete
domain, being traversed in a recursive functionrec fun(). In particular, the state presented here is the
state found at the start of an arbitrary deep recursive call,after the context change. Pointerx points to the
currently accessed element,xrfptr points to the element in the list pointed to byx in the previous recursive
call, and the recursive flow selector links in the concrete domainrfslc’s, in dotted lines, maintain the trace
of x along former recursive calls.

In (b) in the same figure, we show the shape graph abstraction without the PC property. All the memory
locations contained within the boxes in dashed lines in (a) are abstracted byn3, because they are not pointed
to by pointers and we do not consider any property at this point. Noden3 abstracts the elements in the list
that have been traversed through the recursive callsas well asthe elements that are yet to be traversed. We
display thecls’s for n3 that capture some particular locations from (a). This representation introduces a
shape feature that we would like to avoid: there is the possibility that further down the list, by following
through thenxt selector, we find an element that points to another one through arfsl, which is indicative
of an element that was traversed in a previous call. This is the case if we follow fromcls2n3=<. . .,sl2o>
to cls4n3=<sl2i,. . .,rfsl2o>, for example.

In Fig. 3.23(c) we show the graph abstraction for (a) considering the PC property. Now, the nodes that
have been involved in the recursive traversal, more precisely, those that have been previously pointed to by
x, are annotated with thePC={x} property. For improved presentation, the nodes with their PC property
value to an empty set of pointers are shown as nodes without annotation. In this example, the PC property
unables the nodes that represent the traversed elements to be summarized with the nodes that represent the
rest of elements. This graph is more precise since it does notintroduce inconsistent information related to
interprocedural flow.

Hence, the previous call property is now added to the initialset defined in chapter 2, now updated as
PROP={type,site,touch,PC}. The new instrumentation domain for the PC property is defined as
follows:

Compilation techniques based on shape analysis for pointer-based programs



3.4. Refining interprocedural analysis 81

Figure 3.23: An arbitrary long singly-linked list being traversed in a recursive function in (a) the concrete
domain, (b) the abstract domainwithout the PC property, and (c) the abstract domainwith the PC property.

• PPC is the domain for the propertyprop=PC and it is defined as a set that contains the tracked pointers
defined for the program:

PPC={pPC s.t.pPC ∈ PTR ∧ ∃ rfptr ∈ RFPTR |RFPPM(rfptr)=pPC}

For the PC property the compatibility is defined as equality of the set of pointers contained
in the property, i.e., two nodesn1 and n2 are compatible with regards to the PC propertyiff
PPMPC(n1)=PPMPC(n2).

The information pertaining to the PC property is added in theCTSrec rule. When creating a node in a
malloc statement, its set of properties is initialized. In the case of the PC property, it is initialized topPC=∅.
Each time a recursive flow pointer advances in a structure traversal, pointing to a noden, the PC property
value is updated forn. In particular, the algorithm forCTSrec presented in Fig. 3.9 is modified as shown in
Fig. 3.24 to support the changes required by the PC property.

On the other hand, the PC property annotations are removed inthe RTCrec rule. In the process of
returning from a recursive call, recursive flow pointers go back in the opposite direction of the traversal.
The nodes they were pointing to are then cleared of their reference in their values of the PC property. The
algorithm presented in Fig. 3.11 forRTCrec is modified for this purpose in Fig. 3.25.

University of Málaga



82 Chapter 3. Interprocedural shape analysis

CTSrec()
Input: sg1=<N1,CLS1>, PTRfun, AFPM(s,fun)
# A shape graph, formal and local ptrs forfun and set of pairs<aptr,fptr> of call sites
Output:RSSGk

# A reduced set of shape graphs

RSSG2=sg1

forall rfptr ∈ RFPTRfun
Findptr andrfsel s.t.RFPPM(rfptr)=ptr andRFPSM(rfptr)=rfsel
RSSG3=

⊔RSSG
∀sg’∈RSSG2XSelY(sg’,ptr,rfsel,rfptr) # ptr->rfsel=rfptr

RSSG4=
⊔RSSG

∀sg’’∈RSSG3XY(sg’’,rfptr,ptr) # rfptr=ptr

If (pPC ∈ PROP)
forall sgi=<Ni,CLSi> ∈ RSSG4

Find nk ∈ Ni s.t. ∃ rfpl1=<rfptr,nk>⊂ CLSnk (beingCLSnk ⊂ CLSi)
PPMPC(nk)=PPMPC(nk) ∪ rfptr

endfor
RSSG5=

⊔RSSG
∀sg’’’∈RSSG4XNULL(sg’’’,ptr) # ptr=NULL

endfor
forall x ∈ APTRs

Find the pair<aptr,fptr> ∈ AFPM(s,fun) s.t.x=aptr
RSSG3=

⊔RSSG
∀sg’∈RSSG2XY(sg’,fptr,aptr) # fptr=aptr

If (aptr /∈ GLB),
RSSG4=

⊔RSSG
∀sg’’∈RSSG3XNULL(sg’’,aptr) # aptr=NULL

else
RSSG4=RSSG3

RSSG2=RSSG4

endfor
RSSGk=RSSG2

return(RSSGk)
end

Figure 3.24: The recursive version of the call-to-start rule extended to support the previous call (PC) prop-
erty, with the statements in bold.

3.4.2 Force pseudostatements to filter out improper contexts

In our analysis, the results obtained in return statements for recursive functions are first transformed accord-
ing to theRTCrec rule of context change, and then considered for the analysisat the successors of every
recursive call site in the function (lines 16–20 in Fig. 3.18).

Therefore, our technique offers limited context-sensitivity: it is fully context-sensitive as long as there
are no more than one recursive call site for a function. If there are more, then the contexts from the different
recursive call sites are merged for the recursive analysis.Our technique accumulates shape graphs that
result from different flow paths in thereturn statement. For correct analysis, all these shape graphs must
be considered for all possible flow paths of the program, as wedo not have information about what call site
performed the call. This can yield the analysis too imprecise for the purposes of dependence detection. We
can use certainforce pseudostatementsto palliate this problem.

Let us consider now a binary tree dynamic data structure. Fig. 3.26 shows recursive functionTreeAdd()
that performs a depth-first traverse of such a binary tree, adding the values from left and right children and

Compilation techniques based on shape analysis for pointer-based programs



3.4. Refining interprocedural analysis 83

RTCrec()
Input:sg1=<N1,CLS1>, PTRfun, AFPM(s,fun), RAPM(s,fun)
# A shape graph, formal and local ptrs forfun, set of pairs<aptr,fptr> of call sites,
# and the corresponding<retprt,assptr> pair
Output:RSSGk

# A reduced set of shape graphs

RSSG1=XY(sg1,assptr,retptr) # assptr=retptr
RSSG2=RSSG1

forall x ∈ APTRs # APTRs is the set of actual pointers in the call stmt.s
Find the pair<aptr,fptr> ∈ AFPM(s,fun) s.t.x=aptr
RSSG3=

⊔RSSG
∀sg’∈RSSG2XY(sg’,aptr,fptr) # aptr=fptr

RSSG2=RSSG3

endfor
forall rfptr ∈ RFPTRfun

Findptr andrfsel s.t.RFPPM(rfptr)=ptr andRFPSM(rfptr)=rfsel
RSSG4=

⊔RSSG
∀sg’’∈RSSG2XY(sg’’,ptr,rfptr) # ptr=rfptr

If( pPC ∈ PROP)
forall sgi=<Ni,CLSi> ∈ RSSG4

Find nk ∈ Ni s.t. ∃ rfpl1=<rfptr,nk>⊂ CLSnk (beingCLSnk ⊂ CLSi)
PPMPC(nk)=PPMPC(nk)-rfptr

endfor
RSSG5=

⊔RSSG
∀sg’’’∈RSSG4XYSel(sg’’’,rfptr,ptr,rfsel) # rfptr=ptr->rfsel

RSSG6=
⊔RSSG

∀sg’’’’∈RSSG5XSelNULL(sg’’’’,ptr,rfsel) # ptr->rfsel=NULL

RSSG2=RSSG6

endfor
RSSGk=RSSG2

return(RSSGk)
end

Figure 3.25: The recursive version of the return-to-call rule extended to support the previous call (PC)
property, with the statements in bold.

storing them in the current tree element. As a result of the execution ofTreeAdd(), the root of the tree
contains the sum of all the values in the tree. This function is drawn from theTreeAdd Olden benchmark
suite [30], but modified to write in every tree node the value obtained as the sum of the values of the left and
right children, like in [56].

Statements 1 and 2 are typical force pseudostatements that ensure proper abstractions in each branch of
theif(t==NULL) statement. Pseudostatements in bold though are added to filter out improper contexts
in recursive analysis.

In Fig. 3.27,mc1 shows the memory configuration for a binary tree pointed to bypointert. Shape graph
sg1 shows the shape graph abstraction for the binary tree. Note how all elements within the dashed-line
box inmc1 are abstracted inn2 in sg1, as we use no properties for this abstraction. Also note that, within
thecls’s in sg1, there is the possibility that the tree is not balanced, i.e.a tree node may have one left child
and no right child, and viceversa, so we are actually abstracting not just a typical balanced binary tree but
also other variations of trees with whatever number of children following different paths from the root.

The shape graphsg1 is found at the function entry at the beginning of theTreeAdd() analysis. After

University of Málaga



84 Chapter 3. Interprocedural shape analysis

int TreeAdd (struct tree *t){
int total val,value,leftval,rightval;
struct tree *tleft,*tright;
#pragma SAP.excludeRFPTR(tleft,tright)
if (t==NULL) {

1: #pragma SAP.force(t==NULL)
total val=0;

}else{
2: #pragma SAP.force(t!=NULL)
3: tleft=t->left;
4: leftval=TreeAdd(tleft);
5: #pragma SAP.force(t!=NULL)
6: #pragma SAP.force(t->left==tleft)
7: tleft=NULL;
8: tright=t->right;
9: rightval=TreeAdd(tright);
10: #pragma SAP.force(t!=NULL)
11: #pragma SAP.force(t->right==tright)
12: tright=NULL;

value=t->val;
total val=value+leftval+rightval;
t->val=total val;

}
13: return total val;

}

Figure 3.26: TheTreeAdd() recursive function instrumented with theforce pseudostatements that
allow proper context filtering displayed in bold typeface.

traversing the whole tree and adding the values, we obtain this same shape graph as the final result of the
analysis, at the return statement of the first, non-recursive call of TreeAdd(). During the process of
achieving the fixed point for all statements in the function body,sg1 is transformed by theRTCrec rule and
used for the analysis of the successors of the recursive callsites at statements 4 and 9, like every other shape
graph that reaches the function return statement.

For example, if we apply theRTCrec rule oversg1 returning to the left side call site, we obtainsg2.
Note that sincesg1 has no pointertrfptr assigned, then the tracked pointert, would not be assigned either
in sg2. However, such a graph would be inappropriate as returned byarecursivecall toTreeAdd(), where
t should be assigned to the current tree node. We can filter thissituation with the force pseudostatements
st.5=st.10=#pragma SAP.force(t!=NULL). These force pseudostatements prevent the graphs
wheret is not assigned from being analyzed by the successors of bothrecursive call sites (st. 4 and st. 9).

Considering the left side call, we can safely use the condition t!=NULL for the pseudostatements,
because (i) we read successfullyt in st.3:tleft=t->left (under assumption of code correctness)
and (ii) we know thatt could not be modified by another recursive call because it is alocal variable for the
current context and it was not modified betweenst.3 andst.5. Similarly, we can use the same condition
for the right side call.

Let us elaborate further, by considering a possible memory configuration at the return statement of the
TreeAdd() function. In particular,mc2 in Fig. 3.28. This state is found when traversing through theleft
selector twice from the root element. Reaching the return statement for this configuration means that we

Compilation techniques based on shape analysis for pointer-based programs



3.4. Refining interprocedural analysis 85

Figure 3.27: A binary tree abstracted to the abstract domain, and then used for returning to the left side call
in TreeAdd().

Figure 3.28: The use of force pseudostatements to filter out improper contexts when returning to different
call sites.

have already traversed the left and right children froml3, and stored in it the sum of the reachable elements
from l3. The shape graph that corresponds to this memory configuration issg3.

University of Málaga



86 Chapter 3. Interprocedural shape analysis

As discussed previously, in our scheme every shape graph obtained at the return statement of a recursive
function must be passed to the recursive call sites as a possible result of a previous recursive call. If we con-
sidersg3 for the change of context to the left side recursive call site(st.4), we obtainsg4, wheretleft
now points to the node pointed to byt in the previous context (sg3). On the other hand, if we considersg3

for the change of context to the right side recursive call (st.9), we obtainsg5, wheretright now points
to the node pointed to byt in the previous context.

However,sg5 does not make sense as a valid shape graph abstraction for thesuccessors of the right
side call, becausetright now points to the node reached throught->left, not throught->right. A
mirror case would happen if we had traversed through theleft, thenright path from the root inmc2,
and we were trying to return to the left side call. In other words, we may mix contexts resulting from the
left side call as returning to the right side call and viceversa.

We can preventsg5 from progressing through the successors of the right side call by using the force
pseudostatementst.11:#pragma SAP.force(t->right==tright). Every cls from CLSn1
andCLSn2 features selector linksl3, which connectsn1 to n2 throughleft. As a consequence, these
sets are left empty, because nocls in them satisfies the condition expressed by the force pseudostatement.
The subsequent normalization process yields an empty graph, therefore no new graph progresses fromsg5

to be analyzed by the next successors of the right side call.

By the same mechanism, pseudostatementst.6:#pragma SAP.force(t->left==tleft) fil-
ters out improper shape graphs for the successors of the leftside call site. Note though thatsg4 in Fig. 3.28
is a valid shape graph to return to the left side call. This shape graph is not filtered out byst.6, as it ver-
ifies that throught->left we find the node pointed to bytleft. Therefore, we are achieving a proper
filtering of contexts between the left and right side calls. For a full reference on the behavior of the force
pseudostatements, you can refer to Appendix A.

fun(fp1, fp2, ...){
...

tr: x=y->sel;
...

rcs: fun(x,ap2, ...);
f1: #pragma SAP.force(y!=NULL)
f2: #pragma SAP.force(y->sel==x)

...
return;

}

Figure 3.29: General scenario of applying force pseudostatements to filter out improper contexts for recur-
sive analysis.

Next, we will establish the conditions that we need to safelyincorporate these force pseudostatements to
filter out improper contexts for recursive analysis. For this purpose, we consider the generalized presentation
of a recursive functionfun() in Fig. 3.29. It features a traversing statement labeledtr, and a recursive
call site labeledrcs, that recursively callsfun()with the acquiredx as actual parameter. This scenario is
typical of recursive traversals of dynamic data structures. The two kinds of force pseudostatements discussed
in this section are added as the first successors of the call site, with labelsf1 andf2, to filter out improper
contexts for recursive analysis.

For the scheme presented in Fig. 3.29, force pseudostatements labeledf1 is correct if the following
conditions hold:

Compilation techniques based on shape analysis for pointer-based programs



3.4. Refining interprocedural analysis 87

• Pointery is not written (killed) betweentr andrcs.

• Pointery is a local pointer or formal parameter forfun(), i.e.,y ∈ PTRfun.

Firstly, consider that the access throughy in tr ensures thaty is notNULL at that statement, since we
assume code correctness and therefore no NULL dereferencesare expected. Then, we need to guarantee
thaty is not modified from the point where it is used to assignx, to the moment the force pseudostatement
f1 is analyzed. Note that we consider actual parameters passedby value, so even ifap2 in rcs is y, it will
not be modified as it is a local or formal parameter infun().

Force pseudostatementf2 is safe to apply if the following conditions hold:

• Pointersx andy are not written (killed) betweentr andrcs.

• Pointersx andy are local or formal parameter forfun(), i.e.,x, y ∈ PTRfun.

• There is no write through selectorsel either in the body offun() or in any function called from
fun().

This way we ensure thatx andy are not modified betweentr andrcs. Furthermore, no write through
thesel may be performed so that the conditiony->sel==x can hold safely. Of course, it might be the
case that some value throughsel is written that does not affect the condition we are considering here.
However, since the insertion of the force pseudostatementsis performed in the Cetus-based preprocessing
phase, we do not have access to shape information at this point. These conditions could be overly restrictive,
but they work just fine for typical recursive traversals of dynamic data structures.

3.4.3 Paired selectors property

There is yet another undesired effect that occurs in recursive analysis, particularly with tree-like data struc-
tures. This effect is found for summary nodes that abstract several jumps back of a tracked pointer along
recursive flow path and some other selectors related to it.

Consider shape graphsg1 in Fig. 3.30. It shows a possible abstraction found at the return statement
of theTreeAdd() function (Fig. 3.26), where we have followed an uncertain number of calls through the
left child from the root, reachingn1 as the node pointed to byt in the immediately previous call. From
there, we may have taken the left or right path and traversed all the children belown1 in the tree, beingn2
the node pointed to by the current value of pointert. Note how inn4 we have accumulated the memory
locations that have been traversed through the left child path. The previous locations of pointert are traced
back by the recursive flow selectortrfsel.

We return now to the previous context, by callingRTCrec, obtainingsg2 (still Fig. 3.30). In the process
of returning to the previous context at the left call site,tleft now points to the node previously pointed
to by t, t now points to the node previously pointed to bytrfptr, andtrfptr points to a new node
materialized from the summary noden4 in sg1. To sum up, we have traced back to the shape graph
abstraction in the context of the previous left side recursive call.

Consider nowcls2n4 in sg1. Recursive flow selector linkrfsl1 and selector linksl1 are both
registered with the incomingandoutgoing attributes. Takerfsl1o andsl1i, for instance. All thiscls is
saying, regarding these links, is that from the current location abstracted byn4 we may go throughtrfsel
to another location abstracted byn4, and that from another location abstracted byn4 the current location
can be reached throughleft. That “other location” thattrfsel is pointing to from the current location

University of Málaga



88 Chapter 3. Interprocedural shape analysis

Figure 3.30: (a) A shape graph found at the return statement in TreeAdd(). (b) The shape graph obtained
after applyingRTCrec for the left side call and subsequent force pseudostatements over the graph in (a). (c)
A possible concretizacion of the graph in (b) for the concrete domain. Note how the relation betweenleft
andtrfsel may be lost.

Compilation techniques based on shape analysis for pointer-based programs



3.4. Refining interprocedural analysis 89

does not need to be the same “other location” that is pointingback throughleft. Thus, the materialization
operation must assume that any combination of thetrfsel andleft links is possible. This means we may
obtaincls1n4 andcls1n5 in sg2, which keep the relation that fromn4 we point ton5 throughtrfsel,
and fromn5 we point ton4 throughleft. This matches correctly with the binary tree data structure. But
we may also getcls2n5, wheren5 is not pointing back ton4 throughlft, but to other location also
abstracted inn4.

Memory configurationmc1 in Fig. 3.30 shows aconcretizationfor this case in the concrete domain,
wherel1 is concretized based oncls1n4 in sg2 andl3 is concretized based oncls2n5. It is easier to
see in this concretization the effect that we want to avoid.

Furthermore, this inaccuracy propagates in subsequent context changes finally producing cycles in the
tree, where children can point to their parents. This supposes a loss of accuracy in the shape of the data
structure that we need to avoid for correct shape abstraction and subsequent client analysis. The originating
factor is that theleft andtrfsel links are not interrelated in the summary node. Therefore, the analysis
does not have enough information to rule out the materialization possibilities that induce a lack of precision.

To solve this shortcoming we introduce a new property which keeps information about how pair of
links relate to each other in a recursive data structure. We name it thepaired selectors property, or just PS
property. The value annotated by the property is the set of interrelated pairs of selectors with their attributes.

Consider Fig. 3.31, which mirrors the case just presented but with PS property information. Insg3

we find the same shape graph assg1 in Fig. 3.30, butn1 andn4 are annotated with the PS property. The
property map establishes that forn4we havePPMPS(n4)={<trfsel i,lefto>,<lefti,trfsel o>}.
This means that the recursive flow selectortrfsel is paired with the selectorleft in two possible ways:
when one of them is incoming from other node, the other is thenoutgoing to thatsamenode, andnot to
any other. The property establishes acontract with regards to these two links in two neighboring nodes:
for acls that relates two neighboring nodes through any of the links (selector or recursive flow selector)
recorded in the PS property,at least oneof the pairings recordedmusthold.

Eachcls for n5 in sg4 must verify<trfsel i,lefto> or <lefti,trfsel o> to be valid. Non
conformingcls’s were removed at the last stage of materialization ofn4 fromn5. For example,n4 andn5
are connected, as directly neighboring nodes, byrfsl2=<n4,trfsel,n5> andsl2=<n5,left,n4>.
Coexistent links setcls1n5=<rfsl2i,sl1i,sl2o,sl5o,rfsl1o> in sg4 in Fig. 3.30 verifies the
<trfsel i,lefto> relation withrfsl2i andsl2o. Therefore,cls1n5 passes the filtering imposed by
the PS property and it is present both insg2(Fig. 3.30) andsg4(Fig. 3.31).

However, cls2n5=<rfsl2i,sl1i,sl1o,sl5o,rfsl1o> in sg2 does not verify
<trfsel i,lefto> (sl2o does not appear incls2n5) nor <lefti,trfsel o> (there are no links
to support that relation betweenn4 and n5). The materialization operation takes into account these
considerations, andcls2n5 is not allowed to exist insg4. One possible concretization of shape graphsg4

is shown as memory configurationmc2 (Fig. 3.31(c)), where the appropriate relationship between trfsel
andleft is preserved.

As we progress in the tree analysis, the summary nodensumm for the locations that have been
pointed to by instances of the tracked pointert in previous recursive calls (liken5 in sg4), will hold
the following value of the PS property:PPMPS(nsumm)={<trfsel i,lefto>, <lefti,trfsel o>,
<trfsel i,righto>, <righti,trfsel o>}. In other words, we acknowledge the fact that the recursive
flow selector trfsel is related either with theleft or theright selectors.

Finally, the set of properties defined for our shape analysisstrategy is configured as
PROP={type,site,touch,PC,PS}. The new instrumentation domain for the PS property is defined
as follows:

University of Málaga



90 Chapter 3. Interprocedural shape analysis

Figure 3.31: (a) A shape graph found at the return statement in TreeAdd(), with PS info. (b) The shape
graph obtained after applyingRTCrec for the left side call and subsequent force pseudostatements over the
graph in (a). (c) A possible concretizacion of the graph in (b) for the concrete domain. Note how the relation
betweenleft andtrfsel is preserved.

Compilation techniques based on shape analysis for pointer-based programs



3.4. Refining interprocedural analysis 91

• PPS is the domain for the propertyprop=PS and it is defined as a set that contains the pairs of
selectors with attributes that establish input-output relationships over nodes:

PPS={<sel1att1,sel2att2> s.t.sel1, sel2 ∈ SEL ∪ RFSEL, att1, att2 ∈ {i|o} ∧ att1
6= att2 }

The compatibility criterion for the PS property is different though than the equality criterion presented
so far. Two nodesn1 andn2 are compatible regarding the PS property if they have some value for the
property, or if they do not have any value for it. In the case ofcompatibility, the values of the properties are
simply added to the resulting summary node. This way, we summarize information of paired selectors at the
same time that we summarize nodes. This controls the growth of the number of nodes with different values
for the PS property. TheCompatible Property() function presented in chapter 2 is now completed
as shown in Fig. 3.32.

When a new node is created by amalloc() statement, the PS value for the node is initialized to
empty, provided the PS property was activated for the analysis. New values may be added to the property
when performing linking statements,x->sel=y. Paired selectors are removed when they no longer hold
when performingx=y->sel or x->sel=NULL statements. For example, noden4 in sg4 (Fig. 3.31) is
materialized from summary noden5. While the PS value forn5 isPPMPS(n5)={<trfsel i,lefto>,
<lefti,trfsel o >}, for n4 we have justPPMPS(n4)={<lefti,trfsel o>}. There is no incoming
rfsl with trfsel for n4, so the pair<trfsel i,lefto> is clearly no longer applicable ton4, and it is
removed from its PS property during the materialization involved in the change of context.

To sum up, we introduce thepaired selectors propertyto provide further finesse for node materialization
in the presence of interrelated pairs of links in summary nodes. However, the PS property is not only useful
for recursive analysis, but also for capturing the shape of any data structure whose elements are linked by two
or more selectors with input-output relationships, such asa doubly-linked list. Doubly-linked structures pose
a challenge for shape analysis techniques. We will provide examples for these structures in the experimental
section.

Compatible Property()
Input: n1, n2, prop ∈ PROP # two nodes and a property
Output:TRUE/FALSE

If (prop==type ∨ prop==site ∨ prop==touch ∨ prop==PC)
return(PPMprop(n1)==PPMprop(n2))

If (prop==PS)
If ((PPMPS(n1) 6= ∅ ∧ PPMPS(n2)=∅) ∨ (PPMPS(n1)=∅ ∧ PPMPS(n2) 6= ∅))

return(FALSE)
else

return(TRUE)
end

Figure 3.32: TheCompatible Property() featuring properties:type, site, touch, PC, andPS.

A similar mechanism to our PS property was introduced in [1],calledcyclelinks propertyto preserve
relationships of paired selectors, tailored for doubly-linked lists. Our PS property is less restrictive when
driving the materialization operation and that makes it suitable for the recursive analysis of trees, as well.

University of Málaga



92 Chapter 3. Interprocedural shape analysis

3.5 Related work in interprocedural shape analysis

We discuss now some related work regarding interproceduralshape analysis. The first approaches to shape
analysis only supported programs without functions or procedures, such as [42], [43], [44], [28], [26], [27]
or [29].

There are three main works ([46], [47], [48]) built as extensions to the 3-valued logic analyzer (TVLA)
[45], that provided interprocedural support for shape analysis. Each of these works presents its own charac-
teristics. We discuss them next.

As pioneers within graph-based shape analysis, Rinetzky and Sagiv [46] explored the idea of abstracting
theActivation Record stackas a new entity in the graphs to track the locations of pointers in a sequence of
recursive calls. This simple idea and a few new predicates yield an interesting interprocedural shape analysis
technique, whose use is only reported for singly-linked lists and that suffers from scalability problems.

Jeannet et. al [47] rely on the computation ofsummary transformersfor functions, by solving data-flow
equations with modified operators. This is done by using a double vocabulary of predicates to encode the
relationship between input and output states. Their analysis is very costly, to the point that it is unable
to complete for some simple programs that manipulate binarytrees, due to combinatorial explosion of
possibilities in the analysis.

Rinetzky, Sagiv, and Yahav [48] improve the previous efforts for interprocedural support in 3-valued
shape analyzers with a system that relies on context change rules upon entering to and exiting from func-
tions, and some specific predicates. The key aspect of their analysis comes from its ability to reuse computed
function summaries by means of a powerful tabulation algorithm. However, there is a whole range of pro-
grams that present so-calledcutpoints, which involve certain patterns of node linking that are unsupported
by their technique.

All the works derived from the TVLA system require the designof specificpredicatesthat encode the
characteristics of the analyzed data structure. Although predicates for the analysis of doubly-linked lists
were identified in [29], they are not used for the implementations of [46], [47], or [48]. Consequently, no
tests with doubly-linked lists are reported for these works. Each of the works in TVLA requires differ-
ent predicates, albeit they share some common ones. The appropriate predicates are found by the analysis
designer and require expert knowledge, although [57] introduces machine learning mechanisms to automat-
ically find recursive predicates.

Independently to these works based on TVLA, Hackett and Rugina [53] devised interprocedural data-
flow equations and a worklist algorithm for their modular shape abstraction based ontracked locations.
They are able to analyze programs for a memory leak detectionclient with significant speed. Their results
are based on the accuracy of the underlying points-to analysis required to build the graphs. When it fails to
detect enough disjoint regions, the shape of the data structure is not accurately detected, the number of heap
configurations rises uncontrollably and the analysis fails. They present limitations in the kind of analyzable
structures, not supporting doubly-linked lists. Later, Cherem and Rugina [58] design a specific approach to
handle doubly-linked lists, this time with no concern for interprocedural support.

