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Dr. D. Óscar Plata González.
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Abstract

Nowadays, heterogeneous architectures are populating the world in different

forms: from heterogeneous CPUs able to focus on performance or efficiency, to

GPU accelerators joining multi-core CPUs within the same chip, to Systems on

Chip that integrate DSPs, FPGAs and many other types of processor in the

same area. These architectures enable programs to be decomposed and deployed

on different pieces of hardware, seeking for energy efficiency and performance.

This is possible thanks to technologies like OpenCL, that allow programmers to

write code to be deployed across different platforms. However, the synchroniza-

tion primitives available in these languages are very simple: they are restricted

to kernel launches or, at most, the use of atomic operations or signals. The

construction of more advanced synchronization mechansims is a complex task

delegated to programmers.

In the multi-core CPU world, Transactional Memory (TM) has emerged as

an effective technique to provide synchronization in form of mutual exclusion

to implement critical sections. In contrast to other lock-based mutual exclusion

mechanisms, TM encloses critical sections in transactions that are executed in

parallel in a speculative way. Conflict detection and version management mechan-

sims ensure that different transactions do not modify the same memory objects,

ensuring mutual exclusion. If two transactions access the same memory object

and, at least, one of the accesses is a write, one of the transactions signals a

conflict and aborts, discarding its speculative changes and restoring memory to

a consistent state. The goal of TM is to provide a simple programming interface

to determine the bounds of the transaction and, thanks to its speculative nature,

provide high performance.

TM is becoming popular in multi-core CPUs (in fact, CPU vendors such as

Intel and IBM incorporate TM in their latest processors) and the research com-

munity is investigating on how to integrate this technology in GPUs. As the

industry is already creating heterogeneous processors it is important to under-



iv ABSTRACT

stand the possibilities, impact, and tradeoffs that TM can have on such architec-

tures. This is not a simple task: TM can be deployed as a software, hardware

or hybrid solution, and scheduling transactions on the proper device can have

an important impact in performance and energy consumption. In addition, as

mentioned before, currently there exists multiple heterogeneous devices and the

number and variety is increasing. Thus, TM and the heterogeneous architectures

can be analyzed from different points of view.

In this thesis we tackle this problem from different perspectives. Firstly, we

analyze an existing software TM solution on an heterogeneous CPU of the ARM

big.LITTLE architecture, featuring separate performance-oriented and efficiency-

oriented cores. In addition, we propose a scheduling technique to analyze the

impact the scheduling can have in TM-instrumented applications. Our experi-

ments have been performed using the ODROID XU3 device which integrates a

big.LITTLE processor and grants access to power monitors able to provide precise

energy measurements. Secondly, we propose a novel software TM design target-

ing heterogeneous CPU+GPU processors. The goal is to create a TM system

adapted to the architectural particularities of each device, while providing an ef-

ficient communication mechanism among them. This proposal has been tested in

an AMD Kaveri heterogeneous processor implementing advanced HSA (Hetero-

geneous Systems Architecture) features. Lastly, we target GPUs as accelerator

for heterogeneous systems, proposing a hardware TM design to execute transac-

tions on such device with high efficiency and at a low hardware cost. This design

has been evaluated via simulation using the Multi2Sim Simulation Framework.



Contents

Agradecimientos i

Abstract iii

Contents viii

List of Figures x

List of Tables xi

1.- Introduction 1

1.1 Heterogeneous Architectures . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Complexities of parallel and heterogeneous programming . . . . . . 4

1.3 Transactional Memory . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Thesis motivation and research questions . . . . . . . . . . . . . . 8

2.- Background and Related Work 11

2.1 GPU accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 GPGPU programming . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 GPU architecture . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2.1 Memory architecture . . . . . . . . . . . . . . . . 15

2.1.2.2 Execution model . . . . . . . . . . . . . . . . . . . 16

v



vi CONTENTS

2.2 Heterogeneous CPU+GPU processors . . . . . . . . . . . . . . . . 16

2.3 Heterogeneous CPUs . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Transactional Memory . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 TM on GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1 Software TM on GPUs . . . . . . . . . . . . . . . . . . . . . 20

2.5.2 Hardware TM on GPUs . . . . . . . . . . . . . . . . . . . . 22

2.6 TM on low-power CPUs . . . . . . . . . . . . . . . . . . . . . . . . 24

3.- Transactional Memory on Heterogeneous CPUs 25

3.1 Background: TinySTM and STAMP . . . . . . . . . . . . . . . . . 26

3.2 The ODROID XU3 Platform . . . . . . . . . . . . . . . . . . . . . 27

3.3 Isolated Energy/Performance evaluation . . . . . . . . . . . . . . . 28

3.3.1 Little cluster analysis . . . . . . . . . . . . . . . . . . . . . 29

3.3.2 Big cluster analysis . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.3 Full system analysis . . . . . . . . . . . . . . . . . . . . . . 30

3.3.4 Little cluster and big cluster comparison . . . . . . . . . . . 33

3.3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Concurrent execution of TM applications on heterogeneous CPUs . 33

3.5 Scheduling TM applications on heterogeneous CPUs . . . . . . . . 37

3.5.1 Scheduling on heterogeneous CPUs . . . . . . . . . . . . . . 37

3.5.2 ScHeTM: A TM-aware scheduler for heterogeneous CPUs . 38

3.5.2.1 Design phase: suitability functions . . . . . . . . . 40

3.5.2.2 Scheduling phase: application execution . . . . . . 42

3.5.2.3 Evaluation of ScHeTM . . . . . . . . . . . . . . . 43

Baseline scheduler. . . . . . . . . . . . . . . . . . . . 44

Balanced ScHeTM. . . . . . . . . . . . . . . . . . . . 44

Performance-oriented ScHeTM. . . . . . . . . . . . . 45

Efficiency-oriented ScHeTM. . . . . . . . . . . . . . . 46



CONTENTS vii

Transaction-oriented ScHeTM. . . . . . . . . . . . . 46

3.5.2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . 47

3.5.3 TM on heterogeneous CPUs: conclusions and future work . 48

4.- Transactional Memory on Heterogeneous CPU+GPU proces-

sors 51

4.1 Background: NOrec and GPU-STM . . . . . . . . . . . . . . . . . 52

4.2 APUTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Transactional Metadata . . . . . . . . . . . . . . . . . . . . 53

4.2.2 Version Management . . . . . . . . . . . . . . . . . . . . . . 56

4.2.3 Conflict Detection . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.4 Misellanea . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.5 Execution example . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.6 Read-Modify-Write transactions . . . . . . . . . . . . . . . 61

4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.2 APUTM characterization . . . . . . . . . . . . . . . . . . . 63

4.3.3 Application evaluation . . . . . . . . . . . . . . . . . . . . . 67

4.4 APUTM: conclusions and future work . . . . . . . . . . . . . . . . 70

5.- Transactional Memory in GPU Local Memory 73

5.1 Motivating example . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 GPU-LocalTM Design . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.1 Transactional SIMT Execution . . . . . . . . . . . . . . . . 77

5.2.2 Forward Progress . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.3 Version Management . . . . . . . . . . . . . . . . . . . . . . 81

Register checkpointing. . . . . . . . . . . . . . . . . . 84

5.2.4 Conflict Detection . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.4.1 Directory-based Conflict Detection (DCD) . . . . 85



viii CONTENTS

5.2.4.2 Shared-Modified DCD (SMDCD) . . . . . . . . . 86

5.2.4.3 DCD and Private Read/Write Signatures (pRWsig) 87

5.2.4.4 DCD/pRWsig and Shared Write-Only Signatures

(sWOsig) . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 GPU-LocalTM Modeling . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.1 Performance Evaluation . . . . . . . . . . . . . . . . . . . . 95

5.5 Improving the serialization mechanism . . . . . . . . . . . . . . . . 100

5.5.1 Work-item selection mechanism evaluation . . . . . . . . . . 103

5.6 GPU-LocalTM: conclusions and future work . . . . . . . . . . . . . 106

6.- Conclusions 109

6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Appendices 115

A.- Resumen en español 115
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1 Introduction

If we observe the computing needs of today and try to predict those that will

arise in the future, we can conclude that heterogeneous processing will be present

in many devices and applications: from cell phones to supercomputers, going

through cars and smart cities. The reason is that different data and different al-

gorithms fit better the characteristics of some devices than others. To provide an

example of state-of-the art technology, self-driving cars are a clear scenario where

heterogeneous computing is not an option but a requirement. In such vehicles,

images must be collected and analyzed, and graphics processing units (GPUs) are

very efficient performing image processing and deep neural network (DNN) tasks.

