
Departamento de Arquitectura de Computadores

TESIS DOCTORAL

Scheduling strategies for parallel
patterns on heterogeneous

architectures

Antonio Vilches Reina

Julio de 2017

Dirigida por:
Maŕıa Ángeles González Navarro,
Francisco Javier Corbera Peña

AUTOR: Antonio Vilches Reina

 http://orcid.org/0000-0002-9742-3717

EDITA: Publicaciones y Divulgación Científica. Universidad de Málaga

Esta obra está bajo una licencia de Creative Commons Reconocimiento-
NoComercial-SinObraDerivada 4.0 Internacional:
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
Cualquier parte de esta obra se puede reproducir sin autorización
pero con el reconocimiento y atribución de los autores.
No se puede hacer uso comercial de la obra y no se puede alterar, transformar o
hacer obras derivadas.

Esta Tesis Doctoral está depositada en el Repositorio Institucional de la
Universidad de Málaga (RIUMA): riuma.uma.es

http://orcid.org/0000-0002-9742-3717
http://orcid.org/0000-0002-9742-3717
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

Dra. M. Ángeles González Navarro.
Profesor Titular del Departamento de
Arquitectura de Computadores de la
Universidad de Málaga.

Dr. Francisco Javier Corbera Peña.
Profesor Titular del Departamento de
Arquitectura de Computadores de la
Universidad de Málaga.

CERTIFICAN:

Que la memoria titulada “Scheduling Strategies for parallel patterns on he-
terogeneous architectures”, ha sido realizada por D. Antonio Vilches Reina bajo
nuestra dirección en el Departamento de Arquitectura de Computadores de la
Universidad de Málaga y constituye la Tesis que presenta para optar al grado de
Doctor en Ingenieŕıa Informática.

Málaga, Julio de 2017

Dra. M. Ángeles González Navarro.
Codirectora de la tesis.

Dr. Francisco J. Corbera Peña.
Codirector de la tesis.

.

To my grandmother Rosario,

who passed away whilst this thesis was being reviewed.

.

Acknowledgments

Ph.D. is a long and arduous journey, which I could not finish successfully without
the support from many people. I want to express my gratitude to all those who
have contributed to make this thesis possible.

I want to start by giving thanks to my family. My parents have always been
a source of motivation for me, they have taught me to persist, insist and never
desist from my objectives. Thanks, once more again, for your infinite support
and care. I would also like to thank Regina. Thanks for your unconditional
love and support, thanks for your a↵ection and enthusiasm, specially when I was
abroad. Your patience was stretched to its limits during those stays abroad that
I spent working far away from home. Thankfully, we can enjoy future adventures
together from now on.

My deepest thanks go to my supervisors Prof. M. Ángeles González and
Prof. Francisco J. Corbera. However, in equal measure, I thank Prof. Rafael
Asenjo, the research team lead, who I consider my third supervisor. They form
an outstanding team with three unique profiles. I was constantly astonished by
Rafael’s enthusiasm, and his skills to devise the whole picture. Moreover, he was
usually hunger to explore all possible solutions to a given problem. In contrast,
M. Ángeles was always focusing on the core problem, I want to highlight her
attention to detail and her amazing analytical skills. She also exhibits a sharp
critical sense that she puts into practice in every meeting. I really appreciate her
patience and all the invaluable suggestions she gave me throughout this thesis.
Francisco is the third pillar of the team, he has been a never ending source of
motivation throughout my thesis, he was always willing to discuss new ideas and
solutions. I want to emphasize his endless capacity to envision new solutions. I
was constantly amazed by his point of views, and his skills to come up with new
solutions.

I would also like to thank Óscar Plata, the head of the Computer Architec-
ture department, for his suggestions and advises about further steps in life, the

ii AGRADECIMIENTOS

technical sta↵ of the department Juanjo and Paco and finally to Carmen for her
praiseworthy support.

This thesis has been funded by the following spanish projects: TIN2010-16144
from Ministerio de Economı́a y Competitividad del reino de España, and P11-
TIC-08144 from Consejeŕıa de Innovación, Ciencia y Empresa de la Junta de
Andalućıa. I also want to thank the HiPEAC European Network of Excellence,
under the 7th framework programme under grant agreement 287759, whose funds
made me enjoy a three month research stay at Codeplay Software Ltd.

I would like to thank Prof. Maŕıa Garzarán for being a invaluable host during
my stay at UIUC in 2014. I really appreciate her suggestions and conversations,
about work and life, I learned a lot from them. I want to mention Prof. David
Padua as well, a charismatic character full of interesting conversations and expe-
riences. I also want to thank Dr. Konstantinos Karantasis for his welcome and
support during my time in Urbana-Champaign.

From my period in Edinburgh, I would like to thank all the nice people that I
met in Codeplay. In special to Dr. Ruyman Reyes and the rest of SYCLONYTES.
They helped me a lot, and gave me the opportunities to explore on my own. I
also thank to Dr. Uwe Dolinsky and Andrew Richards for our interesting talks.
You made me enjoy a three awesome months there.

Last but no least, I would like to thank my Lab mates (the Grijanders-Crew),
for all the fun that we had, for the awesome work atmosphere, for your support
and friendship. I have enjoyed with our lunches, dinners and revelries. Many
of them are working out of academy, however I remember you all: Alejandro
Villegas, Alex Upton, Ricardo Quislant, Manuel Pedrero, Miguel Ángel González,
Antonio J. de Dios, Alberto Sanz, Antonio Manuel Cervilla, Oscar Torreño, Jose
Antonio Arjona and Antonio Muñoz.

Abstract

During the last decade, power consumption and energy e�ciency have become
key aspects in processor design. Nowadays, the power consumption is the prin-
cipal limitation for further scaling of chip multiprocessors design (CMPs). In
general, the research community agrees that current chip multiprocessor tech-
nology trends will not scale performance without an increase of power budget.
Hardware design innovations as the recent Heterogeneous Architectures and Near
Threshold Computing are needed to cope with the performance-power barrier.
As a result of this, there has been a shift away from chip multiprocessors to
heterogeneous processor architectures. Recently, we have witnessed an explosion
in the availability of this kind of architectures. Many hardware vendors have
released a number of heterogeneous processors to overcome the aforementioned
limitations. However, software also requires changes to allow further performance
scaling on these architectures.

With the advent of heterogeneous architectures, hardware manufactures have
impose the burden of explicit accelerator management on software developers.
In general, programmers are used to sequential programming, but writing high-
performance programs for heterogeneous architectures is a complex task. Pro-
gramming for this kind of platforms requires the understanding of new hardware
concepts, orchestration of di↵erent parallelism levels, the explicit management
of di↵erent memory spaces and synchronizations between processing units, and
finally the usage of low-level programming models such as OpenCL or CUDA.
Moreover, heterogeneous architectures su↵er from performance portability, as one
program can exhibit unequal performance on di↵erent devices.

To help shrink the programmability-performance e�ciency gap, we discuss
that adaptive runtime systems can be used to facilitate the management of het-
erogeneous architectures. A runtime system can provide a significant performance
boost while reducing the energy consumption, because it is aware of processors’
architectures and application’s requirements. We analyse how applications map

iv ABSTRACT

onto hardware by inspecting built-in processor counters, and therefore build mod-
els to describe the observed behaviour.

In this thesis, we discuss how parallel patterns, such as parallel for loops and
pipelines, can be decomposed and e�ciently executed on heterogeneous platforms.
We propose several scheduling strategies aiming at reducing execution time and
energy consumption. We demonstrate how applications can be run faster by
mapping the application level parallelism onto the hardware processing units that
best fit the application requirements, and by selecting the right task size. First,
we devise a load balancing technique, that targets heterogeneous CPU and multi-
GPU architectures. It monitors the relative speed of each processing unit, and
distributes the remaining workload based on these relative speeds. By making
all processing units to finish at same time, we avoid unnecessary waits between
processors. Along with this load balancing technique, we propose a performance-
sensitive partitioner that adapts the amount of computation o✏oaded to the
accelerator for better performance and utilization. We also present an accurate
performance model for streaming applications, such as face recognition or object
tracking. This model targets pipelined applications, as a series of stages, and
performs a scalability analysis of each stage by using coarse and medium grain
parallelism. Additionally, it also considers executing the stage on the GPU or
not. By applying the model, we always find the best pipeline configuration among
all possible, and get substantial performance and energy savings.

All experiments in this thesis have been performed by using state-of-the-art
hardware accelerators and benchmarks of the field of HPC. Specifically, we use
the Rodinia and SHOC benchmark suites, for the evaluation of the parallel for
partitioner. Moreover, we use the the ViVid application, along with tracking
and SRAD applications from Rodinia Benchmark Suite, all of them are good
candidates of vision applications. Finally, we rely on Intel Threading Building
Blocks, the core engine of our schedulers; the Intel OpenCL SDK and CUDA
SDK to o✏oad computations to the GPU accelerators and Intel PCM library to
monitor energy consumption and cache memory metrics.

Contents

Acknowledgments I

Abstract III

Contents IX

List of Figures XIV

List of Tables XV

1.- Introduction 1

1.1. The era of Heterogeneous Architectures 2

1.2. The complexities of Heterogeneous Computing 3

1.3. Runtimes for Heterogeneous Architectures 4

1.4. Thesis Motivation . 5

1.5. Thesis Objectives and Research Question 6

1.6. Thesis Contributions . 7

1.7. Thesis Structure . 9

2.- Background and Related Work 11

2.1. Parallel patterns . 12

2.2. Heterogeneous Computing Basics 16

v

vi CONTENTS

2.2.1. Hardware evolution . 17

2.3. Programming heterogeneous architectures 19

2.3.1. The need of heterogeneous programming models 19

2.3.2. Code Portability . 20

2.3.3. Task-based models . 22

Threading Building Blocks 23

2.3.4. Performance Portability . 32

2.4. Runtimes for heterogeneous systems 34

2.4.1. Static Approaches for task Scheduling 35

2.4.2. Dynamic Approaches for task scheduling 36

Load balance Strategies . 36

Partition Methods for parallel for pattern in heterogenous
systems . 38

Pipeline pattern on heterogenous systems 40

3.- Parallel for Pattern: Load Balancing and Scheduling 43

3.1. The parallel for template . 44

3.2. Load Balancing problem . 46

3.2.1. Optimization model for load balancing 48

3.2.2. Heuristic functions for the optimization model 52

3.3. Scheduling strategies . 55

3.3.1. Non-Collaborative Host Thread 57

3.3.2. Collaborative Host Thread 60

3.4. Experimental Results . 62

3.4.1. Experimental setup . 62

3.4.2. Benchmarks . 63

3.4.3. Characterization of the parallel for template 63

3.4.4. E�ciency of the scheduling strategies 65

CONTENTS vii

Analysis of oversubscription and synchronization mechanisms 66

3.5. Conclusions . 72

4.- Parallel for Pattern: Adaptive partitioning 73

4.1. The extended parallel for template 74

4.1.1. HBu↵er class . 76

4.1.2. HTask class . 77

4.1.3. Function template: parallel for 78

4.2. The GPU chunk size problem . 80

4.3. Partitioning strategy . 87

4.3.1. Overview of the partitioning strategy 88

4.3.2. Implementation details of the partitioning strategy 89

4.4. Experimental Results . 102

4.4.1. Experimental setup . 103

4.4.2. Benchmarks . 103

4.4.3. Characterisation of the partitioning strategy 106

Analysis of GPU chunk size variations 106

Sensitivity analysis . 108

Sources of overhead in dynamic partitioning 109

4.4.4. Performance and energy comparison 114

4.5. Conclusions . 122

5.- Pipeline Pattern: Optimal pipeline configuration 125

5.1. Pipeline configuration problem . 126

5.1.1. Pipeline configuration alternatives 127

Accounting for all pipeline alternatives 131

5.1.2. Putting throughput/energy metric to work 133

5.2. Pipeline template . 134

5.2.1. Item class . 135

viii CONTENTS

5.2.2. Pipeline class . 136

5.2.3. Pipeline stage functions . 140

5.2.4. Bu↵er class . 142

5.3. Optimal pipeline configuration strategy 144

5.3.1. Measurement Collection step 145

Controlling the overhead . 148

5.3.2. Model for finding the optimal pipeline configuration 149

Model for Decoupled pipeline configurations 152

Model for Coupled pipeline configurations 153

Model extensions . 159

E↵ect of serial stages . 160

5.4. Experimental results . 161

5.4.1. Experimental setup . 161

5.4.2. Benchmarks . 162

5.4.3. Baseline comparison and impact of adaptation 164

5.4.4. Performance and Energy discussion 167

5.5. Lessons learned . 176

5.6. Conclusions . 178

6.- Concluding Remarks 179

6.1. Contributions . 179

6.2. Limitations . 183

6.3. Future work . 184

Appendices 187

A.- Resumen en castellano 187

A.1. Introducción . 188

CONTENTS ix

A.2. Motivación . 189

A.3. Balanceador de tareas para bucles paralelos 191

A.4. Particionador adaptativo para bucles paralelos 193

A.5. Planificación de tareas para el patrón pipeline 194

A.6. Conclusiones . 196

A.7. Trabajos futuros . 198

Bibliography 201

List of Figures

2.1. Thread workflow of the fork-join pattern with n-threads. 12

2.2. Usage example of the parallelmap pattern with 8-element collections. 13

2.3. Neighbour dependencies when using the stencil pattern. 14

2.4. The parallel reduction pattern. 15

2.5. The parallel scan pattern. 15

2.6. The parallel pipeline pattern with non serial stages. 16

2.7. Phisycal processor features trends for the last 30 years 17

2.8. SPIR-V separates high-level language processing from binary code
production. 21

2.9. SPIR-V compilation process into binary code (based on Ayal Zaks
explanation at ACACES’14). 22

2.10. Task dependence graph built from a fibonacci TBB code 25

2.11. Main skeleton of Intel TBB’s scheduler. 26

2.12. Usage example of the parallel for construct in TBB. 28

2.13. Division of a range of iterations into smaller TBB tasks. 28

2.14. Usage example of the pipeline construct in TBB. 29

2.15. Main method that controls task spawn actions in the pipeline. . . . 30

2.16. SPIR-V allows the generation of new languages on top of it. 32

2.17. SPIR-V translation and compilation processes into binary code. . . 33

3.1. Usage example of our proposed parallel for template 45

xi

xii LIST OF FIGURES

3.2. Performance comparison for NCHT and StarPU partition strategies. 47

3.3. Pseudo-code of the GPU partitioning function. 53

3.4. Pseudo-code of the CPU partitioning function. 54

3.5. Main picture of the process when scheduling a parallel for loop in
a heterogeneous system. 56

3.6. Main scheme of the pipeline that implements the NCHT strategy. 58

3.7. Implementation of the two-stage pipeline of the NCHT strategy. . 59

3.8. Main scheme of the pipeline that implements the CHT strategy. . 60

3.9. Implementation of the two-stage pipeline that implements the CHT
strategy. 61

3.10. Analysis of performance e↵ects from ↵ parameter on CHT and
NCHT strategies. 64

3.11. Ratio of the NCHT and CHT times in a multicore vs the times
in a heterogeneous configuration. 66

3.12. Performance comparison of NCHT and CHT against StarPU par-
tition strategies. 68

3.13. Time comaprison for di↵erent numbers of threads in the MxV bench-
mark. 69

3.14. Time comaprison for di↵erent numbers of threads in the Barnes-Hut
benchmark. 71

3.15. Analysis of CPU frequency under certain scenarios with MxV. . . . 71

4.1. Software stack and scheduling approach used in the parallel for
template. 75

4.2. Implementation example of a class Body that extends from HTask. 78

4.3. Usage example of the parallel for template with LogFit partitioner. 79

4.4. Intel HD Graphics 4600 hardware metrics for the first time-step of
BarnesHut . 83

4.5. Average CPU throughput for the first time-step of BarnesHut . . . 84

4.6. GPU throughput for BarnesHut and time-steps 0, 5, and 30. . . . 86

4.7. Average GPU throughput for several chunk sizes and di↵erent
time-steps. 87

LIST OF FIGURES xiii

4.8. GPU throughput for NBody and its Logarithmic fitting. 89

4.9. GPU scheduling intervals when applying LogFit to find optimal
chunk size. 90

4.10. Time Profiling: Application BarnesHut with 4 CPU cores (light
blue) and 1 GPU (light green). 91

4.11. Flow chart of the LogFit’s partition strategy. 92

4.12. LogFit process when performing the first fitting for a benchmark. . 94

4.13. LogFit stable phase fitting and adapting the GPU chunk size. . . . 95

4.14. LogFit’s chunk size variations depending on throughput changes. . 96

4.15. Modelling GPU throughput by assuming a linear behaviour be-
tween each pair of equidistant points. 98

4.16. Possible scenarios when distributing iterations across the GPU and
CPU cores for a given interval. 101

4.17. Throughput evolution when executing irregular benchmarks on the
Intel HD Graphics 4600 . 106

4.18. GPU throughput and GPU chunk size histogram resulting from
executing BarnesHut on the GPU HD 4600. 107

4.19. Time diagram showing the events across the process of o✏oading
a task to the GPU . 110

4.20. Overhead results for Haswell with and without oversubscription. . 112

4.21. Impact of ZCB and PRIO optimizations on performance and en-
ergy in a scenario without oversubscription. 113

4.22. Impact of ZCB and PRIO optimizations on performance and en-
ergy in a scenario with oversubscription. 114

4.23. O✏ine search for the near optimal GPU-CPU workload partition
on Haswell processor. 115

4.24. Results for Nbody, Barnes Hut, PEPC, CFD and SPMV bench-
marks on Intel Ivy Bridge. 117

4.25. Results for Nbody, Barnes Hut, PEPC, CFD and SPMV bench-
marks on Intel Haswell. 118

4.26. Energy-Performance results for Ivy Bridge and Haswell processors. 121

xiv LIST OF FIGURES

5.1. Flow of ViVid application divided in 3 parallel stages. 127

5.2. Categorisation of the four main configurations for ViVid. 128

5.3. All possible mappings of pipeline stages to CPU and GPU for ViVid. . 132

5.4. Throughput / Energy for ViVid without pipeline parallelism. . . . 133

5.5. Software stack and building blocks of the pipeline template. 135

5.6. Extending the Item Class defined in h pipeline namespace. 136

5.7. Usage and declaration of the pipeline template. 138

5.8. Implementation details of the pipeline class. 139

5.9. Functions for pipeline stages operations (CG, MG, GPU). 141

5.10. Internal details of the parallel stage class. 143

5.11. Usage example of the DataBu↵er class. 144

5.12. Closed network of queues. 150

5.13. Performance metrics for ViVid when processing LD and HD video
on Ivy Bridge. 169

5.14. Performance metrics for ViVid when processing LD and HD video
on Haswell. 170

5.15. SRAD evaluation on Ivy Bridge and Haswell. 172

5.16. racking results on Ivy Bridge and Haswell. 174

5.17. Throughput / Energy for Scene Recognition. 175

5.18. Scene Recognition results showing Energy and Throughput per
Energy on Ivy Bridge and Haswell. 176

List of Tables

1.1. Comparison of accelerator characteristics. 3

4.1. Processors details (Ivy Bridge & Haswell) to execute LogFit strategy.103

4.2. Software details to evaluate LogFit partitioner strategy. 104

4.3. Description of the benchmarks used to evaluate LogFit partitioner. 105

4.4. Sensitivity Analysis of the parameters threshold and Number of
Samples for LogFit. 108

5.1. Time and Energy collected for CG experiments. 147

5.2. Time and energy per item for each stage for MG and GPU 147

5.3. Parameters for DP-CG and DP-MG configurations. 154

5.4. Parameters of the CP-CG and CP-MG configurations. 157

5.5. Parameters of the CP-CG and CP-MG configurations (II). 158

5.6. Comparison of our pipeline alternatives against baseline. 165

xv

1 Introduction

During the last decade, we have witnessed the advent of heterogeneous archi-
tectures. Nowadays, we can find heterogeneous processor designs at all levels,
from the biggest supercomputer to embedded devices, covering desktop and mo-
bile segments as well. These kind of architectures are becoming predominant in
today markets, as they provide significant improvement in performance and en-
ergy e�ciency over traditional chip multiprocessor (CMP) [64]. Moreover, power
consumption is becoming an important performance scaling limitation in new
processor designs, and the subsequent dark silicon rise [102]. To help shrink the
performance-power consumption gap, we discus the need of adaptive runtime
systems (RS) to orchestrate and map the application level parallelism onto the
underlying hardware architecture in terms of performance and energy consump-
tion.

We introduce the shift to heterogeneous processors in Section 1.1. They
require the use of low-level programming libraries that make the programmer
responsible of accelerator management, data partitioning and parallelism orches-
tration as we spot in Section 1.2. Then, in Section 1.3, we discuss the need of
adaptive RS to alleviate the aforementioned complexities when o✏oading com-
putation to accelerators. Next, Section 1.4 highlights the thesis motivations and
elaborates of the main unsolved problems that we target. Section 1.5 states the
research question of this thesis and its objectives. Finally, we present the thesis
contributions in Section 1.6, and we conclude with Section 1.7, which outlines
the thesis structure.

1

2 Chapter 1. Introduction

1.1. The era of Heterogeneous Architectures

As Gordon E. Moore predicted around fifty years ago, the number of transistor
within a chip is still increasing every two years [78]. But, computing power
and energy consumption are not following the same trend. Previous processor
generations scaled down the voltage within each new processor generation and
increased frequency as a way to get more performance. However, due to physical
limitations in current processor technology, nowadays the scaling of frequency
does not yield a proportional increment of performance, this fact is known as the
Dennard scaling failure [6]. Therefore, the scientific community agrees that more
innovations are required to cope with these limitations of power consumption and
performance scaling.

During the last decade, we have witnessed a revolution in processor archi-
tecture design, where there has been a shift away from CMPs to Heterogeneous
Multi/Many Processors (HMPs). As a result of this, there has been an explo-
sion in the availability of heterogeneous architectures. The main reason for this
shift is that specially tailored core processors exhibit a higher computation power
and less energy consumption than traditional CMPs while executing some spe-
cific tasks [64, 76]. Intel Haswell, AMD Fusion, Samsung Exynos and NVIDIA
Tegra K1 are examples of these modern architectures, which integrate a graphic
processor along with the CPU into the same chip.

The current landscape includes a number of heterogeneous architectures with
a wide range of core counts, capabilities per core and an energy budget per core.
In this context, GPUs have emerged as the dominant accelerator type on hetero-
geneous architectures. They are characterized by a large set of simple computa-
tional cores, that are hierarchically organized in smaller groups. All cores within
a group run in lock-step and share a fast access memory. As mentioned before,
there is a range of heterogeneous machines for all segments, from supercomputers
to hand-held system, such as mobile phones. Table 1.1 compares performance
and energy consumption of several accelerators. The Intel Xeon CPU is the one
that o↵ers the poorest performance and the low-end Intel GPU is the accelera-
tor with the minimum energy consumption. However, the high-end Nvidia GPU
o↵ers the best ratio in GFlops per watt. Thus, the suitable device for each appli-
cation would depend on the application performance versus energy consumption
requirements.

With the advent of heterogeneous architectures, application developers have
a huge amount of available computing power at a low power consumption. How-
ever, processor manufacturers have put a big burden on software developers as

1.2. The complexities of Heterogeneous Computing 3

Table 1.1: Comparison of accelerator characteristics.

Architecture N. Cores Freq.(MHz) TDP (W) Perf. (GFlop/s)

Nvidia Geforce Titan X 3072 1000 250 6144
Intel HD Graphics 4600 20 1200 84 432
Intel Xeon Phi 7120P 61 1240 300 2416
Intel Xeon E5-2698v3 16 2300 135 294,4

they are responsible to orchestrate and map the application level parallelism
onto the hardware level. To develop applications for heterogeneous architectures,
we require the use of low-level programming libraries such as, CUDA [96] or
OpenCL [38]. These libraries expose architectural accelerator details that hinder
the development of applications on top of heterogeneous architectures. Many
Researchers agree that new programming libraries are required to o↵er an ab-
straction layer that hides the aforementioned complexities while making the most
of these promising platforms. In next section, we explain the limitations of the
current programming libraries and identify the future challenges that needs to be
solved.

1.2. The complexities of Heterogeneous Comput-
ing

Task parallelism is a well known paradigm for parallel architectures, where each
application is divided into independent tasks and executed onto a set of threads.
Writing multi-threaded applications involves the division of the whole application
into independent tasks, assigning each task to a logical thread and orchestrating
those threads to map them onto the underlying hardware computing devices. All
theses steps make parallel programming di�cult for programmers, where orches-
tration is probably the most complex one, as it comprises threads synchronization
that could potentially result in load imbalances and deadlock scenarios.

In a heterogeneous computing context, the execution of an application is even
more complex, as the execution time of a given task depends on the kind of core
that runs this task. For example, a computing vision application detecting faces
or tracking objects executes much faster on GPUs than on a CPU core. On the
contrary, sequential algorithms with a certain number of conditional instructions
and a random memory access pattern would execute faster on CPUs rather than
GPUs. The key idea is to assign each task to the computing device that best fit
to it. In this thesis, we focus on heterogeneous CPU-GPU architectures, however

4 Chapter 1. Introduction

all proposed frameworks and models can be easily extended to work with other
accelerators such as, Intel Xeon Phi, FPGAs or DSPs.

Heterogeneous computing is the paradigm which aims to combine the strengths
of using heterogeneous architectures to meet the requirements of each applica-
tion [77]. As a result of the explosion in the availability of heterogeneous ar-
chitectures, there has also been an increment in the number of heterogeneous
programming frameworks and libraries available. The most widely known are
OpenCL [38] and CUDA [96], however there are other less common programming
models such as, RenderScript [52] or Mare [12], which allow the exploitation of
heterogeneous architectures on mobile devices. Additionally, there have been a
number of e↵orts to extend vastly used languages as Java [31, 36], Haskell [16],
JavaScript [56] or Python [61]. However, the challenges of harnessing hetero-
geneity have prevented a successful adoption of heterogeneous computing at the
moment. Among these challenges, we can highlight performance issues of hetero-
geneous processors [59, 85], as for instance the fact that many accelerators are
only well-suited to a specific set of applications with coalesced memory access
patterns and regular computations [11]. Moreover, application’s developers have
to decide whether their codes can take advantages from executing the application
on a given accelerator or not. In addition, they are responsible to ensure data
integrity and task dependencies, they are also required to manually set all the
necessary memory operations in order to o✏oad computations.

To help shrink the programmability-performance gap, the research commu-
nity agrees that more innovations are required. In next section, we discuss that
Runtime Systems (RS) can be exploited to reduce this gap.

1.3. Runtimes for Heterogeneous Architectures

RS based on work-staling strategies [7, 89] have been traditionally used as an ab-
straction layer while dealing with multithreadded applications. RS usually break
down the parallelism expressed by the developer into smaller pieces, often called
tasks in literature. The RS is responsible of scheduling and orchestrating those
tasks by respecting a dependency graph. A task is a set of instructions that op-
erates on data and can be run independently of any other task. In general, RS do
not guarantee determinism or data races freedom. Thus, it is the programmer’s
responsibility to express the existence of dependencies between tasks.

RS for heterogeneous architectures are even more complex [2, 33, 40, 60], as
they also have to deal with accelerator management, data integrity and device

1.4. Thesis Motivation 5

synchronization. Hence, these systems have to manage data allocations, data
transfers, kernel launches and synchronization points. To ensure the correct
application execution, the RS builds up a DAG that represents dependences
between tasks. Thus, all independent tasks can be run in parallel. Often, they
also integrate workload partition strategies to divide the application according
to performance models that propose a work distribution for a given hardware.

1.4. Thesis Motivation

The main problem we address in this thesis is the automatic orchestration and
mapping applications coded with high-level parallel patterns when executed on
heterogeneous architectures. This is an arduous problem that remains unsolved
and proposing a solution to it is further challenging. Even more, if we consider
irregular applications that may require di↵erent thread orchestration mechanisms
depending on the application input data-set and the underlying hardware pro-
cessors.

In heterogeneous computing, it is expected that applications are divided into
tasks and executed on all processing devices (e.g. CPU and GPUs) where the
best features of both can be combined to achieve further performance gains or
energy savings. Early RS possess an o✏ine training phase to learn how the
application’s workload should be divided into subtasks [21, 30, 45, 70, 86]. These
implementations use a number of machine learning methods and small profiling
runs to build performance models that predict the workload partition according
to the data-set size. However, these systems may fail in their predictions when;
(1) they are used to execute regular applications with bigger data input sets,
as they have to extrapolate their initial predictions; (2) they execute irregular
applications, as they can potentially exhibit di↵erent computation demands at
runtime.

More recently, there is a body of RS that take the workload partition deci-
sion during application’s execution time [3, 4, 58, 84, 97, 111]. In general, these
systems have an online profiling phase which runs a small portion of the applica-
tion workload on each available processor. Later, the relative computing speed
of each processor is recorded and used to distribute the remaining workload ac-
cordingly. Although, these systems exhibit a good performance when executing
regular applications, as dense matrix multiplications or Nbody simulations, they
may fail when the profiling phase does not have the same computation demands
than the remaining workload, and thus the remaining workload partition could
be biased. This thesis is motivated by the fact that existing RS cannot easily

6 Chapter 1. Introduction

cope with irregular applications. In this sense, a number of dynamic approaches
are proposed to optimize performance and energy consumption on heterogeneous
architectures when targeting this type of applications.

1.5. Thesis Objectives and Research Question

Despite the number of works introduced in the previous section, the design and
development of RS for heterogeneous architectures is a research area with ample
room for improvement. As explained in the previous section, previous approaches
only profile a portion of the workload to reduce overhead. These approaches be-
haves well with regular applications. However, they may not find the best parti-
tion when executing irregular applications, specially on heterogeneous architec-
tures. In any case, in this thesis we aim at bridging the performance-productivity
gap, thus we tackle the design and development of RS for heterogeneous archi-
tectures in the context of high-level parallel pattern templates. For this reasons
along with the introduced complexities in section 1.2, the research question to be
answered in this Ph.D. thesis is the following:

Is it possible to develop a generic Runtime System for high-level parallel pat-
tern templates, aimed at heterogeneous systems, such as: (1) it provides a load
balance mechanism which reduces resource under-utilization; (2) it o↵ers a par-
tition method which finds the ideal task size for each computing device within the
hardware layer; (3) it considers performance and energy trade-o↵s as part of the
criteria to perform the task-device mapping; and (4) it introduces a minimum
overhead?

In order to answer this research question, and taking into account that we
target heterogeneous systems that consist of CPU multicores and one or more
GPUs, the following actions have to be fulfilled during this Ph.D.:

1. Analyse ine�ciencies and sources of overhead when splitting, mapping and
scheduling workloads from regular and irregular applications that are ex-
pressed through high-level parallel pattern templates.

2. Understand application memory access patterns and its impact in the times-
pan and energy consumption. In particular, analyse hardware performance
counters for the CPU and GPU activities as well as memory-related met-
rics to gain insights on potential bottlenecks in our target heterogeneous
architectures.

3. Design performance and energy models to capture and predict observed

1.6. Thesis Contributions 7

behaviours when executing high-level parallel patterns on the heterogeneous
architectures of interest.

4. Design new optimal approaches to dynamically split, map, and schedule
workloads over heterogeneous computing devices, considering both perfor-
mance and energy trade-o↵s for the high-level parallel pattern templates
studied.

1.6. Thesis Contributions

This thesis is supported by several conferences and journals contributions in the
area of parallel computing. Among all of them, the main contributions of this
thesis are summarised in the following points:

A scheduling strategy for heterogeneous systems is proposed as an extension
of the TBB strategy for the parallel for pattern template [89]. Previous
heterogeneous tasks frameworks, such as StarPU [2] or SnuCL [60], aim to
assign each task to the computing device that o↵ers the shortest execution
time based on their performance models. However, this decision may result
in load unbalanced scenarios because it could overfeed some computing
devices while others are idle, specially in the case of irregular applications.
In contrast, our proposed strategy may turn o↵ some computing devices
when they are not needed. For instance, a better overall performance can
be yield by deactivating the accelerator, or the CPU cores.

A performance-aware partitioner for parallel for pattern template, which is
based on a logarithmic model that dynamically finds the task size that is
optimal for each accelerator. Previous partition mechanisms consider that
over a certain threshold size, there exists a linear relation between the size
of the o✏oaded computation to the accelerator and its timespan. However,
there are many applications that exhibit di↵erent performance behaviours
such as, sparse matrix-vector multiplications or graph traversals which ex-
hibit a random memory access pattern. Furthermore, we have found that
o✏oading a large task to an accelerator may be counter-productive while
executing irregular applications. This is due to the fact that threads within
a group (or warp) in SIMT architectures could not access coalesced mem-
ory positions, so the memory system might not cope with the high demand
of data requests. Thus, higher demand due to higher task sizes will worsen
memory throughput. As a result of this, accelerator’s compute units will

8 Chapter 1. Introduction

be stalled due to a bottleneck in the memory systems. In contrast, our pro-
posed strategy firstly finds an initial task size that fully uses the compute
units of the accelerator. Later, it keeps monitoring throughput during exe-
cution time in order to react and alleviate the memory data transient. Our
strategy uses an heuristic to keep the system working around a near opti-
mal point and avoiding overfeeding the accelerator with unnecessary large
task sizes. The heuristic also finds the optimal size for the CPU cores.

A performance model for streaming applications implemented using the
pipeline pattern template [89]. Streaming applications, such as face recog-
nition or objects tracking are good candidates to run on heterogeneous
systems. Previous works [104, 48] propose a producer-consumer strategy
that divides the application in two sets of stages. The first group of stages
is run in one device and its output is passed to the second group of stages
that is run in the other computational device. This approach works well
when both group of stages are balanced, it means both group of stages work
with a similar throughput. However, they fail when both set of stages are
unbalanced, and the overall throughput is limited by the slower set. On
the other hand, we propose a strategy that looks for a better solution. Our
search space for the best configuration has three variables, the number of
threads, the grain size level of the tasks and the device to map each stage
on. Thus, we perform a small profiling phase which collects running times
and hardware counters while running a few items on the CPU multicore and
then on the GPU. As a result, we use this collected data with an analytical
model to predict the best possible configuration of the variables for this
application and hardware. Our approach is specially favourable, as it is a
self-tuned method, whereas previous work need to be setted up manually.

An energy consumption model for streaming applications based on the
pipeline pattern template, which predict the overall system consumption
while executing those applications on heterogeneous processors. This model
also requires the same profiling executions as the performance model to es-
timate the right values of energy consumption.

An analysis of overhead sources is carried out to show performance be-
haviour di↵erences while executing tasks on a heterogeneous CPU-GPU
system in the presence of oversubscription.

The aforementioned contributions have been published in international peer
reviewed conferences [80, 92, 93, 107, 109], international workshops [23], and
journals [81, 108] ranked by the ISI Journal Citation Report (JCR).

1.7. Thesis Structure 9

1.7. Thesis Structure

The rest of this thesis is organized in the following way:

Chapter 2 motivates the need of Runtime Systems for heterogeneous ar-
chitectures. Then, we present an overview of existing Runtime Systems in
literature, and highlight the challenges that remain unsolved.

Chapter 3 tackles the load balancing problem in the context of heteroge-
neous multi-CPUs and multi-GPUs systems when considering the parallel
for pattern template. First, we propose an analytical model and two heuris-
tic functions to deal with the load balance problem. Later, we propose two
scheduling strategies that are built on top of the previous model to max-
imise the use of the GPU host threads.

Chapter 4 extends the load balancing technique introduced in chapter 3
by adding a performance-sensitive partitioner. It considers varying the
task size o✏oaded to the accelerator in order to make the most of it. We
identify several issues while executing irregular applications and propose a
method to mitigate them.

Chapter 5 describes the complexities that arise while executing streaming
applications based on the pipeline pattern template on heterogeneous chips.
We define a taxonomy to classify the parallelism degree and possible map-
pings. Furthermore, we present an analytical model to predict the best
possible configuration among all possible in terms of performance and/or
energy consumption, and design a dynamic approach to e�ciently map the
application pipeline stages over the computing devices when performance
or energy or any performance-energy metric is considered.

Experimental results are discussed within the scope of each chapter to avoid
detracting attention from the overall readability. The last chapter shows the
thesis conclusions and potential lines for future work.

2 Background and Related
Work

In this chapter, we present a background on Heterogeneous Computing (HC).
This area aims to match the requirements of each application to the strengths of
the available heterogeneous architecture, by making an e↵ective use of the acceler-
ator and by avoiding idle use of the available processors [77]. These heterogeneous
architectures are becoming de facto standard due to their higher performance ca-
pabilities and their e�cient energy consumption which is key in battery powered
devices.

As a consequence, there has been an explosion in the number of di↵erent ar-
chitectures comprised of CPUs and accelerators (GPUs, FPGAs, DSPs). This
kind of architectures are ubiquitous, as they are present from large Computing
systems, like the top positions of the TOP500 list [87], to embedded and portable
devices such as smart-phones and smart-watches. However, these architectures
come with several unsolved challenges. Due to the processor architectural dif-
ferences in a heterogeneous system, developers need to take into account the
characteristics of the di↵erent computing devices types and consider that tradi-
tional optimizations may not be feasible. Thus, novel techniques are required to
exploit the potential of heterogeneous architectures and also move toward Exas-
cale Computing.

Furthermore, the programmability of these systems is not trivial for the pro-
grammer who also needs to consider aspects such as di↵erent programming li-
braries and the existence of separated memory address spaces. In this thesis
we aim for bridging the performance-productivity gap, thus we first analyse the
most widely used parallel patterns 2.1. Later, we cover the evolution of proces-
sors designs and the advent of heterogeneous architectures 2.2, specifically this

11

12 Chapter 2. Background and Related Work

last trend has also forced the software community to develop new programming
models for those heterogeneous architectures 2.3. Finally, this chapter gathers
the existing runtimes proposals that are related to the use of parallel patterns on
heterogeneous architectures 2.4.

2.1. Parallel patterns

During the last decades, software patterns have gained a large adoption in the
software community as a way of producing high quality code while keeping pro-
ductivity. They represent the best practices for software development [37]. In
this thesis, we particularly focus on parallel pattern templates and their usage on
heterogeneous architectures. In this section, we describe the most widely used
parallel patterns in detail, we highlight their functional assumptions, as they are
key to understand the issues of accelerating serial applications based on these pat-
terns. Parallel patterns are related to serial patterns but relax their assumptions
in several ways.

The fork–join pattern forks the control flow of an application into several
concurrent flows that join later. Some implementations, like OpenMP or Cilk,
fork the control flow into multiples threads that may execute a di↵erent amount
of operations over a range of data. Once each control flow has finished its as-
signed body of operations, they synchronize in the join point, until all control
flows reach this point. Later, only one control flow continues running with the
following operation after the join barrier. Note that each flow can perform a
di↵erent amount of operations, thus the join function is a requirement to ensure

Thread 1

Thread 2

Thread i

Thread N

Main
Program

Main
Program

…

Figure 2.1: Thread workflow of the fork-join pattern with n-threads.

2.1. Parallel patterns 13

the dependency flow [73]. Figure 2.1 shows a running example of a fork-join
pattern, where N threads are forked in parallel from the main program thread.
Later, each thread executes its work, note that the amount of work of each thread
may be di↵erent. Finally, each thread synchronise until all threads reach the join
function, and only one thread continues executing the main program thread.

The Map pattern applies a function operator over a range of elements within
a collection. In general, the map pattern mimics the loop iteration in serial pro-
grams. Specifically, loops in which all iterations are independent and the number
of iterations is fixed and known. This requirement means that the computa-
tion performed in each iteration can not depend on other iterations results in
oorder to ensure correctness. This pattern is often implemented under the name
parallel for. Many threading libraries, like OpenMP, TBB and Cilk o↵er an
implementation for this pattern [73]. In Chapters 3 and 4, we extend the TBB’s
parallel for pattern template and develop a load balancing model to allow its
e�cient usage on heterogeneous platforms. Figure 2.2 shows an example where
a collection of eight elements is computed in parallel. Each element within the
input collection is processed with the same function, and produce and output
collection of eight elements.

Figure 2.2: Usage example of the parallel map pattern with 8-element collections.

The Stencil pattern is a specialisation of the map pattern in which a function
operator is applied to all elements within a collection. Specifically, it applies
a function to all element based on the values of a set of neighbours elements.
This pattern is usually used on matrix structured data, where optimizations like
tiling and matrix linearisation can be applied. For the stencil pattern, boundary
conditions on element accesses need to be carefully considered. The edges of
the matrix require a special handling either by avoiding the indexing for out-of-
bounds accesses or by using padding techniques [73]. Figure 2.3 illustrates how
each element is computed based on a range of neighbours, horizontal and vertical
neighbours within distance 2 in this example. In general, the stencil pattern is

14 Chapter 2. Background and Related Work

widely used for image filtering, tracking and segmentation. This pattern is used
in some of the benchmarks described in Chapter 5.

Figure 2.3: Neighbour dependencies when using the stencil pattern.

The reduction pattern combines all elements within a collection into a sin-
gle element by using an associative function. Thus, given the associativity of
the function operator, many di↵erent orderings are possible, but with di↵erent
spans. If it happens that the function is also commutative, even more orderings
are possible. Thus, given n elements in a collection, applying the function oper-
ator to any two adjacent elements, we reduce it to n� 1 elements. This process
can be computed in parallel to every pair of adjacent numbers. Thus we reduce
the number of elements to its half in each phase of the reduction. We can keep
reducing the number of elements until there is only one element. This patterns
reduces the amount of available parallelism by two in each iteration of the re-
duction [73]. The Figure 2.4 shows the reduction of a eight-element array, which
reduces the time complexity from O(N) to O(log2 N). The reduction pattern is
widely used in codes that summarise data like histograms.

The Scan pattern produces all partial reductions of an input collection. There
are two variants: inclusive and exclusive scan. In this point, we explain the
inclusive scan, where the nth output element is a reduction over the first n input
elements. On the contrary, the exclusive scan performs a reduction on the nth
over the first n�1 elements. Despite the loop-carried dependence of the inclusive
scan pattern, it can be run in parallel. We can perform an ordering similar to
the reduction one, we can use the associativity of the reductive function to vary
the serial order. However, making scan to run in parallel has a computational
cost, because we have to recompute the reduction of some partial reductions.

2.1. Parallel patterns 15

Figure 2.4: The parallel reduction pattern.

Thus, we can reduce the time complexity of the code from O(N) to O(log2 N)
by increasing the amount of calculations [73]. Figure 2.5 shows an inclusive scan
example with a collection of eight elements, that requires 3 steps, although the
number of reductions operations increases from eight to eleven. This pattern can
be used to compute agregations in time-windows based computations.

Figure 2.5: The parallel scan pattern.

The Pipeline pattern that mimics a manufacturing assembly line, where data

16 Chapter 2. Background and Related Work

flows through several computational stages that process pieces of data producing
changes on them. Conceptually, all stages of the pipeline are active, and each
stage can keep an internal state that can be updated while data flows through
them. The stages that keep an internal state are serial and only can compute
a piece of data at a time. On the contrary parallel stages can process many
pieces of data at once. Given a pipeline with several stages, the throughput of
the slowest serial stage is the one that limits performance. Thus, pipelines are
useful for exploiting parallelism in the presence of several serial stages, where
the parallelism is reached by executing several pieces of data in di↵erent stages
at a given time. This kind of parallelism is exploited in applications like video
codecs and image processing [73] . Figure 2.6 shows a pipeline with three stages
(dark squares) that receives data inputs and produces processed data as output
(grey rounded squares). In Chapter 5, we extend the TBB pipeline pattern
template to be exploited on heterogeneous architectures, and provide a model to
predict the best pipeline configuration.

Figure 2.6: The parallel pipeline pattern with non serial stages.

Throughout this thesis, we focus on the optimisation of parallel for and
pipeline patterns. We develop extensions for the templates that implement these
patterns to allow their deployment on heterogeneous architectures. Additionally,
we analyse the performance limiting factors along with the energy-consumption
asymmetries for several heterogeneous architectures.

2.2. Heterogeneous Computing Basics

Parallel computers have been traditionally dedicated to process large amounts
of data in big companies, research labs and governmental departments. How-
ever, recent trends have led to a new spectrum of devices specially designed for
the masses (PCs, and mobile devices). In this section, we dive into hardware
architecture evolution during last years and elaborate on the need for parallel
programming models for them.

2.2. Heterogeneous Computing Basics 17

2.2.1. Hardware evolution

As Gordon E. Moore predicted around fifty years ago, in 1965, the number of
transistor within a chip is still doubling with each technology generation every
two years [78]. Figure 2.7 shows the evolution of several processor features for the
last 30 years. The transistor count almost follows a straight line on a logarithmic
scale (y-axis). This demonstrates the exponential increment in the number of
transistors. In this sense, computer users expect that this increment in transistor
count directly translates to a performance improvement. Nevertheless, perfor-
mance strongly depends on others factors but transistor count.

Figure 2.7: Phisycal processor features trends for the last 30 years (The authors of
this plot are M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond,
C. Balten and C. Moore).

As we can see in Figure 2.7, processor clock speed has increased from 1 MHz
(in 1973) to 1 GHz (in 2000). It represents an increment of three orders of
magnitude. However, as we can see in the graph, the frequency increment has
ceased, and now it is stabilised around 3 GHz. In 2005, three factors were limiting
performance scaling on processor designs [15]:

The Power wall is a consequence of the non-linear relation between power
consumption and the increment of frequency. During the last several years,
two key processor design parameters, such as the voltage supply and fre-

18 Chapter 2. Background and Related Work

quency, have stopped performance scaling. This fact was due to processors
with unsustainable power densities. Previous processor generations scaled
down the voltage within each new processor generation and increased fre-
quency as a way to get more performance and keeping stabilised the total
power consumption. However, due to physical limitations in current proces-
sor technology, nowadays the scaling of frequency does not yield a propor-
tional increment of performance (known as the Dennard scaling failure [6])
and exacerbates the power density problem.

The ILP wall reflects that traditional techniques to automatically extract
low-level parallelism have reached their limit. Hardware is naturally par-
allel, and processors usually have a series of mechanisms (pipeline, branch
predictors, superscalar instruction issuer ...) to extract the available par-
allelism from a serial stream of instructions. The illusion of writing se-
rial codes while ignoring the parallel execution does not scales anymore.
Figure 2.7 shows that performance of single thread applications are not
expected to increase in the upcoming years due to frequency and ILP de-
crease.

The Memory wall is mainly produced for memory bound codes, this kind
of codes exhibit a higher number of memory operations (reads and stores)
than arithmetic operations. There are two main factors that a↵ect memory
operations: bandwidth (rate at which data is read or stored) and latency
(the time between a memory operation request and the time when it is
resolved). Bandwidth is scaled with each technology generation, however
latency is increased and it is starting to became a limiting factor.

These factors along with the diminishing returns from single-thread archi-
tectural improvements, have forced processor designers to shift to multicore and
manycores solutions in order to make an e↵ective use of the large number of
transistors available. Thus, with the advent of heterogeneous architectures, the
current trend in processor design is clear, with each new processor generation
more and more core count is available in hardware. Eventually, these cores will
be specifically designed for specific computational tasks (signal processing), video
processing units, floats units, etc. This specific cores will allow application de-
velopers to have a huge amount of available computing power at a low power
consumption. However, with the shift to heterogeneous architectures, processor
manufacturers have put a big burden on software developers side. Unlike in-
creasing clock frequency, serial applications’ performance will not vary without
the usage of new programming libraries. The free lunch of automatically faster
serial applications running on faster processors is over. From now on, program-

2.3. Programming heterogeneous architectures 19

mers are responsible to orchestrate and map the application level parallelism
onto the hardware level by the usage of explicit parallel programming models.
In this case, to develop applications for heterogeneous architectures, we require
the use of low-level programming libraries such as CUDA [96] or OpenCL [38].
These libraries expose architectural accelerator details that hinder the develop-
ment of applications on top of heterogeneous architectures. Researches agree
that new programming models are required to o↵er an abstraction layer that
hides the aforementioned complexities while making the most of these promising
platforms. In next section, we explain the limitation of the current programming
models and identify the future challenges that needs to be solved.

2.3. Programming heterogeneous architectures

In this section, we discuss about the need of new programming models that al-
lows the e↵ective use of multicores and accelerators. These programming models
should provide a set of abstractions to reduce the programmability wall and bring
productivity to developers worried about performance.

2.3.1. The need of heterogeneous programming models

As a result of the quick evolution in hardware designs, the amount of available
heterogeneous architectures has increased [9]. However, many modern program-
ming languages, such as Java, Python, C# and C++ do not o↵er a direct support
for these kind of architectures. The research community has proposed several li-
braries to o↵er support for heterogeneous architectures, Java [36, 98], Python [61],
C# [83] and C++ [38, 58, 89]. Currently, there are two main programming lan-
guages for heterogeneous architectures, CUDA [96], which only runs on NVidia
GPUs and OpenCL (Open Computing Language) [38], which is the first standard
for parallel programming on heterogeneous architectures. It was first released by
Apple in 2008 and developed by the Khronos Group. It has gained a wide support
from many hardware vendors such as, Intel, Samsung, Qualcomm, NVidia, ARM
and Xilinx among others. It also represents the most significant e↵ort to create a
common programming interface for heterogeneous devices (CPUs, GPUs, DSPs,
FPGAs and Xeon Phi). However, the main drawback of CUDA and OpenCL is
their low level programming model and complexities due to the explicit acceler-
ator management. Developers are responsible for allocating/deallocating accel-
erator’s memory, ensure data integrity among di↵erent memory address spaces,
launch kernels and synchronise devices.

20 Chapter 2. Background and Related Work

To alleviate this programming wall inherent to heterogeneous programming,
the HSA foundation (Heterogeneous System Architecture) [49] is building a soft-
ware ecosystem to abstract away the complexities of heterogeneous architectures.
They rely on a runtime and a system API that runs on SOCs with cache coher-
ent memory. In this line, the Khronos Group has also published the specification
of SYCL [95], which enables code for heterogeneous processors to be written in
a completely standard C++. SYCL enables single source development where
C++ template functions contain both host and device code to construct com-
plex algorithms that use OpenCL acceleration underneath. Others approaches
like OpenACC [91], OpenMP [32] and OmpSs [10] o↵er a straightforward API to
o✏oad computation to accelerators. These models are based in a set of functions
and compiler directives, where developers set a pragma directive before the block
of code to be executed on the accelerator by specifying the range of computation
and memory bu↵ers to be used. Then the runtime is responsible to orchestrate
the parallelism and map it to the underlying accelerator. Thus, developers do
not need to explicitly manage the accelerator, transfer data between the host and
accelerator, or synchronise after the kernel is launched.

Although, all aforementioned approaches allows the execution on heteroge-
neous architectures and aim at simplifying the computation on this kind of ar-
chitectures. There are still some challenges that remain open. In next sections,
we take a look at the next challenges that heterogeneous computing has to face:
portability of code and performance portability.

2.3.2. Code Portability

Programming for heterogeneous architectures is a tedious and complex task, de-
velopers are frequently forced to use platform dependent libraries or language
extensions while developing their applications. Thus, on one hand, there are
approaches such as, NVidia CUDA [96], Xilinx Vivado [13] and Qualcomm Sym-
phony [53] which provide a private toolchain based on a restricted C++ language
that only work on their own platforms, limiting the portability of code among
di↵erent accelerators and vendors. On the other hand, OpenCL was designed as
a standard library for heterogeneous computing. The main idea behind OpenCL
is to provide a common layer for a wide range of accelerators (multicore CPUs,
GPUs, DSPs, FPGAs and other processor accelerators). However, many of them
include specific extensions out of the standard that limit the portability of code
among devices.

To overcome this compatibility and portability issues, the Khronos Group re-

2.3. Programming heterogeneous architectures 21

Intermediate Standard Languaje

The OpenCL driver consumes SPIR code
and generates the binary files

for each platform

Figure 2.8: SPIR-V separates high-level language processing from binary code
production.

leased SPIR-V [46], a Standard Portable Intermediate Representation. SPIR-V is
the first standard intermediate language for representing computation (OpenCL)
and graphics (Vulkan). Moreover, it has been incorporated as part of the OpenCL
2.1 core specification. Thus, all vendor implementations for OpenCL 2.1 have to
be based on SPIR-V. We are currently witnessing a revolution in the compiler
ecosystem for heterogeneous architectures, as SPIR-V allows us to separate the
generation of IR code from the generation of binaries. It enables the development
of a wide range of language front-ends to produce programs in a common and
standardised intermediate language (SPIR-V). Figure 2.16 shows how SPIR-V
avoids a monolithic compiler approach. In this manner, hardware vendors can
avoid the development of high-level language source compiler into device drivers,
reducing driver development complexities, and enabling the proliferation of a
wide range of languages front-ends to run on heterogeneous architectures.

For application developers, SPIR-V also o↵ers some advantages as it ensures
that their applications will run on all SPIR-V compliant devices, avoiding plat-
form dependent issues. Another advantage, is that the source code of OpenCL
accelerated applications does not have to be directly exposed to customers, allow-
ing IP protection as they can deploy SPIR-V code within their CPU binaries. In
this sense, Figure 2.17 shows how the SPIR-V code is consumed by the OpenCL
implementation when clCreateProgramWithIL() and clBuildProgram()
are invoked. First, a set of standard and custom optimisation are carried out on
the incoming SPIR-V code, producing a highly optimised SPIR-V code. Later,
the SPIR-V code is translated into the specific platform IR and some additional
low-level optimisations are performed. Finally, the JIT compiler produces the ex-

22 Chapter 2. Background and Related Work

GPU’s Host Thread

Standard
Portable
Intermediate
Representation

SPIR Verifier

Standard LLVM Optimizations

Custom Optimizations

Materialization
(Convert to device specific IR)

ABI Fixup, triple, vectorize
custom optimization

JIT
Vendor
Specific
Binary

cl_program

SPIR-V IR

Vendor IR

clCreateProgramWithIL()
clBuildProgram(“-x spir-v -cl-mad-enable”)

Figure 2.9: SPIR-V compilation process into binary code (based on Ayal Zaks
explanation at ACACES’14).

ecutable binary file, and returns it to the user application under a cl program
object.

2.3.3. Task-based models

Although OpenCL o↵ers a portable solution for developing platform portable
applications for heterogenous platforms, it still does not allow the orchestration
and mapping of simultaneous parallel computations over the di↵erent devices
in the system. Therefore, developers must still tackle this issue. We belive that
developers should use high-level abstractions to identify the sources of parallelism,
while the compiler and runtime should take care of the mapping of tasks and
data over the available hardware resources. In this context, we think that the
task abstraction model is the right choice for the kind heterogenous architectures
that we target in this work (multicore CPUs and one or more GPUs). There are
several reasons to use task-based models: (i) they introduce less overhead because
they do not deal with explicit threads; (ii) they support optional parallelism given
by a distributed load balance mechanism; and, (iii) they support composability
and nested parallelism, that allow the development of parallel libraries without
exposing internal implementation details [66].

2.3. Programming heterogeneous architectures 23

There is a number of libraries and languages that support a model based on
tasks, such as: Intel Threading building Blocks (TBB) [89], OpenMP 3.0 [32],
Cilk [7], Java 8, Microsoft TPL (Task Parallel Library) and Habanero [71], to
name a few. These libraries and languages incorporate an internal engine to
distribute the tasks created at runtime and a scheduling policy to assign those
task to the underlying running threads.

Next, we explain in detail the Intel TBB library, because it is used as the core
engine of our proposed constructs: parallel for and pipeline.

Threading Building Blocks

We extensively use TBB through the course of this thesis. It is a C++ library
based on a tasking model that provides a set of functions and templates for
building parallel applications that run on multicore CPUs. TBB is not limited
to Intel CPUs, as it can be executed on ARM based processors as the Qualcomm
Snapdragon 800 or the Samsung Exynos. It can also be executed in several
operating systems such as Windows, Linux and Mac OS, as long as they include
an ISO C++ compiler like GCC, ICC or Clang.

The TBB programming environment encourages developers to express appli-
cations in terms of tasks rather than threads. Tasks are functors that can be run
in parallel by the TBB runtime when there are more than one available thread.
This library allows users to develop portable and scalable applications with the
following benefits:

i) TBB enables developers to specify tasks instead of threads, thus developers
can avoid the tedious task of directly managing low-level implementation
details that makes applications platform dependent.

ii) TBB is also compatible with other threading packages, so it does not limit
developers to use an unique threading library. Moreover, this feature pro-
vides compatibility with legacy code.

iii) TBB emphasises data-parallel programming, enabling multiple threads to
collaborate in the execution of a given parallel workload (in general data-
parallel programming scales when increasing the number of processors, as
the data is divided into smaller pieces).

iv) TBB relies on generic programming, it is implemented by using interfaces
of generic types that can be instantiated by user defined types to adapt the
library to the developer needs.

24 Chapter 2. Background and Related Work

As mentioned before, the performance improvement that TBB provides with
respect to other traditional threading libraries (Pthreads, OpenMP) is due to the
e�cient use of tasks. However, TBB is also faster than other task based libraries
thanks to its internal task scheduler which is described in next Section.

Task Scheduler

In TBB applications, tasks are implemented by using a C++ class that extends
the tbb:task class. This class provides an execute() virtual method, which is
required to be implemented in the extended class. This method is used to express
the implementation of the task. Once a task class has been implemented and
instantiated, it is ready to be launched and executed by the TBB’s runtime. In
TBB, the most basic method for launching a new task is through the invocation
of the spawn(task *t) method, which receives a pointer to a task class as
its unique argument. After invoking this method, the new spawned task gets
enqueued in the thread’s queue, and the current task continues running, as it is
a non-blocking method.