Gotsman, Berdine, and Cook [59] create their own interprocedural shape analyzer based on separation
logic. It exploits spatial locality in the abstraction, andis tailored for use solely with linked lists (singly- or
doubly-linked) and trees. The support of another kind of structures would require redefining the inductive
predicates used as the base for the design. It supports a bounded number of cutpoints in the analysis of
recursive functions, treating them just as another parameter for the call. The number of supported cutpoints
must be specified as parameter for the analysis. The presenceof more cutpoints than the number set would
result in imprecise abstractions.

Compilation techniques based on shape analysis for pointer-based programs



3.6. Experimental results 93

In the design of our extensions for interprocedural analysis, we have been inspired mainly by the works
of Rinetzky et. al. From [46] we borrowed the idea of abstracting the information needed for recursive anal-
ysis from theActivation Record Stack. In our approach, this is done by adding new links to the abstraction.
Based on [48], we developed our own variation of the interprocedural worklist algorithm, context change
rules, and tabulation mechanism. Finally, we also developed our own set of properties to solve some short-
comings found in the analysis. We have achieved a technique supporting a greater range of structures and
with better performance than any of the TVLA approaches known, as we shall see in the next section. It
must be stressed that although our work shares ideas with theTVLA framework we provide a new, unrelated
shape analysis technique.

Regardingexpressiveness, some of these works can provide more information about the data structures
than our approach. For example, [48] recognizes that a sorting function returns a permutation of elements in
the input, and [47] is able to find out that reversing a list twice yields the same list. However, we think that
kind of information is tailored forverificationclients and is not so important for data dependence detection,
which is our main concern.

In our approach, we do not impose a restriction on the kind of structure to analyze, being able to obtain
correct abstractions for structures that cannot be pigeonholed as pure trees or lists. In the case of cutpoints,
our analysis is not able to reuse computed summaries for a function, but it is able to continue the anal-
ysis with the whole heap. This results in slower analysis butsupports a greater variety of structures and
algorithms.

3.6 Experimental results

We have expanded the shape analyzer implementation of chapter 2 with the elements introduced in this
chapter, to fully support interprocedural, recursive programs based on dynamic data structures. We have
conducted some experiments with the augmented shape analyzer and we describe the results and reflect
upon them in the present section.

3.6.1 Interprocedural suite for comparison with related work

We first conducted some experiments over a simple interprocedural suite. The purposes for these tests were:
(i) to prove that the algorithm obtains precise memory abstractions in a variety of recursive algorithms that
manipulate common dynamic data structures, and (ii) to measure its performance in terms of analysis time
and required memory compared to [48], a landmark related work that improves upon previous efforts in
[46] and [47]. We have considered some small programs that deal with singly-linked lists or binary trees.
These programs are also tested in [48], which allows us to establish a common ground for comparison. All
programs are complete, in the sense that they include the allocation of the structures used. For this analysis,
the propertiesprevious call(PC) andpaired selectors(PS) were used.

Both [48] and our method are able to determine that the invariants of the structure are preserved after
the call to the recursive functions. This means that for the list tests, if the function is called with an acyclic
singly-linked list, then the output is also an acyclic singly-linked list, i.e., no cycles have been introduced in
the list. For the tree tests, if the input is an unshared binary tree (no child has 2 parents), we verify that the
shape is preserved at the output.

We show the results for these experiments in Table 3.1. Next to each program we display a short
description of it. The two last columns in the table present the comparison in analysis time (measured
in seconds) and memory consumed (measured in MB) between theresults presented in [48] and our own

University of Málaga



94 Chapter 3. Interprocedural shape analysis

results. The testing platform for [48] is a Pentium M 1.5 GHz with 1 GB. Our platform is very similar:
a Pentium M 1.6 GHz with 224 MB. In all cases our method runs in significantly shorter times, while
obtaining shape graphs that model precisely the effect of the recursive functions. The memory consumed
fits in a block of 1.9 MB for all the list tests. For the tree tests is never goes above 4 MB. In every case, our
need for memory is clearly less than that of [48].

Benchmark Description Time[48]/this Space[48]/this
Programs that create and manipulate singly-linked lists

1-createL Creates a singly-linked list 9.3 / 0.09 2.3 / 1.9
2-findL Finds an element in a list 37.1 / 0.49 3.6 / 1.9
3-insertL Inserts an element in a list 46.8 / 0.38 5.4 / 1.9
4-deleteL Deletes an element in a list 35.8 / 0.37 3.9 / 1.9
5-appendL Appends a list at the end of another 22.5 / 0.56 3.9 /1.9
6-reverseL Reverses a list (example in Fig. 3.1) 21.0 / 0.36 3.4 /1.9
7-revAppL Reverses a list appending reversed part 41.7 / 0.45 4.3 /1.9
8-spliceL Splices a list into another 33.6 / 0.48 4.8 /1.9
9-splicex2L Splices 2 lists into a 3rd 36.5 / 1.25 5.0 /1.9

Programs that create and manipulate binary trees
10-createT Creates a binary tree 14.3 / 5.02 2.6 /1.9
11-insertT Inserts an element in tree 49.6 / 19.4 5.6 / 3.2
12-findT Finds an element in tree 105.7 / 31.45 6.5 / 4.0
13-heightT Finds out tree height 76.1 / 15.90 5.4 / 2.9
14-spliceLeftT Add tree as leftmost child 35.7 / 6.28 5.3 / 2.1
15-rotateT Exchange children in every node 57.1 /6.12 4.9 /2.2

Table 3.1: Comparison of analysis times and required memorybetween the approach of Rinetzky et. al. and
our method, for a small suite of recursive algorithms that manipulate singly-linked lists and binary trees.
Time is measured in seconds, space in MB.

Another difference between the proposal in [48] and ours, isin the asymptotic complexity of the compi-
lation algorithms. For programs without global variables,beingnv the maximum number of pointer formal
parameters and local pointer variables, the worst case timecomplexity for [48] isO(2(2nv )), whereas in
our case we have found it is lower thanO(nvnv ). Although our technique is still very complex, these
experimental results indicate that the worst case behavioris not reached in practice.

3.6.2 More realistic benchmarks

Once we have checked that our approach yields correct shape abstractions in recursive algorithms dealing
with dynamic data structures and that it compares favorablyto related work, our next concern is for the
analysis of more realistic benchmarks. For that, we have considered the following recursive programs from
the Olden suite [30]:

1. TreeAdd. Already presented in this chapter (section 3.4.2), this program creates and then traverses
a binary tree (Fig.3.33(a)) summing values along the traversal. The partial sums of the subtrees are
written in every node in the tree, as in [56].

2. Power. This program creates and then traverses a multilevel structure, depicted in Fig.3.33(b). The
struct root (R) element points to an undetermined number ofstruct lateral (L) elements
through a pointer array. Each of thestruct lateral elements connect recursively to other ele-
ments of the same type, forming singly-linked lists. Besides, eachL element points to a singly-linked

Compilation techniques based on shape analysis for pointer-based programs



3.6. Experimental results 95

list of struct branch (B) elements, which in turn point to severalstruct leave (Lv) ele-
ments through a pointer array. This programs features a complex structure in a complex control flow
of nested recursion (recursive functions that call to otherrecursive functions), as each level in the
structure is traversed.

3. Bisort. This is another benchmark from Olden that creates and manipulates a binary tree (Fig.3.33(a)).
This program features a recursive function that traverses the tree once and calls to another recursive
function that repeatedly traverses the subtrees from the current level. This programs presents another
case of nested recursion, with the additional complexity oftwo recursive calls per recursive function
(one for each branch of the tree).

The results gathered for the16-TreeAdd,17-Power, and18-Bisort benchmarks are displayed in
Tables 3.2 and 3.3. In every case the dynamic data structuresare correctly captured, preserving the defining
shape characteristics. The testing platform for these tests is a 3GHz Pentium 4 with 1GB RAM. These three
programs are analyzed with theprevious callandpaired selectorsproperties enabled, for adequate recursive
analysis. Additionally,17-Power uses thetype propertyto differentiate between types of elements in the
structure (Fig.3.33(b)).

Figure 3.33: The data structures used for the recursive benchmarks from Olden: (a)16-TreeAdd and
18-Bisort; (b) 17-Power.

Benchmark Time Space Code stmts. Analyzed stmts. Shape graphs
16-TreeAdd 6.33 s 3.9 MB 31 2,163 5,763
17-Power 8.13 s 6.4 MB 68 3,541 6,172
18-Bisort 1 m 39.47 s 9.2 MB 50 11,716 39,811

Table 3.2: Metrics of performance and problem size for recursive benchmarks from Olden. The testing
platform is a 3GHz Pentium 4 with 1GB RAM.

University of Málaga



96 Chapter 3. Interprocedural shape analysis

Benchmark Sg’s per code stmt. Avg. nodes per sg (max) Avg. cls’s per sg (max)
16-TreeAdd 185.90 3.38 (5) 28.03 (92)
17-Power 90.76 7.68 (11) 28.56 (49)
18-Bisort 1,426.71 5.50 (7) 62.51 (128)

Table 3.3: Shape graph complexity measures for recursive programs.

We observe analysis times in the range of seconds, with18-Bisort clocking above one minute. The
memory consumed takes a few megabytes, under 10 in the worst case. The number of generated graphs
is well into the thousands, peaking at nearly 40,000 for18-Bisort. The ratio of shape graphs per code
statement (Sg’s per code stmt. in Table 3.3) is higher than the intraprocedural tests from chapter
2. The complexity of the graphs is in the range of the number ofnodes andcls’s already registered for the
intraprocedural tests in chapter 2.

The results from Tables 3.2 and 3.3, and the comparison with the results of the intraprocedural programs
in chapter 2, allow us to draw the following observations:

• As stated previously, the analysis time depends on the number of generated graphs, which in turn
is affected mainly by the amount of analyzed statements. Thenumber of shape graphs per code
statement is higher than in the examples for intraprocedural analysis, explored in chapter 2. This is
specially so for the programs featuring more than one recursive call per recursive function, as it is the
case for the benchmarks manipulating trees (16-TreeAdd and18-Bisort). Naturally, the fixed
point takes longer to achieve when there are more possible return points for the shape graphs obtained
at a return statement in a recursive function.

• The complexity of the shape graphs is mainly determined by the data structure abstracted. For exam-
ple, the data structure in17-Power is more complex than that of16-TreeAdd, and that explains
why the first presents more nodes andcls’s per graph than the latter. In these tests though, we also
find that the size of shape graphs is affected by the way the structure is traversed. Consider the binary
tree data structure used by16-TreeAdd and18-Bisort. Both programs make use of the same
data structure. However, the double traversal performed in18-Bisort uses more pointers to tra-
verse the tree and therefore the graphs are more complex: they have more nodes and morecls’s per
node than those of16-TreeAdd. The maximum number of nodes is reached for17-Power, the
benchmark with the most complex structure, but still the maximum incls’s is found for18-Bisort
due to its double traversal with two nested recursive functions.

As conclusion, the tests presented so far provide evidence that our extensions for recursive analysis
over the base technique based on coexistent links set yieldscorrect abstractions for common dynamic data
structures in a variety of recursive algorithms. This stillholds in the case of structures several levels deep like
that of17-Powerand nested recursive calls featuring two recursive calls per function, like in18-Bisort.
Besides, the analysis cost is lower than that of comparable approaches [48], [46] and [47].

3.6.3 Doubly-linked structures

As the last experiments for this section, we wanted to test the ability of thepaired selectors propertyto deal
with doubly-linked structures. For that, we have run thesparse matrix by sparse vectorandsparse matrix
by sparse matrixbenchmarks presented in chapter 2, in a new version based on doubly-linked lists, rather
than singly-linked lists. The results for these tests are shown in Table 3.4. The singly-linked list version
of these benchmarks (Matrix x Vector(s) andMatrix x Matrix(s)) are compiled here next

Compilation techniques based on shape analysis for pointer-based programs



3.7. Summary 97

to the doubly-linked versions (19-Matrix x Vector(d) and20-Matrix x Matrix(d)) of the
same benchmarks for easier comparison.

The base version used for these programs is the pruned version, which avoids analyzing the statements
that are not involved in the structure creation. The doubly-linked versions use thepaired selectors property,
to correctly manage the doubly-linked character of the structure, and thesite propertyfor separating nodes
from different structures. To isolate better the effect of the paired selectors property, the singly-linked
versions of the sparse matrix benchmarks also use thesite property, although it is not necessary for correct
shape abstractions.

Note that in the previous tests in this section, the use of thepaired selectors propertywas necessary for
correct recursive analysis, as the data structures become “doubly linked” when we add recursive flow links.
For19-Matrix x Vector(d) and20-Matrix x Matrix(d) however, it is used to correctly cap-
ture thestructure, not thecontrol flow.

Benchmark Time Space Sgs Avg. nodes / sg (max) Avg. cls’s / sg (max)
Matrix x Vector(s) 0.28 s 1.9 MB 612 5.19 (9) 16.22 (33)
19-Matrix x Vector(d) 0.66 s 2.4 MB 1,096 6.25 (10) 17.76 (35)
Matrix x Matrix(s) 3.97 s 2.7 MB 2,299 9.43 (15) 43.49 (83)
20-Matrix x Matrix(d) 8.97 s 4.4 MB 3,804 10.89 (18) 46.65 (108)

Table 3.4: The sparse matrix benchmarks compared in their singly-linked(s) and doubly-linked(d) versions.

With the use of thepaired selectors property, doubly-linked structures are correctly captured in these
tests. The results in Table 3.4 indicate an increment in every measure of the analysis cost and complexity.
The doubly-linked structures present a small increase in shape graph size, with about one more node per
graph in average, and a slightly bigger number ofcls’s per graph. Likewise, more shape graphs need to
be generated to achieve the fixed point for the analysis. Withjust a small overhead in performance, now we
are able to correctly capture doubly-linked data structures by adjusting the properties in the analysis. Let us
recall that doubly-linked structures are not dealt with in [48] or [53].

3.7 Summary

In this chapter we have covered the following issues:

• We have extended a working shape analysis strategy based on coexistent links set to add interproce-
dural support (section 3.2). This has been done by adding:

– new analyzable statements for function calls and function return statements (section 3.2.1)

– recursive flow linksto simulate recursive control flow with links in the shape graphs (sec-
tion 3.2.2)

– context change rulesto determine the shape graph transformations upon enteringto and exiting
from functions (section 3.2.3)

– updated data-flow equations and new worklist algorithm (section 3.2.4)

• We have provided a tabulation mechanism that allows the analysis to reuse the computed effect for
functions in the case of similar input (section 3.3).

• We have identified common cases where the analysis loses precision and have devised refining mech-
anisms to solve them (section 3.4). Namely we have proposed the following:

University of Málaga



98 Chapter 3. Interprocedural shape analysis

– previous call propertyto separate in the abstraction portions of the heap that havebeen traversed
from parts that have not yet been traversed (section 3.4.1)

– force pseudostatementsto filter out improper shape graphs abstractions in the presence of more
than one recursive call in a recursive function (section 3.4.2)

– paired selectors propertyto achieve precision when several connections exist between memory
locations abstracted in a summary node (section 3.4.3)

• We have presented related work in the field of interprocedural heap analysis, highlighting strong and
weak points (section 3.5).

• We have collected experimental evidence that our techniqueyields correct shape abstractions for
common dynamic data structures in a variety of recursive benchmarks (section 3.6). Furthermore, the
cost of the analysis compares favorably to related work.

Next, we will use the shape analysis technique described so far as a key tool for data dependence analysis
in pointer-based applications.

Compilation techniques based on shape analysis for pointer-based programs



4 Data dependence
analysis

4.1 Introduction

Optimizing and parallelizing compilers rely upon accuratestatic disambiguation of memory references, i.e.
determining at compile time if two given memory references always access disjoint memory locations. This
problem, known as data dependences detection is crucial to various compiler optimizations such as instruc-
tion scheduling, data-cache optimizations, loop transformations, automatic vectorization and parallelization.
Unfortunately the presence of alias in pointer-based codesmakes memory disambiguation a non-trivial is-
sue.

Knowledge about the shape of the data structure accessible from heap-directed pointers, provides critical
information for disambiguating heap accesses originatingfrom them, and hence to determine that there are
no data dependences between iterations of a loop or between different function calls. In that regard, shape
analysis can provide such knowledge.

We have conducted our research to develop an accurate and versatile shape analysis technique that
can be used as the base tool for a dependence test. We focus on the detection of data dependences due
to heap-directed pointers in dynamic data structures in twocommon scenarios: (i) loops, by identifying
dependences that may arise between two iterations of a loop (loop-carrieddependences), and (ii) function
calls, by identifying conflicting accesses in different calls.

In our approach, we annotate information about read/write access during the abstract interpretation
of possibly conflicting pointer statements. This is done with the touch property. This property records
the history of accesses over nodes. This history is created during abstract interpretation, as the analysis
progresses toward the fixed point. The heap accesses thus gathered are then used to detect data dependences.

4.1.1 Traversal patterns

We identify two different patterns for the purpose of heap-induced data dependence detection, according
to the way the data structure is traversed: the1-wayandn-waystraversal patterns. For that we consider
how many selectors or pointer fields are traversed in a singletraversal step. A traversal step indicates the

99



100 Chapter 4. Data dependence analysis

traversal of the data structure involved by one iteration ofa loop, or by one run of the body of a recursive
function.

• The 1-way traversal pattern is found when the structure is traversed by following only oneselector
(or pointer field) for a single traversal step. The1-waytraversal pattern is usually found in loops and
recursive functions with just one recursive call in its body.

• The n-waystraversal pattern is found when the structure is traversed by following more than one
(namelyn) selectors (or pointer fields) for a single traversal step. The n-waystraversal pattern is
typically found in recursive functions with more than one recursive call through different selectors
within its body.

Fig. 4.1 shows some examples of heap-allocated data structures and traversal algorithms. In every
example, the memory locations that have already been accessed in the traversal are filled with a line pattern.
For instance, Fig. 4.1(a) shows a singly-linked list and twoways to traverse it, one based in a loop, the other
based on a recursive function. Note that in each step of the traversal (iteration of the loop or recursive call),
we follow just one selector, in particularnxt. These are examples of the1-waytraversal pattern. Fig. 4.1(b)
shows alist of listsdata structure traversed by a piece of code made of two nestedloops. The outer loop,L1,
traverses theheader elements (labeledH) through theirnxtH selector, while the inner loop,L2, traverses
the node elements (labeledN, and filled with a different pattern to indicate that they aretraversed by a
different loop) through theirnxtN selector. This is another case of the1-waytraversal pattern, as each loop
traverses the structure through one selector for each traversal step.

Fig. 4.1(c) shows a binary tree data structure, traversed bya recursive function that takes the left or right
child in each call, depending on some condition. This is another case of the1-waytraversal pattern, as each
function call produces the traversal to advance through only one selector (although the selector may change
betweenlft andrgh). Note how the selectors traversed in this example are thosefound through the
r->rgh->lft->lft path. Finally, Fig. 4.1(d) presents the same binary tree, traversed with a recursive
function that calls itself through the left and right children for each recursive call, i.e., for each traversal
step, thus establishing a2-waystraversal pattern. Here, many more locations have been traversed up to the
point shown in the example.

Note that the traversal pattern is not determined solely by the data structure, but it depends as well on
the algorithm used to traverse the structure. This way, a tree can be traversed with the1-waypattern or the
2-wayspattern. Of course, if a structure has only one kind of selector to traverse it, such as a singly-linked
list, then it only supports1-waytraversal patterns.

We have elaborated two distinct approaches to detect heap-induced data dependences for the aforemen-
tioned traversal patterns. Next, we shall address them separately. It should be noted that in this work we
focus on the detection of heap accesses todata fields, although the technique described can easily be adapted
for pointer fields(selectors), as well.

4.2 Data dependence detection for1-waytraversal patterns

Let us establish now a view of our heap analysis framework specifically configured for dependence analysis
of 1-way traversal patterns. Such a view is displayed at Fig. 4.2. We organize the whole process of data
dependences detection for1-waytraversal patterns in five stages. The figure maps these stages into different
modules.

For stage onewe take the IR resulting from parsing the input program with Cetus, and use it to identify
heap accessing statements. These statements are then used to feedstage twoandstage threeof the process.

Compilation techniques based on shape analysis for pointer-based programs



4.2. Data dependence detection for1-waytraversal patterns 101

Figure 4.1: Examples of dynamic data structures and traversals. We find the1-way traversal pattern for
(a), (b) and (c), and the2-ways traversal pattern for (d).

Stage twoforms groups of possibly conflicting accesses, thedependence groups. In stage three, we add a
touch pseudostatement for every heap accessing statement identified instage one, and found in a dependence
group created instage two.

The result ofstage threeis a version of the original program instrumented with touchpseudostatements.
This instrumented version of the program is parsed again, toobtain the pointer statements and control flow

University of Málaga



102 Chapter 4. Data dependence analysis

information to conduct the shape analysis, instage four. The shape analysis instage fouris performed with
the touch property enabled so that the touch pseudostatements have effect. Upon abstract interpretation of
these pseudostatements, nodes in the shape graphs are annotated with access information. The result is the
set ofaccess pairs, i.e., pairs of accessing statements registered over the same node.

Figure 4.2: Presentation of our heap analysis framework featuring the five stages for data dependence anal-
ysis for the1-waytraversal pattern.

Finally, stage fiveof the process performs the data dependence test, by considering the dependence
groups obtained fromstage three, and the access pairs obtained fromstage four. As a result, we will obtain
the dependences due to heap accesses found for the loops and/or recursive functions in the program.

To explain our approach to detect data dependences due to heap accesses in1-way traversal patterns,
we will recover the motivating example that we presented in chapter 1 of this dissertation. We will use it
to describe the different stages involved in the data dependences detection. Fig. 4.3 shows the code for the
example in simple pointer statements.

This simple program traverses a singly-linked list copyingthe value of one element into the previous
one, effectively shifting the values in the list toward its head. TheL1 loop presents a so-calledloop-carried
dependence, which is a dependence that exists between two different iterations in a loop. For this example,
the dependence appears as the list element read through pointerq in iterationi is written through pointerp
in iterationi+1. This produces aWARdependence (Write After Read), also called ananti-dependence.

We number the statements that have some abstract semantics function associated to them. The data flow
information is embedded in the data-flow equations that drive the analysis. Note that statements accessing
thedata field are not numbered. They are not recognized as one of the pointer statements supported by the
technique, as explained in chapter 2. Their effect will be modeled by the touch pseudostatements inserted
in stage two.

Next, we will describe in detail the five stages involved in the detection of data dependences for1-way
traversal patterns.

4.2.1 Stage one (1-way): identify heap accessing statements

Stage oneof our process to detect data dependences due to heap accesses involves identifying heap accessing
statements. These are the simple pointer statements that read or write data fields of recursive data structures,
namelyx->field=data for a write, anddata=x->field for a read. We assume the input program
has been normalized to contain only simple pointer statements as described in chapter 1.

Compilation techniques based on shape analysis for pointer-based programs



4.2. Data dependence detection for1-waytraversal patterns 103

// Declare recursive type "node"
struct node{

int data;
struct node *nxt;

} *l,*p,*q;
int main(){

int val;
1: l=create list();
2: p=l;
3: q=p->nxt;

L1: while(q!=NULL){
4: #pragma SAP.force(q!=NULL)

R1: val=q->data;
W1: p->data=val;

5: p=q;
6: q=p->nxt;

}

7: #pragma SAP.force(q==NULL)
8: return;

}

Figure 4.3: Running example for data dependence detection featuring a1-waytraversal pattern.

Note that these heap accessing statements do not have associated abstract semantics functions, as de-
scribed in chapter 2. They do not modify or alter theshapeof the structure in any way, therefore they are
not relevant to create and maintain shape abstractions during the analysis. However, they perform read or
write access to heap elements, so they are completely meaningful for the purpose of dependence analysis.

Fig. 4.4 showsIdentify heap acc(), the function used bystage oneto identify and label heap
accessing statements. It is designed as a pass for the Cetus infrastructure. It traverses the program IR
looking for pointer accessing statements through pointer fields of recursive data types, i.e., those that have
pointer fields to other heap elements. Each of the heap accessing statements is marked with anaccess label,
which identifies a heap accessing statement as a heap writingstatement (Wi) or heap reading statement (Rj),
also associating a number to it.

For our example, statementval=q->data is labeledR1, and statementp->data=val is labeled
W1, which is already shown in Fig. 4.3 for convenience.

4.2.2 Stage two (1-way): create dependence groups

Stage twoof our process to detect data dependences for1-way traversal patterns involves the creation of
groups of accesses that may produce a data dependence. Two heap accesses in a program will produce a
data dependence if they access the same field in the same heap location, and at least one of them is a write
access.

In stage twowe createdependence groups, which are groups of accesses that may produce a dependence.
For that they must fulfill two conditions: (i) the access fieldis the same, and (ii) there is at least one write
access in the group. Note that the first condition also involves accessing through pointers of the same data
type, as type casting is not allowed.

Fig. 4.5 presentsCreate dep groups(), the function used bystage twoto create the dependence
groups. As input it receives the heap accessing statements identified instage oneand the recursive data
types in the program. First, an empty dependence group for every field in every recursive data type

University of Málaga



104 Chapter 4. Data dependence analysis

Identify heap acc()
Input:PIR,RECTYPE # IR for the analyzed program, and the set of recursive data types
Output:ACCSTMT # The set of heap accessing statements

ACCSTMT=∅
i=0, j=0
repeat

Getstmt, the next statement inPIR
Case (stmt)

stmt is of the kindx->field=data,
wherex is a pointer to typet ∈ RECTYPE andfield is a data field oft

Add access labelWi to stmt, and incrementi
ACCSTMT=ACCSTMT ∪ stmt
break

stmt is of the kinddata=x->field,
wherex is a pointer to typet ∈ RECTYPE andfield is a data field oft

Add access labelRj to stmt, and incrementj
ACCSTMT=ACCSTMT ∪ stmt
break

until (PIR has no more statements)
return(ACCSTMT)

end

Figure 4.4: The function used bystage one (1-way)to identify heap accessing statements.

Create dep groups()
Input:ACCSTMT, RECTYPE # The set of heap accessing stmts, and the set of recursive data types
Output:DEPGROUP # The set of all created dependence groups

DEPGROUP=∅
forall t ∈ RECTYPE

forall field, data field int
CreateDepGroupfield = ∅
DEPGROUP=DEPGROUP ∪ DepGroupfield

endfor
endfor
forall stmt ∈ ACCSTMT

Get access field,field, and access label,Li, in stmt
DepGroupfield=DepGroupfield ∪ Li

endfor
forall DepGroupfield ⊂ DEPGROUP

If (DepGroupfield does not contain any label of kindWi) # A heap writing access
DEPGROUP=DEPGROUP-DepGroupfield

endfor
return(DEPGROUP)

end

Figure 4.5: The function used bystage two (1-way)to create dependence groups.

Compilation techniques based on shape analysis for pointer-based programs



4.2. Data dependence detection for1-waytraversal patterns 105

(DepGroupfield) is created. Here, we assume that the program has been normalized so that the data
fields of the different data types in the program are named differently. For example, if we have two similar
types for lists,list1 andlist2, then thenxt field of both types must be named differently, saynxt1
andnxt2. All the accessing statements gathered instage onecontribute with their access label (Li, which
may beRi or Wi) to the correspondingDepGroupfield. Finally, all the dependence groups where there
are no write accessing labels,Wi, are removed. Finally, the superset of all dependence groups,DEPGROUP,
is returned.

For the running example in this section, we createDepGroupdata={R1,W1}, as both heap accessing
statements access data fielddata.

Note that if there are no dependence groups for a program, this means that there are no heap accesses
that could potentially lead to a data dependence, so it is straightforward to conclude that it is free of data
dependences due to heap accesses.