In order to meet real-time requirements of such complex system, some parts of

the algorithm can be implemented in hardware using field-programmable gate

arrays (FPGAs). And, of course, multi-core CPUs play an important role, both

orchestrating the operation of other devices and performing those tasks in which

they are more efficient than other processors. However, multi-core CPUs them-

selves are no longer an homogeneous device: CPU cores may share the same ISA,

but have different capabilities to offer energy efficiency or to provide process-

ing power when required. Programming this set of devices is a challenging task

and technologies have been developed to exploit their capabilities. For instance,

OpenCL [38] provides an interface to program and communicate different devices

maintaining portability (but not performance-portability). In most part of these

languages and technologies, synchronization primitives are still very basic: atom-

ics, synchronization points (in form of barriers and kernel launches), and signals.

With these basic primitives programmers can construct complex synchronization

techniques to ensure mutual exclusion in the access to shared data, but this is a

difficult and error-prone task that can harm performance. Transactional Mem-

ory (TM) [35] has proven to be an efficient synchronization method in multi-core

1



2 Chapter 1. Introduction

CPUs. TM provides a simple interface to define the bounds of a critical section

and is able to obtain good performance due to the optimistic execution model.

Given this popularity and the potential performance benefits, TM is considered

to be part of future C++ standards.

TM is being incorporated to commercial multi-core CPUs to complement the

other basic synchronization techniques: Intel provides ISA extensions (TSX) to

support basic hardware TM [72], and IBM has released two different systems

with built-in hardware TM support, IBM BlueGene/Q [67] and System z [37],

and more recently Power 8 [3]. Recently, TM solutions for GPUs have started

to appear in the literature, both software [12, 70, 36] and hardware [29, 28, 17].

Provided that this technology is being adopted by CPU vendors and its applica-

bility on GPUs is being investigated, it is important to understand the impact

that it can have in heterogeneous devices. Additionally, it is interesting to cover

TM from different perspectives: hardware implementations (HTM), software im-

plementations (STM), and from the scheduling point of view.

This thesis is organized as follows. In the rest of Chapter 1 we describe

the heterogeneous architectures, basic synchronization primitives, Transactional

Memory, and provide a motivation for this thesis. In Chapter 3 we analyze a

popular software TM library on an heterogeneous CPU, and we include a simple

scheduler to assess the impact that scheduling can have in TM-instrumented ap-

plications. Chapter 4 presents a novel software TM design on top of CPU+GPU

heterogeneous processors. Chapter 5 describes our hardware TM proposal for

GPU architectures, which focus on transactions taking advantage of the scratch-

pad memory. Lastly, Chapter 6 presents the conclusions of this thesis.

1.1 Heterogeneous Architectures

In the past, traditional single-core CPU designs aimed to improve performance

by increasing clock speeds. As a result, the gap between processor and memory

speeds increased hitting the memory wall. Large cache memories were incorpo-

rated in the CPU to mask the latency of memory. Another way of increasing

performance is to keep the processor busy by implementing instruction-level par-

allelism (ILP) techniques. However, this increases the complexity of CPU designs

and is hard to find programs that fully benefit from ILP with a single instruction

stream. Soon, single-core CPUs reached the ILP wall. The large cache sizes, the

complexity of implementing ILP, and the increment in CPU clocks resulted in

more power consumption and needs of heat dissipation beyond current technol-

ogy. This effect, known as power wall is one of the limiting factors in CPU design.



1.1. Heterogeneous Architectures 3

With the goal of producing more powerful processors, CPU vendors shifted from

single-core to multi-core designs. Multi-core CPUs are able to deliver higher

performance with lower energy requirements, but with the overhead of writing

parallel code (we discuss such overhead in Section 1.2).

In parallel to this evolution, hardware accelerators started to gain importance.

Hardware accelerators are specialized pieces of hardware that perform some func-

tions more efficiently than traditional CPUs. The most popular hardware accel-

erator is the graphics processing unit (GPU). Initially, GPUs were merely video

chips that pushed images from the frame buffer out to the monitor. Later, in the

1980s and 1990s, GPUs were able to manipulate 2D and 3D images using fixed-

function primitives implemented in hardware. In the first years of the decade

of the 2000s the first programmable GPUs appeared, allowing programmers to

write small programs to modify the attributes of pixels or vertices. At that point,

researchers started to use GPUs as accelerators for general-purpose programs by

mapping their data structures into the pixel and vertex processors integrated

in the GPU [56]. This leads to the creation of technologies as CUDA [47] and

OpenCL [38] that allow programmers to use the GPU as a general-purpose pro-

cessor. Since then, GPUs have become the de facto accelerator for data-parallel

applications.

In recent years, the CPUs and GPUs have become closer and now are part

of the same chip. Currently, these heterogeneous CPU+GPU architectures (also

known as accelerated processing units (APUs)) are the most popular and are

widely available in platforms such as cell phones, desktop and laptop computers,

game consoles, and servers, among others. Intel Haswell, AMD Kaveri, Samsung

Exynos and NVIDIA Tegra K1 are examples of processors that integrate CPU

and GPU in the same chip. Usually, the GPUs integrated with CPU cores are

less powerful than discrete ones due to space and power constraints. However,

they benefit from lower latency in the data transfers (as compared to discrete

GPUs that communicate via a PCI interface) and, in some cases, have coherent

caches to ease CPU-GPU communication. With these architectures available,

programmers can access a large amount of computing resources at a low power

consumption. However, the burden in this case is to map and orchestrate the

execution of different parts of the application onto different parts of the hardware.

Heterogeneous architectures do not only refer to CPU+GPU processors. Cores

in multi-core CPUs do not necessarily have to be homogeneous. In the particular

case of the ARM big.LITTLE architecture, CPU cores are grouped in two clus-

ters: the big cluster and the little cluster. Cores in the big cluster are focused

on high performance and offer large caches and fast clock speeds. Cores in the

little cluster have a simple in-order design, smaller caches and operate at less
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frequency, with the goal of minimizing power consumption. Both groups of cores

share the same ISA, and applications can be executed and migrated from one

cluster to another depending on the performance/energy needs.

Other heterogeneous architectures beyond CPU+GPU and big.LITTLE ar-

chitectures are being developed integrating more kinds of processors. To provide

an example of an state-of-the-art heterogeneous device, we cite the Xilinx Zynq

UltraSCALE+ CG1. This device integrates a quad-core ARM Cortex-A53 proces-

sor, a dual-core ARM Cortex-R5 processor (specialized in real-time applications),

a Mali-400 GPU, a 16nm FinFET+ FPGA, as well as dedicated units for security,

I/O, and performance and energy monitoring, among others.

1.2 Complexities of parallel and heterogeneous

programming

Typically, to take advantage of the resources available in multi-core CPUs, appli-

cations are divided into separate computing threads that run on different cores.

Programmers have to decompose their program into tasks that are assigned to

the different threads which have to be properly managed to successfully execute

the application. As the threads are mapped to independent CPU cores, their

execution is non-deterministic in terms of ordering. Thus, when synchronization

is required, it has to be explicitly defined by the programmer.

The most common scenario in which synchronization is required is the access

to shared data. To ensure the correctness of the program, the portion of the

code accessing shared data (also known as critical section) must be protected

by a mutual exclusion mechanism. Multi-core CPUs come with a set of atomic

instructions to allow programmers implementing this mechanism. In particular,

the compare-and-swap (CAS) atomic instruction performs load, comparison, and

store operations with no other memory instruction affecting the same memory

position interleaved. This instruction operates on only one memory position at

the time. If the critical section requires accessing more than one memory location,

a lock mechanism can be implemented using a CAS operation.