Moreover, the task class provides blocking methods as spawn and wait()
and spawn and wait for all() to spawn new tasks and wait for their final-
isation. In this manner, the user has to manage the number of spawned child
tasks by updating the ref count parameter. Once a task is scheduled for exe-
cution by the runtime library, the execute() method of the task is invoked in a
non-preemptive manner, completing the execution of the task. Tasks are allowed
to instantiate and spawn additional tasks by allowing the formation of a direct
acyclic graph (DAG), see Figure 2.10. When a task finishes its execute()
method, it decrements its parent reference counter (ref count) and destroys
itself. TBB provides two further mechanisms to enhance task management when
possible. In many scenarios with lightweight tasks, task allocation/deallocation
operations may introduce a noticeable overhead. Thus to mitigate this over-
head TBB provides a Recycling mechanism that is used when a task invokes
the recycle as continuation() method. The e↵ects of this method is that
the current task is recycled into a child task, by doing that we avoid the alloca-
tion/deallocation overheads and also reduce the amount of memory required at
runtime. The second mechanism is called bypass, it allows developers to specify
which is the following task to be executed. Thus the runtime does not have to
execute its code to choose the next task, and the following task can start its
execution as soon as the current task finishes its execution.

The task scheduler is responsible for evaluating the task graph (see Fig-
ure 2.10) and executing tasks in a manner that minimises both memory demands
and thread communication [89]. To achieve this, it finds a balance between depth-

2.3. Programming heterogeneous architectures 25

Figure 2.10: Task’s dependence graph (DAG) built from a fibonacci TBB code,
based on Intel Threading Building Blocks site.

first and breadth-first explorations. On one hand, depth-first approach is best
for sequential executions as it reduces the amount of memory demands, as it
only spawns a linear number of nodes at a time. Moreover, this approach also
takes advantages of the cache memory because the deepest tasks are the most
recently spawned tasks, and the hottest in cache. On the other hand, although
breadth-first approach has a severe problem with memory consumption as expand
the number of spawned tasks, it maximises the available parallelism. Because the
number of physical threads is limited, TBB only uses breadth-first to raise enough
parallelism to keep all available physical threads e↵ectively working.

The main feature of TBB is the dynamic task scheduler that orchestrates
the available application parallelism across the available threads in order to yield
further performance scaling. The TBB’s task scheduler is initialised by instan-
tiating the tbb::task scheduler init class, which creates a set of logical
threads equal to the number of physical threads by default, however the user can
also set the required number of threads by specifying an integer value. Once a
worker thread is created, it allocates a local task queue and invokes the method
wait for all(), which implements the TBB’s task scheduler, see Figure 2.11.
Dequeuing tasks is implicit and carried out by the runtime system.

The main scheduling loop of the TBB runtime is shown in Figure 2.11, it is
implemented in the wait for all() method. It comprises three nested loops

26 Chapter 2. Background and Related Work

that attempt to obtain work through three di↵erent ways: explicit task passing,
local task dequeue and random task stealing. The inner loop of the scheduler
is responsible for executing the current task by calling the method execute()
(lines 5-11). Once this method is executed, the reference count of the current
task’s parent is decremented (line 7). This reference count allows the parent
task to execute once all its children tasks have completed. If this reference count
reaches one (line 8), the parent task is set as the next task to be executed (line 9).
The method execute() has the option of returning a pointer to the next task
to be executed (bypass, line 6). If a new task is not returned, the inner loop
exits. Then the middle loop attempts to extract a task pointer from the lo-
cal task queue (line 4-13), by calling the method get task from queue())
(line 12). If successful, the middle loop iterates calling the inner loop once again.
If get task from queue()) is unsuccessful, the middle loop ends and the
outer loop attempts to steal a task from other existing worker threads (lines 3-
17). If the steal is unsuccessful, the worker thread waits for a certain amount of
time and attempts to steal a task from a randomly chosen worker thread until
all task are computed.

1 void wait_for_all(task *child) {
2 task* next_task, task = child;
3 while (task->parent() != NULL){
4 do{
5 while (task){
6 next_task = task->execute();
7 task->parent()->set_ref_count(task->parent()->ref_count()-1);
8 if (task->parent()->ref_count()==1)
9 next_task = task->parent();

10 task = next_task;
11 }
12 task = get_task_from_queue());
13 }while (task);
14 task = steal_task(random());
15 if (task == NULL) //steal unsuccessful
16 wait(time);
17 }
18 }

Figure 2.11: Main skeleton of Intel TBB’s scheduler.

As mentioned before, TBB provides a set of high-level templates that are built
on top of TBB’s task scheduler and allow developers to express their applications
without worrying on parallel programming complexities. Through the course of
this thesis, we propose several extensions of TBB templates (parallel for
and pipeline) to allow their execution on heterogeneous architectures while
ensuring an e↵ective use of the accelerators. In next section, we deeply explain
the details of the TBB templates that are extended in Chapters 3, 4 and 5.

2.3. Programming heterogeneous architectures 27

Parallel for template

Many HPC and user oriented applications are good candidates for exploiting loop
level parallelism. In this sense, the library Intel TBB provides a function tem-
plate, tbb::parallel for to execute for loops with independent iterations
in parallel. This function template is designed as a C++ STL function template,
it receives two parameters, a Range object which represents the iteration space
with a duple (begin, end); and a user defined Body functor which specifies
the body of the loop. This abstraction allows developers to express their appli-
cations as sequential functors, as it makes easier the development process and
avoids users to explicitly handle threads and their synchronization. Thus, these
functors are automatically run in parallel when more that one thread is allowed.
Note that the execution order of the iterations is not guaranteed, as the internal
TBB’s scheduler may change the execution order to yield further performance.

Figure 2.12 shows a vector addition example where the tbb::parallel for
function template is applied. First, the user is required to include two header
files to make the tbb::parallel for function and the class blocked range
available (lines 1 and 2). Next, the user has to define a STL functor to com-
pute the addition of two vectors, the class AddVector (lines 4-12). This class
implements an operator() method which receives a blocked range param-
eter and executes the body of the loop for this range of iterations (out[i] =
a[i] + b[i], being i < n). Finally, the user has to create an instance of the
previous class (line 18) and invoke the tbb::parallel for function template
by passing as arguments a valid range of iterations ((0, n) in line 19) and the
aforementioned functor. The internal TBB’s scheduler is responsible for split-
ting the whole iteration space into chunks of iterations and distributing these
chunks across the available threads, thus the users can focus on developing their
applications by using a sequential STL like approach.

The internal TBB’s engine scheduler recursively splits the iteration space ((0,
n) in the example) and spawns new tasks with each partition. Figure 2.13 shows
a simplified algorithm of the internal parallel for function template imple-
mentation. Each task firstly declares a splitter object (split obj in line 3),
this object is responsible for splitting the sub-range of iterations assigned to the
given task. There are several splitting policies available in TBB and they depend
on the selected TBB’s partitioner (blocked, guided, uniform, etc ...). Next, it
executes the while loop until the range is not further divisible (line 4), in each
iteration a new sibling task is spawned with its corresponding range of iterations
(line 5). Once, the size of the range of iterations can not be further divided,
the task exits the loop and executes the operator() function over its range of
iterations.

28 Chapter 2. Background and Related Work

1 #include ‘‘tbb/parallel_for.h’’
2 #include ‘‘tbb/blocked_range.h’’
3

4 class AddVector{
5 const float *a, *b;
6 float * out;
7 void operator()(const blocked_range<int> &range) const{
8 for(int i=range.begin(); i!=range.end(); i++){
9 out[i] = a[i] + b[i];

10 }
11 }
12 };
13

14 int main(int argc, char* argv[]){
15 // Setting up NTHREADS
16 tbb::task_scheduler_init init(NTHREADS)
17 ...
18 AddVector addv;
19 tbb:parallel_for(blocked_range<int>(0,n), addv);
20 }

Figure 2.12: Usage example of the parallel for construct in TBB.

1 template<typename StartType, typename Range>
2 void execute(StartType &start, Range &range) {
3 split_type split_obj = split();
4 while(range.is_divisible())
5 start.offer_work(split_obj);
6 start.run_body(range);
7 }

Figure 2.13: Simplified execute() method of the simple partition type
class.

All spawned tasks by the root task are allocated on the main thread’s
task queue, they are ready to be executed after the current task or to be stolen
and executed by other idle threads. The splitting process og the iteration space
follows a lazy approach, it means that the execution of the tasks are delayed until
each task can not be further divided, it is, they reach the minimum allowed size.
In Chapters 3 and 4 we extend this parallel for construct to be executed
on heterogeneous architectures. However, we implement our extended scheduler
by using an eager approach in order to adapt the chunk size of iterations to the
relative speed of each device.

Pipeline template

The pipeline pattern is widely used when developers have an incoming stream
of data that need to be processed in several steps or stages, as it happens in a

2.3. Programming heterogeneous architectures 29

traditional manufacturing line. A classical thread-per-stage implementation has
two main drawbacks: i) the speed-up does not scale beyond the number of stages
and ii) when a thread finishes its computation, it needs to pass the resulting data
to the following thread, so there is a communication overhead.

To alleviate these scaling issues, TBB proposes other approach. It o↵ers a
pipeline construct which allows developers to express their applications by
exploiting a potential pipeline parallelism. In this implementation, data flow
throughout a number of stages, and each stage performs some operations on the
arriving data. These stages can be either serial or parallel, serial stages can only
process a piece of data at a given time, while parallel stages can simultaneously
process several pieces of independent data. These types of stages allow developers
to express the behaviour of their applications without dealing with threading
complexities. For example, in vision applications, some computations, as blurring
e↵ect, do not depend on other frames, so parallel stages can be applied. However,
there are other operations, as object tracking, that need information from the
previous token, so serial stages are required. With TBB, the user only has to
express the stages that can be run concurrently, as it allows more opportunities
for load balancing. Thus, with a certain number of CPU cores and concurrent
computing opportunities, the overall throughput of the pipeline is only limited by
the execution time of the slowest serial stage.

1 int main(int argc, char* argv[]){
2 // Setting up NTHREADS
3 tbb::task_scheduler_init init(NTHREADS)
4

5 //Declaring pipeline and filter or stages
6 tbb::pipeline pipe;
7 SegmentationFilter sf;
8 ExtractFilter ef;
9 RankFilter rf;

10

11 // Setting functions for each stage
12 pipe.add(sf);
13 pipe.add(ef);
14 pipe.add(rf);
15

16 // Running the pipeline with a maximum number of items in flight
17 pipe.run(numTokens);
18 }

Figure 2.14: Usage example of the pipeline construct in TBB.

The TBB’s pipeline implementation relies on the classes pipeline and
filter. A filter object represents one stage of the pipeline, while a pipeline
object represents the whole pipeline itself, and it is comprised of one or more filter

30 Chapter 2. Background and Related Work

objects. Figure 2.14 shows an usage example of the TBB’s pipeline construct. As
in any threading library, the first step is to initialise the library with the number
of threads (in line 3). However, this initialisation is optional, if the user does not
initialise the library, the runtime will do it with the default number of threads
which is equal to the number of physical threads. Later, between lines 6-9, we
declare a pipeline instance and the filter objects. Assuming that we have
previously defined a class for each filter (SegmentationFilter, ExtractFilter
and RankFilter, in our example). In the next step, we have to add the declared
filters to the pipeline by respecting the order between them (lines 12-14). Fi-
nally, we have to invoke the method pipeline::run() to execute the pipeline
(line 17). This method receives an integer parameter (numTokens in the fig-
ure 2.14) which sets the maximum number of “in flight” items in the pipeline.
Thus, the pipeline ramps up the number of items until it reaches the number
of numTokens, and then holds the “in flight” number of items by limiting the
access of new items, as it does not create new input tokens until another item
is destroyed at the output stage. It is critical to provide an accurate number
of tokens because an unlimited number of tokens could lead to a parallel mid-
dle stage to keep gaining tokens while the serial output stage can not cope with
this pace. Navarro et al. [79] provide a methodology to calculate the right num-
ber of items to achieve an optimal performance. Additionally, we also provide
a methodology to calculate the optimal number of tokens in the presence of a
heterogeneous (CPU-GPU) pipeline, in section 5.3.2.

1 task * stage_task::execute(){
2 if(first_stage){
3 if(my_pipeline.end_of_input) // No more data to compute
4 return NULL;
5 if(--my_pipeline.input_tokens > 0) // There are more available tokens
6 spawn(*new(allocate_child_of_(*parent()))stage_task(my_pipeline));
7 }
8 // Execute the filter
9 my_object = (*my_filter)(my_object);

10 // Update the pointer to next filter
11 my_filter = my_filter->next_filter_in_pipeline;
12

13 if(!my_filter){ //There are not more filters
14 my_pipeline.input_tokens++;
15 reset(); // // Recycle as an input stage task
16 }
17 recycle_as_continuation();
18 return this;
19 }

Figure 2.15: Simplified method execute() of the stage task class.

When the user invokes the method pipeline::run(), TBB allocates and

2.3. Programming heterogeneous architectures 31

spawns one pipeline root task. First, this root task is initialised with the
list of stages and recycled as a stage task to proceed with the execution of the
pipeline stages. It is a decentralised approach that spawns new tasks until a given
number of tokens is reached (numTokens), Figure 2.15 shows the algorithm that
drives the flow and execution of the stages within the pipeline. Thus, when a
task is executed, it firstly checks if it has to execute the first stage (line 2). If the
previous condition is satisfied it will check whether there are more input data to
compute or not (line 3). If it happens that there is no more input data, then the
current stage will exit and the number of tokens will start ramping down. On the
contrary, if there are more input data and the number of available tokens is bigger
than zero (--my pipeline.input tokens>0) then the current task will allo-
cate and spawn a copy of itself which will be stored in its thread queue. Addition-
ally, this spawned task can be potentially stolen and executed by any other idle
thread thanks to the work-stealing mechanism. In any case, the current task exe-
cutes the filter::operator() function given by the instance (my filter),
and updates the next filter to be executed, lines 9 and 11 respectively. Note,
that the input parameter (my object) of the filter::operator() func-
tion is overwritten by the output of the filter, as they are variables of the same
type (void *). Next, we check whether there are more stages to be executed
in line 13, if the last filter within the pipeline has been executed by the current
task, then the current task will invoke the method task info::reset(), which
makes the variable my filter point to the first stage in the pipeline (line 15).
Finally, the current task is recycled as continuation (line 17), and it will execute
the next filter in pipeline or the first one depending on the value of the variable
my filter.

The TBB’s task recycling mechanism o↵ers several performance advantages
with respect to traditional approaches (Pthreads and OpenMP), as it is exposed
by the authors in [22, 89]. This mechanism lets TBB’s engine to reduce the task
handling overhead, as it reduces the number of allocation/deallocation operations.
Moreover, it allows the task to bypass the scheduler, by explicitly indicating to the
task’s thread what is the next task to be executed, thus we avoid the execution of
the scheduler code and the continuation task can start as soon as its predecessor
finishes. This mechanism also avoids thread communication overheads, as it
reuses in-cache data from the previous task when possible, providing further
performance improvements. For this reasons, we use and extend this optimised
model to be exploit on heterogeneous architectures in Chapter 5.

To overcome this compatibility and portability issues, the Khronos Group re-
leased SPIR-V [46], a Standard Portable Intermediate Representation. SPIR-V is
the first standard intermediate language for representing computation (OpenCL)

32 Chapter 2. Background and Related Work

Intermediate Standard Languaje

The OpenCL driver consumes SPIR code
and generates the binary files

for each platform

Figure 2.16: SPIR-V separates high-level language processing from binary code
production.

and graphics (Vulkan). Moreover, it has been incorporated as part of the OpenCL
2.1 core specification. Thus, all vendor implementations for OpenCL 2.1 have to
be based on SPIR-V. We are currently witnessing a revolution in the compiler
ecosystem for heterogeneous architectures, as SPIR-V allows us to separate the
generation of IR code from the generation of binaries. It enables the development
of a wide range of language front-ends to produce programs in a common and
standardised intermediate language (SPIR-V). Figure 2.16 shows how SPIR-V
avoids a monolithic compiler approach. In this manner, hardware vendors can
avoid the development of high-level language source compiler into device drivers,
reducing driver development complexities, and enabling the proliferation of a
wide range of languages front-ends to run on heterogeneous architectures.

2.3.4. Performance Portability

The next major challenge in heterogeneous computing is that accelerated ap-
plications achieve performance portability across a wide range of accelerators
(CPUS, GPUs, Xeon Phi, FPGAs). While code portability across di↵erent hard-
ware architectures is partially achievable, an optimized application optimised for
one accelerator may not execute accordingly fast on a device from a di↵erent
hardware vendor. Moreover, an optimised application for a given GPU is usually
di↵erent from the one optimised for a multicore CPU. For these reasons, per-
formance portability can be poor when optimised applications are executed on
other target accelerators, being the average e�ciency around 40%, according to
the works [75, 65].

2.3. Programming heterogeneous architectures 33

GPU’s Host Thread

Standard
Portable
Intermediate
Representation

SPIR Verifier

Standard LLVM Optimizations

Custom Optimizations

Materialization
(Convert to device specific IR)

ABI Fixup, triple, vectorize
custom optimization

JIT
Vendor
Specific
Binary

cl_program

SPIR-V IR

Vendor IR

clCreateProgramWithIL()
clBuildProgram(“-x spir-v -cl-mad-enable”)

Figure 2.17: SPIR-V compilation process into binary code (based on Ayal Zaks
explanation at ACACES’14).

There is a number of works that tackle the challenge of adapting OpenCL
applications for heterogeneous architectures. They can be classified into two cat-
egories: Code Transformation and Auto-Tuning. On one hand, there are a
few publications that apply code transformations to increase performance. Some
works [100, 112] employ a work-item coarsening technique while adapting GPU
optimized codes to multicores CPUs, it increases the amount of work performed
for each CPU thread and allows an e↵ective use of CPU compute units, it also
reduces computation overheads. Other approaches [90, 101] apply tiling and a
nested loop scheme to exploit spatial data blocking according to the dimensions
of the input data and the capacity of the memory hierarchy. Stratton et al. [100]
propose a set of abstract performance extensions in parallel languages to help
CPU compilers to understand the logical parallelism while consuming GPU opti-
mized codes. They highlight abstractions like data-parallelism, task-parallelism,
spatial locality and temporal locality. On the other hand, other approaches ex-
ploit auto-tuning techniques. Cao et al. [14] perform a dynamic division of the
workload into tasks and schedule tehm according to a dynamic scheduling strat-
egy that monitors accelerator behaviour. In [65], authors identify a number of
tuning knobs that are key for performance portability: the most important are
thread-data mapping, memory access pattern, tiling size and data caching. Fi-
nally, Phothilimthana et al. [85] propose an approach to combine the above two

34 Chapter 2. Background and Related Work

methodologies. They introduce the PetaBricks language and its auto-tuner com-
piler, they also automatically generate OpenCL code, and run it across multiple
devices by using a work-stealing technique to balance the workload.

Although there are works that deal with performance portability, none of
them achieve a near optimal performance. The research community agrees that
more innovations are required to overcome the performance portability issues.
The performance behaviour of regular applications, like dense linear algebra, is
easy to model or predict. However, it is di�cult to predict performance when
executing irregular application like sparse matrix-vector multiplication (SpMV)
or computing tree-based codes. Irregular applications may exhibit large compu-
tation di↵erences between two di↵erent regimes of the same application. They
also may require a completely di↵erent computational needs according to the
input date-sets. Furthermore, while executing irregular applications, the relative
performance of CPUs and GPUs also varies between di↵erent architectures. On
one processor architecture (i.e. Intel Ivy bridge), a specific part of an application
may run faster on the CPU, while on another processor (i.e. Intel Haswell) it
may run faster on the GPU, (see chapter 4).

We tackle the aforementioned problems in chapters 3, 4 and 5, by using run-
times and some adaptive and dynamic scheduling strategies that allow to run
parallel patterns by adapting the workload distribution to the processor archi-
tecture and applications demand changes. In next section, we review the state-
of-the-art of RS and scheduling strategies which are focused on heterogeneous
architectures.

2.4. Runtimes for heterogeneous systems

As mentioned in the previous Section, the performance portability issue remains
unsolved, although there are a few previous works and approaches targeting per-
formance portability, a general solution is lacking. We strongly believe that RS
can be applied to understand applications’ needs and to ease an e↵ective mapping
of logical parallelism onto the available hardware processors. Through the course
of this thesis, we asses that RS can be applied to get a near optimal performance
while running applications on several heterogeneous architectures.

In this sense, to make the most out of current heterogeneous architectures a
throughput-aware workload partition should be designed. The RS plays a key
role in this scenario, which is even more critical in the presence of asymmetric
multicore/manycore architectures, where an accurate workload partition has to

2.4. Runtimes for heterogeneous systems 35

be made in order to guarantee an e↵ective utilization of all processors. In Lee
et al. [67], the authors prove that GPU throughput is within the range 1.5x-15x
with respect to a CPU. In this sense, a CPU-GPU workload distribution may be
feasible to achieve optimal performance. In this section, we cover an extensive
range of runtime approaches and techniques that tackle the execution issues of
running applications on heterogeneous architectures.

2.4.1. Static Approaches for task Scheduling

In general, static workload-partition approaches take the partition decision at
compile time. Thus, these methods avoid the overhead of RS and profiling some
parts or the application while it runs. In this section, we describe several static
partition methods that focus on the workload partition over heterogeneous archi-
tectures.

Grewe et al. [45] propose a machine learning based approach to predict a near
optimal partitioning mechanism for OpenCL programs. It is merely based on a
compiler analysis of the code structure. This static analysis characterises OpenCL
programs as a fixed vector of real values, also known as features. They define
a function f() that maps a vector of OpenCL code features (c) to the optimal
partition of this program, i.e. f(c) = p, where p should be as near as possible
to the optimal partition point. This approach uses a two-level machine learning
method, the first level classifies OpenCL programs that should only be executed
either on the CPU or on the GPU. The second level, uses a SVM mechanism to
analyse the program features in order to predict the right partition between both
devices.

In Kofler et al. [62], the authors also propose a machine learning method,
which is based on Artificial Neural Networks (ANN), to find the near optimal par-
tition point between devices. They present a framework with two main phases:
training and deployment. The goal of the training phase is to build a workload
partition method, which is required for any previously unused architecture. To
build the model, a set of OpenCL programs are translated into intermediate rep-
resentation by the code analyser. From this IR, some static program features
are extracted and stored in a database. The intermediate representation of the
program is then passed to the back-end compiler which generates multi-device
OpenCL code. Once generated, the application are executed with a range of
problem sizes. They record some performance metrics and link them with the
problem size along with some features of the program which are collected and
added to the database as well. Once these steps have been accomplished for

36 Chapter 2. Background and Related Work

all programs, the trainer uses the features and the performance measurements
stored in the database to generate a task partitioning prediction model. In the
deployment phase, when a new OpenCL program is executed, the runtime fea-
tures are extracted and provided to the previously trained model, which combines
them with the static program features to predict the best task partitioning for
the current program with the selected problem size. Finally, the RS executes the
program by using the predicted task partitioning.

Luk et al. [70] propose the Qilin method. It automatically performs a partition
of a workload execution across heterogeneous processors at compile-time. To do
that, it maintains a database which stores the execution-time prediction for all
the programs it has once executed. The first time that a program is run by Qilin,
it is used as a training run. It divides the whole data-set (size Nt) into two parts
of size N1 and N2. The first part (N1) is mapped to the CPU, whilst the second
part (N2) is mapped to the GPU. Within the CPU part, it further divides N1 into
m sub-parts N1

1 ...N
m
1 . Each sub-part N i

1 is run on the CPU and the execution
time TC(N i

1) is measured. Similarly, the N2 part is further divided into m sub-
parts N1

2 ...N
m
2 and their execution times on the GPU TG(N i

2) are measured.
Once all those times are available, Qilin uses a fitting method to construct two
linear equations, as projections for the actual execution times TC(N) and TG(N),
respectively. The next time that Qilin runs the same program with a di↵erent
input problem size Nr, it can use the execution-time projection stored in the
database to determine the computation mapping.

This kind of methods usually requires a large training phase that may need a
prohibitive amount of time in order to perform accurate predictions. To overcome
this timespan limitations, the research community relies on dynamic methods
that learn how to perform the partition of the applications across heterogeneous
processors while keeping the introduced overhead low.

2.4.2. Dynamic Approaches for task scheduling

In this section, we describe a number of dynamic methods that take the deci-
sion of distributing the workload at runtime. In general, they are supported by
mathematical models, hardware counters and runtime metrics.

Load balance Strategies

As mentioned before, current attempts to provide programming support for het-
erogeneous systems such as CUDA [96], OpenCL [38] and OpenACC [82] consider

2.4. Runtimes for heterogeneous systems 37

the portability of code across CPUs and GPUs, but do not provide support for
simultaneous execution of parallel constructs (for, scan, reduce, ...) on CPUs
and GPUs. Anyways, the problem of accelerating applications on heterogeneous
architectures based on coupled or discrete GPUs by using the aggregate pro-
cessing power of multicore CPU and multiple GPUs has received some attention
lately [2, 10, 40, 70, 88, 106].

Vuduc et al. [106] propose a wildly asynchronous implementation that can
reduce or even eliminate the synchronization bottleneck between iterations, al-
though for the heterogeneous implementations they did not obtain speed-ups on
their platforms. StarPU [2] and XKaapi [40] o↵er a runtime for scheduling a
DAG of tasks on heterogeneous architectures, they also provide programming li-
braries that include an API to select the preferred scheduling policy. In contrast,
the works proposed in this theis are based on the use of higher-level templates.
OmpSs [10] is another programming library that provides a set of OpenMP-like
pragmas coupled with a runtime system to schedule tasks while preserving de-
pendencies. Although these works include performance results for multi-GPU
systems, collaborative work with the CPU multicores is not considered, which is
a relevant feature in our work, see chapter 3. Moreover, one distinguishing feature
of our research when compared to the aforementioned frameworks is that we ex-
plore dynamic CPU block resizing to prevent load unbalance of CPUs and GPUs
due to small or large block sizes. Another distinctive feature of our work is that we
study the e�ciency of non-collaborative and collaborative host thread strategies
combined with the possibility of using oversubscription to improve CPU cores
utilization. Our results, in chapter 3, indicate that oversubscription provides an
orthogonal mechanism to increase performance in heterogeneous multi-CPU &
multi-GPU systems.

There are other approaches that implement work-stealing techniques to re-
duce the load imbalances across processors. These are dynamic load balancing
methods that extend the use of work-stealing techniques to GPUs and hetero-
geneous architectures. In this sense, there is a number of articles that propose
a global work-stealing mechanism for heterogeneous systems comprised of CPUs
and GPUs [1, 34, 39, 85, 97]. Some proposals, like [97] extend the work stealing
for heterogeneous CPU-GPU architectures and use a host thread to steal taks to
feed the GPU. These approaches divide the iteration space lazily, as most work
stealing approaches do. In contrast, we perform an eager partitioning to better
determine the most appropriate tasks sizes for GPUs and CPUs. Additionally,
Chatterjee et al. [17] also propose a method to exploit this technique in sin-
gle GPU accelerated applications, they reduce the intra-device load unbalances
among blocks of threads. However, these methods do not take into account that

38 Chapter 2. Background and Related Work

the size of the o✏oaded tasks to GPUs must be accurately selected, as we do in
chapter 4.

Partition Methods for parallel for pattern in heterogenous systems

In this section, we describe a number of dynamic workload partition methods.
These methods often incorporate a profiling phase at execution time to adapt the
partition according to processors performance while running the application.

Belviranli et al. [4] present a Heterogeneous Dynamic Self-Scheduler (HDSS),
it is a dynamic load balancing scheme for loops on heterogeneous architectures.
HDSS uses a weighted self-scheduling mechanism to fully use all available process-
ing units in the system during the application execution. This algorithm dynam-
ically resizes blocks to prevent underutilization and load imbalances of GPUs due
to small or large block sizes. Unlike static approaches, HDSS does not require an
o✏ine training phase. On the contrary, it has an adaptive phase that determines
the computational weights of processors. HDSS starts with small block sizes and
increase them gradually while continuously monitoring performance. Computa-
tional weights are recorded after executing each block of iterations, until they
become stable. In this phase, it uses a least squares curve fitting technique to
accurately find processor weights and the block of iterations that fully feed the
computational units of all processors. In the second phase, completion phase, the
remainder and majority of the iterations are computed based on the previously
computed weights. This phase uses a modified version of Guided Self-Scheduling
(GSS) algorithm to achieve near minimum number of blocks. Moreover, it en-
sures that processors (CPU and GPUs) finish their execution at nearly the same
time.

In [84], Pandit and Govindarajan propose a collaborative method for CPU-
GPU computations called Fluidic. This method uses a double data bu↵er as
it maintains two copies of the whole data bu↵er, one on the CPU and one on
the GPU. First, the CPU host thread o✏oads the entire kernel execution to the
GPU, which automatically starts its execution. Next, the CPU starts executing
sub-ranges of iterations in descending order, from the other end. After executing
each sub-range of iterations, the CPU transfers the resulting data plus a status
value to the GPU. These status values are checked by the GPU before executing
any GPU work-group. Thus, if the GPU tries to execute an iteration that has
already been computed by the CPU, then the GPU aborts its execution as the
iteration-cross-point has been reached and the whole kernel executed. Finally,
the GPU merges the data from both bu↵ers and transfers the resulting bu↵er to
the CPU. This method introduce a certain overhead on the GPU as it is forced to

2.4. Runtimes for heterogeneous systems 39

check for the data being computed on the CPU before starting to compute each
work-group. Additionally, the GPU may not notice that a range of iterations has
already been computed as the memories from CPU and GPU are di↵erent and a
data-transfer has to be made, so it will incur in double computed set of iterations
and an increment of energy consumption.

Wang et al. [111] propose the Co-Scheduling Based on Asymptotic Profiling
method (CAP). This method executes the workload in several steps. In the
first step, it executes a small portion of the workload with a static partition
and collects the execution time. Then, in subsequent steps, it increases the
chunk size. In this method, CAP profiles the GPU performance behaviour for
di↵erent chunk sizes. Thus, CAP continues profiling and doubles the chunk size
in each new step. To find the stable point of performance, CAP comapres the
variance of the current and the previous performance ratio1 in each step. If the
variance is smaller than a given threshold, or the chunk size is smaller than the
remaining workload, then CAP tries to profile. Otherwise, CAP stops profiling
and executes the remaining workload according to the last calculated ratio per
device (CPU and GPU). This method considers that larger chunks always get
better performance, which may not be true for all applications as we elucidate
in Chapter 4. In Concord [58], Kaleem et al. propose a similar method with two
stages. In the first stage, it performs a static partition over a small sub-range of
iterations and calculates the relative speed of each processor. Next, it shifts to
the second phase and performs a distribution of the remaining workload across
all processors according to the previously calculate relative speeds. This method
updates the relative speed after executing the kernels and uses these values to
adapt the partition decision in future executions. Among these works, the ones
closer to ours are HDDS [4] and Concord [58]. The main di↵erence between
these two works and ours is that they do not take into account the irregularity
of the workload. Their main focus is to determine the computational speed of
each device and with this information to assign the maximum chunk size to the
GPU (and the multicore CPU) to avoid load imbalance. In HDSS [4] the authors
compare its proposal with Qilin [70], finding that HDSS always outperforms the
later.

In Chapter 4 we compare our proposed method against HDSS [4] and Con-
cord [58]. We elaborate on the main di↵erences between these two systems and
ours. We perform a search for a near optimal GPU chunk size, thus we avoid too
large or too small chunk sizes that may harm the GPU’s throughput; we keep
adapting the chunk size of the GPU during the whole execution time in order to
adapt to di↵erent applications regimes; the CPU chunk sizes are also calculated

1The performance ratio is measured as the number of iterations executed in one second.

40 Chapter 2. Background and Related Work

to work in the same time-window along with the GPU. In this sense, none of the
mentioned related approaches change the block size dynamically based on the
throughput of the application. Concord is the only one that evaluates irregular
applications as we do too. Moreover, it is also the only one that, like us, focus on
heterogeneous CPU-GPU chips. All other approaches use more powerful discrete
GPUs, but even their best strategy su↵ers from unbalances when the applica-
tion is irregular, as they usually stop profiling after 50% of the items have been
processed. Also, none of these works evaluate energy consumption.

Pipeline pattern on heterogenous systems

One approach for coding streaming applications is to use a programming
language with support for streams, as for example StreamIt [99]. In [50], the
authors extend the StreamIt framework to allow its execution on one or more
GPUs at the same time. They include several features to increase e�ciency by
e�ciently using on-chip memory and a scheduler to distribute large applications
across several GPUs. However, these approaches do not provide support for
heterogeneous CPU-GPU executions.

By using both CPU cores and GPUs, simultaneous computation on hetero-
geneous platforms delivers higher performance than CPU-only or GPU-only ex-
ecutions [113]. In this sense, there are some approaches that provide support
for streamming conmputing in heterogeneous architecture such as FastFlow [42]
and [104]. In FastFlow [42], Goli et al. present a skeletal framework. It al-
lows developers to easily write OpenCL code inside an heterogeneous algorithmic
skeleton and control the allocation of OpenCL kernels. They execute their codes
by mapping each stage to one device at a time. As a result, they improve per-
formance over CPU versions by an order of magnitude. In [104], Totoni et al.
propose a method to execute pipeline applications on systems with one CPU and
one GPU. They recommend a pipeline configuration based on the idea that all
pipeline stages has to be mapped to the device where they run faster. They first
execute all stages on both the CPU and the GPU. Later, the form two groups of
consecutive stages, so they end up running one group on the CPU and the other
on the GPU. They select consecutive stages in a way that they balance the times-
pan of both groups of stages. This work exploits parallelism using an approach
similar to software pipelining where two frames are computed at the same time,
one on the GPU and another one on the CPU. In this case, the performance is
limited by the slower group of stages. In Chapter 5, Totoni et al. approach is
used as a baseline and we perform a comparsion with the configuration that our
proposed approach finds to be the best.

2.4. Runtimes for heterogeneous systems 41

There are other research e↵orts, such as [5, 68], that define analytical mod-
els to optimize the scheduling of pipeline applications, considering energy and
throughput as an objective or a constraint of the problem. However, these works
focus on optimizing the concurrent execution of multiprogrammed workloads that
consist of independent pipeline applications, whereas we are interested in opti-
mizing one streaming application. In addition, they model energy as a sum of
system level components (processor, network, disk, ...) where the energy con-
sumed on each component is the product of the execution time in that com-
ponent and the dynamic power in the component (measured or estimated using
micro-benchmarks and supposed constant for the benchmarks evaluated). On the
other hand, our proposed approach, in Chapter 5, uses accurate hardware energy
counters available in the underlying architecture. This allows us to measure at
runtime the energy consumption on the CPU, GPU and Uncore components for
a given application. In contrast with previous static approaches, we use this in-
formation to guide the scheduler at runtime to find the optimal mapping that
optimize the throughput or the energy (or a trade-o↵ metric) of our application.

3 Parallel for Pattern: Load
Balancing and Scheduling

This chapter introduces a model that deals with the inherent load balancing
problem on heterogeneous platforms composed of several CPUs and GPUs [81].
Moreover, we consider the problem of e�ciently executing a single application in
a heterogeneous environment by allowing the simultaneous execution of work on
the accelerators and CPUs. In this context, the Runtime System needs to o↵er
a programming model that considers heterogeneity both in terms of computing
power and possibly a disjoint memory address space. Therefore, the e↵ective
utilization of resources in GPU-accelerated systems requires a careful partitioning
of the workload across CPU cores and GPU accelerators. Designing an adaptive
application level work distribution mechanism that is portable across systems
with varying node configurations is challenging. The workload distribution is
further complex while executing applications that exhibit irregularities in the
granularity of parallelism across computational tasks. This chapter focuses on
the problem of e�ciently partitioning and dynamically scheduling parallel for
loops on heterogeneous architectures.

In particular, we extend the parallel for function template from Intel
TBB task library [89] to allow its exploitation in heterogeneous systems. We have
selected TBB because its task scheduler implementation is the most e�cient when
compared with other task schedulers, it also represents the state-of-the-art on
multicore environments. Although we use TBB as the runtime supporting system,
our load balancing model and scheduling strategies can also be implemented on
top of any other heterogeneous task framework.

The remainder of the chapter is organised as follows: Section 3.1 introduces
the internal details of the parallel for API that allows the execution on

43

44 Chapter 3. Parallel for Pattern: Load Balancing and Scheduling

heterogeneous architectures. In Section 3.2, we deal with the load balancing
problem of the iterations of a for loop across the available processors. Next,
we propose two scheduling strategies to make an e↵ective use of the GPU host
thread, Section 3.3. Finally, Section 3.4 presents the experimental results to end
up with conclusions in section 3.5.

3.1. The parallel for template

The Intel TBB library provides a parallel for function template that per-
forms a parallel run of a for loop over a range of iterations. The default partitioner
of this function template recursively splits the range of iterations into sub-ranges,
chunks, until a minimum threshold size is reached. Each chunk is then run as
an independent task and the internal TBB runtime scheduler employs a work-
stealing technique in order to balance the load of task across all CPU cores (for
more details, see Section 2.3.3). The original template only allows to run this
function on multicores CPUs. In this section we extend this function template to
o↵er a new implementation that allows applications to run on CPUs and GPUs
concurrently. In this section we present the library API and describe internal
implementation details.

The Figure 3.1 shows in pseudo-code an usage example of our extended
parallel for construct for a heterogeneous run. As in any multi-threaded
program, the scheduler has to be firstly initialised (see line 20). In this step,
the developer sets the number of O.S. threads that the library runtime has to
fire up. Once the initialization phase is done, the developer can invoke the
parallel for (line 25). Note that some parameters have to be explicitly de-
fined: the iteration space, the range of iterations itS that has a pair of integer
values to stablish the iteration space limits; the body object of the for loop,
bodyObject(), which implements the body for CPUs and GPUs; and the par-
titioner policy object, NCHT(), which implements the method to perform the
partition of the iteration space across the computational units. This object con-
structor receives an input parameter GrainSizeGPU which is a n�tuple of the
form (GS1, GS2, . . ., GSk), where GSk indicates the range of iterations that
are assigned to the GPU device with id = k during the whole run. Thus, in
this approach, we are assuming that the user given n�tuple contains the optimal
range size for each GPU on the system.

In our proposal, we develop an adaptive partitioning strategy. Although the
user provides an optimal chunk size for each GPU device within the GrainSizeGPU
parameter, it is the responsibility of the partitioner to compute the optimal chunk

3.1. The parallel for template 45

1 #include ‘‘HScheduler.h’’
2 #include ‘‘NCHT.h’’
3

4 class bodyObject{
5 ...
6 public:
7 void operatorCPU() (RangeH& r) {
8 for(i=r.begin; i!=r.end; i++)
9 { // CPU compuation }

10 }
11 void operatorGPU() (RangeH& r, Stream& s){
12 hostToDevide_async(r.begin, r.end, s.device, s.streamGPU);
13 launchKernel_async(r.begin, r.end, s.device, s.streamGPU);
14 deviceToHost_async(r.begin, r.end, s.device, s.streamGPU);
15 }
16 };
17

18 int main(){
19 // Start task scheduler with nThreads
20 HScheduler init (nThreads);
21

22 //Allocate GPU buffers
23 AllocatingGPUBuffers();
24 ...
25 parallel_for (RangeH& itS, bodyObject(...), NCHT(GrainSizeGPU));
26 ...
27 }

Figure 3.1: Usage example of our proposed parallel for template

size for the CPU cores that will be concurrently computing work with the GPU
accelerators. In Chapter 4, we propose a strategy to perform an automatic com-
putation of the optimal chunk size for each GPU device, like [4, 58]. However, in
this Chapter we focus on the cooperative work performed by the CPU cores and
how to distribute the workload among them and the available GPUs to prevent
underutilization and load imbalance between these two types of processors.

To use our library, first, the user has to include the library header files to make
the required methods and objects available, lines 1 and 2 in Figure 3.1. The user is
also responsible for allocating the GPU bu↵ers (line 23) and defining a class with
the implementation of the methods operatorCPU() and operatorGPU(),
these methods will process the chunks of iterations on a CPU core or on a GPU
stream device respectively, as shown in lines 4-16. In this sense, two versions of
the body must be coded: i) the version for the CPU cores in C++, its operator
just needs the parameter r, the range of iterations to be executed, line 7; and ii)
the version for the GPU in OpenCL, its operator is shown in line 11, it requires
the range of iterations r and the parameter s which is a struct with the GPU
device id (s.device) and the stream id (s.streamGPU) in the case that such

46 Chapter 3. Parallel for Pattern: Load Balancing and Scheduling

GPU provides support to more than one concurrent stream. In the example,
lines 11-15 show that the user can control one stream to concurrently perform
the asynchronous host-to-device, line 12, and device-to-host, line 14, transfers,
as well as the kernel launching, line 13, by using the given stream.

In the following section, we describe the inherent load balancing issues of
heterogeneous architectures and develop a model and heuristics functions to solve
it. In our implementation, this model and heuristics are implemented in the
partitioner classes NCHT and CHT, which are described in Section 3.3.

3.2. Load Balancing problem

In this section we first illustrate the load balancing problem and motivate the
need of proposing a solution to reduce the e↵ect of load unbalances. We per-
form an initial comparison between our basic adaptive scheduling strategy and
StarPU. Later, we propose an analytical model to deal with the load unbalances
of a heterogeneous system. Finally, we propose two heuristics functions to that
implement the analytical model.

With the advent of the new heterogeneous programming models such as
CUDA, OpenCL or OpenACC, developers are able to develop and run their
applications on a wide range of platforms comprised of multicores CPUs and ac-
celerators. However, these programming models do not provide partition strate-
gies to allow the execution of single applications across all available CPUs and
accelerators. To overcome that limitation, a few previous proposal are published
[2, 10, 40]. However they do not consider varying the size of the range of iter-
ations executed on CPUs according to the relative computational speed of the
GPUs. In heterogeneous architectures, it is critical to guarantee an ideal load
balance in order to make the most of the platform and avoid unnecessary waiting
times between processors. Furthermore, for heterogeneous architectures, three
factors are critical to achieve ideal performance:

1. The ideal task size that is o✏oaded to each device for a computation should
be carefully identified and adaptively tuned during execution time.

2. The assignment of chunks to the computational processors, the CPU cores
and GPUs, must guarantee minimum load unbalance and overheads.

3. The computational speed of each computing resource should be accurately
measured.

3.2. Load Balancing problem 47

The aforementioned state-of-the-art heterogeneous frameworks, do not con-
sider factor 1), whereas in our approach we consider all of them. While scheduling
blocks (chunks) of iterations from the iteration space of a parallel for loop on het-
erogeneous architectures, an ideal chunk size for GPU accelerators needs to be
large enough to amortize data transfers (host-to-device and device-to-host) and
ensure that all theirs computation units are fully utilized. We tackle this issue
in Chapter 4. On the contrary, the CPU chunk size is not subjected to these
constraints and it can be adaptively re-sized to guarantee that all computational
devices finish at the same time.

In order to asses the relevance of a dynamic re-sizing strategy of the chunk of
iterations assigned to CPU cores during execution time, we conduct a first experi-
ment in which we compare our basic adaptive partitioning strategy that performs
chunk re-sizing, Non-Collaborative Host Thread, NCHT , against StarPU’s fixed
chunk size partitioning strategy. Our NCHT strategy has been implemented
on top of the TBB task library and follows a greedy scheduling policy (see Sec-
tion 3.3.1 for more details about this scheduling strategy). Our partitioning
heuristic follows this principle when computing the optimal chunk size for a de-
vice that requests a chunk of iterations: if there are enough remaining iterations
to keep all the devices busy then the chunk size selected is proportional to the
resource’s e↵ective throughput; otherwise the size is computed from a weighted
guided self-scheduling formula, as we explain with more details in Section 3.2.2.

Figure 3.2: Performance comparison for NCHT and StarPU partition strate-
gies (execution time in seconds) while running the Matrix-Vector multiplication
benchmark on 8 CPUs and (0, 1, 2, 4) GPUs.

This first set of experiments are carried out in the platform described in Sec-
tion 3.4.1. Figure 3.2 shows the execution time (y-axis) for the MxVMatrix-Vector

48 Chapter 3. Parallel for Pattern: Load Balancing and Scheduling

multiplication benchmark described in section 3.4.2. A system configuration with
8 CPUs and an increasing number of GPUs, from 0, 1, 2 to 4 (x-axis), with 8
logical (O.S.) threads is used in these experiments. The first set of bars (blue),
NCHT, represents our adaptive partitioning strategy. The next set of bars repre-
sent the execution times for the StarPU fixed chunk size partition strategy. This
strategy is evaluated with the best available schedulers in StarPU: SPU greedy
(red) that uses a central task queue from which all available workers draw tasks
to compute on; SPU ws (green) which is based on a work-stealing scheduler, thus
when a worker becomes idle, it steals a task from the most overloaded worker;
and SPU heft (purple) that takes a task execution performance model and data
transfer times into account to perform a HEFT-similar static scheduling strategy,
it schedules tasks where their termination time will be minimal [2]. For StarPU
results, di↵erent grain sizes are tested (2,000, 200, and 20 matrix rows), obtaining
similar results.

In the only CPU execution scenario, the leftmost set of bars (8,0), our strategy
outperforms StarPU by an 8%, mainly due to an internal StarPU overhead of
the task management mechanism. This di↵erence increases when 1, 2 and 4
GPUs are considered. In heterogeneous executions, the best StarPU strategy,
SPU heft (purple), is 25%, 32% and 53% slower than our proposed strategy
with 1, 2 and 4 GPUs, respectively. We observe that these increments in the
running time di↵erences are explained by a larger load unbalance among the
computational devices, mainly between the GPUs and CPU cores, and by an
ine�cient use of the GPU host threads in StarPU. This result justify our selection
of Intel Threading Build Blocks (TBB) as our underlying task framework and
the necessity of implementing adaptive chunk re-sizing strategies to avoid load
unbalanced scenarios.

3.2.1. Optimization model for load balancing

This section elaborates on the optimization of the partition problem of parallel for
loop. Thus, we develop an analytical model that is responsible for adapting the
chunk sizes to the processors during execution time to tackle the load unbalances.
Specifically, we focus on the problem of scheduling the iterations of a parallel for
loop across all the processing devices of a heterogeneous machine, comprised of
CPU cores and GPUs. Thus, we aim at modelling the performance behaviour
of each processing device to develop an optimization model for this problem.
To that end, we envision the execution of a parallel for loop as a sequence of
scheduling intervals, [I0, I1..., Ii, ..., IN], where sub-ranges of iterations, or chunks,
are executed on the available processors. Thus, each processing device at its i�th

3.2. Load Balancing problem 49

interval, IC
i

, for a CPU core and IGk

i

, for the k�th, computes a chunk of iterations
given by Ch(IC

i

) for the CPU and Ch(IGk

i

) for the k � th GPU.

We model our partitioning strategy as a simplified optimization problem
whose goal is to minimise the system load unbalances subject to the constraint
that the system throughput is maximum. For this model, we simply assume that
the optimal GPU chunk size, Ch(IGk

i

), for the k � th GPU device is known and
stationary during the whole program execution. Hence, this value is kept con-
stant for all scheduling intervals, as it happens in regular workloads like linear
algebra methods [103]. On the contrary, the optimal chunk size for the CPU cores
for all scheduling intervals, Ch(IC

i

), are values that our optimization problem
has to look for. Specifically, the optimal chunk size of each GPU device is given
by the user as an input parameter in the parallel for() function template
invocation (see line 25 in Figure 3.1). As mentioned before in Section 3.1, these
constant sizes are given by the user with the GrainSizeGPU parameter, which
is a n� tuple of the form (Ch(IG1

0
), Ch(IG2

0
), . . . , Ch(IGk

0
)), where Ch(IGk

0
) is the

given size of the chunk that the partitioner will constantly assign to the k � th
GPU for all scheduling intervals at runtime. The optimal chunk sizes values de-
pend on the kernel specified in the task body and the particular GPU hardware
features: the number of registers, size of the memory of each type required in
the kernel, maximum number of block size, etc. Let us assume that Ch(IGk

i

) and
Ch(IC

i

) represent the range of iterations in the i� th scheduling interval for the
k � th GPU and for a CPU core, respectively. Every time that a chunk is run,
its processing time is recorded either for the k � th GPU, T (IGk

i

), or for a CPU
core, T (IC

i

). These times are needed to compute the e↵ective throughput for the
k � th GPU, �(IGk

i

), or for a CPU core, �(IC
i

), again for the i � th scheduling
interval. The following expressions allow us to compute the initial throughput
and its updates while executing upcoming scheduling intervals:

�(IGk

0
) =

Ch(IGk

0
)

T (IGk

0
)
, (3.1)

�(IGk

i

) =↵ ·
Ch(IGk

i

)

T (IGk

i

)
+ (1� ↵) · �(IGk

i�1
) and 8i = 1 : N, (3.2)

where �(IGk

i�1
) represents the e↵ective throughput value for the k�th GPU in the

previous scheduling interval. Equation 3.2 is the exponential moving average of
the current throughput sample, Ch(IGk

i

)/T (IGk

i

), and the previously calculated
throughput (�(IGk

i�1
)), the ↵ parameter is a smoothing constant between 0 and

1 that weights the contribution of the current instant throughput against the his-

50 Chapter 3. Parallel for Pattern: Load Balancing and Scheduling

torical throughput average. The optimal value for this parameter and its impact
on our partition strategy are issues discussed in the experimental Section 3.4. Let
us note that for the computation of the CPU throughput in the i � th interval,
�(IC

i

), we replace Ch(IGk

i

) and T (IGk

i

) by Ch(IC
i

) and T (IC
i

) respectively in
equation 3.2. Once the e↵ective throughput of the k� th GPU is computed, the
current computational speed of this k � th GPU device is calculated as,

fk =
�(IGk

i

)

�(IC
i

)
, (3.3)

where �(IC
i

) represents the current e↵ective throughput in a CPU core. Note
that all CPU cores share the same value, as all CPU cores are homogeneous
and exhibit same performance within a scheduling interval. Analogously, when
a CPU core executes a task, the e↵ective throughput in a CPU core, �(IC

i

), is
computed by using the equations 3.1 and 3.2. Additionally, as we can observe in
Equation 3.3, the parameter fk represents how many times the k � th GPU is
faster than a CPU core within the last interval.

Let us assume that T represents the optimal time span for which the parallel
for loop can be executed in the heterogeneous system. In addition, Nk denotes
the number of chunks that the kth GPU executes, whereas N c is the number of
chunks per each CPU core. Then, N =

P
nGPUs N

k +
P

nCores N
c is the total

number of executed chunks in the whole system. Let us also assume that T k,or
T c, represents the average time that the kth GPU, or CPU core, needs to execute
its chunks of average size Rk and Rc, resulting in an average throughput of �k,
or �c, for the kth GPU and a CPU core, respectively. Our objective is then to
minimise the load unbalance in the system. Obviously, the load unbalance due
to the k� th GPU can be modelled as Nk ·T k�T or N c ·T c�T for a CPU core.
Consequently, the load unbalance due to all processing units in the system is the
sum of the load unbalances due all computing resources. This is the objective
function that we want to minimise, as shown in equation 3.4. Furthermore, the
constraint shown in equation 3.5 limits the maximum throughput that can be
achieved, �max =

P
nGPUs �(IGk

i

) +
P

nCores �(ICi

), while the last constraint
represented by equation 3.6 ensures the positivity of the variables.

Minimize
�P

nGPUs

��Nk · T k � T
���+

�P
nCores |N c · T c � T |

�
, (3.4)

such that
�P

nGPUs
Nk

N · Rk

Tk

�
+
�P

nCores
Nc

N · Rc

T c

�
= �max (3.5)

and 8k T k > 0, T k > 0. (3.6)

3.2. Load Balancing problem 51

This problem has a linear objective function and a non-linear constraint.
Thus, to solve that, we make a change of variables. Let ⇢k = 1/T k and ⇢c = 1/T c.
Then the problem becomes as follows,

Minimize
�P

nGPUs

���N
k

⇢k

� T
���
�
+
�P

nCores

���N
c

⇢c

� T
���
�
, (3.7)

such that
P

nGPUs
Nk

N ·Rk · ⇢k +
P

nCores
Nc

N ·Rc · ⇢c = �max (3.8)

and 8k ⇢k > 0, ⇢c > 0. (3.9)

The objective function is non-linear, but convex and separable in its vari-
ables. The constraint is now linear. This type of constraint is typically called
a resource allocation constraint. Thus, the transformation yields a continuous
convex separable resource allocation problem and the optimal solution occurs
when the derivatives of each of the objective function addends ((Nk/⇢k) � T
and (N c/⇢c)� T) are equal, see [51] for more details. In other words, we have,

�N1

(⇢1)2
=

�N2

(⇢2)2
= . . . =

�N c

(⇢c)2
. (3.10)

Changing the variables again, simplifying, and taking the square roots we have,

p
N1 · T 1 =

p
N2 · T 2 = . . . =

p
N c · T c. (3.11)

If we assume that, ideally, the load unbalance in the system is 0, thenNk ·T k =
T for the k�thGPU, andN c·T c = T for a CPU core. Thus, using this assumption
for equation 3.11 we obtain the following expression,

T 1 = T 2 = . . . = T c. (3.12)

As T k = Rk/�k and T c = Rc/�c, equation 3.12 can be expressed as,

R1

�1
=

R2

�2
= . . . =

Rc

�c
. (3.13)

This expression gives us the key to achieve an optimal strategy for minimizing
the load unbalance in the system: each time that a chunk is partitioned to be
assigned to a resource, its size should be selected such that it is proportional to
the resource’s e↵ective throughput. Additionally, the CPU cores performance is

52 Chapter 3. Parallel for Pattern: Load Balancing and Scheduling

not sensible to the size of the chunks assigned to them, it gives a certain leeway
when selecting the right CPU chunk size in each scheduling interval. In contrast,
GPUs quickly degrade their throughput (iterations/time) when chunks sizes di↵er
from the device’s optimal size [4]. Therefore, we have decided to implement a
greedy partition algorithm based on the following key observations:

While there are enough remaining iterations, the general partition problem
can be approximated in each scheduling interval (Ii) by using the optimal chunk
size value assigned to the k� th GPU, Ch(IGk

i

), whereas the chunk size assigned
to a CPU core should verify equation 3.13, that is,

Ch(IC
i

)

�(IC
i

)
= max

✓
Ch(IGk

i

)

�(IGk

i

)

◆
, k = 1 : nGPUs, 8i = 1 : N. (3.14)

Using the computational speed definition, fk, given by equation 3.3, we obtain
our optimal goal,

Ch(IC
i

) = max

✓
Ch(IGk

i

)

fk

◆
, k = 1 : nGPUs, 8i = 1 : N. (3.15)

In next section, we discuss the implementation details of this model and elab-
orate on the development of our heuristic function that dynamically varies the
computing units chunk sizes to achieve a workload balance.

3.2.2. Heuristic functions for the optimization model

In this section, we elaborate on the implementation of the developed model in
the previous section. We present two heuristic functions to compute the chunk
sizes for GPUs and CPU cores during the whole application execution. There-
fore, these heuristics aim at automatically adapting the chunk size of CPUs
and GPUs along the iteration space of the parallel for loop. In this sense, the
get GPU range() function is responsible for extracting sub-ranges of iterations
from the iteration space of the loop for the GPU devices, this procedure is shown
in Figure 3.3.