4.2.3 Stage three (1-way): add touch pseudostatements

We need to reflect in the analysis the effect of heap accessingstatements. For this purpose,stage threeof
our scheme adds a touch pseudostatement for every heap accessing statement belonging to a dependence
group created instage two. A touch pseudostatement,touch(x,id), is used to annotate the node pointed
to by pointerx with labelid. In order to capture the effect of the heap accessing statements, the pointer
used for a touch pseudostatement is the accessing pointer and the label is the access label.

Add touch pseudostmt()
Input:PIR, ACCSTMT, DEPGROUP
# IR for the analyzed program, the set of heap accessing stmts, and the set of dependence groups
Output:P’IR
# IR instrumented with touch pseudostatements

CreateP’IR=PIR
forall stmt ∈ ACCSTMT

Get access pointer,x, access fieldfield, and access label,Li, in stmt
If (Li ∈ DepGroupfield ⊂ DEPGROUP)

Add#pragma SAP.touch(x,Li) directive right afterstmt in P’IR
endfor
return(P’IR)

end

Figure 4.6: The function used bystage three (1-way)to add touch pseudostatements.

Fig. 4.6 shows theAdd touch pseudostmt() function, which is used bystage threeto add the
touch pseudostatements required by our technique. The way to add a touch pseudostatement is by including
it within a pragma directive recognizable by ourshape analysis preprocessing pass(see Fig. 4.2). The
input for theAdd touch pseudostmt() algorithm is the program IR, the heap accessing statements
gathered instage one, and the dependence groups created instage two. The result is thetouch instrumented
version of the program, i.e., the original source program including touch pseudostatements aspragma
directives. Note that we only add touch pseudostatements for the heap accesses that belong to a dependence
group, and thus may produce a dependence.

Fig. 4.7 shows our running example with the touch pseudostatements inserted bystage threein bold
typeface. For example,st.5:#pragma SAP.touch(q,R1)contains the touch pseudostatement added

University of Málaga



106 Chapter 4. Data dependence analysis

// Declare recursive type "node"
struct node{

int data;
struct node *nxt;

} *l,*p,*q;
int main(){

int val;
1: l=create list();
2: p=l;
3: q=p->nxt;

L1: while(q!=NULL){
4: #pragma SAP.force(q!=NULL)

R1: val=q->data;
5: #pragma SAP.touch(q,R1)

W1: p->data=val;
6: #pragma SAP.touch(p,W1)
7: p=q;
8: q=p->nxt;

}

9: #pragma SAP.force(q==NULL)
10: return;

}

Figure 4.7: Running example instrumented with touch pseudostatements in bold typeface.

for heap accessing statementR1:val=q->data.

4.2.4 Stage four (1-way): shape analysis with touch property

The program instrumented with touch pseudostatements resulting from stage three, is emitted as a new
source program, then parsed again and processed by our shapeanalysis preprocessing pass. The result is the
pointer statements and flow information that are used for theshape analysis module. This shape analysis
must be conducted with the touch property enabled, so that the effect of the touch pseudostatements inserted
in stage threecan be registered. This is the process involved instage fourof our data dependence test
strategy.

The result that we obtain fromstage fouris the set ofaccess pairs, i.e., pairs of accessing statements
registered over the same node. Whenever a new access label isannotated in a node, we check for the other
accesses previously annotated in the same node. All the possible pairs constructed between previously an-
notated access labelsand the newly annotated access label, that contain at least a write access and therefore
may induce a dependence, are recorded as access pairs. They represent pairs of accesses that may occur
over the same memory location. The order of the accesses is preserved in the access pairs. This information
is meaningful for the purpose of discriminating between different types of dependences, as we shall see in
stage five.

Fig. 4.8 shows theTouch() function that expresses the abstract semantics operation for touch pseu-
dostatement,touch(x,touchid). It adds thetouchid label to the value of the touch property for the
nodeni, pointed to byx. For data dependence detection,touchid is the access label. It also adds ordered
access pairs made from the previous labels in the node and thecurrent label. In particular, only the pairs
where one of the accesses is a write, and therefore may produce a dependence, are stored. For this purpose,
we use theAccessPairs set, which was initialized to empty at the beginning of the analysis.

Compilation techniques based on shape analysis for pointer-based programs



4.2. Data dependence detection for1-waytraversal patterns 107

Touch()
Input:sg1=<N1,CLS1>, x ∈ PTR, touchid # A shape graph, a pointer and an identifier
Output:sgk=<Nk,CLSk> # A shape graph

CreateNk=N1

CreateCLSk=CLS1

Findni ∈ Nk s.t.∃ pl=<x,ni> ⊂ CLSni
forall touchid2 ∈ PPMtouch(ni)

If ( touchid=Wj ∨ touchid2=Wj ) # If any of the labels stands for a write access
AccessPairs=AccessPairs ∪ <touchid2,touchid>

endfor
PPMtouch(ni)=PPMtouch(ni) ∪ touchid
Createsgk=<Nk,CLSk>
return(sgk)
end

Figure 4.8: TheTouch() function for annotating access labels in nodes. Access pairs are created too.

Fig. 4.9 shows how the abstract interpretation of the touch pseudostatements proceed for the running
example. Access labelsR1 andW1 are annotated into the nodes, and the access pair<R1,W1> is cre-
ated. Coexistent links sets are omitted for simplicity. Next to each graph we find the current value of the
AccessPairs set.

The shape graph in Fig. 4.9(a) shows a possible abstraction of the singly-linked list when entering the
analysis of theL1 loop. TheAccessPairs set is empty at this moment. In (b), we show the same shape
graph but the nodes pointed to byp andq has beentouchedby theW1 andR1 access labels, respectively.
Note that since this is the firsttouchid for both nodes, no access pairs can be generated. In the shapegraph
for (c), in the same figure, we display another possible abstraction at the beginning of the second symbolic
iteration ofL1. Pointersp andq have moved forward in the list. In (d), we have the graph aftera new
abstract interpretation of the touch pseudostatements. Now, noden2 has been touched again, this time with
touchid W1. Since there was another annotation withinn2, and the new annotation is a write, the access
pair <R1,W1> is created, and added to theAccessPairs set. Note that the access pair preserves the
order of the accesses, i.e., the memory location abstractedby n2 was firstread with access labelR1, and
thenwrittenwith access labelW1. Finally, (e) presents the fixed point for the loop, and no more access pairs
have been created.

4.2.5 Stage five (1-way): dependence test

The last stage in the process is the actual dependence test, which takes as input the dependence groups
created instage threeand the access pairs collected instage four. Fig. 4.10 shows the basic algorithm for
identifying data dependences in1-waytraversal patterns.

TheDep test 1way() function traverses the dependence groups available and checks whether any of
the collected access pairs,<AccLb1,AccLb2>, contains both accesses within the sameDepGroupfield.
If that is the case, then a data dependence is due. The types ofaccess labels in the pair is then checked to
discriminate the kind of dependence: flow dependence, anti dependence or output dependence. An output
dependence is registered when two write accesses are found for the same memory location, whether for the
same writing statement or for different ones.

The information of the kind of dependence detected can be useful for a subsequent parallelization mod-

University of Málaga



108 Chapter 4. Data dependence analysis

Figure 4.9: The process of access labels annotation instage four (1-way).

ule, that could transform the program accordingly. For example, in the case of an anti dependence new
storage could be added in order to solve the dependence.

Note that all access pairs where the access labels do not belong to the same dependence group, cannot
produce a conflict since they do not access the same field, and therefore no conflict due to heap accesses

Compilation techniques based on shape analysis for pointer-based programs



4.2. Data dependence detection for1-waytraversal patterns 109

Dep test 1way()
Input:DEPGROUP, AccessPairs # The dependence groups and access pairs
Output:DEP # The set of dependences found for the program

DEP=∅
forall DepGroupfield ⊂ DEPGROUP

CreateDepfield=∅
forall <AccLb1,AccLb2> ∈ AccessPairs

If (AccLb1 ∈ DepGroupfield ∧ AccLb2 ∈ DepGroupfield) # Acc. in sameDepGroupfield
Case (<AccLb1,AccLb2>)

<AccLb1=Wi ∧ AccLb2=Rj>
Depfield=Depfield ∪ FlowDep # Flow dependence
break

<AccLb1=Rj ∧ AccLb2=Wi>
Depfield=Depfield ∪ AntiDep # Anti dependence
break

<AccLb1=Wi ∧ AccLb2=Wi>
Depfield=Depfield ∪ OutDep # Output dependence, same writing stmt
break

<AccLb1=Wj ∧ AccLb2=Wi>
Depfield=Depfield ∪ OutDep # Output dependence, different writing stmt
break

endfor
DEP=DEP ∪ Depfield

endfor
return(DEP)
end

Figure 4.10: The function used bystage five (1-way)to identify data dependences due to heap accesses.

may arise.

For our running example, the dependence groupDepGroupdata={R1,W1} was created instage three
and access pair<R1,W1> was gathered instage four. By applying the algorithmDep test 1way() we
can determine that there is an anti dependence due to heap accessesR1 andW1 in loopL1.

4.2.6 Zero distance data dependences

Our technique is able to find, conservatively, every data dependence due to heap accesses that may arise
in loops or recursive functions that conform to the1-way traversal pattern. On top of that, we can distin-
guish between flow, anti and output dependences. However, itis often the case that some dependences do
not inhibit parallelism of loop iterations or function calls. It is the case ofzero distancedependences [60].
These are the dependences that arise in the same iteration ofa loop or the same function call. These de-
pendences are relevant for compiler transformations that involve statement reordering within a basic block,
but they can be ignored for the purpose of coarse-grain parallelization. Since our focus is toward depen-
dence analysis to expose thread-level parallelism in pointer-based programs, then it is important to be able
to determine if a dependence found by our technique is azero distancedependence or agreater-than-zero
distancedependence.

We offer a different approach to detect zero distance dependences for the two possible scenarios in the

University of Málaga



110 Chapter 4. Data dependence analysis

1-way traversal pattern: loops and recursive functions. For dependences between iterations of a loop, we
add information about the symbolic iteration of the loop to the touch annotation. For dependences between
recursive calls, sometimes it is enough with a simple inspection of the function and its heap accesses. If that
is not possible or insufficient, we can instrumentate the program further and rerun the analysis for additional
information.

4.2.6.1 Detecting zero distance data dependences in loops

We use the concept ofiteration vector[60] to provide the necessary information to distinguish zero distance
dependences due to heap accesses in the context of loops. In the presence of nested loops, an iteration vector
describes the current iteration for each loop. In our case, the iteration vector records the symbolic iterations
of the loops in the process of abstract interpretation toward a fixed point.

Let us consider now an example to explain how the iteration vector information is used within our
approach. Fig. 4.11 shows a variation of the running examplein Fig. 4.3. We assume that alist of listskind
of data structure has been created and it is pointed to by pointer m. Such a structure is represented in the
concrete domain inmc1 in Fig. 4.12. The structure is formed by a singly-linked listof header elements,
each of which points to a singly-linked list ofnode elements. The loopL1 traverses the list ofheader
elements, while theL2 loop traverses the list ofnode elements, performing the same shifting of values
toward the head of the example in Fig. 4.3. Here, the access labels and touch pseudostatements have already
been added to the program, i.e., the code shown in Fig. 4.11 isthe instrumented program resulting from
stage three.

In each iteration of the loopL1, a differentheader element is first read through accessR1 and then
written through accessW2, thus updating itsvalue field. Therefore, there is no loop-carried dependence
for theheader elements in the structure, as each element is only accessed one iteration along the traversal
in L1. On the other hand,L2 presents the same loop-carried dependence found for the running example
at the beginning of this chapter, i.e., an anti dependence due to the fact that each node element is read in
iterationi and written in iterationi+1.

The following dependence groups are created bystage two for this new example:
DepGroupvalue={R1,W2} and DepGroupdata={R2,W1}. The technique presented so far would
report anti dependences due to access pairs<R1,W2> and<R2,W1>. We acknowledge that is important
for the purpose of loop parallelization to determine that<R1,W2> is a zero distance dependence. For that,
we introduce the information of the iteration vector as partof the touch property information. We just need
to maintain a symbolic iteration counter for each loop in theprogram, and attach the current value of the
iteration vector when performing a touch on a node.

Considersg1 in Fig. 4.12. It abstracts the data structure for this example (mc1), where we maintain
type propertyinformation to separate the nodes for both types of elementsin the structure:node (N) and
header (H). Shape graphsg2 shows the result after executing the firstW1 access. Note that next to the
access label, now the touch information also records the value of the iteration vector at the moment of
performing the touch (shown below the affected node in bold for readability). Here, we consider an iteration
vector of two coordinates, where the first one stands for the symbolic iteration of loopL1 and the second
coordinate stands forL2’s symbolic iterations. For instance, noden1 is touched byR1<1,0>which stands
for “R1 access at first iteration ofL1, outside of body ofL2”, while n2 is touched byW1<1,1> which
stands for “W1 access at the first iteration ofL1, first iteration ofL2”. The analysis continues and we find
sg3, also in Fig. 4.12. This is the resulting graph after the secondW1 access. The[R2<1,1>,W1<1,2>]
access pair is found over noden3 and it is stored in theAcessPairs set.

Regarding theheader elements, shape graphsg4 shows how noden1 features the access pair

Compilation techniques based on shape analysis for pointer-based programs



4.2. Data dependence detection for1-waytraversal patterns 111

// Declare recursive type "node"
struct node{

int data;
struct node *nxtN;

} *p,*q;
// Declare recursive type "header"
struct header{

int value;
struct header *nxtH;
struct node *dwn;

} *m,*r;
int main(){

int total, val;
// Create structure pointed to by "m"
[...]

1: r=m;
L1: while(r!=NULL)

2: #pragma SAP.force(r!=NULL)
R1: total=r->value;

3: #pragma SAP.touch(r,R1)
4: p=r->dwn;
5: q=p->nxtN;

L2: while(q!=NULL){
6: #pragma SAP.force(q!=NULL)

R2: val=q->data;
7: #pragma SAP.touch(q,R2)

total+=val;
W1: p->data=val;

8: #pragma SAP.touch(p,W1)
9: p=q;
10: q=p->nxtN;

}

11: #pragma SAP.force(q==NULL)
12: p=NULL;
13: q=NULL;

W2: r->value=total;
14: #pragma SAP.touch(r,W2)
15: s=r->nxtH;
16: r=s;
17: s=NULL;

}

18: #pragma SAP.force(r==NULL)
19: r=NULL;
20: return;

}

Figure 4.11: Variation of the running example that presentsa zero distance data dependence in loopL1.

[R1<1,0>,W2<1,0>] after the firstW2 access. This new access pair is recorded as well in the
AcessPairs set. Finally,sg5 shows the graph at the end of the analysis, at the return statement. It has
accumulated the values of the iteration vector over the summary nodesn2, n3 andn4. Note that different
values of the iteration vector do not affect node compatibility (i.e., they do not prevent node summarization),
but different values of the touch property (i.e., differentlabels) do affect.

Every time a touch is performed over a node which already had some access label, the resulting access
pairs are stored in theAccessPairs set, now including the information of the iteration vectors. At the
end of the analysis we have collected the following access pairs:

[R2<1,1>,W1<1,2>],[R2<1,2>,W1<1,3>],...,[R2<1,n-1>,W1<1,n>],
[R2<2,1>,W1<2,2>],[R2<2,2>,W1<2,3>],...,[R2<2,n-1>,W1<2,n>],...,
[R2<m,1>,W1<m,2>],[R2<m,2>,W1<m,3>],...,[R2<m,n-1>,W1<m,n>],
[R1<1,0>,W2<1,0>],[R1<2,0>,W2<2,0>],...,[R1<m,0>,W2<m,0>]

wherem andn are the number of symbolic iterations to reach the fixed pointin loopsL1 andL2 respectively.

Once the access pairs with iteration vector information arecollected, we may perform the dependence
test ofstage five. However, this time we shall consider the information from the iteration vector to discrimi-
nate the dependences according to theDep test lcd0() function in Fig. 4.13. The iteration vectors (IV)
annotated with each access label (AccLb) are subtracted if the access labels belong to the same dependence
group,DepGroupfield. The leftmost coordinate of the vector that is greater than zero marks the loop for
which that access pair provokes a loop-carried dependence.If the vector resulting from the subtraction is
zero<0,0,...,0>, then the access pair forms a zero distance loop-carried dependence,lcd0, and it is
added to theLCD0 set. TheDEP set now contains all the loop-carried dependences found, categorized by

University of Málaga



112 Chapter 4. Data dependence analysis

Figure 4.12: Alist of lists data structure, its abstraction and several shape graphs achieved during the
analysis instage four (1-way). The access labels include the iteration vector information for discriminating
zero distance dependences in loops.

loop.

For example, let us consider the effect of theDep test lcd0() function over the previ-
ously gathered access pair[R2<1,1>,W1<1,2>]. The iteration vectors are subtracted yielding
|<1,1>-<1,2>|=<0,1>. In this way, we detect that the<R2,W1> access pair is a zero distance data
dependence for loopL1, but may produce a loop-carried anti dependence for loopL2, which is stored in
DepL2. On the other hand, subtracting the iteration vectors in theaccess pair[R1<1,0>,W2<1,0>] re-
sults in<0,0> meaning that both accesses are performed in the same iteration ofL1, thus the access pair
<R1,W2> is not loop-carried, and it is stored inLCD0.

Compilation techniques based on shape analysis for pointer-based programs



4.2. Data dependence detection for1-waytraversal patterns 113

Dep test lcd0()
Input:DEPGROUP, AccessPairs # The dependence groups and access pairs
Output:DEP, LCD0 # Loop-carried dep. and zero distance dep. in loops

LCD0=∅
forall l loop in the program

CreateDepl=∅
endfor
forall DepGroupfield ⊂ DEPGROUP

forall [AccLb1<IV1>,AccLb2<IV2>] ∈ AccessPairs
If (AccLb1 ∈ DepGroupfield ∧ AccLb2 ∈ DepGroupfield) # Acc. in sameDepGroupfield

IV3=|IV1-IV2|=|<i1,i2,...,iz>-<j1,j2,...,jz>|=<k1,k2,...,kz>
Get coordinatel, 1≤l≤z, the left-most coordinate inIV3 greater than0
If (l<z)

Case (<AccLb1,AccLb2>)
<AccLb1=Wi ∧ AccLb2=Rj>

Depl=Depl ∪ FlowDep # Flow dependence
break

<AccLb1=Rj ∧ AccLb2=Wi>
Depl=Depl ∪ AntiDep # Anti dependence
break

<AccLb1=Wi ∧ AccLb2=Wi>
Depl=Depl ∪ OutDep # Output dependence, same writing stmt
break

<AccLb1=Wj ∧ AccLb2=Wi>
Depl=Depl ∪ OutDep # Output dependence, different writing stmt
break

else
LCD0=LCD0 ∪ <AccLb1,AccLb2>

endfor
endfor
DEP=∅
forall l loop in the program

If Depl 6= ∅
DEP=DEP ∪ Depl

endfor
return(DEP, LCD0)
end

Figure 4.13: TheDep test lcd0() function with further elaboration to detect zero distance loop-carried
dependences.

With this technique, not only we can determine what dependences are loop-carried, but we can also
distinguish the loop where they hold. The results of the analysis of the program in Fig. 4.11 tell us that
loop L2 has a loop-carried dependence but notL1. As a consequence, a subsequent parallelization client
could safely decide to exploit coarse-grain parallelism byexecuting the iterations inL1 in parallel. Keep in
mind though that a valid parallelization scheme, like the one described in [61], would need to solve existing
control dependences, like the one induced by pointerr, which acts asnavigator or induction pointerfor
loopL1.

The approach described here is suitable for perfectly nested loops, but it is easily extensible for imper-

University of Málaga



114 Chapter 4. Data dependence analysis

fectly nested loops just by masking the appropriate coordinates when subtracting the iteration vectors. For
that, we assign a coordinate for every loop, in program lexicographic order. When subtracting the iteration
vector,IV=<. . .,i,. . .,j,. . .,k,. . .>, it might happen that coordinatek belongs to a loopLk that is not
nested within a loopLj of coordinatej but both loops are nested inside a loopLi of coordinatei. In
that case coordinatej should be masked from the subtraction so that it does not interfere to recognize the
greater-than-zero leftmost coordinate that belongs to a loop that containsLk.

4.2.6.2 Detecting zero distance data dependences in recursive functions

When detecting data dependences due to heap accesses in recursive functions, it is also possible to have zero
distance dependences, i.e., data dependences within the same function call. Such a case does not prevent
parallelism at function call level, therefore it is important to discriminate these cases from dependences
carried across different calls for the purpose of parallelization.

Let us present now an example to explain our approach to detect zero distance dependences in recursive
functions. It is displayed in Fig. 4.14. It is the recursive version of the program in Fig. 4.11. Again, thelist
of listsdata structure, pointed to bym, is traversed in two axes: theheader list through thenxtH selector
and thenode lists through thenextN selector. This time, instead of using loops for that traversal, we use
recursive functionstraverse header() andtraverse node(). Note that this is a case of1-way
traversal pattern as each recursive function has only one recursive call site traversing the structure through
only one selector.

The analysis of this program, by following the described process in five stages, yields the access pair
<R1,W1>, for accesses in theheader elements, and<R2,W2>, for accesses in thenode elements. Note
that the dependences found are the same as the iterative version, but the labels for the accesses are now
different. The way the code has been rewritten to use recursive functions has changed the order of the
accesses in the program code. Remember that the access labels are numbered as they are found bystage one
(algorithm in Fig. 4.4).

As we mention, whatever the actual names of the access labels, the dependences found are the same as
in the iterative version. These results hide the fact that the dependence found for theheader elements (in-
dicated by access pair<R1,W1>) is not carried across recursive calls, and thus does not inhibit parallelism
at the function call level.

We require additional information to determine whether an access pair stands for a zero distance or
greater-than-zero distance data dependence for recursivefunctions that conform to the1-waytraversal pat-
tern. We can obtain that information (i) directly from the program source code, or (ii) from the analysis of
the program with further instrumentation.

Information obtained directly from the program source code

A quick inspection of the code causing dependences can sometimes provide information about zero
distance dependences. All that is required for this on the analysis side is the ability to count the number of
times an access pair is found within a node. Remember that instage four, the access pairs found for a node
are stored in theAccessPairs set. It is straightforward to add information about the number of times a
given access pair is found foronenode, and we have added that information in our implementation. Note
that it is different to find the same access pair indifferentnodes than finding the same access pair repeatedly
over thesamenode.

The information about the number of times that an access pairis registered for the same node is consid-
ered by the dependence test module (stage five), along with some information derived from the source code

Compilation techniques based on shape analysis for pointer-based programs



4.2. Data dependence detection for1-waytraversal patterns 115

// Declare recursive type "node"
struct node{

int data;
struct node *nxtN;

}*p,*q;
// Declare recursive type "header"
struct header{

int value;
struct header *nxtH;
struct node *dwn;

} *m,*r;
void traverse header(struct header *r){

int total, val;
struct node *n;
struct header *s;

1: #pragma SAP.excludeRFPTR(n,s)
R1: total=r->value;

2: #pragma SAP.touch(r,R1)
3: n=r->dwn;
4: val=traverse node(n);
5: n = NULL;

W1: r->value=total+val;
6: #pragma SAP.touch(r,W1)
7: s=r->nxtH;

if(s!=NULL){
8: #pragma SAP.force(s!=NULL)
9: traverse header(s);
10: #pragma SAP.force(r!=NULL)

}else{
11: #pragma SAP.force(s==NULL)

}

12: return;
}

int traverse node(struct node *p){
int val1=0,val2=0,val3=0;
struct node *q;
#pragma SAP.excludeRFPTR(q)

13: q=p->nxtN;
if(q!=NULL){

14: #pragma SAP.force(q!=NULL)
R2: val1=q->data;

15: #pragma SAP.touch(q,R2)
W2: p->data=val1;

16: #pragma SAP.touch(p,W2)
17: val2=traverse node(q);

val3=val1+val2;
}else{

18: #pragma SAP.force(q==NULL)
}

19: return val3;
}

int main(){
// Create structure pointed to by "m"
[...]

20: traverse header(m);
21: return 1;

}

Figure 4.14: Variation of the running example that presentsa zero distance data dependence in recursive
functiontraverse header().

by the preprocessing stage. In particular, we are able to identify zero distance heap-induced data dependence
in recursive functions with1-waytraversal pattern when:

• The access pair is found only once, at most, for any node.

• Both accesses in the access pair are done with the same pointer, which is local to the function, and it
suffers no modification between both accesses.

The first condition ensures that the access pair occurs only once, at most, for any memory location in the
program. The second condition ensures that the access pair is registered in the same recursive call. Although
this second condition is very restrictive and could be improved with further analysis at the preprocessing
stage, it works for simple recursive functions.

Consider the code for functiontraverse header() in Fig. 4.14. Both accesses in this function,
R1 andW1, are done with pointerr, which is not modified between both accesses and is a local pointer to
traverse header(). Therefore, it is evident that everyheader element is going to be touched first
by theR1 access label, and then by theW1 access label, forming access pair<R1,W1>. The key issue here

University of Málaga



116 Chapter 4. Data dependence analysis

is whether aheader element can be accessedmore than onceduring the traversal, i.e., whether it can be
accessed bydifferent instancesof recursive functiontraverse header(). That would be the case if
there was a cycle in theheader list, for example. However, the access pair<R1,W1> is only reported to
be found, at most once, for any given node. In such case, we cansafely determine that it is a zero distance
dependence. Note that the same cannot be said for the<R2,W2> access pair, as theR2 andW2 accesses are
performed with different pointers in thetraverse node() function.

Information obtained from the analysis of the program with further instrumentation

Clearly, the information from the source code is sufficient only for recursive functions that perform
both accesses in the same access pair with the same pointer. In the case that no useful information can be
obtained from the source code to identify zero distance datadependences in recursive functions with the
1-way traversal pattern, we can instrumentate the program further, to obtain more information about the
accesses.

We outline the process involved. First, we perform the analysis and run the dependence test as described.
If dependences result, we instrumentate the program withuntouch pseudostatementsand run the analysis
a second time. The new access pairs obtained will help us conclude whether a dependence is of zero or
greater-than-zero distance.

An untouch pseudostatement performs the opposite operation of a touch pseudostatement, i.e., it re-
moves a label from a node. Fig. 4.15 displays the abstract interpretation function of an untouch pseudostate-
ment.

Untouch()
Input:sg1=<N1,CLS1>, x ∈ PTR, touchid # A shape graph, a pointer and an identifier
Output:sgk=<Nk,CLSk> # A shape graph

Findni ∈ N1 s.t.∃ pl=<x,ni>⊂ CLSni
PPMtouch(ni)=PPMtouch(ni)-touchid
CreateNk=N1

CreateCLSk=CLS1

Createsgk=<Nk,CLSk>
return(sgk)
end

Figure 4.15: TheUntouch() function for clearing annotations in nodes.

The key idea is to prevent touch information from passing between recursive calls. This is prevented
by untouchingeach touch annotation before a recursive call, and reestablishing it upon return. Likewise,
before leaving the body of the function, touch annotations are again cleared with untouch pseudostatements
before returning to the caller. Access pairs occurring within the same function call will still be recorded in
theAccessPairs set.

Even though the example presented for the detection of zero distance data dependences in recursive
functions (Fig. 4.14) can be successfully analyzed by drawing information from the source code, we will
consider it again as example for instrumentation with the untouch pseudostatements. Fig. 4.16 shows the
resulting code. The first run is performed without the untouch pseudostatements (code in Fig. 4.14), while
the second run uses them (code in Fig. 4.16).