Lock-based techniques can be implemented in two different ways, each with

its own advantages and disadvantages. On one hand, coarse-grained lock tech-

niques are easy to implement: a single lock, acquired using a CAS operation,

manages the access to the critical section. Mutual exclusion is guaranteed as

1https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html

https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
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only one thread is allowed to enter the critical section at a time. The simplic-

ity of this implementation comes with the drawback of poor scalability. When

using a coarse-grained lock solution, the execution of the critical section is se-

quential, affecting performance and leaving computing resources underutilized.

On the other hand, expert programmers can implement a fine-grained lock solu-

tion. This is a problem-dependent implementation. Commonly, a set of locks is

defined to protect the access to individual objects or memory positions. Before

proceeding to the critical section, each thread has to properly acquire as many

locks as needed to ensure that no other thread is accessing the same memory po-

sitions. If the thread succeeds, then it may progress into the critical section. This

way, thread modifying different memory positions execute the critical section in

parallel, potentially improving performance. However, ensuring the correctness

of this implementation is challenging: threads may intend to acquire the same

locks in different order and, if not properly managed, may create a deadlock.

These problems extend from homogeneous multi-core CPUs to heterogeneous

platforms. In the following, we will consider APU (CPU+GPU) processors as

reference. In particular, we focus on HSA-enabled2 APUs. These APUs provide

an unified memory space in which pointers can be seen by both the CPU and

GPU. A cache coherence protocol ensures that coherence is kept across platforms.

Similarly to multi-core CPUs, a set of platform-atomic instructions are used to

synchronize both devices. Therefore, the same locking techniques as in multi-core

CPUs can be implemented on GPUs and across both platforms within the APU

processor. However, even in the case of coarse-grained locks, the implementation

becomes more difficult. While each thread on the CPU has a private program

counter, threads on the GPU are grouped so a subset of the threads (wavefront or

warp) share the same program counter. Thus, threads within a wavefront execute

in lockstep (Single Instruction - Multiple Data (SIMD) execution). Traditional

CPU implementations are prone to deadlocks when executing in SIMD architec-

tures. This leads to increased programming complexity as the mutual exclusion

mechanism has to be implemented differently in each platform.

Figure 1.1 provides an example of a coarse-grained lock implementation on

CPUs and GPUs. The goal is to offer a clear and simple example of the chal-

lenges programmers face when implementing mutual exclusion in an heteroge-

neous platform. Before proceeding to explain this implementation, we discuss

two important concepts that help understanding this example: the atomic CAS

(compare-and-swap) operation and the control flow in the SIMT execution model.

• The atomic CAS operation, available in most languages with atomics

2Heterogeneous Systems Architecture: http://www.hsafoundation.com/

http://www.hsafoundation.com/
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1 while (CAS(lock ,0,1)){;}

2 // Critical Section

3 atomicStore(lock ,0);

1 bool done = false;

2 while (!done){

3 if (!CAS(lock ,0,1)){

4 // Critical Section

5 done = true;

6 atomicStore(lock ,0);

7 }

8 }

Figure 1.1: Coarse-grained lock implementation in CPUs (left), and the trans-

formation required to avoid deadlocks in the SIMT programming model (right).

support, works as follows3. CAS(obj, expected, desired) compares obj

and expected. If they are equal, then the value of obj is replaced by

expected. Otherwise, the value of obj remains the same. In both cases,

the function returns the old value of obj (i.e., the value stored by obj before

being replaced by expected, if required).

• Control flow in the SIMT execution model deserves special attention as

it is crucial to understand how locking mechanisms can be implemented

on GPUs. We use as example an if conditional statement as in Figure 1.1

(lines 3 to 7). As threads execute in lockstep, conditionals are implemented

as follows. Firstly, when a conditional is reached a convergence point is set

at the end of the conditional (line 7 in the example of Figure 1.1). This

convergence point acts as an implicit barrier for the threads executing in

lockstep. Then, the condition is evaluated. The threads whose condition

is evaluated as false are disabled while those whose condition is evaluated

as true remain active. Active threads proceed to execute the block of code

of the conditional statement in lockstep, until the convergence point is

reached. When the convergence point is reached, the threads that were

disabled during the evaluation of the condition are enabled again. This

way, all the threads that were active before evaluating the condition are

enabled again, and only those whose condition was true executed the block

of code of the conditional statement. Loops work in a similar manner as

if statements: the convergence point is set at the end of the loop for these

threads that do not fulfill the condition of the loop.

The left-hand side of Figure 1.1 shows the traditional CPU implementation

of a coarse-grained lock using an atomic CAS (compare-and-swap) operation,

3The CAS operation is explained as in C++11. See http://en.cppreference.com/w/cpp/

atomic/atomic_compare_exchange for more details

http://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange
http://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange
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present in many languages. In Figure 1.1, we assume that lock is a variable

shared among all threads initialized to 0. The first thread arriving to the while

loop (line 1) executes the atomic CAS operation. As result of the execution of the

instruction CAS(lock,0,1) the condition in the while loop is false (as the CAS

operation returns 0). This way, the thread leaves the while loop (proceeding to

line 2) and the variable lock is set to 1. This means that such thread was able

to acquire the lock. The remaining threads that reach the while loop are not

allowed to leave the loop as the condition will remain true (the CAS operation

returns 1). After executing its critical section, the thread that acquired the lock

releases it (line 3). Then the lock is available to be acquired by another thread

that intends to execute the critical section. Mutual exclusion is guaranteed by

this mechanism, but at the cost of serializing the access to the critical section.

However, when executed in the GPU, this code creates a deadlock. In the SIMT

programming model, as threads execute in lockstep, only one of them is able

to get the lock and leave the while loop (line 1). As there is a divergence in

the execution of the program, the SIMT programming model sets a convergence

point at the end of the while loop (line 2) before executing the critical section,

creating an implicit barrier. This implicit barrier forces the thread who acquired

the lock to wait for the rest to finish the execution of the while loop. This will

never happen, as the lock is held by the waiting thread and the remaining threads

will not leave the while loop until the lock is released. Thus, the classic spinlock

creates a deadlock in the SIMT programming model. The right-hand side of

Figure 1.1 shows the required transformation for this spinlock to work in the

SIMT programming model. In this case, all the active threads enter the loop

(line 2). The convergence point (i.e., implicit barrier) for this loop is set in line 8,

which will be eventually reached by all the threads. Then, only one of the threads

acquires the lock (line 3) inside an if statement. In this case, the convergence

point is set at line 7. This way, the threads that did not acquire the lock perform

the implicit barrier at line 7, while the thread that acquired the lock executes

its critical section (line 4), sets itself to go to the convergence point of the while

loop (line 5), and releases the lock (line 6). With this code transformation we

can safely implement coarse-grained locks in the SIMT programming model.

The goal of this example is to help the reader to understand the difficulties

that programmers face when deploying their applications across heterogeneous

platforms and, in particular, when mutual exclusion is required to protect the

access to shared data. Of course, these implementations can be even harder for

fine-grained locks or ad-hoc solutions for specific problems.
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1.3 Transactional Memory

Transactional Memory (TM) [35] provides a higher level of abstraction for imple-

menting mutual exclusion in multi-threaded programming. TM uses the concept

of transaction to enclose a block of code to be executed atomically and in isolation

(this is, with mutual exclusion guarantees). In contrast to pessimistic lock-based

solutions, transactions are allowed to execute in parallel. Proper implementation

of conflict detection and version management mechanisms ensure mutual exclu-

sion: if two or more transactions access the same memory position and, at least,

one of the accesses is a write (transactions conflict), then only one of the transac-

tion progresses while the remaining ones abort execution, undo their speculative

changes to memory and retry.

The use of TM implies several advantages over traditional locking mechanism.