For the first invocations of the function get GPU range(), in the schedul-
ing interval I0, the list of boolean values, first range[k], has all its values
initialised as true. Thus, the function returns the range of iterations provided

3.2. Load Balancing problem 53

get GPU range()
// Input: r (the input range)
// k (the id of GPUk)
// Output: chunk (the new chunk for GPUk device)
// r (the remaining iterations)

1. If first range[k] then
2. chunk = GrainSizeGPU [k];
3. first range[k]= false;
4. else

5. If
�
GrainSizeGPU [k]

f

k

<
r�GrainSizeGPU [k]
(
P

j 6=k

f

j)+nCores

�
then

6. chunk = GrainSizeGPU [k];
7. else
8. chunk = 0;
9. fk = 0;
10. myStreamGPU.device=NULL;
11. nCores = min(nCores+ 1, nThreads);
12. endif
13. endif
14. chunk = min(chunk,r);
15. r = r � chunk;
16. return(chunk)

Figure 3.3: Pseudo-code for the get GPU range() function

by the user in the invocation of the parallel for function, GrainSizeGPU[k] for
the k� th GPU, as shown in line 2 in Figure 3.3. After the first chunk execution
and the first throughput computation, �(IGk

0
), the computational speed, fk, is

calculated. Next time that get GPU range() is invoked, a new range of itera-
tions chunk for the k � th GPU is calculated by the procedure shown between
lines 5-12, in Figure 3.3. Specifically, line 5 checks whether there is a su�cient
number of remaining iterations. The condition in that line is equivalent to the
next equation, just replace fk by �(IGk

i�1
)/�(IC

i�1) for the i � th scheduling
interval,

GrainSizeGPU [k]

�(IGk

i�1
)

<
r �GrainSizeGPU [k]

(
P

j 6=k �(IGj

i�1
)) + nCores · �(IC

i�1)
, (3.16)

in equation 3.16, we check whether the expected time for the execution of
the new chunk of size GrainSizeGPU [k], the optimal size for the k � th GPU
is smaller than the expected execution time of the remaining iterations (r �

54 Chapter 3. Parallel for Pattern: Load Balancing and Scheduling

GrainSizeGPU [k]) when they are executed by all the other computational units,
including all the CPU cores, all GPUs and excluding the k�th GPU. We estimate
these times by using the e↵ective throughput in the last scheduling interval (i�1)
of the k � th GPU (�(IGk

i�1
)) and the aggregated e↵ective throughput of all

computational units excluding GPUk ((
P

j 6=k �(IGj

i�1
)) + nCores · �(IC

i�1)). In

case that the expected time for the execution of the chunk in the k � th GPU is
smaller than r�GrainSizeGPU [k], we can guarantee that such GPU device is not
executing a task while the other computational units are idle. In this situation,
we assign the optimal chunk size to the device, chunk = GrainSizeGPU [k]
(line 6). Otherwise, if the condition does not hold, then this is because there
is an insu�cient number of remaining iterations to keep all the processing units
e↵ectively working. In this situation, it is reasonably to not assign a new range of
iterations to the k � th GPU, because it may potentially create load unbalance.
For this reason, the chunk size is set to 0 and the operator GPU() method
will not be any longer invoked (line 8). In addition, this GPU is disabled as a
computational unit in the system, by making fk = 0 (line 9) and nullifying the
device id (line 10). Also, the number of computational CPU cores is incremented
by 1 (line 11), to indicate that one additional thread (the previous GPU host
thread) can perform CPU tasks until all the remaining iterations are computed.

get CPU range()
// Input: r (the input range)
// Output: chunk (the new chunk for the CPU core)
// r (the remaining iterations)

1. If (@fk 6= 0) then

2. chunk = max

k(GrainSizeGPU [k])
nCores

;
3. first rangeCPU= false;
4. else

5. chunk = min
�
max

f

k 6=0

�
GrainSizeGPU [k]

f

k

�
, r

(
P

k

f

k)+nCores

�
;

6. If (chunk < threshold) then
7. chunk = min(threshold, r);
8. endif
9. endif
10. r = r � chunk;
11. return(chunk)

Figure 3.4: Pseudo-code for the get CPU range() function

Furthermore, we present our second heuristic function get CPU range(),
which is responsible for partitioning chunks for the CPU cores, shown in Fig-

3.3. Scheduling strategies 55

ure 3.4. Whilst there is no fk value di↵erent to zero, the function returns the
range chunk as indicated in line 2. Once the first fk is calculated, the next time
that the function get CPU range() is invoked, a new range of iterations chunk
is calculated by following the procedure shown in lines 5-8, in Figure 3.4. In
line 5, for the second execution and followings, the algorithm selects the value of
chunk depending on two options:

(1) maxfk 6=0(GrainSize[k]/fk) and

(2) r/((
P

k f
k) + nCores).

The expression GrainSize[k]/fk represents the optimal number of iterations
that a CPU core should compute to spend the same time as the GPUk if the
device is active (i.e. fk 6= 0), as we established in equation 3.14. In our case, we
choose to synchronise a CPU core with the GPU for which the GrainSize[k]/fk

value is the largest. This is done to minimise the number of times that the parti-
tioning function must be invoked when computing the CPU chunk, and therefore
to minimise its associated overhead. The term r/((

P
k f

k) + nCores) represents
the number of iterations, from the remaining set of iterations, that a CPU core
should execute when considering the computational speed of all the active com-
puting units in the system. In other words, it represents the number of iterations
that a CPU core should execute when seeking a weighted guided self-scheduling
load balancing strategy [94]. When the number of remaining iterations, r, is
su�ciently high, or there are a su�cient number of remaining iterations, our
strategy will choose the optimal value given by option (1). Eventually, when r is
getting small and there is an insu�cient number of remaining iterations to feed
all the computing unit in the system, then our strategy will choose option (2),
the weighted guided self-scheduling approach.

Moreover, line 6 in Figure 3.4 checks whether the computed value for chunk is
smaller than a threshold value, which can be set for each application to guarantee
a minimum profitable chunk size for a CPU core. This value will depend on the
work per iteration and the overhead of our partitioner for this benchmark. In our
experimental section, we elaborate on the right election of this value. Finally,
line 7 selects the appropriate chunk size.

3.3. Scheduling strategies

In this section we present two scheduling strategies that build on top of the
workload balancing model and the partition heuristics function described in Sec-

56 Chapter 3. Parallel for Pattern: Load Balancing and Scheduling

tion 3.2.1 and 3.2.2, respectively. Moreover, for our extension of the parallel for
function template, we implement a novel engine for greedily scheduling task across
all the available computational units. Over that engine, we propose two adap-
tive partition strategies, NCHT and CHT , which are further described later in
this section. As a key function of these strategies, we use the aforementioned
heuristics functions that adaptively computes the optimal chunk size for each
computational unit that ensures a workload load balance scenario.

Particularly, our engine is internally designed as a two-stage pipeline, as de-
picted in Figure 3.5. At the top of Figure 3.5, we can see the iteration space with
the chunks that have already been assigned (in yellow and orange) and the range
r with the remaining iterations that have not been assigned yet (in white). As
mentioned before, this pipeline consists in two stages (TBB filters): Stage1 (S1),
which performs the selection of the computational unit where the task will be
scheduled as well as the election of the number of iterations that are extracted
from the set of remaining iterations (chunk size), and Stage2 (S2), which pro-
cesses the extracted chunk of iterations on the previously selected computational
unit.

remaining

ntokens
tokentokentoken S1 S2

chunk

chnkchunk chnk
Iteration Space

chunkCPU

chunkGPU

time

chnk chnk chunk

S1 S2

S1 S2

S1

S1

S2

S1

S2

S2
chunk

chnk

chnk

chnk

chnk

chunks

GPU

CPU

CPU

CPU

CPU

GPU

Figure 3.5: Two-stage pipeline engine for scheduling and partitioning chunks of
iterations of a parallel for loop in a heterogeneous system.

This parallel for loop engine is implemented on top of the TBB pipeline tem-
plate [89]. One important feature of a pipeline in TBB is the concept of tokens: a
token represents a task that has been spawned for each input item of the pipeline
and that is going to traverse all the pipeline stages (filters). The left-hand side
of Figure 3.5 represents, a cloud of tokens (green boxes), the number of avail-
able tokens to the scheduler limits the number of processors (CPUs or GPUs)

3.3. Scheduling strategies 57

that can be concurrently processing chunks of iterations in parallel. Other im-
plementation detail is that we use the CUDA libraries to o✏oad tasks to the
GPUs. Once a task, with its corresponding chunk of iterations, is selected to be
executed on a GPU, this GPU task ensures the consistency of its input data on
the GPU device thanks to its inherent host-to-device memory transfer operation.
Then the GPU task enqueues the kernel execution, and finally the GPU task
performs the device-to-host memory transfer operation. All these operations are
asynchronously executed. Our proposal also supports the usage of CUDA stream
features that allows the overlap between memory transfers and kernel launches.
Thus, the number of tokens that we consider in our system is equal to the number
of GPU streams plus the number of user-allowed CPU cores.

Once the parallel for function is invoked, the internal pipeline is built and
executed with a number of tokens equal to the number of CPU cores plus the
number of selected GPUs. Thus, we have an available token for each computing
processor. All tokens start their execution on Stage1. However, this stage is
serial, it means that only one token can be executed in that stage at a time.
For this reason we observe a ramp up process while executing the first chunks of
iterations. After a token has been processed in Stage1 and a computing unit is
selected along with its chunk of iterations, it moves towards Stage2. The second
stage is parallel, it means that several tokens can be run in parallel on this stage.
Thus, all computing units can be e↵ectively computing tasks at the same time.
To achieve this scenario, we ensure that the execution time of the first stage takes
less than 0.01% of the whole pipeline execution, and we perform an automatic
bypassing of the tasks that finish the second stage to get again into the first stage,
as it is shown in Figure 3.5 with a vertical dashed line.

Using the pipeline engine just described, next sections elaborate on the im-
plementation details of the two proposed adaptive partitioning strategies, NCHT
and CHT.

3.3.1. Non-Collaborative Host Thread

Our first partitioning strategy, called Non-Collaborative Host Thread (NCHT)
is represented in Figure 3.6. In this strategy chunks are assigned either to an
idle GPU stream or to an idle CPU core. In case of assigning a chunk to a GPU
stream, the corresponding GPU host thread will only be responsible for hosting
the GPU by transferring the data between devices and launching the kernel on
the selected GPU, as it is usually done in related work [2, 10, 40].

In this strategy, Stage1 (see Figure 3.7(a)) firstly acquires an idle GPU stream

58 Chapter 3. Parallel for Pattern: Load Balancing and Scheduling

ntokens

tokentokentoken
Filter 1
C chnk

CPUFilter 2
chnk

Filter 1
chunk

CPUFilter 2

Filter 1
chnk

CPUFilter 2
chnk

Kernel
chunk

GPU

chnk chunk chnk r
Iteration Space

chunkCPU

chunkGPU

time

C

G G

C C

C_token
G_token

Figure 3.6: Main scheme of the pipeline that implements the NCHT strategy.

and then it checks if the device Id is not null (lines 8-9). In that case, a G token
is created and initialized with information regarding the GPU stream Id of and
the range of iterations extracted from the set remaining iterations (r) (lines 10-
13). If there is no idle GPU stream or the device Id is null, then a CPU must
be idle; thus, a C token is created and initialized within the range of iterations
for the CPU core that the partitioner extracts from the range of the remaining
iterations (r) (lines 15-17).

Next, Stage2 (see Figure 3.7(b)) processes the chunk of iterations in the cor-
responding computational processor depending on the type of token that arrives,
it can be either a G token (line 10) or a C token (line 18). In both cases, the time
required for the computation of the corresponding chunk is recorded (lines 9-13
and lines 17-19). In the case of a GPU computation, the time recorded1 is used to
update the e↵ective throughput of the corresponding GPU device, and then it is
used to compute the factor fk (line 14). This factor represents the computational
speed of the kth GPU device relative to a CPU core. This computational speed
is defined as the ratio of the time per iteration on the GPU device vs. the time
per iteration on a CPU core. The factor fk will be required for the partition
function to adaptively adjust the size of the following chunk assigned to a CPU
core. In the case of a CPU computation, the time recorded is used to update
the e↵ective throughput on a CPU core (line 20). Finally, in the case of a GPU

1Let’s note that for a GPU, the kernel execution time as well as the data transfer times are
taken into account here.

3.3. Scheduling strategies 59

1 class GetWork:public tbb::filter{
2 RangeH r;
3 PartitionerH ph;
4 public:
5 GetWork(Range _r, PartitionerH _pH):

r(_r),pH(_pH){};
6

7 void* operator()(void* myToken) {
8 myStreamGPU=acquire_StreamGPU();
9 if (myStreamGPU != NULL &&

myStreamGPU.device != NULL){
10 myToken = new G_token();
11 myToken.streamGPU=myStreamGPU;
12 myToken.chunkGPU=pH.

get_GPU_range(r,myStreamGPU
.device);

13 }
14 if (myStreamGPU == NULL ||

myStreamGPU.device == NULL) {
15 myToken = new C_token();
16 myToken.chunkCPU=pH.

get_CPU_range(r);
17 }
18 return (void*) myToken;
19 }
20 };

1 class ProcessWork:public tbb::filter{
2 BodyObject bO;
3 PartitionerH pH;
4 public:
5 ProcessWork(BodyObject _bO, PartitionerH

_pH):bO(_bO),pH(_pH){};
6

7 void* operator()(void* myToken) {
8 if (myToken.type == G) {
9 t1=record_time();

10 bO.operatorGPU(myToken.chunkGPU,
myToken.streamGPU);

11 completion=new_event(myToken.
streamGPU);

12 waits(completion);
13 t2=record_time();
14 pH.set_factor_GPU(t2-t1, myToken);
15 release_StreamGPU(myToken.streamGPU)

;
16 }else{
17 t1=record_time();
18 bO.operatorCPU(myToken.chunkCPU);
19 t2=record_time();
20 pH.set_factor_CPU(t2-t1, myToken);
21 }
22 return NULL;
23 }
24 };

(a) Stage1 (b) Stage2
Figure 3.7: Implementation details of the two-stage pipeline engine that drives
the NCHT scheduling strategy.

computation, after the completion of the work and the calculation and update of
factor fk, the GPU stream is released (line 15).

Let us recall that for the GPU devices, we exploit the concurrent nature
of the device-memory transfers (host-to-device and device-to-host) and the ker-
nel launches through the use of streams and asynchronous call functions (see
Figure 3.1). Specifically, our example of an operator for executing a chunk of
iterations on a GPU device is based in the use of asynchronous functions through
one stream. After each request is enqueued in the corresponding stream by the
operator() function, Stage2 is responsible for enqueuing a CUDA event to
check the task completion and wait for it (lines 11-12 in Figure 3.7(b)). The
waits() function can be implemented using either a blocking or a yielding
mechanism; both synchronization alternatives are evaluated in the experimental
results Section 3.4.

60 Chapter 3. Parallel for Pattern: Load Balancing and Scheduling

3.3.2. Collaborative Host Thread

Our second partitioning strategy is called Collaborative Host Thread (CHT),
which is the one represented in Figure 3.8. One distinguishing feature of this
strategy is that, when assigning a chunk to a GPU stream, an additional chunk
of iterations is also assigned to the corresponding GPU host thread. Thus, both
the CPU core that runs the GPU host thread and the GPU stream compute
two separately chunks of iterations in parallel. As mentioned in the motivation
section, this strategy aims to ensure the full utilization of the CPU core that runs
the GPU host thread. Figure 3.8 shows two data structures that are required to
store the iterations: the range with the remaining iterations of the iteration space
(the box at the bottom), and a queue of iterations called spare workQueue that
stores sub-ranges of non-executed iterations which were part of a chunk that was
assigned to a GPU host thread (the hexagon at the right-hand side).

ntokens

tokentokentoken
Filter 1

chnk

CPUFilter 2
C chnk

Filter 1

chunk

CPUFilter 2

Filter 1 CPUFilter 2

C
PU

Kernel
chunk

chnk chunk chnk r
Iteration Space

chnk

spare_workQueue

time

done

C

GC GC

CC

GPU

C_token

GC_token

chunkCPU

chunkGPU

Figure 3.8: Main scheme of the pipeline that implements the CHT strategy.

In this strategy, Stage1 (see Figure 3.9(a)) first acquires an idle stream to one
of the GPU devices and checks that the device Id is not null (lines 8-9). Then, it
creates a new type of token, a GC token, a collaborative GPU-CPU token. Thus,
this first stage takes a chunk of iterations for the GPU (line 12) and a second
extra chunk for the GPU host thread (line 13). In case that all GPUs are busy or
that theirs device Id are null, then a C token is created. Let’s note that in this
strategy, a CPU chunk of iterations may be extracted from two sources: 1) from
the spare workQueue (line 20, see the dark-yellow sub-range in the hexagon
in Figure 3.8), it stores subranges of iterations from previously assigned but not
completely executed chunks; or 2) if that spare queue is empty, then the chunk of

3.3. Scheduling strategies 61

1 class GetWork:public tbb::filter{
2 RangeH r;
3 PartitionerH ph;
4 public:
5 GetWork(Range _r, PartitionerH _pH):

r(_r),pH(_pH){};
6

7 void* operator()(void* myToken) {
8 myStreamGPU=acquire_StreamGPU();
9 if (myStreamGPU != NULL &&

myStreamGPU.device != NULL) {
10 myToken = new GC_token();
11 myToken.streamGPU=myStreamGPU;
12 myToken.chunkGPU=pH.

get_GPU_range(r,myStreamGPU
.device);

13 myToken.chunkCPU=pH.
get_CPU_range(r);

14 }
15 if (myStreamGPU == NULL ||

myStreamGPU.device == NULL) {
16 myToken = new C_token();
17 if (spare_workQueue.is_empty())
18 myToken.chunkCPU=pH.

get_CPU_range(r);
19 else

20 myToken.chunkCPU=
spare_workQueue.pop_chunk
();

21 }
22 return (void*) myToken;
23 }
24 };

1 class ProcessWork:public tbb::filter{
2 BodyObject bO;
3 PartitionerH pH;
4 public:
5 ProcessWork(BodyObject _bO, PartitionerH

_pH):bO(_bO),pH(_pH){};
6

7 void* operator()(void* myToken) {
8 if (myToken.type == GC) {
9 t1=record_time();

10 bO.operatorGPU(myToken.chunkGPU,
myToken.streamGPU);

11 completion=new_event(myToken.
streamGPU);

12 setOfChunks=split_by(myToken.
chunkCPU, threshold);

13 while (!setOfChunks.is_empty()) {
14 otherChunk=setOfChunks().pop_chunk

();
15 bO.operatorCPU(otherChunk);
16 if (completion.status == COMPLETE)

{
17 spare_workQueue.push_chunk(

compact_by(setOfChunks,
threshold));

18 break;
19 }
20 }
21 waits(completion);
22 t2=record_time();
23 pH.set_factor_GPU(t2-t1,myToken);
24 release_StreamGPU(myToken.streamGPU)

;
25 }else{
26 t1=record_time();
27 bO.operatorCPU(myToken.chunkCPU);
28 t2=record_time();
29 pH.set_factor_CPU(t2-t1,myToken);
30 }
31 return NULL;
32 }
33 };

(a) Stage1 (b) Stage2
Figure 3.9: Implementation of the two-stage pipeline that implements the CHT
strategy.

iterations come from the remaining set of iterations (r) (line 18, the white range
in the bottom box of Figure 3.8).

Regarding Stage2 (see Figure 3.9(b)), the di↵erence arises when processing
the chunks assigned to the collaborative GC token. The GPU host thread, first
enqueues the GPU chunk in the corresponding GPU stream (line 10). And then,

62 Chapter 3. Parallel for Pattern: Load Balancing and Scheduling

before synchronising in the wait() function for the completion of the GPU task,
the assigned chunk to the GPU host thread (CPU) is partitioned into a set of
sub-ranges of size threshold and stored in a temporal queue (line 12). Next,
a sub-range is popped from that queue and processed by the GPU host thread
on its CPU core (lines 14-15). Later, the status of the GPU stream is polled
for completion. In the case that the GPU stream status is COMPLETE, then the
remaining sub-ranges of iterations stored in the temporal queue are compacted
and returned to the scheduler in the spare workQueue (line 17). Otherwise,
in the case that the GPU stream status is not COMPLETE yet, a new sub-range
is popped from the temporal queue and processed by the GPU host thread in
the core. This process of polling and computing sub-ranges continues until the
GPU stream finish its task or the GPU host thread computes all the sub-ranges
stored in the temporal queue. As in the previous partitioning strategy, the time
required to compute a GPU or a CPU chunk is recorded and used to compute
factor fk.

3.4. Experimental Results

In this section we conduct a series of experiments to evaluate issues such as the
overhead of our framework, the e�ciency of the two proposed partitioning strate-
gies, and to what extent their performance is less than optimal. We also explore
whether or not it is possible to improve performance by allowing oversubscription
and by selecting the appropriate synchronization mechanism.

3.4.1. Experimental setup

We conduct our experiments on a multi-CPU with a quad-socket eight-cores In-
tel(R) Xeon(R) X7550 2GHz (32 cores). Four decoupled NVidia GPU devices
are connected: GPU1 and GPU2 are GeForce GTX 480 while GPU3 and GPU4

are part of a Tesla S2050. This allowed us to study the scalability of the pro-
posed strategies under di↵erent heterogeneous configurations. We refer to the
configurations as (no. of CPU cores, no. of GPUs). For instance, for 1 socket
(8 cores) and 1, 2 and 4 GPUs we get the configurations (8,1), (8,2) and (8,4),
respectively. For 2 sockets (16 cores) and 1, 2 and 4 GPUs: (16,1), (16,2) and
(16,4), and finally, for 4 sockets (32 cores) and 1, 2 and 4 GPUs ((32,1), (32,2)
and (32,4)). The applications are compiled with Intel C++ compiler (ICC) 11.1,
Intel TBB 4.1 and CUDA Development Kit 4.2.

In our experiments, we just consider one CUDA stream per GPU device.

3.4. Experimental Results 63

Therefore, every time that a G token (or GC token) is selected by Stage1 in our
pipelined engine (see section 3.3), then the corresponding thread would serve as
a host thread of the GPU device. In other words, depending on the number of
GPUs, there may be at most 1, 2 or 4 threads working as GPU host threads.

3.4.2. Benchmarks

We use a similar benchmark to dense Matrix-vector multiplication MxV (although
with more operations inside the loop nesting) and the Barnes-Hut benchmark
for our experiments. The MxV is an example of a regular data parallel appli-
cation. An input matrix of 800,000 x 2,000 elements is considered for the MxV
benchmark. Specifically, the iterations over the rows of the matrix are computed
with the extended parallel for function template. This benchmark can be
considered as a fine-grained application (it takes less than 1 ms to process one
row, or iteration of the outer loop, on a CPU core). Also, for this problem, the
computational speed of the GPUs was within the range 7 fk 8, where k
represents one of the 4 GPU devices id.

For the Barnes-Hut benchmark, we adapt the code proposed by Kulkarni
et. al [63], which is part of the Lonestart Benchmarks suite. This code is repre-
sentative of an irregular application. An input set of 100,000 bodies is simulated
in our experiments, where the bodies follow a Gaussian distribution into a 3D
space. In this benchmark, the loop that calculates the gravitational force for
each particle/body (computeForce()) is executed by using our proposed func-
tion template. This benchmark can be considered a coarse-grained application
(it takes a few seconds to process a body/iteration in a CPU core). For this
problem, the computational speed of the GPUs is within the range 3 fk 4,
again k represents one of the 4 GPU devices id.

3.4.3. Characterization of the parallel for template

For all the experiments conducted in this section the number of OS threads
considered (the nthreads parameter in the initialization of the task scheduler)
is equal to the number of CPU cores tested on each machine configuration: 8,
16 and 32, so no oversubscription is allowed. In the case of 1 GPU, we always
execute on GPU1, whereas for 2 GPUs and 4 GPUs, we execute on [GPU1:GPU2]
and [GPU1:GPU4]. In this section, the fine-grained MxV benchmark is used as a
case study to characterize the parallel for template implementation.

In our first set of experiments we measured the e↵ect that factor ↵ (used to

64 Chapter 3. Parallel for Pattern: Load Balancing and Scheduling

5"

10"

15"

20"

25"

30"

10" 30" 50" 70" 90"

Ex
ec
u&

on
)T
im

e)
(s
ec
.))

alpha)(x)100))

NCHT:"(8,"1)"

NCHT:"(8,"2)"

NCHT:"(8,"4)"

CHT"(8,"1)"

CHT:"(8,"2)"

CHT:"(8,"4)"

(a) 8 CPUs and (1, 2, 4) GPUs

5"
7"
9"

11"
13"
15"
17"

10" 30" 50" 70" 90"

Ex
ec
u&

on
)T
im

e)
(s
ec
.))

alpha)(x)100))

NCHT:"(16,"1)"

NCHT:"(16,"2)"

NCHT:"(16,"4)"

CHT:"(16,"1)"

CHT:"(16,"2)"

CHT:"(16,"4)"

(b) 16 CPUs and (1, 2, 4) GPUs

5"

6"

7"

8"

9"

10"

11"

10" 30" 50" 70" 90"

Ex
ec
u&

on
)T
im

e)
(s
ec
.))

alpha)(x)100))

NCHT:"(32,"1)"

NCHT:"(32,"2)"

NCHT:"(32,"4)"

CHT:"(32,"1)"

CHT:"(32,"2)"

CHT:"(32,"4)"

(c) 32 CPUs and (1, 2, 4) GPUs

Figure 3.10: E↵ect of parameter ↵ on the execution times. The x-axis repre-
sents the range of variation of ↵ (from 10 to 90) whereas the y-axis displays the
execution time in seconds.

compute the exponential moving average of the throughput) has on performance.
Figure 3.10 shows the execution time for NCHT and CHT partition strategies
with 8, 16, and 32 threads in Figures 3.10a, 3.10b and 3.10c respectively, and the
number of GPUs varies between 1, 2 and 4. These Figures show execution times
obtained for both partitioning strategies, NCHT and CHT , when parameter ↵
varies within the range [0.1 to 0.9]. A low ↵ value means that the current through-
put sample has less weight than the historic throughput value when computing
the new average, whereas a high ↵ value means exactly the opposite.

From Figure 3.10 we can draw an initial conclusion: For both MxV and
Barnes-Hut benchmarks (only MxV is reported), we found that in the case
of the NCHT partitioning strategy, the value chosen for parameter ↵ has no ef-
fect on performance for any machine configuration, as all NCHT configurations
exhibit a plain contour while varying alpha. In contrast, in the CHT strategy a
low value of ↵ clearly degrades performance, specially when the number of CPU
cores is high. In general, a value of ↵ = 0.5 guarantees the best performance
for all machine configurations (higher values of ↵ tend to give similar execution
times). Therefore, a value of ↵ = 0.5 is selected for the remaining experiments.

3.4. Experimental Results 65

For this value of ↵, our partitioning heuristic quickly converge to the optimal
CPU chunk size (after 3-4 assignments).

We also measure the overhead introduced by our engine, finding that for the
MxV benchmark it was between 0,001% (8 cores) and 0,01% (32 cores). For the
coarse-grained Barnes-Hut benchmark it was even smaller. This allowed us to
set the threshold parameter (threshold = 1) for all our experiments. This value
stablish the minimum amount of iterations that can be assigned to one CPU core.

3.4.4. E�ciency of the scheduling strategies

In this section, we focus on discussing and comparing the performance of NCHT
and CHT . In the previous section, the number of OS threads was equal to the
number of CPU cores. In this experiment, we start by measuring the improvement
achieved by the NCHT and CHT when including the GPU devices on di↵erent
socket configurations, first we consider a multicore of 8 CPUs, then a multicore of
16 CPUs and finally a multicore of 32 CPUs. In this study, we compute the ratio
between the execution time of each benchmark in one multicore configuration
(T (nCores)) and the time when adding 1, 2 and 4 GPUs (T (nCores+nGPUs))
to the same multicore. This ratio is named GPU improvement ratio and it is
shown in Figure 3.11 for both partitioning strategies. Obviously, this ratio repre-
sents the speedup that each partitioning strategy achieves when we incorporate
1, 2 and 4 GPUs to a multicore. We also show the ideal improvement ratios,
which are computed as GIR = (

P
k f

k + nCores)/nCores. These ideal ratios
represent the maximum computational speed of the heterogeneous system vs the
speed of a multicore, or in other words, the maximum speedup we can achieve
when we incorporate the acceleration of the GPU accelerators to the multicore.
The ideal ratios are depicted as green stars in the figure.

Figure 3.11 shows that the CHT strategy always outperforms NCHT , ob-
viously due to a better use of the CPU core where the host thread runs2. The
results show us that the GPU improvement ratio is more significant when the
number of CPU cores is small, for both benchmarks. In both cases, when in-
creasing the number of CPU cores, the relative benefit of CHT over NCHT
decreases. Another interesting finding is that when the number of CPU threads
is low (8 threads), the relative benefit of CHT is boosted when the number of
GPUs increases. For instance, for the Barnes-Hut benchmark, the CHT strat-
egy enhances the NCHT performance of the (8,1), (8,2) and (8,4) configurations

2For NCHT , the host thread just block. Thus, the CPU core can only benefit in oversub-
scripted scenarios.

66 Chapter 3. Parallel for Pattern: Load Balancing and Scheduling

0,00#

1,00#

2,00#

3,00#

4,00#

8# 8# 8# 16# 16# 16# 32# 32# 32#

1# 2# 4# 1# 2# 4# 1# 2# 4#

MxV:%GPU%improvement%ra3o%

NCHT#

CHT#

Ideal#

(a) MxV

0,00#

1,00#

2,00#

3,00#

8# 8# 8# 16# 16# 16# 32# 32# 32#

1# 2# 4# 1# 2# 4# 1# 2# 4#

Barnes'Hut:,GPU,improvement,ra5o,

NCHT#

CHT#

Ideal#

(b) Barnes-Hut

Figure 3.11: Ratio of the NCHT and CHT times in a multicore vs the times in
a heterogeneous configuration. Note that 1 is the performance in the multicore
(only CPUs). The x-axis represents the number of CPU cores (8, 16, 32) and
number of GPUs (1, 2, 4) on each heterogeneous configuration

by 4%, 8% and 14%, respectively. Clearly, more GPUs means more host threads
that can take advantage of their respective CPU cores in CHT .

Based on the results shown in Figure 3.11, we can also explore another inter-
esting question: how far is our partitioning heuristic from the ideal case? For it,
we compare the GPU improvement ratio with the ideal GIR. From the figures
we notice that ratios for NCHT and CHT are 5%-20% and 2%-11% below the
ideal ratio, respectively. These ranges are valid for both MxV and Barnes-Hut.
The maximum deviation from the ideal value is for the configuration with the
highest number of GPUs and lowest number of CPU cores: (8,1). The loss of
e�ciency in the NCHT strategy is because the CPU core that runs a host thread
is underutilized. This is alleviated in part by the CHT strategy, which attempts
that the host thread uses the CPU core by collaboratively executing sub-ranges
of work while the GPU is processing its assigned chunk. However, in this case,
there is still some loss of performance due to the latency in the synchronization
mechanism that we study next.

Analysis of oversubscription and synchronization mechanisms

In this section we discuss the e↵ect of oversubscription as well as the di↵erent
CUDA synchronization mechanisms on our partitioning strategies.

The second challenge we address in this chapter is the e↵ective utilization
of the CPU core that manages a GPU accelerator (data transfers and kernel

3.4. Experimental Results 67

launches), a GPU host thread. As mentioned before, heterogeneous frameworks
assume that the GPU host thread must be kept waiting for the GPU task com-
pletion and the reception of processed data on GPU. Instead of waiting (which
may result into a waste of a CPU core and energy consumption), we have mod-
ified the partition strategy in NCHT . So, each time that a GPU device gets
a new chunk of iterations, the GPU host thread also gets another proportional
chunk to be executed in parallel on the CPU core. Thus, while the GPU host
thread is processing its chunk of iterations in batches, it periodically checks the
GPU’s status until the GPU’s driver notifies to the GPU host thread task the
completion. We call this strategy Collaborative Host Thread, CHT .

One alternative approach to keep the CPU core working, consists in rely-
ing on oversubscription and blocking (or yielding) the GPU host thread while
waiting for the accelerator to finish. The idea is to have an extra running CPU
thread for each GPU accelerator available in the system. These threads will
be dispatched to execute chunks of iterations on the CPU cores that remain
idle while the GPU host threads block (yield) because of waiting for the GPU
completion. More specifically, CUDA o↵ers a function API to allow users to
control the synchronization behaviour of the GPU host threads by using the
cudaSetDeviceFlags() method. We analyse the behaviour of activating the
following flags: Spin, Y ield and Blocking. The default synchronization mode is
Spin, in this mode the GPU host thread keeps busy waiting in order to reduce the
latency time when the GPU notifies the host thread its task completion. StarPU
also uses this strategy by default. By using the Y ield mode, the host thread pe-
riodically runs and checks for the status of the GPU execution in a round-robin
fashion. When no oversubscription is allowed (other concurrent ready threads),
Y ield mode behaves like Spin, although with some additional overhead due to
a more frequent context switching. Finally, with Blocking the host thread just
blocks until the GPU work is done. As the Spin synchronization mode wastes
the CPU core that runs the GPU host thread by doing busy-waiting, we have
implemented our NCHT strategy using a Blocking mechanism (although the
Y ield mechanism is also evaluated in Section 3.4.4) and we study the e↵ects of
oversubscription under this synchronization mechanism.

In Figure 3.12, we represent the execution time (y-axis) for the MxV bench-
mark in a hardware configuration with 8 CPU cores and 4 GPUs. Moreover,
we use 8, 12 and 16 O.S. threads (x-axis). The 8-thread experiment illustrates
the scenario of no oversubscription, while the other two stand for scenarios with
moderate and high oversubscription.

From the Figure 3.12, we observe that in scenarios with no allowed oversub-
scription (8 threads, leftmost group of bars), one of our two proposed strategies,

68 Chapter 3. Parallel for Pattern: Load Balancing and Scheduling

Figure 3.12: Performance comparison of NCHT and CHT against StarPU par-
tition strategies. MxV execution times (seconds) while running on 8, 12 and 16
CPU threads with 4 GPUs.

the CHT strategy is the most e�cient, indeed it is a 10% faster than NCHT and a
61% faster than the best StarPU implementation, SPU heft. Under the moder-
ate oversubscripted scenario (12 threads, middle group of bars), NCHT along with
Blocking synchronization mechanism is the most e�cient alternative. In fact, it is
the best alternative, as it is a 64% faster than the best StarPU strategy. In con-
trast, strategies that uses polling (CHT) or spin mechanisms do not improve their
times and they even degrade their performance, as it’s the case of SPU heft.
This performance degradation is even more important under high oversubscrip-
tion scenarios (16 threads, rightmost group of bars). In this scenario, under these
later types of synchronization mechanisms, the context switching and cache cool-
ing overheads inherent to oversubscripted scenarios are evident. A more detailed
analysis is covered in the experimental results Section 3.4. Anyway, these re-
sults encourage the development of strategies that fully utilize the GPU host
thread, depending on the available synchronization mechanisms provided by the
accelerator API and drivers. Either a NCHT -like strategy with moderate over-
subscription when blocking policy is available, or a CHT -like strategy without
oversubscription on the contrary.

Oversubscription may improve core utilization, especially in the case of the
NCHT strategy, but it can also produce more overhead due to higher process
of context switch. Also, increasing the number of threads has the potential to
increase the duration of synchronization operations due to hardware contention.
The user can control how the host thread interacts with the OS scheduler when
waiting for results from the GPU device by calling the cudaSetDeviceFlags()
function. We are not interested in the busy waiting mechanism (Spin) because it

3.4. Experimental Results 69

wastes the GPU host thread without performing any e↵ective computation. For
this reason, we have studied the BlockingSync (from now Blocking) and Y ield
flags. Blocking di↵ers from Y ield in that in the latter mechanism, the GPU host
thread can still be periodically run by the scheduler and check for the status of
the GPU execution, whereas in the former the GPU host thread just blocks until
the GPU task is done and this thread receives a notification.

(a) (8,1) configuration (b) (8,2) configuration

(c) (8,4) configuration

Figure 3.13: Execution time (in seconds) for di↵erent numbers of threads in the
MxV benchmark. The left-most group of bars represents the case of no oversub-
scription.

Figures 3.13 and 3.14 present the execution time for all the experiments when
they are executed on a 8 CPU cores socket and with 1, 2 and 4 GPUs. The
ideal time is also represented: it is estimated as T (nCores = 8)/((

P
k f

k +
nCores)/nCores), where T (nCores = 8) is the time of each application in the 8
CPU cores socket without GPUs. The x-axis represents the number of threads
and the y-axis the time in seconds. In each figure, the first group of bars always
present the 8-threads case, i.e. no oversubscription. The next group of bars
present the time for a moderate oversubscription scenario, i.e., 8 threads plus
one additional thread per GPU device (i.e. 9, 10 or 12 threads confined in 8

70 Chapter 3. Parallel for Pattern: Load Balancing and Scheduling

cores). Finally, the last group of bars presents the time for a high oversubscription
scenario, i.e., 8 threads plus two additional threads per GPU device (i.e. 10, 12
or 16 threads confined in 8 cores).

For MxV and Barnes-Hut benchmarks, we evaluate NCHT B and NCHT Y.
They represent the times for the NCHT strategy in which the Blocking and
Y ield mechanisms are evaluated, respectively. By setting the Y ield flag, the sys-
tem call sched yield is invoked when reaching the synchronization function.
Current Linux distributions allow two di↵erent behaviours for this system call.
The default behaviour (referred to as Completely Fair Scheduling CFS) does not
preempt the calling thread until its quantum expires, whereas in the POSIX con-
forming implementation (referred to as POX) the caller immediately relinquishes
the CPU. In addition, CHT B represents the times for the collaborative CHT
strategy3 in which the Blocking scheme is assessed. In this CHT strategy, worst
times are obtained when a Y ield mechanism is used.

As shown in Figures 3.13 and 3.14, when there is no oversubscription (left-
most group of bars), CHT B presents the best performance when compared with
any NCHT version. Also in this scenario of no oversubscription, the Y ield mech-
anism performs worse than the Blocking one under the NCHT strategy. This
di↵erence is more evident in the (8, 4) configuration (see Figures 3.13c and 3.14c).
We find out that the reason for this performance di↵erence is the TurboBoost
feature of the Xeon X7550 processor. This feature enables boosting the fre-
quency of heavily-loaded cores when other cores are idle in the same package.
Figure 3.15 shows the average frequency obtained for the MxV and Barnes-Hut
codes for the NCHT strategy and the Blocking and the Y ield (default CFS)
mechanisms. Clearly, on average, the cores are running at a higher frequency
when the Blocking strategy is used.

We obtain interesting results when we study the performance of our two parti-
tion strategies under oversubscripted scenarios. For instance, the performance of
the CHT strategy degrades always for any machine configuration when moderate
or high oversubscription is allowed in the system. The conclusion in this case is
that oversubscription does not improve core utilization, and in fact context switch
and cache cooling overheads degrade the execution times. On the other hand,
although the non-collaborative strategy, NCHT , exhibit worse behaviour in the
case of no oversubscription, it improves its performance when oversubscription
is enabled, and for both Blocking and Y ield mechanisms. The improvement
of NCHT with oversubscription is more significant when the number of GPUs

3Let’s recall that a busy-waiting mechanism is used in the CHT strategy when the host
thread checks the completion of the GPU work, although eventually also a wait() function
call is performed, and this is the function a↵ected by the synchronization flag.

3.4. Experimental Results 71

(a) (8,1) configuration (b) (8,2) configuration

(c) (8,4) configuration

Figure 3.14: Execution time (in seconds) for di↵erent numbers of threads in the
Barnes-Hut benchmark. The left-most group of bars represents the case of no
oversubscription.

2,05%

2,1%

2,15%

2,2%

2,25%

2,3%

8% 8% 8%

1% 2% 4%

MxV:%Average%Frequency%(TurboBoost)%
NCHT_B%

NCHT_Y_CFS%

(a) MxV

2,05%

2,1%

2,15%

2,2%

2,25%

2,3%

8% 8% 8%

1% 2% 4%

B"H:%Average%Frequency%(TurboBoost)%

NCHT_B%

NCHT_Y_CFS%

(b) Barnes-Hut

Figure 3.15: Average frequency (GHz) that the Turbostat command report for
our benchmarks. No oversubscription case: 8 threads on (8,1), (8, 2) and (8,4)
configurations.

increases. This is due to the fact that core utilization is improved by allowing
extra CPU threads which help to execute additional work on the CPU core that

72 Chapter 3. Parallel for Pattern: Load Balancing and Scheduling

is waiting for the completion of the GPU task. We also notice from the figures
that the POX implementation performs slightly better than CFS for Y ield, but in
any case, again the Blocking mechanism outperforms the Y ield one.

In summary, we can see that the overall best performance for MxV and
Barnes-Hut benchmarks is achieved with the non-collaborative NCHT strategy
that uses a Blocking synchronization mechanism and in moderate oversubscrip-
tion scenario. In fact, in this case, the time of NCHT is slightly less than 1%
above the ideal for MxV and around 3%-5% above the ideal for Barnes-Hut.

3.5. Conclusions

We have explored the possibility of extending a high-level parallel for tem-
plate that works under the parallel task programming paradigm to enable the
e↵ective utilization of accelerators (GPU devices) working in parallel with mul-
ticore systems in heterogeneous architectures. The extension of the template is
based on a two-stages pipeline engine that is responsible for dynamically schedul-
ing and partitioning the chunks into the computational units. Under this engine,
we propose two adaptive partitioning strategies, NCHT and CHT , that resize
chunks to prevent underutilization and load imbalance of CPUs and GPUs due
to small or large block sizes. Our partitioning heuristic is based in an analytical
model that takes into consideration the e↵ective throughput of the computational
resources. CHT also tackles the problem of e↵ectively utilizing the CPU core
where a host thread operates, by allowing that the host thread gets one chunk
to process in parallel each time that launches work on a GPU device.

Using a regular and an irregular benchmark, we have evaluated the overhead
introduced by our engine in a heterogeneous platform, finding that is negligible
(less than 0.01%). We have also evaluated the behaviour and e�ciency of both
partitioning strategies, finding that a collaborative host thread strategy imple-
mented at the application level (CHT) can be outperformed by a non collabo-
rative host thread (NCHT) strategy combined with a blocking synchronization
mechanism, when moderate oversubscription controlled by the OS is allowed. Our
results encourage the development of strategies that fully utilize the host thread,
depending on the available synchronization mechanisms of the host thread: either
a NCHT -like strategy with moderate oversubscription when blocking policy is
available, or a CHT -like strategy without oversubscription otherwise.

4 Parallel for Pattern:
Adaptive partitioning

In the previous chapter, we concluded that heterogeneous architectures, such as
the ones with GPU accelerators, can be exceptionally powerful in performance,
power, and energy e�ciency. However, there are various challenges such as the
programming complexities of heterogeneous parallel programming.

We are currently seeing a growing variety of heterogeneous processors, char-
acterized by featuring several CPU cores and an accelerator on the same die.
In this context, hardware vendors such as Intel, Qualcomm, AMD, Samsung or
Altera have developed this kind of heterogeneous chips, where a multicore CPU
and one accelerator (GPU, DSP or FPGA) share resources, such as bus memory
controllers, cache memory and the energy budget. The success of these systems
will rely on the ability to map the application level parallelism to exploit the
underlying available devices. In particular, commodity processors are nowadays
comprised of several CPU cores and one integrated GPU. These heterogeneous
CPU-GPU chip architectures present new opportunities to improve overall ap-
plication performance and reduce energy consumption. This can be achieved by
mapping computation to the CPU cores and the integrated GPU. However, to
fully exploit this type of architectures, one needs to automatically determine how
to partition the workload between both processors and which is the best chunk
size for each processor. This is specially challenging for GPUs while execut-
ing irregular workloads, that exhibit variations in the computation needs during
execution time and su↵ers from control and memory divergences.

We consider the problem of e�ciently executing the iterations of a paral-
lel for loop on heterogeneous CPU-GPU chips by executing the iterations on
both, the multicore CPU and the integrated GPU at the same time. This parallel

73

74 Chapter 4. Parallel for Pattern: Adaptive partitioning

for loop requires a carefully partition of the iteration space into blocks of itera-
tions (also called chunks) that should be appropriately selected for each processor
to guarantee optimal performance. Thus, in this chapter, we present an adap-
tive partitioning strategy that adapts dynamically to changes in applications
throughput. The chunk sizes assigned to the CPU cores are also dynamically
computed to avoid load imbalance. Our scheduling strategy finds the right trade
o↵ between large and small chunk sizes, maximising the GPU utilisation while
balancing the workload with the multicore CPU. We evaluate the performance
and energy consumption of our approaches by running on Intel Haswell and Ivy
Bridge architectures with OpenCL. In this Chapter, we first introduce an im-
proved version of the parallel for template presented in the previous chapter
(Section 4.1). Later, we motivate the need for adapting the size of the o✏oaded
range of iteration to GPU (Section 4.2). Next, we propose the partition strategy
to deal with the aforementioned partition problem (Section 4.3) and show our
experimental results (Section 4.4). We conclude with conclusions in Section 4.5.

In this chapter, we provide an extension of the parallel for function tem-
plate of the TBB task framework [89] to allow its exploitation on heterogeneous
CPU-GPU chip processors. We have selected TBB because its task scheduler
implementation is the most e�cient when compared with other state-of-the art
multicore task schedulers. However, although we have used TBB as the under-
lying runtime system, our scheduling and partitioning strategies can be applied
to any other task framework. We provide our templated function along with a
partition strategy that is able to balance the workload among all available devices
(CPUs and GPUs) while dynamically selecting the chunk size that ensures a near
optimal throughput on each device.

4.1. The extended parallel for template

This section proposes an extension of the parallel for template presented
in Chapter 3. The main novelty is an adaptive partitioner that automatically
finds near optimal chunk sizes for CPUs and GPUs. We integrate this extension
within our Heterogeneous Building Blocks (HBB) library. It is a C++ template
library that takes advantage of heterogeneous processors and facilitates its usage
and configuration. HBB aims to make easier the programming for heterogeneous
processors by automatically managing memory data bu↵ers and accelerator syn-
chronization. It builds on top of OpenCL and TBB libraries, and it o↵ers a
parallel for function template to run on heterogeneous CPU-GPU systems,
as it is depicted in Figure 4.1.

4.1. The extended parallel for template 75

We use the NCHT scheduler [81] which is presented in Chapter 3, it consid-
ers loops with independent iterations and features a dynamic workload balancing
policy and an adaptive GPU and CPU chunk partitioner. This partitioner adap-
tively divides the whole iteration space into chunks or blocks of iterations. The
goal of the partition strategy is to evenly balance the workload of the loop among
the computational units (GPU and CPU cores) as well as to assign to each device
the chunk size that maximises its throughput during execution time. Providing
an accurate chunk to each device is extremely important to achieve an optimal
performance. Section 4.2 shows that the chunk size can have a significant impact
on the performance of heterogeneous CPU-GPU architectures, specially when
dealing with irregular applications.

remaining

CPU 1GPU CPU 2 CPU 3 CPU 4

OpenCL

HBB library
class HTask, class HBuffer, class LogFit

User Application
parallel_for(begin, end, body, LogFit());

Threading Building Blocks (TBB)

Tokens Stage 1 Stage 2

ntokens
tokentokentoken S1 S2

chunk

chnkchunk chnk
Iteration Space

chunkCPU

chunkGPU

time

C C G C C

Threads (O.S. dependent)

chnk chnk chunk

S1 S2

S1 S2

S1

S1

S2

S1

S2

S2
chunk

chnk

chnk

chnk

chnk

chunks

GPU

CPU

CPU

CPU

CPU

GPU

Figure 4.1: Software stack and scheduling approach used in the parallel for tem-
plate.

As mentioned before, we are extending the NCHT scheduler by adding a
performance-aware partitioner. Hence, we remember the implementation details
of this scheduling strategy. Figure 4.1 shows the software stack that supports
user applications. Our library, HBB, o↵ers an abstraction layer that hides the
initialization and management details of TBB constructs and OpenCL contexts,
command queues, device ids, etc., thus the user can focus on his own application
instead of dealing with thread management and synchronization. The Figure 4.1
also shows the internal engine that drives the parallel for function. Again,
it is a two-stage pipeline. This scheduler is internally implemented as a pipeline,
comprised of two stages: Stage1, which selects the computing device (GPU or
CPU core) where the work is scheduled and the chunk size (number of iterations)
assigned to that device; and Stage2, which processes the chunk on the selected
device. Stage1 firstly checks if the GPU device is available. In that case, a

76 Chapter 4. Parallel for Pattern: Adaptive partitioning

G token is created and initialized with the range of the GPU chunk size that the
partitioner returns. If there is no idle GPU device, then a CPU core is idle; thus, a
C token is created and initialized with the appropriate chunk of iterations for the
CPU. In both cases, the partitioner extracts a chunk of iterations from the range
of remaining iterations. Next, Stage2 processes the chunk in the corresponding
device depending on whether the token is a G token or a C token and records
the time it takes to compute the corresponding. This is necessary to compute the
device’s throughput, which is used by the partitioner described in Section 4.3.

One of the biggest advantages of this parallel for implementation [81] is
the decentralised approach of computing, where each computing device (GPU or
CPU core) is represented as a token that traverses the pipeline at its own pace.
Thus we avoid unnecessary synchronization points between computational devices
with di↵erent computing power. In contrast, other state of the art approaches
[70, 111] su↵er from load unbalance due to the usage of fork-join patterns
with implicit synchronization points between CPU and GPU. In the rest of this
section, we explain the functionality and implementation details of the main HBB
components.

4.1.1. HBu↵er class

The HBB library provides an HBuffer template class that o↵ers an abstraction
to avoid the explicit management of memory bu↵ers. This class is accessible by
including the HBuffer.h header file and by using the namespace hbb. Each
HBuffer<T> instance represents an heterogeneous bu↵er that can be accessed
by CPU and GPU. As we can see in Figure 4.2, this class hides memory data
management, the user just needs to call the methods getHostPtr() (lines 11
and 12) to get a CPU memory bu↵er, and getDevicePtr() (lines 19 and 20)
to get access to the GPU memory bu↵er, respectively. In line 6 a pointer to
an HBuffer<int> is declared, this bu↵er can be accessed later from the meth-
ods operatorCPU() and operatorGPU() by using the previously mentioned
methods. The allocation of the HBuffer instances is shown in Figure 4.3 (lines
17 and 18), the default constructor of the class takes an argument which repre-
sents the number of items to be stored in the bu↵er (line 17). Moreover, there
is an additional constructor definition that takes a second argument to set the
zero-copy-bu↵er (ZCB) mode (line 18). This mode allows developers to allocate
the CPU and GPU bu↵ers in the same physical memory addresses, as those plat-
forms have a fused/integrated CPU-GPU processor. However, discrete GPUs
can also use this mode to exploit the pinned memory in their platforms. In any
case, the user is responsible of choosing the right memory mode (ZCB or default)

4.1. The extended parallel for template 77

because the performance behaviour of the ZCB mode is strongly dependent of
the underlying hardware architecture and platform drivers.

4.1.2. HTask class

Before using the hbb::parallel for function, the user must extend the HTask
abstract class in order to define the body of the parallel for loop (line 5 in Fig-
ure 4.2). First, the HTask.h header file has to be included to make its definition
available. Figure 4.2 shows a snippet of code with the definition of an arbi-
trary Body class that extends from HTask class. This class must implement
two methods: one to define the kernel on a single CPU core, and a second one
to define the kernel on the GPU device using OpenCL. The operatorCPU()
method (lines 10-14) defines the CPU function of the kernel in C++, which will
be run on a CPU core. The operatorGPU() method (lines 15-23) represents
the argument setting and kernel launching on the GPU. Note that the user is
not responsible of loading and compiling the kernel, as it is automatically done
by the HTask constructor when it receives the KernelInfo parameter (line 9
in Figure 4.2). The kernelInfo struct has two fields: one to store the kernel
file path (KernelFile), and a second one to store the kernel function name
(KernelName), as it is shown in Figure 4.3 (line 16).

The HTask class automatically manage data memory transfers between de-
vices (CPU-GPU). In this sense, the user only has to set the arguments that
are passed to the GPU kernel. There are two methods to set the kernel argu-
ments: the setKernelArgument() method for variables of basic types (line
18), and the setKernelArgumentBuffer() method for instances of the class
HBuffer<T> (line 19). This last method, setKernelArgumentBuffer(),
receives a third parameter with a pointer to the data bu↵er that is marked
with a bu↵er access mode to the kernel, it can be one of the following val-
ues: BUF READ ONLY, BUF WRITE ONLY and BUF READ WRITE. Depending
on the type of bu↵er access mode and the internal information of the HBu↵er
instance the method setKernelArgumentBuffer() can apply several op-
timizations to avoid unnecessary data transfers between devices, as it uses a
lazy memory management policy. Additionally, the HTask class provides a
launchKernel() method to execute the kernel on the GPU (line 22). This
method only takes two arguments that represent the chunk of iterations to
be executed on the GPU. Note that the user does not have to manage the
command queue or the kernel id objects inherent to GPU applications.

78 Chapter 4. Parallel for Pattern: Adaptive partitioning

1 #include ‘‘HTask.h’’
2 #include ‘‘HBuffer.h’’
3 using namespace hbb;
4

5 class Body : public HTask{
6 HBuffer<int> * b_a;
7 HBuffer<int> * b_b;
8 public:
9 Body(KernelInfo k, HBuffer * buf_a, HBuffer * buf_b) : HTask(k){...}

10 void operatorCPU(int begin, int end) {
11 int * a = b_a->getHostPtr(BUF_READ_ONLY);
12 int * b = b_b->getHostPtr(BUF_READ_WRITE);
13 for(i=begin; i!=end; i++){ b[i] = a[i] * a[i]; }
14 }
15 void operatorGPU() (int begin, int end){
16 //Setting kernel arguments
17 setKernelArgument(0, sizeof(int), &begin);
18 setkernelArgument(1, sizeof(int), &end);
19 setKernelArgumentBuffer(2, sizeof(BUF), b_a->getDevicePtr(BUF_READ_ONLY));
20 setKernelArgumentBuffer(3, sizeof(BUF), b_b->getDevicePtr(BUF_READ_WRITE));
21 //Launching kernel
22 launchKernel(begin, end);
23 }
24 };
25 ...

Figure 4.2: Implementation example of a class Body that extends from HTask.

4.1.3. Function template: parallel for

Our scheduler builds on top of an extension of the TBB parallel for template
for heterogeneous CPU-GPU systems by Navarro et al. [81]. As in any multi-
threading library, the scheduler needs to be initialized with the number of OS
threads, that the TBB runtime will create, which can vary from 1 to the number
of CPU cores plus one additional thread to host the GPU (the host thread). The
developer can invoke our parallel for function, which has the four following
arguments: the iteration space (begin and end), the body object of the loop, and
the partitioner object (LogFit()). The latter argument, e↵ectively overloads
the native TBB parallel for function so that the heterogeneous version is
invoked. It implements the adaptive partitioning strategy that computes the op-
timal chunk size for each compute device (CPU cores or GPU). This is described
in Section 4.3. The user is also responsible to write a class that processes the
chunk on the CPU cores or on the GPU. Our function template can work on
di↵erent types of heterogeneous systems, but in this chapter, we focus on archi-
tectures with an on-chip GPU. Thus, our scheme does not constrain the memory
management model, so the user can set bu↵ers as default, or pinned-memory
host bu↵ers, or zero-copy bu↵ers. While the default model always pays a cer-

4.1. The extended parallel for template 79

tain data communication overhead between CPU and GPU, the pinned memory
stores the CPU data in resident memory pages, reducing latency. Alternatively,
the zero-copy bu↵er model allows the GPU to access the CPU memory space
directly, so no data movement is needed. Moreover, all experiments conducted in
this chapter use the zero-copy bu↵er capability of the heterogeneous CPU-GPU
chip architectures.

1 #include ’’HInit.h’’
2 #include ’’HBuffer.h’’
3 #include ’’parallel_for.h’’
4 using namespace hbb;
5

6 class Body : HTask{
7 ...
8 void operatorCPU(int begin, int end){ ... }
9 void operatorGPU(int begin, int end){ ... }

10 };
11

12 int main(int argc, char* argv[]){
13 // Start task scheduler
14 HInit HInit(numcpus, true);
15 ...
16 KernelInfo k(kernelFile, kernelName);
17 HBuffer<int> * a = new HBuffer<int>(N);
18 HBuffer<int> * b = new HBuffer<int>(N, USE_ZCB);
19 Body body(k, a, b);
20 ...
21 parallel_for(begin, end, body, new LogFit());
22 ...
23 }

Figure 4.3: Usage example of the parallel for template with LogFit partitioner.

Figure 4.3 shows a main function with all the required component allocation
and initialisation to make the parallel for function template work. The
parallel for function is made available by including the parallel for.h
header file. As in any threading library, the first step is to initialise the library
with the required number of resources (threads). In the HBB library, the class
HInit abstract the initialization of the underlying libraries (TBB and OpenCL).
The constructor of the HInit class receives two arguments: the first one indicates
the number of active CPU cores, and the second one, which indicates whether the
GPU must be initialised or not by setting a boolean value (line 14), if the GPU
has to be initialised, an extra thread is created to host the GPU accelerator.

Once the library has been initialised, the user can create the KernelInfo,
HBuffer and the Body object instances (lines 16-19), which are required to run
the parallel for function. As shown in Section 4.1.2, the Body construc-
tor class receives a KernelInfo instance that will be bypassed to the HTask

80 Chapter 4. Parallel for Pattern: Adaptive partitioning

constructor in order to compile and create the GPU kernel. The other param-
eters, the HBuffer instances, are passed to the Body instance to make them
accessible to the operatorCPU() and operatorGPU() methods. Addition-
ally, the parallel for function template receives four parameters (line 21):
the first two parameters, begin and end represent the limits of the iteration
space ([begin, end), i.e. the upper limit is not executed). The third parameter is
the Body instance which have the implementation of the CPU and GPU versions
of the body loop. The last parameter is an instance of a partitioner. This par-
titioner e↵ectively implements the adaptive partitioning strategy that computes
the optimal chunk size for each compute device (CPU cores or GPU). In this
case, it is an instance of the class LogFit that is explained in the Section 4.3.

4.2. The GPU chunk size problem

Developing a dynamic and adaptive work distribution mechanism that is portable
across processors is challenging, and even more when the computational needs
of the application may change during running time, as it happens in irregu-
lar applications. There are several frameworks that o↵er support for heteroge-
neous CPU-GPU systems, like StarPU [2], OmpSs [10], XKaapi [40], Qilin [70],
HDSS [4], Fluidic [84] and Concord [58]. These task frameworks implement a
variety of dynamic scheduling and partition strategies which aim to balance the
workload between CPUs and GPUs. In general and assuming that host-to-device
and device-to-host transfer times are not an issue, as it happens in chips with
integrated accelerators that share the main memory, these strategies would con-
sider that a large chunk size that fully occupies the GPU’s computational units,
will exhibit a maximum throughput. In this chapter, we demonstrate that not
only a small chunk size, but also a large chunk of iterations may exhibit a poor
throughput, especially when running irregular applications. In the first case, this
is a consequence of underutilization resources, however in the latter, this is due
to the large amount of stalled computational units that are waiting for last level
cache misses.