This instrumentation with untouch pseudostatements imposes a check on the program: we must make
sure that weuntouchon the same location that wetouched. For that we ensure that (i) the untouch is

Compilation techniques based on shape analysis for pointer-based programs



4.2. Data dependence detection for1-waytraversal patterns 117

// Declare recursive type "node"
struct node{

int data;
struct node *nxtN;

}*p,*q;
// Declare recursive type "header"
struct header{

int value;
struct header *nxtH;
struct node *dwn;

} *m,*r;
void traverse header(struct header *r){

int total, val;
struct node *n;
struct header *s;

1: #pragma SAP.excludeRFPTR(n,s)
total=r->value;

2: #pragma SAP.touch(r,R1)
3: n=r->dwn;
4: val=traverse node(n);
5: n = NULL;

r->value=total+val;
6: #pragma SAP.touch(r,W1)
7: s=r->nxtH;

if(s!=NULL){
8: #pragma SAP.force(s!=NULL)
9: #pragma SAP.untouch(r,R1)
10: #pragma SAP.untouch(r,W1)
11: traverse header(s);
12: #pragma SAP.touch(r,R1)
13: #pragma SAP.touch(r,W1)
14: #pragma SAP.force(r!=NULL)

}else{
15: #pragma SAP.force(s==NULL)

}

16: #pragma SAP.untouch(r,R1)
17: #pragma SAP.untouch(r,W1)
18: return;

}

int traverse node(struct node *p){
int val1=0,val2=0,val3=0;
struct node *q;
#pragma SAP.excludeRFPTR(q)

19: q=p->nxtN;
if(q!=NULL){

20: #pragma SAP.force(q!=NULL)
val1=q->data;

21: #pragma SAP.touch(q,R2)
p->data=val1;

22: #pragma SAP.touch(p,W2)
23: #pragma SAP.untouch(q,R2)
24: #pragma SAP.untouch(p,W2)
25: val2=traverse node(q);
26: #pragma SAP.touch(q,R2)
27: #pragma SAP.touch(p,W2)

val3=val1+val2;
}else{

28: #pragma SAP.force(q==NULL)
}

29: #pragma SAP.untouch(q,R2)
30: #pragma SAP.untouch(p,W2)
31: return val3;

}

int main(){
// Create structure pointed to by "m"
[...]

32: traverse header(m);
33: return 1;

}

Figure 4.16: Variation of the running example using recursive functions, instrumented withtouchandun-
touch pseudostatements, displayed in bold typeface.

performed with the same accessing pointer that the touch wasperformed and (ii) that pointer cannot be
modified between both pseudostatements. This aspect can be enforced with additional pointer variables if
needed, so it involves no loss of generality.

The reasoning for this approach is simple: in the touch-untouch instrumented version only the access
pairs resulting from accesses in the same function call are recorded, while in the touch instrumented version
all possible access pairs are registered. Every access pairthat is found for the touch instrumented version that
is not found for the touch-untouch instrumented version is clearly a greater-than-zero distance data depen-
dence. Likewise, if running with touch pseudostatements does not produce new access pairs with regards to
the touch-untouch instrumented version, then it is clear that all access pairs are necessarily registered within
the same function call, and therefore they are zero distancedata dependences.

University of Málaga



118 Chapter 4. Data dependence analysis

We need to define some new sets now. LetAccessPairst be the set of access pairs detected as
dependences for the first run of the analysis, with the touch instrumented version of the program, and let
AccessPairstu be the set of access pairs detected as dependences for the second run of the analysis, with
the touch-untouch instrumented version of the program. LetCombAccP(AccLb1,AccLb2) be the set of
possible combinations of access labelsAccLb1 andAccLb2 that form a valid access pair, i.e., at least of
the accesses must be a write access.

Let us see now how the information gathered from both runs is used. The following assertions hold:

• Every access pairAccPi ∈ AccessPairst s.t.AccPi /∈ AccessPairstu, is a greater-than-
zero distance data dependence.

• If AccessPairst=AccessPairstu, then every access pairAccPi ∈ AccessPairst is a
zero distance data dependence.

• If |AccessPairst|>|AccessPairstu|, then every access pairAccPi=<AccLb1,AccLb2>
s.t. AccPi ∈ AccessPairst ∧ AccPi ∈ AccessPairstu is a zero distance data depen-
dence if and only if∄ AccPj 6= AccPi s.t.AccPj ∈ CombAccP(AccLb1,AccLb2) ∧ AccPj ∈
AccessPairst.

The two first assertions are intuitive, as introduced earlier. There is a trickier case though, and it affects
the access pairs that are found in both versions when the number of access pairs detected is bigger for the
touch instrumented version. In that case, the access pairs that are common (belong both toAccessPairst
andAccessPairstu) are zero distance data dependences. However, they might begreater-than-zero dis-
tance data dependencesas well. To be certain that they are not greater-than-zero distancedata dependences,
we must assure that there are no other access pairs in the touch instrumented version that are a combination
of the access labels within the access pair considered.

For the example in Fig. 4.16,AccessPairst={<R1,W1>,<R2,W2>}, and AccessPairstu=
{<R1,W1>}, so applying the rules exposed, we can conclude that: (i) theaccess pair<R2,W2> is a greater-
than-zero data dependence because it is not found for the touch-untouch instrumented version but it exists
in the touch instrumented version, and (ii) the access pair<R1,W1> is a zero distance data dependence
because it is found in both versions and there is no combination of its access labels that appear as an access
pair in the touch instrumented version.

Consider for a moment that theheader list would include a cycle. In that case, every element of the
header list within the cycle could be accessed repeatedly by accessesR1 andW1 along the traversal in
traverse header(). Consider an element that is visited for the first time in recursive callj. This
element would be touched by access labelsR1 andW1, and the access pair<R1,W1> would be created,
just as described so far. Now consider that the same element is visited again in the traversal, in recursive
call k>j. The same memory location is again touched with theR1 andW1 access labels, generating new
access pairs<W1,R1> and<W1,W1> (which belong toCombAccP(R1,W1)). In this case,<R1,W1>
would be both a zero distance data dependence and a greater-than-zero distance data dependence, as it may
encompass theR1 andW1 accesses from thejth call, and theR1 access from thejth call with theW1
access from thekth call.

Whatever the method used to determine that the<R1,W1> access pair corresponds to a zero dis-
tance data dependence (code inspection or further instrumentation and reanalysis), this information can
be used by a parallelization client to exploit coarse grain parallelism between different calls to the
traverse header() function.

Compilation techniques based on shape analysis for pointer-based programs



4.3. Data dependence detection forn-waystraversal patterns 119

4.3 Data dependence detection forn-waystraversal patterns

The approach described so far provides a useful technique for detecting heap-induced data dependences
in a variety of programs featuring dynamic data structures with dependences found in loops or recursive
functions traversing one selector. This applies even for nested loops or nested recursion. However, in the
presence of recursive function that traverse through more than one selector, shape graphs resulting from the
analysis of the different recursive flow paths can merge information about the heap accesses. In such case,
the approach described is not sufficient to accurately identify conflicting accesses.

For then-waystraversal pattern, we adopt a different approach. We perform function cloning[62],
using a different version of a recursive function for each traversal path, and then we instrument them with
dynamic touch pseudostatements, to identify the heap accesses performed through every path. A simple test
is performed afterward to identify conflicting accesses in different traversal paths.

The key idea is to transform the program as if we were going to parallelize it, i.e., we decompose the
traversal function into different versions for different traversal paths (one for each of then-waysfollowed
in the traversal). Of course, such a decomposition would only be profitable for a parallelization client if
the traversal exhibited no dependences. At the moment of performing the program transformation, we do
not know if such dependences exist. However, we conduct the analysis over that program configuration to
identify possible dependences. If no dependences arise, then the program arranged in such manner can be
parallelized without barriers or locks, as it is guaranteedthat there are no conflicts due to heap accesses. In
other words, we assume a parallel distribution of the traversal, and then we test whether that arrangement is
parallel or not. Some implications about this approach are discussed in section 4.3.5, but let us first introduce
the mechanisms involved.

Figure 4.17: Presentation of our heap analysis framework displaying the four stages used for data depen-
dence analysis inn-waystraversal patterns.

Fig. 4.17 shows the heap analysis framework configured for the dependence detection of then-ways
traversal pattern. Again, we organize the process in stages. However, these stages are different from those
used for the1-way traversal pattern in Fig. 4.2.Stage onetakes the program IR as input, and a value for
the cloning depth, as specified by a parallelization client external to the framework (the user can provide it,
if such client is not available). With this information,stage oneperforms the function cloning of recursive
functions that carry out the traversal of the dynamic data structure. The program thus obtained is then
fed tostage two, which addsdynamic touch pseudostatementsto the heap accesses involved in the different
traversal paths. The program is emitted as source again, then parsed and transformed for its shape analysis in
stage three. This shape analysis must have the dynamic touch property enabled so that conflicting functions
can be identified. This information is then used by the dependence test ofstage fourto report whether

University of Málaga



120 Chapter 4. Data dependence analysis

int TreeAdd (struct tree *t){
int total val,value,leftval,rightval;
struct tree *tleft,*tright;
#pragma SAP.excludeRFPTR(tleft,tright)
if (t==NULL) {

1: #pragma SAP.force(t==NULL)
total val=0;

}else{
2: #pragma SAP.force(t!=NULL)
3: tleft=t->left;
4: leftval=TreeAdd(tleft);
5: #pragma SAP.force(t!=NULL)
6: #pragma SAP.force(t->left==tleft)
7: tleft=NULL;
8: tright=t->right;
9: rightval=TreeAdd(tright);
10: #pragma SAP.force(t!=NULL)
11: #pragma SAP.force(t->right==tright)
12: tright=NULL;

value=t->val;
total val=value+leftval+rightval;
t->val=total val;

}
13: return total val;

}

Figure 4.18: TheTreeAdd() function used as running example for then-ways traversal pattern.

the program arranged according to the specified cloning depth is parallel or not, regarding heap accesses
performed in its traversal.

As running example for this section we will use theTreeAdd() function of the benchmark of the
same name from the Olden suite [30]. This code was presented in chapter 3 but we display its code again in
Fig. 4.18.

The data structure is a binary tree created dynamically. Every call to theTreeAdd() recursive function
traverses the tree first through the left child of the currentelement, then through the right child. Therefore,
this function presents a2-waystraversal pattern, as the tree is traversed through both theleft and right
selectors in each recursive call.

4.3.1 Stage one (n-ways): perform recursive function cloning

Stage oneof the process of data dependence detection forn-waytraversal patterns performs function cloning
of recursive functions involved in the traversal of the dynamic data structure. A suggested number of threads
must be specified to drive the function cloning. That is, assuming the function is parallel (which we do not
know at this stage), how many threads would we like to generate for the task? The results obtained at the
end of the test will tell us if it is safe to parallelize in suchmanner or if dependences may arise. Although we
focus here only on the dependence detection process, this mechanisms is tailored to be used in accordance
with a parallelization client that would target the analysis for a specific number of threads. For our purposes,
the number of threads to drive the function cloning is determined externally to the framework. For example,

Compilation techniques based on shape analysis for pointer-based programs



4.3. Data dependence detection forn-waystraversal patterns 121

it could be provided by the user.

Function cloningor function specializationis the process of creating specialized copies of function
bodies [62]. In our approach, we clone the recursive function that performs the traversal of the dynamic
data structure. It might be the case that such recursive function also calls to other recursive functions that
perform further traversal in the structure. For simplicity, we restrict the function cloning to the uppermost
recursive functions in the callgraph that perform then-waystraversal of the data structure.

Fig. 4.19(a) shows an abridged version of theTreeAdd() function. It contains two recursive call sites.
By cloning with depth one, we obtain two new versions, or clones, forTreeAdd(): TreeAdd left()
andTreeAdd right(), shown in the callgraph-like diagram of Fig. 4.19(b). The call site inTreeAdd()
for the traversal over theleft selector now callsTreeAdd left(), and the call site for the traversal over
theright selector now callsTreeAdd right(). Now, functionTreeAdd() is no longer recursive, and
as originating function, it is labeledNTCL, which stands fornon-terminal clone. The left subtree from the
root is traversed recursively with theTreeAdd left() function, and the right subtree with the recursive
functionTreeAdd right(). Both these functions areterminal clones, meaning that they are the deepest
clones created for the originating functionTreeAdd(), and so are labeledTCL.

This scheme is extended for a cloning depth of two, in Fig. 4.19(c), where a total of 6 clones have been
generated. Note that only the functions in the last level of cloning (theterminal clones) are recursive, the
functions in the previous levels change their calls so that they are not recursive anymore.

This example clearly exposes the main drawback of function cloning: it produces an exponential growth
in the number of clones as we increase the depth of the cloning. More precisely, a level of cloning depth
d, and for a traversal throughn selectors, requiresnd clones, i.e.,

∑d
k=1 n

k clones in total up to depthd.
Therefore, we advocate for a low depth of function cloning. The process of function cloning is designed so
that each resulting terminal clone is processed by one thread. This means that a fewer number of threads,
like two or four, is preferred. Although aiming for a higher number of threads is perfectly possible, the
analysis cost will rise exponentially, just as the number offunction clones.

The algorithm to perform function cloning instage oneis displayed in Fig. 4.20. First, the program
IR is traversed looking for the right functions to clone. Those are the uppermost recursive functions in the
callgraph that conform to then-waystraversal pattern. Additionally, a map is created for each recursive call
site in those functions, associating them with the selectorthat they traverse. The functions gathered with
this method are cloned according to the number of recursive calls that they contain and the desired depth
of cloning. They are also labeled asnon-terminalor terminal clones(NTCL or TCL), depending on the
case. The functions created at any level of cloning depth areused as cloning source for the next level. For
instance,TreeAdd left() is cloned intoTreeAdd left left() andTreeAdd left right()
for the second level of cloning depth (Fig. 4.19(c)).

For the purposes of explaining the stages for data dependence detection inn-waystraversal patterns, we
will continue theTreeAdd example with the version tailored for two threads (Fig. 4.19(b)), which creates
two clones of theTreeAdd() function,TreeAdd left() andTreeAdd right().

4.3.2 Stage two (n-ways): add dynamic touch pseudostatements

Once we have performed function cloning of the appropriate recursive functions, the next stage involves
addingdynamic touch pseudostatementsto the terminal, recursive clones. This is done instage two. Since
the goal is to discriminate whether the accesses by each thread may reach the same memory location, rather
than just annotating all heap accesses, the way we instrument the program now is different to the way it was
done for the1-waytraversal pattern.

University of Málaga



122 Chapter 4. Data dependence analysis

Figure 4.19: TheTreeAdd() function in (a) the initial version, (b) performing function cloning of depth
one, and (c) performing function cloning of depth two.

Compilation techniques based on shape analysis for pointer-based programs



4.3. Data dependence detection forn-waystraversal patterns 123

Create clones()
Input:PIR, depth # IR for the analyzed program, and desired depth of cloning
Output:P’IR # IR with cloned functions

CreateP’IR=PIR
FUNCL = ∅ # Set of functions to clone
repeat

Getfun, the next function declaration statement inP’IR
If(fun is a recursive function ofn-waystraversal pattern∧ fun is not nested infun2 s.t.fun2 ∈ FUNCL)

FUNCL=FUNCL ∪ fun
forall rcs, recursive call site infun

MAP(rcs)=sel, wheresel is the selector traversed for thercs call
endfor

until (P’IR has no more function declaration statements)
forall fun ∈ FUNCL

NEWFUN0=fun # Set of functions to be cloned for depth1
d=1
while (d<depth)

CreateNEWFUNd=∅ # Set of functions to be cloned for depthd+1
Incrementd

endwhile
d=0
while (d<depth)

repeat
Removecur fun fromNEWFUNd
Add labelNTCL to cur fun
forall rcs, recursive call site incur fun

Createcur fun clone as clone ofcur fun, appending selectorMAP(rcs) to the name
Update all cloned recursive call sites to callcur fun clone recursively
Updatercs to callcur fun clone
If (d<depth-1)

NEWFUNd+1=NEWFUNd+1 ∪ cur fun clone
else

Add labelTCL to cur fun clone
Addcur fun clone to P’IR

endfor
until (NEWFUNd=∅)
Incrementd

endwhile
endfor
return(P’IR)

end

Figure 4.20: The function used bystage one (n-ways)to perform recursive function cloning.

University of Málaga



124 Chapter 4. Data dependence analysis

label so that we can distinguish later possible conflicts between the accesses in different terminal clones.

A dynamic touch pseudostatement(dtouch(ptr,field)) is a touch pseudostatement where the
annotation is determined by a label set by alabel setting pseudostatement(setLb(label)), prior to per-
forming a call to a terminal clone. Upon returning from a terminal clone, the label is unset with alabel
unsetting pseudostatement(unsetLb()). The terminal function clones add a dynamic touch pseudostate-
ment for every heap accessing statement. These pseudostatements will write the current label in the accessed
node. That label is the name of the terminal clone that performs the access, plus the access field, which is
included for the purpose of discriminating between accesses to different parts of heap elements. It is also
possible to annotate the kind of access performed (read or write), although we do not consider it here, for
simplicity.

In Fig. 4.21 we show theTreeAdd() function, and its two clones for the 2-threads version, instru-
mented with the appropriatelabel setting, label unsetting, anddynamic touchpseudostatements. The previ-
ous level to the terminal clones (in this case it isTreeAdd() proper) sets a specific label for the dynamic
touch annotation before calling to each of the recursive clones. Likewise, the label is unset when returning
to the caller. The terminal clones,TreeAdd left() andTreeAdd right(), include the necessary
dynamic touch pseudostatements.

The algorithm that implementsstage twois shown in Fig. 4.22. It first traverses non-terminal clones
to set the label for dynamic touchs in the level of clones previous to the terminal level. Then the terminal
clones are traversed adding a dynamic touch pseudostatement for each heap accessing statement in them.
Also, descendants in the callgraph, i.e., the functions called from the terminal clones are stored in the
CGDESCESDANTS set. Finally, this set is traversed to add dynamic touch pseudostatements to all descen-
dants in the call graph that perform heap accesses.

Figure 4.21: TheTreeAdd() function, and its two clones for the 2-threads analysis, instrumented with
dynamic touch, label settingandlabel unsettingpseudostatements, shown in bold typeface.

Compilation techniques based on shape analysis for pointer-based programs



4.3. Data dependence detection forn-waystraversal patterns 125

Add dtouch pseudostmts()
Input:PIR # IR for the analyzed program
Output:P’IR # Instrumented IR

CreateP’IR =PIR
# Process non-terminal clones
repeat

GetNTCL fun, the next function labeled withNTCL in P’IR
repeat

Getfcall, the next function call statement inNTCL fun, calling functionTCL fun labeled withTCL
Add #pragma SAP.setLb(TCL fun) directive right beforefcall in P’IR
Add #pragma SAP.unsetLb() directive right afterfcall in P’IR

until (there are no more function calls in the body ofNTCL fun)
until (there are no more functions labeledNTCL in P’IR)
# Process terminal clones
CGDESCENDANTS= ∅ # Set of callgraph descendants of terminal clones
repeat

GetTCL fun, the next function labeled withTCL in P’IR
repeat

Getstmt, the next statement inTCL fun
Case (stmt)

stmt is a heap accessing statement, i.e.,stmt is of the kindx->field=data or data=x->field
Add#pragma SAP.dtouch(x,field) directive right afterstmt in TCL fun

stmt is a function call statement to functionCGD fun, s.t.CGD fun 6=TCL fun
CGDESCENDANTS=CGDESCENDANTS∪ CGD fun

until (there are no more statements in the body ofTCL fun)
until (there are no more functions labeledTCL in P’IR)
# Process callgraph descendants of terminal clones
CGDESCENDANTSdone = ∅
while (CGDESCENDANTS 6= ∅)

RemoveCGD fun fromCGDESCENDANTS
CGDESCENDANTSdone =CGDESCENDANTSdone ∪ CGD fun
repeat

Getstmt, the next statement inCGD fun
Case (stmt)

stmt is a heap accessing statement, i.e.,stmt is of the kindx->field=data or data=x->field
Add#pragma SAP.dtouch(x,field) directive right afterstmt in CGD fun

stmt is a function call statement to functionCGD fun2, s.t.CGD fun2 /∈ CGDESCENDANTSdone
CGDESCENDANTS=CGDESCENDANTS ∪ CGD fun2

until (there are no more statements in the body ofCGD fun)
endwhile
return(P’IR)

end

Figure 4.22: The function used bystage two (n-ways)to add dynamic touch instrumentation.

4.3.3 Stage three (n-ways): shape analysis with dynamic touch property

Forstage three, we perform shape analysis with the dynamic touch property enabled, over the instrumented
version of the program handed bystage two.

The clones previous to the terminal level set the name of the terminal clone they call as label for dy-

University of Málaga



126 Chapter 4. Data dependence analysis

namic touch annotations. This name is annotated in all heap accesses performed under the call of the
terminal clone, adding the access field for purpose of discriminating between accesses to different parts of
the heap elements. Once the called terminal clone returns tothe calling function, the label for dynamic touch
statements is unset, thus disabling the annotation for any heap access not performed within a terminal clone.
This process is repeated for all terminal clones called. Theresult is that nodes in the graph are annotated
only with heap accesses performed under the different terminal clones, which are designed to be run by
independent threads, and expected not to interfere for proper parallel execution.

Figure 4.23: The tree resulting from the analysis ofTreeAdd() with two clones, with nodes annotated
with dynamic touch labels.

Fig. 4.23 shows the result of the analysis of theTreeAdd program, as instrumented bystage two. Here
we can see that the memory locations accessed through the different terminal clones are different, as there
is no node sharing labels from more than one terminal clone.

Every time a dynamic touch pseudostatement is encountered by the analysis, the algorithmDtouch()
(Fig. 4.24) is run. It checks whether the value of the global variablecurFunLb is set or not. If it is
set to any function name, then its value is annotated in the node, appending the access field in the state-
ment (curFunLb field). Otherwise, it means that we are not under the execution of aterminal clone
and we should not register heap accesses in nodes. The value of the curFunLb variable is set by the
SetDtouchLb() function and unset by theUnsetDtouchLb() function (also Fig. 4.24).

Also, in case that the same node has been previously accessedunder a different terminal clone, with
the same access field, the pair of terminal clones registeredin the previous and current labels is stored in
CONFLICT FUNfield. This set will be checked instage fourto draw dependence information.

The domain for the dynamic touch property is the same as the domain for the regular touch property,
i.e., a set of labels defined by preprocessing directives, asdescribed in chapter 2. Compatible nodes will
need to feature the same value for the dynamic touch property. Remember that all available properties must
be compatible for two nodes to be regarded as compatible, andtherefore merge them in the summarization
process of shape graphs.

Compilation techniques based on shape analysis for pointer-based programs



4.3. Data dependence detection forn-waystraversal patterns 127

SetDtouchLb()
Input:funLb # A function name as a label
Output: none

curFunLb=funLb # Set value for global varcurFunLb
return()
end

UnsetDtouchLb()
Input: none
Output: none

curFunLb=NULL # Unset value for globar varcurFunLb
return()
end

DTouch()
Input:sg1=<N1,CLS1>, x ∈ PTR, field ∈ FIELD # A shape graph, a pointer and a data field
Output:sgk=<Nk,CLSk> # A shape graph

CreateNk=N1

CreateCLSk=CLS1

If (curFunLb is set) # If the label for dynamic touch is set
Findni ∈ Nk s.t.∃ pl=<x,ni>⊂ CLSni
If (prevFunLb field2 ∈ PPMDtouch(ni) s.t.prevFunLb 6=curFunLb ∧ field2=field)

CONFLICT FUNfield =CONFLICT FUNfield ∪ <curFunLb,prevFunLb>
PPMDtouch(ni)=PPMDtouch(ni) ∪ curFunLb field

Createsgk=<Nk,CLSk>
return(sgk)
end

Figure 4.24: TheSetDtouchLb(), UnsetDtouchLb(), andDtouch() functions to perform the
adequate annotations in nodes forstage three (n-ways).

4.3.4 Stage four (n-ways): dependence test

The last stage in the process of detecting heap-induced datadependences inn-waystraversal patterns in-
volves a simple check, as all the necessary information has been gathered instage three. This test is per-
formed by functionDep test nways() (Fig. 4.25). This function checks theCONFLICT FUN superset,
which contains all the sets of conflicting functions sorted by access field.

For that, all data fields of recursive data types are considered. If a pair of conflicting functions is found,
then the program exhibits a possible dependence between thereported pair of functions for the specified
data field, and for the program configuration obtained bystage one. If it does not exist, then it is safe to
parallelize the program (regarding heap data accesses) assigning a different thread to each of the terminal
clones.

For theTreeAdd example, there is no pair of terminal clones whose heap accesses may interfere, so
the test would returnFALSE, meaning that there are no dependences due to heap accesses performed by
TreeAdd right() andTreeAdd left().

University of Málaga



128 Chapter 4. Data dependence analysis

Dep test nways()
Input:CONFLICT FUN # The set of conflicting functions, sorted by accessed field
Output:TRUE/FALSE # Is the analyzed program free of heap-induced data dependences?

forall CONFLICT FUNfield ⊂ CONFLICT FUN
If (CONFLICT FUNfield 6= ∅)

return(TRUE)
endfor
return(FALSE)
end

Figure 4.25: The function that checks dependences forn-waystraversal patterns.

4.3.5 Further considerations

The approach described for then-waystraversal pattern is based on assuming a parallel distribution of
the traversal of a dynamic data structure, and then checkingfor dependences in the arrangement sug-
gested. This is useful even for traversals that perform allocation, deallocation and/or structure modifica-
tion, as possibly conflicting heap accesses performed underdifferent recursive functions are stored in the
CONFLICT FUNfield sets.

For most cases, if dependences do not arise for a distribution of two terminal clones, they will not arise
for any deeper traversal distribution. Cases where this would not hold can be expected to be very rare.
However, in the general case, a certain parallel distribution cannot be guaranteed to hold for a larger number
of threads than those used for the analysis considered. We are aware that this can limit the applicability
of the technique as the analysis for a deep cloning traversaldistribution is probably prohibitive for most
programs, due to the analysis cost. Most commonly, the analysis will be carried out targeting only two
threads. We believe this approach is specially valuable fordual-core architectures.

In the technique presented for the data dependence detection in n-waystraversal patterns, we have not
considered differentiation between types of dependences.In general, it is not possible to distinguish anti
or flow dependences. However, output dependences (two writeaccesses on the same location) could be
identified just by adding, (i) read/write kind of access in the Dtouch() function, and (ii) a simple check
for two write accesses inDep test nways(). This would permit another analysis client to solve that
dependence with privatization and synchronization techniques.

The characteristics of this method favors the exploitationof coarse-grain parallelism, i.e., few threads
with a substantial workload, as opposed to many threads withlittle workload. Of course, different programs
will benefit from different parallelization schemes. However, it is our intuition that there is a large number
of pointer-based applications that can benefit from coarse-grain parallelism. Some other authors suggest the
same, like Kulkarni et. al [63], who provide evidence that coarse-grain parallelism is needed for improving
the performance of irregular applications that manipulatepointer-based data structures.

Other approaches rely on generation of many small tasks, oneper traversal step, and then assign them to
available threads. Such is the way favored by thetask construct in OpenMP 3.0 [16]. This approach can
generate an enormous number of threads that can negate speedup for small workloads. Kejariwal et. al
[64] show that the threading overhead for the parallelization of innermost loops from SPEC CPU2006
benchmarks [65], renders parallelization of such loops as unprofitable. Although their work is targeted
for thread-level speculation(TLS), this also holds for loops without dependences. Theirwork supports our
idea that parallelizing recursive functions of small workload per traversal step, as encouraged bytask-like
constructs, is unlikely to be profitable.

Compilation techniques based on shape analysis for pointer-based programs



4.4. Related work in dependence analysis 129

4.4 Related work in dependence analysis

Most of the related work in shape analysis that we have discussed in previous chapters is not concerned with
data dependence analysis. It is mostly concerned with otherclient analysis, mainlyverification.

For instance, the works based in TVLA and 3-valued logic ([29], [45], [46], [47], [48]) are mainly
concerned with codifying spatial shape invariant information. Such information is useful for program ver-
ification clients, and the experimental results reported bythese authors reflect this approach. They test
simple programs based on singly-linked lists or binary trees, and use their shape analysis strategy to prove
code correctness and the conservation of the shape invariants in the structure in the presence of destructive
updating.