Firstly, TM offers a simple interface to define the bounds of the transaction and,

optionally, instrumentation of the memory read/write operations. In contrast to

lock-based mechanism, TM does not require the definition of extra data structures

or variables to deal with the implementation of mutual exclusion. Secondly, the

TM system deals with the correctness of the implementation. Thus, programmers

that use TM to implement mutual exclusion do not have to deal with deadlock-

/livelock situation as the TM implementation takes into account these situations.

Lastly, as TM is optimistic by nature, performance is expected to be superior to

lock-based implementations as conflict-free transactions can execute in parallel.

Ideally, the TM interface provides a programming model with a complexity sim-

ilar or lower than the use of coarse-grained locks, but with the performance of

fine-grained locks.

1.4 Thesis motivation and research questions

The increasing demand for processing power with low energy consumption en-

courages hardware vendors to bet for heterogeneous processors. These heteroge-

neous processors are quickly becoming more complex, which translates in extra

burden put on the programmers’ shoulders. Both the industry and the research

community are trying to reduce such burden by introducing new programming

models and scheduling techniques [5, 46, 50], among others. As TM has proven

to be an effective technique to ensure mutual exclusion in traditional multi-core

CPUs, it is important to understand the impact it can have in heterogeneous

processing.
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The design space space for TM in heterogeneous architectures is immense.

TM itself can be implemented as STM or HTM (or even considering a hybrid

solution). Furthermore, transaction scheduling is an active field of research [48,

53, 73] which tries to maximize the benefits of TM while reducing its overheads

by properly assigning transactions to computing resources. Once established

the scope in the TM field, it can be applied to heterogeneous architectures in

different ways. TM can be applied to heterogeneous CPUs (i.e., the big.LITTLE

architecture). Additionally, TM can be integrated in each one of the accelerators

in an heterogeneous device. Also, provided the unified memory space in HSA-

enabled heterogeneous platforms, TM can be used to implement mutual exclusion

for data shared across multiple devices.

Given the design space in the intersection between TM and heterogeneous ar-

chitectures, in this thesis we analyze this confluence from different perspectives.

Mainly, the goal of this thesis is to answer the following research question: Can

TM be applied on different heterogeneous architectures? More specifi-

cally, other questions that we intend to answer are: Can scheduling to be used to

improve performance of TM in heterogeneous processors?, Can we implement a

TM system to operate on APU processors?, and Can we implement a hardware

TM for GPUs without requiring expensive microarchitectural changes?

Our main contributions in this thesis and the related publications, which

intend to answer the previous research questions, are the following:

• We analyze the behavior of current state-of-the-art STM implementations

when executing on big.LITTLE CPUs [65, 66] and the role that scheduling

can have in terms of performance, energy consumption and the efficiency

of the TM implementation [64].

• We propose a STM implementation for heterogeneous CPU+GPU proces-

sors with unified coherent memory [62]. The main design decision is to

reduce the overhead of communicating GPU and CPU transactional meta-

data.

• We propose a HTM implementation for a GPU accelerator [63, 61, 59, 60,

58]. In particular, we focus on the GPU scratchpad memory, which is used

to optimize application performance.

The goal of this thesis is to understand the benefits of different TM imple-

mentations in different parts of heterogeneous platforms.





2 Background and Related
Work

In this chapter we present some background on heterogeneous processors,

transactional memory (TM) and the related work applicable to this thesis. Al-

though there exists a wide variety of heterogeneous processors and TM imple-

mentations, this chapter is restricted to these works related to our contributions.

Section 2.1, Section 2.2, and Section 2.3 provide background on GPUs and hetero-

geneous processors, discussing architectural and microarchitectural details needed

to understand the rest of the thesis. Section 2.4 describes the basics of TM and

the different ways it can be implemented. The related work is organized in two

different sections: Section 2.5 contains a review on the existing TM designs for

GPUs and Section 2.6 briefly discusses recent advancements in TM for low-power

processors.

2.1 GPU accelerators

GPUs have been widely adopted as accelerators for parallel general-purpose com-

puting thanks to its massive multi-threading capability. In this section, we tackle

the description of GPUs from two different perspective: the programming per-

spective and the architecture perspective.

2.1.1 GPGPU programming

The GPGPU (general-purpose GPU) programming has undergo numerous ad-

vances in the latest years. Initially, technologies such as CUDA and OpenCL

11
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supported programming of GPUs as general-purpose processors. These languages

are dual-source: programmers have to write a host program (usually in C++)

that gets access to the accelerator, and then offload the kernel code (written in

the aforementioned technologies) to the GPU. Recently, single-source technologies

have arisen to ease the use to the computing capabilities of the GPU. Languages

like Sycl and C++AMP, where CPU code can be annotated to be offloaded to

the GPU, are example of technologies trying to ease GPU programming. In

this thesis we use OpenCL naming as it highlights the key aspects to take into

account in GPGPU programming. In particular, we focus on the definition of

kernels. Additionally, most of the concepts in OpenCL have an equivalent in

other languages as CUDA, so this explanation can be applied to other scenarios.

The key aspects of OpenCL are the execution model and the memory model.

In the OpenCL execution model, programmers write a kernel to be executed

by a NDRange. The NDRange is a multi-dimensional arrangement of work-

groups. A work-group is a set of computing threads called work-items, which are

also arranged in a multi-dimensional way and execute the kernel code. Work-

items within a work-group are grouped into wavefronts. Work-items within a

wavefront execute in lockstep. At this point, the programmer is responsible of

defining the number of work-groups and the number of work-items per work-

group to execute the kernel. Note that the underlying GPU architecture may

impose some constraints in the number of work-items supported per work-group

as well as the number of work-groups supported by the GPU but, in the end,

the programmer is free to choose the most appropriate values for the kernel.

However, the wavefront size is a value defined by the execution device (i.e., the

GPU). Programmers have access to this value which can be used to optimize

execution, but this value can not be chosen nor changed.

The memory model offered by the OpenCL interface consists of four differ-

ent memory spaces.

1. Global memory, which contains global buffers. Information stored in global

memory is accessible by all the work-groups (and, hence, all the work-items)

executing the kernel, as well as the host CPU.

2. Constant memory, which contains information that is constant during the

execution of a kernel. As global memory, is accessible by the host CPU and

all the work-groups within the GPU.

3. Local memory, whose visibility is restricted to the work-items belonging

to the same work-group. It is not accessible by the host CPU and stored

data can not be shared accross different work-groups. However, depending
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on the hardware platform, it provides performance advantages over the use

of global memory. Programmers are encouraged to use local memory as

scratchpad to speed up their applications.

4. Private memory, which store values private to each work-item. Information

stored in private memory can not be shared by different work-items and

is not accessible by the host CPU. Typically, private memory is stored in

registers or in a per-work-item private partition of global memory.

In addition to these memory spaces, modern OpenCL implementations include

atomic operations in global memory and local memory for synchronization. Bar-

riers and memory fences are also available as synchronization methods. Memory

fences can be used to enforce consistency, avoiding memory reordering optimiza-

tions performed by the compiler or the microarchitecture. Barriers synchronize

the execution of work-items within the same work-group. There is no barrier

operation that synchronizes work-items from different work-groups. This kind of

synchronization can be performed by using global memory atomic operations or

by terminating the kernel and launching a new one (kernel-level synchronization).

Hardware vendors are in charge of mapping the OpenCL execution model and

memory model in their architectures. In Section 2.1.2 we describe how this is

done for our baseline architecture.

2.1.2 GPU architecture

Currently, there exist a wide variety of GPU architectures comming from different

designers and vendors. At the moment, the most important are NVIDIA, AMD,

Intel, and ARM. Without loss of generality, we use the AMD’s Southern Islands

family of GPUs [4, 57] to explain the architecture, as it is the baseline GPU

employed in part of this thesis.