Our proposed approach continuously monitors the throughput of each com-
puting device (CPU cores and GPU) during the whole application execution and
uses this metric to accordingly resize the chunks assigned to the CPU cores and
to the GPU, optimising overall throughput and decreasing load imbalance among
the di↵erent devices. Particularly, the correct identification of the optimal chunk
size for the GPU is key. We have found that correctly determining the chunk size
for the GPU is highly important. Let’s note that the user has to provide a fixed

4.2. The GPU chunk size problem 81

chunk size for GPUs on the previous Chapter 3. For instance, if the GPU chunk
size is too small, the GPU may not amortize the cost of o✏oading the task, and
may not feed all computational units. On the other hand, if the GPU chunk size
is too large, the GPU may su↵er from a large memory contention and it may lead
to workload unbalances at the end of the iteration space or ine�ciencies in the
GPU exploitation. For these reasons, dynamically finding the optimal chunk size
for each device is critical to minimise execution time and energy consumption.

As a running example, we use an implementation of the n-body problem,
called Barnes Hut, which is previously introduced in Chapter 3. We remind the
main characteristics of this benchmarks for the sake of readability. It performs a
gravitational particle simulation for a number of time-steps. In particular, this
algorithm recursively divides the simulation volume into cubic cells by using an
Octree. Then, only particles from nearby cells directly interact between them,
and particles in distant cells can be treated as a single large particle centred at
the cell’s centre of mass. Thus, this method dramatically reduces the number of
required interactions between particles1, resulting in an application with a time
complexity of O(n log n). We perform several invocations of the parallel for
function, each invocation correspond with one simulation step, also called time-
step throughout this thesis.

Our studies show that, as expected [11], the amount of work performed by
each iteration of the parallel for exhibits a high variability. To understand
how the range of iterations o✏oaded to the GPU a↵ects performance in this
benchmark, we conduct some experiments. These experiments are carried out on
an i7-4770 Intel processor based on a Haswell architecture with four CPU cores
and one integrated on-chip GPU. The frequency of the CPU cores varies between
3.4 and 3.9 GHz. The on-chip GPU is an Intel HD 4600, it has 20 Execution
Units and a frequency domain between 350 MHz and and 1.2 GHz. The last level
cache (LLC) has 8 MB, an it is shared by both the CPU cores and the GPU.

Impact of the chunk size over GPU performance

We find that, in the context of irregular applications as our running example
Barnes Hut, o✏oading large blocks of iterations (chunks) to the GPU does not
deliver higher performance. In fact, it can degrade the overall GPU throughput.
This is illustrated in Figure 4.4, where we show the evolution of several GPU
hardware-based metrics for the first time-step and an input set of 100,000 particles
(the iteration space) for Barnes Hut. Each figure represents the evolution of the
metric of interest when we o✏oad chunks of fixed size (see chunk sizes legend in
Figure 4.4b) to the GPU. We use Intel VTune Amplifier 2015 [55] to collect these

1with respect to the brute force N-Body implementation which exhibits O(n2).

82 Chapter 4. Parallel for Pattern: Adaptive partitioning

metrics. Figures 4.4a to 4.4b show the ratio of cycles for which all the EUs are in
the Active (EU Active), Idle (EU idle) or Stalled (EU Stalled) state respectively.
The following expressions show the definition of the three possible EU status:

The ratio of cycles when EUs are active:

P
all EU cycles when EU executes instructionsP

all EU all cycles

The ratio of cycles when EUs are stalled:

P
all EU cycles when EU don0t execute instructions while scheduledP

all EU all cycles

The ratio of cycles when EUs are idle2:

P
all EU cycles when no thread is scheduled on EUP

all EU all cycles

Figure 4.4d represents the LLC cache misses due to GPU memory requests
and Figure 4.4e shows the GPU e↵ective throughput, measured as the number
of executed iterations per millisecond. Note that data transfer and kernel launch
overheads are included in the computation of the throughput and all the other
metrics.

As we can see in Figure 4.4e, the chunk size that gets the maximum through-
put throughout the iteration space is 640 (see green line in the figure). Note
that for irregular applications, the best chunk size may vary through the itera-
tion space (as we discuss in section 4.2). Increasing the chunk size beyond this
value degrades the throughput. The hardware metrics indicate that small chunk
sizes (i.e. 320) do not e↵ectively feed all the available EUs, as the ratio of EU
Idle indicates in Figure 4.4c (see blue line). In contrast, when the chunk size is
large enough to feed all the EUs (EU Idle <0.1 for chunks >320), then the EUs
utilization improves. However, looking at Figure 4.4a, we find out that chunk
sizes higher than 640 decrease the ratio EU Active. Irregular benchmarks like
Barnes Hut usually exhibit uncoalesced memory accesses (memory divergences)

2Note that the ratio of Idle EUs is equal to (1� (EU Active + EU Stalled))

4.2. The GPU chunk size problem 83

(a) (b)

(c) (d)

(e)

Figure 4.4: Evolution of GPU hardware-based metrics while executing the first
time-step of Barnes Hut on the Intel HD Graphics 4600. The legend of subfig-
ure 4.4b applies to all subfigures, it shows several iteration block sizes used to
split the iteration space, values start at 320 until 5120.

that can lead to scenarios where most of EUs are stalled due to the contention for
the memory bus controllers. As pointed out in a previous work [11], Barnes Hut
exhibits an uncoalesced memory access pattern that may represent between 65 to

84 Chapter 4. Parallel for Pattern: Adaptive partitioning

75% of the total number of issued instructions. Such a pattern is the responsible
for the increment in the ratio EU Stalled when the chunk size increases. This is
corroborated by the increment in L3 cache misses when the chunk size increases
(see cyan and pink lines in Figure 4.4d), which clearly increases the pressure in
memory bus. In our case, chunk sizes larger than 1280 dramatically increase L3
misses, which in turn increases the ratio of EU Stalled (> 0.9) and reduces the
ratio of EU Active (< 0.08), causing a drop in the e↵ective throughput as we see
in Figure 4.4e.

Figure 4.5: Average CPU’s throughput (iter./ms.) for di↵erent chunk sizes while
running with 1 core. Note the log10 scale in x-axis.

Therefore, in the quest of finding the optimal distribution of work between
the GPU and the CPU, we must also consider that if we assign a large chunk of
iterations to the GPU we can end up by not exploiting the EUs optimally. Thus,
an e�cient partitioning strategy must be aware of the optimal chunk size that
must be o✏oaded to the GPU.

On the other hand, we observe that the e↵ective throughput for one CPU core
is not that sensible to the chunk size, as we can see in Figure 4.5. This is because
the CPU cores are provided with other architectural features that hide more
e↵ectively memory divergences than GPUs. In fact, for our Barnes Hut example,
as long as the chunk size is bigger than a certain threshold value3, the average
CPU throughput tends to be constant independently of the chunk size. Figure 4.5
shows a similar chunk size study for Barnes Hut benchmark while computing on
CPUs. We corroborate that CPU chunks of 10 or more iterations always obtain
the maximum constant throughput, independently of the benchmark regularity.

3For instance, Threading Building Blocks library (TBB) [89], recommends to have a CPU
chunk size that take 100,000 clock cycles at least.

4.2. The GPU chunk size problem 85

In next section, we discuss the need to not only adapt the chunk size during
the first time-step but performing the adaptation during the whole execution
time. We analyse how throughput changes between time-steps.

Chunk size e↵ects over GPU performance across di↵erent time-
steps of BarnesHut

Irregular applications that require a kernel invocation on each time-step, as it is
the case of Barnes Hut, can potentially exhibit di↵erent performance behaviour
on each kernel invocation. To illustrate this fact, Figure 4.6 shows the evolution
of the GPU’s throughput (measured as iterations per ms.) for some of the fixed
chunk sizes studied before and throughout the iteration space of our Barnes Hut
running example. At this point, we illustrate the throughput evolution for three
time-steps: time-step=0, time-step=5 and time-step=30. Again, the measured
throughput considers the time due to memory transfers (device-to-host and host-
to-device operations), kernel launching plus kernel execution. In any case, the
figure shows that the e↵ective throughput not only changes throughout the it-
eration space, it also changes in di↵erent time-steps. For instance, the intervals
with higher throughput (or lower number of computations) are not always the
same across di↵erent time-steps, e.g., the first iterations have a low throughput
in time-steps 0 and 5, but a high throughput in time-step 30 (this can be seen
at the beginning of the iteration space for the three time-steps). Another obser-
vation is that the chunk size that usually obtains high throughput in time-step
0 (chunk = 640), obtains low throughput in time-step 5 and 30. Moreover, for
a given time-step, there is not a single chunk size that always obtains the high-
est throughput: this can be noticed, for example, in time-step 5 where for some
iterations (between [0 � 20000]) the throughput obtained with chunk = 2560 is
higher than the throughput obtained with chunk = 1280, while in the rest of
iterations the throughput obtained with chunk = 1280 is maximum.

In the following experiment, we compare the behaviour of the previously in-
troduced irregular application, Barnes Hut, and the behaviour of a regular ap-
plication, Nbody which also computes the forces among a set of particles with
a time complexity of O(n2). Figure 4.7 shows the average GPU throughput for
di↵erent chunk sizes, for Nbody (time-steps 0 and 30) and Barnes Hut (time-
steps 0, 5, and 30). The data is collected by executing all the iterations in a
given time-step with a fixed chunk size (x-axis), for chunk sizes in the range
[20, ..., 20⇥ 2i, ..., 81920], where i goes from 0 to 12 and 20 is the number of exe-
cution units, nEU , on the Haswell’s GPU. Figure 4.7(a) shows the behaviour of
the regular Nbody application, where chunk = 640 obtains an optimal average
throughput and larger chunk sizes have a minimum impact on throughput (as it
is proved in [4, 111] too). These results are stable across all time-steps (0, 30).

86 Chapter 4. Parallel for Pattern: Adaptive partitioning

Figure 4.6: GPU’s throughput (iter./ms.) for Barnes Hut and di↵erent time-
steps (0, 5, and 30). The legends show several iteration block sizes used to split
the iteration space, values start at 320 until 2560.

However, Figure 4.7(b) shows a very di↵erent scenario for the irregular applica-
tion, Barnes Hut. Here, in time-step 0, chunk = 640 obtains the highest average
throughput, while in time-steps 5 and 30 the highest average throughput is ob-
tained with chunk = 1280. For all time-steps, the application takes an important
performance penalty beyond those points.

There are some reasons that explain the GPU throughput behaviour shown
in this section. On one hand, while o✏oading small chunk sizes result in low
throughput due to: i) an insu�cient amount of work o✏oaded to the GPU; and
ii) the overhead of data transfer and kernel launch. On the other hand, larger
chunk sizes must be carefully selected in order to make the most out of the
GPU. As previously mentioned, Burtscher et al. [11] illustrate that Barnes Hut
accesses memory positions in an uncoalesced manner, with a number of memory
operations that oscillates between 65 to 75% of the total number of issued instruc-
tions. Since many threads are trying to concurrently access uncoalesced memory
addresses, contention for the shared memory controller increases. Therefore, for
this kind of codes, a too large GPU chunk size might be counter-productive, as

4.3. Partitioning strategy 87

(a) NBody (b) Barnes Hut

Figure 4.7: Average GPU’s throughput (iter./ms.) for fixed chunk sizes and
di↵erent time-steps. Note the log2 scale in x-axis. Each point represents the
average throughput resulting from splitting and executing the iteration-space
with a given fixed block-size.

Figure 4.4e shows. Notice that previous works have not performed a sensitivity
analysis as the one shown in Figures 4.4 and 4.6 using irregular applications.
Thus, they assume that always o✏oading large blocks of iterations (chunks) to
the GPU is beneficial. They do not impose any restriction on how large the GPU
block size should be, as they do not consider that large GPU block sizes can harm
performance, because large chunk sizes are not harmful for regular applications
like dense matrix multiplications.

These results illustrate that finding the optimal chunk size for irregular ap-
plications is challenging, because it might not be a constant, but rather change
during the program execution. Clearly, irregular application can benefit from an
adaptive mechanism to compute the optimal GPU’s chunk size throughout the
whole iteration space and all the time-steps. As we are interested in the collab-
orative execution between GPU and CPU cores, we also consider that o✏oading
large chunk sizes to GPU may result in load unbalance, especially at the end of
the iteration space. In any case, our partition strategy, LogFit, which we describe
next, tackles the described issues: finding an optimal chunk size for the GPU and
the CPU while balancing the load among the devices.

4.3. Partitioning strategy

In this section, we describe the details of LogFit, our partition strategy. LogFit
targets parallel for loops that run onto heterogeneous processors. It searches

88 Chapter 4. Parallel for Pattern: Adaptive partitioning

for a chunk size that maximises throughput for each available processor (CPU or
GPU), and later it varies the chunk size to adapt it to irregularities in throughput
and load unbalances. First, we present an overview of the problem to solve and
then we introduce the design of our proposal.

4.3.1. Overview of the partitioning strategy

A previous work [4] states that in the context of regular workloads, the GPU
throughput (iter. / ms.) follows a logarithmic curve with respect to the size of
the chunk of iterations: f(x) = a ln(x) + b, being x the chunk size and f(x) the
throughput (number of iterations / unit of time). We corroborate that finding
by executing the NBody [54] benchmark. As introduced in Section 4.2, NBody
performs a gravitational particle simulation by using a brute force method, that
computes the force exerted on each particle due to its interaction with all the
other particles in the system. Thus, all iterations perform the same amount of
computations.

Figure 4.8(a) shows the e↵ective throughput while running Nbody on the In-
tel HD 4600 GPU with 100,000 bodies. For this experiment, we start o✏oading
chunks from a small size (equal to the number of compute units, 20, for our Intel
HD Graphics 4600 GPU), and keep multiplying it by 2 for each new point. As
we can see, chunk sizes smaller than 640 perform poorly because they do not feed
all GPU’s Execution (EUs). However, for chunk sizes bigger than 640, the appli-
cation exhibit a constant optimal throughput around 3,6 (iteration/millisecond).
In this sense, the GPU throughput can be approximated with a logarithmic curve
while executing regular applications. Figure 4.8(b) shows an example of the log-
arithmic curve fitting to predict the GPU’s throughput for a given chunk. In this
case, we can accurately compute an optimal chunk size by collecting some points
of the curve (black points in the Figure) that are recorded at runtime for di↵er-
ent chunk sizes. Then applying least squares fitting method to the collected data
points, we can calculate the values a and b of the expression f(x) = a ln(x) + b
(blue line in the Figure).

After fitting the logarithmic curve, we use a reference value (explained in
Section 4.3.2), to determine the point at which the estimated throughput is sta-
bilized. This point represents the chunk size with a throughput that can be
considered as near-optimal. By using this fitting procedure, we find that the
recommended chunk size for NBody is 700, which is corroborated by inspecting
Figure 4.8(a), where chunks of iterations bigger than 640 get optimal through-
put. Unfortunately, as Figure 4.7(b) shows, irregular applications do not follow

4.3. Partitioning strategy 89

(a) x-axis Logarithmic scale (b) x-axis Regular scale

Figure 4.8: GPU’s throughput (iteration/ms.) while executing regular workloads
as NBody and its Logarithmic fitting.

this logarithmic behaviour. However, our proposed LogFit heuristic’s assumes
that irregular applications can be modelled as a sequence of regular intervals.
Thus, the optimal throughput for irregular applications can be approximated by
finding the near-optimal throughput for each interval within the iteration space,
[I0, I1, . . . Ii�1, Ii, Ii+1, . . .]. In consequence, the near-optimal throughput of each
interval can be estimated by using the previous logarithmic expression, and from
that expression we get the near-optimal GPU chunk size as we explain in the
remainder of the section. Hence, LogFit is designed to orchestrate the scheduling
of both, regular and irregular workloads.

4.3.2. Implementation details of the partitioning strategy

In the design of our LogFit partitioning strategy, we assume that the execu-
tion of a parallel for loop can be seen as a sequence of scheduling intervals
{IG0 , IG1 . . . IGi�1 , IGi

, IG
i+1 . . .} for the GPU and {IC0 , IC1 . . . ICi�1 , ICi

, IC
i+1 . . .}

for each CPU core. Each computing device at its i � th interval, IG
i

or IC
i

,
computes a chunk of iterations of size Ch(IG

i

) and Ch(IC
i

), respectively. The
running times for the assigned GPU chunks, T (IG

i

), and CPU chunks T (IC
i

), are
recorded. These times are used to compute the throughputs in the corresponding
interval, �(IG

i

) = Ch(IG
i

)/T (IG
i

) for the GPU and �(IC
i

) = Ch(IC
i

)/T (IC
i

)
for a CPU core.

In the manner now being indicated, we keep monitoring the throughput in
order to be aware of throughput variations (rises/drops) and adjust the chunk size
to avoid device starvation or load unbalance scenarios. In this sense, if there is a

90 Chapter 4. Parallel for Pattern: Adaptive partitioning

λ(IG)

Ch(IG0
)

Chunk Size
Ch(IG1

) Ch(IG2
) Ch(IG3

) Ch(IGi+1
)Ch(IGi

)

Th
ro

ug
hp

ut

IG0
IG1

IG2
IG3

IGi
IGi+1

GPU Scheduling Intervals

Logarithmic fitting

Figure 4.9: GPU scheduling intervals while scheduling an irregular application.
LogFit fits a logarithmic curve for each scheduling interval in order to find a near
optimal chunk size in each scheduling interval.

change in the throughput, it is because the workload regime has changed and we
need to adapt the GPU chunk size accordingly. If the throughput has increased
with respect to the previous time interval, this is due to a decrement in the time
per iteration to compute this last assigned chunk, or in other words, either the
workload per iteration has decreased or the number of cycles that the EU have
been stalled has been reduced due to an increment in the number of coalesced
memory accesses. In any case, a problem of GPU under-utilization may appear.
Thus, we increase the chunk size in order to increase Thread Level Parallelism
(TLP), and guarantee the full utilization of GPU’s EUs. If the GPU is not
under feed, enlarging the chunk size will not worsen the throughput, otherwise
the throughput will likely increase in these scenarios. On the contrary, whether
the throughput has fallen, then the time per iteration has incremented while
computing the last assigned chunk. This issue might be either due to an increment
in the computation per iteration or an increment in the number of cycles that the
EUs have been stalled, that can be produced by a higher number of uncoalesced
memory accesses. In these cases, we reduce the chunk size in order to alleviate a
potential problem of over-provisioned GPU and for the sake of better load sharing
with the CPU. Figure 4.9 graphically depicts that LogFit applies a logarithmic

4.3. Partitioning strategy 91

curve fitting and recommends new chunk sizes according to throughput variations.

As introduced in Chapter 3, we also compute what we call the factor f , let’s
remind that it represents the computational speed of the GPU device relative to a
CPU core in interval IG

i

. This computational speed is defined as the ratio of the
GPU throughput w.r.t. the throughput of a CPU core, f(IG

i

) = �(IG
i

)/�(IC
i

).
The factor f(IG

i

) is used to adaptively adjust the size of the next chunk assigned
to a CPU core. By doing that, we keep the CPU cores working with chunks sizes
that feed all their computational resources and let us balance the workload at the
end of the iteration space. Figure 4.10 shows a Barnes-Hut profiling execution
where each compute unit (CPU core or GPU) has a sequence of rectangles that
represents the time intervals of each device, where we can observe how the CPU
intervals closely follow the GPUs ones.

System
on chip

CPU 0

Compute
Units

CPU 1

CPU 2

CPU 3

GPU

Stable PhaseE. P. F. P.

Figure 4.10: Time Profiling: Application BarnesHut with 4 CPU cores (light
blue) and 1 GPU (light green).

As we can see in Figure 4.10, LogFit is designed as a three-phase partition
strategy. The first phase, called Exploration Phase (E.P.) is responsible for
finding a chunk size that feeds all the GPU (or CPU) compute units. The second
phase is called Stable Phase (S.P.), which monitors device throughput in order
to adapt the chunk size according to throughput changes. And the last phase,
Final Phase, which just distributes the remaining iterations across all CPU cores
and GPU at once. Figure 4.11 shows the flow chart of the LogFit partitioning
strategy, as we can see, it has two main phases and the Final Phase, which can
be executed from Exploration and Stable Phases. LogFit starts its execution
in the Exploration Phase, where, it aims to find a GPU chunk size (number of
iterations) that fully feeds the GPU Execution Units (EUs.). Once LogFit finds
an optimal chunk for the GPU, it moves to the following phase, Stable Phase. In
this second phase, LogFit keeps monitoring the throughput of each new interval

92 Chapter 4. Parallel for Pattern: Adaptive partitioning

and re-fitting the logarithmic curve by updating the chunk size used. It is done
to consider potential throughput changes that are intrinsic of irregular codes.
Finally, the Final Phase is executed when there are not enough iterations to feed
all devices with their respective chunk sizes. Thus a final partition is performed to
distribute all remaining iterations among the available processors at once. Note
that in both phases the first step is to evaluate whether the Stop Condition is
satisfied:

Ch(IG
i

)

�(IG
i

)
>

remaining � Ch(IG
i

)

ncores · �(IC
i

)
. (4.1)

This condition would be satisfied if the GPU extracts a chunk of iterations from
the set of remaining iterations by not leaving enough iterations to feed all CPU
cores for a period of time equal to GPU execution time for its chunk. For this
reason, it is useful to maintain a work balance at the end of the iteration space. It
uses the last GPU chunk size Ch(IG

i

) and the latest known throughputs �(IG
i

)
(for GPU) and �(IC

i

) (for CPU), in order to decide if the Final Phase has to be
executed. In the following points, we explain in detail the internal decisions of
each phase.

Exploration Phase

Stop
Condition?

Execute: Final
PhaseYes

No

Stable Phase

Chunk
Request

No
1. Add point to SampleSet
2. Apply Log Fitting
3. Ref = a / Ch(IGi)
4. Ch(IGi+1) = a / Ref
5. Move to Stable Phase

Ch(ICi+1) =
Ch(IGi) / f(Ii)

Stop
Condition?

Yes
No

Chunk
Request

1. Update Last Point
2. Apply Least Square Fitting
3. Ch(IGi+1) = a / Ref

Execute: Final
Phase

is GPU?

Ch(ICi+1) =
Ch(IGi) / f(Ii)

No

Yesis GPU?

1. Add point to SampleSet
2. Ch(IGi+1) = Ch(IGi) * 2

No

Yes

Yes (Eq. 4.2)

(Eq. 4.1)

Growing
Condition?

(Eq. 4.1)

Figure 4.11: Flow chart of the LogFit’s partition strategy.

Exploration Phase (E.P.): Initially, we want to determine a GPU chunk size
that fully occupies the GPU computational resources, Ch(IG0), for the first
GPU’s scheduling interval, IG0 . LogFit executes a few chunks with an incre-
mental size by following the next expression: Ch(IG

i

) = nEU ⇥ 2i, i = 0 : t,

4.3. Partitioning strategy 93

being nEU4 the number of Execution Units (EUs) on the target GPU. Basi-
cally, LogFit starts from a chunk size equal to the number of computes units
and increase the size multiplying it by 2. After executing each one of the chunks
on the GPU, we record the execution time, T (IG

i

) and calculate the e↵ective
throughput by using the following expression: �G(IG

i

) = Ch(IG
i

)/T (IG
i

). This
computed chunk size and its corresponding throughput represent a new sample
point that can be used by our fitting procedure to find the GPU chunk size for
the next scheduling interval Ch(IG

i+1). Thus, we obtain a set of sample points,
{(Ch(IG0),�G(IG0)), . . . , (Ch(IG

i

),�G(IG
i

), . . . , ((Ch(IG
n

),�G(IG
n

))} and keep
sampling points until the Growing Condition is satisfied:

⇥
�(IG

i

) ⇤ (1 + ✓) > �(IG
i+1)

⇤
^
⇥
�(IG

i

) ⇤ (1 + ✓) > �(IG
i+2)

⇤
. (4.2)

The condition 4.2 is satisfied when the throughput (�(IG
i

)) of a given chunk
(Ch(IG

i

)) is larger than the throughput of the following two sampled points
(�(IG

i+1) and �(IG
i+2)) in more than a certain threshold value (✓), where ✓ is

within the range, 0 ✓ < 1. This condition reveals an early chunk size (Ch(IG
i

))
that fully occupy the computing resources of the GPU. This chunk size value is
very important, as we require it to compute the reference 5 (Ref) value, and to
determine the optimal chunk sizes of all upcoming scheduling intervals. Once the
growing condition is satisfied, we select four (n=4) equidistant points from the set
of sample points (from IG1 to IGi

), {(Ch(IG
x1),�(IGx1)), (Ch(IG

x2),�(IGx2)), . . . ,
(Ch(IG

x4),�(IGx4))}, being x1 = 1 and x4 = i. Figure 4.12 shows the set of
sampled points (black points), and the set of the selected equidistant points
(points with a blue circle). Note that the two points which are following the last
selected point (Ch(IG

x4), �(IGx4)) have a throughput lower than �(IG
x4) · (1+ ✓)

(black horizontal line). Later, we apply the Least Square fitting method to the
previously introduced logarithmic function (f(x) = a · ln(x) + b, blue line in
Figure 4.12) by using the set of equidistant points (n = 4), and we obtain the
value of the coe�cients a and b:

a =
n ·

P
n

i=1(�(IGxi

) · ln(Ch(I
G

xi

)))�
P

n

i=1 �(IGxi

) ·
P

n

i=1 ln(Ch(I
G

xi

))

n ·
P

n

i=1 ln
2(Ch(I

G

xi

))� (
P

n

i=1 ln(Ch(I
G

xi

)))2
, (4.3)

4nEU = clGetDeviceInfo(deviceId, CL DEVICE MAX COMPUTE UNITS)
5The reference value allows us to stablish a scale between throughput and chunk-size for

each benchmark data-set and GPU.

94 Chapter 4. Parallel for Pattern: Adaptive partitioning

b =

P
n

i=1 ln
2(Ch(I

G

xi

)) ·
P

n

i=1 �(IGxi

)�
P

n

i=1(ln(Ch(I
G

xi

)) · �(I
G

xi

)) ·
P

n

i=1 ln(Ch(I
G

xi

))

n ·
P

n

i=1 ln
2(Ch(I

G

xi

))� (
P

n

i=1 ln(Ch(I
G

xi

)))2
.

(4.4)

Once, we get the first logarithmic curve (f1(x)) that fits the set of equidistant
points, we move forward to the Stable Phase. Thus, for each upcoming scheduling
interval, we compute a new logarithmic curve fitting (getting fi(x)). However,
we also need to compute a reference value (Ref) that relates a near optimum
throughput with an appropriate range of chunk sizes values. To that end, we
use the slope of the tangent line to f1(x) in the point Ch(IG

x4) (see red dotted
line in Figure 4.12). This slope reference allows us to determine the near optimal
chunk sizes of following fi(x). Hence, we compute the slope of the tangent line
that touches the function (f1(x)) in the point Ch(IG

x4) by applying the following
expression:

Ref = f 0
1(Ch(IG

x4)) =
a

Ch(IG
x4)

. (4.5)

Note that this reference value is only calculated once, as you can see in Figure
4.11. Finally, we calculate the first GPU chunk size with the following expression:
Ch(IG

i+1) = a/Ref (substituying Ref, we get the first recommended chunk size

Chunk size

T
h
ro

u
g
h
p
u

t

Logarithmic Curve Fitting

Experimental measures

Equidistant points

Fitting: f(x)= a*ln(x)+b

Ref. slope: ref = a/Ch(IGx4
)

Ch(IGx4
)Ch(IGx3

)
Ch(IGx2

)
Ch(IGx1

)
λ(IGx1

)

λ(IGx2
)

λ(IGx3
)

λ(IGx4
)

thld

Figure 4.12: LogFit process when performing the first fitting for a benchmark.

4.3. Partitioning strategy 95

Ch(IG
i+1) = Ch(IG

x4) which is the optimal measured value) and we shift to
Stable Phase.

Stable Phase (S.P.): This phase is activated once the previous phase finds a
chunk that fully occupies the computational resources of the GPU. In this phase,
we keep monitoring the throughput of each new scheduling interval and we apply
the fitting of the logarithmic curve by adding this last point. Thus, we allow
LogFit to adapt the fitting of the logarithmic curve to throughput variations in
upcoming scheduling intervals.

To avoid re-taking four samples in the next scheduling interval, we use the
previous set of four equidistant points and just update the fourth point by using
the new one. Thus, in general, for a given time interval IG

i+1 for which we want
to compute its recommended chunk size Ch(IG

i+1), we use the set of equidistant
points given, where we continuously update the last point (p(IG

x4) = p(IG
i

)):
{(Ch(IG

x1),�(IGx1)), (Ch(IG
x2),�(IGx2)), (Ch(IG

x3),�(IGx3)), (Ch(IG
i

),�(IG
i

))}.
We have analytically and experimentally validated that re-sampling 4 points for
each time interval by using small chunk sizes is not worthwhile: the penalty
incurred by processing small chunk sizes at sub-optimal throughput is not com-
pensated by the throughput improvement obtained due to a more accurate mea-
surements in the scheduling interval. In any case, (Ch(IG

i

),�(IG
i

)) represents
an accurate measurement for the next interval (IG

i+1).

Chunk size

T
h
ro

u
g
h
p
u

t

Logarithmic Curve Fitting

Equidistant points

Last measured point

New Fitting: fi(x)= ai*ln(x)+bi

Reference slope (ref)

New GPU chunk: Ch(IGi+1
)

Ch(IGi+1
)Ch(IGi

)

Figure 4.13: LogFit stable phase fitting and adapting the GPU chunk size.

96 Chapter 4. Parallel for Pattern: Adaptive partitioning

Figure 4.13 shows the set of equidistant points, black points, plus the last
updated point (Ch(IG

i

),�(IG
i

)), rounded with a blue circle. Based on these four
points, we perform a new logarithmic curve fitting (fi+1(x), blue solid line) in
order to compute the new recommended chunk size for the GPU, Ch(IG

i+1). To
obtain the new chunk size, we compute the point where the Ref slope (red dotted
line in Figure 4.13) of the first fitting touches the fitted curve (see expression 4.6),
and finally we isolate the chunk size variable (expression 4.7). The resulting chunk
size Ch(IG

i+1) is represented by a green dotted line.

f 0
i(Ch(IG

i+1)) =
ai

Ch(IG
i+1)

= Ref (4.6)

Ch(IG
i+1) =

ai
Ref

(4.7)

Figure 4.14 shows how the logarithmic fitting mechanism is used to adaptively
change the GPU block size for the next interval (IG

i+1) based on the last GPU
throughput measured in the current interval (IG

i

). Note that the solid blue line
represents the logarithmic curve that fits the sample set and the blue square
represents the optimal block size Ch(IG

i

) proposed by the fitting method. After
executing this chunk, it may happen that the measured throughput (�(IG

i

)) is
actually higher than the value predicted by the last fitting. This is shown in
Figure 4.14 with a red circle. By applying the logarithmic fitting to the new

0 1000 2000 3000 4000 50000

10

20

30

40

50

60

70

80

90
Fitting of th. samples (time step=0)

Chunk size

Th
ro

ug
hp

ut

1240

840

Figure 4.14: LogFit’s chunk size variations depending on throughput changes.

4.3. Partitioning strategy 97

set, for the next interval (IG
i+1), we would get a higher logarithmic curve, as

it is shown in Figure 4.14 with the dashed red line. Moreover, the red square
represents the new optimal chunk for the next interval (Ch(IG

i+1)), thus by
updating the last point and re-fitting the samples set, we get the next chunk size:
Ch(IG

i+1) = 1240. On the contrary, it may happen that the measured throughput
�(IG

i

) is actually lower than the value predicted by the last fitting. This is shown
in Figure 4.14 with a green circle. In this case, by applying the logarithmic
fitting, we would get a shorter logarithmic curve, as shown in Figure 4.14 with
a dashed green line, where the green square represents the new proposed point
(Ch(IG

i+1) = 840), after the update and re-fit of the logarithmic curve.

In this way, LogFit adapts the size of new chunks depending on the throughput
variations of previous points. On one hand, regular applications exhibit a con-
stant throughput across the whole iteration space, and accordingly the chunk size
is hold. But, on the other hand, irregular applications may exhibit big through-
put variations depending on the current scheduling interval. Thus, LogFit will
recommend larger/smaller chunk sizes depending on throughput’s rises/drops.

Final Phase (F.P.): As mentioned before, the execution of the Final Phase is
controlled by the Stop Condition shown in the equation 4.1. This condition
is satisfied when the number of remaining iterations is smaller than the recom-
mended GPU chunk size plus the CPU chunk size multiplied by the number of
CPU cores, it is: (remaining < Ch(IG

i+1) +Ch(IC
i

) · ncores). At this point, we
need to find out what is the best possible distribution for the remaining iterations
across CPU cores and GPU. Our target is to execute the remaining iterations
in the shorter possible time (see expression 4.8). Thus, we devise three possi-
ble scenarios: i) CPU case when all iterations are executed on the CPU cores
(TCPU), ii) GPU case when all iterations are executed on the GPU (TGPU) and
iii) HET case when the set of remaining iterations is split and distributed across
CPUs and GPU. Next, We describe these three scenarios in detail:

Tmin = min(TCPU , TGPU , THET) (4.8)

In the CPU case, the entire set of remaining iterations is executed on
the CPU cores. In this case, the execution time (TCPU) is computed as
the ratio between the number of remaining iterations and the equivalent
throughput of all CPU cores (see expression 4.9).

TCPU =
remaining

ncores · �(IC
i

)
(4.9)

98 Chapter 4. Parallel for Pattern: Adaptive partitioning

Whether this case happens to be the shorter in execution time, it would
stop the GPU from executing further chunks and would assign all remaining
iterations to the CPU cores, resulting in the following chunk sizes:

Ch(IG
i+1) = 0 and

Ch(IC
i+1) =

remaining
n
cores

.

In the GPU case, the whole set of remaining iterations is assigned to the
GPU. The GPU execution time is computed in the same way as CPU
execution time, by dividing the number of remaining iterations by the
estimated GPU throughput. However, as explained in section 4.3.1, the
GPU throughput depends on the size of range of iterations to be exe-
cuted. Thus, we define a function (�0

i()) that accurately approximates
the GPU logarithmic behaviour by using the previously introduced set
of four equidistant points. To simplify calculations, we assume that the
GPU exhibit a linear behaviour between each pair of equidistant points, as
we can observe in Figure 4.15. In this way, the resulting GPU through-
put for a chunk size (c) of iterations (�0

i(c)) between two concrete points
{(Ch(IG

xi

),�(IG
xi

),(Ch(IG
xi+1),�(IGxi+1)} is given by the equation of the

line that pass through those points (see equation 4.10).

Th
ro

ug
hp

ut

Ch(IGx1)
Chunk Size

Ch(IGx2)
Ch(IGx4)Ch(IGx3)

λ(IGx4)

λ(IGx3)

λ(IGx2)

λ(IGx1)

Figure 4.15: Modelling GPU throughput by assuming a linear behaviour between
each pair of equidistant points.

4.3. Partitioning strategy 99

�0
i(c) = C1i · c+ C2i (4.10)

C1i =
�(IG

xi+1)� �(IG
xi

)

Ch(IG
xi+1)� Ch(IG

xi

)
(4.11)

C2i = �(IG
xi

)� C1i · Ch(IG
xi

) (4.12)

Based on the throughput equation 4.10 between two given equidistant
points, we define the general throughput equation for the GPU for any
given chunk size (�G(c)), as the equation 4.13.

�G(c) =

8
>>>>><

>>>>>:

�(IG
x4) if c � Ch(IG

x4)

�0
i(c) if Ch(IG

xi

) c < Ch(IG
xi+1) ^ (1 i 3)

c · �(I
G

x1)
Ch(I

G

x1)
if c < Ch(IG

x1)

(4.13)

Finally, we can determine the GPU execution time that the GPU requires to
execute a chunk with a number of remaining iterations. Thus, we define
the GPU execution time (TGPU) in the same manner that (TCPU), by
dividing the chunk of remaining iterations by the general function of the
GPU throughput (�G(remaining)), as we can see in the expression 4.14.

TGPU =
remaining

�G(remaining)
(4.14)

Whether the GPU execution time (TGPU) is the overall smallest execution
time, all remaining iterations would be executed on the GPU, while the
CPU cores are stopped, and the resulting chunk sizes for each device would
be the following:

Ch(IG
i+1) = remaining and

Ch(IC
i+1) = 0

In the HET case, we consider that the number of remaining iterations are
computed on the GPU and the CPU cores. In order to find an optimal dis-
tribution, we need to optimally distribute the remaining iterations between
the CPU cores and the GPU. Our target is to make them finishing at the
same time, as indicated by the following expression:

TGPU = TCPU . (4.15)

100 Chapter 4. Parallel for Pattern: Adaptive partitioning

We can represent the GPU and CPU times by dividing their chunk sizes by
their respective throughputs. In this sense, we want to calculate the number
of iterations Ch(IG

i

) that should be assigned to the GPU and to the CPU
(remaining �Ch(IG

i

)). The throughput of the CPU is given by the value
of the last scheduling interval, �(IC

i

). However, the GPU throughput, as
shown in equation 4.13, is a piecewise function. Thus, we have to compute
the expression 4.15 for each GPU throughput segment, and select the min-
imum real solution among all of them. For a given segment i of the GPU
throughput function, we have to find a feasible distribution of the remain-
ing iterations for GPU (Gi) and the CPU cores (remaining � Gi), which
makes both devices finish at the same time, so the GPU’s execution time
is equal to the CPU cores’ execution time, as specified in expression 4.16,

Gi

�0
i(Gi)

=
remaining �Gi

�(IC
i

) · ncores
. (4.16)

Substituting the term �0
i(Gi) in the expression 4.16 by the equality 4.10

gives the following:

C1i ·Gi
2+(�(IC

i

)·ncores�C1i ·remaining+C2i)·Gi�C2i ·remaining = 0.
(4.17)

From the equation 4.17, we can obtain the expression that provides us
the GPU chunk size (Gi) for the segment i, this time is equal to the CPU
cores’ execution time while computing remaining�Gi iterations (see equa-
tion 4.17).

Gi =
�B ±

p
B2 � 4 ·A · C
2 ·A (4.18)

A = C1i (4.19)

B = �(IC
i

) · ncores � C1i · remaining + C2i (4.20)

C = �C2i · remaining (4.21)

The solution of the equation 4.18 is the intersection point at where both
curves (GPU and CPU) intersect. The blue line curve (Figure 4.16) repre-
sents the GPU execution time and the green line represents the CPU execu-
tion time for a given interval i, ({(Ch(IG

xi

),�(IG
xi

)), (Ch(IG
xi+1),�(IGxi+1))}).

4.3. Partitioning strategy 101

0 remaining
0Ti

m
e

Ti
Ti+1
THETi

Ch(IGxi) Ch(IGxi+1)
Chunk Size

CPU

GPU

Gi

(a)

0 remaining
0Ti

m
e

TCPU

Ti

Ti+1
TGPU

Ch(IGxi) Ch(IGxi+1)
Chunk Size

CPU

GPU

(b)

Figure 4.16: Possible scenarios while distributing iterations across the GPU and
CPU cores for a given interval. Note that the CPU time, green line, goes from a
chunk size equal to remaining until zero (rightmost value) in descending chunk
size order.

The Figure 4.16a shows a scenario with a positive real solution to the equa-
tion 4.18 which is inside the limits ([Ch(IG

xi

), Ch(IG
xi+1)]) of the interval

i. Thus, the following condition is satisfied:

Ch(IG
xi

) Gi Ch(IG
xi+1).

For this scenario, we find a feasible iteration distribution across the GPU
and CPU cores that lets both devices to finish at the same time (there is not
load unbalance). Hence, we define the execution time (THET

i

) as follows:

THET
i

=
Gi

�0
i(Gi)

(4.22)

whether it happens that the execution time of this heterogeneous distribu-
tion is the shortest among all the possible ones, the chunk sizes for each
device would be the following:

Ch(IG
i+1) = Gi and

Ch(IC
i+1) = remaining �Gi

On the contrary, it may happen that the equation 4.18 has no real solution
between the limits of the segment j, as the figure 4.16b shows. In this
scenario, the execution time associated with this segment (THET

j

) is given
by the extreme points of such segment. We have to observe which device,
GPU or CPU cores, requires more time to process its assigned chunk in

102 Chapter 4. Parallel for Pattern: Adaptive partitioning

both extremes of the segment in Figure 4.16b. Thus, we get the execution
times for Tj , equation 4.23, and Tj+1, equation 4.24. Later, we select the
minimum between this two values, THET

j

in equation 4.25.

Tj = max

✓
Ch(IG

xj

)

�(IG
xj

)
,
r � Ch(IG

xj

)

ncores · �(IC
j

)

◆
, (4.23)

Tj+1 = max

✓
Ch(IG

xj+1)

�(IG
xj+1)

,
r � Ch(IG

xj+1)

ncores · �(IC
i

)

◆
, (4.24)

THET
j

= min(Tj , Tj+1). (4.25)

Once we have calculated the THET
j

value for all segments, we select the
minimum value for all segments:

THET = min(THET
j

) j = 0 : segments. (4.26)

Again, if it happens that the execution time (expression 4.26) is the shortest
one among all possible, then the chunk of iteration assigned to the GPU
and the CPU cores would be the following:

Ch(IG
i+1) = Ch(IG

xj

) and
Ch(IC

i+1) = remaining � Ch(IG
xj

).

Finally, once we have calculated TCPU (equation 4.9), TGPU (equation 4.14)
and the respective THET (equations 4.26) for all segments, we substitute these
terms in the equation 4.8 and get the overall smaller execution time and its
respective chunk sizes for GPU Ch(IG

i+1) and CPU Ch(IC
i+1). Resulting in the

best possible iteration distribution across the GPU and CPU cores that minimises
the execution time.

4.4. Experimental Results

In this section we first describe the architecture on which we conduct the experi-
ments with the selected benchmarks. Next, we present a sensitivity study of the
main parameters that drive our partitioner. Later, we analyse how our parti-
tioning strategy follows the throughput of the computational devices and adapts
the size of the chunks accordingly. Then we identify the sources of overhead due
to our partitioning strategy and propose some optimizations to minimise them.
Finally, we compare our proposal with other related state-of-the-art dynamic
alternatives to assess the performance and energy e�ciency of our approach.

4.4. Experimental Results 103

4.4.1. Experimental setup

We run our experiments on two Intel Quad-Core processors: a Core i5-3450 run-
ning at 3,1GHz, 77W TDP, based on the Ivy Bridge micro-architecture with an
integrated GPU, the Intel HD 2500; and a Core i7-4770, 3.4GHz, 84W TDP
based on the Haswell micro-architecture. This processor features Advance Vec-
tor Extensions (AVX) and have an on-chip GPU, HD Graphics 4600. A more
detailed description of both processors is given in Table 4.1. We rely on the
Intel Performance Counter Monitor (PCM) library [28] to access the hardware
counters (which also provide energy consumption in Joules). Intel Threading
Building Blocks (TBB 4.2) provides the core task engine of the heterogeneous
parallel for. The GPU kernels are implemented in OpenCL C language
and compiled by using the Intel OpenCL SDK 2014. The host code part of the
benchmarks is compiled with Intel C++ Compiler 15.0 and -O3 optimization flag.
Table 4.2 shows the numbering version of all software component used on these
test-bed machines. We measured time and energy in 10 runs of the applications
and report the average.

Table 4.1: Processors details (Ivy Bridge & Haswell) to execute LogFit strategy.

Microarchitecture Ivy Bridge Haswell
Processor Number Core i5-3450 Core i7-4770
Number of cores/threads 4/4 4/8
Clock Speed 3.1 GHz 3.4 GHz
Max Turbo Frequency 3.5 GHz 3.9 GHz
Base CPU peak 99.2 GFLOPs 108.8 GFLOPs
Max CPU peak 112 GFLOPs 124.8 GFLOPs
Cache 6 MB 8 MB
Lithography 22 nm 22nm
Max TDP 77 W 84 W
Intel HD Graphics 2500 4600
Number of Compute Units 6 20
GPU Base Frequency 650 MHz 350 GHz
GPU Max Dynamic Frequency 1.1 GHz 1.2 GHz
Base GPU peak 31.2 GFLOPs 56 GFLOPs
Max GPU peak 112 GFLOPs 192 GFLOPs

4.4.2. Benchmarks

We use five benchmarks whose details can be seen in Table 4.3. It shows the data
input, number of invocations, the iteration space size and the execution time per
iteration for each benchmark on a Haswell CPU core. These applications come

104 Chapter 4. Parallel for Pattern: Adaptive partitioning

Table 4.2: Software details to evaluate LogFit partitioner strategy.

Operating System Windows 7 Build 7601
GPU driver Intel 9.18.10.3071
Intel OpenCL SDK 3.0.0.64050
Intel TBB 4.2
OpenCV 2.4.5
Intel Performance Counter Monitor 2.5
Intel C++ Compiler 15.0

from several domains and exhibit di↵erent behaviour: regular vs. irregular, coarse
grained vs. fine grained, single kernel call vs. multiple kernel call. Nbody [54]
and Barnes Hut [63] are presented in Section 4.2. However, the table 4.3 intro-
duces three new benchmarks: PEPC [41] which is like a Barnes Hut problem.
However, it computes electrical forces instead of gravitational ones. Moreover,
there is an important di↵erence with respect to the Barnes Hut implementation.
Barnes Hut sorts the particles to better exploit spatial locality, but PEPC does
not. The second new benchmark is CFD from the Rodinia Benchmark suite [18],
which performs a Fluid Dynamics simulation, and SpMV from the SHOC Bench-
mark suite [25], which performs a sparse matrix-vector multiplication. For the
Nbody benchmark an input set of 100,000 bodies and 1 time-step is simulated.
For Barnes Hut an input set of 100,000 bodies and 75 time-steps are computed.
PEPC is fed with 100,000 point charges and 75 time-steps. CFD uses the mis-
sile.0.2M input data (which simulates 6,000 time-steps) and SpMV processes 200
times the GL7d16 sparse matrix from the University of Florida Sparse Matrix
Collection [27] that exhibits a triangular-like profile. Considering the irregular
benchmarks, Barnes Hut and PEPC are examples of coarse grained applications
(each iteration executes in approximately 32 and 69 microseconds, respectively,
on one Haswell core) while CFD and SpMV are fine grained ones (0.13 and 0.1
microseconds per iteration, respectively, on one Haswell CPU core).

Figure 4.17 shows the GPU’s throughput throughout the iteration space of
the first time step for the three new irregular applications: PEPC, CFD and
SPMV. We can observe big di↵erences between the three benchmarks plots. We
are profiling one benchmark that presents coarse grain parallelism (PEPC) and
two benchmarks with fine grain parallelism, that is the reason of the di↵erences
in throughput and chunks size. We can observe how PEPC and SPMV are
more stable than CFD, as they make the most with a chunk equal to 1024 and
32768, respectively. While CFD exhibits a higher level of irregularities, as the
most performing chunk size varies between 32768 and 131072, depending on the
application regime.

4.4. Experimental Results 105

B
en

ch
m
ar
k

N
am

e
B
en

ch
m
ar
k

S
u
it
e

D
es
cr
ip
ti
on

In
p
u
t

|I
n
vo

ca
ti
on

s
It
er
at
io
n

S
p
ac
e

T
ot
al

C
P
U

T
im

e
(m

s)
T
im

e
p
er

it
er
at
io
n

N
B
o
d
y

In
te
l
O
p
en

C
L
[5
4]

P
ar
ti
cl
e

S
im

u
la
ti
on

10
0.
00

0
b
o
d
ie
s
|1

10
0.
00

0
10

28
64

1
m
s

B
ar
n
es

H
u
t

L
on

es
ta
r
[6
3]

P
ar
ti
cl
e

S
im

u
la
ti
on

ru
n
C

|7
5

10
0.
00

0
23

98
32

31
,2
7
µ
s

P
E
P
C

P
E
P
C

[4
1]

C
ou

lo
m
b
s

S
im

u
la
ti
on

10
0.
00

0
Q

i

|5
0

10
0.
00

0
34

56
96

69
,1
3
µ
s

C
F
D

R
o
d
in
ia

[1
8]

F
lu
id

D
y
n
am

ic
s

m
is
si
le
.0
.2
M

|6
00

0
23

25
36

18
25

19
0,
13

µ
s

S
P
M
V

S
H
O
C

[2
5]

L
in
ea
r

A
lg
eb

ra
G
L
7d

16
.m

tx
[2
7]

|2
00

95
51

28
19

40
7

0,
1
µ
s

T
ab

le
4.
3:

D
es
cr
ip
ti
on

of
th
e
b
en
ch
m
ar
ks

u
se
d
to

ev
al
u
at
e
L
og
F
it

p
ar
ti
ti
on

er
.
T
h
e
d
et
ai
le
d
ti
m
es

ar
e
th
e
re
su
lt

of
ex
ec
u
ti
n
g
ea
ch

b
en
ch
m
ar
k
w
it
h
th
e
d
es
cr
ib
ed

in
p
u
t
on

a
H
as
w
el
l
C
P
U

co
re
.

106 Chapter 4. Parallel for Pattern: Adaptive partitioning

(a) (b)

(c)

Figure 4.17: Throughput evolution while executing irregular benchmarks on the
Intel HD Graphics 4600, just the first time-step. The legends show several itera-
tion block sizes used to split the iteration space of each benchmark.

4.4.3. Characterisation of the partitioning strategy

In this section, we elaborate on the e�ciency of our partitioner LogFit. First,
we perform an analysis of its performance while increasing the number of threads
in the system to asses its robustness. Later, we carry out a sensitivity analysis
of LogFit’s internal parameters and finally we analyse its sources of overhead
and provide optimizations to mitigate them.

Analysis of GPU chunk size variations

In this section, we elucidate the GPU chunk size adaptation according to the
changes of GPU’s throughput at runtime. To graphically assess how well LogFit
adapts the GPU chunk size to each throughput regime, Figure 4.18(a) shows the
evolution of the throughput (blue) and the GPU chunk size (green) throughout
the iteration space for the first time-step of Barnes Hut while running on the

4.4. Experimental Results 107

Haswell GPU. In this Figure, the throughput is indicated in the left y-axis and
the chunk size in the right one. It is noticeable that the chunk size curve closely
follow the throughput with a small delay, since we use the previous throughput
of the previous GPU’s scheduling interval (�(IG

i

)) to compute the next GPU
chunk size (Ch(IG

i+1)).

(a) GPU Throughput and Chunk size evo-
lution

(b) Histogram of GPU chunks

Figure 4.18: The left hand side figure shows the evolution of the GPU throughput
and the chunk size obtained by LogFit for a complete execution of Barnes Hut on
Haswell GPU, we can observe how the selected chunk sizes follow the throughput
curve . The right hand side figure shows a chunk size histogram when executing
BarnesHut on Haswell with di↵erent configurations (see legend). Note that the
most frequent chunk is the same for all configurations.

Figure 4.18(b) shows an analysis of the GPU chunk size adaptation through-
out all time-steps for Barnes Hut. It shows the chunk size histogram that LogFit
selects during several executions where the number of threads varies between 1
(only GPU execution) and 5 (four CPU cores plus the GPU host thread). Notice
that for all executions the most frequent chunk sizes are within the range 1000
and 1250. We also see that the frequency of chunk sizes decreases as the num-
ber of threads increases, because, as more chunks are assigned to the CPU cores
less chunks are computed on GPU. In any case, the increment in the number
of threads does not a↵ect the selection of the chunk sizes for the GPU, which
demonstrates that our partitioning method is not sensitive to the number of CPU
threads, and it works properly for the whole range of threads.

108 Chapter 4. Parallel for Pattern: Adaptive partitioning

Sensitivity analysis

In this section, we carry out a sensitivity study of LogFit’s input parameters to
highlight what is the impact of these parameters over LogFit’s behaviour. We
run a set of experiments on the Intel HD Graphics 4600.

For this set of experiments, we vary the number of points that LogFit needs
to perform the logarithmic fitting, so, we analyse the e↵ects that the number
of equidistant points ((Ch(IG

xi

),�(IG
xi

))) has on performance, while using 4,
8 and 12 points. Moreover, we analyse the behaviour of LogFit by using two
values for the threshold (✓ in equation 4.2) parameter: 0.01 and 0.05. Table 4.4
shows the most frequent chunk size (mode) and the respective execution time for
each benchmark for all possible combinations of the aforementioned variables.
In general, we can observe that by forcing LogFit to use more than 4 points,
it gets bigger execution times for Barnes Hut, PEPC and SPMV, however the
time seems to keep constant in the case of CFD. Thus, it is recommendable that
LogFit can decide when it must stop sampling new points, instead of forcing it to
record a large number of points. In the case of CFD the number of sampled points
do not seem to a↵ect performance because this benchmark keeps increasing the
chunk size in Exploration Phase until the whole iteration space is processed.

Samples
Benchmark Threshold 4 8 12

Barnes
0,01 1240 | 872 3846 | 1059 7692 | 1154
0,05 1140 | 895 3846 | 1047 7692 | 1164

PEPC
0,01 735 | 1208 4000 | 1432 7692 | 1567
0,05 1149 | 1247 3846 | 1457 7692 | 1565

CFD
0,01 33219 | 35 33219 | 35 33219 | 35
0,05 33219 | 36 33219 | 36 33219 | 36

SPMV
0,01 36651 | 8791 37804 | 8838 70671 | 9604
0,05 38771 | 9027 38755 | 8874 70802 | 9411

Table 4.4: Sensitivity Analysis of the parameters threshold and Number of Sam-
ples for LogFit. Each cell represents the most frequent chunk size and execution
time (in milliseconds).

Note, we are only setting the number of points that are used to perform
the logarithmic fitting, however the number of sampled point does not have any
limitation. Looking at table 4.4, we highlight in bold the best configuration for
each benchmark in term of performance (minimum execution time), which is
four points and a threshold value of 0.01 for all tested benchmarks. We also can

4.4. Experimental Results 109

observe that by requiring LogFit to use more points it increases the recommended
chunk size, and consequently the execution time (second value of each cell), as
it can not adapt that easily to changes in throughput. For example, using more
than 4 points in Barnes Hut, PEPC or SPMV makes LogFit more rigid and it
may not find a near optimal chunk size, thus it may get a poorer performance
due to an issue in the uncoalesced memory access pattern and control divergences
inside workgroups which leads to serialization and ends up requiring more time.
In case of CFD, all tested number of samples get the same results, because CFD
is a corner case benchmark that directly shifts from Exploration Phase to Final
Phase, as the chunk size keeps growing in Exploration Phase and never gets
stabilised. Thus, the GPU chunk size is larger than 1/2 of the iteration space
and the Stop Condition is satisfied in the fist GPU chunk request of each
upcoming time-step.

Sources of overhead in dynamic partitioning

As we have explained before, our framework can be initialized with n threads,
from which one of them is called the host thread and just o✏oads work to the
GPU. This host thread runs in one of the available CPU cores, it first exe-
cutes the code associated with the scheduler and then, it calls the functions to
feed the GPU (hostToDevice(), launchKernel(), deviceToHost(), and
clFinish()). The first three calls asynchronously enqueue the memory trans-
fers and the kernel launch on the GPU’s command queue, whereas the latter is a
blocking synchronous wait. Figure 4.19 shows all the operations that take place
each time a chunk of iterations is o✏oaded to the GPU. We can see that the en-
queued operations are sequentially executed on the GPU where we consider the
times taken by the “Host-to-Device” memory transfer, “Kernel launch”, “Kernel
execution” and “Device-to-Host” memory transfer. When this last operation is
done, the host thread is notified but some time may be taken by the OS to re-
schedule the host thread. This time is illustrated in Figure 4.19 with the label
“Thread dispatch”. Thus, we get a picture of the di↵erent phases that have to
be performed to o✏oad a chunk of iterations to the GPU.

In order to measure the relevant overheads involved in the execution on
GPU’s, we take some time-stamps on the CPU (Tc1, Tc2 and Tc3) and on the
GPU (Tg1 to Tg5) as depicted in Figure 4.19. To get the CPU time stamps we
rely on Intel TBB’s tick count class, whereas for the GPU we set up the OpenCL
command queue in profiling mode, thus we can read the “start” and “complete”
time-stamps of each event of the enqueued commands.

We use the previous times to compute the overhead of Scheduling and Parti-

110 Chapter 4. Parallel for Pattern: Adaptive partitioning

Host
thread

Scheduling
Partitioning Thread dispatch

hostToDevice()
launchKernel()
deviceToHost()

clFinish()

Chunk i
Chunk i+1Chunk i-1

Time
Tc1 Tc2 Tc3

GPU

Host-to-Device

Kernel launching

Kernel execution Device-to-Host

Time

Tg1 Tg2 Tg3 Tg4 Tg5

Figure 4.19: Time diagram showing the events across the process of o✏oading a
task to the GPU

tion, Osp, Host-to-Device operation, Ohd, KernelLaunching, Okl, Device-to-Host,
Odh, and Thread Dispatch, Otd, as follows:

Osp =

P
#GPUchunks (Tc2� Tc1)

TotalExecutionT ime
(4.27)

Ohd =

P
#GPUchunks (Tg2� Tg1)

TotalExecutionT ime
(4.28)

Okl =

P
#GPUchunks (Tg3� Tg2)

TotalExecutionT ime
(4.29)

Odh =

P
#GPUchunks (Tg5� Tg4)

TotalExecutionT ime
(4.30)

Otd =

P
#GPUchunks

⇣
(Tc3� Tc2)� (Tg5� Tg1)

⌘

TotalExecutionT ime
(4.31)

After identifying the main sources of overhead of our dynamic approach, we
discuss the optimizations that can be implemented to tackle them. The overar-
ching goal is not only reduce the impact of the overhead, but also to reduce the
energy consumption. In order to study the e↵ects of those overheads, we run two
set of experiments in two di↵erent scenarios. We consider one scenario without
over subscription (4 threads) and one scenario where we allow 1 oversubscripted
thread (5 threads). Note that the Intel Core i7-4770 has four CPU cores. With
this comparison we aim to study the side e↵ects of having an extra thread working

4.4. Experimental Results 111

on heterogeneous contexts. We introduce the following optimizations to reduce
the sources of overhead:

The first optimization technique is the zero-copy-bu↵er (ZCB) capability of
heterogeneous chips. It allows to avoid data movements between CPU and
GPU. This optimization has more impact in applications with high data
communication times, as it avoid memory transfers by doing a memory
address pointer translation.