Likewise, the works in separation logic ([38], [41], [40], [39]) are concerned in finding predicates that
encode spatial relationships between heap locations, and are also targeted by their authors toward program
verification. These works also design specific shape analysis strategies for particular target data structures.
For instance, Berdine et. al [40] create a shape analyzer specifically targeted for structures based on linked
lists (trees are not supported by definition) and use it for a verification client that is tested with a library of a
firewire driver.

We believe that the kind of analysis that is suitable for verification is not easily adaptable toward de-
pendence detection. Verification is mainly concerned with proving code correctness and obtaining structure
invariants and therefore cannot make any assumptions aboutthe program. In our approach, we assume code
correctness, and we are not so much concerned with the structure invariants than actual access relationships,
which determine dependences.

Also, in our approach, we do not limit the scope of applicability of the analyzer to a specific type of
structure. Rather, we construct shape graphs modeling the heap in the program in a general way. This allows
us to obtain good results for programs that manipulate data structures that are not “clean” lists or trees or
a combination of some predetermined data type (e.g. lists).Sometimes the analysis may not be precise
enough, but often properties can be used to solve such cases.

More related to our approach of using heap analysis for data dependence are the works [56], [37] and
[66]. Ghiya and Hendren [56] proposed a test for identifyingdata dependences, relying on a characterization
of the overall data structure as the Tree, DAG or Cycle shapes. Such knowledge is used to identify possible
conflicts for the pointer access paths in the statements being analyzed. In the case of the Cycle shape, all
precision is lost, and dependences must be conservatively reported.

Also using the overall structure characterization of Tree,DAG or Cycle, Hwang and Saltz [37] devised
a dependence test based on the calculation of interprocedural def-use chains for pointer variables. These
def-use chains allow them to assess a “shape” for the traversal of the structure. For example, their approach
is able to identify a non-cyclic traversal of a cyclic structure. This is useful in the case of having heap
accesses that do not follow the cyclic paths in the structureand do not provoke dependences. Such a case
could not be identified by [56]. The main drawback in these works is that they are not useful in programs
that perform destructive updates in the loops under test, inother words, the structure cannot change within
the loop of study.

We first used successfully the idea of annotating heap accesses in nodes in the work of [2]. Marron
et. al borrow this idea for dependence analysis on their particular store heap model in [66]. They target Java
codes entirely based on manually-tuned collection libraries. Their approach is fast, partly by limiting the
discrimination of conflicting accesses. As a consequence, their work is not adaptable to detect different kind
of dependences (anti, flow, output) or zero distance data dependences.

In our approach, we annotate the memory locations reached byeach heap-directed pointer, with read/write

University of Málaga



130 Chapter 4. Data dependence analysis

information. This feature let us capture, more accurately than any other approach, the temporal relationship
between the statements that visit the locations of the program heap. Our algorithm supports recursion, and
allows the data structure to be modified during the analysis,which enables us to support a wide range of pro-
grams that feature loops or recursive functions that traverse and create generic heap-based recursive/dynamic
data structures in programs that perform destructive updates. On top of that, we can distinguish among anti,
output, and flow data dependences, as well as zero-distance data dependences in loops or recursive functions
that comply with the1-waytraversal pattern.

4.5 Experimental results

We have implemented the algorithms described in this chapter for heap-induced data dependence analysis
within our heap analysis framework. We have conducted some experiments that we review next.

4.5.1 Benchmarks and tests

We have considered eight programs for out data dependence detection tests. They are summarized in Ta-
ble 4.1, and we present them in more detail next. Beside the benchmark name, we include the traversal
pattern featured, the data structure and the result obtained by the test. The first two benchmarks are drawn
from the running examples of this chapter to provide a baseline for the analysis performance. The rest of
benchmarks were introduced in previous chapters.

Benchmark Traversal pattern Data structure Result
1-Running ex lcd0 1-way (2 nested

loops)
List of lists (each element
in the singly-linked header
list points to another
singly-linked list of heap
elements)

2 anti dependences
(1 loop-carried
dep. for inner
loop, 1 zero dist.
for outer loop)

2-Running ex rec 1-way (2 nested rec.
fun.)

List of lists (each element
in the singly-linked header
list points to another
singly-linked list of heap
elements)

2 anti dependences
(1 loop-carried
dep. for inner
loop, 1 zero dist.
for outer loop)

3-Matrix x Vector(s) 1-way (3 nested
loops)

Singly-linked sparse matrix
and vector

No dependences

4-Matrix x Matrix(s) 1-way (4 nested
loops)

Singly-linked sparse matrices
and vector

No dependences

5-Em3d 1-way (2 nested
loops)

2 singly-linked lists
interconnected forming a
bipartite structure

Zero distance anti
dependence

6-TreeAdd 2-ways (2 terminal
cl.)

Binary tree No dependences

7-Power 1-way (3 nested rec.
fun.)

Multilevel structure of
singly-linked lists

Zero distance anti
dependences

8-Bisort 2-ways (2 nested rec.
fun., 2 terminal cl.)

Binary tree No dependences

Table 4.1: Summary of benchmark programs used for our data dependence tests.

1. Running ex lcd0. This is the example of Fig. 4.11. It features alist of listsdynamic data structure
that is traversed in two nested loops, with a1-way traversal pattern. The test identifies two anti
dependences, one for the outer loop, and other for the inner loop. The mechanism of the iteration
vector described in section 4.2.6 is employed by the analysis to recognize the dependence of the
outer loop as a zero distance dependence, and the dependenceof the inner loop as a loop-carried
dependence. This benchmark is run with thetypeandtouchproperties enabled.

Compilation techniques based on shape analysis for pointer-based programs



4.5. Experimental results 131

2. Running ex rec. This is the example of Fig. 4.14. It features the same data structure and obtains
the same results as the previous benchmark, but it is based ona traversal with two nested recursive
functions, rather than two nested loops. Still, it follows the1-waytraversal pattern. The dependences
identified are the same as above. This benchmark is run with theprevious call, paired selectors, type,
andtouchproperties.

3. Matrix x Vector(s). This is the sparse matrix by sparse vector benchmark, basedon singly-
linked lists, presented in chapter 2. This is the version without pruning to improve performance. The
pruned part in chapter 2 features the heap accesses and therefore cannot be obviated for the purpose
of dependence detection. The analysis reports no dependences for the loop that computes the product,
as each read operation is performed over the input matrix or vector, and every writing operation is
performed on the output vector. This benchmark is run with thesiteandtouchproperties enabled, and
features a1-waytraversal pattern.

4. Matrix x Matrix(s). This is the sparse matrix by sparse matrix benchmark, basedon singly-
linked lists, presented in chapter 2. Again, this version allows no pruning. The structure accessed for
reading (two input matrices) is different from the structure accessed for writing (output matrix). This
is maintained by the analysis, which correctly reports no dependences. This benchmark is run with
thesiteandtouchproperties enabled, and again features a1-waytraversal pattern.

5. Em3d. This is the Olden benchmark presented in chapter 2 as well. It is formed by two singly-
linked lists, where the elements in a list point to several elements in the other list, forming a bipartite
structure. Thecompute nodes() function, that computes the values of the electric and magnetic
field, is instrumented for dependence detection with touch pseudostatements. A zero distance anti
dependence is found as each element is read and then updated in every iteration of the traversing loop,
in a1-waypattern. This benchmark is run with thesiteandtouchproperties enabled.

6. TreeAdd. This is another benchmark from the Olden suite. It was introduced in chapter 3, and has
been used in the present chapter as example of a2-waystraversal pattern in a tree. It is cloned with
a depth of one, meaning that only two terminal clones are generated, aiming for a 2-threads traversal
distribution. The heap accesses of the terminal clones do not interfere, and so the tested program is
reported as parallel due to heap accesses in the traversal. This benchmark is run with theprevious
call, paired selectors, anddynamic touchproperties enabled.

7. Power. Another benchmark from Olden, it was presented in chapter 3, and features nested recur-
sion for a1-way traversal of a multilevel structure of singly-linked lists. Elements are updated in
the traversal, like in5-Em3d, thus producing zero distance anti dependences for severaldata fields.
For simplicity, these data fields are grouped for this test, as to reduce the number of required touch
pseudostatements. As a result, finer distinction of dependences for different data fields is lost. Nev-
ertheless, zero distance anti dependences are discovered for the analysis. This benchmark is run with
the type, previous call, paired selectors, andtouchproperties enabled.

8. Bisort. Yet another Olden benchmark, also presented in chapter 3, that features a2-ways traver-
sal pattern of a binary tree with two recursive functions that perform nested traversals. Like in
6-TreeAdd, we perform function cloning of depth one, aiming for a 2-threaded version of the
program, separating the traversal of the left subtree from the right in the first function involved in the
traversal. Again, the heap accesses from both terminal clones do not interfere, and the program is
reported parallel for the analyzed configuration. This benchmark is run with theprevious call, paired
selectors, anddynamic touchproperties enabled.

University of Málaga



132 Chapter 4. Data dependence analysis

Benchmarks6-TreeAdd and8-Bisort feature2-waystraversal patterns of a binary tree. The rest
feature a variety of data structures and traversals, alwaysconforming to the1-waypattern. We are able to
obtain accurate dependence information for all the presented benchmarks, identifying the access pairs and
conflicting functions where they exist.

We show some measures about performance and problem size forthe dependence analysis of these
benchmark programs in Table 4.2. We register analysis time,memory consumed, number of analyzable
statements, number of analyzed statements until the fixed point is reached, and the number of shape graphs
generated. As in previous chapters, the testing platform isa 3GHz Pentium 4 with 1 GB RAM.

Excluding the base test1-Running ex lcd0, which takes less than one second, we see that some pro-
grams need a few seconds (2-Running ex rec, 6-TreeAdd, and7-Power) while other need a few
minutes (3-Matrix x Vector(s), 4-Matrix x Matrix(s), and5-Em3d), with 8-Bisort
taking the longest time, with more than 45 minutes. Memory consumption seems very reasonable with
less than 20 MB in the worst case. The longest programs are more than a hundred analyzable statements
long. We only report statements that deal with the heap, either constructing, traversing or accessing the
structures. Remember that touch pseudostatements model the effect of heap accessing statements for the
data dependence analysis.

The number of analyzed statements until the fixed point is reached stays at just a few thousands, with
the exception of1-Running ex lcd0 with the lowest value, and8-Bisort with more than 100,000
analyzed statements. The number of shape graphs varies somemore, peaking again for8-Bisort with
more than 350,000 generated graphs.

Benchmark Time Space Code stmts. Analyzed stmts. Shape graphs
1-Running ex lcd0 0.41 s 1.9 MB 56 585 721
2-Running ex rec 20.52 s 11.5 MB 60 3,422 8,416
3-Matrix x Vector(s) 2 m 19.80 s 3.8 MB 97 1,333 16,755
4-Matrix x Matrix(s) 9 m 13.38 s 4.9 MB 131 4,356 30,507
5-Em3d 2 m 5.88 s 11.8 MB 178 1,475 2,454
6-TreeAdd 31.42 s 7.5 MB 67 5,332 11,754
7-Power 12.91 s 8.4 MB 73 3,698 6,454
8-Bisort 45 m 6.88 s 63.6 MB 116 107,165 355,003

Table 4.2: Performance and problem size for the benchmarks used for dependence detection. The testing
platform is a 3GHz Pentium 4 with 1GB RAM.

More information about these experiments is gathered in Table 4.3. It gives some metrics related to
the complexity of the shape graphs. Next to each benchmark, we list first the number of touch or dynamic
touch pseudostatements used for the analysis. Remember that the touch pseudostatements are used for the
1-waytraversal pattern dependence test, while the dynamic touchpseudostatements are used for then-ways
traversal pattern dependence test. This number is a small value for all benchmarks as it is usually just one
pointer field that may have conflict. This is not the case for7-Power, but we group the access fields in this
benchmark for simplicity. The highest value is 6 for8-Bisort.

Also in Table 4.3, we show the average number of shape graphs per analyzable statement, and the
average number of nodes andcls’s per graph, with the maximum values in parentheses. The number of
shape graphs per code statement is kept as a few hundreds as most, except for8-Bisort. The average
number of nodes is around 9–10 for most benchmarks, confirming that the use of more properties produces
more nodes per graph. The number ofcls’s in average is quite controlled, with only three programs needing
more than a hundred (4-Matrix x Matrix(s),5-Em3d, and8-Bisort).

Some insights can be drawn from the results displayed in tables 4.2 and 4.3:

• The same program written in different ways can result in verydifferent costs for the analysis. In par-

Compilation techniques based on shape analysis for pointer-based programs



4.5. Experimental results 133

Benchmark (D)touchs Sg’s / code stmt. Avg. nodes / sg (max) Avg. cls’s / sg (max)
1-Running ex lcd0 4 12.88 5.98 (10) 19.80 (46)
2-Running ex rec 4 140.27 9.91 (13) 33.18 (50)
3-Matrix x Vector(s) 3 172.73 10.38 (14) 82.86 (122)
4-Matrix x Matrix(s) 3 232.88 14.85 (19) 118.47 (168)
5-Em3d 3 13.78 9.38 (13) 128.06 (556)
6-TreeAdd 4 175.43 5.42 (8) 46.95 (116)
7-Power 5 88.41 9.90 (14) 37.80 (66)
8-Bisort 6 3,060.37 8.41 (10) 107.50 (208)

Table 4.3: Shape graph complexity for the benchmarks used for dependence detection.

ticular, recursive algorithms are more costly, for the sametraversal over the same data structure, than
iterative algorithms. This can be observed for1-Running ex lcd0 and2-Running ex rec,
where the first runs 50 times faster, and takes nearly 6 times less shape graphs to reach the fixed point,
while reporting the same dependences.

• The dependence test for2-waystraversal patterns is much more costly than the dependence test for
1-way traversal patterns. For instance,8-Bisort takes much more time, and many more shape
graphs than5-Em3d, even though5-Em3d has more nodes andcls’s per graph, and more analyz-
able statements. Added to the cost of analyzing recursive algorithms versus iterative ones,8-Bisort
also needs to analyze the clones of recursive functions, multiplying the cost of the analysis.

• The number of nodes per graph does not grow too much despite the touch annotations labels. The
touch and dynamic touch properties increase the number of nodes per graph. A bigger number of
annotation labels can exponentially increase the number ofnodes, as they may register different com-
binations of labels. Luckily, heap accesses occur with a pattern, and memory locations tend to be
touched with the same heap accesses, therefore limiting thenumber of different combinations of an-
notation labels in nodes. The biggest number of nodes per graph is registered for the sparse matrix
benchmarks, with only three touch pseudostatements each. In this case, this is caused by the site
property, also used for the analysis. The use of the site property benefits these benchmarks as shown
in the experimental section of chapter 2.

These tests show that the techniques presented in this chapter are successful in identifying heap-induced
data dependences for a variety of data structures and algorithms, both for the1-wayand2-waystraversal
patterns. The cost has increased with regards with the results shown for previous chapters. We shall explore
this issue next.

4.5.2 Cost of dependence test over shape analysis

It is clear that the dependence test poses some extra stress on the technique, degrading the performance
regarding the analysis that only captures and maintains theshape of data structures. This can be seen at
a gross level by comparing the results of tables 4.2 and 4.3, with their homologues from chapters 2 and
3. However, we would like to have a quantification of that extra cost to ponder the real impact of the
dependence analysis. That is the purpose of Table 4.4.

Table 4.4 presents the percentage increment in some metricsfor the dependence analysis with regards to
just the shape analysis. This means that the same program hasbeen analyzed twice: once with the touch or
dynamic touch property enabled, and once with that propertydisabled. The program tested is the same, this
means that for the codes with function clones (6-TreeAdd and8-Bisort), the extended, cloned version

University of Málaga



134 Chapter 4. Data dependence analysis

Benchmark Inc. time Inc. space Inc. Sg’s Inc. nodes Inc. cls’s
1-Running ex lcd0 55.6% 0% 16.1% 27.2% 31.9%
2-Running ex rec 1,059.3% 310.7% 380.1% 71.2% 62.4%
3-Matrix x Vector(s) 5,874.4% 35.7% 594.4% 39.0% 172.0%
4-Matrix x Matrix(s) 1,750.8% 32.4% 217.2% 22.3% 127.2%
5-Em3d 582.3% 114.9% 21.9% 7.2% 11.4%
6-TreeAdd 53.1% 50.0% 18.9% 25.5% 20.3%
7-Power 58.8% 31.2% 4.6% 28.9% 32.4%
8-Bisort 838.1% 285.5% 344.7% 26.9% 60.7%

Table 4.4: Increment in several measures of the shape analysis instrumented for dependence test with regards
to just the shape analysis.

is used for both runs. Only the time of the shape analysis stage is considered, i.e., the time forstage four
(1-way)or stage three (n-ways).

The metrics we have considered for this comparison are: increment in time, increment in memory con-
sumed, increment in the total number of generated shape graphs, increment of nodes per graph in average,
and increment incls’s per graph in average. The increments in analysis time varygreatly. For instance,
6-TreeAdd has a 53.1% increment. This means that if the shape analysis of the cloned version of this
program takes 20.52 seconds, the dependence test takes 53.1% more time, that is, 31.42 seconds. For
3-Matrix x Vector(s) however, the increment is nearly 6,000%, showing the great variability of
this metric.

The increment in memory consumed is more controlled, but nevertheless it surpasses a 200% increment
in memory for two programs (2-Running ex rec and8-Bisort). The increment in shape graphs
is again quite variable, ranging from as little as 4.6% for7-Power to nearly 600% for3-Matrix x
Vector(s). The increment in number of nodes per graph in average is morecontrolled peaking at 71.2%
for 2-Running ex rec. The increment in average number ofcls’s per graph is also in a similar range
but surpassing a 100% increment for the sparse matrix benchmarks.

Some insights can be drawn from the results displayed in Table 4.4:

• The increment in analysis cost in the dependence test benchmarks, mainly analysis time, is significant
with regards to performing just the shape analysis, and it also varies a lot between different programs.
This makes it hard to predict the behavior of the analysis, though some guidelines apply, as hinted
next.

• A strong increment in the number of generated graphs produces an even greater increment in analy-
sis time. This can be seen for2-Running ex rec, 3-Matrix x Vector(s), 4-Matrix x
Matrix(s), and8-Bisort.

• The increment in average number of nodes andcls’s per graph is quite moderate for most cases.
However, when the shape graph complexity rises above a threshold, the penalty in analysis time is
significant. This can be observed for5-Em3d, where for a small increment in shape graphs, nodes
andcls’s per graph, the analysis time increases by 582.3%. In this scenario, the limiting factor is
the cost of the abstract semantics operations for a large amount of cls’s. Note that5-Em3d has
the biggest number ofcls’s per graph, but more importantly the maximum value is more than 4
times the average (Table 4.3). In such a situacion even a moderate increment incls’s, caused by
the instrumentation required for the dependence test, has abig impact over the abstract semantics
operation. This effect is also noticed in3-Matrix x Vector(s), where the increment in the
number of shape graphs is not sufficient to justify the enormous increment in analysis time. This
benchmark is affected as well from a significant increment incls’s per graph which places extra
burden on the shape analysis internal operations.

Compilation techniques based on shape analysis for pointer-based programs



4.5. Experimental results 135

We have seen that being able to detect dependences comes at a cost. We are aware that the analysis
may be too costly for some purposes. In that sense, we think the approach is suitable to analyze sections of
programs, or function libraries. Let us remind the reader too that we are targeting data dependences in heap
directed structures that are a challenge for current parallelizing compilers. Related work in shape analysis
is not suitable for dependence analysis, and other works in dependence analysis are not sufficiently precise
for complicated traversals and/or structures.

It should also be noted that the approach that we have taken for dependence analysis is based solely on
the capabilities of the shape analysis technique. This comes as a natural evolution of the foundational work
presented in previous chapters. We plan to continue our workto devise a more complete data dependence
detection scheme that can benefit from the shape analysis virtues and try to avoid most of its associated
costs. Ideas in this respect are discussed as future work in the next chapter.

Now, we would like to complete our experimental results section with information of the role of untouch
pseudostatements for zero-distance data dependence discrimination and some measures about the scalability
of our approach to data dependence analysis for then-waystraversal pattern.

4.5.3 Further instrumentation with untouch pseudostatements

From the tests reported for dependence analysis, there are afew that feature zero distance dependences. We
can apply the techniques presented in section 4.2.6 on them.

1-Running ex lcd0 and5-Em3d have1-waytraversal patterns with loop traversals. The extension
of the iteration vector within touch annotations is used in these tests to correctly identify the dependences
found as zero distance dependences. That mechanism has beenconsidered for the previous measures. How-
ever,2-Running ex rec and7-Power feature1-waytraversal patterns in recursive functions. In that
case, we need one of two mechanisms available: (i) obtain that information from the source program, or
(ii) instrument the programs further with untouch pseudostatements. For both2-Running ex rec and
7-Power, the source program inspection is enough to determine that the access pairs found are zero dis-
tance dependences.

For completion though, we show the measures for the touch-untouch instrumented version for these
two tests, which also results in the identification of the dependences as zero distance dependences. Keep
in mind that the way of identifying zero distance dependences in recursive1-way traversals by obtaining
information from the source code is not valid for all programs, while the method of instrumenting with
untouch pseudostatements is.

Benchmark (Un)touchs Time Space Code stmts. Analyzed stmts. Shape graphs
2-Running ex rec(t) 4 20.52 s 11.5 MB 60 3,422 8,416
2-Running ex rec(tu) 16 15.47 s 9.4 MB 72 5,662 9,838
7-Power(t) 5 12.91 s 8.4 MB 73 3,698 6,454
7-Power(tu) 12 11.66 s 7.3 MB 80 5,330 8,027

Table 4.5: Measures for the2-Running ex rec and7-Power benchmarks, considering the touch in-
strumented version (t), and the touch-untouch instrumented version (tu).

The measures of the touch-untouch instrumented version (labeled(tu)) are shown next to the measures
of the touch instrumented version (labeled now with(t), showing the measures presented before), for
comparison. They can be found in Table 4.5. We can see that thecost of the second analysis is slightly
less than that of the touch instrumented version. This is dueto the fact that dependence information is
not carried across context changes, which makes the analysis simpler. However, the number of generated
graphs is slightly higher, accounting for more possibilities of nodes being touched or untouched by access

University of Málaga



136 Chapter 4. Data dependence analysis

annotations.

4.5.4 Scalability of the dependence detection scheme forn-waystraversal patterns

Our dependence analysis scheme forn-waystraversal patterns involves creating function clones of the main
traversing functions. As discussed in section 4.3.5, this scheme requires creating an exponential number of
clones for a bigger number of threads intended for parallel execution. That is why we recommend targeting
this technique for few threads, unless the cost of the analysis is not an issue.

As a hint on the scalability of the analysis for a higher number of threads, we have conducted the
dependence analysis for6-TreeAdd and8-Bisort, tailored for four threads and measured the results.
They are compared in Table 4.6, which features the measures for the 2-threads version (labeled(2-th),
showing the results presented before), and the measures of the 4-threads version (labeled(4-th)).

Benchmark Dtouchs Time Space Code stmts. Analyzed stmts. Shape graphs
6-TreeAdd(2-th) 4 31.42 s 7.5 MB 67 5,332 11,754
6-TreeAdd(4-th) 8 6 m 15.84 s 19.6 MB 135 10,337 21,134
8-Bisort(2-th) 6 45 m 6.88 s 63.6 MB 116 107,165 355,003
8-Bisort(4-th) 10 1 h 51 m 198.6 MB 170 219,865 734,121

Table 4.6: Measures for the6-TreeAdd and8-Bisort benchmarks, considering the versions tailored
for two threads (2-th) and four threads (4-th).

As expected, the analysis cost has greatly increased for theversion with four recursive function clones.
The analysis reports no dependences again due to heap accesses by the different clones, so the programs
tested are ready to be parallelized with four threads.

4.6 Summary

This chapter concludes our efforts to apply the shape analysis technique based on the coexistent links sets
abstraction, with added interprocedural support, for heap-induced data dependence analysis in applications
that deal with dynamic, recursive data structures. Due to the variety of ways to traverse dynamic data
structures, through one or more selectors, using loops or recursive functions, we have devised a variety of
techniques, all based on annotating heap access information on nodes in shape graphs. Next, we summarize
the content presented in this chapter.

• First, we present our motivation for dependence analysis with shape analysis techniques, and intro-
duce the distinction between1-wayandn-waystraversal patterns (section 4.1).

• Next, we focused on dependence analysis on the simpler1-way traversal pattern (section 4.2). We
organize the process in five stages:

– Stage one (1-way)is in charge of identifying heap accessing statements in thesource program
(section 4.2.1).

– Stage two (1-way)createsdependence groups, identifying heap accesses that may lead to a
dependence (section 4.2.2).

– Stage three (1-way)addstouch pseudostatements, instrumenting the program for the shape anal-
ysis with heap access annotations (section 4.2.3).

Compilation techniques based on shape analysis for pointer-based programs



4.6. Summary 137

– Stage four (1-way)performs the shape analysis proper, creatingaccess pairsfor heap accesses
that have been performed on the same nodes (section 4.2.4).

– Finally, stage five (1-way)considers the access pairs and dependence groups to identify the heap-
induced data dependences found, discriminating betweenanti, output, andflow dependences
(section 4.2.5).

– For the special cases ofzero distance dependences(section 4.2.6), which are rightfully detected
by our scheme, but that do not prevent parallelism, we use theiteration vectorwithin annotations
for zero distance loop carried dependences, and two methodsfor discriminating zero distance
dependences in recursive functions.

• After tackling the1-way traversal pattern, we target the more complicatedn-waystraversal pattern
(section 4.3). This method is organized in four stages:

– Stage one (n-ways)performs recursivefunction cloning, transforming the original program into
a version arranged for threaded execution, should it resultparallel after the test (section 4.3.1).

– Stage two (n-ways)is dedicated to addingdynamic touchinstrumentation for the subsequent
shape analysis (section 4.3.2).

– Stage three (n-ways)performs the shape analysis, annotating heap accesses performed by the
terminal clones (section 4.3.3).

– Stage four (n-ways)considers the results of the shape analysis over the instrumented program to
render the arranged program as parallel or non-parallel dueto heap accesses (section 4.3.4).

• We also discuss related work in dependence analysis for programs that manipulate dynamic data
structures (section 4.4).

• Finally, we present experimental results that test our technique for a variety of dynamic data structures
and traversals (section 4.5). We have also characterized the extra cost that the touch or dynamic touch
instrumentation poses for the analysis over performing just the shape analysis (section 4.5.2). The
tests are completed with information of the impact of using touch-untouch instrumenta

University of Málaga





5 Conclusions

5.1 Conclusions

Our research goal lies in parallelizing compilers. In particular, we are interested in uncovering unexploited
parallelism in pointer-based applications. For that purpose, we have centered our efforts in the use of shape
analysis to design a precise scheme of data dependence analysis. In our approach, we abstract dynami-
cally allocated data structures in the form of shape graphs,and operate on them to annotate heap access
information. We use that information to report heap-induced data dependences.

Firstly, we would like to stress the defining characteristics of our work. We have shown that it is possible
to use a detailed heap analysis technique for data dependence analysis in programs that are a challenge for
current parallelizing compilers. To our knowledge, no other author has used so effectively a shape analysis
technique for the purpose of data dependence detection in programs that create and traverse dynamic data
structures. We are able to analyze programs even when the defining characteristics of the data structure are
changing amidst the traversal. When performing dependenceanalysis, we are able to determine the kind of
data dependences for many cases. This is a very useful feature for optimizations related to parallelism and
locality. Let us emphasize that all these characteristics in our analysis are not present in any related work
that we are aware of.

Next, we elaborate further on our main contributions:

1. We have designed and implemented a shape analyzer based onthe novel concept ofcoexistent links
sets, which allow to represent possible connections between memory locations in a compact form.
We have provided the necessary abstract semantics for all heap pointer statements, and the adequate
scheme of data-flow equations and worklist algorithm for achieving a fixed point for the analysis.
We have conducted a complete complexity study that identifies the main sources of limitation for
the technique. We have provided experimental evidence thatthe coexistent links sets abstraction is
suitable to accurately represent a variety of dynamic data structures in the form of shape graphs. More
information can be found in chapter 2 of this dissertation.