In this architecture, the GPU is organized as a set of heavily multi-threaded

processors called Compute Units (CU). For instance, the AMD HD Radeon 7970

(see Figure 2.1) consists of 32 CUs. In this GPU, the Ultra-Threaded Dispatcher

maps work-groups to the CUs. Each CU is able to handle multiple work-groups,

but each work-group is assigned to a single CU. The CU contains the following

functional and control flow units:

• The wavefront scheduler fetches instructions from memory for a given wave-

front and issues its execution to the appropriate functional unit. Note that

all work-items within the same wavefront execute the same instruction. In
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Figure 2.1: Block diagram of the AMD HD Radeon 7970 GPU.

this architecture, a wavefront contains up to 64 work-items and a work-

group contains up to 4 wavefronts (this is, the maximum number of work-

items per work-group is 256).

• The SIMD units are the main execution unit within the CU. They act

as arithmetic-logic units capable of executing integer, floating-point and

other kind of operations for all active work-items within the wavefront.

SIMD units also contain vector registers, which are used to store the private

variables for each work-item. Note that, in the case of having a large amount

of private variables, the compiler can opt for register spilling, storing private

variables in global memory.

• The vector memory unit is in charge of executing memory instructions that

require access to global memory.

• The scalar unit executes scalar instructions and also has access to data

stored in global memory. In addition to that, the scalar unit contains a

set of scalar registers. The use of the scalar unit and scalar registers is

an architectural optimization for private variables whose value remains the

same for all work-items within the wavefront. For instance, the index in
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a for-loop (which is private for each work-item) normally has the same

value for all work-items within the wavefront. If the compiler detects such

situation, it can promote the use of a single scalar register and use the

scalar unit to update its value, instead of reserving 64 vector registers (one

per work-item within the wavefront) to hold the same value.

• The LDS (local data share) handles the storage of local memory variables

(i.e., shared among work-items within the same work-group). In this par-

ticular architecture, local memory is organized in 32 banks with interleaved

access, where consecutive addresses map to different consecutive banks.

2.1.2.1 Memory architecture

In this architecture there are dedicated units to access global memory and local

memory (vector memory unit and LDS unit, respectively). Both units share some

characteristics. These units are designed to serve multiple memory requests at a

time. If the simultaneous memory request map to different banks (i.e., coalesced

memory accesses), then the memory petitions are served in parallel. Otherwise,

a coalescing unit is in charge of serializing memory requests to the same bank.

This way, programmers are encouraged to write their program using coalesced

memory accesses for both memory spaces in order to obtain substantial speedups.

In addition to that, both units implement atomic operations to allow for atomic

memory accesses in their respective memory space.

Among the differences in both memory spaces, the most noticeable is size.

Global memory can store hundreds of megabytes or gigabytes of information,

depending on the GPU model. In this architecture, the local memory space

contains 64 kilobytes of storage. However, each work-group is allowed to access

only up to 32 kilobytes of local memory; the space remaining is reserved to allow

for multiple work-groups running simultaneously minimizing context switching

penalties. This difference in space is due to the location: global memory is

located offchip and accessed through a cache hierarchy, while local memory is

located onchip and uncached. This implies that accesses to local memory present

lower latency as compared to global memory (in particular, memory latency for

local memory variables is about two orders of magnitude lower as compared to

global memory). This way, local memory is used as scratchpad to accelerate some

portions of the kernel code, provided that accessed variables fit in local memory

and that programmers deal with the explicit management of local memory.
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2.1.2.2 Execution model

The GPU SIMT execution model relies on the existence of execution masks.

There are two execution masks in this architecture: the EXEC mask and the VCC

mask. The EXEC execution mask contains a bit for each work-item within the

wavefront, indicating if it is active (or inactive). The VCC mask stores the results

of a vector comparison instruction. In a simplified way, the VCC masks acts as a

“vectorized Z flag”. By combining the EXEC and VCC masks, compilers can im-

plement conditionals, loops and other features using predication techniques [24].

Figure 2.2 contains a simplified example of the evaluation of a condition using

the predication technique. The comparison instruction v cmp gt i32 updates the

state of VCC, storing the value 1 for those work-items that fulfill the condition.

Then, the current value of EXEC is backed up in the scalar registers s8 and s9,

and is updated with the values of VCC using the s and b64 instruction. At the

end of the conditional, the previous state of EXEC has to be restored, by loading

the backup stored in the scalar registers s8 and s9.

1 if (id < 1)

2 {

3 ...

4 }

1 v_cmp_gt_i32 vcc , s8, v1

2 s_mov_b64 s[8:9] , exec

3 s_and_b64 exec , s[8:9], vcc

4 ...

5 s_mov_b64 exec , s[8:9]

Figure 2.2: Example of the implementation of a conditinal using the EXEC and

VCC execution masks.

There exist one EXEC mask as well as one VCC mask per wavefront. Thus,

the size of these masks is 64-bit. These 64-bit masks are stored using two con-

secutive 32-bit general purpose scalar registers.

2.2 Heterogeneous CPU+GPU processors

In this section we provide background on the CPU+GPU processors. These pro-

cessors integrate within the same chip a multi-core CPU and a GPU. In particu-

lar, we focus on those defined by the Heterogeneous System Architecture (HSA)

Foundation and taking as example the HSA-compliant AMD Kaveri processors.

The HSA Foundation proposes a series of standards to improve the pro-

grammability of heterogeneous computing devices. It defines a vendor-independent

virtual ISA, called HSAIL, which allows the same source code to run on differ-
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ent HSA-compliant devices. Tools are provided to create code in most common

high-level programming languages such as C++, C++AMP, and OpenCL. In

addition, the programming interface is designed to provide easy access to the

different computing devices available in the heterogeneous processor, as well as

a shared virtual memory space.

To describe the APU processors we use as example the HSA-compliant AMD

Kaveri A10-7850K processor. This processor integrates 4 CPU cores as well

as 8 GPU compute units (CUs). CPU threads are mapped in the CPU cores.

The NDRange, work-groups, wavefronts and work-items work in the GPU as

described in Section 2.1.2. Threads within the wavefront execute in lockstep.

The most remarkable HSA features offered by this processor are the pageable

shared virtual memory, and memory coherence between CPU and GPU. This

way, the same pointer can be accessed by both the CPU cores and the GPU CUs.

In addition, platform atomics and memory ordering operations are available.

2.3 Heterogeneous CPUs

Multi-core heterogeneous CPUs are those designed with asymmetric cores. In

particular, we focus in the ARM big.LITTLE architecture [1]. This architecture

features a set of high-performance big CPU cores and a set of high-efficiency little

CPU cores. We refer to these sets as big cluster and little cluster, respectively.

Both clusters share the same ISA and have access to the same main memory.

Thus, an application can run in any of them without requiring two different

binaries. Applications with high performance requirements are intended to be

attached to the big cluster, while those without these requirements are to be

processed using the little cluster.

By default, these architectures support three types of scheduling.

1. The clustering switching model assings applications either to the big or the

little cluster, but not both simultaneously. This way, the processor can be

seen as if it operates in two different modes: high-performance mode or

power-saving mode.

2. The in-kernel switching mode pairs a big and a little core into a virtual

core. Each application running on a virtual core can only use one of them.

With this configuration, each application can decide to run in the big or

little core depending on the computational or energy demands.

3. The global task scheduling, which permits to observe all cores within the
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processor so applications can run in any of them without any restrictions.

The Samsung Exynos 5422 processor is an example of CPU based in the ARM

big.LITTLE architecture (see Figure 2.3). The big cluster is a 4-core Cortex-A15

CPU while the little cluster is a 4-core Cortex-A7 CPU featuring 2 Mbyte and 512

Kbyte L2 caches, respectively. The processor also integrates a Mali-T628 GPU

and 2 Gbyte of low-power DDR3 RAM. We tested this processor with Linux

odroid 3.10.59+ operating system, which incorporates the global task scheduling

policy.

Mali GPU
(600 Mhz)

2Gbyte LPDDR3 Memory
(933 Mhz)

Cortex-A15 Quad
(2 Ghz)

Cortex-A7 Quad
(1,4 Ghz)

A15 Core A15 Core

A15 Core A15 Core

2Mbyte L2 Cache

A7 Core A7 Core

A7 Core A7 Core

512Kbyte L2 Cache

Exynos 5422 Processor

Figure 2.3: Samsung Exynos 5422 based in the ARM big.LITTLE architecture.