The second optimization rises the priority of the GPU host thread (called
PRIO), so the GPU host thread has higher priority than any other thread
and can be immediately pre-empted. Thus, the host thread can take up a
core and start feeding the GPU again. This is key when the GPU processes
chunks more e�ciently than CPU cores, as it happens in our benchmarks.
To boost the host thread priority we rely on the function SetThreadPrior-
ity() from the Windows API.

The third optimization is a combination of the previous ones, and we call
it, ZCB+PRIO.

Next, we present a set of experiments where we analyse the sources of over-
head for all benchmark in two di↵erent scenarios, one with no-oversubscription
and another one with allowed oversubscription. The first scenario is run with 4
threads (3+1), it means 3 threads for CPU and 1 for GPU, note that we have
4 CPU cores for 4 logical threads. The left hand side of the Figure 4.20 shows
an analysis of overheads for all benchmarks while applying the aforementioned
optimizations in a scenario without oversubscription. Both graphs represents the
ratio of overheads over the total execution time, it shows groups of four bars:
the base version (Base, //), a version with zero-copy-bu↵er (ZCB, empty patch),
a version with priority in the host thread (PRIO, \\), and a version combining
both optimizations (PRIO+ZCB, :). We can observe that coarse grain bench-
marks (Barnes, PEPC and NBody) exhibit an overhead under 7% for the base
version (//), first bar. However, fine grain benchmarks are under 4%. This is
due to the driver implementation, as it varies its behaviour depending on the
kernel duration. When the function clFinish() is invoked, the GPU host
thread performs a polling technique to check for the completion of the GPU for
a period of time. Thus, fine grain benchmarks do not su↵er from thread dispatch
overhead. After a period of time, the GPU host thread starts blocking to reduce
the usage of the CPU core that is polling the GPU status. In this manner, if
the GPU finishes its task and notifies the GPU host thread while it is blocked,
it will have to wait until the O.S. scheduler gives a CPU quantum to it. Thus,

112 Chapter 4. Parallel for Pattern: Adaptive partitioning

coarse grained applications may su↵er from higher thread dispatch overhead. On
one hand, when we apply the ZCB optimization, we observe how the overheads
related to memory transfers Ohd and Odh are reduced in all cases. On the other
hand, when we apply the PRIO optimization we do not get any performance im-
provement because the GPU host thread has an available CPU core during the
whole execution time. However, these applications show a di↵erent behaviour
while executing on a oversubscripted scenario. The second scenario is run with
5 threads (4+1, it means 4 threads for CPU and 1 for GPU, note there is one
oversubscripted thread, as we have 4 CPU cores without hyper-threading). The
right hand side of the Figure 4.20 shows an important overhead in the GPU host
threads while executing coarse grain applications in this oversubscripted scenario.
Here, the base version of coarse grain benchmarks su↵er from a high thread dis-
patch overhead, 36% and 32% for Barnes Hut and PEPC, respectively. In this
case PRIO and ZCB+PRIO optimizations reduce the sum of all overheads to a
5% of total execution time. In the presence of oversubscription, the GPU host
thread is eventually in ready queue of the S.O. and raising the priority of this
thread makes an automatic preemption which reduces the overhead from 35% to
a 4% in the case of coarse grain benchmarks.

Figure 4.20: Overhead graph results for Haswell in two scenarios: with no over-
subscription (3+1) and with oversubscription (4+1). Left to right: Base (//),
ZCB (), PRIO (\\) and ZCB+PRIO (:).

In addition to the overhead analysis, we also study the impact of the afore-
mentioned optimizations on performance and energy consumption. Hence, Fig-
ures 4.21 and 4.22 shows these e↵ects in the two previous scenarios, without
oversubscription (3+1) and with oversubscription (4+1), respectively. The left-
hand side bar graph of the Figure 4.21 shows the speedup over the base version
of each benchmark. We compare the impact of the previously described opti-
mizations, so we can observe that raising the GPU host thread has no e↵ect

4.4. Experimental Results 113

on performance for any benchmark in this scenario (3+1). In contrast, apply-
ing ZCB or ZCB+PRIO yields to an improvement of 1.5x and 1.6x for CFD and
SPMV respectively. Note that coarse grain benchmarks (Barnes, PEPC, NBody)
do not benefit from these optimizations, as the computation time is huge com-
pared to the time spent in memory transfers. The right-hand side bar graph
of Figure 4.21 shows the energy reduction ratio over the base version. We can
observe that the energy consumption follows the speedup behaviour. The energy
consumption reduction rises to 32% for CFD and 38% for SPMV when applying
ZCB and ZCB+PRIO optimizations. Note that, fine grain benchmarks (CFD
and SPMV) get better improvement ratio (speedup and energy reduction) than
coarse grain ones (Barnes Hut and PEPC) while applying ZCB because fine grain
benchmarks spend most of the time in memory transfers. In Figure 4.22, the left-
hand side bar graph shows the speedup over the base version. In this scenario
coarse grain benchmarks do not show an important speedup (it is under 1.2x).
However, applying ZCB+PRIO to fine grain benchmarks, CFD and SPMV yields
a speedup of 2.1x and 1.6x respectively. The right-hand side bar graph shows
the energy consumption reduction, and again, the energy reduction strongly fol-
lows the speedup shape, this is a common behaviour for both scenarios (3+1 and
4+1). In this case, coarse grain benchmarks show a small energy reduction factor
around 10%, while fine grain ones shows a 52% and 40% energy reduction factors
for CFD and SPMV, respectively.

Figure 4.21: Impact of ZCB and PRIO optimizations on performance and energy
in a scenario without oversubscription.

Summarizing, we find out that applying the aforementioned optimizations,
we can avoid the overheads of continuously partitioning and o✏oading to GPU
the chunks of a parallel loop and make the most of the GPU by selecting the
right chunk size depending on the application regime.

114 Chapter 4. Parallel for Pattern: Adaptive partitioning

Figure 4.22: Scenario Impact of ZCB and PRIO optimizations on performance
and energy in a scenario with oversubscription.

4.4.4. Performance and energy comparison

To validate our partition strategy, LogFit (Logarithmic Fitting), we compare it
with other three related partition strategies: Static, Concord [58] and HDSS [4].
As a baseline, we use a Static partitioner (Oracle-like) that assigns one large
chunk to the GPU and the rest of the iterations to the CPU cores. The size
of this single GPU chunk is computed by a previous o✏ine search phase that
exhaustively looks for a partitioning of the iteration space between CPU and
GPU that minimizes the execution time. This profiling step runs the application
11 times. For each run, the percentage of the iteration space o✏oaded as a single
chunk to the GPU varies (between 0%, only CPU execution, and 100%, only GPU
execution, by increasing in 10% steps). For example, in Figure 4.23, we can see
the execution time of Nbody and Barnes Hut on Haswell processor (4 CPU cores
+ GPU). With this approach, the profiling results for Nbody (left-hand side)
and Barnes Hut (right-hand side) show that a 50% and a 70% of the iteration
space should be computed on the GPU to get the fastest execution time. Notice
that this Static approach does not add any runtime scheduling overheads, but
the profiling step requires 11 runs for each possible configuration of the number
of threads (nThreads > 1), which may result in a time consuming approach.
Moreover, while static may work well for regular codes, it does not adapt to
changes in irregular codes during execution time and it can be counter productive
to o✏oad large chunks of iterations to the GPU, as shown in Section 4.2.

The second considered approach is Concord [58] which also focus on accurately
computing the relative speed of the GPU and the CPU. In this case, this is
accomplished by assigning a fixed chunk size to the GPU while the CPU cores

4.4. Experimental Results 115

0"
2"
4"
6"
8"

10"
12"
14"

0%" 10%" 20%" 30%" 40%" 50%" 60%" 70%" 80%" 90%"100%"
Percentage)of)the)itera.on)space)offloaded)to)the)GPU)

Nbody:)Offline)search)for)sta.c)par..on)
Execu2on"2me"in"seconds"

0"

50"

100"

150"

0%" 10%" 20%" 30%" 40%" 50%" 60%" 70%" 80%" 90%"100%"
Percentage)of)the)itera.on)space)offloaded)to)the)GPU)

Barnes)Hut:)Offline)search)for)sta.c)par..on)

Execu2on"2me"in"seconds"

Figure 4.23: O✏ine search for the near optimal GPU-CPU workload partition on
Haswell processor.

pick some chunks until the GPU finishes its assigned chunk. Once the GPU,
finishes its assigned chunk of iterations, Concord moves to the execution phase
where the computational speed of each device is computed and the remaining
iterations are distributed across CPU cores and GPU based on their respective
computational speeds. Concord also monitors and updates the computational
speed of each processor in each parallel for loop invocation.

The third approach is HDSS [4], which corresponds to a heterogeneous dy-
namic self-guided scheduler that comprises two phases. The first phase is adaptive
and it aims at finding a stable chunk size that fully uses all the GPU’s computa-
tional resources in order to compute an accurate computational weights among
devices. This phase uses a training phase to compute the relative speed of the
GPU with respect to the CPU (our computational speed f). It starts with a
small chunk size and increases it gradually while recording the corresponding
throughput of each sample. With the first four samples, HDSS computes a loga-
rithmic fitting of the curve and computes a first recommended GPU chunk size,
as explained in Figure 4.8b. Then, HDSS keeps iterating in the training phase
by adding more samples points and recomputing the logarithmic fitting and the
relative speed until the slope of the curve in the last point is less than a given
threshold (1%) or a fixed percentage (20%) of the iteration space is computed.
Then, it moves to a completion phase where block sizes computed in the adap-
tive phase are no longer used. Instead, HDSS starts assigning chunks to the CPU
and GPU relying on a Modified Guided Self-Scheduling (MGSS): it first assigns
the largest possible chunk size to each device considering its relative speed and
gradually reduces the chunk sizes towards the end of the iteration space to avoid
load imbalances.

LogFit departures from these two previously described approaches in two

116 Chapter 4. Parallel for Pattern: Adaptive partitioning

ways. First, instead of looking for an stable relative speed that may never
be found for irregular codes, our main goal is to adaptively select the recom-
mended GPU chunk size that is large enough to fully feed all the GPU’s com-
pute units. LogFit is the only alternative that considers variations in the rel-
ative speed during the whole application execution. Thus, for each scheduling
interval, it also recomputes the CPU chunk sizes to ensure load balance be-
tween the CPU and GPU; Second, instead of having a steady phase following
the adaptive one, LogFit keeps monitoring and adapting the GPU and CPU
chunk sizes, while trying to minimize the overheads of the adaptive mecha-
nisms, as we demonstrate next. Notice that LogFit and Concord remember
information from one time-step to the next one: LogFit remembers three points
{(Ch(Ix1),�(Ix1)), (Ch(Ix2),�(Ix2)), (Ch(Ix3),�(Ix3))} samples, whereas Concord
remembers the CPU-GPU relative speed. On the other hand, HDSS does not
re-use previous information.

Next, we present the evaluation of performance and energy consumption of
our LogFit approach and the three aforementioned partition strategies on the
two Intel processors introduced in section 4.4.1. Figures 4.24 (Ivy Bridge) and
4.25 (Haswell) show the execution time and energy consumption for the five
introduced benchmarks in this chapter. These Figures show two di↵erent graphs
for each benchmark: the left-hand side bar graphs show the execution time (in
milliseconds) of executing the experiments from one thread (only GPU execution)
to five threads. In general, as we increase the number of threads, and use more
computing units, we reduce the total execution time. The right-hand side bar
graphs show the total energy consumption (Joules) while increasing the number of
threads. We show an energy breakdown which distinguishes the energy consumed
on the CPU cores, E CPU, on the GPU, E GPU, and on the uncore components
of the chip, E Un. Note that when using only 1 thread, we get the only-GPU
execution. However, from 2 to 5 threads, we add one CPU core until 4, plus the
GPU.

The study with the regular Nbody application aims at assessing the over-
head of the adaptive engine in the three adaptive schedulers with respect to the
Static approach. In the Ivy Bridge processor, as the Figure 4.24 shows, Concord
and LogFit perform similarly and execution times and energy consumption are
close to those of the Oracle-like Static implementation. However HDSS performs
poorly in heterogeneous executions (from two to five threads). On the contrary,
the results on Haswell processor, Figure 4.25, show that all alternatives performs
similar. Nevertheless, for this regular benchmark (Nbody), Concord and LogFit
execute faster than Static. In the Figure 4.25, this occurs for 5 threads because
Static only evaluates 11 di↵erent partitions, while the adaptive approaches may

4.4. Experimental Results 117

1 2 3 4 5
Number of threads

0

500

1000

1500

2000 NBody: Energy Breakdown (J.)
E_Un
E_GPU
E_CPU

3375

Figure 4.24: Results for Nbody, Barnes Hut, PEPC, CFD and SPMV benchmarks on
Intel Ivy Bridge Processor. Time and Energy graphs, left to right: Static (//), Concord
(), HDSS (\\) and LogFit (:).

118 Chapter 4. Parallel for Pattern: Adaptive partitioning

Figure 4.25: Results for Nbody, Barnes Hut, PEPC, CFD and SPMV benchmarks on
Intel Haswell Processor. Time and Energy graphs, left to right: Static (//), Concord (
), HDSS (\\) and LogFit (:).

4.4. Experimental Results 119

find a finer distribution of work between CPU and GPU. HDSS pays an additional
overhead because it trains at the beginning of each time-step, while Concord and
LogFit can use previously computed information. The 1 thread execution (only
GPU execution) shows the maximum overhead of dynamic strategies, Concord,
HDSS and LogFit are 1%, 2%, and 5% slower than Static, respectively in both
architectures. These results show that LogFit has an acceptable overhead in
comparison with the Static approach. However, LogFit does not need the of-
fline profiling that Static requires and performs better than any other partition
strategy with 5 threads, because it finds a near optimal chunk size by assigning
controlled chunks to the GPU and by performing a finer load balance strategy
thanks to the LogFit’s Final Phase.

Figure 4.24 shows that LogFit outperforms the Static and other dynamic al-
ternatives for 1 thread (GPU execution) up to 55% for SPMV, except for CFD
and Nbody where it is 10% and 5% slower respectively. In general, all alternatives
reduce proportionally the execution time as we increase the number of threads,
with the exception of HDSS for Nbody, CFD and SPMV where it performs poorly.
Looking at execution time bar graphs, we can observe how LogFit always outper-
forms the other alternatives with the maximum number of allowed threads (5),
it executes between 12%-18% faster for coarse grain algorithms Nbody, Barnes
Hut and PEPC and 22%-28% faster for fine grain algorithms, CFD and SPMV.
Looking at the Energy bar graphs, we observe that LogFit gets similar results
to Static and Concord for coarse grain benchmarks, this is due to the clock fre-
quency domain sharing between CPU cores and GPU. It means that whether the
CPU or the GPU is the only device working, the other device will consume a pro-
portional energy as well. This fact does not occur in Haswell micro-architecture
as each processor the CPU and the GPU has its own clock frequency domain. In
this sense, we only see a noticeable di↵erence in energy consumption when the
execution time has big di↵erences, as it happens with CFD and 5 threads, where
LogFit is a 30% more energy e�cient than Concord and a 13% more e�cient
that HDSS.

Looking at Figure 4.25, we can analyse how these benchmarks and scheduling
strategies perform on the Haswell Architecture. Thus, for the irregular coarse
grained benchmarks, Barnes Hut and PEPC, all adaptive approaches outperform
the Static one. In terms of execution time, for 1 thread (only GPU), LogFit runs
33% and 40% faster than Static for Barnes Hut and PEPC, respectively. It keeps
outperforming all other alternatives with any other number of threads, e.g., for 5
threads LogFit runs 22% and 21% faster than Static for Barnes Hut and PEPC,
respectively. However, for 5 threads, Concord just runs 10% (Barnes Hut) and
3% (PEPC) faster, whereas HDSS gets poorer result than Static with 5 threads.

120 Chapter 4. Parallel for Pattern: Adaptive partitioning

According to the Energy bar graphs, LogFit achieves the minimum energy for 1
thread (GPU execution) while executing Barnes Hut. It consumes 31%, 27%, and
22% less energy than Static, Concord and HDSS, respectively. Moreover, LogFit
is more energy e�cient than the other partition strategies while executing PEPC:
again, for 1 threads, it consumes 30%, 28% and 21% less energy than Static,
Concord and HDSS, respectively. As illustrated in the Figure, for both, Barnes
Hut and PEPC, for any given number of threads, LogFit always delivers the best
performance with the minimum energy consumption.

For fine grained applications, CFD and SpMV, the profiling phases imple-
mented in Concord and HDSS behave worse than the LogFit’s exploration phase.
Let’s recall that in both approaches, the relative speed resulting at the end of the
profiling phase is used during the rest of the execution. However, in these two
benchmarks, to find the right relative speed we need to perform an exhaustive
search by sampling larger chunk sizes. These two fine grained benchmarks also
pose and additional challenge as the GPU chunk size required to yield a near
optimal GPU throughput is comparable to the whole iteration space. Thus, an
exploration phase that allows to profile the whole iteration space will find an
optimal chunk size that better exploits the GPU, as LogFit does.

HDSS performs poorly while executing CFD, as this approach executes the
profiling phase for each one of the 6000 time-steps of this application. During each
run of the profiling phase, HDSS o✏oads small iteration chunks to the GPU, with
sub-optimal chunk sizes. When finally HDSS finishes the profiling phase there
are not enough remaining iterations to assign an optimal chunk size to the GPU
that obtains the predicted GPU throughput, so, the estimated relative speed
can not be guaranteed. In addition, this leads to load imbalance with the CPU.
LogFit successfully detects that, for the exhibited granularity, the number of
available iterations is not enough to assign to the GPU a chunk su�ciently large
to obtain the predicted GPU throughput, so in order to reduce load imbalances
the chunk is not assigned to the GPU and the remaining iterations are computed
on the CPU cores. By looking at the execution time figures, we can observe
that LogFit always outperforms the other alternatives, up to 11%, 5% and 9%
faster than Static, Concord and HDSS, respectively. Also for CFD, Concord
and HDSS consume 6% and 24% more energy than LogFit, respectively. The
improvement of using LogFit is even bigger when executing SpMV. For instance,
with 1 thread, LogFit runs 36%, 34%, 33% faster than Static, Concord and HDSS,
whereas with 5 threads, it runs 56%, 45% and 33% faster than Static, Concord
and HDSS, respectively. According to the energy bar graphs, the most energy
e�cient configuration is LogFit with 1 thread, it consumes 34% less energy than
the other static and adaptive strategies.

4.4. Experimental Results 121

Figure 4.26: Energy-Performance results for Ivy Bridge Processor, left-hand side plots,
and Haswell Processor, right-hand side plots. Nbody, Barnes Hut, PEPC, CFD and
SPMV benchmark results are plotted from top to bottom.

122 Chapter 4. Parallel for Pattern: Adaptive partitioning

To help understand how performance and energy consumption are related, we
present the Figure 4.26, where all graphs represent the energy consumed by pro-
cessing each iteration (y-axis) with respect to the number of iterations computed
per millisecond (x-axis). Thus, the rightmost values and the bottommost are
preferred, as they means that we can compute more iterations with less energy
consumption. In these energy versus performance graphs, the left-hand side plots
correspond to the Ivy Bridge processor. On the contrary, the right-hand side plots
correspond to the Haswell processor. Each point in these lines represent a con-
figuration with a di↵erent number of threads from 1 (leftmost) to 5 (rightmost).
Note that in these plots, the closer to the right-bottom zone, the better the trade-
o↵ between energy consumption and throughput is. Typically, for the Ivy Bridge
processor when increasing the number of threads, the curve moves towards the
right-bottom corner (better performance and less energy consumption), although
there are some exceptions as CFD. In general, for Ivy Bridge, LogFit is always the
most performing alternative for all tested benchmarks. However, looking at the
energy axis, Static is the most e�cient for NBody. The shape of the Ivy Bridge’s
curves are dominated by the fact that the GPU consumes more energy than the
CPU cores. Thus, as we gradually add more CPU cores the energy consumption
decreases, as the CPU compute more e�ciently. The plots for the Haswell pro-
cessor are in the right-hand side of the Figure 4.26, they again show that LogFit
is the most performing approach for all benchmarks with five threads. As we can
observe in these plots, while increasing the number of threads, the curves move
towards the upper right corner (higher performance and energy consumption). In
this case, the GPU is more energy e�cient than the CPU cores, thus the leftmost
point in Haswell’s lines are the lowest ones. Moreover, while adding CPU cores,
we get better performance, but we also increase the energy consumption as the
Haswell CPU cores are less energy e�cient than the Haswell’s GPU.

Summarising, the Energy-Performance plots show that again LogFit is the
approach that consumes the least energy (for 1 thread) and the most performing
one (for 5 threads). On average, considering the four irregular benchmarks and 5
threads, LogFit runs faster than Static, Concord and HDSS by 27%, 19.5% and
28% and consumes 15%, 14% and 22% less energy on the Haswell Processor.

4.5. Conclusions

In this chapter, we address the problem of finding the appropriate chunk size
for GPU and CPU cores in the context of parallel loops in irregular applications
running on heterogeneous CPU-GPU chips. We propose LogFit, a novel adap-

4.5. Conclusions 123

tive partitioning strategy that dynamically finds the chunk size that gets near
optimal performance for the GPU at any point of the execution, while balancing
the workload among the GPU and the CPU cores. LogFit monitors the GPU
throughput during the application execution and uses a logarithmic fitting to
adaptively partition the iteration space. Using a regular and a set of irregular
benchmarks, we have assessed the performance and energy consumption of our
partitioner with respect to a Static approach and other adaptive state of the art
partitioners. For the studied irregular benchmarks on Haswell with 5 threads,
we outperform the Oracle-like Static approach by up to 52% (18% on average)
and avoid the exhaustive o✏ine profiling. With respect to the state-of-the-art
Concord and HDSS approaches and for 5 threads, we obtain up to 94% and 69%
of speedup improvement (28% and 27% on average), respectively. Among all the
approaches, LogFit is almost always the solution that results in the minimum en-
ergy consumption or the maximum performance. As future work, we will consider
the parameter of energy consumption as part of the scheduling decisions.

5 Pipeline Pattern: Optimal
pipeline configuration

In the previous two chapters, we propose extensions to e�ciently execute the par-
allel for, a load balancing model and a performance-aware partitioner. However,
in this chapter, we tackle a di↵erent problem. We focus on e�ciently executing
streaming applications on commodity processors composed of a multicore CPU
and an on-chip GPU [108]. Streaming applications, such as those in vision and
video analytic, consist of several pipelined stages that are good candidates to take
advantage of this type of platforms. To implement these kind of applications, we
extend the TBB’s pipeline template to allow its execution on heterogeneous ar-
chitectures. Thus, each stage of the pipeline can either be executed on the CPU,
or on the GPU. We also consider that characteristics of the input stream may
change while the application is running. Therefore, we propose a Runtime Sys-
tem (RS) that adaptively finds the optimal mapping of the pipeline stages. The
core of the RS is an analytical model coupled with information collected at run-
time used to dynamically map each pipeline stage to the most e�cient device,
taking into consideration both performance and energy. Our RS can be targeted
at optimizing performance, energy or a tradeo↵ metric that considers the ratio
throughput/energy. Our analytical model can provide knobs so that the user can
specify a desired throughput or power budget. For instance, if the user specifies
a throughput of 33 fps (frames per second) for real time video streaming, the
model can determine among the possible pipeline configurations, the one that
minimises the energy consumption and satisfies the user constraint. Similarly,
given a power budget, the model can determine the fastest configuration.

In this chapter, we first motivate the need for solving the pipeline mapping
problem and account for all possible configurations in Section 5.1. Next, we in-

125

126 Chapter 5. Pipeline Pattern: Optimal pipeline configuration

troduce the extension of the TBB pipeline template to allow its execution on
heterogeneous architectures, Section 5.2. To deal with the pipeline mapping
problem, we model it by using queueing theory and propose an heuristic func-
tion that finds the best pipeline configuration in Section 5.3. Later, we present
the experimental results that include a comparison with the state-of-the-art in
Section 5.4. Finally, we sum up with conclusions in Section 5.6.

5.1. Pipeline configuration problem

In this section, we focus on the problem of e�ciently scheduling a single streaming
application, implemented as a pipeline of stages, that run on heterogeneous chips
comprised of several cores and one on-chip GPU, taking into consideration both
performance and energy. Streaming applications are very common in current
computing systems, specifically in mobile devices [20], where heterogeneous chips
are the dominant platforms. Recently, we have seen a significant increment in
the number of commodity multicore processors that include an on-chip GPU.
Current desktops, ultrabooks, smartphones, tablets, and other embedded devices
are also powered by heterogeneous chips that comprise from 2 to 8 CPU cores
along with an integrated GPU. The rising number of these platforms is driven by
the demand of higher performance and the limitations on power and scalability
of multi-core CPUs.

However, developing applications on these architectures is further complex.
Most research in frameworks aimed at scheduling tasks on heterogeneous archi-
tectures, composed of CPUs and GPUs, has focussed on optimizing execution
time without considering energy consumption [2, 10, 40, 70, 104]. However, a
CPU and a GPU may exhibit di↵erent performance/energy trade-o↵s, this is, a
task (or pipeline stage) can run faster on one device but consume less energy
on other. Thus, in order to benefit from the potential energy e�ciency that the
accelerators can provide in these heterogeneous chips, the runtime scheduler also
needs to consider the performance/energy asymmetry when making a scheduling
decision [97].

Thus, in this section we consider how to schedule the stages of a pipeline
on a heterogeneous architecture by taking into account the performance/energy
asymmetry of these platforms and scalability issues. To tackle the aforementioned
problem, we study di↵erent choices such as:

The granularity level at which the parallelism of each stage can be exploited
(coarse or medium grain).

5.1. Pipeline configuration problem 127

The mapping of the pipeline stages onto the di↵erent computational devices
considering their relative performance and energy.

The number of threads for which the application scales up.

Our aim is to find the best configuration that considers all these factors.
We also consider that the best configuration may change during execution time.
This can happen because the number of operations performed on each pipeline
stage may change over time. There are several reasons why this can occur. For
instance, YouTube, Skype Video [19], or network operated robots [35] adjust
the resolution of the video stream according to the available bandwidth of the
network connection. Also, the computation of a pipeline stage may depend on
the characteristics of the input frame. In this scenario, an o↵-line training may
not be feasible, as the best configuration may depend on the data input.

As a motivating example to demonstrate the benefits of adapting the con-
figuration of a pipelined application, we introduce ViVid, an application that
implements an object (e.g., face) detection algorithm [29] using a “sliding win-
dow object detection” approach [57]. ViVid consists of 5 pipeline stages from
which the first and the last one are the Input and Output serial stages, the three
middle stages are parallel, as shown in Figure 5.1. When applications like ViVid
run on a heterogeneous chip architectures, many possible configurations are pos-
sible. To determine the best configuration one needs to consider the granularity,
the number of items that should be simultaneously processed on each stage, the
device where each stage should be mapped, and the number of threads that
minimise the execution time, the energy consumption, or both.

St
ag

e
1

St
ag

e
2

St
ag

e
3

Input
frame Filter Histogram Classifier

Output

response mtx.

index mtx.

histograms
detect. response

Figure 5.1: Flow of ViVid application divided in 3 parallel stages.

5.1.1. Pipeline configuration alternatives

There is a large degree of leeway when it comes to schedule the stages of a
pipelined application on heterogeneous architectures. We use two axes to clas-
sify the di↵erent alternatives: (1) granularity level, that represents the level at

128 Chapter 5. Pipeline Pattern: Optimal pipeline configuration

Input Stage Output Stage

GPU
C C C
C C C

item

CPU

C
item

CPU

C
item

GPU
C C C
C C C

item
GPU
C C C
C C C

item

CPU

Stage 1

C
item

CPU

Stage 2

C
item

CPU

Stage 3

C
item

DP-CG GPU Path
CPU Path

(a) Decoupled mapping, coarse-grain, DP-
CG.

Input Stage Output Stage

GPU
C C C
C C C

item

C = Core

CPU

C
item

CPU

Stage 1

C
item

CPU

C
item

CPU

Stage 2

C
item

CPU

Stage 3

C
item

CP-CG GPU-CPU Path
CPU Path

(b) Coupled mapping, coarse-grain, CP-CG.

Input Stage

GPU
C C C
C C C

item

CPU

C
item

Output Stage

CPU

C
item

GPU
C C C
C C C

item
GPU
C C C
C C C

item

CPU

Stage 1

C
item

C
C C

CPU

Stage 2

C
item

C
C C

CPU

Stage 3

C
item

C
C C

DP-MG

(c) Decoupled mapping, medium-grain, DP-
MG.

Input Stage Output Stage

GPU
C C C
C C C

item

CPU

C
item

CPU

C
item

CPU

Stage 1

C
item

C
C C

CPU

Stage 2

C
item

C
C C

CPU

Stage 3

C
item

C
C C

CP-MG
C = Core

(d) Coupled mapping, medium-grain, CP-
MG.

Figure 5.2: Categorisation of the four main configurations for ViVid.

which the parallelism is exploited on the CPU; and (2) pipeline mapping, that
represents how the pipeline stages are assigned to the available processors. We
use the term pipeline configuration for each possible combination of granularity
and mapping. Figure 5.2 graphically depicts a pipeline classification which is
divided in 4 categories. In deeper detail, this Figure shows 4 possible config-
urations for the ViVid pipeline on an Ivy Bridge-like architecture with a GPU
(6 computing units) and a CPU multicore (4 CPU cores). Moreover, this figure
shows the paths that traverse the in-flight items being processed. Each item is
processed by a thread, from the first stage until the last one. The pipeline stages
are represented as rounded rectangles, while the device (GPU or CPU) on which
each stage is processed, is depicted with the number of computing cores (small
squares with the letter ’C’) that collaborate on the computation of each item.

Granularity level: The vertical axis in Figure 5.2 introduces a pipeline classi-
fication based on the granularity level used to exploit parallelism on the CPU.
Two levels of granularity are considered: Coarse Grain (CG) and Medium Grain
(MG). If di↵erent items can be processed simultaneously on the same stage (the
stage is parallel or stateless1), then CG granularity can be exploited. Addition-
ally, if several items can be processed simultaneously and each CPU thread can

1A stage is parallel or stateless when the computation of an item on a stage does not depend
on other items.

5.1. Pipeline configuration problem 129

process one item through all the stages, then CG granularity can be exploited.
Furthermore, if a pipeline stage exhibit nested parallelism (which can be exploited
by using OpenCL, OpenMP or TBB by using a parallel for), then a single item
can be processed in parallel by several cores in the CPU, and MG granularity
can be exploited. In the MG, each pipeline stage executes a single item at a
given time, and it exploits nested parallelism. By nested parallelism, we mean
that a set of threads are deployed inside a pipeline stage by following a fork-join
pattern. CG granularity is shown in Figures 5.2a and 5.2b, while MG granularity
is shown in Figures 5.2c and 5.2d.

GPUs are not as flexible as CPU multicores are, according to the granularity
level of parallelism they can exploit. They excel at exploiting SIMT (Single
Instruction Multiple Threads) type of parallelism. Thus, stages mapped onto a
GPU can only process a single item, with all the GPU processing units computing
a portion of the item (similar to MG granularity, but at a finer grain).

The MG granularity requires a barrier synchronization at the end of each
pipeline stage and before the next pipeline stage can start, to guarantee that
all participating threads have finished processing their corresponding part of the
item. Therefore, MG can hurt performance when the load is unbalanced or
there is not enough computational load per core. With MG, it is like having
two devices, a GPU and a CPU, that can only work on two di↵erent items at
a time. Thus, there is less pipeline parallelism when exploiting MG granularity.
On the contrary, with CG granularity, each CPU core (or thread) can process an
item throughout all the pipeline stages without intermediate synchronizations,
and each item traverses the pipeline at its own pace. Only at the end, when the
item reaches the output stage, it synchronise and waits for this stage to sort the
order of the output stream. Two drawbacks of the CG approach are that several
items are in-flight at the same time, increasing the memory pressure (specially
when memory bandwidth is limited), and that only applies to parallel pipeline
stages (i.e. stateless pipeline stages). Additionally, notice that CPU cores can
also exploit fine grain parallelism, due to the vector units of the processors (AVX,
SSE), orthogonally to both, CG or MG granularities.

Pipeline mapping: The horizontal axis in Figure 5.2 classifies the configurations
based on whether all the stages execute on the GPU or only a few do. The first
pipeline mapping is called decoupled (DP), while the other one is called coupled
(CP). Disregarding the Input/Output stages, DP mappings are illustrated in
Figures 5.2a and 5.2c, where we depict two “decoupled” paths: (1) a GPU path,
in which a thread (the GPU host thread) o✏oads all stages to the GPU for
processing one input item; and (2) a CPU path, in which a group of concurrent
threads (the CPU threads) process all stages on the CPU. Furthermore, CP

130 Chapter 5. Pipeline Pattern: Optimal pipeline configuration

mappings are shown in Figures 5.2b and 5.2d where we see two paths: (i) a
GPU-CPU path in which a thread (the GPU-CPU thread) o✏oads some stages
to the GPU (stage 1 in the figures) for processing one input item, while the
remaining stages are executed on the CPU; and (ii) a CPU path, in which a
group of concurrent threads (the CPU threads) process all stages on the CPU
multicore. The di↵erence between the CP’s GPU-CPU thread and the DP’s GPU
thread is the following. In a CP mapping, when an item reaches the stage for
which it has been decided that it will be processed on the GPU (stage 1 for the
ViVid example), we first check if the GPU is idle, and in that case the thread
becomes a GPU-CPU thread that launches the item’s kernel to the GPU and
then waits for the GPU kernel to finish. Then, the same thread also processes
the item through the remaining stages (in the example, stages 2 and 3 that are
executed on the CPU). However, in DP, when an item reaches the first stage
and finds the GPU idle, the corresponding thread becomes the GPU host thread
that executes the item throughout all the stages on the GPU. Indeed, when we
consider only 1 thread for the DP mapping, that thread becomes the GPU host
thread and therefore all the items traverse the GPU path. This is what we call a
GPU homogeneous execution. In our example, for both CP and DP, if an item on
the stage 1 finds that the GPU is already busy, then the item is directed through
the CPU path. Although DP could be seen as a particular case of CP where
all the stages happen to be mapped to the GPU, we distinguish both mappings
because they have to be modelled di↵erently as we will see in section 5.3.2.

CP mappings can be a good alternative when all the stages are not suitable
for the GPU, or because it’s not advisable to divert the GPU computing power
from the stages where it is faster and/or more energy-e�cient. This approach
also has the advantage that not all the stages need to be implemented for the
GPU. However, in the CP mapping, the GPU-CPU thread must orchestrate the
“coupling” of the GPU and the CPU devices and the host-to-device/device-to-
host communications, which results in some data movement and synchronization
overheads. Also, note that DP mappings can be implemented only if all stages
are parallel pipeline stages (stateless). On the contrary, if all stages are serial,
heterogeneity may be exploited by mapping some stages on the GPU and the
rest on the cores, which is a particular case of the CP mapping in which all items
are directed through the GPU-CPU path.

Configurations not considered

Some additional alternatives not considered in this classification are the following:

Splitting an item to be simultaneously computed on the CPU and GPU. As
it is demonstrated by Totoni et al. [104], this possibility is not beneficial for

5.1. Pipeline configuration problem 131

our vision applications due to additional synchronization overheads between
both devices.

Having one stage exploiting both MG and CG granularities on the CPU. For
example, a quad-core can be split into two CPU devices with two cores each.
This approach would combine CG and MG on the same stage: two CPU
devices processing two items in parallel (CG), and each item running on
two cores (MG). For that, we explored the OpenCL Device Fission function
(cl ext device fission) that can divide the CPU device into several
subdevices with lower core count. However, we discarded this alternative
due to we measured a 14% of overhead (for ViVid on Ivy Bridge) if the
device fission is called to change the subdevices configuration from
one pipeline stage to the next one. Thus, this approach is beneficial only if
the optimum number of cores per device coincides for all the pipeline stages
so the fission function is just called once.

Exploiting stages with both MG and CG granularities on the GPU. The
OpenCL fission feature is currently not able to split the GPU on Intel or
AMD heterogeneous chips. Therefore, we do not consider this feature to
evaluate additional pipeline configurations.

Hybrid mappings in which some CPU stages exploit MG and the rest CG
granularity. This is left for future work.

Accounting for all pipeline alternatives

Assume that we have nC = 4 CPU cores (in Figure 5.2), and 1 GPU in a
heterogeneous chip, current commercial heterogeneous chips only contain a single
GPU, so we overlook configurations with two or more GPUs. In addition to the
4 pipeline configurations, DP-CG, DP-MG, CP-CG and CP-MG, there are two
additional factors to consider:

For CP mappings, we need to find out the stages for which the GPU is
more profitable;

For CG granularity, we also have to explore the optimal number of threads.

For this CG granularity the number of threads in the CPU multicore can go
from 1 to nC. Additionally, since the GPU host thread in DP-CG, or the GPU-
CPU thread in CP-CG, are mainly hosting the GPU (waiting for the GPU kernel
to complete), the total number of threads, n, we explore goes from 1 to nC + 1.

132 Chapter 5. Pipeline Pattern: Optimal pipeline configuration

CPU

GPU

CPU

GPU

CPU

GPU

CPU CPU CPU

GPU

CPU CPU CPU CPU

CPU CPU

GPU

CPU

GPU

CPU CPU CPU

GPU

CPU CPU

GPU

CPU CPU

CPU CPU CPU CPU CPU

CPU CPU

GPU

CPU

GPU

CPU CPU

GPU

CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU

GPU

Figure 5.3: All possible mappings of pipeline stages to CPU and GPU for ViVid.

This means that we allow oversubscription of one thread when n = nC + 1, and
therefore, the GPU (or GPU-CPU) thread eventually interferes with the other
nC CPU threads. For the MG granularity, we always configure nC + 1 threads
because the constructors used to exploit nested parallelism (OpenCL, OpenMP
or TBB parallel for) by default use all the threads available in the multicore,
nC, plus the GPU (or GPU-CPU) host thread.

With all aforementioned variables, we use ViVid application to illustrate all
possible pipeline alternatives. Disregarding the Input and Output serial stages,
ViVid has 3 parallel stages that can also exploit nested parallelism. So, there
are 23 possible CPU/GPU configurations, assuming that the ViVid consists of s
parallel stages, there would be 2s possible GPU/CPU mappings, this is shown in
Figure 5.3, for ViVid with s = 3. This accounts for all the stages running on the
GPU (DP mapping) and the 2s � 1 possible CP mappings. These mappings can
be combined with nC+1 di↵erent CG configurations, depending on the number of
threads used and 1 MG configuration, i.e., nC+2 configurations. Thus, in total we
have 2s·(nC+2). That results in 48 alternatives for ViVid with s = 3 and nC = 4.
If the available resources include more GPUs/multicores, these configurations
can be seamlessly extended to accommodate the additional computing units.
Our goal is to be able to predict the optimal pipeline configuration specifying
the granularity, mapping (identifying the stages that should be mapped on the
GPU), and the optimum number of threads for a given stream input.

Before undertaking the search of the optimal pipeline configuration, we need
a metric that allows us to quantitatively compare the di↵erent alternatives. In
the context of heterogeneous execution and GPGPU, the Energy-Delay Product
(EDP) [43] has been widely used as it can measure both performance and energy
consumption. However, for streaming applications, in which an unknown number
of items have to be processed, the measurement of the delay until execution
completes can be an issue. To circumvent that problem we propose a related
metric that provides similar information for each item in the pipeline.

The proposed metric is throughput/energy per item, �/E, where � is the
number of processed items per second, whereas E stands for the consumed Joules
per item. We can compute it by measuring the time, t, and energy, E, needed to

5.1. Pipeline configuration problem 133

process an item. With this, �/E = 1/t
E = 1/(E ⇥ t), that is actually 1/EDP . In

summary, �/E is inversely proportional to the Energy-Delay Product per item,
1/(Joules ⇥ sec). Therefore, the larger the metric, the better. The analytical
model described in Section 5.3 can be used to find the pipeline configuration that
provides the optimal �/E.

5.1.2. Putting throughput/energy metric to work

In Figure 5.4, we see the resulting throughput per unit of energy (�/E expressed,
axis-y in log. scale) for each stage of the ViVid application and Low Definition
(LD) frame resolution. These results are obtained for ViVid on the Ivy Bridge
and Haswell processors, presented in Section 5.4, when just one GPU thread
carries out the computation on the GPU (blue bar), when just one CPU thread
carries out the computation in 1 CPU core (red bar) and when 4 CPU threads
exploit MG granularity on four cores (green bar). In all these executions, we
execute one stage at a time, thus no pipeline parallelism is exploited.

(a) Ivy Bridge (b) Haswell

Figure 5.4: Throughput / Energy for ViVid without pipeline parallelism.

For the Ivy Bridge processor (Figure 5.4a), we can see that the GPU does
not surpass �/E of the CPU 4 cores. However, on Haswell (Figure 5.4b), stages
1 and 2 are more energy e�cient when executed on the GPU. This information
can be collected at run-time, by processing a few frames of the input stream to
make mapping decisions, such as not using the GPU at all in the Ivy Bridge or
mapping stages 1 and 2 to the Haswell’s GPU.

However, this type of reasoning can produce suboptimal results. First, these
data are obtained with a single frame traversing the whole pipeline, so all hard-
ware resources (a GPU, 1 core or CPU 4 cores) are focused on a single stage at
a time, and we avoid side e↵ects measurements due to other stages being con-
currently executed. Thus, we do not know what may happen when the number

134 Chapter 5. Pipeline Pattern: Optimal pipeline configuration

of in-flight frames increases, or when the CPU cores are working concurrently
with the GPU. Second, these numbers are not enough to elucidate which pipeline
configuration is desirable. To solve this problem, the analytical model described
in Section 5.3.2 can be used to find a near optimal pipeline alternative without
testing all the possible ones.

5.2. Pipeline template

In this section we introduce our pipeline library API. It provides a C++ template
library that facilitates the configuration of a pipeline by hiding the underlying
TBB and OpenCL implementations, and by automatically managing the mem-
ory data transfers and synchronisation between devices, likewise the parallel for
template does in Chapter 4. The pipeline interface has four main components:

Items: objects that traverse the pipeline stages by carrying pointers to the
memory data bu↵ers.

Pipeline: the pipeline object is composed of s+ 2 stages. We assume that
it contains the following stages: Sinput, S1, S2, Ss, Soutput, being Sinput

and Soutput the serial Input and Output stages. A Pipeline may use a static
configuration or run in a self-adaptive configuration mode. This adaptive
configuration mode is the one that uses our proposed model to dynamically
compute the best configuration and to change it according to input changes.

Stage functions: each processing stage needs to be programmed to run on
CPU and/or GPU. The pipeline uses the appropriate function for every
stage.

Bu↵ers: n-dimensional arrays that can be used by both, the host code and
the OpenCL kernels.

Figure 5.5a shows the components involved in the pipeline construct. The
Item is the object that traverses the pipeline, it contains the references to the
data bu↵ers objects that are required by the pipeline stages as input and output.
To create a new item instance, the user needs to define a new Item subclass
(it must extend from a provided Item class) that should contain the references
to data bu↵ers used by the pipeline stages. For data bu↵er management, there
is a DataBuffer<T> template class already defined, it hides all the important
operations like allocation, deallocation, data movements, Zero-Copy Bu↵er map-
pings, etc. The aim of this data bu↵er class is to make data accessible to the

5.2. Pipeline template 135

device (CPU or GPU) where the item has to be processed. Figure 5.5b shows the
environment stack with the heterogeneous devices at bottom. On top of that, the
software middle layers (TBB, OpenCL, OpenMP) provide di↵erent programming
models to exploit the available parallelism on the heterogeneous chip. However,
we partially hide the complexities of these low level libraries by providing a sim-
pler interface based on C++ classes and templates.

Stg 1 Stg 2 Stg 3 OutIn

CG

C

GPU

C C C

C C C

MG

C C

C C

Parallel Stages
(process item)

Input Stg.
(creates item)

Output Stg.
(destroys item)

pipeline	<ViVidItem>

Pipeline processing flowItem

0101.. 11011..data buffers:

(a) Pipeline building blocks

H_Pipeline library
Class h_pipeline, Item, Buffer<float>

CPU 1GPU CPU 2 CPU 3 CPU 4
O

pe
nC

L

 .

User Code
pipe.run(tokens);

Threading Building Blocks (TBB)

Threads (OS dependent)

Stg 1 Stg 2 Stg 3 OutIn

O
pe

nM
P

(b) Software stack

Figure 5.5: Software stack and building blocks of the pipeline template.

The programmer can provide up to three di↵erent functions for each pipeline
stage: one to implement the stage on the GPU device using OpenCL, a second
one to implement the stage on a single CPU core, Coarse Grain (CG), and the
third one to implement the stage on multiple CPU cores Medium Grain (MG).
The implementations not provided by the user (CP, MG, and/or GPU) are not
considered when searching for the best pipeline configuration. In the following
subsections we cover all components in deeper detail.

5.2.1. Item class

Figure 5.6 shows a code snippet with the Item class declaration used as example.
First, our pipeline interface is made available by including the h pipeline.h
header file (line 1). It also defines the h pipeline namespace which con-
tains all the classes of the interface. As previously mentioned, before creating
the pipeline, the programmer has to define an Item subclass for all the in-
stances that will traverse the pipeline (line 7). The item class must extend from
h pipeline::Item class and declare as many DataBuffers<T> members as
required for the pipeline execution. The class constructor and destructor meth-

136 Chapter 5. Pipeline Pattern: Optimal pipeline configuration

ods must hold the bu↵ers creation and deletion, respectively. Alternatively, to
avoid too many bu↵er allocation/deallocation operations, a pool of bu↵ers can
be used. In that case, acquire and release methods can be invoked, so the same
bu↵ers are reused by di↵erent items. The Input and Output stages (i.e. the
first and last serial stages of the pipeline, Sin and Sout) automatically call the
constructor and destructor of the Item class, respectively. In the last part of
this section we show an example of bu↵er usage, Figure 5.11.

1 #include "h_pipeline.h" // Required clases defined here
2 using namespace h_pipeline; // New namespace
3

4 /***
5 * 1.- ITEM Class (holds the data that traverse the pipeline stages
6 **/
7 class ViVidItem : public h_pipeline::Item {
8 public:
9 //Buffer definitions

10 DataBuffer<float> *frame; // Input buffer
11 ...
12 DataBuffer<float> *out; // Output buffer
13

14 //Constructor definition. Allocation or buffer acquire
15 ViVidItem() {
16 //Data Buffer allocation
17 ...
18 }
19 //Destructor definition. Deallocation or buffer release
20 ˜ViVidItem() { ... }
21 };

Figure 5.6: Extending the Item Class defined in h pipeline namespace.

5.2.2. Pipeline class

Figure 5.7 shows a pipeline object instantiation and usage example. After declar-
ing the ViVidItem class shown in Figure 5.6, we can create a pipeline instance
by using that class (line 6) and by passing as constructor’s arguments the number
of threads, numThreads, that will execute the pipeline in parallel. In this study,
we set the maximum number of threads to nC+1, being nC the number of CPU
cores (see section 5.1.1). Also note that CPU (CG and MG granularity) and GPU
functions need to be set up before the pipeline can run (see lines 9 to 11). In case
we want to run the pipeline using a static configuration, we can use a specific
method to configure some features of the pipeline, such as the stages that should
be mapped to the GPU or the granularity (MG or CG) that should be used
on the CPU (line 14). In our example, in line 14, the first argument {1,1,1}

5.2. Pipeline template 137

represents a 3-tuple that represents the mapping of stages to the devices and
the second argument, USE MG, which indicates that MG granularity has to be
exploited when an item is processed on the CPU.

As mentioned before, we assume that a pipeline consists of Sin, S1, S2, Ss,
Sout stages (s+2). Sin and Sout, the serial Input and Output stages are always
mapped to the CPU. For any other stage Si such that 1 i s, we use a s-tuple
to specify all possible stage mappings to the GPU and the CPU devices: {m1,
m2, . . ., ms}. The i � th element of the tuple, mi, specifies if stage Si can be
mapped to the GPU and CPU, (mi = 1), or if it can only be mapped to the CPU
(mi = 0). If mi = 1, the item that enters stage Si checks if the GPU is available,
in which case it executes on the GPU; otherwise, it executes on the CPU. For
instance, for the example of Figure 5.3 (see page 132), we represent the tuples
in row major order: {1,1,1}, {1,0,0}, {0,1,0}, {0,0,1}, {1,1,0}, {1,0,1}, {0,1,1},
{0,0,0}.

Once the pipeline is configured for a static configuration, it can be run (line 15)
by setting the maximum number of items that are allowed to be simultane-
ously in flight and traversing the pipeline. Moreover, another option to run
the pipeline is to use the adaptive configuration mode, line 18, presented in
section 5.3.2. Under this mode, our framework dynamically finds the best config-
uration, where the user has to select the optimization criterion (THROUGHPUT,
ENERGY, THROUGHPUT ENERGY), the maximum allowed overhead (as a ratio
between [0,1]) and the threshold variation variable which sets a limit to re-
launch the training step. This step is required when running in the adaptive mode
and it is explained in section 5.3.2. As an advantage, the user does not have to
set the numTokens variable, as it is automatically calculated by the framework.

Implementation details

In this sub-section, we explain the internal details regarding the pipeline<T>
class. This class is at the top of the software stack described in Figure 5.5b, so it
is designed to work on top of TBB and OpenCL libraries. Figure 5.8 sketches the
main implementation decisions we have considered for this pipeline<T> class.

Figure 5.8 shows the internal details of the pipeline template. The pipeline
class is the main component of the library, it is responsible to glue the set of
stages and schedule the items in flight to maximise the optimization criteria. In
order to make this possible, the pipeline class defines a few member variables
(lines 7-9). The gpuStatus variable shows the current status of the GPU at
runtime: it can be (0 = Idle and 1 = Busy). This class also defines an ordered
list of stages, (l stage), that represents the stages of the pipeline. Additionally,
there are two integer variables: nthreads which is used to set the number of

138 Chapter 5. Pipeline Pattern: Optimal pipeline configuration

1 /***
2 * 2.- Pipeline declaration and usage
3 ***/
4 int main(int argc, char* argv[]){
5 int numThreads = nC+1; // number of threads = nC+1
6 h_pipeline::pipeline<ViVidItem> pipe(numThreads);
7

8 // Set CG, MG and GPU functions for each stage
9 pipe.add_stage(cg_f1, mg_f1, gpu_f1);

10 pipe.add_stage(cg_f2, mg_f2, gpu_f2);
11 pipe.add_stage(cg_f3, mg_f3, gpu_f3);
12

13 //Setting a static pipeline configuration: mapping ’111’ and MG
14 pipe.set_configuration({1,1,1}, h_pipeline::USE_MG);
15 pipe.run(numTokens); // maximum number of items in flight
16

17 //Dispatch of the adaptive configuration mode for the pipeline
18 //pipe.run(ENERGY, maxoverhead, variation);
19 }

Figure 5.7: Usage and declaration of the pipeline template.

logical threads to be created and num stages which has the current count of
stages in the list. The class constructor (line 12) initializes the TBB library with
the number of threads passed as argument. Then, the constructor creates the
OpenCL environment (context, command queues, ...) and selects the GPU as
the target device.

To configure the topology of the pipeline, the pipeline class defines two meth-
ods (add stage() and set configuration()). As mentioned before, this
class keeps a list of stages, where the Input and Output stages (first and last ones)
are serial. For each one of the middle stages (parallel or stateless) the function
add stage() is called with three function pointers passed as arguments (CG,
MG, GPU), so a new parallel stage instance is created and inserted in the
list (line 18). The set configuration() (line 24) method allows the user to
set a specific pipeline configuration. This method receives two parameters: an
array of zeros and ones, where the i-th element specifies whether the i-th stage
can use the GPU (1) or not (0). The second parameter is an enumerated type
that sets the type of CPU functor (USE MG for Medium Grain, MG, or USE CG
for Coarse Grain, CG) that should be used for all stages.

In order to execute the pipeline, the run() method must be invoked. No-
tice that it is possible to invoke two versions of the pipeline.run() method
(lines 31 and 36), thus two types of modes are available: a static configura-
tion or an adaptive configuration mode. The former (line 31) has a static be-
haviour, it means that just one pipeline configuration is used during the whole

5.2. Pipeline template 139

1 /***
2 * pipeline class inner details
3 ***/
4 template <class Item_T>
5 class pipeline : public tbb::pipeline {
6 //members
7 atomic<int> gpuStatus; //0 GPU is idle, 1 GPU is busy
8 list<parallel_stage> l_stage;
9 int num_stages, nthreads, tokens;

10

11 //Constructor
12 pipeline(int numthreads){
13 //Initialize TBB scheduler and OpenCL boilerplate
14 num_stages=0; nthreads=numthreads;
15 }
16

17 //Adding Stages
18 void add_stage(void (*cg_f)(Item_T*), void (*mg_f)(Item_T*), void (*gpu_f)(Item_T

*)){
19 parallel_stage<Item_T> * iStage(cg_f, mg_f, gpu_f);
20 l_stage.add(iStage, ++num_stages);
21 }
22

23 //Setting Configuration for all stages
24 void set_configuration(int mappings[], bool granularity){
25 for(int i=0; i<num_stages; i++){
26 l_stage.get(i).setConfiguration(mapping[i], granularity);
27 }
28 }
29

30 //Overloaded pipeline.run(): static configuration mode
31 void run(int ntokens){
32 //Build the TBB pipeline and run it
33 }
34

35 //Overloaded pipeline.run(): adaptive configuration mode
36 void run(const int criteria, float overhead, float variation){
37 while(/*there are more items*/){
38 //Training Phase:
39 setConfiguration({1,1,1}, USE_MG); pipe.run_training(1);
40 setConfiguration({0,0,0}, USE_MG); pipe.run_training(1);
41 setConfiguration({0,0,0}, USE_CG);
42 for(int i=1; i<=(nthreads);i++){
43 pipe.run_training(i);
44 }
45 computeModelAndSetBestConfiguration(criteria);
46

47 //Running Phase: It can abort if a change in throughput is detected
48 pipe.run_monitoring(ntokens, overhead, variation);
49 }
50 }
51 ...
52 };

Figure 5.8: Implementation details of the pipeline class.

140 Chapter 5. Pipeline Pattern: Optimal pipeline configuration

execution of the pipeline. In this case, the user is responsible to set the par-
ticular pipeline configuration by calling the function set configuration()
(i.e. pipe.set configuration({1,1,1}, USE MG)), (see line 14 in Fig. 5.7).
The adaptive configuration mode of the run() method (line 36) takes three ar-
guments: the optimization criteria (THROUGHPUT, ENERGY, THROUGH-
PUT ENERGY), a float number between 0 and 1 that represents the allowed
overhead ratio (see section 5.3.1) and a third argument that allows the user to
specify the throughput variation ratio, between 0 and 1, for which the pipeline
must execute the training phase again.

The adaptive configuration run() method has 2 phases: the training phase
and the running phase (see section 5.3.2). The training phase carries out three
experiments. The first one executes one item on the GPU through all stages
(line 39). The second one executes one item on the CPU with MG granularity
(line 40) through all stages. Finally, the third experiment launches nthreads ex-
ecutions (from 1 to nthreads) on the CPU with CG granularity (line 43). This is
explained with more details in section 5.3.2. Notice that the run training()
method is used here. Then, we compute our analytical model (line 45) with
the time and energy measurements collected in the previous experiments. Thus,
based on the desired optimization criteria, we predict a near optimal configura-
tion. This analytical model returns the best configuration that maximises the
optimization criteria passed as argument. This model is explained with deeper
details in section 5.3.2.

Once the desired configuration is found, the pipeline enters in the second
phase (running phase). In this phase, the run monitoring() method (line 48)
always monitors the throughput and energy. Whenever a change (drop/rise) in
throughput is detect and the ratio is bigger than the variation argument, the
pipeline checks the overhead parameter and the number of items processed in
this phase. If the ratio between the total spent time by the previous training
phase and the execution time of the current phase is less than the overhead
threshold, then the current running phase is aborted and the training phase is
executed again. Otherwise the algorithm continues in the running phase until
the overhead ratio is less than the overhead threshold. More details about the
computation of the overhead are covered in section 5.3.1.

5.2.3. Pipeline stage functions

An important part of the pipeline declaration and usage is the set up of the
pipeline stage functionalities. In the API, the add stage() method (Figure 5.7,

5.2. Pipeline template 141

lines 9 to 11) is used to add each one of the stages while identifying their associated
functions that may be called during pipeline execution to process the items.