2. We have designed the necessary mechanisms to support the analysis of interprocedural programs,
particularly recursive algorithms, within the coexistentlinks sets shape analyzer. For this purpose,

139



140 Chapter 5. Conclusions

we have addedrecursive flow linksto the shape graphs. They codify flow information that is used
by the analysis to setup and recover the appropriate contextwhen analyzing functions. We have
added support to reuse the effect of computed functions for certain cases. We have identified some
shortcomings that limit the technique when analyzing recursive programs, and have devised solutions
for them. Finally, we have conducted tests that provide evidence that our shape analysis approach
compares favorably to related work and is able to correctly identify shape information for well-known
interprocedural benchmarks. More information can be foundin chapter 3 of this dissertation.

3. We have put to use the shape analysis technique based on coexistent links sets and recursive flow links
for data dependence analysis in pointer-based applications. We distinguish between two different
traversing patterns in recursive, dynamic data structures, namely the1-waytraversing pattern and the
n-waystraversing pattern. We have worked on two separate lines to apply the key idea of annotating
heap accesses in nodes to provide information about dependences for both kinds of traversing patterns.
In the case of1-way traversing patterns we are able to distinguish between anti, output and flow
dependences. We have also faced the issue of discriminatingbetween zero distance dependences
and greater-than-zero distance dependences. A sound technique must be able to detect both types,
but for the purposes of parallelization it is important to identify zero distance dependences, which
do not hinder parallelism. Regarding then-waystraversing pattern, we have adopted the approach
of decomposing the structure traversal, generating a modified version of the program suitable for a
subsequent parallelization scheme. We have provided experimental evidence that we can detect heap-
induced data dependences in a variety of data structures andtraversals for both traversal patterns.
Additionally, we have studied the cost inherent to the dependence analysis versus the cost of the
shape analysis per se. More information can be found in chapter 4.

5.2 Future work

It is fair to say that there is the generalized feeling withinthe compiler community that shape analysis has
little to say for production compilers. The typical argument lies in the cost of the analysis. Shape analysis is
a costly technique by definition as it strives to achieve, at compile time, very detailed information about the
arrangement of memory in the heap. The kind of knowledge shape analysis can obtain is beyond the scope
of other techniques, such as points-to analysis. However, it is not always clear whether that deep knowledge
can be put to use effectively.

In our opinion, the main issue with shape analysis comes fromthe lack of information from the run time
context. It is a compile-time technique, and as such, it has to adopt very conservative assumptions about
the analyzed program. Therefore, as a stand-alone technique is probably insufficient for realistic compiler
passes.

Despite this defining limitation, there are several directions that we can explore to improve and extend
our work:

• Improvement of internal operations.
The internal operations of summarization and materialization lie at the core of our shape analysis
strategy. They control the focus of the analysis, whether materializing for accurate updating operations
or summarizing for bounding the size of the shape graphs. These two operations must be conservative
to preserve correctness of the analysis. However, it is easyto become overly conservative, rendering
the analysis worthless for the purposes of data dependence detection.

We acknowledge a key fact for this limitation: there is information that is available at the moment of
summarization that cannot be recovered later during the materialization process. We plan to improve

Compilation techniques based on shape analysis for pointer-based programs



5.2. Future work 141

the efficacy of the materialization, considering information present at the moment of summarization.
That information includes: (i) characteristics of thewholedata structure, and not justlocal informa-
tion, like in the current approach, and (ii) thereachabilityof its elements by the different pointers.
This would allows us to obtain a quicker and more precise way to materialize in shape graphs.

• Interval analysis.
We advocate for the use of shape analysis as a means to analyzeonly certain parts of a program. In
chapter 2 we showed some results that evidence thatpruningof statements that do not affect the shape
of the data structure can greatly improve the analysis performance. There is work in this direction that
usesdef-use chainsto drive that pruning in an automated fashion [67]. With thisapproach we hope to
be able to analyze bigger programs.

• Shape information as a base tool for more sophisticated dependence tests.
Our approach to the problem of data dependence detection is entirely based on shape analysis and
its inherent capabilities. It is based on performing abstract interpretation of all heap-directed pointer
statements in the program, while annotating heap accesses in nodes of the shape graphs. However,
we consider this approach just a first approximation to the problem of detecting heap-induced data
dependences in programs that manipulate dynamic data structures. Since the engine of abstract in-
terpretation is naturally of exponential complexity, thisis a very costly way to uncover heap access
conflicts. Alternatively, we can design a more subtle test that tries to avoid the abstract interpretation
penalty whenever possible.

For instance, we can consider shape analysis as a base tool toobtain a shape graph representation
of the heap. On top of that, we can use some other technique that relies on the shape abstractions to
identify conflicting heap accesses. We are already working in this direction. The key idea is to project,
or map, the access paths that can potentially lead to a dependence over the shape graphs abstractions
that define the data structure. The major drawback of this approach is that the data structure cannot
change in the program section where the access paths are projected over the shape graphs, otherwise
its deductions cannot be guaranteed to hold true for every case. Preliminary results with this approach
are encouraging, leading us to believe this is the most promising field of applicability of shape analysis
for realistic compiler passes.

• Automatic generation of parallel code.
Let us not forget the final goal of our research: the automaticgeneration of parallel code. The results
of our data dependence test strategies can be used by a parallelization pass that generates parallel
code. We have already identified UPC (Unified Parallel C) [17], as the language of choice for this
task. UPC is one the most promising languages for easy generation of parallel programs. It features
parallel constructs that can exploit parallelism in most architectures today. It offers a shared mem-
ory programming model, but is able to map tasks in distributed memory architectures, all in a very
amenable way for the programmer. It is as simple as sharing the required variables and adding a
upc forall construct to parallelize a loop, regardless of the target architecture.

Although some problems need to be solved for the automatic parallelization of irregular applications,
a field yet unexplored with UPC, we are optimistic in the use ofa parallel code generation pass based
on UPC for exploiting the parallelism reported by our data dependence test strategies.

University of Málaga





Appendix A:
Shape analysis

algorithms

XNULL()
Input:sg1=<N1,CLS1>, x ∈ PTR # A shape graph, and a pointer variable
Output:RSSGk # A shape graph in a reduced set of shape graphs

CreateList’[N]=∅
CreateList’[CLS]=∅
Findni ∈ N1 s.t.∃ pl=<x,ni>⊂ CLSni
forall clsni={PLni,SLni} ∈ CLSni,

CreatePL’ni=PLni-pl # Remove the correspondingpl
CreateSL’ni=SLni
Createcls’ni={PL’ni,SL’ni}
List’[CLS]=List’[CLS] ∪ cls’ni
List’[N]=List’[N] ∪ ni

endfor
forall nj ∈ N1 s.t.nj 6= ni,

List’[CLS]=List’[CLS] ∪ CLSnj
List’[N]=List’[N] ∪ nj

endfor
sgk=Summarize SG(List’[N],List’[CLS]) # Summarize compatible nodes
RSSGk=sgk

return(RSSGk)
end

Figure A.1: TheXNULL() function.



XNew()
Input:sg1=<N1,CLS1>, x ∈ PTR # A shape graph, and a pointer variable
Output:RSSGk # A shape graph in a reduced set of shape graphs

RSSG1=XNULL(sg1,x) beingRSSG1=sg2=<N2,CLS2>
Create a new nodenp
forall prop ∈ PROP

PPMprop (np)=Update Property(s,prop), wheres is the malloc stmt.
endfor
CreateNk=N2 ∪ np
Createpl=<x,np>
CreatePLnp=pl
CreateSLnp=∅
forall selj ∈ SELt (beingT (x)=t)

Createslatt=<<np,selj,NULL>,attsl={o}>
SLnp=SLnp ∪ slatt

endfor
Createclsnp={PLnp,SLnp}
CreateCLSnp=clsnp
CreateCLSk=CLS2 ∪ CLSnp
Createsgk=<Nk,CLSk>
RSSGk=sgk

return(RSSGk)
end

Figure A.2: TheXNew() function. Statements involved in the management of properties are shown in bold.

Update Property()
Input: s ∈ STMT, prop ∈ PROP # A statements::=x=new(), and a property
Output:pprop ∈ Pprop # The value of the corresponding property

If (prop==type)
pprop=T (x)

If (prop==site)
pprop=s

If (prop==touch ∨ prop==PC ∨ prop==PS ∨ prop==Dtouch)
pprop=∅

return(pprop)
end

Figure A.3: TheUpdate property() function.



XY()
Input:sg1=<N1,CLS1>, x, y ∈ PTR # A shape graph, and two pointer variables
Output:RSSGk # A shape graph in a reduced set of shape graphs

RSSG1=XNULL(sg1,x) beingRSSG1=sg2=<N2,CLS2>
Findni ∈ N2 s.t.∃ pl1=<y,ni>⊂ CLSni (beingCLSni ⊂ CLS2)
# Modify CLSni
CreateCLS’ni=CLSni
forall clsni={PLni,SLni} ∈ CLSni,

Createpl1’=<x,ni>
CreatePL’ni=PLni ∪ pl1’
CreateSL’ni=SLni
Createcls’ni={PL’ni,SL’ni}
CLS’ni=CLS’ni-clsni ∪ cls’ni

endfor
CreateNk=N2

CreateCLSk=CLS2-CLSni ∪ CLS′
ni

Createsgk=<Nk,CLSk>
RSSGk=sgk

return(RSSGk)
end

Figure A.4:XY() function.

FreeX()
Input:sg1=<N1,CLS1>, x ∈ PTR # A shape graph, and a pointer variable
Output:RSSGk # A shape graph in a reduced set of shape graphs

Findni ∈ N1 s.t.∃ pl=<x,ni>⊂ CLSni (beingCLSni ⊂ CLS1)
CreateN2=N1-ni # Remove the node
CreateCLS2=CLS1-CLSni # Remove the correspondingcls’s
forall nj ∈ N2, # Remove inconsistentsl’s from other nodes

CreateCLS’nj=CLSnj
forall clsnj={PLnj,SLnj} ⊂ CLSnj s.t.∃ slatt=<<nj,sel,ni>,attsl>⊂ clsnj

Createsl’att=<<nj,sel,NULL>,attsl={o}>
CreateSL’nj=SLnj-slatt ∪ sl’att
CreatePL’nj=PLnj
Createcls’nj={PL’nj,SL’nj}
CLS’nj=CLS’nj-clsnj ∪ cls’nj

endfor
endfor
Nk=N2

CLSk=∪∀nj∈N2 CLS’nj
Createsgk=<Nk,CLSk>
RSSGk=sgk

return(RSSGk)
end

Figure A.5:FreeX() function.



XselY()
Input:sg1=<N1,CLS1>, x ∈ PTR, sel ∈ SEL, y ∈ PTR # A shape graph, two pointer vars and a selector field
Output:RSSGk # A reduced set of shape graphs in normal form

CreateRSSGk’=∅
RSSG1=Split(sg1,x,sel)
forall sgi=<Ni,CLSi> ∈ RSSG1,

RSSG2=XSelNULL(sgi,x,sel)
forall sgj=<Nj,CLSj> ∈ RSSG2

Findnk ∈ Nj s.t.∃ pl1=<x,nk>⊂ CLSnk (beingCLSnk ⊂ CLSj)
Findnp ∈ Nj s.t.(∃ pl2=<y,np>⊂ CLSnp ∧ np 6= NULL) (beingCLSnp ⊂ CLSj)
# Modify CLSnk
CreateCLS’nk=CLSnk
forall clsnk={PLnk,SLnk} ∈ CLSnk,

If (∃ slatt1=<<nk,sel,NULL>,attsl>⊂ clsnk)
Createsl’att=<<nk,sel,np>,attsl’>
If (nk=np)

attsl’={c}
else

attsl’={o}
Create SL’nk=SLnk-slatt1 ∪ sl’att
CreatePL’nk=PLnk
Createcls’nk={PL’nk,SL’nk}
CLS’nk=CLS’nk-clsnk ∪ cls’nk

endfor
# Modify CLSnp
CreateCLS’np=CLSnp
forall clsnp={PLnp,SLnp} ∈ CLSnp (beingnp 6= nk),

Createsl’att=<<nk,sel,np>,attsl’={i}>
CreateSL’np=SLnp ∪ sl’att
CreatePL’np=PLnp
Createcls’np={PL’np,SL’np}
CLS’np=CLS’np-clsnp ∪ cls’np

endfor
CreateNj’=Nj

CreateCLSj’=CLSj-CLSnk ∪ CLS’nk-CLSnp ∪ CLS’np
Createsgj’=<Nj’,CLSj’>
RSSGk’=RSSGk’ ∪ sgj’

endfor
endfor
RSSGk=Summarize RSSG(RSSGk’) # Summarize compatible graphs
return(RSSGk)

end

Figure A.6:XselY() function.



Summarize SG()
Input:List1[N], List1[CLS] # A list of nodes and a list ofcls’s
Output:sgk=<Nk,CLSk> # A normalized shape graph

Nk=∅
CLSk=∅
forall ni ∈ List1[N] (beingCLSni ∧ CLSnj ∈ List1[CLS]),

If (∃ nj ∈ Nk s.t.Compatible Node(ni,nj,CLSni,CLSnj)==TRUE),
MAP(ni)=nj

else
Nk=Nk ∪ ni
MAP(ni)=ni

endfor
forall nr ∈ Nk

CreateCLS’nr=∅
endfor
forall ni ∈ List1[N],

nr=MAP(ni)
forall clsni={PLni,SLni} ∈ List1[CLS],

CreatePL’nr=SL’nr=∅
forall pl=<x,ni> ∈ PLni

Createpl’=<x,nr>
PL’nr=PL’nr ∪ pl’

endfor
forall slatt1=<<na,sel,nb>,attsl1>∈ SLni # Computeattsl1 ⊎ attsl2

If (∃ slatt2=<<nc,sel,nd>,attsl2> ∈ SLni,
s.t.MAP(na)=MAP(nc) ∧ MAP(nb)=MAP(nd)),

If (i ∈ attsl1 ∧ i ∈ attsl2)
attsl’=attsl1 ∪ attsl2 -i +s

If (i ∈ (attsl1 ∨ attsl2) ∧ s ∈ (attsl1 ∨ attsl2))
attsl’=attsl1 ∪ attsl2 -i

else
attsl’=attsl1 ∪ attsl2

Createsl’att=<<MAP(na),sel,MAP(nb)>,attsl’>
SL’nr=SL’nr ∪ sl’att

else
Createsl’att=<<MAP(na),sel,MAP(nb)>,attsl1>
SL’nr=SL’nr ∪ sl’att

endfor
Createcls’nr={PL’nr,SL’nr}
CLS’nr=CLS’nr ∪ cls’nr

endfor
endfor
CLSk=

⋃

∀n∈Nk CLS’n
return(sgk=<Nk,CLSk>)

end

Figure A.7:Summarize SG() function.



XSelNULL()
Input:sg1=<N1,CLS1>, x ∈ PTR, sel ∈ SEL # A shape graph, a pointer variable and a selector field
Output:RSSGk # A reduced set of shape graphs in normal form

CreateRSSGk’=∅
RSSG1=Split(sg1,x,sel)
forall sgi=<Ni,CLSi> ∈ RSSG1,

sgj=<Nj,CLSj>=Materialize Node(sgi,x,sel)
Findnk ∈ Nj s.t.∃ pl1=<x,nk>⊂ CLSnk (beingCLSnk ⊂ CLSj)
# Modify CLSnk
CreateCLS’nk=CLSnk
forall clsnk={PLnk,SLnk} ⊂ CLSnk,

If (∃ slatt1=<<nk,sel,np>,attsl1>⊂ clsnk)
Createsl’att1=<<nk,sel,NULL>,attsl1’={o}>
CreateSL’nk=SLnk-slatt1 ∪ sl’att1
CreatePL’nk=PLnk
Createcls’nk={PL’nk,SL’nk}
CLS’nk=CLS’nk-clsnk ∪ cls’nk
# Modify CLSnp
CreateCLS’np=CLSnp
forall clsnp={PLnp,SLnp} ⊂ CLSnp (beingCLSnp ⊂ CLSj),

If (∃ slatt2=<<nk,sel,np>,attsl2>⊂ clsnp)
CreateSL’np=SLnp-slatt2
CreatePL’np=PLnp
Createcls’np={PL’np,SL’np}
CLS’np=CLS’np-clsnp ∪ cls’np

endfor
endfor
CreateNj’=Nj

CreateCLSj’=CLSj-CLSnk ∪ CLS’nk-CLSnp ∪ CLS’np
Createsgj’=<Nj’,CLSj’>
sgj’’=Normalize SG(sgj’)
RSSGk’=RSSGk’ ∪ sgj’’

endfor
RSSGk=Summarize RSSG(RSSGk’) # Summarize compatible graphs
return(RSSGk)

end

Figure A.8:XSelNULL() function.



XYSel()
Input:sg1=<N1,CLS1>, x, y ∈ PTR, sel ∈ SEL # A shape graph, two pointer variables and a selector field
Output:RSSGk # A reduced set of shape graphs in normal form

CreateRSSGk’=∅
RSSG1=XNULL(sg1,x), beingRSSG1=sg2=<N2,CLS2>
RSSG2=Split(sg2,y,sel)
forall sgi=<Ni,CLSi> ∈ RSSG2,

sgj=<Nj,CLSj>=Materialize Node(sgi,y,sel)
Findnk ∈ Nj s.t.∃ pl1=<y,nk>⊂ CLSnk (beingCLSnk ⊂ CLSj)
Findslatt1=<<nk,sel,np>,attsl>⊂ clsnk
If (np 6= NULL)

# Modify CLSnp
CreateCLS’np=CLSnp
forall clsnp={PLnp,SLnp} ∈ CLSnp,

Createpl’=<x,np>
CreatePL’np=PLnp ∪ pl’np
CreateSL’np=SLnp
Createcls’np={PL’np,SL’np}
CLS’np=CLS’np-clsnp ∪ cls’np

endfor
CreateNj’=Nj

CreateCLSj’=CLSj-CLSnp ∪ CLS’np
else # Casenp=NULL

CreateNj’=Ni

CreateCLSj’=CLSi

Createsgj’=<Nj’,CLSj’>
RSSGk’=RSSGk’ ∪ sgj’

endfor
RSSGk=Summarize RSSG(RSSGk’) # Summarize compatible graphs
return(RSSGk)

end

Figure A.9:XYSel() function.



Join SG()
Input:sg1=<N1,CLS1>, sg2=<N2,CLS2> # Two shape graphs
Output:sgk=<Nk,CLSk> # A normalized shape graph

Nk=∅
CLSk=∅
# Join nodes
forall ni ∈ N1,

If (∃ nj ∈ N2 s.t.Compatible Node(ni,nj,CLSni,CLSnj)==TRUE),
# Create a summary nodens
forall prop ∈ PROP

PPMprop(ns)=Join Property(ni,nj,prop)
endfor
Nk=Nk ∪ ns
MAP(ni)=MAP(nj)=ns

else
Nk=Nk ∪ ni
MAP(ni)=ni

endfor
forall nj ∈ N2,

If (∄ ni ∈ N1 s.t.Compatible Node(nj,ni,CLSnj,CLSni)==TRUE),
Nk=Nk ∪ nj
MAP(nj)=nj

endfor
# Joincls’s
forall nr ∈ Nk

CreateCLS’nr=∅
endfor
forall ni ∈ N1 ∨ N2,

nr=MAP(ni)
forall clsni={PLni,SLni} ∈ CLSni,

CreatePL’nr=SL’nr=∅
forall pl=<x,ni> ∈ PLni

Createpl’=<x,nr>
PL’nr=PL’nr ∪ pl’

endfor
forall slatt=<<na,sel,nb>,attsl> ∈ SLni

Createsl’att=<<MAP(na),sel,MAP(nb)>,attsl>
SL’nr=SL’nr ∪ sl’att

endfor
Createcls’nr={PL’nr,SL’nr}
CLS’nr=CLS’nr ∪ cls’nr

endfor
endfor
CLSk=

⋃

∀n∈Nk CLS’n
return(sgk=<Nk,CLSk>)

end

Figure A.10: TheJoin SG() function. Statements involved in the management of properties are shown in
bold.



Join Property()
Input: n1, n2, prop ∈ PROP # Two compatible nodes and a property
Output:pprop ∈ Pprop # The value of the corresponding property

If (prop==type ∨ prop==site ∨ prop==touch ∨ prop==PC ∨ prop==Dtouch)
pprop=PPMprop(n1) # PPMprop(n1)==PPMprop(n2)

If(prop==PS)
pprop=PPMprop(n1) ∪ PPMprop(n2)

return(pprop)
end

Figure A.11: TheJoin Property() function.

Split()
Input:sg1=<N1,CLS1>, p ∈ PTR, sel ∈ SEL # A shape graph, a pointer variable and a selector field
Output:RSSGk # A set of shape graphs

RSSGk=∅
Findni ∈ N1 s.t.∃ pl=<p,ni>⊂ CLSni
# Split a graph for eachclsni ∈ CLSni
forall clsni ∈ CLSni,

If (∃ slatt=<<ni,sel,na>,attsl={o|c}>∈ clsni ∧ na 6= NULL)
CreateCLSk’=CLS1-CLSni ∪ clsni
CreateNk’=N1

Createsgk’=<Nk’,CLSk’>
RSSGk=RSSGk

⋃

Normalize SG(sgk’)
endfor
If (∀ ni ∈ N1, ∄ pl=<p,ni>⊂ CLSni)

RSSGk=sg1

return(RSSGk)
end

Figure A.12:Split() function.



Normalize SG()
Input: sg1=<N1,CLS1> # A shape graph
Output:sgk=<Nk,CLSk> # A normalized shape graph

CreateNk’0 =N1

CreateCLSk’0 =CLS1

Createsgk’0 =sg1

i=0
repeat # Iterate untilNk’i andCLSk’i do not change anymore

FindNu={nu ∈ Nk’i s.t.Unreachable(nu,sgk’i )==TRUE}
FindNe={ne ∈ Nk’i s.t.CLSne=∅}
# Remove unreachable and empty nodes
Nk’i+1=N

k’
i -Nu-Ne

# cls’s from/to unreachable and empty nodes
Findclsnb s.t.∃ slatt=<<nf,sel,ng>,attsl>⊂ clsnb,

with (nf ∈ Nu ∪ Ne) ∨ (ng ∈ Nu ∪ Ne)
# cls’s with incoherent selector links
Findclsnc s.t.∃ slatt1=<<nc,sel,nm>,attsl1>⊂ clsnc ∧

∧ ∄ slatt2=<<nc,sel,nm>,attsl2>⊂ clsnm
Findclsnd s.t.∃ slatt3=<<nm,sel,nd>,attsl3>⊂ clsnd ∧

∧ ∄ slatt4=<<nm,sel,nd>,attsl4>⊂ clsnm
CLSk’i+1=CLS

k’
i -
⋃

∀nu∈Nu CLSnu-
⋃

∀ne∈Ne CLSne -{clsnb}-{clsnc}-{clsnd}
sgk’i+1=<N

k’
i+1,CLS

k’
i+1>

Incrementi
until

(

Nk’i =Nk’i-1 ∧ CLSk’i =CLSk’i-1
)

# Fixed point condition
Nk=Nk’i
CLSk=CLSk’i
return(sgk=<Nk,CLSk>)

end

Figure A.13:Normalize SG() function.



Materialize Node() (1/3)
Input:sg1=<N1,CLS1>, p ∈ PTR, sel ∈ SEL # A shape graph, a pointer variable and a selector field
Output:sgk=<Nk,CLSk> # A shape graph

Findni ∈ N1 s.t.∃ pl=<p,ni>⊂ CLSni
Findnj ∈ N1 s.t.∃ slatt1=<<ni,sel,nj>,attsl1>⊂ CLSni
# Create a new nodenm
forall prop ∈ PROP
PPMprop(nm)=PPMprop(nj)

endfor
CreateNk’=N1 ∪ nm
forall n ∈ Nk’

CreateCLS’n=∅
endfor
Find{clsnj ⊂ CLSnj s.t.∃ slatt2=<<ni,sel,nj>,attsl2> ⊂ clsnj }::={clsnj s.t. cond. A}
forall clsnj={PLnj,SLnj} s.t. cond. A, # CreateCLS’nm

CreatePL’nm=SL’nm=∅
forall pl=<x,nj> ∈ PLnj

Createpl’=<x,nm>
PL’nm=PL’nm ∪ pl’

endfor
forall slatt=<<na,sel2,nb>,attsl>∈ SLnj

If (attsl={c})
Createsl’att=<<nm,sel2,nm>,attsl>
SL’nm=SL’nm ∪ sl’att

If (attsl={o})
Createsl’att=<<nm,sel2,nb>,attsl>
SL’nm=SL’nm ∪ sl’att

If (attsl={i} ∨ {s})
Createsl’att=<<na,sel2,nm>,attsl>
SL’nm=SL’nm ∪ sl’att

else # Cases{i,o},{s,o},{i,c},{s,c}
Createsl’att1=<<na,sel2,nm>,attsl-(o|c)>
Createsl’att2=<<nm,sel2,nb>,attsl-(i|s)>
SL’nm=SL’nm ∪ sl’att1 ∪ sl’att2

endfor
Createcls’nm={PL’nm,SL’nm}
CLS’nm=CLS’nm ∪ cls’nm

endfor
...

Figure A.14: Part one of three of theMaterialize Node() function. Statements involved in the man-
agement of properties are shown in bold.



Materialize Node() (2/3)

...
CreateCLS’nj=CLSnj-{clsnj s.t. cond. A} # CreateCLS’nj
forall clsnj={PLnj,SLnj} ∈ CLSnj s.t.¬ cond. A,

CreateT1=T2=T2’=T3=∅
Find{slatt6=<<nj,sel2,nj>,attsl6>⊂ clsnj}::={clsnj s.t. cond. E}
forall slatt ⊂ clsnj s.t.¬ cond. E
T1=T1 ∪ slatt

endfor
forall slatt6 ⊂ clsnj s.t. cond. E

If (attsl6 6= {c})
If (c ∈ attsl6)
T2=T2 ∪ <<nj,sel2,nj>,attsl6-c>
T3=T3 ∪ <<nj,sel2,nj>,attsl6-(i|s)>

else
If ({i|s,o} ⊂ attsl6)
T2=T2 ∪ <<nj,sel2,nj>,attsl6-(i|s)>∪ <<nj,sel2,nj>,attsl6-o>

else
T2=T2 ∪ <<nj,sel2,nj>,attsl6>

forall slatt=<<nj,sel2,nj>,attsl>∈ T2
If ((i|s) ∈ attsl)

Createsl’att=<<nm,sel2,nj>,attsl>
else

Createsl’att=<<nj,sel2,nm>,attsl>
T2’=T2’ ∪ sl’att

endfor
endfor

CreatePL’nj=PLnj
SL’nj=T1 ∪ T3
for P=(00. . .0):(11. . .1) # P is a binary vector of|T2| size
SL’nj=SL’nj ∪ {P · T2 + ¬ P · T2’ }
Createcls’nj={PL’nj,SL’nj}
CLS’nj=CLS’nj ∪ cls’nj

endfor
endfor
...

Figure A.15: Part two of three of theMaterialize Node() function.