2.4 Transactional Memory

Transactional Memory (TM) [35] has emerged as a promising alternative to lock-

ing mechanisms to coordinate concurrent threads. TM provides the concept of

transaction to determine the bounds of a critical section, decreasing the pro-

gramming effort required to define such kind of synchronization. Normally, the

transaction is enclosed by TX Begin and TX Commit instructions. Depending on

the implementation, read and write memory operations should be instrumented

by using the TX Read and TX Write instructions, respectively. This can be either

a requirement of the TM implementation, or used to discriminate transactional

memory accesses from non-transactional memory accesses in order to improve

performance.
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A transaction enforces the properties of atomicity and isolation during the

execution of a critical section. Atomicity implies that a whole transaction is

executed as if it is a single, indivisible instruction. The isolation property implies

that speculative changes made inside transactions do not affect the state of the

program until they have successfully committed. If these properties are respected,

transactions are allowed to run in parallel, but the results are the same as if they

were executed serially. A conflict occurs if two or more transactions intend to

access to the same shared memory location and, at least, one of the accesses is

a write. In such situation, one of the transaction can continue execution, while

the rest of the transactions must discard its updates to memory (the transaction

aborts) and restart their execution. This is achieved by implementing appropriate

conflict detection/resolution and version management mechanisms.

Conflict detection can be performed following eager and lazy strategies:

• In eager conflict detection conflicts are detected just before issuing memory

read/write operations. Detecting conflicts eagerly prevents the transaction

from running as soon as it is known it should abort. However, this requires

heavy instrumentation of the read and write memory operations that can

harm performance needlessly if no conflict occurs.

• With lazy conflict detection transactions do not detect any conflict until

the end of the transaction. This conflict detection mechanism assumes

that conflicts rarely occur. It requires less instrumentation of the read and

write memory operations, as conflict detection is performed just once at

the end of the transaction. Thus, in the case that there is no conflict,

the overhead introduced by the TM system is lower as compared to eager

conflict detection. However, if the transaction has some conflicts, they are

not detected until the end of the transaction, increasing the amount of

wasted work (i.e., the transaction continues executing until its end, even if

data is stale). Another implication of lazy conflict detection is that they

may continue executing on stale data if there is a conflict that has not been

detected yet. Thus, ensuring the correctness of the implementation is more

complex compared to eager conflict detection.

As in conflict detection, version management can be implemented eagerly or

lazily.

• Eager version management stores speculative data in place (i.e., in its final

memory location) and performs a backup of the old values in an undo log.

In case the transaction finds a conflict, then the values stored in the undo
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log have to be restored to memory, discarding speculative values. Note

that, if multiple transactions access the same memory position, they can be

accessing speculative data, harming the isolation property. In this case, the

version management and conflict detection mechanism should be properly

coupled to avoid such situation.

• Lazy version management stores speculative values in a transaction-private

write buffer. If the transacion ends with no conflict, then memory should

be updated with the speculative values stored in the write buffer. In such

case, committing the transaction is slower as compared to eager version

management. In the case of conflicting transaction, then the write buffer

must be discarded, incurring in less overhead during the commit operation.

TM can be implemented in software (STM) and hardware (HTM). HTM so-

lutions are efficient, as they are implemented in hardware at core level. Neverthe-

less, due to the limited resources available in hardware, they are more constrained

in terms of memory usage and forward progress guarantees. Due to these limi-

tations, some hardware TM solutions are known as best effort TM systems. To

deal with these restrictions and to ensure forward progress, hardware TM sys-

tems provide the programmers with tools to program a software fallback path,

which adds programming complexity to the TM paradigm. These restrictions

do not apply to STMs. Software solutions impose less limitations and allow for

more complex implementations. Furthermore, STM can be implemented and

used in existing and legacy hardware. On the other hand, the overhead of the

software implementation is higher as compared to HTM, affecting scalability and

performance [11].

2.5 TM on GPUs

In recent years, some TM proposals for GPU architectures have been developed.

Note that all of them consider only global memory, leaving the low-latency local

memory on the side.

2.5.1 Software TM on GPUs

On the software side of the design space we find different proposals, working at

different scopes and granularities.
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Cederman et al. propose two STM systems [12] focused on the conflicts occur-

ring among different work-groups. They do not consider potential interactions

between single work-items. Both implementations follow a lazy-lazy scheme:

lazy conflict detection and lazy version management. Their first implementa-

tion, called blocking uses a set of irrevocable locks to protect memory positions

accessed within the transaction (this is, only transactions able to get all the re-

quired locks are able to commit, but serially). They discuss that the correctness

of this implementation is highly dependent on the fairness of the GPU scheduler:

work-groups waiting for a lock can swap the work-group holding a lock repeat-

edly and, if the later is not scheduled again, the program may deadlock. Their

second proposal is obstruction-free. In this approach, comitting transactions try

to acquire locks that protect the locations to be updated and, at the same time,

announces the values to be written. Conflicting transactions (i.e., those that try

to acquire the same locks) now have two options. In case a conflicting transaction

is able to get all the locks, but has not updated memory, value to be written can

be forwarded from one transaction to the other. Another option is, if the con-

flicting transaction did not get all the locks or the values in memory missmatch,

to abort the transaction. In this implementation transactions either commit or

abort without waiting for other transactions to finish their commit. In average,

the obstruction-free algorithm produces better performance and less amount of

aborted transactions compared to the blocking implementation.

Xu et al. propose GPU-STM [70], a lazy-lazy software TM which works at

the granularity of a work-item. Conflict detection is performed in two phases:

timestamp-based validation (TBV) and value-based validation (VBV). TBV uses

a set of versioned locks, which store the state locked/unlocked as well as the last

time it was modified. Transactions try to acquire all the locks that protect the

access to the memory locations to be updated. If the timestamp stored in all the

locks coincides with the last time the transaction was consistent with memory,

then the transaction can commit directly. Otherwise, the transaction needs the

VBV phase, in which all accessed locations within the transaction need to be

checked against the current values in memory. In case the values missmatch, the

transaction aborts; otherwise it commits. A successfully committing transaction

must update all the versioned locks that were acquired in order to inform other

transactions that memory has been updated. This proposal is able to outperform

the use of coarse-grained locks on GPUs.

Holey et al. also propose three STM enabled at a work-item granularity [36].

Their first design is an Eager STM (ESTM) which detects conflicts eagerly. To

do that, they use versioned locks to prevent the access to shared data. These

versioned locks include, in this case, shared and modified bits, as well as the iden-
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tifier of the transaction that first accessed the memory location. This approach

is able to detect RAW, WAR, and WAW violations, signaling them as conflicts.

Their second approach, a Pessimistic STM (PSTM), simplifies the model treat-

ing reads and writes the same. This implementation is more efficient, but RAR

accessed are inaccurately signaled as conflicts. Howaver, as many transactions

perform read-modify-write operations on the same memory positions, most of

these conflicts would be detected later. Their third implementation is an Invis-

ible Read STM (ISTM) that validates reads during commits. Read operations

do not modify any entry in the versioned locks, which reduces the overhead of

non-conflicting transactions. In their experiments, ISTM and PSTM outperform

the ESTM implementation, also offering a better abort/commit ratio in most of

the cases.

Shen et al. propose PR-STM [55], which uses versioned locks and priority-

based lock stealing techniques to improve conflict detection. Briefly, transactions

pre-lock memory locations that are accessed during the transaction. Pre-locks

can be stolen by transactions with higher priority. If a transaction successfully

pre-locks all the memory positions required, then it will try to make these locks

definitive. In case they can not be locked, it means that a transaction with higher

priority has stolen the pre-lock. This way, progress is guaranteed as the trans-

action with higher priority is able to success. Additionally, this pre-locking and

locking mechanism based in priorities ensure that transactions executing in lock-

step successfully commit with no deadlock. They compare their proposal against

GPU-STM and the CPU implementation called TinySTM [26, 25], outperforming

both.

In this thesis we contribute with a software TM design that focuses on APU

architectures [62]. Our contribution, based in previous software TM for GPUs and

CPUs [70, 20], helps to understand the main challenges found when implementing

TM on a heterogeneos APU processor.