1 /***
2 * 3.- Functions definition example
3 **/
4 // Example for filter 3 of ViVid
5 void cg_f3(ViVidItem *item) // Coarse grain CPU version
6 {
7 float * out, cla, his;
8 out = item->out->getHostPtr(BUF_WRITE_ONLY); //buffer on host for WR
9 cla = item->cla->getHostPtr(BUF_READ_ONLY); //buffer on host for RD

10 his = item->his->getHostPtr(BUF_READ_ONLY); //buffer on host for RD
11 // do cpu things like out[XXX] = his[XXX] + cla[XXX];
12 }
13 void mg_f3(ViVidItem *item) // Medium grain CPU version
14 {
15 float * out, cla, his;
16 out = item->out->getHostPtr(BUF_WRITE_ONLY); //buffer on host for WR
17 cla = item->cla->getHostPtr(BUF_READ_ONLY); //buffer on host for RD
18 his = item->his->getHostPtr(BUF_READ_ONLY); //buffer on host for RD
19

20 tbb::parallel_for(0, aheight), 1, [&] (size_t i) {
21 // do cpu things like out[i] = his[i] + cla[i];
22 });
23

24 // #pragma omp parallel for
25 // for (size_t i=0; i<aheight; i++) {
26 // do cpu things like out[i] = his[i] + cla[i];
27 // }
28 }
29 void gpu_f3(ViVidItem *item) // GPU OpenCL version
30 {
31 cl_mem out,cla,his;
32 out = item->out->getDevicePtr(BUF_WRITE_ONLY); //buffer on device for WR
33 cla = item->cla->getDevicePtr(BUF_READ_ONLY); //buffer on device for RD
34 his = item->his->getDevicePtr(BUF_READ_ONLY); //buffer on device for RD
35

36 // Setting kernel parameters
37 // Launching kernel
38 //...
39 }

Figure 5.9: Functions for pipeline stages operations (CG, MG, GPU).

Figure 5.9 shows an example of these stage functions definition. The program-
mer can provide up to three di↵erent versions of the same function. The pipeline
will use the appropriate version of the function to map the stage to one CPU
core, several CPU cores, or the GPU device. Each function receives as argument
a pointer to the item to be processed. From such item we can obtain the point-
ers to the input/output data bu↵ers by using the method getHostPtr() to
obtain a host pointer, or getDevicePtr() to obtain an OpenCL bu↵er object
usable on the GPU device. In both cases, the access type for that bu↵er inside

142 Chapter 5. Pipeline Pattern: Optimal pipeline configuration

the function must be set by the programmer (options are: BUF READ ONLY,
BUF WRITE ONLY, BUF READ WRITE).

Figure 5.9 shows the definition of two functions that can be invoked on the
CPU and a third one to process an item on the GPU. First, in line 5 we have the
CPU function for CG granularity, that is basically a serial code to process one
item on one CPU core. For this granularity, parallelism is exploited at the task
level since several cores may be running this function at the same time for di↵erent
items. Next in line 13, we have the definition of the function for MG granularity,
where all the cores collaborate in processing a single item. Now, data parallelism
is exploited, and to that end in this example, we rely on tbb::parallel for()
(line 20). MG granularity can also be exploited by using OpenMP as shown in
commented line 24. Finally we have the GPU code defined in the gpu f3() func-
tion (line 29). Note also that pipeline parallelism is exploited because concurrent
items traverse the stages of a pipeline at their own pace.

Implementation details

As mentioned before, one of the key components of the pipeline<T> class
is the parallel stage class. One object of this class is allocated for each
add stage() invocation (see Figure 5.7 lines 9 to 11). This class holds im-
portant instance variables: three of them are function pointers (see Figure 5.10
lines 9-11) which point to the functions declared in Figure 5.9 (they are initialized
in the class constructor in line 14). The other two instance variables, runOnGPU
and grain, are used to decide whether one stage should execute on CPU or on
GPU (at runtime) and in the former case, if the MG or CG version should be
used to execute the stage on the CPU. The operator() function (line 22) is
automatically invoked when an item reaches the stage. This functor first receives
a pointer to the item that needs to be processed, so it can be passed down to
the appropriate function. Then, it decides which function has to be called: if
runOnGPU is true and the GPU is idle, the item is processed on the GPU (i.e.
gpuFunc() is called). Otherwise, depending on the grain variable, mgFunc()
or cgFunc() function is invoked.

5.2.4. Bu↵er class

As shown previously in Figure 5.6, thanks to our DataBuffer<T> template
class, the programmer does not need to manage memory bu↵ers explicitly. The
supplied bu↵er class hides all data bu↵er management and the programmer just
need to ask for the references to the bu↵ers, indicating whether the bu↵ers are
read or/and write. Figure 5.11 shows an example of bu↵er declaration and access

5.2. Pipeline template 143

1 /***
2 * Parallel Stage Internal Details
3 ***/
4 template <class Item_T>
5 class parallel_stage : public tbb::filter{
6 //members
7 int runOnGPU; //1 runs on GPU, 0 runs on CPU
8 bool grain; //True is MG, False is CG
9 void (*cgFunc)(Item_T*);

10 void (*mgFunc)(Item_T*);
11 void (*gpuFunc)(Item_T*);
12

13 //Constructor
14 parallel_stage(void (*cg_f)(Item_T*), void (*mg_f)(Item_T*), void (*gpu_f

)(Item_T*)){
15 cgFunc=cg_f; mgFunc=mg_f; gpuFunc=gpu_f;
16 }
17 //Methods
18 void setConfiguration(int mapping, bool granularity){
19 runOnGPU = mapping; grain = granularity;
20 }
21 ...
22 void * operator()(void * item){
23 Item_T *it = (Item_T *) item;
24 if(runOnGPU && h_pipeline::isGPUidle()){
25 gpuFunc(it);
26 }else if(grain){
27 mgFunc(it);
28 }else{
29 cgFunc(it);
30 }
31 return it;
32 }
33 };

Figure 5.10: Internal details of the parallel stage class.

setting. In line 5 a data bu↵er is declared. In the next line a pointer, *frame,
is declared to access the former data bu↵er from the CPU.

The DataBuffer class o↵ers a way to set up the type of access to a certain
OpenCL bu↵er, so a method to set it up must be used (line 9) and we can choose
to use a Zero-Copy Bu↵er approach (line 10) or copy data from the CPU host to
the GPU (and vice versa) when required.

On the creation of the bu↵er (line 9), we need to set the kind of access
that this bu↵er will take from the OpenCL kernel (read or/and write). The
actual allocation of the bu↵er (on host or device memory) is delayed until the
first usage. To use the bu↵er, the programmer has to invoke the right method:
getHostPtr() to obtain a host pointer, or getDevicePtr() to obtain a
device memory object. In the example of Figure 5.11 (line 14), the host pointer,

144 Chapter 5. Pipeline Pattern: Optimal pipeline configuration

1 /***
2 * 4.- BUFFER usage
3 ***/
4 int main(int argc, char* argv[]){
5 DataBuffer<float> * global_frame; // data buffer
6 float *frame; // pointer to the buffer from CPU
7

8 //Specify access mode for OpenCL kernel: BUF_READ BUF_WRITE
BUF_READ_WRITE

9 global_frame = new DataBuffer<float>(size, BUF_READ);
10 global_frame->set_ZCB(true); //Set Zero Copy Buffer usage
11 global_frame->use_Pool(true); //Use a pool of buffers
12

13 //acquire the buffer reference to write it on the CPU
14 frame = global_frame->get_HOST_PTR(BUF_WRITE);
15 frame[XXX] = XXX; // fill the buffer on the CPU
16 //Pipeline definition and usage
17 ...
18 }

Figure 5.11: Usage example of the DataBu↵er class.

frame, is initialized using getHostPtr() with write intent. In the next line,
the bu↵er is initialized with the appropriate data.

5.3. Optimal pipeline configuration strategy

Our proposed framework is particularly suitable for streaming applications that
may exhibit a variation in the streaming characteristics. In these cases, we can
adjust the pipeline configuration to optimise the desired metric, raw throughput,
energy, or a tradeo↵.

Our framework is designed as a two phase engine: first, a training phase
followed by a running phase. The training phase carries out two steps: 1) a mea-
surement collection step, where we measure time and energy on CPU and GPU;
and 2) an evaluation step, where our model (see section 5.3.2) finds the optimal
pipeline configuration using the collected data by computing a few frames. Dur-
ing the training phase, a few frames are used, so no o↵-line training is necessary.
Also, the runs to collect the measurements are conducted on one processor at a
given time, either the CPU or GPU (homogeneous runs). Once the evaluation
step finds the optimal configuration, the framework enters the running phase.
In order to adapt to variations in the computation needs of the applications,
throughput is monitored during running phase, so that any throughput change
bigger than the variation ratio, which is given by the user, can return the frame-

5.3. Optimal pipeline configuration strategy 145

work to the training phase. However, to limit the overhead of the the training
phase, training is only performed when its associated overhead is less than a
threshold value provided by the user (more details in subsection 5.3.1).

Let’s assume that a streaming application has s parallel stages S1, S2, ..,
Ss and that all items are executed through all these stages. Additionally, we
consider two more stages, Input and Output stages are serial (Si, So), although
this is not a pre-requisite in our model. Our model is based on a set of equations
that allow us to estimate the throughput and energy consumption per item for
all possible pipeline alternatives. Assume that our system consists of nC CPU
cores and 1 on-chip GPU. Then, our framework invokes the model’s equations
for the 2s · (nC + 2) possible pipeline configurations, and for each one computes
the e↵ective throughput, �e, and the e↵ective energy per item, Ee. From the
estimations, it selects the pipeline configuration for which the optimal is found:
highest �e or lowest Ee, depending on the metric considered. We can also use
any combination of these metrics to define a tradeo↵ metric and look for the
configuration which obtains the optimal value.

5.3.1. Measurement Collection step

As mentioned, the equations of our model use the collected data recorded in the
measurement collection step. In this step, we carry out nC + 3 experiments to
obtain all the values needed by the model. Moreover, for each experiment, we use
a few input items (from 1 to 5) to compute average time and energy per item.

Note that this number of experiments is usually much smaller than the 2s ·
(nC+2) possible alternatives. Thanks to the model we do not need to experimen-
tally assess all of them. For time measurements, we use the clock ticks hardware
counter, while for the energy measurements, we use the energy counters available
on the Ivy Bridge and the Haswell architectures [26, 28]. Let’s remind that these
counters measure three domains: P (or total), C (or PP0) and G (or PP1).
P or Package means the consumption of the whole chip, including CPU, GPU,
memory hierarchy and auxiliary units. C is CPU cores domain and G is the GPU
domain. In our model we consider C, G and U = P �C�G. Therefore, this last
component represents the Uncore energy consumption. For other architectures,
energy information can be estimated by either relying on performance counters
that can be read by using a library, such as PAPI [74], or by using a power sensor,
like the Texas Instruments INA231 power monitor integrated with the Exynos 5
on the Odroid XU3 platform [47]. Current trends point out that energy counters
will be widely available in the near future. Anyway, even if energy information

146 Chapter 5. Pipeline Pattern: Optimal pipeline configuration

is not accessible, our framework is still useful to minimise execution time.

The experiments and measurements we collect are always from homogeneous
runs (only GPU or CPU execution). These experiments are the following:

CG experiments: we perform 1 experiment in which all stages are executed
by one thread in one CPU core. We collect time and energy per stage (see
TCG
k and

�
ECG

C
k

, ECG
G

k

, ECG
U

k

�
, k = 1 : s, in Table 5.1). For energy measure-

ments we collect three components (C, G, U) as previously explained. Next,
we carry out nC additional experiments in the CPU multicore: on each one,
n threads (with n changing from 2 to nC+12) process n items (each thread
processes one item) throughout all the pipeline stages, i.e. homogeneous
CG executions. We collect the total time and energy per item (see TCG(n)
and

�
ECG

C (n), ECG
G (n), ECG

U

�
, n = 2 : nC + 1, Table 5.1). Note that the

case for one thread was already considered in the first experiment described
above. Actually, TCG(1) =

Ps
k=1 T

CG
k and ECG

⇤ (1) =
Ps

k=1 E
CG
⇤
k

, where
⇤ takes the value C, G and U. With these measurements we implicitly in-
corporate to the model the impact that n threads processing n items have
in the memory system as well as the scalability behaviour in the CPU. To
carry out these nC + 1 experiments, (nC + 2) · (nC + 1)/2 items of the
stream are processed.

MG experiments: we conduct 2 additional experiments in which all stages
are executed first by one thread on the GPU, and next by nC threads on the
CPU multicore, i.e. homogeneous MG execution, where nC is the number
of CPU cores. Again, we collect time and energy per stage (see TG

k and�
EG

C
k

, EG
G

k

, EG
U

k

�
, k = 1 : s, for the GPU and TMG

k and
�
EMG

C
k

, EMG
G

k

, EMG
U

k

�
,

k = 1 : s, for MG on the CPU, in Table 5.2). Now, 2 additional items of
the stream are processed to carry out these 2 MG experiments.

In Tables 5.1 and 5.2, the third column, Time Col., represents the time to
collect the corresponding parameters in the same row. For example, to collect
TCG(1), . . . , TCG(s) and

�
ECG

C
k

, ECG
G

k

, ECG
U

k

�
k = 1 : s, we need tCG time. This

time is required to compute the total overhead of the collection step.

Note that in practice, TCG(1) =
Ps

k=1 T
CG
k , ECG

⇤ (1) =
Ps

k=1 E
CG
⇤
k

, where ⇤
takes the value C, G and U, and tCG(1) = tCG.

Although not reported in Table 5.2, when we collect the GPU execution data,
TG
1 , . . ., TG

s , and energy measurements,
�
EG

C1
, . . . , EG

U1

�
, . . .,

�
EG

C
s

, . . . , EG
U

s

�
, we

2We increase the number of threads until nC + 1 in order to simulate the interference from
the GPU host thread.

5.3. Optimal pipeline configuration strategy 147

Table 5.1: Collected data (Measured time and energy per item) for CG experiments.
This third column has the times needed to collect the corresponding parameters.

Parameter Device Time col. Description

TCG

1 , . . . , TCG

s

CPU tCG

time per item (and stage) on
the CG exec. (1 thread)⇣

ECG

C1
, ECG

G1
, ECG

U1

⌘
(C,G,U) components of the

. . . CPU energy per item (and stage)⇣
ECG

C

s

, ECG

G

s

, ECG

U

s

⌘
on the CG exec. (1 thread)

tCG(1) total time per item on the CG
TCG(1), . . . , TCG(n

m

) CPU . . . exec. (1, 2, . . . , n
m

= nC + 1
tCG(n

m

) threads)�
ECG

C

(1), ECG

G

(1), ECG

U

(1)
�

(C,G,U) comp. of the total
energy per item on the CG
exec. (1, 2, . . . , n

m

= nC+1)
· · · CPU�
ECG

C

(n
m

), ECG

G

(n
m

), ECG

U

(n
m

)
�

Table 5.2: Measured time per item, T , and energy per item, E, and per stage for GPU
and for MG. Also time to collect them.

Parameter Device Time col. Description

TG

1 , . . . , TG

s

GPU tG
time per item (and stage) on the GPU exec.
(1 thread)⇣

EG

C1
, EG

G1
, EG

U1

⌘

(C,G,U) components of the energy per
item (and stage) on the GPU exec.· · · GPU⇣

EG

C

s

, EG

G

s

, EG

U

s

⌘

TMG

1 , . . . , TMG

s

CPU tMG

time per item (and stage) on the MG exec.
(nC threads)⇣

EMG

C1
, EMG

G1
, EMG

U1

⌘

(C,G,U) components of the energy per
item (and stage) on the MG exec.· · · CPU⇣

EMG

C

s

, EMG

G

s

, EMG

U

s

⌘

also include in the measurement for each stage the time and energy due to the
host-to-device and the device-to-host data transfers. These transfer times are
negligible for the applications and the on-Chip GPUs used in the experiments,
as they communicate through the Last Level Cache (LLC).

Notice that the model can also be used when hyperthreading is enabled. To
consider the use of hyperthreading, the collecting measurement step needs to run
nC ⇤ 2 + 3 (instead of nC + 3) experiments. Hyperthreading was not beneficial
for our applications and we did not consider it in our experimental results.

148 Chapter 5. Pipeline Pattern: Optimal pipeline configuration

Controlling the overhead

The cost of the training phase is mainly due to the measurement collection step,
where items are computed in an ine�ciently way, because of the homogeneous
runs (only one device is used at a time) carried out during this step. After
the measurement collection step and the subsequent model instantiation, we can
control the time when a new training can be performed to guarantee that the
overhead due to the training is kept under certain threshold.

If after the training phase and the subsequent model instantiation, no change
of configuration is recommended, this training phase completely translates into
overhead. To limit this training overhead in the worst case, we can control
how frequently our scheduler enters this phase. Suppose that after performing
the training step, �c is the throughput of the current configuration and that
Ns = (nC + 2) · (nC + 1)/2 + 2 is the number of items processed during the
measurement collection step (see Tables 5.1 and 5.2). Then, �t can be defined
as the time penalty due to the training. It is computed as the time needed to
carry out the collection step minus the time it takes to compute Ns items with
the current �c throughput:

�t =

tCG +

nC+1X

n=2

tCG(n)

!
+ tMG + tG

!
�Ns/�c (5.1)

The overhead of the last training with respect to the current throughput can be
computed as,

ov =
�t

t+�t
(5.2)

We can keep this overhead below a threshold value, ovthl, if �t/(�t+ t) < ovthl,
or in other words:

t >
(1� ovthl)

ovthl
·�t (5.3)

This expression gives us a lower bound to control the time t between training
phases that guarantees that the overhead of training is less than a certain thresh-
old. Notice that equation 5.3 is not based on the real overhead of the training
phase, as computing this overhead would require a) the throughput before train-
ing, b) the time to perform the training, and c) the throughput after training.

5.3. Optimal pipeline configuration strategy 149

However, b) and c) are only known after the training is performed. Thus, equa-
tion 5.3 is based on the overhead incurred by the last training that is processing
items at a throughput lower than that of the current configuration.

For the ViVid application on the Ivy Bridge chip presented in section 5.4, 5%
of overhead is paid when the training takes place every 3.7 sec. for low resolution
input video. Thus, the training overhead can be amortized after processing a
few items with the new recommended pipeline configuration, as we discuss in
section 5.4. The result 3.7 seconds is obtained by substituting in equation 5.3,
ovthl = 0.05, and �t = 0.46 + 17/65 = 0.198, this is, 0.46 seconds is the time
needed to collect the measurements using 17 items ((4+2)(4+1)/2+2) and the
current throughput in LD is 65 fps. �t is a positive number because the training
time is larger than the time to process the 17 items at the current throughput.

5.3.2. Model for finding the optimal pipeline configuration

We model the heterogeneous pipeline configurations as a closed network of logical
queues where items arrive following a Poisson process [44]. This is pertinent in
the context of streaming applications [79] where item arrivals can be considered
independent and inter-arrival time can be viewed as following an exponential
distribution. In these closed systems, items can be viewed as circulating continu-
ously and never leaving the network of queues, because a new item can not enter
until a previous one leaves. Figure 5.12 shows our models for the Decoupled and
Coupled configurations, where we can see that an item can follow one of two
alternative paths before entering again in the system. In our models, we can
find one or more queues on each path. In particular, any sequence of consecutive
stages mapped to one device (the GPU or the CPU) is represented as a M/M/1
queue. This stands for a logical queue where a single server serves items that
arrive according to a Poisson process and have exponentially distributed service
times. Although there may be several concurrent threads on a device processing
the sequence of stages represented by the queue, we have found that assuming one
logical server on each queue still provides accuracy while keeping the equations of
the model simple. In a closed network of queues, the following expressions define
the flow balance conditions [8] at equilibrium,

�e =
P

path
j

�j (5.4)
P

path
j

pj = 1 (5.5)

pj · �e = �j (5.6)

150 Chapter 5. Pipeline Pattern: Optimal pipeline configuration

These equations allow us to relate the relative throughput of a path in a
configuration with the e↵ective throughput in that configuration. A path pathj

refers to one of the two possible paths defined in Section 5.1.1 for each con-
figuration: for DP configurations, it is either the GPU path or the CPU path
(note the subindices for the parameters on each path of the model (GPU, CPU)
in Figure 5.12a); For CP configurations, it is either the GPU-CPU path or the
CPU path (note the sub-indices for the parameters on each path of the model
(GPU-CPU, CPUB) in Figure 5.12b). In particular, equation 5.4 establishes that
given the relative throughputs of the paths in the system, �j , then the e↵ective
throughput, �e, may be obtained as a sum (i.e. combining independent Poisson
processes leads to a Poisson process). Equation 5.5 states that splitting a Poisson
process probabilistically leads to Poisson processes, being pj the probability of
taking pathj . Equation 5.6 states that, in a M/M/1 queue at equilibrium, the
average flow rate leaving the queue will also be the same as the average flow rate
entering the queue.

M/M/1
μGPU

items

λGPU

μCPU
*

QGPU

εGPU

pGPU

EGPU

⊕

λCPU
QCPUpCPU

ECPU
M/M /1*

*

*

λe

Ee

εCPU*

*

(a) Model for DP configura-
tions

M/M/1
μGPU

items

λGPU-CPU

μCPUB
*

QGPU

εGPU

pGPU-CPU

EGPU

⊕

λCPUB
QCPUB

pCPUB
M/M /1*

*

ECPUB
*

λe

Ee

εCPUB*

μCPUA
*

QCPUA

M/M /1*

εCPUA* ECPUA

*

(b) Model for CP configurations

Figure 5.12: Closed network of queues.

We define two parameters for each queue Qi: the service rate, µi, or average
rate at which an item is processed, and the energy rate, �!" i, or average energy
consumed by an item in the corresponding device (GPU or CPU) where the
queue works. This last parameter represents a vector with three components,
one for each energy domain: ("i

C

, "i
G

, "i
U

). They can be seen as the components
of the average energy consumed by an item on a device due to the stages repre-
sented by the queue Qi, when the device is the only one working in the system
(homogeneous execution).

In any case, as the network is in equilibrium, each individual queue must be in
equilibrium. This means that the utilization on the queue, ⇢i, is less than 100%,
that is, the ratio between the relative throughput of the corresponding path, �j ,
and the queue’s service rate, µi, is at most 1 [44].

5.3. Optimal pipeline configuration strategy 151

⇢i =
�j

µi
 1 (5.7)

Regarding the energy, as each individual queueQi is in equilibrium, we assume

that the energy utilization on the corresponding device, ⇢
�!
E
i , is proportional to the

probability of items serviced on the corresponding queue, pj , or in other words:

⇢
�!
E
i = pj 1,

�!
E i = ⇢

�!
E
i ·�!" i (5.8)

This expression allows us to estimate the relative energy per item consumed
by queue Qi on the corresponding device (GPU or CPU),

�!
E i. This param-

eter is also a vector that consists of three components: (Ei
C

, Ei
G

, Ei
U

). In
the case there are several logical queues mapped on a device, from Q1 to Qd,
then the relative energy per item consumed by the queues in the device is the
sum of the relative energy per item for all the queues working in the device:
Pd

i=1

�!
E i=

⇣Pd
i=1 Ei

C

,
Pd

i=1 Ei
G

,
Pd

i=1 Ei
U

⌘
. These components can be seen as

the components of the energy consumed by the items that a device processes
when the device is the only one working in the system (homogeneous execution).

However, the e↵ective energy consumed by the GPU and CPU when both
devices are working in the system (heterogeneous execution), is not the sum of
the relative energies of the queues on each device. Let’s define the e↵ective energy
per item consumed in the system, Ee, as the sum of three components:

Ee = min

✓
TDP

�e
, Ee

C

+ Ee
G

+ Ee
U

◆
(5.9)

where TDP is the power budget of the chip, �e the e↵ective throughput, and
Ee

C

+ Ee
G

+ Ee
U

the e↵ective energy consumed when the TDP is not reached.
For the heterogeneous chips studied, we have found that in case the TDP is not
reached, then each component of the e↵ective energy is given by the dominant
component of the relative energy computed for each device. This is what we call
the energy balance condition. Let’s suppose that the relative energy per item for
all the queues in the GPU device is given by

�!
EGPU = (EGPU

C

, EGPU
G

, EGPU
U

),
and the relative energy per item for all the queues in the CPU device is given
by

�!
ECPU = (ECPU

C

, ECPU
G

, ECPU
U

). The rationale for the energy balance
condition is that the C-component of the e↵ective energy is typically dominated
by the C-component of the relative energy of the CPU device, ECPU

C

, while
the C-component of the GPU device, EGPU

C

is just a “residual” or standby
consumption when the CPU is idle. Remember that this last C-component of

152 Chapter 5. Pipeline Pattern: Optimal pipeline configuration

the relative energy of the GPU device is obtained with homogeneous runs (runs
on the GPU where the CPU is idle) during the measurement collection step.
On an heterogeneous run, however, the CPU is not idle, and so the standby
consumption measured during the homogeneous run is already included in the
C-component of the relative energy of the CPU, ECPU

C

, and does not need to
be included again. A similar argument can be made for the G-component of
the e↵ective energy. With respect to the U-component, we have observed that
the e↵ective energy consumed is determined by the device (CPU or GPU) that
processes a higher load.

Next sections explain how we model Decoupled and Coupled configurations,
respectively, and how we incorporate the granularity to the models.

Model for Decoupled pipeline configurations

These configurations are shown in Figures 5.2a and 5.2c (DP-CG and DP-MG,
respectively). Figure 5.12a depicts our model for them. As explained in sec-
tion 5.1.1, in these configurations there is a GPU path in which a thread pro-
cesses an item through all stages in the GPU, and also there is a CPU path in
which n concurrent threads process other item/s through all the stages in the
CPU device.

The GPU device is modelled with QGPU which is the M/M/1 queue that
serves all the stages for the items that go through the GPU path. This queue
is characterized with two parameters: µGPU , the service rate of the GPU, and
�!" GPU , the energy rate consumed by the queue in the GPU device. The latter
parameter represents a vector with the three components of the energy per item
rate consumed in the GPU: ("GPU

C

, "GPU
G

, "GPU
U

). These parameters are com-
puted from the time and energy measurements taken in the collection step, as
we show in Table 5.3. For both parameters we consider the time and the energy
per item of all the stages Sk that are mapped to the GPU (k from 1 to s, see
Table 5.2).

The CPU device is modelled with QCPU which is the M/M*/1 queue that
serves all the stages for the items that go through the CPU path. The * stands
for the di↵erent instantiations of the queue, depending on the granularity ex-
ploited. For the CG granularity, the queue is characterized with two parameters:
µCG
CPU (n), the service rate of the CPU under CG granularity, and �!" CG

CPU (n), the
energy rate consumed by the queue in the CPU device under CG granularity.
Note that under the CG granularity the CPU device can run from 1 to nC + 1
concurrent threads. The n = 1 case represents in fact the GPU homogeneous

5.3. Optimal pipeline configuration strategy 153

execution, while the n = nC + 1 represents the maximum number of threads in
the CPU path. Therefore, for the CG granularity, both the service rate and the
energy rate are computed for each possible number of threads. Table 5.3 shows
how these parameters are computed, where we see that time and energy are taken
from the measurements in Table 5.1. Regarding the MG granularity, the queue
is defined by µMG

CPU and �!" MG
CPU . In Table 5.3 we show these parameters, where

we notice that time and energy are taken from the measurements in Table 5.2.

Since our queues are in equilibrium, and we assume maximum utilization on
each queue, by applying equation 5.7 we get ⇢GPU = 1 and ⇢⇤CPU = 1. From this
assumption, we find that the relative throughput for each path is given by the
corresponding queue’s service rate, that is, �GPU = µGPU and �⇤

CPU = µ⇤
CPU .

Also, the flow balance conditions at equilibrium (equations 5.4-5.6) allow us to
compute the e↵ective throughput of the system, �e = �GPU + �⇤

CPU , and the
probability that an item goes through the GPU path, pGPU = �GPU/�e, or the
probability that it goes through the CPU path, p⇤CPU = �⇤

CPU/�e.

On the other hand, by applying equation 5.8, we get that the energy utilization
of each queue on the corresponding device is proportional to the probability of

items serviced on the queue, or in other words, ⇢
�!
E
GPU = pGPU and ⇢

�!
E ⇤

CPU = p⇤CPU .
This assumption allows us to estimate the relative energy per item consumed by
QGPU in the GPU device,

�!
EGPU = pGPU · �!" GPU and by QCPU in the CPU

device,
�!
E ⇤

CPU = p⇤CPU ·�!" ⇤
CPU (for CG or MG granularities), respectively.

The e↵ective energy per item consumed in the system, Ee, can be computed
as the minimum of TDP/�e and the sum of three components, as defined in
equation 5.9. If the TDP is not reached, then each component can be computed by
the energy balance condition that establishes that each component of the e↵ective
energy is given by the dominant component of the relative energy computed for
each device. In particular, this condition in the DP-* configurations means:

(Ee
C

, Ee
G

, Ee
U

) = max
⇣�!
EGPU ,

�!
E ⇤

CPU

⌘
= (5.10)

�
max(EGPU

C

, E⇤
CPU

C

),max(EGPU
G

, E⇤
CPU

G

),max(EGPU
U

, E⇤
CPU

U

)
�

Model for Coupled pipeline configurations

These configurations are shown in Figs. 5.2b and 5.2d (CP-CG and CP-MG,
respectively). Figure 5.12b depicts our model for them. In these configurations
there is a GPU-CPU path in which a thread processes a item through some
stages on the GPU and other stages on a CPU core, and there can also be a

154 Chapter 5. Pipeline Pattern: Optimal pipeline configuration

T
ab

le
5.3:

S
et

of
P
aram

eters
for

D
P
-C

G
an

d
D
P
-M

G
con

fi
gu

ration
s
(*

stan
d
s
for

b
oth

).

P
a
ra

m
eter

D
ev

ice
/
G
r.

V
a
lu
e

D
escrip

tio
n

µ
G
P
U

G
P
U

1
s

Pk
=

1
T

G

k

service
rate

for
th
e
stages

m
ap

p
ed

to
th
e
G
P
U

�!"
G
P
U

G
P
U

✓
sPk
=
1
E

GC
k ,

sPk
=
1
E

GG
k ,

sPk
=
1
E

GU
k ◆

en
ergy

rate
con

su
m
ed

by
th
e
stages

m
ap

p
ed

to
th
e
G
P
U

�
G
P
U

G
P
U

µ
G
P
U

relative
th
rou

gh
p
u
t
of

th
e
G
P
U

p
ath

�!E
G
P
U

G
P
U

p
G
P
U
· �!"

G
P
U

relative
en
ergy

p
er

item
con

su
m
ed

by
Q

G
P
U

µ
C
G

C
P
U
(n
)

C
P
U

/
C
G

1
T

C
G

(n
) ,

n
=

1
:
n
C

service
rate

for
th
e
stages

m
ap

p
ed

to
th
e
C
P
U

u
n
d
er

C
G

an
d
n
th
read

s
�!"

C
G

C
P
U
(n
)

C
P
U

/
C
G

�E
C
G

C
(n
),E

C
G

G
(n
),E

C
G

U
(n
) �,

n
=

1
:
n
C

en
ergy

rate
con

su
m
ed

by
th
e
stages

m
ap

p
ed

to
th
e
C
P
U

u
n
d
er

C
G

an
d
n
th
read

s
µ
M

G
C
P
U

C
P
U

/
M
G

1
s

Pk
=

1
T

M
G

k

service
rate

for
th
e
stages

m
ap

p
ed

to
th
e
C
P
U

u
n
d
er

M
G

�!"
M

G
C
P
U

C
P
U

/
M
G

✓
sPk
=
1
E

M
G

C
k

,
sPk
=
1
E

M
G

G
k

,
sPk
=
1
E

M
G

U
k

◆
en
ergy

rate
con

su
m
ed

by
th
e
stages

m
ap

p
ed

to
th
e
C
P
U

u
n
d
er

M
G

�
⇤C
P
U

C
P
U

/
*

µ
⇤C
P
U

relative
th
rou

gh
p
u
t
of

th
e
C
P
U

p
ath

�!E
⇤C
P
U

C
P
U

/
*

p
⇤C
P
U
· �!"

⇤C
P
U

relative
en
ergy

p
er

item
con

su
m
ed

by
Q

C
P
U

�
e

G
P
U

+
C
P
U

�
G
P
U
+
�
⇤C
P
U

e↵
ective

th
rou

gh
p
u
t
of

th
e
system

E
e

G
P
U

+
C
P
U

m
in
⇣

T
D
P

�
e

,E
e
C

+
E

e
G

+
E

e
U ⌘

e↵
ective

en
ergy

p
er

item
con

su
m
ed

in
th
e
sys-

tem
.
S
ee

eq.
5.11

5.3. Optimal pipeline configuration strategy 155

CPU path in which other concurrent threads process items through all the stages
on the remaining CPU cores. To model the service provided by a sequence of
stages mapped to each device on each path, we use a logical queue. Thus, in the
GPU-CPU path we can find at least a QGPU which is the M/M/1 queue that
represents the sequence of consecutive stages that service an item on the GPU
device, and at least a QCPUA which is a M/M*/1 queue that represents the rest
of stages that serve the item on the CPU device (* stands for the granularity
studied). For simplicity, in the figure we have represented the case in which the
item is first processed by some consecutive stages on the GPU, and later by the
rest of stages on the CPU. In case of a mapping where the item is first processed
by consecutive stages mapped to the CPU, then to the GPU, then to the CPU,
and so on, the model would include more logical queues in the GPU-CPU path:
first a QCPUA, followed by a QGPU , then another QCPUA, and so on.

Each QGPU queue is characterized with two parameters: µGPU , the service
rate due to the consecutive stages mapped to the GPU, and �!" GPU , the energy
rate consumed by those stages in the GPU device. These parameters are com-
puted from the time and energy measurements taken in the collecting step, as we
show in Tables 5.4 and 5.5. For both parameters, we just consider the time and
the energy per item of the corresponding consecutive stages Sk that are mapped
to the GPU (Sk 2 QGPU). Also, each QCPUA queue is characterized with two pa-
rameters, depending on the granularity. For the CG granularity, the parameters
are: µCG

CPUA, the service rate due to the consecutive stages mapped to the CPU
under CG granularity, and �!" CG

CPUA, the energy rate consumed by those stages
in the CPU device under CG granularity. Tables 5.4 and 5.5 show how these
parameters are computed, where time and energy come from measurements in
Table 5.1. Regarding the MG granularity, the QCPUA queue is defined by µMG

CPUA

and �!" MG
CPUA. In Tables 5.4 and 5.5 we show these parameters, where we notice

that time and energy are taken from measurements in Table 5.2.

On the other hand, the stages mapped to the CPU in the CPU path, are
modelled withQCPUB which is a M/M*/1 queue. Again, * stands for the di↵erent
instantiations of the queue, depending on the granularity. For the CG granularity,
the queue is characterized with: µCG

CPUB(n), the service rate of the CPU under
CG granularity, and �!" CG

CPUB(n), the energy rate consumed by the queue in the
CPU device under CG granularity. With CG, the CPU can run from 1 to nC+1
concurrent threads, in addition to the coupled GPU-CPU thread that serves the
GPU-CPU path. Therefore, for CG, the service rate is computed taking into
account this additional coupled thread and we model it assuming that the GPU-
CPU thread is interfering with the threads that are working concurrently on the
CPU. We model this interference by subtracting to the service rate of n + 1

156 Chapter 5. Pipeline Pattern: Optimal pipeline configuration

concurrent threads running in the CPU (because the CPU consists of QCPUA

and QCPUB), a virtual service rate of 1 thread that is executing in the GPU-
CPU path (QCPUA, the coupled thread). The energy rate is computed for the n
concurrent threads working on the queue. In any case, for CG, both the service
rate and the energy rate are computed for each number of threads. Tables 5.4
and 5.5 show how these parameters are computed, where time and energy come
from measurements in Table 5.1. Regarding the MG granularity, the queue is
defined by µMG

CPUB and �!" MG
CPUB . Under this granularity, all the CPU threads will

be serving the QCPUA. Therefore, we assume that QCPUB will have a very low
probability of serving new items, and so, µMG

CPUB = 0 and �!" MG
CPUB = 0.

In this configuration, we assume optimistic utilization on each queue. By ap-
plying equation 5.7 we get ⇢GPU 1, ⇢⇤CPUA 1 and ⇢⇤CPUB 1. From these
expressions we find that a solution for the relative throughput for each path is
given by, �GPU�CPU = min(µGPU , µ⇤

CPUA) and �⇤
CPUB = µ⇤

CPUB . In general,
if there were more logical queues in the GPU-CPU path, then a solution for
�GPU�CPU could be the minimum of the corresponding service rates in the path.
Again, the flow balance conditions at equilibrium (equations 5.4-5.6) lead to com-
puting the e↵ective throughput of the system as �e = �GPU�CPU + �⇤

CPUB , and
the probability that an item goes through the GPU-CPU path as pGPU�CPU =
�GPU�CPU/�e, or through the CPU path as p⇤CPUB = �⇤

CPUB/�e.

Similar to the DP-* configurations, we assume that the energy utilization of
each queue on each device is proportional to the probability of items serviced

on the corresponding queue, as defined in equation 5.8. This means ⇢
�!
E
GPU =

pGPU�CPU , ⇢
�!
E ⇤

CPUA = pGPU�CPU and ⇢
�!
E ⇤

CPUB = p⇤CPUB . These expressions
allow us to estimate the relative energy per item consumed on the GPU de-
vice,

�!
EGPU = pGPU�CPU · �!" GPU and on the CPU device,

�!
E ⇤

CPUA +
�!
E ⇤

CPUB

=pGPU�CPU ·�!" ⇤
CPUA + p⇤CPUB ·�!" ⇤

CPUB (for CG or MG granularities), respec-
tively. As we see, in the CP-* configurations we estimate the relative energy
per item consumed in the CPU from the activity in QCPUA and in QCPUB . In
general, if there were more logical queues in the GPU-CPU path, then all the
resultant

�!
EGPU for the di↵erent QGPU should be added to estimate the rela-

tive energy per item consumed in the GPU device. Similarly, the
�!
ECPUA terms

should be added to estimate the relative energy per item consumed in the CPU
in that path. Finally, as in DP-* configurations, the e↵ective energy consumed
in the system, Ee, can be computed as the minimum of TDP/�e and the sum
of three components (see eq. 5.9). If the TDP is not reached, then following the
energy balance condition we get for CP-* configurations that,

5.3. Optimal pipeline configuration strategy 157

T
ab

le
5.
4:

S
et

of
P
ar
am

et
er
s
of

th
e
C
P
-C

G
an

d
C
P
-M

G
co
n
fi
gu

ra
ti
on

s
(*

st
an

d
s
fo
r
b
ot
h
).

P
a
ra

m
.

D
ev

.
/
G
r.

V
a
lu
e

D
es
cr
ip
ti
o
n

µ
G
P
U

G
P
U

1
P

S

k

2
Q

G
P

U

T
G

k

se
rv
ic
e
ra
te

of
st
ag
es

m
ap

p
ed

to
Q

G
P
U

in
th
e
G
P
U
-C

P
U

p
at
h

�! "
G
P
U

G
P
U

P

S
k

2
Q

G
P

U

E
G C

k

,
P

S
k

2
Q

G
P

U

E
G G

k

,
P

S
k

2
Q

G
P

U

E
G U
k

!
en
er
gy

ra
te

co
n
su
m
ed

by
st
ag
es

m
ap

p
ed

to
Q

G
P
U

in
th
e
G
P
U
-

C
P
U

p
at
h

µ
C
G

C
P
U
A

C
P
U

/
C
G

1
P

S

k

2
Q

C
P

U
A

T
C

G

k

se
rv
ic
e
ra
te

of
st
ag
es

m
ap

p
ed

to
Q

C
P
U
A

in
th
e
G
P
U
-C

P
U

p
at
h

u
n
d
er

C
G

�! "
C
G

C
P
U
A

C
P
U

/
C
G

P

S
k

2
Q

C
P

U
A

E
C
G

C
k

,
P

S
k

2
Q

C
P

U
A

E
C
G

G
k

,
P

S
k

2
Q

C
P

U
A

E
C
G

U
k

!
en
er
gy

ra
te

co
n
su
m
ed

by
st
ag
es

m
ap

p
ed

to
Q

C
P
U
A

in
th
e
G
P
U
-

C
P
U

p
at
h
u
n
d
er

C
G

µ
M

G
C
P
U
A

C
P
U

/
M
G

1
P

S

k

2
Q

C
P

U
A

T
M

G

k

se
rv
ic
e
ra
te

of
st
ag
es

m
ap

p
ed

to
Q

C
P
U
A

in
th
e
G
P
U
-C

P
U

p
at
h

u
n
d
er

M
G

�! "
M

G
C
P
U
A

C
P
U

/
M
G

P

S
k

2
Q

C
P

U
A

E
M

G
C

k

,
P

S
k

2
Q

C
P

U
A

E
M

G
G

k

,
P

S
k

2
Q

C
P

U
A

E
M

G
U

k

!
en
er
gy

ra
te

co
n
su
m
ed

by
st
ag
es

m
ap

p
ed

to
Q

C
P
U
A

in
th
e
G
P
U
-

C
P
U

p
at
h
u
n
d
er

M
G

�
⇤ G
P
U
�
C
P
U

G
P
U
-

C
P
U

/
*

m
in
(µ

G
P
U
,µ

⇤ C
P
U
A
)

re
la
ti
ve

th
ro
u
gh

p
u
t
of

th
e
G
P
U
-

C
P
U

p
at
h

�! E
G
P
U

G
P
U

p G
P
U
�
C
P
U
·�!
"

G
P
U

re
la
ti
ve

en
er
gy

p
er

it
em

co
n
-

su
m
ed

by
st
ag
es

m
ap

p
ed

to
th
e

Q
G
P
U

in
th
e
G
P
U
-C

P
U

p
at
h

�! E
⇤ C
P
U
A

C
P
U

/
*

p G
P
U
�
C
P
U
·�!
"

⇤ C
P
U
A

re
la
ti
ve

en
er
gy

p
er

it
em

co
n
-

su
m
ed

by
st
ag
es

m
ap

p
ed

to
Q

C
P
U
A
in

th
e
G
P
U
-C

P
U

p
at
h

158 Chapter 5. Pipeline Pattern: Optimal pipeline configuration

T
ab

le
5.5:

S
et

of
P
aram

eters
of

th
e
C
P
-C

G
an

d
C
P
-M

G
con

fi
gu

ration
s
(II).

P
a
ra

m
eter

D
ev

ice
/
G
r.

V
a
lu
e

D
escrip

tio
n

µ
C
G

C
P
U
B
(n
)

C
P
U

/
C
G

1
T

C
G

(n
+
1
) �

1
T

C
G

(1
) ,

n
=

0
:
n
C

service
rate

for
th
e
stages

m
ap

p
ed

to
Q

C
P
U
B

in
th
e
C
P
U

p
ath

u
n
d
er

C
G

an
d
n
th
read

s
�!"

C
G

C
P
U
B
(n
)

C
P
U

/
C
G

�E
C
G

C
(n
),E

C
G

G
(n
),E

C
G

U
(n
) �,

n
=

0
:
n
C

en
ergy

rate
con

su
m
ed

by
th
e
stages

m
ap

p
ed

in
C
P
U

p
ath

u
n
d
er

C
G

an
d
n
th
read

s
µ
M

G
C
P
U
B

C
P
U

/
M
G

0
service

rate
for

th
e
stages

m
ap

p
ed

to
Q

C
P
U
B

in
th
e
C
P
U

p
ath

u
n
d
er

M
G

�!"
M

G
C
P
U
B

C
P
U

/
M
G

0
en
ergy

p
er

item
rate

con
su
m
ed

by
th
e
stages

m
ap

p
ed

in
th
e
C
P
U
p
ath

u
n
d
er

M
G

�
⇤C
P
U
B

C
P
U

/
*

µ
⇤C
P
U
B

relative
th
rou

gh
p
u
t

of
th
e

C
P
U

p
ath

�!E
⇤C
P
U
B

C
P
U

/
*

p
⇤C
P
U
B
· �!"

⇤C
P
U
B

relative
en
ergy

p
er

item
con

su
m
ed

by
th
e
stages

m
ap

p
ed

in
th
e
C
P
U

p
ath

�
e

G
P
U

+
C
P
U

�
G
P
U
�
C
P
U
+
�
⇤C
P
U
B

e↵
ective

th
rou

gh
p
u
t
of

th
e
system

E
e

G
P
U

+
C
P
U

m
in
⇣

T
D
P

�
e

,E
e
C

+
E

e
G

+
E

e
U ⌘

e↵
ective

en
ergy

p
er

item
con

su
m
ed

in
th
e
system

.
S
ee

eq.
5.11

5.3. Optimal pipeline configuration strategy 159

(Ee
C

, Ee
G

, Ee
U

) = max
⇣�!
EGPU ,

�!
E ⇤

CPUA +
�!
E ⇤

CPUB

⌘

=

2

4
max(EGPU

C

, E⇤
CPUA

C

+ E⇤
CPUB

C

)
max(EGPU

G

, E⇤
CPUA

G

+ E⇤
CPUB

G

)
max(EGPU

U

, E⇤
CPUA

U

+ E⇤
CPUB

U

)

3

5 (5.11)

In our estimations, the transference time/energy between GPU and CPU de-
vices are not explicitly included because they were negligible for the applications
studied.

Model extensions

Notice that in our throughput and energy estimations, the transfer time and
energy between GPU and CPU devices have not been explicitly stated for the
sake of readability. However, they can be easily incorporated into our models:
the measurement collection step can collect the host-to-device and device-to-host
time and energy for each stage mapped to the GPU during the GPU homogeneous
run3. Then, the service rate of each QGPU queue, µGPU , would need to add
the host-to-device time of the first stage and the device-to-host time of the last
consecutive stage mapped to the corresponding QGPU . Similarly, the energy rate
of the queue�!" GPU , would also consider the energy consumed during the transfers
on those stages. In the integrated GPUs that we use in our experiments and for
our benchmarks, the transfer times are negligible and can be ignored without
a↵ecting the accuracy of the model. For discrete GPUs, we expect transfer times
to have a higher impact, though.

Our model can also be extended to include the alternatives not considered
in section 5.1.1. For instance, the splitting of an item on each stage would be
modelled with a GPU-CPU path, where each stage i would be represented by a
QCPUi and a QGPUi queue, and the service rates of the corresponding queues
should be the time to process the portion of the item in the corresponding device
and stage (similarly for the energy rate). The model for the alternative in which
one stage can have items exploiting both MG and CG granularities in the CPU
multicore can be modelled as two independent paths, with a CPU queue on each
one: one path with a QCPUA queue should consider in its service rate the time
to compute the item on the stage under one type of granularity (for example
the MG granularity) and the other path with a QCPUB queue should consider

3If Zero-Copy-Bu↵er approach is used then this information can not be measured easily, but
in this case time and energy due to communication operations can be disregarded.

160 Chapter 5. Pipeline Pattern: Optimal pipeline configuration

the time to compute the item on the stage under the other type of granularity
(the CG granularity in the example). Similar considerations should be taken
for computing the energy rate on each queue. For this alternative, the GPU
could be incorporated as a QGPU queue to one of the paths in the case of a
Coupled Configuration (the GPU-CPU path as shown in Figure 5.12b), or in
the case of a Decoupled Configuration the GPU would be incorporated to one
independent path with a QGPU queue (the GPU path as shown in Figure 5.12a).
The model for the alternative in with some stages exploit MG while others exploit
CG granularity would be similar to the ones studied in this chapter, but in these
cases the service rates of the QCPU queues should consider the time to process
the item under MG or CG granularities in the corresponding stages (similarly for
the energy rate). In any case, due to the constraints commented in section 5.1.1
we do not explore these alternatives further.

E↵ect of serial stages

The serial stages can become the bottleneck of the pipeline. Our model can
detect when a configuration has reached this bottleneck. Assuming that Ti and
To represent the times of the serial Input and Output stages, then the maximum
throughput that can be achievable is,

�max =
1

max(Ti, To)

In the case that our estimated throughput for one of the possible configura-
tions, has a value higher than the previous maximum, i.e. �DP�CG

e , �DP�MG
e ,

�CP�CG
e , �CP�MG

e > �max, then we say that we have reached the input/output
bottleneck in that configuration.

The output stage can also produce a serialization of items in the TBB im-
plementation if we do not size the TBB queues carefully. Thus, the variable
nTokens which defines the maximum number of tokens in flight and therefore
the size of the internal queues, must be correctly defined. For the Decoupled
configurations, the optimal value for nTokens is,

nTokensDP�CG =

⇠
max

⇣P
S

k

2Q

TG

k

,
P

S

k

/2Q

TCG

k

⌘

min
⇣P

S

k

2Q

TG

k

,
P

S

k

/2Q

TCG

k

⌘

⇡
· (1 + nC) (5.12)

whereas for the Coupled configurations, the optimal value for nTokens is,

5.4. Experimental results 161

nTokensCP�CG =
2

666

max
⇣P

S
k

2Q TG
k +

P
S
k

/2Q TCG
k ,

P
S
k

2Q TCG
k

⌘

min
⇣P

S
k

2Q TG
k +

P
S
k

/2Q TCG
k ,

P
S
k

/2Q TCG
k

⌘

3

777
· (1 + nC) (5.13)

For computing nTokensDP�MG and nTokensCP�MG we just replace TCG
k

by TMG
k in equations. 5.12 and 5.13, respectively. In any case, these equations

ensure that the number of items that can arrive to the serial output stage is
enough to keep the computational resources busy. We compute the value of the
parameter nTokens by dividing the maximum execution time of the GPU path,
GPU path in DP and GPU-CPU path in CG, by the minimum execution time
of the CPU path. Thus, we get the number of tokens that are required to avoid
load unbalanced with 1 GPU and 1 CPU. Later, we multiply this value by the
maximum number of allowed threads to ensure a valid number of tokens when
all computational units are collaborating.

In the next section, we study the accuracy of our models in two di↵erent
heterogeneous chips by using a set of real applications as well as the benefits of
adapting to changes in the input stream.

5.4. Experimental results

In this section, we present our experimental results. More precisely, Section 5.4.1
introduces the processors evaluated; and Section 5.4.2 presents the list of bench-
marks used in the evaluation section. Next, Section 5.4.3 shows the benefit of the
analytical model by comparing its performance with a state-of the art baseline
approach as well as a study of the overhead due to the training phase and the
profit due to the adaptive nature of our framework. Section 5.4.4 discusses our
experimental results in detail and compares the throughput and energy predicted
by the model with the measured values.

5.4.1. Experimental setup

In this section we present two Intel Quad-Core processors which are used in our
experiments: a Core i5-3450, 3.1GHz, 77W TDP based on the Ivy Bridge ar-
chitecture, and a Core i7-4770, 3.4GHz, 84W TDP based on the Haswell one,

162 Chapter 5. Pipeline Pattern: Optimal pipeline configuration

Table 4.1 shows a detailed processors description (see page 103). Both processors
feature Advance Vector Extensions (AVX) and have an on-chip GPU, the HD-
2500 and HD-4600, respectively. Although the Core i7 supports hyperthreading,
we found that hyperthreading is not beneficial for our applications, maybe be-
cause our benchmarks implementations use the AVX vector units and they fully
utilize the computational resources. Thus, only one thread per core is considered
for all experiments, and so the upper value for n is 5 threads (4 cores plus 1
GPU). We rely on Intel Performance Counter Monitor (PCM) tool [28] to access
the HW counters (energy, clock ticks, L2 and L3 misses, etc).

Intel TBB 4.2 provides the core template to implement the pipeline [89].
Inside each pipeline stage, we use Intel OpenCL SDK 2014 for the stages that
can be executed on the GPU, or AVX intrinsics for the computations conducted
on the cores. For the MG results, we implement nested parallelism on each stage
using TBB parallel for or OpenCL (it depends on the benchmark, as we
will note for each code in the next sections). All versions have been compiled
using Intel C++ Compiler 14.0 with -O3 optimization flag. Table 4.2 shows a
more detailed list of all libraries, SDKs, compiler an OS used in the reported
experiments. We measured time and energy in 10 executions of the applications
and compute the average. The reported metrics are throughput, �, energy per
item, E, and as a tradeo↵ metric, throughput/energy, �/E. Therefore, � is the
number of frames per second, fps, E stands for the Joules per frame, and �/E is
the fps/Joule.

For our measurements, we run each application with a set of video frames
that makes the applications to be running for around one hundred seconds, later
we calculate the average of running times and energy measurements.

5.4.2. Benchmarks

We validate our framework on Ivy Bridge and Haswell heterogeneous chips using
four real applications: ViVid [29], with Low Definition (LD) videos (600 ⇥ 416
pixels) and High Definition (HD) videos (1920⇥ 1080 pixels), SRAD [18], Track-
ing [105] and Scene Recognition [24]. For all the benchmarks and the heteroge-
neous chips evaluated, the transfer times between GPU and CPU are negligible.
Thus, we do not specify them in our model equations, as they communicate
through the Last Level Cache (LLC). Next, we describe the purpose of each
benchmark application.

The Vivid application is previously introduced in section 5.1. ViVid is com-
prised of 5 stages, being the first and last ones the serial Input and Output stages,

5.4. Experimental results 163

while the three middle ones are parallel. These middle stages are: Stage 1 that
finds the maximum response of 100 filters, Stage 2 that summarizes the low
level information collected by the previous stage and Stage 3 that computes the
actual detection step.

The SRAD (Speckle Reducing Anisotropic Di↵usion) application is part
of the Rodinia benchmark suite [18]. This benchmark implements a di↵usion
method for ultrasonic and radar imaging applications based on partial di↵erential
equations (PDEs) [114]. This method is able to remove locally correlated noise
(speckles) while maintaining important image features. SRAD has 8 pipeline
stages: a serial Input and Output stages, and 6 parallel stages. In our experi-
ments we feed these stages with a stream of 200 low-definition (LD) images.

The Tracking application calculates the movement of a set of features over
the image-flow of a video stream. The implementation is based on the Kanade Lu-
cas Tomasi (KLT) [69] algorithm of the San Diego Visual Benchmark Suite [105].
This implementation comprises three phases: i) image processing, ii) feature
extraction and iii) feature tracking. The algorithms in the first two stages ex-
hibit pixel-grained parallelism over the complete frame to be processed, but also
they are parallel at frame granularity. The third phase, feature tracking, cal-
culates movements of each feature over two consecutive frames of the video
stream. Therefore, there does not exist frame-grained parallelism, but in ex-
change, the movement calculations for each feature are independent each other
(feature-grained parallelism).

The Scene-Recognition application performs generic visual categorization,
i.e., it identifies the object content of natural images while generalizing across
variations inherent to the object class (view, imaging, lighting, occlusion, etc).
This code is based in the algorithm proposed in [24]. That algorithm presents a
Bag of Keypoints approach to visual categorization based on the Bag of Words
(BoW) model. Under this model, an image is represented by a histogram of the
number of occurrences of particular image patterns. The main advantages of
the method are its simplicity, its computational e�ciency and its invariance to
a�ne transformations, as well as variations. This application is implemented as
a four-stage pipeline. The first and last stages are serial. The second stage can
be executed on CPU and GPU, however the third stage can only be executed on
the CPU cores.

164 Chapter 5. Pipeline Pattern: Optimal pipeline configuration

5.4.3. Baseline comparison and impact of adaptation

To assess the benefit of using our framework, we compare the pipeline configura-
tion that our model predicts as best with the baseline configuration recommended
by a previous work [104]. This approach recommends a configuration based on
the intuition that pipeline stages should be mapped to the device where they
run more e�ciently. This work also recommends exploiting parallelism using
an approach similar to software pipelining where two frames are computed at
the same time, one on the GPU and another one on the CPU. Therefore, only
MG granularity is exploited on the CPU cores by this baseline approach. This
approach firstly executes 1 item throughout all stages on the GPU and 1 item
on the CPU (only MG granularity is exploited on the CPU cores). Later, each
stage is then mapped to the device where it obtains a higher throughput. Once
a stage is mapped to a device, it only runs on that device, as it is less e�cient
to run it on the other device. The recommendation is also that the execution
times of the stages running on CPU and GPU should be balanced, because with
this configuration the fastest device has to wait for the slowest one. This policy
may or may not result in the same pipeline mappings that the one found by our
model: it is the same for ViVid, but not for SRAD and Tracking. In this work,
the stages mapped to the CPU are not mapped to the GPU, and vice versa. For
instance in [104], the pipeline configuration used for ViVid is stage 1 on GPU
and 2 and 3 on CPU.

Table 5.6 shows the throughput in terms of frames per second (fps), and
throughput/energy (fps/Joule), for homogeneous executions, where only the CPU
(with MG and CG granularities) or only the GPU is used: “CPU MG”, “CPU
CG” and “GPU”. Moreover, two heterogeneous executions are compared, where
CPU and GPU are used: “Baseline” that identifies the results of the aforemen-
tioned baseline configuration [104], and “Best” which correspond to the best
configuration found by our framework. For both, performance metrics (fps) and
(fps/Joule), the higher the value, the better. The “Improv.” column shows the
percentage of improvement of “Best” with respect to “Baseline” (computed as
(Best � Baseline)/Best). The last column shows the best pipeline configura-
tion and the optimum number of threads, between parenthesis, for the CG cases.
This table also shows that the best configuration obtained using our model signif-
icantly outperforms the baseline, specially when energy is also considered. These
data show that the intuition can result in the selection of a suboptimal config-
uration, whereas the model can evaluate all configurations and select the best.
Also, the baseline only considers “CP-MG”-like mappings, whereas the model
considers more alternatives. As the table shows, in 10 out of 16 cases, the best
configuration is not CP-MG. In 6 cases (all appear in ViVid) the baseline uses

5.4. Experimental results 165

T
ab

le
5.
6:

C
om

p
ar
is
on

of
ou

r
p
ip
el
in
e
al
te
rn
at
iv
es

ag
ai
n
st

b
as
el
in
e.