Materialize Node() (3/3)

...
forall nk ∈ N1 s.t.nk 6= nj, # CreateCLS’nk beingnk 6= nj

forall clsnk={PLnk,SLnk} ∈ CLSnk,
CreateT1=T2=T2’=T3=∅
forall slatt3=<<nk,sel2,nj>,attsl3>⊂ clsnk::=clsnk s.t. cond. B

Createsl’att3=<<nk,sel2,nm>,attsl3>
T2=T2 ∪ slatt3
T2’=T2’ ∪ sl’att3

endfor
forall slatt4=<<nj,sel2,nk>,attsl4>⊂ clsnk ∧ s 6∈ attsl4 ::=clsnk s.t. cond. C

Createsl’att4=<<nm,sel2,nk>,attsl4>
T2=T2 ∪ slatt4
T2’=T2’ ∪ sl’att4

endfor
forall slatt5=<<nj,sel2,nk>,attsl5>⊂ clsnk ∧ s ∈ attsl5 ::=clsnk s.t. cond. D

Createsl’att5=<<nm,sel2,nk>,attsl5-s+i>
T3=T3 ∪ slatt5 ∪ sl’att5

endfor
forall slatt ⊂ clsnk s.t. (¬ cond. B∧ ¬ cond. C∧ ¬ cond. D)
T1=T1 ∪ slatt

endfor
CreatePL’nk=PLnk
SL’nk=T1 ∪ T3
for P=(00. . .0):(11. . .1) # P is a binary vector of|T2| size
SL’nk=SL’nk ∪ {P · T2 + ¬ P · T2’ }
Createcls’nk={PL’nk,SL’nk}
CLS’nk=CLS’nk ∪ cls’nk

endfor
endfor

endfor
CLSk’=

⋃

∀n∈Nk’CLS’n
sgk’=<Nk’,CLSk’>
sgk=Normalize SG(sgk’)
return(sgk)

end

Figure A.16: Part three of three of theMaterialize Node() function.



Force() (1/2)
Input:sg1=<N1,CLS1>, test condition # A shape graph, and a test condition
Output:sgk=<Nk,CLSk> # A shape graph

Case (test condition)
test condition==(x==null)

If (∃ ni ∈ N1 s.t.∃ pl=<x,ni>⊂ CLSni)
sgk=∅

else
sgk=sg1

break
test condition==(x!=null)

If (∃ ni ∈ N1 s.t.∃ pl=<x,ni>⊂ CLSni)
sgk=sg1

else
sgk=∅

break
test condition==(x->sel==null)

Findni ∈ N1 s.t.∃ pl=<x,ni>⊂ CLSni
CreateCLS’ni=∅
forall clsni ∈ CLSni

If (∃ slatt=<<ni,sel,nj>,attsl>⊂ clsni s.t.nj==NULL)
CLS’ni=CLS’ni ∪ clsni

endfor
CreateCLSk’=CLS1-CLSni ∪ CLS’ni
CreateNk’=N1

sgk’=<Nk’,CLSk’>
sgk=Normalize SG(sgk’)
break

...

Figure A.17: Part one of two of theForce() function.



Force() (2/2)
...
test condition==(x->sel!=null)

Findni ∈ N1 s.t.∃ pl=<x,ni>⊂ CLSni
CreateCLS’ni=∅
forall clsni ∈ CLSni,

If (∃ slatt=<<ni,sel,nj>,attsl>⊂ clsni s.t.nj 6= NULL)
CLS’ni=CLS’ni ∪ clsni

endfor
CreateCLSk’=CLS1-CLSni ∪ CLS’ni
CreateNk’=N1

sgk’=<Nk’,CLSk’>
sgk=Normalize SG(sgk’)
break

test condition==(x->sel==y)
Findni ∈ N1 s.t.∃ pl=<x,ni>⊂ CLSni
Findnj ∈ N1 s.t.∃ pl=<y,nj>⊂ CLSnj
CreateCLS’ni=∅
forall clsni ∈ CLSni,

If (∃ slatt=<<ni,sel,nj>,attsl>⊂ clsni)
CLS’ni=CLS’ni ∪ clsni

endfor
CreateCLSk’=CLS1-CLSni ∪ CLS’ni
CreateNk’=N1

sgk’=<Nk’,CLSk’>
sgk=Normalize SG(sgk’)
break

test condition==(x->sel!=y)
Findni ∈ N1 s.t.∃ pl=<x,ni>⊂ CLSni
Findnj ∈ N1 s.t.∃ pl=<y,nj>⊂ CLSnj
CreateCLS’ni=∅
forall clsni ∈ CLSni,

If (∃ slatt=<<ni,sel,nk>,attsl>⊂ clsni s.t.nk 6= nj)
CLS’ni=CLS’ni ∪ clsni

endfor
CreateCLSk’=CLS1-CLSni ∪ CLS’ni
CreateNk’=N1

sgk’=<Nk’,CLSk’>
sgk=Normalize SG(sgk’)
break

return(sgk)
end

Figure A.18: Part two of two of theForce() function.





Appendix B:
Shape graph summaries

for the reverse()
function

Here we present all the summary shape graphs generated for the analysis of the recursive function
reverse(), which reverses a singly-linked list. This recursive function was used in chapter 3 as running
example to illustrate the extensions for interprocedural analysis. We reproduce the function again in Fig. B.1
for your convenience.

struct node * reverse(struct node *x){
struct node *y,*z;

4: z=x->nxt;
if(z!=NULL){

5: #pragma SAP.force(z!=NULL)
6: y=reverse(z);
7: #pragma SAP.force(x!=NULL)
8: x->nxt=NULL;
9: z->nxt=x;

}else{
10: #pragma SAP.force(z==NULL)
11: y=x;

}
12: return y;

}

Figure B.1: Thereverse() recursive function to reverse a singly-linked list.

As a result of the completion of the analysis ofreverse(), the analysis generates a shape graph set
composed of nine shape graphs. These graphs represent everypossible heap state that may be found at the
return point of the function, along all stages of recursive analysis. They are shown in Fig. B.2.

These shape graphs will be considered as the overall effect of the reverse() function. However,
not all graphs are eligible to represent the effect of the non-recursive call ofreverse(), and therefore
not all of them will be converted by theRTCnrec rule (see section 3.2.3.4). In particular, only those shape
graphs were the recursive flow pointers used are not assigned(i.e., they point toNULL), can represent heap
states that result from the analysis of the first, non-recursive call to the recursive function. Additionally,
the summaries for the recursive analysis ofreverse() are stored by the tabulation scheme for reuse in



160 Appendix B

the case of analyzing an equivalent data structure (see section 3.3). Next, let us review all summary shape
graphs generated forreverse(). To analyze this function we used theprevious call(PC) andpaired
selectors(PS) properties (see sections 3.4.1 and 3.4.3).

Shape graphsg1 in Fig. B.2 shows the first output summary shape graph forreverse(). It considers
the case of a list of length one, and the end of the first recursive call. This shape graph can be used for the
RTCnrec rule as capturing the effect of a non-recursive call toreverse()with a list of one element.

Shape graphsg2 shows a list two elements long, at the end of the second recursive call. This represents
the memory state of taking theelse branch in the last recursive call, where there is no next element from
the element pointed to by pointerx. Pointerz points toNULL, and therefore there is no pointer link for it.
Note that the node pointed to byxrfptr has thex value for the previous call (PC) property. It abstracts the
element that was pointed to by pointerx in the immediately previous recursive call.

Shape graphsg3 shows the same list of two elements of the previous figure, butone recursive call back
in the stack of recursive calls. Such call is the first, non-recursive call toreverse(), where the control
flow of the program has taken theif branch, and thus,z is assigned.

Shape graphsg4 captures a memory state where a list of length equal or greater than three elements
reaches the last recursive call. Pointerz is not assigned, we have taken theelse branch, and there are no
more elements to traverse forward in the list. Note thatn1 andn2 have the value ofx for the previous call
(PC) property. In particular,n2 abstracts the element pointed to by pointerx in the previous recursive call,
while n1 abstracts all elements previous to that.

Note that, in addition to the previous call property, nodesn1 andn2 feature some values for the paired
selectors (PS) property. Noden2 is related ton1 with the relation<nxti,xrfsel o>, established by links
sl2=<n1,nxt,n2> andrfsl3=<n2,xrfsel,n1>. Naturally, thenxt selector isincomingto n2, and
thexrfsel is outgoingfrom n2. Forn1, the relations of the paired selector property involvesl1, sl2,
rfsl1, rfsl2, andrfsl3, with values<xrfsel i,nxto> and<nxti,xrfsel o>. These values of the
PS property indicate that, within the memory locations abstracted byn1: (i) if a recursive flow selector is
incoming byxrfsel from one location, then selectornxt is also outgoing to thatsamelocation, or (ii) if a
selector from one location is incoming bynxt, then a recursive flow selector must be outgoing byxrfsel
to thesamelocation.

Shape graphsg5 shows a list of three elements returning from the second recursive call. It shows a list
half-reversed, where the element pointed to byx (represented byn2) is reached simultaneously from the
previous and the next element in the traversal order (represented by nodesn1 andn3, respectively).

Shape graphsg6 shows a list of three or more elements, returning from the first recursive call. This
is a suitable graph to capture the effect of a non-recursive call to reverse() over an arbitrarily long
singly-linked list. It is the shape graph used for the example of theRTCnrec rule in section 3.2.3.4.

Shape graphsg7 shows a list of three or more elements, returning from the penultimate recursive call.
We have followed theif branch. The last element, pointed to byz, is made to point to the penultimate
element, pointed to by pointerx, thus starting the reversal of the list. The nodesn1 andn2 represent the
first part of the list, traversed during the previous recursive calls.

Shape graphsg8 shows a four-element list, returning from the second recursive call. There is only one
previous recursive call, as there are no more nodes reachable fromn1 throughxrfsel. The last part of the
list (nodesn3 andn4) has already been reversed.

Shape graphsg9 shows a list of more than three elements, returning from a middle recursive call. A
part of two or more elements has already been reversed (nodesn4, n5, andn6), while another part of two
or more elements (nodesn1, n2, andn3) is yet to be reversed, upon returning to the previous recursive
calls.

Compilation techniques based on shape analysis for pointer-based programs



Appendix B 161

Figure B.2: Output summaries for the recursive analysis ofreverse().

University of Málaga





Appendix C:
Resumen de la tesis

doctoral en castellano

C.1 Introducción general

La comunidad cientı́fica está de acuerdo en que hemos alcanzado la era multicore: procesadores de 2 y
4 núcleos son ya comunes en ordenadores de sobremesa, y fabricantes como Intel planean procesadores
de 80 núcleos. Además, las arquitecturas multiprocesador abundan en las medianas empresas, centros de
investigación y organizaciones estatales, conforme se convierten en la tendencia principal en arquitectura de
computadores.

Las arquitecturas de un solo núcleo ya no pueden sostener los incrementos de rendimiento de la ley de
Moore [14]. Conforme nos acercamos a los ĺımites de las arquitecturas monoprocesador, el incremento en
consumo (y su coste de refrigeración asociado) domina a unos menguantes incrementos en rendimiento.
Parece haber un modo mejor: usar multiprocesadores. Ejemplos de esta tendencia son la arquitectura Cen-
trino Duo de Intel o el sistema Roadrunner de IBM, el supercomputador más potente en la actualidad1. Este
último es el primer supercomputador hı́brido de la historia, conectando 6.562 chips AMD Opteron de doble
núcleo, a la vez que 12.240 chips Cell. Es decir, no solo las arquitecturas multiprocesador se están convir-
tiendo en comunes, sino que las arquitecturas heterogéneas empiezan a aparecer en sistemas de alta gama.
Más que una moda de nuestro tiempo, los multiprocesadores están aquı́ para quedarse.

La clave ahora es cómo obtener un buen rendimiento softwarea bajo coste para que podamos explotar
todo el hardware disponible. Actualmente, la forma más común de obtener programas para estas arqui-
tecturas multiprocesador consiste en escribir, expĺıcitamente, algoritmos paralelos que se basan en hilos
(threads) o librerı́as de paso de mensajes. No obstante, hayuna grave limitación con este enfoque, y se trata
del elevado coste de desarrollo. Aunque hay un creciente número de lenguajes y librerı́as que intentan popu-
larizar la programación paralela (por ejemplo, [15], [16]ó [17]), los programadores paralelos expertos son
profesionales muy demandados, más por cuanto la variedad de arquitecturas y paradigmas de programación
paralela abundan.

Estamos presenciando un cambio de tendencias: de laComputacíon de Alto Rendimiento(HPC,High
Performance Computing), que se ocupa principalmente de reducir tiempos de ejecución por medio de
cualquier mecanismo, hacia laComputacíon de Alta Productividad(HPC,High Productivity Computing),
que busca obtener buenos incrementos en rendimiento pero a un coste razonable.

1Según la lista Top500 (www.top500.org) en Junio de 2008.



164 Appendix C

Durante años, un compilador paralelizador versátil y potente ha sido la quimera de la comunidad
cientı́fica en materia de compilación. El objetivo es ser capaz de identificar y explotar paralelismo en
programas secuenciales de forma automática, mediante un proceso completamente controlado por el com-
pilador. Este enfoque ha dado buenos resultados para aplicaciones regulares, sobre todo en Fortran [18],
pero las aplicaciones irregulares aún suponen desafı́os significativos.

En particular, las estructuras de datos basadas en memoria dinámica y que se acceden con punteros
están más allá del ámbito de la mayorı́a de compiladoresactuales. Son ineficientes cuando se trata de
optimizar aplicaciones basadas en punteros para los multiprocesadores modernos. Esta limitación se debe
principalmente a su incapacidad para extraer la informaci´on necesaria del programa fuente. En general, son
incapaces de localizar las oportunidades para explotar paralelismo y localidad de las estructuras de datos
dinámicas. Para ello, es absolutamente necesario disponer de una descripción precisa de qué localizaciones
de memoria, de entre las disponibles en elheap, son accedidas y de qué manera. Solo ası́ lograremos avanzar
en la paralelización automática de programas irregulares.

C.2 Motivación

El problema que queremos resolver es la paralelización automática de códigos basados en estructuras
dinámicas recursivas almacenadas en elheap. Se trata de un problema aún no resuelto y desafiante. En-
contrar su solución tendrı́a un gran impacto ya que las estructuras de datos dinámicas son ampliamente
utilizadas en muchos códigos irregulares y las arquitecturas multiprocesador/multihilo son muy comunes
actualmente.

Las estructuras de datos dinámicas son aquellas que se reservan en tiempo de ejecución y son accedidas
por punteros dirigidos alheap. A menudo, estas estructuras son ademásrecursivas, en el sentido, de que cada
elemento delheappuede apuntar a otros elementos delheap, formando estructuras como listas enlazadas,
Grafos Dirigidos Aćıclicos (DAG, Direct Acyclic Graph), o árboles. Estas estructuras son comúnmente
utilizadas en aplicaciones irregulares basadas en punteros, y suponen importantes desafı́os para los pases de
compilación de los compiladores actuales, debido al problema de los alias.

El problema de calcular los alias debidos a punteros debe resolverse para que los compiladores puedan
desambiguar las referencias de memoria. Un paso básico en el proceso de paralelización automática es la
detección de bucles paralelos o llamadas paralelas a funciones utilizando un test de dependencias. Un test
de dependencias ası́ requiere información acerca de las propiedades de las estructuras de datos recorridas
en bucles o en cuerpos de función. Estamos convencidos de lanecesidad de una descripción delheap
muy precisa, para el propósito del análisis de dependencias en el contexto de aplicaciones que tratan con
estructuras de datos dinámicas.

Hay todo un cuerpo de trabajo relacionado con el análisispoints-to, como [19] ó [20]. Su principal
enfoque es hacia la detección de relaciones de alias entre punteros. Por ejemplo, Salcianu [21] construye
grafospoints-toque representan relaciones entre elementos delheapy los punteros, incluso para partes
incompletas de un programa. La aplicación de su análisis se reduce a algunos clientes simples de lenguajes
orientados a objetos, como el descubrimiento de métodos que no modifican los objetos globales (análisis de
pureza), o la detección de objetos que son capturados en un método y pueden alojarse, por tanto, en elstack
(análisis de alojamiento en elstack).

En nuestro enfoque, consideramos elanálisis de formacomo la técnica base para conseguir una caracte-
rización de estructuras de datos en elheap. Al contrario que las técnicas de análisispoints-to, que se ocupan
principalmente de los conjuntos demay-aliasy must-alias, el análisis de forma se ocupa de laformade la
estructura de datos. Esto permite una caracterización más precisa de las estructura de datos en elheap. Esta

Compilation techniques based on shape analysis for pointer-based programs



Appendix C 165

precisión es necesaria para análisis clientes más complejos, como el análisis de dependencias de datos. Con
información de forma, es posible identificar accesos en conflicto en recorridos de elementos en elheapque,
de otro modo, no serı́an diferenciados por un análisis de tipo points-to.

Vislumbramos unsistema de ańalisis del heap, basado en análisis de forma como su elemento clave,
cuyo propósito es obtener información topológica y temporal acerca de estructuras de datos recursivas. Un
sistema ası́ estarı́a orientado hacia la detección de bucles paralelos y llamadas paralelas a función, con la
intención de generar una versión paralelizada con hilos de un código secuencial. Este sistema serı́a muy
valioso en el actual escenario repleto de multiprocesadores domésticos, que están llegando rápidamente al
usuario medio en la forma de sistemas multinúcleo (multicore).

Presentamos una primera aproximación a estesistema de ańalisis del heapen la Fig. C.1. Su función
es derivar información de aplicaciones secuenciales basadas en punteros de forma estática. Este sistema
deberı́a asociarse con un bloque de transformación de código que haga un uso adecuado de esa información
y arroje una versión optimizada del programa original. Para nuestros propósitos, tal optimización está
relacionada con el paralelismo automático para obtener aceleración del tiempo de ejecución.

Figure C.1: Sistema de análisis delheappara proporcionar información a un bloque de transformación de
código.

C.3 Análisis de forma para el ańalisis de dependencias

El análisis de forma es una técnica de análisis delheapque considera información disponible en tiempo de
compilación para arrojar información detallada acerca del heapen programas basados en punteros. Esto se
hace extrayendo información acerca de laformao la conectividad de los elementos delheap.

La información derivada del análisis de forma en una aplicación basada en punteros puede usarse para
varios propósitos como: (i) análisis de dependencias de datos, determinando si dos accesos pueden alcanzar
la misma localización de memoria; (ii) explotación de localidad, capturando el modo en que se recorren
las localizaciones de memoria para determinar cuando es probable que estén contiguas en memoria; (iii)
verificación de programas, para proporcionar garantı́as de corrección en programas que manipulan elheap;
y (iv) soporte al programador, para ayudar en la detección de un uso incorrecto de punteros o documentar
estructuras de datos complejas.

En nuestro enfoque al análisis de forma, usamos abstracciones de forma expresadas como grafos para
modelar elheap. El análisis de forma basado en grafos es una técnica de an´alisis de punteros muy detallada,
sensible al flujo, contexto y campo. Como consecuencia, es habitualmente mucho más costosa que otros
enfoques al análisis delheap, como el análisispoints-to.

A continuación presentamos una idea intuitiva acerca del modo en que un análisis de forma basado en
grafos puede usarse para encontrar conflictos en los accesosen un tı́pico bucle de recorrido por punteros. La
idea principal en nuestro esquema de detección de dependencias de datos es la interpretación abstracta de
las sentencias del bucle analizado, abstrayendo las localizaciones delheapaccedidas con nodos de grafos
de forma y anotando estos nodos con información de lectura/escritura.

University of Málaga



166 Appendix C

El código en la Fig. C.2 crea una lista simplemente enlazaday luego la recorre, copiando el campo
data del elemento apuntado por el punteroq, al elemento apuntado por el punterop. El efecto global
de este algoritmo es desplazar los valores en la lista una posición hacia el comienzo de la lista. Hay una
posible dependencia de datos entreS3:val=q->data, que lee el campodata, y S4:p->data=val,
que escribe en él.

Nuestro test ejecuta simbólicamente el código abstrayendo las estructuras de datos en grafos de forma.
Por ejemplo,sg1 es el grafo de forma (sg, shape graph) que abstrae la lista creada en la sentenciaS1.
Usando la interpretación abstracta [22], laseḿantica abstractade cada sentencia actualiza el grafo de forma
resultante de la sentencia previa. En este proceso, las localizaciones de memoria que se leen y/o escriben se
anotan adecuadamente. En este ejemplo, el acceso de lecturade la sentenciaS3 es anotada comoRS3 en los
grafos de forma, mientras que el acceso de escritura de la sentenciaS4 es anotada comoWS4. La segunda
ejecución simbólica de la sentenciaS4:p->data=val produce el grafo de formasg8. Dentro de este
grafo de forma podemos detectar que una localización de memoria ha sido leı́da en una iteración y escrita
en la siguiente, causando una dependencia acarreada por lazo debida a un acceso WAR (write-after-read,
escritura tras lectura).

Figure C.2: El uso del análisis de forma para la detección de dependencias de datos en elheap.

C.3.1 El ańalisis de forma dentro delsistema de ańalisis del heap

A continuación, expandimos el concepto desistema de ańalisis del heapintroducido anteriormente. La
Fig. C.3 presenta un esquema de diferentes módulos interactuando dentro delsistema de ańalisis del heap.

En primer lugar, el programa de entrada entra en el módulo SAP. Sus siglas significanPreprocesador
para el Ańalisis de Forma(Shape Analysis Preprocessor). Como su nombre sugiere, este módulo es respon-
sable de realizar las tareas de preproceso sobre el programarequeridas para su análisis de forma. El resultado
de este módulo es el conjunto de sentencias de punteros que actúa sobreheap, y el flujo de información que
gobierna el modo en que esas sentencias se ejecutan en el programa.

Esa información es la entrada para la herramienta delanalizador de forma, dentro delpaquete del
analizador de forma. También dentro de este paquete encontramos laherramienta de visualización [23],
que se usa para visualizar los grafos de forma obtenidos y ayudar a depurar la técnica.

Compilation techniques based on shape analysis for pointer-based programs



Appendix C 167

Figure C.3: Preprocesado del programa, análisis de forma yanálisis cliente dentro delsistema de ańalisis
del heap.

Como resultado de la ejecución del analizador de forma, obtendremos unacaracterizacíon de forma
de estructuras de datos dinámicas. Esa información puedeser usada poranálisis clientes. Por ejemplo, un
test de dependencias de datos podrı́a ser ese cliente: puedeconsiderar información de forma combinada con
información de accesos alheappara detectar dependencias en aplicaciones basadas en punteros. Los resulta-
dos del cliente son ofrecidos como salida del sistema. Por ejemplo, un cliente de detección de dependencias
de datos podrı́a informar de bucles paralelizables o funciones paralelizables a un sistema de paralelización
externo alsistema de ańalisis del heap.

C.4 Análisis de forma intraprocedural

Nuestro acercamiento al problema del análisis de forma está basado en la construcción degrafos de forma.
El propósito de un grafo de forma es representar las principales caracterı́sticas de forma de las estructuras
de datos dinámicas y recursivas. Estas caracterı́sticas permiten identificar las estructuras como listas, o
árboles, por ejemplo, incluyendo información acerca de la presencia o ausencia de ciclos, las localizaciones
alcanzables desde un puntero, etcétera.

Nuestro algoritmo de análisis de forma está diseñado como un análisis iterativo de tipodata-flow. Las
sentencias en el programa se ejecutan simbólicamente de forma iterativa, según las ramas y bucles del
programa para la parte intraprocedural. En este proceso losgrafos de forma son transformados según la
semántica abstracta de las sentencias analizadas. Este proceso continúa hasta que los grafos de forma alcan-
zan un estado estacionario, donde continuar la interpretación abstracta no produce nueva información. Este
estado se conoce como elpunto fijodel algoritmo.

Estrechamente ligado a la noción de punto fijo del algoritmo, está la operación desumarizacíon. La
sumarización es el proceso que mezcla nodos en grafos de forma cuando se estima que sonsuficientemente
similares. La similitud o compatibilidadde nodos se determina por las relaciones de alias de punterosy
propiedadesajustables. El proceso de sumarización acota los grafos deforma, limitando el número de
nodos que pueden tener. Adicionalmente, la sumarización previene el cambio sin fin de los grafos en el
transcurso de la interpretación abstracta iterativa, permitiendo alcanzar la condición de punto fijo.

Los grafos de forma están constituidos por 3 elementos básicos que se combinan para formar conjuntos
de enlaces como indica la vista jerárquica de la Fig. C.4. Enel nivel más bajo tenemos: (i)punteros, que
se usan como puntos de acceso a las estructuras; (ii)nodos, que se usan para representar localizaciones
de memoria alojadas en elheap; y (iii) selectores, o campos puntero, que se usan para enlazar nodos.
Combinando estos elementos básicos, podemos crear dos tipos de relaciones:enlaces de punteroso pointer

University of Málaga



168 Appendix C

links (pl’s), que son enlaces entre punteros y nodos; yenlaces de selectoreso selector links(sl’s), que son
enlaces entre nodos a través de un selector. Finalmente, los pl’s y sl’s pueden combinarse para formar
conjuntos coexistentes de enlaceso coexistent links sets(cls’s), que describen combinaciones depl’s y
sl’s que pueden existirsimult́aneamenteen un nodo.

Figure C.4: Vista jerárquica de los elementos de un grafo deforma.

C.5 Análisis de forma interprocedural

El soporte para los programas interprocedurales en el análisis de forma es aún un desafı́o, especialmente
en presencia de funciones recursivas. Sin embargo, el recorrido de estructuras de datos recursivas con
algoritmos recursivos es muy común, ya que algunas estructuras de datos, como los árboles, se expresan en
una forma que hace natural el hecho de recorrerlas de forma recursiva. El principal problema que afrontamos
cuando analizamos funciones recursivas es el problema de registrar el estado de los parámetros puntero en
los cambios de contexto. Para cambios de contexto no recursivos, es suficiente conocer la relación entre los
punteros que actúan como parámetros reales o formales. Ental caso, el cambio de contexto puede trasladarse
fácilmente al dominio de los grafos de forma.

Sin embargo, cuando manejamos parámetros formales puntero en funciones recursivas, no es tan simple:
la misma variable puntero debe ser seguida o registrada a lo largo de la secuencia de longitud indefinida de
llamadas recursivas. El nombre del puntero es el mismo, perodependiendo de la llamada, puede apuntar a
localizaciones distintas. Estas localizaciones deben registrarse para saber donde apuntaba un puntero cuando
volvemos de una llamada recursiva.

Por tanto, para mantener la pista de un parámetro formal puntero necesitamos cambiar suesquema de
nombres: no solo necesitamos conocer su nombre, sino también alguna información que lo relacione a la
llamada a la que pertenece. Lo mismo se necesita para los punteros definidos en el cuerpo de la función
recursiva, lospunteros locales. Estos punteros se redefinen en cada llamada, es decir, su ámbito pertenece
solo a una cierta llamada recursiva, y deben ser correctamente asignados al volver de las llamadas recursivas.

En tiempo de ejecución, esto se realiza manteniendo diferentes entradas en elRegistro de Activación o
Activation Record Stack(ARS). Entre otra información, el ARS mantiene el estado delos parámetros reales
punteros y los punteros locales antes de una llamada. De estemodo, cuando volvemos de la llamada estos

Compilation techniques based on shape analysis for pointer-based programs



Appendix C 169

punteros pueden ser correctamente reasignados. Hay que recordar que una técnica de análisis en tiempo de
compilación no puede conocer el número de veces que una función recursiva se llamará. Aún ası́ el análisis
debe encontrar un punto fijo, incluso en presencia de parámetros reales y actuales puntero y punteros locales.
Esto hace difı́cil alcanzar el punto fijo en la abstracción de forma para funciones recursivas, al tiempo que
se mantiene la precisión en la estructura.

En nuestro enfoque, abstraemos la información del ARS usando un nuevo tipo de enlace sobre los grafos
de forma. Denominamos a esos enlacesenlaces de flujo recursivoo recursive flow links. Estos enlaces no
representan enlaces reales en la estructura de datos del programa sino que trazan el camino de los parámetros
formales puntero y los punteros locales a lo largo del flujo interprocedural recursivo.

Adicionalmente, proporcionamos ecuacionesdata-flowextendidas para el análisis interprocedural, las
sentencias de llamada y retorno de función y una reglas que determinan el cambio de contexto en los grafos
cuando entran o salen de una función.