2.5.2 Hardware TM on GPUs

Regarding hardware solutions, we can highlight Kilo TM [29] and two perfor-

mance improvements, one on top of Kilo TM, called WarpTM [28], and other on

top of WarpTM [17].

Kilo TM [29] is a hardware TM system operating on global memory which

implements a lazy-lazy (i.e., at commit time) approach using specific commit

units. Each commit unit works on a partition of global memory. In Kilo TM,

transactions store a read-set and a write-log that is sent to the commit units
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at the end of the transaction. The read-set is validated against the values in

global memory (more specifically, in the L2 cache). Also, a hazard detection

mechanism is used to detect conflict among committing transactions which have

not updated memory yet. This process is performed in parallel in several commit

units. Note that each commit unit works on a partion of global memory and, thus,

a transaction must be validated by all commit units to be considered successful.

The outcome of the validation (i.e., conflict/no-conflict) is communicated among

all commit units. In case there is no conflict, transactions commit their values to

memory; otherwise the transaction restarts.

Kilo TM was improved by WarpTM [28]. Firstly, intra-warp (a warp is the

equivalent to wavefront in CUDA jargon) conflict detection optimizes the use

of resources as conflicting transactions among a warp are stalled before sending

their read-set and write-log to the commit units. Secondly, conflict detection is

optimized to speed up conflicts in read-only transactions. Specifically, a set of

global timers is used to register the last time memory positions were modified.

Read-only transaction can use these timers to commit directly without checking

their read-set. With these optimizations enabled, performance of Kilo TM is

improved by 65%.

WarpTM was extended to detect conflicts before sending transactions to the

commit units and to stall transactions that are likely to conflict [17]. The first

optimization is achieved by maintaining a conflicting address table per SIMT

core to indicate if a word is read or written by committing transactions. When a

transaction is running, the SIMT core can detect conflicts early by accessing this

table. This table is also used by the second optimization: transactions that detect

a conflict early can pause execution until the conflicting transaction successfully

commits or aborts. After that, the transaction can continue execution, provided

that the read-log is still consistent with memory.

In this thesis we contribute to this research area presenting our own hard-

ware TM design. Our proposal focuses on transactions using local memory to

store shared data [63, 61, 59, 60, 58]. In addition, our contribution focuses on

minimizing the hardware resources required to implement TM and implements

a serialization mechanism to ensure forward progress without requiring further

programming (i.e., no software fallback code is required).
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2.6 TM on low-power CPUs

In this thesis we discuss the impact that TM can have when executing applications

on heterogeneous CPUs following the big.LITTLE desing. Besides our analysis

and proposal, researchers have studied the impact TM can have on efficiency-

oriented homogeneous CPUs. Note that most of the research carried out in this

direction involves simulation for both power and performance estimation.

Gaona et al. [31] characterize the energy consuption of two hardware TM

systems In addition, they propose the use of dynamic serialization for HTM

in order to reduce energy consumption by minimizing the amount of wasted

work [30]. Moreshet et al. [44] and Ferri et al. [27] perform an energy analysis of

hardware TM using simulations. Their results show an improvement in energy

consumption when using TM as compared to lock-based approaches. Baldassin

et al. use simulations to characterize the software TM library TL2 [21] using low-

power ARMv7 processors. They propose a dynamic voltage and frequency scaling

approach [7, 6] as well as a strategy based in the use of scratchpad memory [39]

with the objective of reducing energy consumption. Sanyal et al. [54] propose

clock-gating techniques to be used in hardware TM in order to reduce energy

consumption and improve performance.

To contribute expanding the knowledge in this area, in this thesis we provide

an analysis of software TM on a low-power heterogeneous processor [65, 66]. Re-

sults of this analysis are used schedule TM-based applications on such processor

and understand their behavior [64].
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Heterogeneous CPUs

As TM becomes popular in the homogeneous multi-core CPU world, the sci-

entific community is starting to study its potential in low-power multi-core CPUs.

As we expose in Section 2.6, most of the research effort focuses on analyzing and

improving TM (either STM or HTM) for low-power homogeneous CPUs by using

simulation tools. At the moment of writing this thesis, heterogeneous CPUs are

not yet a target of TM applications.

In contrast to prior work on TM on low-power CPUs, we follow a different

approach when considering heterogeneous CPUs. Instead of directly proposing

architectural and microarchitectural changes to existing big.LITTLE designs to

add TM support, we analyze how existing STM libraries designed for homoge-

neous CPUs adapt to this kind of architectures. In particular, we characterize

the applications from the benchmark suite STAMP [43] using the STM library

TinySTM [25, 26]. Being able to characterize a set of well-known applications

and a widely used TM library provides meaningful information to programmers

who already developed their applications with homogeneous CPUs in mind. For

instance, it helps to predict the application behavior when the OS decides to

schedule it whether on the big cluster or the little cluster.

Once both the TM system and application behavior is known, we can propose

improvements to allow the TM implementation to take advantage of the heteroge-

neous CPU. These improvements can be done at the architectural level, compiler

level, library level, and/or runtime level. In our case, we decide to investigate the

role that scheduling can have in improving execution time and energy efficiency

of applications that use TM. By applying our desing to the highest possible level,

25
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we propose a solution that can be used directly in off-the-shelf hardware and

using proven and well-known libraries.

In summary, the contributions of this chapter are:

• An analysis of the benchmark suite STAMP using TinySTM as TM imple-

mentation on a big.LITTLE platform.

• A simple scheduler for heterogeneous CPUs aimed to highlight the bene-

fits that scheduling can deliver when improving performance and energy

efficiency of TM applications on heterogeneous CPUs.

3.1 Background: TinySTM and STAMP

Before going forward in this chapter, we introduce the set of applications and

TM implementation analyzed.

TinySTM [25, 26] is a time-based, word-level software TM available from http:

//tmware.org/tinystm. TinySTM includes three implementations for transac-

tion management: write-back (updates are buffered until commit time), write-

through (updates are directly written to memory), and commit-time locking

(locks are only acquired upon commit). By default, unless the contrary is stated,

we use the write-back policy and not commit-time locking (i.e., encounter-time

locking).

It is worth noting that TinySTM requires the C++ atomic ops library. By

default, TinySTM includes a stripped-down version of such library implemented

for several architectures. The reason is that, internally, the library uses platform-

dependent atomic operations via intrinsics. Unfortunately, the ARM architecture

is not included among the implementations. Nonetheless, the OS installed in the

platform used for evaluation incorporates an implementation of such library for

ARM architectures that could be linked with TinySTM.

STAMP [43] is a benchmark suite widely used to evaluate TM systems. It

includes 8 applications and a number of input parameters and data sets for evalu-

ation. Its applications come from different domains: from science and engineering

to machine learning and security. The 8 applications present different character-

istics designed to stress different capabilities of the TM under evaluation: length

of transactions, size of the read and write sets, transaction execution time, and

amount of contention.

Table 3.1 summarizes the characteristics of the STAMP applications relative

http://tmware.org/tinystm
http://tmware.org/tinystm
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Application TX Length R/W Set size TX Execution Time Contention

Bayes++ Long Large High High

Genome++ Medium Medium High Low

Intruder++ Short Medium Medium High

Kmeans++ Short Small Low Low

Labyrinth++ Long Large High High

Ssca2++ Short Small Low Low

Vacation++ Medium Medium High Low

Yada++ Long Large High Medium

Table 3.1: Applications included in the STAMP benchmark suite. Qualitative

characterization is relative to each other.

to each other. For each application, STAMP provides a set of data inputs to be

used. In our experiments we use the input marked as ++ (see [43] for more de-

tails) as it is the one providing more contention and requiring more computational

resources.