F
or

b
ot
h
�
an

d
�
/E

th
e
h
ig
h
er

th
e
b
et
te
r.

H
om

og
en
eo
u
s
R
es
u
lt
s

H
et
er
og
.
R
es
u
lt
s

B
en
ch
.

A
rc
h
it
ec
t.

M
et
ri
c

C
P
U

M
G

C
P
U

C
G

G
P
U

B
as
el
in
e

B
es
t

Im
p
ro
v.

B
es
t
co
n
f.

V
iV

id
L
D

Iv
y
B
ri
d
ge

�
(f
p
s)

40
62

10
51

65
27
%

C
P
-C

G
(5
)

�
/E

(f
p
s/
J)

46
83

8
66

92
40
%

C
P
-C

G
(5
)

H
as
w
el
l

�
(f
p
s)

59
47

22
80

91
13
%

C
P
-M

G
�
/E

(f
p
s/
J)

61
43

24
11
6

13
4

15
%

C
P
-M

G

V
iV

id
H
D

Iv
y
B
ri
d
ge

�
(f
p
s)

3.
7

3.
1

1.
1

5.
6

5.
9

5%
C
P
-M

G
�
/E

(f
p
s/
J)

0.
3

0.
2

0.
1

0.
6

0.
7

15
%

C
P
-M

G

H
as
w
el
l

�
(f
p
s)

5.
4

2.
8

2.
7

6.
5

7.
2

10
%

C
P
-M

G
�
/E

(f
p
s/
J)

0.
5

0.
1

0.
3

0.
78

0.
9

12
%

C
P
-M

G

S
R
A
D

Iv
y
B
ri
d
ge

�
(f
p
s)

82
62

72
11
4

13
2

16
%

D
P
-M

G
�
/E

(f
p
s/
J)

21
2

10
0

36
2

40
3

52
3

30
%

D
P
-M

G

H
as
w
el
l

�
(f
p
s)

95
64

93
14
7

17
0

15
%

D
P
-M

G
�
/E

(f
p
s/
J)

18
2

79
67
3

49
9

67
3

34
%

D
P
-C

G
(1
)

T
ra
ck
in
g

Iv
y
B
ri
d
ge

�
(f
p
s)

6.
2

10
6.
8

13
16

23
%

C
P
-C

G
(4
)

�
/E

(f
p
s/
J)

1.
3

3.
2

2.
8

4.
0

6.
7

67
%

C
P
-C

G
(4
)

H
as
w
el
l

�
(f
p
s)

6.
3

11
9.
2

13
19

46
%

D
P
-C

G
(5
)

�
/E

(f
p
s/
J)

1.
1

2.
8

4.
0

3.
7

8.
4

12
7%

D
P
-C

G
(5
)

166 Chapter 5. Pipeline Pattern: Optimal pipeline configuration

the same mapping as the best (Stage 1 is mapped on the GPU). In these 6 cases,
� and �/E of baseline and best di↵er because in the baseline the stages mapped
to the GPU can only execute on the GPU (Stage 1 only runs on the GPU),
while in our implementation the stages mapped to the GPU can also execute
on the CPU (Stage 1 runs on both GPU and CPU). The items that follow the
CPU path in our implementation slightly increase the throughput with respect
to baseline [104]. Notice that even if we only consider CP-MG mappings, the
approach we use as baseline may not find the best mapping of stages to CPU
and GPU. For instance, for Tracking the best CP-MG mapping would be to map
stages 1 and 3 to the GPU, whereas the baseline approach would map stages 1
and 2 to the GPU.

In addition, as the number of possible configurations increases, relying on the
intuition to find the best one becomes increasingly di�cult. In this situation,
our model can reduce the number of runtime tests that are needed to determine
which one is the best configuration.

Furthermore, Table 5.6 shows that, overall throughput improvement ranges
from 5% to 46% (20% on average), whereas the improvement in throughput/en-
ergy ranges from 12% to 127% (43% on average). Energy improvement ranges
from 1% to 55% (18% on average). Interestingly, for ViVid on Ivy Bridge, the
best pipeline configuration depends on the resolution. CP-CG is the best config-
uration for LD, while CP-MG is the best for HD. Also, the best configuration can
change based on whether the metric to be optimized is � or �/E. For instance,
SRAD on Haswell obtains maximum throughput with a DP-MG configuration,
whereas the maximum throughput/energy is obtained using DP-CG with a single
thread, where this single thread is the GPU thread. So, a GPU homogeneous ex-
ecution obtains the highest �/E. We will discuss each benchmark in more detail
in section 5.4.4.

The previous work that we have considered as a baseline, can not adapt to
changes in the input stream. We experimented with changes in the video stream
feeding the ViVid application, from Low Definition to High Definition and vice
versa. For instance, on Ivy Bridge, when changing from LD to HD, a change in
the pipeline configuration from CP-CG to CP-MG results in an improvement of
81% in � (204% in �/E). Also, when changing from HD to LD, reconfiguring the
pipeline from CP-MG back to CP-CG results in 30% improvement in � (40% in
�/E). Since the training time for LD is 0.46 sec, and for HD is 6.47 sec, we can
determine using equation 5.3, that the training is amortized (from the throughput
point of view) when changes from LD to HD happen at most every 7.8 sec (⇠25
HD frames) and when changes from HD to LD happen at most every 0.85 sec
(⇠42 LD frames). However, when throughput/energy is considered, these values

5.4. Experimental results 167

are 0.11 sec (⇠1 HD frame) and 0.66 sec (⇠43 LD frames), respectively.

The training overhead can be reduced if we keep a knowledge database were
we record for every used pipeline configuration and a given throughput change,
the optimum configuration that has to be adopted. That way, when detecting a
throughput change that has already been recorded for the current configuration,
we can directly read the recommended configuration from the database. In case,
the configuration is not yet recorded, we can use the Equation 5.3 to control the
period between trainings to guarantee that the training overhead is never above
a certain threshold.

The scene recognition benchmark was not used on this section, as only one
pipeline mapping is possible. Nevertheless, it is used in the following section 5.4.4
to validate the accuracy of the model.

5.4.4. Performance and Energy discussion

In this section we validate the accuracy of the model. Figures 5.13 to 5.17 show
the results for all applications. In all of them we follow the same convention. On
the left of each figure we see the CG evaluation (lines and marks) as the number
of threads increases from 1 to 5, as shown on the x-axis. On the right side of each
figure, we show the MG evaluation (three bars and two marks). The homogeneous
CPU measurements collected in the training phase are represented by a dashed
orange line for the CG execution (see Table 5.1) and by a patterned orange
bar for the MG execution (see Table 5.2). Solid lines and bars represent model
estimations for heterogeneous runs and marks represent experimental results. For
CG predictions we use solid lines: in light-blue for the DP-CG configuration and
in dark-brown for the CP-CG one. The square marks are the measurements
obtained for both CG mappings: solid for DP-CG and hollow for CP-CG. The
solid bars represent the model prediction for MG granularities for heterogeneous
executions: in light-blue for the DP-MG configuration and in dark-brown for the
CP-MG one. The x marks are the experimental results obtained for the CP-MG
configuration whereas the solid triangles are the results for the DP-MG one. By
comparing the measurements with the model estimates we can asses the accuracy
of the model.

We have experimentally assessed all the evaluated pipeline configurations (48,
384, 48, and 5 for ViVid, SRAD, Tracking, and Scene Recognition, respectively).
To facilitate readability, instead of cramming the results of all these experiments
on a single chart, amongst all the possible CP mappings, Figures 5.13 to 5.17
only show the configuration that achieves the highest �/E result. As we dis-

168 Chapter 5. Pipeline Pattern: Optimal pipeline configuration

cuss in the next sections, for all the applications and architectures studied, the
estimations of the model reasonably match the measured metrics. For all the
cases, the model needs less than 10 microseconds to instantiate the equations for
all the possibilities and determine the optimal granularity, mapping and number
of threads. During the rest of the section, we discuss that in all the cases the
estimations of the model accurately match the measured metrics.

ViVid

In this benchmark, the MG results are obtained exploiting nested parallelism with
TBB parallel for. Figures 5.13 and 5.14 depict the estimated and measured
Throughput (�), Energy per item (E) and Throughput/Energy (�/E) for LD
and HD on Ivy Bridge and Haswell, respectively. Amongst all the CP mappings
we only show the most performing one: when stage S1 is the only one mapped
on the GPU (as illustrated in Figure 5.2 b) and d)), both for the CG and MG
granularities.

As Figures 5.13 and 5.14 show, our model is able to give a near optimal
estimation of �, E and �/E. In general, it tends to slightly overestimate the
throughput in the CP configurations, because for CP we always consider the ideal
contribution of all threads without considering their associated overheads. These
overheads account for the synchronization costs of the GPU-CPU threads in the
coupled GPU-CPU path, that we do not consider in our equations. The results
show that our model fits the measured throughput reasonably well, specially on
the Ivy Bridge architecture for which the estimated values are within 2% of the
measured ones. On Haswell, our overestimation of the throughput is under 9%.
On the same platform, our model tends to slightly underestimate the throughput
(both for LD and HD inputs) on the DP configuration, but the model predictions
are always within 6% of the measured ones. We have verified in our experimental
results that this underestimation occurs because the actual number of items that
end up going through the CPU is smaller than the number that we estimate
(using equation 5.7).

Regarding the energy results, we can also see that, our equations tend to
slightly underestimate the energy, although deviation is always within 5% of the
measured values. The deviation is more noticeable for Haswell, where our model
predicts that CP-MG is better than DP-MG, though measures tell the contrary.
Anyway, this imprecision is not significant because the di↵erences between CP-
MG and DP-MG are small, so there is not a big penalty to be paid by this error. In
any case, the best configuration for energy optimization is DP-CG with 1 thread,
that our model correctly predicts. Let’s recall that our equations always ignore
the residual values of the energy components of each device, although deviation

5.4. Experimental results 169

0,0E+00%

1,0E'02%

2,0E'02%

3,0E'02%

4,0E'02%

5,0E'02%

6,0E'02%

7,0E'02%

1% 2% 3% 4% 5%

CP
'M
G%

DP
'M
G%

CP
U'
MG

%

Th
ro
ug
hp

ut
)(i
te
m
s/
m
ili
se
c.
))

Num5Threads)(CG))

(a) Throuhgput

1,0E%03'

2,0E%03'

3,0E%03'

4,0E%03'

5,0E%03'

6,0E%03'

1' 2' 3' 4' 5'

CP
%M
G'

DP
%M
G'

CP
U%
MG

'

Th
ro
ug
hp

ut
)(i
te
m
s/
m
ili
se
c.
))

Num5Threads)(CG))

(b) Throuhgput

6,0E%01'

7,0E%01'

8,0E%01'

9,0E%01'

1,0E+00'

1,1E+00'

1,2E+00'

1,3E+00'

1' 2' 3' 4' 5'

CP
%M
G'

DP
%M
G'

CP
U%
MG

'

En
er
gy
/i
te
m
+(J
ou

le
s)
+

Num4Threads+(CG)+

CP%MG'Est.' DP%MG'Est.'

CPU'MG' CPU'CG'

CP%CG'Est.' CP%CG'Mea.'

DP%CG'Est.' DP%CG'Mea.'

CP%MG'Mea.' DP%MG'Mea.'

(c) Energy per Item

7,0$

8,0$

9,0$

10,0$

11,0$

12,0$

13,0$

14,0$

1$ 2$ 3$ 4$ 5$

CP
.M
G$

DP
.M
G$

CP
U.
MG

$

En
er
gy
/i
te
m
+(J
ou

le
s)
+

Num4Threads+(CG)+

(d) Energy per Item

0,0E+00%
1,0E'02%
2,0E'02%
3,0E'02%
4,0E'02%
5,0E'02%
6,0E'02%
7,0E'02%
8,0E'02%
9,0E'02%
1,0E'01%

1% 2% 3% 4% 5%

CP
'M
G%

DP
'M
G%

CP
U'
MG

%

Th
ro
ug
hp

ut
)/
)E
ne

rg
y)

Num1Threads)(CG))

(e) Throughput/Energy

0,0E+00%

1,0E'04%

2,0E'04%

3,0E'04%

4,0E'04%

5,0E'04%

6,0E'04%

7,0E'04%

8,0E'04%

1% 2% 3% 4% 5%

CP
'M
G%

DP
'M
G%

CP
U'
MG

%

Th
ro
ug
hp

ut
)/
)E
ne

rg
y)

Num1Threads)(CG))

(f) Throughput/Energy

Figure 5.13: Performance metrics for ViVid when processing LD (left) or HD (right)
video on Ivy Bridge. (Solid lines/bars represent model predictions and Marks are the
experimental results).

is always within 5% of the measured values. In general, these results validate our
initial assumption when deriving the simplified model for the energy consumption,
which we introduced in section 5.3.2. Also, we can mention that the accuracy of

170 Chapter 5. Pipeline Pattern: Optimal pipeline configuration

0,0E+00%

2,0E'02%

4,0E'02%

6,0E'02%

8,0E'02%

1,0E'01%

1,2E'01%

1% 2% 3% 4% 5%

CP
'M
G%

DP
'M
G%

CP
U'
MG

%

Th
ro
ug
hp

ut
)(i
te
m
s/
m
ili
se
c.
))

Num5Threads)(CG))

(a) Throughput

1,0E%03'

2,0E%03'

3,0E%03'

4,0E%03'

5,0E%03'

6,0E%03'

7,0E%03'

8,0E%03'

9,0E%03'

1' 2' 3' 4' 5'

CP
%M
G'

DP
%M
G'

CP
U%
MG

'

Th
ro
ug
hp

ut
)(i
te
m
s/
m
ili
se
c.
))

Num5Threads)(CG))

(b) Throughput

6,0E%01'

8,0E%01'

1,0E+00'

1,2E+00'

1,4E+00'

1' 2' 3' 4' 5'

CP
%M
G'

DP
%M
G'

CP
U%
MG

'

En
er
gy
/i
te
m
+(J
ou

le
s)
+

Num4Threads+(CG)+

CP%MG'Est.' DP%MG'Est.'
CPU'MG' CPU'CG'
CP%CG'Est.' CP%CG'Mea.'
DP%CG'Est.' DP%CG'Mea.'
CP%MG'Mea.' DP%MG'Mea.'

(c) Energy per Item

6,0$

8,0$

10,0$

12,0$

14,0$

16,0$

1$ 2$ 3$ 4$ 5$

CP
-M
G$

DP
-M
G$

CP
U-
MG

$

En
er
gy
/i
te
m
+(J
ou

le
s)
+

Num4Threads+(CG)+

CP-MG$Est.$
DP-MG$Est.$
CPUMG
CPUCG
CP-CG$Est.$
CP-CG$Mea.$
CP-CG$Est.$
DP-CG$Mea.$
CP-MG$Mea.$
DP-MG$Mea.$

(d) Energy per Item

0,0E+00%

2,0E'02%

4,0E'02%

6,0E'02%

8,0E'02%

1,0E'01%

1,2E'01%

1,4E'01%

1,6E'01%

1,8E'01%

1% 2% 3% 4% 5%

CP
'M
G%

DP
'M
G%

CP
U'
MG

%

Th
ro
ug
hp

ut
)/
)E
ne

rg
y)

Num1Threads)(CG))

(e) Throughput/Energy

0,0E+00%

2,0E'04%

4,0E'04%

6,0E'04%

8,0E'04%

1,0E'03%

1% 2% 3% 4% 5%

CP
'M
G%

DP
'M
G%

CP
U'
MG

%

Th
ro
ug
hp

ut
)/
)E
ne

rg
y)

Num1Threads)(CG))

(f) Throughput/Energy

Figure 5.14: Performance metrics for ViVid when processing LD (left) or HD (right)
video on Haswell. (Solid lines/bars represent model predictions and Marks are the
experimental results).

the predicted values for our other metric of interest, Throughput/Energy (�/E),
are within -5% to 10% with respect to the measured values.

Overall, and despite these small inaccuracies, the model successfully predicted

5.4. Experimental results 171

the best pipeline configuration (granularity, mapping) as well as the appropriate
number of threads, for each type of input and architecture. On Ivy Bridge,
for LD videos, the optimal is found with the CP-CG configuration and 5 threads
(although DP-CG is very close), whereas for the HD input the optimal is provided
by the CP-MG configuration (remember that MG configurations are evaluated
under n = 1 + nC, i.e. 5 threads in this architecture). However, on Haswell, the
best option for LD and HD is always CP-MG.

The figures also show an important result: a configuration with a higher
throughput can consume more energy than a lower throughput one. This can be
observed on Haswell, in Figures 5.14b and 5.14d, for the HD input and the CP-CG
configuration, for which the highest throughput is obtained with n = 5 threads.
However, the energy consumption is also higher for that number of threads. In
fact, for this configuration the optimal �/E for HD is found for n = 3, solution
that our model correctly predicts as we see in Figure 5.14f.

Finally, notice that on Haswell our model tends to slightly underestimate the
throughput (both for LD and HD inputs) on the DP configuration. This under-
estimation results on smaller estimated values for �DP /EDP than the measured
ones, although the variation is always below 6%.

SRAD

In this benchmark, each stage can implement a CG or MG granularity. Moreover,
MG granularity is exploited using OpenCL. So there are 26 · (4 + 2) = 384
pipeline alternatives. However, just instantiating our model equations for all
these possibilities we can find out the best configuration on each architecture.
Figure 5.15 shows throughput, Energy per Item and Throughput per Energy
results (from top to bottom) for Ivy Bridge and Haswell architectures. From all
the CP mappings, we only show the most e�cient one, that happens to be when
the GPU is mapped on all but the second stage, for both the CP-CG and CP-MG
configurations, in both machines.

The six parallel stages take 94% of the total execution time and it runs 2.6x
faster on the GPU than in one CPU for the CG case, and 1.44x faster on the
GPU for the MG case (similar speedups for Ivy Bridge and Haswell). These
results explain the performance improvement of the heterogeneous versions over
the homogeneous multicore one. Our model tends to overestimate the �/E met-
ric for both CG and MG granularities (due mainly to slight overestimation of the
throughput and underestimation of the energy consumed, as explained in sec-
tion 5.4.4). In any case, the deviation is always below 12% of measured values.
Again, the model predictions are accurate enough to assess that the appropriate
granularity is CG, and the optimal number of threads is 4, for both architectures.

172 Chapter 5. Pipeline Pattern: Optimal pipeline configuration

0,0E+00%

2,0E'02%

4,0E'02%

6,0E'02%

8,0E'02%

1,0E'01%

1,2E'01%

1,4E'01%

1% 2% 3% 4% 5%

CP
'M
G%

DP
'M
G%

CP
U'
MG

%

Th
ro
ug
hp

ut
)(i
te
m
s/
m
ili
se
c.
))

Num5Threads)(CG))

(a) Throughput

0,0E+00%

2,0E'02%

4,0E'02%

6,0E'02%

8,0E'02%

1,0E'01%

1,2E'01%

1,4E'01%

1,6E'01%

1,8E'01%

1% 2% 3% 4% 5%

CP
'M
G%

DP
'M
G%

CP
U'
MG

%

Th
ro
ug
hp

ut
)(i
te
m
s/
m
ili
se
c.
))

Num5Threads)(CG))

(b) Throughput

1,0E%01&

3,0E%01&

5,0E%01&

7,0E%01&

9,0E%01&

1,1E+00&

1,3E+00&

1& 2& 3& 4& 5&

CP
%M
G&

DP
%M
G&

CP
U%
MG

&

En
er
gy
'/
Ite

m
'(J
ou

le
s)
'

Num4Threads'(CG)'

CP%MG&Est.& DP%MG&Est.&
CPU&MG& CPU&CG&
CP%CG&Est.& CP%CG&Mea.&
DP%CG&Est.& DP%CG&Mea.&
CP%MG&Mea.& DP%MG&Mea.&

(c) Energy per Item

1,0E%01&

3,0E%01&

5,0E%01&

7,0E%01&

9,0E%01&

1,1E+00&

1,3E+00&

1,5E+00&

1& 2& 3& 4& 5&

CP
%M
G&

DP
%M
G&

CP
U%
MG

&

En
er
gy
/I
te
m
+(J
ou

le
s)
+

Num4Threads+(CG)+

CP%MG&Est.& DP%MG&Est.&
CPU&MG& CPU&CG&
CP%CG&Est.& CP%CG&Mea.&
DP%CG&Est.& DP%CG&Mea.&
CP%MG&Mea.& DP%MG&Mea.&

(d) Energy per Item

0,0E+00%

1,0E'01%

2,0E'01%

3,0E'01%

4,0E'01%

5,0E'01%

6,0E'01%

1% 2% 3% 4% 5%

CP
'M
G%

DP
'M
G%

CP
U'
MG

%

Th
ro
ug
hp

ut
)/
)E
ne

rg
y)

Num1Threads)(CG))

(e) Throughput/Energy

0,0E+00%

1,0E'01%

2,0E'01%

3,0E'01%

4,0E'01%

5,0E'01%

6,0E'01%

7,0E'01%

8,0E'01%

1% 2% 3% 4% 5%

CP
'M
G%

DP
'M
G%

CP
U'
MG

%

Th
ro
ug
hp

ut
)/
)E
ne

rg
y)

Num1Threads)(CG))

(f) Throughput/Energy

Figure 5.15: SRAD evaluation on Ivy Bridge (left) and Haswell (right).

Results in Figure 5.15 show that for SRAD our model also provides a reason-
able estimation of the throughput and energy on each pipeline alternative. For
this application, our equations tend to overestimate the throughput of the DP
configurations, especially for the DP-MG configuration, where 7% of deviation

5.4. Experimental results 173

over the measured throughput was found. Also, as pointed out for ViVid, a slight
underestimation of the energy consumption was registered, in this case always
below 8%. These inaccuracies are the reason of the 16% of overestimation for
�/E in the DP-MG configuration. All in all, our model correctly predicts that the
optimal configuration for Ivy Bridge is DP-MG, whereas for Haswell is DP-CG
with n = 1 if we optimize �/E. Notice, that DP-CG with n = 1 implies that the
only thread is the GPU one, which corresponds to an homogeneous execution on
the GPU. This is another example of a case in which the highest throughput does
not result in the lowest energy. For instance, here we find the maximum � with
DP-CG for n = 5 (see Figure 5.15b for Haswell). However, since the minimum
energy consumption is found for n = 1 (Figure 5.15d), the optimal �/E is also
for DP-CG n = 1 (Figure 5.15f for Haswell). Our model correctly captures this
fact.

Tracking

The pipeline of this application has 5-stages: first and last ones are Input and
Output serial stages, whereas the middle ones are parallel and can be mapped on
both CPU and GPU. Each parallel stage can implement a CG or MG granularity.
So there are 23 · (4 + 2) = 48 pipeline alternatives. In this benchmark, the MG
granularity was exploited using TBB parallel for. Again, from all the CP
mappings we only show the most e�cient one: stages 1 and 3 on the GPU
for both the CP-CG and CP-MG configurations for Ivy Bridge and Haswell.
In the experiments for tracking, we have used a video stream with 200 frames
(1080x1920) HD.

Figure 5.16 shows the computed and estimated Throughput (�), Energy (E)
and Throughput per Energy (�/E) on Ivy Bridge and Haswell architectures. The
model’s deviation for both platforms is always below 5%, 7% and 11% of mea-
sured throughput, energy and throughput/energy, respectively. Again, the model
predictions are accurate enough to assess that the appropriate configuration is
CP-CG with 4 threads with the GPU used on stages 1 and 3 for Ivy Bridge and
DP-CG with 5 threads for Haswell.

Scene Recognition

This application is implemented as a 4-stage pipeline. The first and last stages
take care of the sequential Input, and Output. The two middle stages are par-
allel. ImageRead() generates independent work items from an input stream
of images. The next stage, KeypointsExtraction() extracts the keypoints
for each image. This stage has been implemented to run on CPUs as well as on
GPUs (using OpenCL). Next stage, FeatureExtraction() computes a nor-
malized histogram of vocabulary words encountered in the image and carries out

174 Chapter 5. Pipeline Pattern: Optimal pipeline configuration

0,0E+00%

2,0E'03%

4,0E'03%

6,0E'03%

8,0E'03%

1,0E'02%

1,2E'02%

1,4E'02%

1,6E'02%

1,8E'02%

1% 2% 3% 4% 5%

CP
'M
G%

DP
'M
G%

CP
U'
MG

%

Th
ro
ug
hp

ut
)(i
te
m
s/
m
ili
se
c.
))

Num5Threads)(CG))

(a) Throughput

0,0E+00%

5,0E'03%

1,0E'02%

1,5E'02%

2,0E'02%

2,5E'02%

1% 2% 3% 4% 5%

CP
'M
G%

DP
'M
G%

CP
U'
MG

%

Th
ro
ug
hp

ut
)(i
te
m
s/
m
ili
se
c.
))

Num5Threads)(CG))

(b) Throughput

1,0E%01&

1,1E+00&

2,1E+00&

3,1E+00&

4,1E+00&

5,1E+00&

6,1E+00&

7,1E+00&

1& 2& 3& 4& 5&

CP
%M
G&

DP
%M
G&

CP
U%
MG

&

En
er
gy
'/
Ite

m
'(J
ou

le
s)
'

Num4Threads'(CG)'

CP%MG&Est.& DP%MG&Est.&
CPU&MG& CPU&CG&
CP%CG&Est.& CP%CG&Mea.&
DP%CG&Est.& DP%CG&Mea.&
CP%MG&Mea.& DP%MG&Mea.&

(c) Energy per Item

0,0E+00%

1,0E+00%

2,0E+00%

3,0E+00%

4,0E+00%

5,0E+00%

6,0E+00%

7,0E+00%

8,0E+00%

9,0E+00%

1% 2% 3% 4% 5%

CP
1M
G%

DP
1M
G%

CP
U1
MG

%

En
er
gy
/I
te
m
+(J
ou

le
s)
+

Num4Threads+(CG)+

CP1MG%Est.% DP1MG%Est.%
CPU%MG% CPU%CG%
CP1CG%Est.% CP1CG%Mea.%
DP1CG%Est.% DP1CG%Mea.%
CP1MG%Mea.% DP1MG%Mea.%

(d) Energy per Item

0,0E+00%

1,0E'03%

2,0E'03%

3,0E'03%

4,0E'03%

5,0E'03%

6,0E'03%

7,0E'03%

1% 2% 3% 4% 5%

CP
'M
G%

DP
'M
G%

CP
U'
MG

%

Th
ro
ug
hp

ut
)/
)E
ne

rg
y)

Num1Threads)(CG))

(e) Throughput/Energy

0,0E+00%

1,0E'03%

2,0E'03%

3,0E'03%

4,0E'03%

5,0E'03%

6,0E'03%

7,0E'03%

8,0E'03%

9,0E'03%

1,0E'02%

1% 2% 3% 4% 5%

CP
'M
G%

DP
'M
G%

CP
U'
MG

%

Th
ro
ug
hp

ut
)/
)E
ne

rg
y)

Num1Threads)(CG))

(f) Throughput/Energy

Figure 5.16: Tracking results on Ivy Bridge (left) and Haswell (right).

a Support Vector Machine (SVM) classification. The output of this filter is the
higher ranked class identified for the image. The last stage, OutputWrite(),
append the pair < image, class > to an output file. The input to this code are
200 images of 256⇥256 pixels from a database containing images from 8 di↵erent

5.4. Experimental results 175

classes (forest, street, coast, etc). In this benchmark, only the CP-CG configura-
tion is feasible. DP mapping is not an option because the nature of the second
parallel stage has loop dependences and it is not suitable for nested parallelism.
However, the first parallel stage can execute on both the CPU and GPU. It has
a throughput per energy on the GPU of 11% and 8% higher than that of the
CPU on the Ivy Bride and Haswell, respectively. However, this first stage just
represents the 18% of the pipeline execution (on both architectures).

4,0E%06'

9,0E%06'

1,4E%05'

1,9E%05'

2,4E%05'

2,9E%05'

1' 2' 3' 4' 5'

Th
ro
ug
hp

ut
/*
En

er
gy
*

Num1Threads*(CG)*

CPU'CG'
CP%CG'Est.'
CP%CG'Mea.'

4,0E%06'

9,0E%06'

1,4E%05'

1,9E%05'

2,4E%05'

1' 2' 3' 4' 5'
Th

ro
ug
hp

ut
/*
En

er
gy
*

Num1Threads*(CG)*

CPU'CG'
CP%CG'Est.'
CP%CG'Mea.'

Figure 5.17: Throughput / Energy for Scene Recognition.

Figure 5.17 shows the computed and estimated �/E for the CP-CG config-
uration when executing the application with 1 to 5 threads on Ivy Bridge and
Haswell. Our model accurately predicts the measured values. The higher di↵er-
ence between predicted and measured values is found in Haswell with 4 threads.
In this case, � is underestimated 7% whereas the energy is overestimated 5.5%
which turns into 11% of underestimation for �/E. We can note that the im-
provement of the CP-CG execution with respect to the homogeneous multicore is
small, as we are just a↵ecting the 18% of the application, being the improvement
factors (the ratio of the stage’s throughput/energy on the CPU vs the GPU) also
small. Anyway, one interesting finding is that the Ivy Bridge CP version reaches
the point of diminishing returns with 4 threads. Here we find a similar case as
with Vivid for HD: although the throughput is slightly higher with 5 threads,
the energy is also higher, so the solution with the highest throughput is not the
optimal for the Throughput/energy metric.

Regarding energy consumption, Ivy bridge versions are a 31% less consuming
than Haswell when running 4 threads, partly because the Ivy Bridge processor has
77W of TDP whereas the Haswell one has 88W, and partly due to Haswell’s GPU
having more cores. On other hand, taking a look at Figure 5.18b we observe that
with less than 5 threads Ivy Bridge versions achieve better throughput/energy,
whilst executing with 6 threads both versions almost achieve the same value due
to oversubscription renders more throughput. On Haswell, our model is a little bit

176 Chapter 5. Pipeline Pattern: Optimal pipeline configuration

more pessimistic because in this problem we slightly overestimate the consumed
energy. Anyway, the optimal solution is for n = 5, and our model finds it. This
is due to the already discussed di↵erences in the frequency domains of these two
architectures.

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

3.00E+03

1 2 3 4 5 6

En
er

gy

Number of threads

Haswell CPU
Haswell CPU+GPU
Ivy Bridge CPU
Ivy Bridge CPU+GPU

(a)

4.00E-06

9.00E-06

1.40E-05

1.90E-05

2.40E-05

2.90E-05

1 2 3 4 5 6

Th
ro

ug
hp

ut
/ E

ne
rg

y
Number of threads

Haswell CPU
Haswell CPU+GPU
Ivy Bridge CPU
Ivy Bridge CPU+GPU

(b)

Figure 5.18: Scene Recognition result with Energy and Throughput per Energy
on Ivy Bridge and Haswell architectures (higher the better).

5.5. Lessons learned

One relevant result of our model is that it helps us to identify the appropriate
granularity for each problem. For instance, for Ivy Bridge and the LD input for
ViVid, the CG granularity configurations are always more performing than the
MG ones, whereas for the HD input of ViVid is the contrary. On Haswell, both
for LD and HD, MG granularities perform better than CG ones. In the quest
of choosing the right granularity for each problem, we have found one important
piece of experimental evidence that helps us to understand how the granularities
a↵ect performance: the throughput and energy values reported by the multicore
homogeneous execution for the two type of granularities (in the figures of Sec-
tion 5.4, the dashed orange line for the CG execution and the patterned orange
bar for the MG execution) are key to predict when one type of granularity will
perform better than the other.

For instance, for ViVid on Ivy Bridge-LD (see Fig. 5.13), the CPU-MG
throughput (and energy) is outperformed by the CPU-CG one when n > 3.
However, on ViVid for Ivy Bridge-HD, the CPU-MG throughput (and energy)
outperforms the CPU-CG for any n. Therefore, configurations that exploit CG

5.5. Lessons learned 177

granularity seem more suitable for LD, while configurations exploiting MG will
be the ones for HD, as finally the heterogeneous executions prove. This is also
valid for all the other benchmarks and architectures, as We can see this result in
Table 5.6 by comparing the “CPU MG” and “CPU CG” columns of the homoge-
neous results: if � or �/E is larger for “CPU MG” than for “CPU CG”, then the
recommended granularity for the best configuration (see “Best conf.” column in
that table) is MG, and vice versa.

One hardware counter quite correlated with the expected scalability for each
type of granularity is the L3CLK ratio (ratio of CPU cycles lost due to L3 cache
misses) [28]. We have observed in our codes, that heterogeneous configurations
tend to have slightly higher values of L3CLK than the homogeneous CPU-CG and
CPU-MG counterparts. But nonetheless, the work performed in the CPU multi-
core is the dominant source of memory tra�c in the heterogeneous configurations,
being the homogeneous CPU-CG and CPU-MG executions good indicators about
when any type of granularity is putting more memory pressure. For instance, on
IvyBridge-LD, we get L3CLK ratios of 0.19 and 0.7 for the CPU-CG and CPU-MG
homogeneous executions respectively (hinting that CG granularity is beneficial),
whereas with HD we get ratios of 1.304 and 0.77 respectively (hinting now that
MG granularity can be the best option). Similarly, on Haswell we always obtain
higher ratios for CPU-CG executions (both LD and HD inputs) than for CPU-
MG ones, indicating that MG granularities can potentially outperform CG ones,
as finally it occurs in the heterogeneous configurations.

In addition to granularity, the mappings also play an important role. DP
mappings work well if the GPU thread obtains better values for the metric of
interest in all the stages of the pipeline than a CPU thread for CG granularities
(or better e�ciencies in all stages than nC threads for MG granularities). If
this is not the case, then CP can potentially exploit better the heterogeneity
of the system, as long as the CP mapping ensures that the pipeline stages are
mapped to the device where they execute most e�ciently. However, CP requires
synchronization between a GPU stage and a CPU stage, while DP does not
require synchronization. In any case, DP and all possible CP configurations
must be analysed to find the optimal configuration.

Other interesting result is that higher throughput does not always imply a
lower energy consumption. This is most noticeable in the CG plots of previous
figures, mainly for SRAD and ViVid HD. For example, in Figure 5.15, the CG
configurations for SRAD have the highest throughput for 4-5 threads, whereas

4When L3CLK >1.0 it indicates higher memory latency that can not be hidden, hinting that
the memory bus becomes a bottleneck.

178 Chapter 5. Pipeline Pattern: Optimal pipeline configuration

the minimum energy consumption is achieved for one thread.

As summary, we have discussed some of the main trade-o↵s that a↵ect through-
put and energy in the DP and CP mappings under di↵erent granularities, and
how our reasonable simple model is able to correctly predict all these trade-o↵s.

5.6. Conclusions

To the best of our knowledge, this is the first work proposing an analytical model
that can be used to e�ciently map the di↵erent stages of a pipeline application
onto an heterogeneous chip (integrated CPU-GPU processor). The model can use
throughput, energy, or a tradeo↵ metric such as throughput/energy to predict
the best pipeline setting. The model was validated with four applications, finding
that the accuracy of our estimations are within 2% to 16%, that su�ces to find
out the optimal pipeline configuration.

We have also compared the best configuration predicted by the model with a
state of the art approach. Our results show that the configurations selected by
the model produce, on the average, 20% higher � and 43% higher �/E. We have
measured improvements in � and �/E of up-to 82% and 204%, respectively, when
the model is used to adapt to an input video that changes its resolution. Our
framework guarantees that the runtime overhead due to the training required to
adapt to a changing input is always kept below a user-defined limit.

6 Concluding Remarks

This thesis settles in the context of Heterogeneous Computing where we
propose several runtimes and scheduling strategies for parallel patterns with the
goal of bridging the performance-programmability gap. Specifically, our propos-
als focus on the problem of e�ciently scheduling high-level parallel patterns on
heterogeneous architectures.

6.1. Contributions

In the era of Heterogeneous Computing, with the proliferation and fast evolu-
tion of heterogeneous architectures, the complexities for developing applications
for these architectures increase in equal measure. Thus, harnessing the available
computing power in these architectures has turned out to be a complex task,
specially when programmers are used to the sequential programming paradigm.
In this thesis, a few contributions are proposed to bridge the gap between perfor-
mance and ease of use. In particular, we have focused on the optimisation of two
parallel patterns, parallel for and pipeline. Next, we elaborate on our proposals.

We have extended the implementation of the TBB’s parallel for template to
allow its execution on heterogeneous architectures comprised of CPUs plus GPUs.
Furthermore, we have also designed and implemented an optimization model for
the inherent load unbalance problem of heterogeneous architectures, as it is fur-
ther important on the presence of several accelerators with di↵erent computing
power. More specifically, we propose two partitioning functions, one for the CPU
cores and another for the GPU accelerators, to extract iterations from the iter-
ation space of a parallel for loop. These functions are aware of the computing
power of all computing devices in the system, thus we can take better scheduling

179

180 Chapter 6. Concluding Remarks

decisions when there are not enough remaining iterations to feed all computing
devices. Additionally, we propose two scheduling strategies, NCHT and CHT,
that are built on top of the load balance mechanism. These two schedulers aim
at maximising the e↵ective use of the GPU host thread. Our NCHT strategy
applies oversubscription to the CPU cores, thus the CPU core that holds the
GPU can be kept working when waiting for GPU results. On the contrary, in the
CHT strategy, the GPU host thread computes a chunk of iterations after asyn-
chronously queueing a task on the GPU and before synchronizing in the waiting
function. Finally, we find out that best performance is achieved when selecting
the NCTH strategy with a number of oversubscripted threads that is equal to the
number of accelerators. We compare our load balancing and scheduling strategies
with the related approaches proposed in StarPU and corroborate that our NCHT
proposal outperforms all the StarPU’s load balance strategies. In general, nor
StarPU neither other state of the art approaches pay attention to the usage of
the GPU host thread that is key for optimising performance. Further details are
given in Chapter 3 and in the following published articles.

Ú A case study of oversubscription on multi-CPU & multi-GPU heteroge-
neous systems. Antonio Vilches, Angeles Navarro, Francisco Corbera and
Rafael Asenjo. In International Conference on Computational and Math-
ematical Methods in Science and Engineering (CMMSE), Cabo de Gata,
Spain, June 2013.

Ú Adaptive partitioning strategies for loop parallelism in heterogeneous ar-
chitectures. Angeles Navarro, Antonio Vilches, Francisco Corbera and Rafael
Asenjo. In International Conference on High Performance Computing &
Simulation (HPCS), Bologna, Italy, July 2014.

Ú Strategies for maximizing utilization on multi-CPU and multi-GPU hetero-
geneous architectures. Angeles Navarro, Antonio Vilches, Francisco Corbera
and Rafael Asenjo. In Journal of Supercomputing, 70 (2), pp 756-771, 2014.

The next contribution of this thesis is also in the line of the parallel for pat-
tern. We propose an adaptive partition strategy that automatically finds out a
near optimal task size for GPU accelerators. This contribution is key to achieve
better performance, as the GPU’s performance may depend on the size of the

6.1. Contributions 181

o✏oaded task. Our approach has a profiling phase at the beginning, where it
samples several chunk sizes and builds a model to recommend a near optimal
chunk size. Later, our approach moves to a monitoring phase where it adapts
the GPU chunk size according to changes in GPU’s throughput. The core of this
partition method is a logarithmic curve fitting that relates the profiled GPU’s
throughput with the o✏oaded chunk size. Other state of the art approaches con-
tain a profiling phase as well, however they do not monitor throughput variations
at runtime, thus they are not aware of throughput variations. In contrast, our
approach resizes the GPU chunk with each throughput variation. This approach
builds on top of the load balance mechanism explained before, so it is designed to
work in heterogeneous systems. We compare performance and energy consump-
tion of our approach against other three state of the art approaches and find out
that we always outperform the other alternatives. Our proposal gets better re-
sults as it is always adapting to application throughput changes during runtime,
and because it performs a better decision in the last part of the iteration space,
when there are not enough iterations to feed all computational devices. More
details area available in Chapter 4 and in the following articles.

Ú Adaptive Partitioning for Irregular Applications on Heterogeneous CPU-
GPU Chips. Antonio Vilches, Rafael Asenjo, Angeles Navarro, Francisco
Corbera, Ruben Gran and Maria Garzaran. In International Conference on
Computational Science (ICCS), Reykjav́ık, Iceland, June 2015.

Ú Heterogeneous parallel for template based on TBB. Antonio Vilches, Ange-
les Navarro, Francisco Corbera, Andrés Rodŕıguez, Rafael Asenjo. In Inter-
national Symposium on High-Level Parallel Programming and Applications
(HLPP), Valladolid, Spain, July 2017.

We have also explored the sources of overhead when applying an adaptive
partition to the iteration space of a parallel for loop. We consider scenarios with
and without oversubscription, where we profile the memory transfer operations,
the internal status of the GPU queue and the behaviour of the GPU host thread
when waiting for GPU completion. We get interesting insights in our results that
impact performance, for example for coarse grain applications with oversubscrip-
tion, the bigger overhead comes from the GPU host thread, as it is blocked and it
need a period of time for the O.S. scheduler to assign a new quantum of CPU. In
the case of fine grain applications, the bigger overheads comes from the memory
transfer times. In any case, we propose two type of optimizations that succeed in

182 Chapter 6. Concluding Remarks

reducing these overhead under 1%, namely PRIO and ZCB. In particular, when
using PRIO, we raise the execution priority of the GPU host thread, so it can get
automatically relinquished in the list of ready threads. The second optimization
is ZCB (Zero-Copy-Bu↵er), that avoids the copy between CPU and GPU address
space. By applying these optimizations we get a performance improvement up
to 2x. These results are published in the following article.

Ú Reducing overheads of dynamic scheduling on heterogeneous chips. Fran-
cisco Corbera, Andres Rodriguez, Rafael Asenjo, Angeles Navarro, Antonio
Vilches and Maria Garzaran. In Workshop on High Performance Energy
E�cient Embedded Systems Co-Located with HiPEAC’15 (HIP3ES), Ams-
terdam, The Netherlands, January 2015.

In this thesis, we have also extended the TBB’s pipeline pattern to allow the
execution of streaming applications on heterogeneous systems. We provide an
API that facilitates the mapping and orchestration of a series of pipeline stages
onto heterogeneous architectures. Moreover, this API automatically manages
memory bu↵ers and GPU kernels. The core of this API is an optimisation model
that finds the optimal pipeline configuration among all possible. As a pipeline
configuration depends on the number of stages that can be mapped onto the
GPU, the number of CPU threads and the type of parallelism exploited on the
CPU cores, the number of possible configurations could be very high and might
not be feasible to explore all possible configurations at runtime. Thus, we propose
a model that is able to predict the performance and energy consumption of each
pipeline configuration and find the optimal configuration. Our pipeline imple-
mentation has two phases: i) the exploration phase, where it collects some time
and energy consumption data when executing a few items; and ii) the exploitation
phase, where it executes the input stream of data with the pipeline configuration
found by executing the analytical model. Additionally, we also consider that
the characteristics of the input stream may change. Hence, we also monitor the
throughput of the application for changes during the second phase. If it happens
that we detect a variation in throughput bigger than a user given threshold, we
re-execute the profiling phase and evaluate the model with the new collected data
to get a new optimal configuration. We perform a comparison with other related
approach [104], and show that we always outperforms their performance, as they
only consider executing a stage either on the CPU or on the GPU. More details
are given in Chapter5 and in the next published articles.

6.2. Limitations 183

Ú Mapping streaming applications on commodity multi-CPU and GPU on-
chip processors. Antonio Vilches, Angeles Navarro, Rafael Asenjo, Francisco
Corbera, Ruben Gran and Maria Garzaran. In IEEE Transactions on Par-
allel and Distributed Systems (TPDS), 2015.

Ú Pipeline Template for Streaming Applications on Heterogeneous Chips.
Andres Rodriguez, Angeles Navarro, Rafael Asenjo, Francisco Corbera, An-
tonio Vilches, Maria Garzaran. In International Conference on Parallel Com-
puting (ParCo), Edinburgh, United Kingdom, September, 2015.

Ú Parallel Pipeline on Heterogeneous Multi-Processing Architectures.
Andrés Rodriguez, Angeles Navarro, Rafael Asenjo, Antonio Vilches, Fran-
cisco Corbera and Maria Garzaran. In International Workshop on Reengi-
neering for Parallelism in Heterogeneous Parallel Platforms (RePara) Co-
Located with ISPA’15, Helsinki, Finland, August 2015.

6.2. Limitations

Whereas this thesis provides several contributions, it also has some limitations.
The first limitation is related to code portability. For the two parallel patterns
that have been extended in this thesis, we require that the user provides two
versions of the kernel, one for the CPU cores and one for the GPU accelerators.
However, it would be beneficial to express a unique version of the kernel that is
compiled and run on each computational device within the system. In this sense,
we have published a preliminary work [110] based on SYCL that aims at helping
to overcome this limitation. It is a library that only requires a sequential version
in C++ that is later translated to SPIR-V and then compiled for all computational
devices in the system.

Another limitation of this thesis is that our scheduling strategies and runtimes
consider the application of interest as the only one running on the system. Thus,
if it happens that two or more applications are executing in the system, our
models will fail in their performance predictions, specifically those related to
the estimation of energy consumption. Our analytical models and schedulers
make this assumption since nowadays it is not possible to isolate the energy

184 Chapter 6. Concluding Remarks

consumption of an application when there are several applications running at the
same time.

6.3. Future work

Whilst in this thesis we have presented a number of contributions in the field
of task scheduling to support e�cient execution of parallel patterns on hetero-
geneous architectures, there are a number of potential future work that may be
worth exploring. In this sense, we conclude this thesis by pointing out several
research continuations.

Our partition strategy follows a centralized approach, that may su↵er from
memory contention when hundred or thousands of threads work in par-
allel. However, with the advent of heterogeneous shared virtual systems
(SVM), CPUs and GPUs can access the same memory positions, thus we
may lessen the impact of synchronisation between devices by using atomic
operations. Furthermore, SVM will greatly simplify the development of
distributed lock-free algorithms to solve the issue of distributing the parti-
tioning of work.

One line of research worth exploring is the implementation of our sched-
ulers on top of HSA (Heterogeneous Systems Architecture). This technology
would further reduce the overheads due kernel launching and GPU comple-
tion signaling overheads.

Our results show that many innovations are required in the memory subsys-
tem, as the GPU computational units are mainly stalled when waiting for
memory operations being resolved. Hopefully, the upcoming abstraction in
3D stacked memory and the processing in memory paradigm will help to
reduce the memory wall, specially in memory bound applications.

We may also find interesting to extend and adapt our models and schedulers
in order to o↵er support to heterogeneous systems comprised of CPUs plus
a FPGA, or even a more disruptive combination comprised of CPUs plus a
GPU plus a FPGA. For instance, the latest Xilinx heterogeneous platform,
UltraScale+ MPSoC, features a quad core CPU, plus a Mali 400 GPU
plus a FPGA. We strongly believe that our models and schedulers can be
extended to o↵er support for these new heterogeneous platforms, with the
goal of increasing productivity of programmers and providing performance
without pain.

6.3. Future work 185

Heterogeneous Computing is the most promising paradigm for accelerating
applications and reducing energy consumption. However, there is no free lunch,
this architectural heterogeneity and the availability of di↵erent computational
units increases the complexity of developing applications for these architectures.
Thus, this thesis aims at reducing the programming wall of these architectures
and provide a number of contributions to Heterogeneous Computing field, with
the hope that it will help to develop further abstractions that reduce programming
complexities and improve the overall performance.

Apéndice A
Resumen en castellano

En los últimos años se ha experimentado una revolución en el área de arquitectura
de procesadores. El final de la era de los uniprocesadores ha dado paso a los pro-
cesadores multicore y manycores con arquitecturas heterogéneas. Estos cambios
han sido debidos a varios factores tencológicos entre los que destaca el elevado
consumo de potencia, que degeneraba en situaciones en las que el calor generado
era tan grande que no pod́ıa ser disipado del encapsulado del chip. Como solución
a este problema, la industria ha apostado por arquitecturas multicore como nue-
vo paradigma para asegurar que se siguen aumentando las prestaciones con cada
nueva generación tecnológica. Actualmente, las empresas ĺıderes de fabricación de
procesadores van más allá de las arquitecturas multicore, siguiendo una evolución
hacia las llamadas arquitecturas manycore y heterogéneas con grandes números
de núcleos por chip. Estas arquitecturas están emergiendo como una alternativa
que ofrece un alto rendimiento, con un bajo consumo de potencia. Sin embargo,
la explotación de este tipo de arquitecturas presenta un importante desaf́ıo a
los desarrolladores de aplicaciones y de herramientas software. Para acelerar la
ejecución de las aplicaciones, el programador se enfrenta a una tarea compleja y
tediosa en la que se ve forzado a extraer y expresar el paralelismo de la aplica-
ción lidiando con detalles de bajo nivel de la arquitectura del procesador, lo que
limita la portabilidad y la productividad. De hecho, se ha llegado a comparar la
paralelización con una actividad de artesańıa, cuando debiera ser un proceso de
ingenieŕıa software. Para maximizar la productividad del programador es nece-
sario que se diseñen nuevos modelos de programación que dispongan de patrones
paralelos de alto nivel que permitan expresar el comportamiento paralelo de los
algoritmos. Lo ideal es que estos patrones actúen como una capa de abstracción,
que oculte los complejos detalles de implementación inherentes a la programa-
ción paralela. En esta ĺınea surge esta tesis doctoral, que se centra en el estudio e

188 Apéndice A. Resumen en castellano

implementación de patrones paralelos de alto nivel que expresen intuitivamente
las oportunidades de paralelismo presentes en las aplicaciones.

A.1. Introducción

La evolución reciente en diseño de procesadores parece indicar que las futuras ge-
neraciones contendrán cientos de cores. Más aún, estudios de la eficiencia energéti-
ca y del rendimiento por vatio [72], indican que el óptimo se consigue en arquitec-
turas en las que los cores no son simétricos: hablamos de sistemas heterogéneos
que se componen de aceleradores muy potentes (como GPUs o el coprocesador
Xeon Phi) con numerosos, pero más simples cores [64]. De hecho, muchas pla-
taformas HPC están diseñadas de manera que los nodos integrantes consisten
en un multicore con una (o más) GPUs. Ejemplos de este tipo de arquitectu-
ras heterogéneas son los 2 mayores supercomputadores del mundo, aśı tenemos,
el Tianhe-2 que ocupa la primera posición del top 5001. Este supercomputador
ofrece 33.86 petaflop/s gracias a que en cada uno de sus 16.000 nodos dispone
de 2 CPUs Intel Ivy Bridge y tres coprocesadores Intel Xeon Phi. De la misma
forma, Titan, número 2 del top 500 alcanza unos 17.59 petaflop/s gracias a las
18.688 GPUs Nvidia Tesla, que son responsables del 90% de esa capacidad de
cómputo.

Los sistemas heterogéneos basados en GPUs, pueden incorporar GPUs dis-
cretas conectadas a través del bus PCI-Express, o bien pueden estar integradas
con el sistema multicore formando parte del mismo circuito integrado. Ejemplo
de este último tipo de arquitecturas son los procesadores AMD Fusion (APUs),
Intel Haswell o NVIDIA Jetson K1. Claramente, y por restricciones en el consumo
de potencia, estos sistemas que combinan distintas arquitecturas se están convir-
tiendo en las arquitecturas dominantes. Incluso para dispositivos móviles como
smartphones y tablets, los últimos procesadores comercializados ya incluyen 4
u 8 cores y una GPU integrada. De este tipo de procesadores embebidos pode-
mos destacar el procesador Qualcomm Snapdragon 800 (que contiene una GPU
Adreno 320), o el procesador de Samsung Exynos Octa con una GPU PowerVR.
Independientemente del grado de acoplamiento de las GPUs en el sistema hete-
rogéneo, el éxito de estas arquitecturas dependerá de la capacidad del software del
sistema para adaptar el paralelismo definido a nivel de aplicación al paralelismo
disponible en el nivel hardware. El objetivo de esta tesis consiste en proporcionar
mecanismos para incrementar el rendimiento de arquitecturas heterogéneas de
una forma productiva y efectiva para el desarrollador.

1www.top500.org

A.2. Motivación 189

En este contexto, cuando hablamos de acelerar aplicaciones, necesitamos que
el software del sistema ofrezca un modelo de programación que permita expresar
todas las oportunidades de paralelismo de la aplicación, mientras que el runtime
será el responsable de mapear el paralelismo a la heterogeneidad del sistema, tan-
to en términos de potencia de cálculo como en términos de consumo de enerǵıa.
Es decir, el runtime debe asegurar la utilización eficiente de los recursos en estas
arquitecturas a través de un preciso particionado de la carga de trabajo entre
los cores de CPU y las GPUs del nodo. Diseñar una estrategia o mecanismo de
partición del trabajo en estos sistemas no es trivial: se ha de considerar que cierto
tipo de cálculos pueden ser ejecutados más eficientemente en CPUs que en GPUs,
debido a la sobrecarga de movimiento de datos entre las diferentes memorias, o
a ineficiencias de los kernels que ejecutan las GPUs en los que aparecen dema-
siadas divergencias de control, o accesos aleatorios a la memoria de la GPU, etc.
De forma inversa, también existen aplicaciones que se ejecutan mucho más efi-
cientemente en GPUs, como aplicaciones de algebra matricial. Otro problema, es
determinar la cantidad de trabajo que se asigna a cada GPU, dependiendo de la
aplicación, puede afectar en mayor o menor medida al rendimiento que se obtiene
en dicha GPU. Hasta el punto de que dicho rendimiento puede ser inferior al que
se consigue en un core, en cuyo caso puede no ser rentable asignar dicha compu-
tación a la GPU. Además dependiendo de las caracteŕısticas hardware de cada
una de las GPUs, la cantidad de trabajo óptima para cada una de ellas puede ser
diferente. Todo ello se complica en el caso de aplicaciones irregulares, para las que
la carga computacional puede variar a lo largo de la ejecución de la aplicación,
por lo que un mecanismo de partición adaptativo es altamente recomendable [40].

A.2. Motivación

El problema general de la planificación de tareas en este tipo de sistemas he-
terogéneos basados en multicores que incorporan una o más GPUs, ha recibido
una importante atención últimamente. Sin embargo, las libreŕıas CUDA [96],
OpenCL [38] y OpenACC [82] que representan el estado del arte para la progra-
mación de GPUs permiten especificar que una aplicación se ejecute en la GPU
(CUDA, OpenACC, OpenCL) o bien en los núcleos de CPU (OpenCL), pero no
en las dos unidades de computación simultáneamente. Además, los compiladores
actuales son poco efectivos en la optimización de este tipo de aplicaciones pa-
ra su ejecución en las modernas arquitecturas heterogéneas, debido a que cada
unidad computacional dispone de un conjunto de instrucciones ISA diferente. De
hecho, en arquitecturas heterogéneas con aceleradores, el problema es aún más
complicado, porque sus entornos de programación requieren que el programa-

190 Apéndice A. Resumen en castellano

dor expĺıcitamente maneje importantes operaciones de bajo nivel como son la
organización de los grupos de threads que se mapean en los cores f́ısicos de los
aceleradores, el alojamiento de memoria en el acelerador, o la comunicación de
datos entre CPU y aceleradores. Todos estos factores hacen que la aproximación
actual sea tediosa cuando se trata de resolver problemas complejos. Este tipo
de aproximaciones redunda en poca productividad del programador, y nuestra
visión es que hay que automatizar y optimizar el proceso tanto como sea posible.

La planificación de trabajo entre CPUs y GPUs ha recibido mucha atención
recientemente. Existen propuestas [2, 10, 40, 45, 58, 70] que permiten la ejecu-
ción concurrente de tareas en cores de CPU y GPUs. Se basan en planificadores
que gestionan la planificación de tareas de manera concurrente en ambos tipos
de recursos manteniendo el tamaño de grano (o carga computacional) de tareas
sin cambiar durante todo el tiempo de ejecución. Por ejemplo, OmpSs [10] per-
mite especificar el tipo de planificación entre CPUs y GPU utilizando directivas
similares a las de OpenMP, mientras el planificador utiliza un modelo basado en
data-flow análisis para asegurar que las tareas que se planifican no son depen-
dientes de las que se están ejecutando. StartPU [2] y XKaapi [40] exponen al
programador una API a partir de la cual éste puede especificar distintas estra-
tegias de planificación. En [40] el planificador utiliza un modelo de coste para
planificar por adelantado todas las tareas disponibles. Esta solución presenta la
desventaja de que la asignación puede dar lugar a desbalanceos de la carga, en
caso de que la ejecución real no se adapte a lo predicho por las funciones de coste.
En [2] el runtime usa un heuŕıstico para decidir cuando hay localidad entre ta-
reas que se pueden planificar en la misma GPU, o en caso de que haya que robar
trabajo para balancear la carga, tener en cuenta esta información de localidad.
Sin embargo, esto obliga a que el usuario sea responsable de especificar el rango
de direcciones y el tipo de acceso (read, write, reduction, exclusive), a través de
la API que proporciona el framework para definir las tareas. En [58] se presenta
un modelo de programación que permite la ejecución de bucles paralelos sobre la
CPU o la GPU pero nunca en las dos unidades de procesamiento al mismo tiem-
po, de esta forma se presenta un mecanismo que permite hacer códigos portables
que se pueden ejecutar tanto en la CPU como la GPU. Por lo tanto la asignación
del tamaño de trabajo a cada dispotivos es estática, decidida a priori por el pro-
gramador tras analizar emṕıricamente el tamaño de bloque óptimo. De hecho, en
todos los trabajos descritos, el programador es el responsable de determinar el
tamaño de grano de cada tarea, es decir no se aborda el problema de la partición
dinámica del trabajo, que el objetivo de nuestro estudio.