En el caso de repetitivos análisis de funciones con entradas iguales o similares, es útil disponer de un
mecanismo de reutilización de resultados obtenidos previamente, en especial en una técnica costosa como el
análisis de forma. En respuesta a esta demanda, hemos dise˜nado un sistema que reutiliza los grafos sumarios
obtenidos en análisis previos para grafos similares con unmecanismo de tabulación.

C.6 Análisis de dependencias

Hemos realizado nuestra investigación para desarrollar una técnica de análisis de forma versátil y precisa
que pueda ser utilizada como herramienta base para un test dedependencias. Nos centramos en la detección
de dependencias de datos debidas a punteros que apuntan alheapen dos escenarios habituales: (i) bucles que
recorren estructuras de datos dinámicas recursivas, identificando dependencias que pueden aparecer entre
dos iteraciones del bucle, y (ii) llamadas a funciones recursivas que recorren estructura de datos dinámicas,
identificando accesos en conflicto en diferentes llamadas recursivas.

En nuestro enfoque, anotamos información acerca de accesos de lectura/escritura durante la inter-
pretación abstracta de sentencias de punteros que puedan estar en conflicto. Esto se realiza con lapropiedad
touch. Esta propiedad registra la historia de los accesos en los nodos. Esta historia se crea durante la inter-
pretación abstracta, conforme el análisis progresa hacia el punto fijo. Los accesos alheapobtenidos de esta
manera se usan para detectar dependencias de datos.

Identificamos dos patrones de recorrido en estructuras de datos dinámicas: el patrón de recorrido1-
way y el patrón de recorridon-ways, según se siga un selector o más de un selector en el recorrido de la
estructura. Hemos diseñado diferentes técnicas de detección de dependencias de datos, según el patrón de
recorrido identificado.

Para el patrón de recorrido1-way, hemos ideado un sistema en 5 fases: (i) identificación de sentencias
de accesos alheap, (ii) creación de grupos de dependencia, (iii) incorporación de pseudosentenciastouch,
(iv) análisis de forma con propiedadtouch, y (v) test de dependencias. Esta técnica nos permite no solo
detectar todas las posibles dependencias de datos debidas aaccesos alheapen bucles y funciones recursivas
con recorridos de tipo1-way, sino que nos permite además distinguir entre dependencias de flujo, de salida
o antidependencias. Adicionalmente, hemos diseñado técnicas para identificar dependencias de distancia
cero, que no inhiben el paralelismo.

Para el patrón de recorridon-ways, hemos ideado un sistema en 4 fases: (i) creación de clones de
funciones recursivas, (ii) incorporación de pseudosentencias detouchdinámico, (iii) análisis de forma con
propiedad detouch dinámico, y (iv) test de dependencias. En este enfoque, descomponemos la función
objeto de nuestro estudio en clones y registramos los accesos al heapde cada clon. Si los accesos de los

University of Málaga



170 Appendix C

distintos clones (etiquetados de modo diferente) no aparecen en un mismo nodo, entonces el código ası́
descompuesto será paralelo, no siéndolo en caso contrario.

C.7 Conclusiones

Nuestro objetivo en investigación son los compiladores paralelizadores. En particular, estamos interesados
en desvelar paralelismo desaprovechado en aplicaciones basadas en punteros. Para este propósito, hemos
centrado nuestros esfuerzos en el uso del análisis de formapara el diseño de un esquema preciso de análisis
de dependencias de datos. En nuestro enfoque, abstraemos las estructuras de datos que son reservadas
dinámicamente en la forma de grafos de forma, y operamos sobre ellos para anotar información acerca de
los accesos alheap. Usamos esa información para informar de dependencias de datos en elheap.

En este punto nos gustarı́a destacar las caracterı́sticas definitorias de nuestro trabajo. Hemos mostrado,
en los resultados experimentales registrados, que es posible usar una técnica de análisis delheapde alta pre-
cisión para un efectivo análisis de dependencias en programas que suponen un desafı́o para los compiladores
paralelizadores actuales. Según nuestro conocimiento, ningún otro autor ha usado de forma tan efectiva las
técnicas de análisis de forma para el propósito de la detección de dependencias de datos en programas que
crean y recorren estructuras de datos dinámicas. Somos capaces de analizar programas incluso cuando las
caracterı́sticas de forma de la estructura de datos cambianen mitad de un recorrido. Cuando realizamos
análisis de dependencias, somos capaces de detectar el tipo de dependencias en un gran número de casos,
lo que es de suma utilidad para optimizaciones de paralelismo y localidad. Nos gustarı́a enfatizar que todas
estas peculiaridades de nuestro análisis no están presentes en los trabajos relacionados que conocemos.

A continuación detallamos nuestras principales contribuciones:

1. Hemos diseñado e implementado un analizador de forma basado en el novedoso concepto deconjun-
tos coexistentes de enlaces (coexistent links sets), que permiten representar las conexiones posibles
entre localizaciones de memoria de un modo compacto. Hemos provisto la semántica abstracta nece-
saria para todas las sentencias de punteros alheap, y el esquema adecuado de ecuacionesdata-flowy
algoritmosworklist para conseguir el punto fijo para el análisis. Hemos realizado un completo estu-
dio de complejidad para identificar las principales causas de limitación de la técnica. Hemos aportado
evidencia experimental de que la abstracción de los conjuntos coexistentes de enlaces es adecuada
para representar con exactitud una variedad de estructurasde datos dinámicas en la forma de grafos
de forma. Para más información sobre estos temas, por favor consulte el capı́tulo 2 de esta tesis (en
inglés).

2. Hemos diseñado los mecanismos necesarios para soportarel análisis de programas interprocedurales,
particularmente algoritmos recursivos, dentro del analizador de forma basado en conjuntos coexis-
tentes de enlaces. Para este propósito, hemos añadidoenlaces de flujo recursivo (recursive flow links)
a los grafos de forma. Estos codifican información de flujo que es utilizada por el análisis para preparar
y recuperar el contexto apropiado en el análisis de funciones. Hemos añadido soporte para reutilizar
el efecto de funciones ya analizadas para ciertos casos. Hemos identificado algunos problemas que
limitan la técnica en el análisis de programas recursivos, y hemos creado soluciones para ellos. Fi-
nalmente, hemos realizado experimentos que evidencian quenuestro enfoque de análisis de forma se
compara favorablemente con trabajo relacionado y es capaz de identificar correctamente información
de forma para conocidosbenchmarksinterprocedurales. Más información sobre estas aportaciones
está disponible en el capı́tulo 3 (en inglés).

3. Hemos usado la técnica de análisis de forma basada en conjuntos coexistentes de enlaces y enlaces

Compilation techniques based on shape analysis for pointer-based programs



Appendix C 171

de flujo recursivo para análisis de dependencias de datos enaplicaciones basadas en punteros. Distin-
guimos entre dos patrones de recorrido en estructuras de datos dinámicas recursivas, en concreto, los
patrones de recorrido1-wayy n-ways. Hemos trabajado en dos ĺıneas separadas para aplicar la idea
clave de anotar acceso alheapen nodos para proporcionar información acerca de dependencias para
ambos tipos de patrones de recorrido. En el caso del patrón de recorrido1-way, somos capaces de
distinguir entre dependencias de flujo, salida y antidependencias. También nos hemos enfrentado a la
cuestión de discriminar entre dependencias de distancia cero y dependencias de distancia mayor que
cero. Una técnica sólida debe ser capaz de detectar ambos tipos, pero para los propósitos de parale-
lización es importante identificar dependencias de distancia cero, que no inhiben el paralelismo. En
cuanto al patrón de recorridon-ways, hemos adoptado el enfoque de descomponer el recorrido de la
estructura, generando una versión modificada del programa, adecuada para un esquema de paraleli-
zación subsiguiente. Hemos aportado evidencia experimental de que podemos detectar dependencias
de datos inducidas en elheapen una variedad de estructura de datos y recorridos para ambos patrones
de recorrido. Adicionalmente, hemos estudiado el coste inherente al análisis de dependencias frente
al coste del análisis de forma en sı́ mismo. Más informaci´on al respecto está disponible en el capı́tulo
4 de esta tesis (en inglés).

C.8 Trabajo futuro

Es justo decir que existe la sensación generalizada dentrode la comunidad de compilación de que el análisis
de forma tiene poco que decir para los compiladores en producción. El argumento tı́pico está en el elevado
coste del análisis. El análisis de forma es una técnica costosa por definición porque se esfuerza en conseguir,
en tiempo de compilación, información muy detallada acerca de la configuración de la memoria en elheap.
El tipo de conocimiento que el análisis de forma puede obtener está más allá del enfoque de otras técnicas,
como el análisispoints-to. Sin embargo, no está siempre claro si ese conocimiento tanprofundo puede ser
usado con eficiencia.

En nuestra opinión, el problema principal respecto al análisis de forma proviene de la falta de infor-
mación respecto al tiempo de ejecución. Es una técnica que opera exclusivamente en tiempo de compilación,
y como tal, tiene que adoptar decisiones muy conservativas en los programas que analiza. Por tanto, como
técnica aislada es probablemente insuficiente para pases de compilación realistas.

A pesar de esta limitación caracterı́stica, hay varias direcciones que podemos explorar para mejorar y
extender nuestro trabajo:

• Mejora de las operaciones internas.
Las operaciones internas de sumarización y materialización yacen en el núcleo de nuestra estrategia de
análisis de forma. Controlan el enfoque del análisis, ya sea en la materialización para mayor precisión
en operaciones de actualización, o ya sea en la sumarizaci´on para acotar el tamaño de los grafos de
forma. Estas dos operaciones deben ser conservativas para preservar la corrección del análisis. Sin
embargo, es fácil que el análisis se vuelva excesivamenteconservador, dejando el análisis inservible
para el propósito de la detección de dependencias de datos.

Reconocemos el hecho clave para esta limitación: hay información que está disponible en el mo-
mento de la sumarización que no puede ser recuperada más adelante en el proceso de materialización.
Planeamos mejorar la eficacia de la materialización, considerando información presente en el mo-
mento de la sumarización. Esa información incluye: (i) caracterı́sticas de la estructura de datosen
su conjunto, no solo informaciónlocal como en el enfoque actual, y (ii) elalcance (reachability)de
sus elementos a través de los diferentes punteros. Esto nospermitirı́a obtener una forma más rápida y

University of Málaga



172 Appendix C

precisa de materializar en los grafos de forma.

• Análisis parciales.
Somos partidarios del uso del análisis de forma para analizar únicamente ciertas partes de un pro-
grama. En el capı́tulo 2 mostramos algunos resultados que evidencian que la eliminación de senten-
cias que no afectan a la forma de la estructura de datos puede mejorar en gran medida el rendimiento
del análisis. Hay trabajo en esta dirección que utilizacadenas de definición y usopara dirigir ese
proceso de eliminación de sentencias de forma automática[67]. Con este enfoque esperamos poder
analizar programas mayores.

• Informaci ón de forma como herramienta base para tests de dependenciasmás sofisticados.
Nuestro enfoque del problema de la detección de dependencias de datos está basado enteramente en el
análisis de forma y sus capacidades inherentes. Está basado en la interpretación abstracta de todas las
sentencias de punteros alheap, mientras que anotamos los accesos en nodos de grafos de forma. Sin
embargo, consideramos este enfoque como una primera aproximación al problema de la detección de
dependencias de datos en elheapen programas que manipulan estructuras de datos dinámicas. Como
el motor de la interpretación abstracta es de complejidad exponencial por su propia naturaleza, se
trata de un modo muy costoso de revelar conflictos de accesos al heap. Alternativamente, podemos
diseñar un test más sutil que intente evitar la penalización de la interpretación abstracta siempre que
sea posible.

Por ejemplo, podemos considerar el análisis de forma como la herramienta base para obtener una
representación delheapen forma de grafos. Adicionalmente, podemos utilizar otra técnica que se
base en la abstracción de forma para identificar accesos alheapen conflicto. Ya hemos realizado tra-
bajo en esta dirección. La idea clave es proyectar, o mapear, las rutas de acceso que pueden conducir
potencialmente a una dependencia sobre los grafos de forma que definen la estructura de datos. El
mayor inconveniente de este enfoque es que la estructura de datos no puede cambiar en la sección del
programa donde las ruta de acceso se proyectan sobre los grafos de forma. En caso contrario, sus de-
ducciones no podrı́an garantizarse para todos los casos. Los resultados preliminares con este enfoque
son esperanzadores, llevándonos a creer que este es el campo más prometedor para la aplicación del
análisis de forma para pases de compilación realistas.

• Generacíon automática de ćodigo paralelo.
No nos olvidemos de que el objetivo final de nuestra investigación es la generación automática de
código paralelo. Los resultados de nuestras estrategias de detección de dependencias de datos pueden
usarse para un pase de compilación que genere código paralelo. Ya hemos identificado UPC (Uni-
fied Parallel C) [17], como el lenguaje adecuado para esta tarea. UPC es uno de los lenguajes más
prometedores para la generación sencilla de programas paralelos. Dispone de construcciones parale-
las que pueden explotar paralelismo en la mayorı́a de arquitecturas actuales. Ofrece un modelo de
programación de memoria compartida, pero es capaz de mapear tareas en arquitecturas de memoria
distribuida, y todo de una manera muy accesible al programador. Es tan simple como compartir las
variables requeridas y añadir una construcciónupc forall para paralelizar un bucle, independien-
temente de la arquitectura de destino.

Algunos problemas aún deben ser resueltos para la paralelización automática de aplicaciones irregu-
lares en UPC, un campo aún inexplorado. No obstante, somos optimistas acerca del uso de un pase de
generación de código paralelo basado en UPC para explotarel paralelismo encontrado por nuestras
estrategias de detección de dependencias.

Compilation techniques based on shape analysis for pointer-based programs



Bibliography

[1] Francisco Corbera.Deteccíon autoḿatica de estructuras de datos basadas en punteros. PhD thesis,
Dpt. Computer Architecture, University of Malaga, Spain, 2001.

[2] A. Navarro, F. Corbera, R. Asenjo, A. Tineo, O. Plata, andE.L. Zapata. A new dependence test
based on shape analysis for pointer-based codes.Languages and Compilers for High Performance
Computing 2004 (LCPC’04) - Lecture Notes in Computer Science, 3602:394–408, May 2005.

[3] F. Corbera, A. Navarro, R. Asenjo, A. Tineo, and E.L. Zapata. A new loop-carried dependence de-
tection approach for pointer-based codes. InXV Jornadas de Paralelismo, pages 432–437, Almerı́a,
Spain, September 2004.

[4] A. Tineo, F. Corbera, A. Navarro, R. Asenjo, and E.L. Zapata. A novel approach for detecting
heap-based loop-carried dependences. InThe 2005 International Conference on Parallel Processing
(ICPP’05), Oslo, Norway, June 2005.

[5] A. Navarro, F. Corbera, A. Tineo, R. Asenjo, and E.L. Zapata. Detecting loop-carried depedences in
programs with dynamic data structures.Journal of Parallel and Distributed Computing, 67:47–62,
2007.

[6] A. Tineo, F. Corbera, A. Navarro, R. Asenjo, and E.L. Zapata. A new strategy for shape analysis based
on Coexistent Link Sets. InParallel Computing 2005 (ParCo’05), Málaga, Spain, Sept 2005.

[7] A. Tineo, F. Corbera, A. Navarro, R. Asenjo, and E.L. Zapata. Shape analysis for dynamic data
structures based on Coexistent Links Sets. In12th Workshop on Compilers for Parallel Computers,
CPC 2006, A Coruña, Spain, 9-11 January 2006.

[8] R. Castillo, A. Tineo, F. Corbera, A. Navarro, R. Asenjo,and E.L. Zapata. Towards a versatile pointer
analysis framework. InEuropean Conference on Parallel Computing (EURO-PAR) 2006, Dresden,
Germany, 29th August - 1st September 2006.

[9] A. Tineo. Speculative parallelization of pointer-based applications. InScience and Supercomputing in
Europe - Report 2006, pages 306–308. CINECA, 2007.

[10] Adrian Tineo, Marcelo Cintra, and Diego R. Llanos. Speculative parallelization of pointer-based ap-
plications (poster). InTransnational Access Meeting 2007 (TAM’07), Bologna, Italy, June 14-15 2007.

[11] A. Tineo, F. Corbera, A. Navarro, R. Asenjo, and E.L. Zapata. A compiler framework for automatic
parallelization of pointer-based codes (poster). In3rd International Summer School on Advanced
Computer Architecture and Compilation for Embedded Systems (ACACES 2007), L’Aquila, Italy, July
15-20 2007.

173



174 BIBLIOGRAPHY

[12] A. Tineo, F. Corbera, A. Navarro, R. Asenjo, and E.L. Zapata. Tracing recursive flow paths for inter-
procedural shape analysis (poster). In20th International Workshop on Languages and Compilers for
Parallel Computing (LCPC’07), Urbana, Illinois, October 11-13 2007.

[13] R. Asenjo, R. Castillo, F. Corbera, A. Navarro, A. Tineo, and E.L. Zapata. Parallelizing irregular C
codes assisted by interprocedural shape analysis. In2nd IEEE International Parallel & Distributed
Processing Symposium (IPDPS’08), Miami, Florida, USA, April 2008.

[14] Gordon Moore. Cramming more components onto integrated circuits. Proceedings of the IEEE,
86:82–85, January 1998.

[15] B.L. Chamberlain, D. Callahan, and H.P. Zima. Parallelprogrammability and the Chapel language.
International Journal of High Performance Computing Applications, 21(3):291–312, 2007.

[16] OpenMP Architecture Review Board.OpenMP Application Program Interface - Version 3.0, May
2008. http://www.openmp.org/mp-documents/spec30.pdf.

[17] UPC Consortium.UPC Language Specifications, v1.2. Lawrence Berkeley National Lab, 2005. Tech
Report LBNL-59208.

[18] W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger, D. Padua, P. Petersen, W. Pottenger,
L. Rauchwerger, P. Tu, and S. Weatherford. Parallel programming with Polaris. IEEE Computer,
29(12):78–82, 12 1996.

[19] Bjarne Steensgaard. Points-to analysis in almost linear time. InPOPL ’96: Proceedings of the 23rd
ACM SIGPLAN-SIGACT symposium on Principles of programminglanguages, pages 32–41, New
York, NY, USA, 1996. ACM.

[20] Samuel Z. Guyer and Calvin Lin. Client-driven pointer analysis. InInternational Static Analysis
Symposium (SAS 2003), San Diego, California, USA, June 2003.

[21] Alexandru D. Sălcianu.Pointer Analysis for Java Programs: Novel Techniques and Applications. PhD
thesis, Massachusetts Institute of Technology, 2006.

[22] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of pro-
grams by construction or approximation of fixpoints. InFourth ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, pages 238–252, Los Angeles, California, USA, 1977.

[23] Jordi Juan Segura Domı́nguez. Interfaz para la optimización y paralelización de código C. Master’s
thesis, Dept. Computer Architecture, July 2007.

[24] Troy A. Johnson, Sang-Ik Lee, Long Fei, Ayon Basumallik, Gautam Upadhyaya, Rudolf Eigenmann,
and Samuel P. Midkiff. Experiences in using Cetus for source-to-source transformations. InThe
17th International Workshop on Languages and Compilers forParallel Computing (LCPC ’04), West
Lafayette, Indiana, USA, September 2004.

[25] Brian W. Kernighan and Dennis M. Ritchie.The C Programming Language. Prentice Hall, Inc., 2nd
edition, 1988.

[26] J. Plevyak, A. Chien, and V. Karamcheti. Analysis of dynamic structures for efficient parallel execu-
tion. In Int’l Workshop on Languages and Compilers for Parallel Computing (LCPC’93), 1993.

[27] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages with destructive
updating.ACM Transactions on Programming Languages and Systems, 20(1):1–50, January 1998.

Compilation techniques based on shape analysis for pointer-based programs



BIBLIOGRAPHY 175

[28] D. Chase, M. Wegman, and F. Zadek. Analysis of pointers and structures.In SIGPLAN Conference on
Programming Languages Design and Implementation, pages 296–310, 1990.

[29] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.ACM Transactions
on Programming Languages and Systems, 2002.

[30] Martin C. Carlisle and Anne Rogers. Software caching and computation migration in Olden. InACM
Symposium on Principles and Practice of Parallel Programming (PPoPP), July 1995.

[31] R.L. Graham, D.E. Knuth, and O. Patashnik.Concrete Mathematics: A Foundation for Computer
Science. Chapter 6: Stirling numbers. Addison-Wesley, 2nd edition, 1994.

[32] F. Corbera, R. Asenjo, and E.L. Zapata. Towards compiler optimization of codes based on arrays
of pointers. InProc. 15th Int’l Workshop on Languages and Compilers for Parallel Computing
(LCPC’02), College Park, Maryland, July 2002.

[33] L. Lovász. Combinatorial Problems and Exercises. North-Holland Publishing Co., Amsterdam, 2nd
edition, 1993.

[34] M. Hind and A. Pioli. Which pointer analysis should I use? In Int. Symp. on Software Testing and
Analysis (ISSTA ’00), 2000.

[35] R. Wilson and M.S. Lam. Efficient context-sensitive pointer analysis for C programs. InACM SIG-
PLAN’95 Conference on Programming Language Design and Implementation, La Jolla, CA, June
1995.

[36] Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a DAG, ora cyclic graph? A shape analysis for
heap-directed pointers in C. InConference Record of the 23rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, St. Petersburg, Florida, January 1996.

[37] Y. S. Hwang and J. Saltz. Identifying parallelism in programs with cyclic graphs.Journal of Parallel
and Distributed Computing, 63(3):337–355, 2003.

[38] D. Distefano, P.W. O’Hearn, and H. Yang. A local shape analysis based on separation logic.Lecture
Notes in Computer Science, 3920:287–302, 2006. Springer-Verlag.

[39] B. Guo, N. Vachharajani, and D. August. Shape analysis with inductive recursion synthesis. InPro-
gramming Language Design and Implementation (PLDI’07), June 2007.

[40] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’Hearn, T. Wies, and H. Yang. Shape analysis for
composite data structures.Lecture Notes in Computer Science, 4590:178–192, 2007.

[41] S. Magill, A. Nannevski, E. Clarke, and P. Lee. Inferring invariants in separation logic for imperative
list-procesing programs. InWorkshop on Semantics, Program Analysis and Computing Enviroments
for Memory Management (SPACE), January 2006.

[42] N. Jones and S. Muchnick. A flexible approach to interprocedural data flow analysis and programs
with recursive data structures.In Proceedings of the ACM Symposium on Principles of Programming
Languages, pages 66–74, 1982.

[43] J. R. Larus and P. N. Hilfinger. Detecting conflicts between structure accesses. InProc. ACM SIG-
PLAN’88 Conference on Programming Language Design and Implementation), pages 21–34, July
1988.

University of Málaga



176 BIBLIOGRAPHY

[44] S. Horwitz, P. Pfeiffer, and T. Reps. Dependence analysis for pointer variables.ACM SIGPLAN
Notices, 1989.

[45] T. Lev-Ami and M. Sagiv. TVLA: A system for implementingstatic analyses. InStatic Analysis Symp.
(SAS’00), pages 280–301, 2000.

[46] N. Rinetzky and M. Sagiv. Interprocedural shape analysis for recursive programs. In10th International
Conference on Compiler Construction (CC’01), pages 1433–1449, Genova, Italy, April 2001.

[47] B. Jeannet, A. Loginov, T. Reps, and M. Sagiv. A relational approach to interprocedural shape analysis.
In Proceedings of the 11th International Static Analysis Symposium (SAS’04), Verona, Italy, August
2004.

[48] N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural shape analysis for cutpoint-free programs. In
12th International Static Analysis Symposium (SAS’05), London, England, September 2005.

[49] Gilad Arnold. Specialized 3-valued logic shape analysis using structure-based refinement and loose
embedding. InStatic Analysis Symposium 2006 (SAS06), Seoul, Korea, August 2006.

[50] Igor Bogudlov, Tal Lev-Ami, Thomas Reps, and Mooly Sagiv. Revamping TVLA: Making parametric
shape analysis competitive. InComputer Aided Verification 2007 (CAV07), Berlin, Germany, July
2007.

[51] Mark Marron, Deepak Kapur, Darko Stefanovic, and Manuel Hermenegildo. A static heap analysis
for shape and connectivity. Unified memory analysis: The base framework. InThe 19th International
Workshop on Languages and Compilers for Parallel Computing(LCPC’06), New Orleans, Louisiana,
USA, November 2006.

[52] Mark Marron, Darko Stefanovic, Manuel Hermenegildo, and Deepak Kapur. Heap analysis in the
presence of collection libraries. In7th ACM Workshop on Program Analysis for Software Tools and
Engineering (PASTE’07), San Diego, June 2007.

[53] Brian Hackett and Radu Rugina. Region-based shape analysis with tracked locations. InProceedings
of the ACM SIGPLAN Symposium on Principles of Programming Languages (POPL’05), pages 310–
323, Long Beach, California, USA, 12-14 January 2005.

[54] F. Corbera, R. Asenjo, and E.L. Zapata. A framework to capture dynamic data structures in pointer-
based codes.Transactions on Parallel and Distributed System, 15(2):151–166, 2004.

[55] Sang-Ik Lee, Troy A. Johnson, and Rudolf Eigenmann. Cetus - an extensible compiler infrastructure
for source-to-source transformation. InThe 16th International Workshop on Languages and Compilers
for Parallel Computing (LCPC ’03), pages 539–553, College Station, Texas, USA, October 2003.

[56] R. Ghiya, L. J. Hendren, and Y. Zhu. Detecting parallelism in C programs with recursive data struc-
tures. InProc. 1998 International Conference on Compiler Construction, pages 159–173, March 1998.

[57] A. Loginov, T. Reps, and M. Sagiv. Abstraction refinement via inductive learning.Lecture Notes in
Computer Science, 3576, 2005. Springer-Verlag.

[58] S. Cherem and R. Rugina. Maintaining doubly-linked list invariants in shape analysis with local
reasoning. InProceedings of the ACM Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI ’07), Nice, France, January 2007.

Compilation techniques based on shape analysis for pointer-based programs



BIBLIOGRAPHY 177

[59] Alexey Gotsman, Josh Berdine, and Byron Cook. Interprocedural shape analysis with separated heap
abstractions. InIn Proceedings of the 13th International Static Analysis Symposium (SAS’06), LNCS
4134, pages 240–260, Seoul, Korea, 2006.

[60] Steven S. Muchnick.Advanced compiler design and implementation. Morgan Kaufmann, 1997.

[61] R. Ghiya and L. J. Hendren. Putting pointer analysis to work. In Proc. 25th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 121–133, San Diego, California,
January 1998.

[62] Keith D. Cooper, Mary W. Hall, and Ken Kennedy. Procedure cloning. InComputer Languages, pages
96–105, 1992.

[63] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and L.P Chew. Optimistic parallelism
requires abstractions. InProgramming Language Design and Implementation (PLDI’07), pages 211–
222, June 2007.

[64] A. Kejariwal, X. Tian, M. Girkar, W. Li, H. Saito, U. Banarjee, A. Nicolau, A.V. Veidenbaum, and
C.D. Polychronopoulos. Tight analysis of the performance potential of thread speculation using
SPEC CPU2006. InACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP’07), pages 215–225, San Jose, California, March 2007.

[65] Standard Performance Evaluation Corporation (SPEC).SPEC CPU2006 Documentation, 2006.
http://www.spec.org/cpu2006/Docs/.

[66] Mark Marron, Darko Stefanovic, Deepak Kapur, and Manuel Hermenegildo. Identification of heap-
carried data dependence via explicit store heap models. InLanguages and Compilers for Parallel
Computing (LCPC’08), Alberta, Canada, 2008.

[67] R.Castillo, F. Corbera, A. Navarro, R. Asenjo, and E.L.Zapata. Complete DefUse analysis in recursive
programs with dynamic data structures. InWorkshop on Productivity and Performance (PROPER
2008) Tools for HPC Application Development, Las Palmas de Gran Canaria (Spain), August 2008.

University of Málaga