Por otro lado, recientes propuestas como [4, 58, 84] realizan un ajuste au-
tomático del tamaño de grano que se asigna a cada dispositivo. En [4] se toman

A.3. Balanceador de tareas para bucles paralelos 191

4 muestras, comenzando con un tamaño igual al número de núcleos de GPU y
se multiplica por 2 sucesivamente en los 3 siguientes pasos. Una vez tomadas
las 4 primeras muestras se realiza un ajuste de mı́nimos cuadrados de una curva
logaŕıtmica, y a partir de aqúı se mantiene el tamaño fijo. En [84] se presenta
una estrategia en la que la GPU empieza a procesar toda la carga computacional
mientras que la CPU computa pequeños subconjuntos empezando por el final,
hasta que se cruzan las computaciones. El problema que presenta esta estrategia
es que todos los datos tienen que poder alojarse en la memoria de la GPU y esto
no siempre es posible. En [58] se presenta otro esquema adaptativo en el que solo
se realiza un ajuste del tamaño de grano en el primer 10% de la carga compu-
tacional por lo que si hay variaciones en el resto de la carga el sistema quedará
desbalanceado, como es el caso de aplicaciones irregulares que presenten cargas
de trabajo triangulares. En nuestro caso, puesto que también estudiamos aplica-
ciones irregulares, el grano óptimo dependerá de los datos de entrada y variará
durante todo el tiempo de ejecución de la aplicación, por lo que el planificador
debe calcularlo dinámicamente, siendo ésta una de las premisas que diferencia
nuestra investigación de trabajos anteriores. Otro punto diferenciador de nues-
tro trabajo es que pensamos usar la asimetŕıa entre rendimiento y consumo de
enerǵıa de las diferentes unidades de procesamiento para proporcionar soluciones
en las que en función de la métrica de interés se consiga el mejor rendimiento, o
bien el mejor rendimiento para la enerǵıa consumida o simplemente la solución
que consuma menos enerǵıa (ver Capitulos 4 y 5 para más información).

Las contribuciones que resultan de la realización de esta tesis han sido pu-
blicados en conferencias internacionales con revisión por pares [80, 92, 93, 107],
workshops internacionales [23], y revistas [81, 108] que se encuentran clasificadas
en el ISI Journal Citation Report (JCR), a continuación resumimos las contribu-
ciones en las secciones de este anexo.

A.3. Balanceador de tareas para bucles paralelos

Cuando ejecutamos aplicaciones sobre arquitecturas heterogéneas con varios tipos
de procesadores, nos encontramos con el problema del reparto de tareas entre
procesadores heterogéneos del sistema, esto es que cada tipo de procesador tiene
unas caracteŕısticas propias y ofrece un rendimiento diferente. Para explotar al
máximo las capacidades de cómputo que ofrecen este tipo de arquitecturas, es
necesario alimentar a todos los procesadores del sistema con un tamaño de tareas
acorde a los recursos hardware de cada procesador. En este contexto, primero nos
centramos en la ejecución eficiente de bucles for con un conjunto de iteraciones

192 Apéndice A. Resumen en castellano

independientes sobre arquitecturas heterogéneas con varias CPUs y GPUs.

En esta primera aproximación asumimos que el usuario proporciona un ta-
maño de tarea óptimo para cada acelerador, GPU en nuestro caso. De esta forma
podemos reducir la complejidad del problema y centrarmos en el problema del
balanceo de carga de trabajo entre todos los procesadores (CPUs + GPUs), da-
do que en el caso de arquitecturas heterogéneas tres factores son cŕıticos para
alcanzar un rendimiento ideal: 1) el tamaño de las tareas ejecutadas debe de ser
cuidadosamente seleccionado y adaptado durante eñ tiempo de ejecución; 2) La
asignación de las tareas a CPU y GPU debe garantizar unos desbalanceos de
carga mı́nimos; 3) el rendimiento de cada unidad computacional tiene que ser
medido con precisión.

En esta sección presentamos un modelo de optimización para resolver anaĺıti-
camente el problema de balanceo de carga en un sistema heterogéneo. En este
contexto, nosotros observamos que la ejecución de un bucle for paralelo se puede
descomponer en intervalos de ejecución, donde en cada uno son ejecutados su-
brangos de iteraciones. Aśı tenemos que el tamaño óptimo de los cores de CPU
en el intervalo i-ésimo viene dado por la siguiente función,

Ch(IC
i

) = max

✓
Ch(IGk

i

)

fk

◆
, k = 1 : nGPUs, 8i = 1 : N, (A.1)

donde fk representa la velocidad relativa de la GPU k-ésima respecto de un
CPU core. Mientras que el término Ch(IGk

i

) representa el tamaño de tarea que
el usuario ha proporcionado para la GPU k-ésima. De esta forma, garantizamos
que los cores de CPU recibirán tareas de un tamaño que necesitará un tiempo
de cómputo equivalente al de la GPU más lenta.

De esta forma, todos las unidades computacionales del sistema tendrán sufi-
ciente trabajo disponible mientras que se cumpla la siguiente condición,

Ch(IGk

i�1
)

�(IGk

i�1
)

<
r � Ch(IGk

i�1
)

(
P

j 6=k �(IGj

i�1
)) + nCores · �(IC

i�1)
, (A.2)

esta condición se satisface cuando el tiempo que require la k-ésima GPU para
ejecutar su tarea sea menor que el tiempo que requieren el resto de unidades
computacionales del sistema para computar el número de iteraciones restantes
(r) menos el tamaño de la k-ésima GPU. Cuando alcanzamos el tramo final del
espcio de iteraciones y la ecuación A.2 no se cumple, la k-ésima GPU que es

A.4. Particionador adaptativo para bucles paralelos 193

desactivada, y el thread de GPU pasa a computar bloques de iteraciones como
una CPU más. Una vez que todas las GPUs han sido desactivadas, los cores de
CPU terminan de ejecutar las iteraciones restantes siguiendo una estrategia de
planificación guided.

Además de este modelo anaĺıtico que pretende solucionar el problema del
balanceo de carga en arquitecturas heterogéneas, se proponen dos strategias de
planificación, NCHT and CHT, que tienen como objetivo mejorar el uso del thread
de CPU que sirve a la GPU. En la estrategia de planificación NCHT el thread
de CPU que gestiona a la CPU se bloquea mientras que espera a que la GPU
termina el cómputo de su tarea. Por otro lado, en la estrategia de planificación
CHT, este thread de CPU computa una tarea justo después de encolar trabajo
para la GPU y antes de bloquearse en el punto de sincronización. Aunque pudiera
parecer que esta la estrategia CHT debe rendir mejor, hay que tener en cuenta
que con códigos irregulares es complicado hacer que la CPU y GPU acaben al
mismo tiempo, esto sumado a que estamos estimando el tamaño de CPU, hace
que cometamos pequeños errores que producen esperas entre los dispositivos.
Por otro lado, la estrategia NCHT simplemente bloquea el thread de CPU en el
punto de sincronización haciendo que esta versión desperdicie un core de CPU.
Sin embargo, la estrategia NCHT consigue el mejor rendimiento cuando se aplica
junto con la técnica de oversubscription con un número de threads adicionales
igual al número de GPUs en el sistema.

A.4. Particionador adaptativo para bucles para-
lelos

Para extender el trabajo anterior, proponemos un particionador, LogFit, que es
sensible al rendimiento de la GPU. Este particionador se encargará de partir
y distribuir bloques de iteraciones de un bucle for paralelo entre las unidades
computacionales del sistema. Este particionador es complementario al modelo
de balanceo de carga anterior. Además, este particionador está diseñado para
monitorizar las aplicaciones durante todo el tiempo de ejecución para ser capaz
de adaptarse a cambios en las demandas de cómputo.

Este algoritmo dispone de tres etapas: muestreo, explotación y final. En la
primera etapa o etapa de muestreo, este modelo empieza muestreando pequeños
tamaños de tareas que son multiplos del número de unidades de ejecución de la
GPU, a medida que la GPU ejecuta estas pequeñas tareas también se duplica
el tamaño de éstas. Este proceso continúa hasta que el rendimiento (medido en

194 Apéndice A. Resumen en castellano

iteraciones por segundo) deja de crecer, en dos muestras consecutivas. En ese mo-
mento se escogen 4 tamaños de tareas equidistantes entre todos los muestreados
y se realiza un ajuste logaŕıtmico con esos cuatro puntos.

Posteriormente, el algoritmo se mueve a la fase de explotación, el objetivo de
esta fase es adaptar el tamaño de las tareas que se asignan a la GPU de acuerdo
al rendimiento del último intervalo de ejecución. Para ello, el algortimo fija los
tres primeros puntos y actualiza el cuarto punto por el resultado de ejecutar el
último tamaño de tarea. Con este procedimiento, el ajuste logaŕıtmico se ajusta
a la demanda de cómputo del bucle paralelo en todos sus intervalos de ejecución.
El algoritmo reduce el tamaño de tareas de GPU cuando cae el rendimiento,
con el objetivo de reducir los accesos no alineados a la memoria de GPU o la
carga computacional que se asigna a cada unidad de ejecución de la GPU. Por
el contrario, cuando el rendimiento de GPU aumenta, esto se debe a que hay un
menor tráfico en el bus de memoria o se ha reducido la carga computacional por
iteración, por tanto se aumenta el tamaño de tareas para sacar un mayor partido
a la GPU.

De nuevo, cuando se cumple la condición de parada, remaining < Ch(IG
i+1)+

Ch(IC
i

) · ncores, el algoritmo se mueve a la fase final. En esta fase, el algoritmo
contempla tres posibles escenarios, que deba de ejecutar todas las iteraciones
restantes en la CPU, en la GPU, o que deba de encontrar un punto intermedio
para repartir las iteraciones entre la CPU y la GPU dependiendo del rendimiento
relativo de cada procesador.

A.5. Planificación de tareas para el patrón pipe-

line

Para resolver el problema que surge a la hora de ejecutar aplicaciones de ti-
po streaming sobre arquitecturas heterogéneas nosotros proponemos un modelo
para estimar el rendimiento y otro para estimar el consumo de enerǵıa. Las apli-
caciones de tipo streaming se implementan t́ıpicamente como una serie de etapas
en pipeline y son ampliamente usadas en cualquier sistema de cómputo, pero es-
pecialmente en los sistema portátiles como smartphones y tablets, donde los chips
heterogéneos dominan el mercado. Nuestra propuesta extiende la plantilla pipe-
line que ofrece la libreŕıa Intel Threading Building Blocks (TBB) para permitir
la ejecución de este patrón sobre sistemas heterogéneos. Con esta extensión de
la plantilla se alcanzan tres objetivos: i) simplificar el trabajo de programación
de arquitecturas con GPU y multicores; ii) optimizar la ejecución mediante un

A.5. Planificación de tareas para el patrón pipeline 195

reparto balanceado de la carga entre los distintos dispositivos; y iii) reducir el con-
sumo de enerǵıa permitiendo al programador elegir fácilmente la configuración
del pipeline más adecuada a tal efecto.

Como caso de estudio y para mostrar un ejemplo de uso de nuestra plantilla
y modelos, vamos a usar la aplicación ViVid2, una aplicación que implementa un
algoritmo de detección de objetos (caras), que se basa en una aproximación del
algoritmo de ventana deslizante para la detección de objetos. ViVid consiste en
un pipeline de 5 etapas. Las etapas primera y última son las de entrada y salida
respectivamente (son etapas serie), mientras que las tres etapas intermedias son
etapas paralelas (sin estado3).

Cuando aplicaciones como ViVid son ejecutadas en arquitecturas heterogéneas
integradas en chip, existen muchas posibles configuraciones. Por ejemplo, el usua-
rio tiene que considerar la granularidad, el número de items del pipeline que se
deben de computar simultáneamente, el procesador al que debe de ser asignada
cada etapa y el número de cores de CPU a usar, para minimizar el tiempo de
ejecución, el consumo de enerǵıa, o ambas (dependiendo de la métrica de interés).
La granularidad determina el nivel de paralelismo que es explotado en la CPU.
En nuestra aproximación, el usuario puede especificar dos niveles de granulari-
dad: grano grueso (Coarse Grain, CG) y grano medio (Medium Grain, MG). Si
diferentes items pueden ser ejecutados simultáneamente en la misma etapa (sin
estado) en la CPU, entonces la granularidad CG puede ser explotada. Por otro
lado, si el cuerpo de una etapa es paralelizable, entonces un único item puede ser
procesado en paralelo por varios cores de CPU en dicha etapa, y la granulari-
dad MG puede ser explotada. En nuestra propuesta, la granularidad CG implica
que hay tantos items procesándose simultáneamente en el pipeline como threads
disponibles, mientras que en la granularidad MG hay como máximo dos items
siendo procesados a la vez, uno por el multicore y otro por la GPU.

El mapeo del pipeline determina los procesadores en los que se pueden ejecutar
las diferentes etapas del mismo. La Fig. 5.3 muestra todos los posibles mapeos
que se pueden dar para las tres etapas paralelas de la aplicación ViVid.

Asumamos que un pipeline está compuesto de S1, S2, ... Sn etapas paralelas.
Usamos una n-tupla para especificar todos los posibles mapeos a la GPU y a los
cores de CPU : {m1, m2, . . ., mn}. El i-ésimo elemento de la tupla, mi, especifica
si la etapa Si puede ser mapeada en la CPU y GPU, (mi = 1), o si ésta puede
ser mapeada únicamente en la CPU, (mi = 0). Si mi = 1, cuando entra un

2http://www.github.com/ mertdikmen/vivid
3Una etapa es paralela o sin estado cuando el cómputo sobre un elemento en esa etapa no

depende del cómputo de elementos anteriores.

196 Apéndice A. Resumen en castellano

item en la etapa Si se comprueba si la GPU está libre. Si la GPU está libre, la
etapa Si procesa dicho item en la GPU ; en otro caso, es procesado en la CPU.
Si mi = 0, el item sólo podrá ser procesado en la CPU. Por ejemplo, las posibles
configuraciones de la aplicación ViVid se corresponden con las siguientes tuplas:
{1,1,1}, {1,0,0}, {0,1,0}, {0,0,1}, {1,1,0}, {1,0,1}, {0,1,1}, {0,0,0}. En nuestra
implementación, el mapeo {1,1,1} representa un caso especial: si la GPU está
libre cuando un nuevo item entra al pipeline, entonces todas las etapas para este
item se mapean en la GPU.

A.6. Conclusiones

En la era de computación heterogénea, existe una necesidad por encontrar nuevos
paradigmas de programación que faciliten el desarrollo de aplicaciones para estas
nuevas arquitecturas sin comprometer la productividad de los programadores.
Esta tesis tiene como objetivo principal proporcionar patrones paralelos de alto
nivel que son capaces de ejecutarse eficientemente en arquitecturas heterogéneas.
Para apoyar este objetivo se han propuesto varias optimizaciones que permiten
explotar arquitecturas heterogéneas de forma eficiente. En esta tesis nos hemos
centrado en la optimización de dos patrones paralelos: parallel for y pipeline, a
continuación detallamos las contribuciones de esta tesis.

1. Nuestra primera contribución consiste en un modelo análitico para minimi-
zar el desbalanceo de cómputo entre las diferentes unidades computaciona-
les del sistema. Este modelo asume que los tamaños óptimos de las tareas
que son asignadas a las GPUs son estáticos y no vaŕıan durante el tiempo de
ejecución. Sin embargo, este modelo si considera la variación del tamaño de
las taras asignadas a los cores de CPU para hacer que las CPUs y las GPUs
trabajen a un ritmo de trabajo cercano. De esta forma, el modelo permite
que todas las unidades computacionales trabajen concurrentemente hasta
que se alcanza la condición de parada. Esta condición se activa cuando no
quedan suficientes iteraciones para mantener trabajando a todas las uni-
dades funcionales, entonces las funciones heuŕısticas que implementan el
modelo desactivan la GPU que estaba intentando obtener una tarea para
favorecer el balanceo de carga del resto del sistema. Cuando ya no queda
ninguna GPU trabajando, los cores de CPU siguen una planificación de
tipo guided. Junto con este modelo de balanceo de carga, se presentan dos
estrategias de planificación de trabajo que intentan maximizar el uso del
hilo que mantiene a la GPU, NCHT y CHT. La estrategia NCHT usa la
técnica de oversubscription para maximizar el uso de la CPU que gestiona

A.6. Conclusiones 197

la GPU

2. Otra contribución consiste en un particionador adaptativo de bucles for pa-
ralelos que tiene en cuenta el rendimiento de las GPUs. Este particionador
se basa en un modelo logaŕıtmico que encuentra un tamaño de tareas que
alimenta todas las unidades de ejecución de cada procesador. Particionado-
res del estado del arte consideran que bloques de iteraciones mayores a un
determinado número tienen una ralación lineal con el tiempo de ejecución
que requiren para ser computadas. Sin embargo, existen aplicaciones como
la multiplicación dispersa matriz por vector o aplicaciones de grafos que no
siguen esa relación debido a sus irregularidades. En este sentido, nosotros
hemos encontrado que asignar tareas de gran tamaño a los aceleradores pue-
de ser contraproducente cuando se ejecutan aplicaciones irregulares. Esto
es debido a que los threads de un mismo grupo deben acceder a posiciones
alineadas en memoria, o en otro caso el sistema de memoria podŕıa verse
afectado ante una alta demanda de accesos a posiciones de memoria aleato-
rias. Como resultado de esto, las unidades de ejecución de la GPU podŕıan
quedar bloqueadas mientras que esperan a que el controlador de memoria
les sirva sus peticiones. Por el contrario, nuesto algoritmo primero encuen-
tra un tamaño de tarea que es capaz de alimentar todas las unidades de
ejecución de la GPU. Después, éste monitoriza el rendimiento de la GPU
durante todo el tiempo de ejecución para adaptar el tamaño de las tareas
de GPU al rendimiento y el tráfico de datos.

3. En esta tesis también proponemos un modelo para estimar el rendimien-
to y el consumo de enerǵıa para aplicaciones de tipo streamming que son
implementadas como una serie de etapas. Aplicaciones de tipo streamming,
como las de reconocimiento facial o seguimiento de objetos, son apropiadas
para ser ejecutadas en arquitecturas heterogéneas. Trabajos previos en la
planificación de este tipo de aplicaciones proponen un enfoque productor-
consumidor que dividen las etapas en dos conjuntos. El primer grupo de
tareas es ejecutado en un procesador y su salida es pasada al segundo grupo
de tareas que es ejecutado en el otro dispositivo. Este enfoque funciona bien
cuando el tiempo de ejecución de ambos grupos de etapas es similar, esto es
que ambos grupos de tareas se computan a una velocidad similar. Sin em-
bargo, este enfoque no producirá buenos resultados cuando los conjuntos
de tareas están desbalanceados. Por otro lado, nosotros proponemos una
estrategia que busca una solución más fina. Nuestro espacio de búsqueda
para la mejor configuración del pipeline tiene tres variables: el número de
threads, el tamaño de grano para CPU y la asignación de las etapas a las
unidades de computación. De esta forma, nosotros ejecutamos una pequeña

198 Apéndice A. Resumen en castellano

etapa de muestreo donde capturamos los tiempos de ejecución y los conta-
dores hardware mientras que ejecutamos unos cuantos items en la CPU y
un item en la GPU. Como resultado, utilizamos todos los datos recolectados
para alimentar nuestro modelo anaĺıtico y aśı poder predecir la mejor con-
figuración posible para una aplicación dada y su entrada. Además, nuestro
enfoque tiene la ventaja de que se autoorganiza y realiza la toma de deci-
siones automaticamente, mientras que en los otros trabajos necesitan ser
especificados por el usuario manualmente.

A.7. Trabajos futuros

En esta tesis hemos presentado varias contribuciones para optimizar la ejecución
de dos patrones paralelos sobre arquitecturas heterogéneas. Sin embargo, hay un
número de ĺıneas de trabajo que seŕıan interesantes de explorar, dado que todav́ıa
no existe un método automático y generalista para repartir la carga de trabajo
en este tipo de arquitecturas. A partir de esta limitación, hay varias ĺıneas de
investigación para extender el trabajo presentado en esta tesis.

Nuestro sistema de partición de trabajo sigue un enfoque centralizado, este
hecho podŕıa hacer que apareciesen problemas de contención de memoria
cuando se ejecuten cientos o miles de threads. Sin embargo, con la aparición
de los sistemas heterogéneos con sistemas compartidos de memoria virtual
(SVM), los cores de CPU y los cores de GPU pueden acceder a las mismas
posiciones de memoria. Este avance evita las sincronizaciones expĺıcitas en-
tre dispositivos mediante la incorporación de instrucciones atomic. Además,
posibilita el desarrollo de algoritmos paralelos sin locks, dado que las de-
pendencias de acceso a la memoria pueden ser resueltas por el protocolo de
coherencia de la memoria cache.

Nuestros resultados muestran que más optimizaciones e innovaciones son
necesarias en el sistema de memoria, ya que como analizamos en el caṕıtu-
lo 4, las unidades computacionales de la GPU están paradas esperando da-
tos de memoria durante la mayor parte del tiempo de ejecución. Las nuevas
tecnoloǵıas de memorias 3D y el emergente paradigma de procesamiento en
memoria son unos enfoques prometedores para paliar el bajo rendimiento de
los sistemas de memoria actuales, especialmente en aplicaciones limitadas
por los lentos accesos a memoria.

Otra interesante ĺınea de trabajo seŕıa la extensión de nuestros modelos
anaĺıticos para soportar arquitecturas heterogéneas compuestas de CPUs y

A.7. Trabajos futuros 199

una FPGA, o incluso de combinaciones mucho más rompedoras compuestas
de CPUs, una GPU y una FPGA. Por ejemplo, la última plataforma he-
terogénea de Xilinx, la UltraScale+ MPSoC, integra una CPU con cuatro
cores, una GPU Mali 400 y una FPGA. Nosotros pensamos que nuestros
modelos y planificadores pueden ser extendidos para ofrecer soporte para
esas nuevas arquitecturas, con el objetivo de incrementar la productividad
de los programadores a la vez que se aumenta el rendimiento en sus aplica-
ciones.

Para concluir, me gustaŕıa decir que el paradigma de Computación Hete-
rogénea es el más prometedor para acelerar aplicaciones y reducir su consumo
de enerǵıa. Sin embargo, en esta vida todo tiene un coste, la heterogeneidad de
los tipos de procesadores incrementan la complejidad del desarrollo de aplica-
ciones para esas arquitecturas. De esta forma, esta tesis tiene como objetivos la
reducción de la complejidad de programación para estas arquitecturas de procesa-
dores y proporcionar varias contribuciones al área de Computación Heterogénea,
con la esperanza de que ayuden a desarrollar más abstracciones para reducir la
complejidad de desarrollo y aumentar el rendimiento.

Bibliography

[1] H. Arafat, J. Dinan, S. Krishnamoorthy, P Balaji, and P. Sadayappan.
Work stealing for GPU-accelerated parallel programs in a global address
space framework. Concurrency Computation Practice and Experience,
22(6):685–701, 2015. (Cited on page 37)

[2] C. Augonnet, S. Thibault, R. Namyst, and P. Wacrenier. StarPU: a uni-
fied platform for task scheduling on heterogeneous multicore architectures.
Concurrency Computation Practice and Experience, 22(6):685–701, 2010.
(Cited on pages 4, 7, 37, 46, 48, 57, 80, 126 and 190)

[3] Peter E. Bailey, David K. Lowenthal, Vignesh Ravi, Barry Rountree, Mar-
tin Schulz, and Bronis R. De Supinski. Adaptive Configuration Selection
for Power-Constrained Heterogeneous Systems. In 43rd International Con-
ference on Parallel Processing, pages 371–380, 2014. (Cited on page 5)

[4] Mehmet E. Belviranli, Laxmi N. Bhuyan, and Rajiv Gupta. A dynamic self-
scheduling scheme for heterogeneous multiprocessor architectures. ACM
Transactions on Architecture and Code Optimization, 9(4):1–20, jan 2013.
(Cited on pages 5, 38, 39, 45, 52, 80, 85, 88, 114, 115 and 190)

[5] Anne Benoit, Paul Renaud-Goud, and Yves Robert. Performance and en-
ergy optimization of concurrent pipelined applications. Proceedings of the
2010 IEEE International Symposium on Parallel and Distributed Process-
ing, IPDPS 2010, 2010. (Cited on page 41)

[6] Emily Blem, Hadi Esmaeilzadeh, Renée St. Amant, Karthikeyan Sankar-
alingam, and Doug Burger. Dark Silicon And The End Of Multicore Scal-
ing. In International Symposium on Computer Architecture, pages 122–134,
2011. (Cited on pages 2 and 18)

201

202 BIBLIOGRAPHY

[7] Robert Blumofe, Christopher Joerg, and Bradley Kuszmaul. Cilk : An
E�cient Multithreaded Runtime System. In Proceedings of the fifth ACM
SIGPLAN symposium on Principles and practice of parallel programming,
pages 207–216, 1995. (Cited on pages 4 and 23)

[8] Sanjay K. Bose. Open and closed networks of M/M/m type queues. Techni-
cal report, Indian Inst. of Technology Guwahati, 2002. (Cited on page 149)

[9] Andre R. Brodtkorb, Christopher Dyken, Trond R. Hagen, Jon M.
Hjelmervik, and Olaf O. Storaasli. State-of-the-art in heterogeneous com-
puting. Sci. Program., 18(1):1–33, January 2010. (Cited on page 19)

[10] Javier Bueno, Judit Planas, Alejandro Duran, Rosa M. Badia, Xavier Mar-
torell, Eduard Ayguade, and Jesus Labarta. Productive programming of
GPU clusters with OmpSs. In Proceedings of the 2012 IEEE 26th Interna-
tional Parallel and Distributed Processing Symposium, IPDPS 2012, pages
557–568, 2012. (Cited on pages 20, 37, 46, 57, 80, 126 and 190)

[11] Martin Burtscher, Rupesh Nasre, and Keshav Pingali. IEEE Xplore - A
quantitative study of irregular programs on GPUs. In IEEE International
Symposium on Workload Characterization (IISWC), pages 141–151, 2012.
(Cited on pages 4, 81, 83 and 86)

[12] Cascaval Calin, Fowler Seth, Montesinos-Ortego Pablo, Piekarski Wayne,
Reshadi Mehrdad, Robatmili Behnam, Weber Michael, and Bhavsar Vra-
jesh. ZOOMM: a parallel web browser engine for multicore mobile devices.
In ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP ’13, Shenzhen, China, February 23-27, 2013, pages 271–
280, 2013. (Cited on page 4)

[13] F. Callaly, D. O’Loughlin, D. Lyons, a. Co↵ey, and F. Morgan. Xilinx Vi-
vado High Level Synthesis: Case studies. 25th IET Irish Signals & Systems
Conference 2014 and 2014 China-Ireland International Conference on In-
formation and Communities Technologies (ISSC 2014/CIICT 2014), pages
352–356, 2014. (Cited on page 20)

[14] Chongxiao Cao, Mark Gates, Azzam Haidar, Piotr Luszczek, Stanimire To-
mov, Ichitaro Yamazaki, and Jack Dongarra. Performance and Portability
with OpenCL for Throughput-Oriented HPC Workloads across Accelera-
tors, Coprocessors, and Multicore Processors. Proceedings of ScalA 2014:
5th Workshop on Latest Advances in Scalable Algorithms for Large-Scale
Systems - held in conjunction with SC 2014: The International Conference

BIBLIOGRAPHY 203

for High Performance Computing, Networking, Storage and Analysis, pages
61–68, 2015. (Cited on page 33)

[15] Marc Casas, Miquel Moreto, Lluc Alvarez, Emilio Castillo, Dimitrios Chas-
apis, Timothy Hayes, Luc Jaulmes, Oscar Palomar, Osman Unsal, Adrian
Cristal, Eduard Ayguade, Jesus Labarta, and Mateo Valero. Runtime-
Aware Architectures, pages 16–27. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2015. (Cited on page 17)

[16] M M T Chakravarty, G Keller, S Lee, T L McDonell, and V Grover. Ac-
celerating Haskell array codes with multicore GPUs. Proceedings of the
sixth workshop on Declarative aspects of multicore programming, pages 3–
14, 2011. (Cited on page 4)

[17] Sanjay Chatterjee, Max Grossman, Alina Sb̂ırlea, and Vivek Sarkar. Dy-
namic Task Parallelism with a GPU Work-Stealing Runtime System. In
Languages and Compilers for Parallel Computing, pages 203–217, 2013.
(Cited on page 37)

[18] S Che, M Boyer, J Meng, D Tarjan, S Lee, J W Shea↵er, and K Skadron.
Rodinia: A Benchmark Suite for Heterogeneous Computing. In IEEE In-
ternational Symposium on Workload Characterization, pages 44–54, 2009.
(Cited on pages 104, 105, 162 and 163)

[19] Luca De Cicco, Saverio Mascolo, and Vittorio Palmisano. Skype Video
Responsiveness to Bandwidth Variations. In Nossdav, pages 81–86, 2008.
(Cited on page 127)

[20] Jason Clemons, Haishan Zhu, Silvio Savarese, and Todd Austin.
MEVBench: A mobile computer vision benchmarking suite. Proceed-
ings - 2011 IEEE International Symposium on Workload Characterization,
IISWC - 2011, pages 91–102, 2011. (Cited on page 126)

[21] Alexander Collins, Christian Fensch, Hugh Leather, and Murray Cole.
MaSiF: Machine learning guided auto-tuning of parallel skeletons. 20th
Annual International Conference on High Performance Computing, HiPC
2013, pages 186–195, 2013. (Cited on page 5)

[22] G. Contreras and M. Martonosi. Characterizing and improving the perfor-
mance of intel threading building blocks. In Workload Characterization,
2008. IISWC 2008. IEEE International Symposium on, pages 57–66, Sept
2008. (Cited on page 31)

204 BIBLIOGRAPHY

[23] Francisco Corbera, Andres Rodriguez, Rafael Asenjo, Angeles Navarro,
Antonio Vilches, and Maria Garzaran. Reducing overheads of dynamic
scheduling on heterogeneous chips. In International Workshop on High
Performance Energy E�cient Embedded Systems, 2015. (Cited on pages 8
and 191)

[24] Gabriella Csurka et al. Visual categorization with bags of keypoints. In
ECCV, pages 1–22, 2004. (Cited on pages 162 and 163)

[25] Anthony Danalis, Gabriel Marin, Collin Mccurdy, Jeremy S Meredith,
Philip C Roth, and Je↵rey S Vetter. The Scalable HeterOgeneous Com-
puting (SHOC) Benchmark Suite Categories and Subject Descriptors.
In Proceedings of the 3rd Workshop on General-Purpose Computation on
Graphics Processing Units Pages, pages 63–74, 2010. (Cited on pages 104
and 105)

[26] Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul Khanna,
and Christian Le. RAPL: Memory power estimation and capping. In
ACM/IEEE International Symposium on Low-Power Electronics and De-
sign (ISLPED), pages 189–194, 2010. (Cited on page 145)

[27] Timothy A Davis and Yifan Hu. The University of Florida Sparse Matrix
Collection. ACM Transactions on Mathematical Software, 38(1):1–25, 2011.
(Cited on pages 104 and 105)

[28] Roman Dementiev, Thomas Willhalm, Otto Bruggeman, Patrick Fay,
Patrick Ungerer, Austen Ott, Patrick Lu, James Harris, Phil Kerly, and
Patrick Konsor. Intel Performance Counter Monitor - A better way to
measure CPU utilization, 2012. (Cited on pages 103, 145, 162 and 177)

[29] Mert Dikmen, Derek Hoiem, and Thomas S Huang. A data driven method
for feature transformation. In Computer Vision and Pattern Recognition
(CVPR), pages 3314–3321. IEEE, 2012. (Cited on pages 127 and 162)

[30] Grewe Dominik, Zheng Wang, and Michael Boyle. OpenCL Task Parti-
tioning in the Presence of GPU Contention. In 26th International Work-
shop Languages and Compilers for Parallel Computing, pages 87–101, 2013.
(Cited on page 5)

[31] Christophe Dubach, Perry Cheng, Rodric Rabbah, David F. Bacon, and
Stephen J. Fink. Compiling a high-level language for GPUs: (via language
support for architectures and compilers). PLDI: Programming Languages
Design and Implementation, 47(6):1–12, 2012. (Cited on page 4)

BIBLIOGRAPHY 205

[32] Alejandro Duran, Julita Corbalan, and Eduard Ayguade. Evaluation of
openmp task scheduling strategies. In Proceedings of the 4th International
Conference on OpenMP in a New Era of Parallelism, IWOMP’08, pages
100–110, Berlin, Heidelberg, 2008. Springer-Verlag. (Cited on pages 20
and 23)

[33] J Enmyren and CW Kessler. SkePU: a multi-backend skeleton program-
ming library for multi-GPU systems. Hlpp, pages 5–14, 2010. (Cited on
page 4)

[34] Naila. Farooqui, R. Barik, B. Lewis, T. Shpeisman, and k. Schwan. A�nity-
Aware Work-Stealing for Integrated CPU-GPU Processors. In Proceedings
of the 21st ACM SIGPLAN Symposium on Principles and Practice of Par-
allel Programming, volume 30, 2016. (Cited on page 37)

[35] J. A. Fernández-Madrigal, E. Cruz-Mart́ın, A. Cruz-Mart́ın, J. González,
and C. Galindo. Adaptable web interfaces for networked robots. 2005
IEEE/RSJ International Conference on Intelligent Robots and Systems,
IROS, pages 2164–2169, 2005. (Cited on page 127)

[36] Juan Jose Fumero, Toomas Remmelg, Michel Steuwer, and Christophe
Dubach. Runtime Code Generation and Data Management for Heteroge-
neous Computing in Java. In International Conference on Principles and
Practices of Programming on the Java Platform, pages 16–26, 2015. (Cited
on pages 4 and 19)

[37] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1995. (Cited on page 12)

[38] Benedict Gaster, Lee Howes, David R. Kaeli, Perhaad Mistry, and Dana
Schaa. Heterogeneous Computing with OpenCL. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1st edition, 2011. (Cited on pages 3,
4, 19, 36 and 189)

[39] Thierry Gautier, Joao Vicente Ferreira Lima, Nicolas Maillard, and Bruno
Ra�n. Locality-Aware Work Stealing on Multi-CPU and Multi-GPU Ar-
chitectures. In 6th Workshop on Programmability Issues for Heterogeneous
Multicores (MULTIPROG), Berlin, Germany, January 2013. (Cited on
page 37)

[40] Thierry Gautier, João V F Lima, Nicolas Maillard, and Bruno Ra�n.
XKaapi: A runtime system for data-flow task programming on hetero-
geneous architectures. Proceedings - IEEE 27th International Parallel and

206 BIBLIOGRAPHY

Distributed Processing Symposium, IPDPS 2013, pages 1299–1308, 2013.
(Cited on pages 4, 37, 46, 57, 80, 126, 189 and 190)

[41] Paul Gibbon, Wolfgang Frings, and Bernd Mohr. Performance analysis and
visualization of the n-body tree code pepc on massively parallel computers.
In PARCO, pages 367–374. Citeseer, 2005. (Cited on pages 104 and 105)

[42] M. Goli and H. González-Vélez. Heterogeneous algorithmic skeletons for
fast flow with seamless coordination over hybrid architectures. In 2013 21st
Euromicro International Conference on Parallel, Distributed, and Network-
Based Processing, pages 148–156, Feb 2013. (Cited on page 40)

[43] Ricardo Gonzalez and Mark Horowitz. Energy dissipation in general pur-
pose microprocessors. IEEE Journal of Solid-State Circuits, 31(9):1277–
1283, 1996. (Cited on page 132)

[44] William J. Gordon and Gordon F. Newell. Closed queuing systems with
exponential servers. Operations Research, 15(2):254–265, 1967. (Cited on
pages 149 and 150)

[45] Dominik Grewe and Michael F P O Boyle. A Static Task Partitioning
Approach for Heterogeneous Systems Using OpenCL. In CC’11/ETAPS’11
Proceedings of the 20th international conference on Compiler construction:
part of the joint European conferences on theory and practice of software,
pages 286–305, 2011. (Cited on pages 5, 35 and 190)

[46] Khronos Group. Spir-v white paper, July 2016.
https://www.khronos.org/registry/spir-v/papers/WhitePaper.pdf. (Cited
on pages 21 and 31)

[47] HardKernel. Odroid-XU3, Aug. 2014. http://www.hardkernel.com/main/.
(Cited on page 145)

[48] Joel Hestness, Stephen W Keckler, and David A Wood. GPU Computing
Pipeline Ine�ciencies and Optimization Opportunities in Heterogeneous
CPU-GPU Processors. In 2015 IEEE International Symposium on Work-
load Characterization, pages 87–97, 2015. (Cited on page 8)

[49] HSA. Hsa foundation. harmonizing the industry around heterogeneous pro-
gramming, July 2016. http://www.hsafoundation.com/. (Cited on page 20)

[50] H. P. Huynh, A. Hagiescu, O. Z. Liang, W. F. Wong, and R. S. M. Goh.
Mapping streaming applications onto gpu systems. IEEE Transactions on
Parallel and Distributed Systems, 25(9):2374–2385, Sept 2014. (Cited on
page 40)

BIBLIOGRAPHY 207

[51] T. Ibaraki and H. Katoh. Resource Allocation Problems: Algorithmic Ap-
proaches. MIT Press, Cambridge, Mass., 1988. (Cited on page 51)

[52] Google Inc. RenderScript for Android, 2016. (Cited on page 4)

[53] Qualcomm Inc. Qualcomm mare: Parallel computing sdk, July 2016.
https://developer.qualcomm.com/software/mare-sdk. (Cited on page 20)

[54] Intel. Intel OpenCL N-Body Sample, 2014. (Cited on pages 88, 104 and 105)

[55] Intel. Intel VTune Amplifier 2015, 2014. https://software.intel.com/en-
us/intel-vtune-amplifier-xe. (Cited on page 81)

[56] Norman Rubin Jin Wang and Sudhakar Yalamanchili. Paralleljs: An ex-
ecution framework for javascript on heterogeneous systems. In Seventh
Workshop on General Purpose Processing Using GPUs (GPGPU-7), March
2014. (Cited on page 4)

[57] M Jones and P Viola. Fast Multi-view Face Detection. Technical Report
July, Mitsubishi Electric Research Lab, 2003. (Cited on page 127)

[58] Rashid Kaleem, Rajkishore Barik, Tatiana Shpeisman, Brian T. Lewis,
Chunling Hu, and Keshav Pingali. Adaptive heterogeneous scheduling for
integrated GPUs. In Proceedings of the 23rd international conference on
Parallel architectures and compilation - PACT ’14, pages 151–162, New
York, New York, USA, aug 2014. ACM Press. (Cited on pages 5, 19, 39,
45, 80, 114, 190 and 191)

[59] Christoph Kessler, Usman Dastgeer, Samuel Thibault, Raymond Namyst,
Andrew Richards, Uwe Dolinsky, Siegfried Benkner, Jesper Larsson Trä↵,
and Sabri Pllana. Programmability and performance portability aspects of
heterogeneous multi-/manycore systems. In Design, Automation and Test
in Europe (DATE), pages 1403–1408, 2012. (Cited on page 4)

[60] Jungwon Kim, Sangmin Seo, Jun Lee, Jeongho Nah, Gangwon Jo, and
Jaejin Lee. SnuCL: An OpenCL Framework for Heterogeneous CPU/GPU
Clusters. Proceedings of the 26th ACM international conference on Super-
computing - ICS ’12, page 341, 2012. (Cited on pages 4 and 7)

[61] Andreas Kloeckner. Opencl for python, July 2016.
https://documen.tician.de/pyopencl/. (Cited on pages 4 and 19)

[62] Klaus Kofler, Ivan Grasso, Biagio Cosenza, and Thomas Fahringer. An
Automatic Input-Sensitive Approach for Heterogeneous Task Partitioning

208 BIBLIOGRAPHY

Categories and Subject Descriptors. Proceedings of the 27th international
ACM conference on International conference on supercomputing - ICS ’13,
pages 149–160, 2013. (Cited on page 35)

[63] M. Kulkarni, M. Burtscher, C. Cascaval, and K. Pingali. Lonestar: A suite
of parallel irregular programs. In Performance Analysis of Systems and
Software, 2009. ISPASS 2009. IEEE International Symposium on, pages
65–76, April 2009. (Cited on pages 63, 104 and 105)

[64] Rakesh Kumar, Dean M. Tullsen, Norman P. Jouppi, and Parthasarathy
Ranganathan. Heterogeneous chip multiprocessors. IEEE Computer,
38(11):32–38, 2005. (Cited on pages 1, 2 and 188)

[65] Julian Martin Kunkel, Thomas Ludwig, and Hans Werner Meuer, editors.
Improving Performance Portability in OpenCL Programs, pages 136–150.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. (Cited on pages 32
and 33)

[66] Edward A. Lee. The problem with threads. Computer, 39(5):33–42, May
2006. (Cited on page 22)

[67] Victor W. Lee, Per Hammarlund, Ronak Singhal, Pradeep Dubey,
Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim, An-
thony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy, and Srinivas
Chennupaty. Debunking the 100X GPU vs. CPU Myth. In ISCA, vol-
ume 38, pages 451–460, 2010. (Cited on page 35)

[68] Chih Sheng Lin, Chao Sheng Lin, Yu Shin Lin, Pao Ann Hsiung, and
Chihhsiong Shih. Multi-objective exploitation of pipeline parallelism us-
ing clustering, replication and duplication in embedded multi-core systems.
Journal of Systems Architecture, 59(10 PART C):1083–1094, 2013. (Cited
on page 41)

[69] Bruce D. Lucas and Takeo Kanade. An iterative image registration tech-
nique with an application to stereo vision. In IJCAI, pages 674–679, 1981.
(Cited on page 163)

[70] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. Qilin: Exploiting Par-
allelism on Heterogeneous Multiprocessors with Adaptive Mapping. Pro-
ceedings of the 42nd Annual IEEE/ACM International Symposium on Mi-
croarchitecture - Micro-42, page 45, 2009. (Cited on pages 5, 36, 37, 39, 76,
80, 126 and 190)

BIBLIOGRAPHY 209

[71] Deepak Majeti and Vivek Sarkar. Heterogeneous Habanero-C (H2C): A
Portable Programming Model for Heterogeneous Processors. 2015 IEEE
International Parallel and Distributed Processing Symposium Workshop,
pages 708–717, 2015. (Cited on page 23)

[72] Ami Marowka. Analytical modeling of energy e�ciency in heterogeneous
processors q. Computers and Electrical Engineering, 39(8):2566–2578, 2013.
(Cited on page 188)

[73] Michael McCool, James Reinders, and Arch Robison. Structured Paral-
lel Programming: Patterns for E�cient Computation. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1st edition, 2012. (Cited on
pages 13, 14, 15 and 16)

[74] Heike Mccraw, James Ralph, Anthony Danalis, and Jack Dongarra. Power
monitoring with PAPI for extreme scale architectures and dataflow-based
programming models. In 2014 IEEE International Conference on Cluster
Computing, CLUSTER 2014, pages 385–391, 2014. (Cited on page 145)

[75] S. McIntosh-Smith, J. Price, R. B. Sessions, and a. a. Ibarra. High
performance in silico virtual drug screening on many-core processors.
International Journal of High Performance Computing Applications,
29(2):1094342014528252–, 2014. (Cited on page 32)

[76] Sparsh Mittal and Je↵rey S Vetter. A Survey of Methods for Analyzing and
Improving GPU Energy E�ciency. ACM Computing Surveys, 47(2):1–23,
2014. (Cited on page 2)

[77] Sparsh Mittal and Je↵rey S. Vetter. A Survey of CPU-GPU Heterogeneous
Computing Techniques. ACM Computing Surveys, 47(4):1–35, 2015. (Cited
on pages 4 and 11)

[78] Gordon E. Moore. Cramming more components onto integrated circuits.
Proceedings of the IEEE, 86(1):82–85, 1998. (Cited on pages 2 and 17)

[79] Angeles Navarro, Rafael Asenjo, Siham Tabik, and Calin Caşcaval. Ana-
lytical modeling of pipeline parallelism. In Conference Proceedings Parallel
Architectures and Compilation Techniques, PACT, volume 2, pages 281–
290, 2009. (Cited on pages 30 and 149)

[80] Angeles Navarro, Antonio Vilches, Rafael Asenjo, and Francisco Corbera.
Adaptive Partitioning Strategies for Loop Parallelism in Heterogeneous Ar-
chitectures. In International Conference on High Performance Computing
& Simulation (HPCS), pages 120–128, 2014. (Cited on pages 8 and 191)

210 BIBLIOGRAPHY

[81] Angeles Navarro, Antonio Vilches, Francisco Corbera, and Rafael Asenjo.
Strategies for maximizing utilization on multi-CPU and multi-GPU het-
erogeneous architectures. Journal of Supercomputing, pages 756–771, 2014.
(Cited on pages 8, 43, 75, 76, 78 and 191)

[82] OpenACC Working Group. The OpenACC Application Programming In-
terface, 2013. (Cited on pages 36 and 189)

[83] Opencl for .net platform, July 2016. http://openclnet.codeplex.com/.
(Cited on page 19)

[84] Prasanna Pandit and R. Govindarajan. Fluidic Kernels: Cooperative Ex-
ecution of OpenCL Programs on Multiple Heterogeneous Devices. In Pro-
ceedings of Annual IEEE/ACM International Symposium on Code Gener-
ation and Optimization, page 273. ACM, feb 2014. (Cited on pages 5, 38,
80, 190 and 191)

[85] Phitchaya Mangpo Phothilimthana, Jason Ansel, Jonathan Ragan-Kelley,
and Saman Amarasinghe. Portable performance on heterogeneous architec-
tures. In Proceedings of the eighteenth international conference on Architec-
tural support for programming languages and operating systems - ASPLOS
’13, volume 41, page 431, 2013. (Cited on pages 4, 33 and 37)

[86] Ashwin Prasad, Jayvant Anantpur, and R. Govindarajan. Automatic com-
pilation of MATLAB programs for synergistic execution on heterogeneous
processors. In Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, volume 47, pages 152–
163, 2012. (Cited on page 5)

[87] TOP500 project. TOP500 List, 2016. (Cited on page 11)

[88] V. T. Ravi and G. Agrawal. A dynamic scheduling framework for emerging
heterogeneous systems. In 2011 18th International Conference on High
Performance Computing, pages 1–10, Dec 2011. (Cited on page 37)

[89] James Reinders. Intel Threading Building Blocks: Multi-core parallelism
for C++ programming. O’Reilly, 2007. (Cited on pages 4, 7, 8, 19, 23, 24,
31, 43, 56, 74, 84 and 162)

[90] Toomas Remmelg, Thibaut Lutz, Michel Steuwer, and Christophe Dubach.
Performance Portable GPU Code Generation for Matrix Multiplication.
GPGPU: Workshop on General Purpose Processor Using Graphics Pro-
cessing Units, pages 22–31, 2016. (Cited on page 33)

BIBLIOGRAPHY 211

[91] Ruymán Reyes, Iván López-Rodŕıguez, Juan J. Fumero, and Francisco De
Sande. accULL: An OpenACC implementation with CUDA and OpenCL
support. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7484
LNCS(228398):871–882, 2012. (Cited on page 20)

[92] Andres Rodriguez, Angeles Navarro, Rafael Asenjo, Francisco Corbera, An-
tonio Vilches, and Maria Garzaran. Pipeline Template for Streaming Ap-
plications on Heterogeneous Chips. In Gerhard R Joubert, Hugh Leather,
Mark Parsons, Frans Peters, and Mark Sawyer, editors, Parallel Comput-
ing: On the Road to Exascale, number 27 in Advances in Parallel Comput-
ing, pages 327–336, Amsterdam, Berlin, Tokyo, Washington DC, 2015. IOS
Press. (Cited on pages 8 and 191)

[93] Andres Rodriguez, Angeles Navarro, Rafael Asenjo, Antonio Vilches, Fran-
cisco Corbera, and Maria Garzaran. Parallel Pipeline on Heterogeneous
Multi-Processing Architectures. In International Symposium on Parallel
and Distributed Processing with Applications, pages 166–171, 2015. (Cited
on pages 8 and 191)

[94] David C Rudolph and Constantine D Polychronopoulost. An E�cient
Message-Passing Scheduler Based on Guided Self Scheduling. In Proceed-
ings of the 3rd international conference on Supercomputing, pages 50–61,
1989. (Cited on page 55)

[95] Victor Lomüller Ruyman Reyes. Sycl: Single-source c++ accelerator pro-
gramming. Parallel Computing: On the Road to Exascale, 27:673–682, 2016.
(Cited on page 20)

[96] Jason Sanders and Edward Kandrot. CUDA by Example: An Introduction
to General-Purpose GPU Programming. Addison-Wesley Professional, 1st
edition, 2010. (Cited on pages 3, 4, 19, 20, 36 and 189)

[97] Alina Sb̂ırlea, Yi Zou, Zoran Budimĺıc, Jason Cong, and Vivek Sarkar.
Mapping a Data-flow Programming Model Onto Heterogeneous Platforms.
In International Conference on Languages, Compilers, Tools and Theory
for Embedded Systems, volume 47, pages 61–70, 2012. (Cited on pages 5,
37 and 126)

[98] Oren Segal, Martin Margala, Sai Rahul Chalamalasetti, and Mitch Wright.
High Level Programming for Heterogeneous Architectures. In International
Workshop on FPGAs for Software Programmers, volume 1, pages 49–54,
2014. (Cited on page 19)

212 BIBLIOGRAPHY

[99] Robert Soulé, Michael I. Gordon, Saman Amarasinghe, Robert Grimm, and
Martin Hirzel. Dynamic expressivity with static optimization for stream-
ing languages. In Proceedings of the 7th ACM international conference on
Distributed event-based systems, pages 159–170, 2013. (Cited on page 40)

[100] John A Stratton, Hee-seok Kim, Thoman B Jablin, and Wen-mei W Hwu.
Performance Portability in Accelerated Parallel Kernels. Technical report,
University of Illinois at Urbana-Champaign, 2013. (Cited on page 33)

[101] Huayou Su, Nan Wu, Mei Wen, and Chunyuan Zhang. On the GPU-
CPU Performance Portability of OpenCL for 3D Stencil Computations.
In IEEE International Conference on Parallel and Distributed Sys, pages
78–85, 2013. (Cited on page 33)

[102] Michael B. Taylor. A landscape of the new dark silicon design regime. IEEE
Micro, 33(5):8–19, 2013. (Cited on page 1)

[103] Stanimire Tomov, Jack Dongarra, and Marc Baboulin. Towards dense linear
algebra for hybrid GPU accelerated manycore systems. Parallel Computing,
36(5-6):232–240, 2010. (Cited on page 49)

[104] Ehsan Totoni, Mert Dikmen, and Maŕıa Jesús Garzarán. Easy, fast, and
energy-e�cient object detection on heterogeneous on-chip architectures.
ACM Transactions on Architecture and Code Optimization, 10(4):1–25,
2013. (Cited on pages 8, 40, 126, 130, 164, 166 and 182)

[105] Sravanthi Kota Venkata, Ikkjin Ahn, Donghwan Jeon, Anshuman Gupta,
Christopher Louie, Saturnino Garcia, Serge Belongie, and Michael Bedford
Taylor. SD-VBS: The san diego vision benchmark suite. Proceedings of
the 2009 IEEE International Symposium on Workload Characterization,
IISWC 2009, pages 55–64, 2009. (Cited on pages 162 and 163)

[106] S. Venkatasubramanian and R. W. Vuduc. Tuned and wildly asynchronous
stencil kernels for hybrid CPU/GPU systems. In International. Conference
on Supercomputing, 2009. (Cited on page 37)

[107] Antonio Vilches, Rafael Asenjo, Angeles Navarro, Francisco Corbera, and
Maria Garzaran. Adaptive Partitioning for Irregular Applications on Het-
erogeneous CPU-GPU Chips. In International Conference on Computa-
tional Science (ICCS), volume 51, pages 140–149, 2015. (Cited on pages 8
and 191)

[108] Antonio Vilches, Angeles Navarro, Rafael Asenjo, Francisco Corbera,
Ruben Gran, and Maria Garzaran. Mapping streaming applications on

BIBLIOGRAPHY 213

commodity multi-CPU and GPU on-chip processors. IEEE Transactions
on Parallel and Distributed Systems, pages 1–1, 2015. (Cited on pages 8,
125 and 191)

[109] Antonio Vilches, Angeles Navarro, Francisco Corbera, Andres Rodriguez,
and Rafael Asenjo. Performance Portability of a GPU Enabled Factor-
ization with the DAGuE Framework. In 10th International Symposium on
High-Level Parallel Programming and Applications, HLPP’17, 2017. (Cited
on page 8)

[110] Antonio Vilches and Ruyman Reyes. Syclparallelstl: A parallel stl library
for heterogeneous systems. In 1st SYCL Programming Workshop, 2016.
(Cited on page 183)

[111] Zhenning Wang, Long Zheng, Quan Chen, and Minyi Guo. CPU+GPU
scheduling with asymptotic profiling. Parallel Computing, 40(2):107–115,
feb 2014. (Cited on pages 5, 39, 76 and 85)

[112] Mei Wen, Da-fei Huang, Chang-qing Xun, and Dong Chen. Improving
performance-specific OpenCL kernels on multi-core / many-core CPUs by
analysis-based transformations. Frontiers of Information Technology &
Electronic Engineering, 16(1):899–916, 2015. (Cited on page 33)

[113] Canqun Yang, Feng Wang, Yunfei Du, Juan Chen, Jie Liu, Huizhan Yi,
and Kai Lu. Adaptive optimization for petascale heterogeneous CPU/GPU
computing. Proceedings IEEE International Conference on Cluster Com-
puting, ICCC, pages 19–28, 2010. (Cited on page 40)

[114] Yongjian. Yu and Scott T. Acton. Speckle Reducing Anisotropic Di↵usion.
IEEE Transactions on Image Processing, 11(11):1260–1270, 2002. (Cited
on page 163)

	Acknowledgments
	Abstract
	Contents
	List of Figures
	List of Tables
	1.- Introduction
	The era of Heterogeneous Architectures
	The complexities of Heterogeneous Computing
	Runtimes for Heterogeneous Architectures
	Thesis Motivation
	Thesis Objectives and Research Question
	Thesis Contributions
	Thesis Structure

	2.- Background and Related Work
	Parallel patterns
	Heterogeneous Computing Basics
	Hardware evolution

	Programming heterogeneous architectures
	The need of heterogeneous programming models
	Code Portability
	Task-based models
	Threading Building Blocks

	Performance Portability

	Runtimes for heterogeneous systems
	Static Approaches for task Scheduling
	Dynamic Approaches for task scheduling
	Load balance Strategies
	Partition Methods for parallel_for pattern in heterogenous systems
	Pipeline pattern on heterogenous systems

	3.- Parallel_for Pattern: Load Balancing and Scheduling
	The parallel_for template
	Load Balancing problem
	Optimization model for load balancing
	Heuristic functions for the optimization model

	Scheduling strategies
	Non-Collaborative Host Thread
	Collaborative Host Thread

	Experimental Results
	Experimental setup
	Benchmarks
	Characterization of the parallel_for template
	Efficiency of the scheduling strategies
	Analysis of oversubscription and synchronization mechanisms

	Conclusions

	4.- Parallel_for Pattern: Adaptive partitioning
	The extended parallel_for template
	HBuffer class
	HTask class
	Function template: parallel_for

	The GPU chunk size problem
	Partitioning strategy
	Overview of the partitioning strategy
	Implementation details of the partitioning strategy

	Experimental Results
	Experimental setup
	Benchmarks
	Characterisation of the partitioning strategy
	Analysis of GPU chunk size variations
	Sensitivity analysis
	Sources of overhead in dynamic partitioning

	Performance and energy comparison

	Conclusions

	5.- Pipeline Pattern: Optimal pipeline configuration
	Pipeline configuration problem
	Pipeline configuration alternatives
	Accounting for all pipeline alternatives

	Putting throughput/energy metric to work

	Pipeline template
	Item class
	Pipeline class
	Pipeline stage functions
	Buffer class

	Optimal pipeline configuration strategy
	Measurement Collection step
	Controlling the overhead

	Model for finding the optimal pipeline configuration
	Model for Decoupled pipeline configurations
	Model for Coupled pipeline configurations
	Model extensions
	Effect of serial stages

	Experimental results
	Experimental setup
	Benchmarks
	Baseline comparison and impact of adaptation
	Performance and Energy discussion

	Lessons learned
	Conclusions

	6.- Concluding Remarks
	Contributions
	Limitations
	Future work
	Appendices
	A.- Resumen en castellano
	Introducción
	Motivación
	Balanceador de tareas para bucles paralelos
	Particionador adaptativo para bucles paralelos
	Planificación de tareas para el patrón pipeline
	Conclusiones
	Trabajos futuros

	Bibliography