3.2 The ODROID XU3 Platform

Once the TM implementation and the applications are known, we introduce our

evaluation platform. The Odroid XU3 [2] is a low-power computation platform

integrating a Samsung Exynos 5422 processor, based on the ARM big.LITTLE

architecture (see Figure 3.1). In this processor, the big cluster is a 4-core Cortex-

A15 CPU while the little cluster is a 4-core Cortex-A7 CPU featuring 2 Mbyte

and 512 Kbyte L2 caches, respectively. The system integrates a Mali-T628 GPU

and 2 Gbyte of low-power DDR3 RAM. As operating system, the ODROID comes

with the Linux odroid 3.10.59+. INA231 power monitors1 are included in such

device and are used to measure the power consumption of memory, GPU and

both clusters separately. The values stored in these monitors are available by

reading the contents of the /sys directory in the filesystem. Note that the power

monitors record instant values, but do not provide the power consumption during

a specified time. A library has been developed to provide such funtionality. This

library starts a separate computing thread that reads the values of the power

monitors and integrates them over time, providing power consumption in Joules.

Sampling time for the measurements is 100 miliseconds. Once this sampling

thread is running, a set of functions is provided to be used to measure the power

consumption of different pieces of code.

1http://www.ti.com/product/INA231
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Figure 3.1: Diagram of the Exynos 5422 processor featured in the ODROID

platform.

3.3 Isolated Energy/Performance evaluation

In this section we evaluate the behavior of the STAMP applications using TinySTM

on top of the aforementioned Odroid platform. Applications were instrumented

to access the INA231 power monitors available in the hardware to measure en-

ergy. Energy is measured for the whole chip by accumulating the values obtained

from the four power monitors.

From the 8 applications available in STAMP, we selected 5, excluding Bayes,

Genome, and Yada for different reasons. Bayes presents unexpected behavior, re-

sulting in inconsistent performance results from one execution to another. Note

that this issue has been previously documented in [51]. Genome exhibits synchro-

nization errors which results in deadlocks when executing some multi-threaded

experiments. In the case of Yada, the most part of the executions result in

out-of-memory errors notified by the OS.

With respect to TinySTM we use the write-back policy and encounter-time

locking mechanisms implemented. As a remainder, the write-back policy stores

writes in a transaction-private write-set, which is updated to memory if the trans-

action reaches the commit instruction with no conflicts. The encounter-time lock-

ing technique locks memory possitions accessed by the transaction when accessing

to memory, in contrast to the commit-time locking mechanism which uses these

locks when executing the commit operation.
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We examine 3 metrics for evaluation. Firstly, we evaluate the normalized

execution time with respect to a single-threaded execution on the cluster that

is being evaluated. Secondly, we measure the energy consumption, again, nor-

malized to the energy consumption of a single-threaded execution. Lastly, using

these metrics, we calculate the Energy-Delay Product (EDP). All the experiments

were carried out comparing their results with respect to a single thread running

TinySTM. For each application, we run 10 tests and calculate the average of its

output. The experiments show consistent results for every execution. We do not

use a sequential version of the code as we intend to provide scalability metrics

for TinySTM instead of comparing TinySTM against other implementations.

3.3.1 Little cluster analysis

Figure 3.2 shows the results of the evaluation of the little cluster. In this case,

execution is normalized to a single thread running on the little cluster. The

threads are pinned to the little cores by using the taskset command provided

by the OS. TinySTM achieves good scalability for the three parameters (execution

time, energy consumption, and EDP). The performance scalability of TinySTM

added to the power efficiency of the Cortex-A7 processor, allows us to observe a

reduction of EDP between 80% and 90% with respect to 1 thread on a little core

when running the application using 4 cores/threads.

3.3.2 Big cluster analysis

Figure 3.3 shows the evaluation of the big cluster. The picture is different as

compared to the little cluster. In this case, we observe scalable results for the

execution time, but not as scalable as in the little cluster. In addition, as the

Cortex-A15 processor is not as power efficient as the Cortex-A7, we observe that

the energy consumption is higher when using 4 threads in Intruder, Kmeans, and

Vacation. Despite TinySTM shows to be scalable in terms of execution time, it

is not in energy when running on high-performance processors. The scalability

obtained in terms of execution time is not enough to compensate the energy

increment when using 4 threads. As result, the EDP is not always optimal when

using 4 threads, achieving better results when running on 2 threads.
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c. Normalized EDP w.r.t 1 thread running TinySTM on a little core.

Figure 3.2: Little cluster evaluation.

3.3.3 Full system analysis

Figure 3.3 shows the evaluation for the full system. Before running these exper-

iments, we observed that the OS scheduler tries to use the big cluster as soon

as it detectes any overload. We decided to keep the default behavior of the OS

scheduler in order to analyze if some changes should be required for an optimal
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Figure 3.3: Big cluster evaluation.

scheduling. Results show that, using up to 4 threads, they are scheduled on the

big cluster and the performance and energy results are similar. When adding 4

more threads, they are scheduled on the little cluster. The applications achieve

good performance scalability when adding the Cortex-A7 multi-core processor.

In addition, its power-efficiency results in a reduction of the energy consumed by
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the applications when using 8 cores. The only exception is Kmeans. However,

despite the small increment of the energy consumption as compared to the use of

one thread, it is balanced by the execution time reduction achieved when using

the little cluster. This results in an improvement of the EDP in all the cases.
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c. Normalized EDP w.r.t 1 thread running TinySTM on a big core.

Figure 3.4: Full system (big + little) evaluation.
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3.3.4 Little cluster and big cluster comparison

In Figure 3.5 we evaluate the performance of the little cluser as compared to the

big cluster. For execution time, (Fig. 3.5.a) we calculate ExTimeA7/ExTimeA15

for 1, 2, and 4 cores. Values higher than one reveal that the big cluster performs

better than the little cluster. Values smaller than one represent the opposite.

Running the applications with a single thread results in better performance for

the big cluster. However, we observe that (with the exception of Labyrinth), as

we keep adding more threads and memory conflicts appear, it is not as efficient

as the little cluster. The application Labyrinth, which features long transactions

with many accesses to memory and where most of the code in inside a critical

section, requires of a performance-oriented multicore CPU and is able to get full

advantage of the big cluster. We perform the same comparison for the energy

consumption. In this case, the low-power Cortex-A7 processor performs better

than the Cortex-A15 in terms of energy consumed. The same applies for the

EDP, except for Labyrinth. For this application, as the big cluster performed

(in terms of execution time) much better than the little cluster, the EDP shows

improvements between 1.5X and 2.5X despite the higher energy requirements.

3.3.5 Conclusions

The main conclusion we can draw out of this analysis is that both clusters behave

differently when executing applications that use TM. In terms of performance

and energy consumption, the little cluster presents more scalability as compared

to the big cluster. However, applications such as Labyrinth that require more

computational power and has high memory imprint are able to benefit from the

performance-oriented architecture and the larger caches offered by the big clus-

ter. Applications also benefit from using both clusters simultaneously, providing

better performance at a lower energy consumption when using the whole chip.

3.4 Concurrent execution of TM applications on

heterogeneous CPUs

The previous study considers a single application running on the heteroge-

neous CPU, even if only one of the clusters is occupied. As our goal is to schedule

multiple applications to run simultaneously, it is important to understand if the
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Figure 3.5: Big cluster vs little cluster evaluation. Values higher than 1 indicate

an advantage of the big cluster over the little cluster; values lower than 1 indicate

the opposite.

conclusions drawn when executing a single application in the device stand true

when executing two or more concurrently.

To do that, we paired the 5 applications evaluated with each other (one of

the applications is set to run on the big cluster while the other is scheduled
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on the little cluster). The main objective is to check if application behavior

dramatically changes when a second application is executed in the other cluster.

Note that this is not exhaustive testing, as there are some effects such a context

switching that are not measured. However, this test provides some insight on the

performance degradation that can be expected when executing two applications

simultaneously. This way, we have 25 pairs of applications to be evaluated.

Table 3.2 shows the execution time of the 25 pairs of applications when

running concurrently. Results are the average of 10 executions. For these ex-

periments we consider that each application uses the whole cluster where it is

scheduled (i.e., applications use 4 threads). In this table we can observe that

the behavior of a given application executing on a given cluster does not change

when executing concurrently another application on the other cluster; but per-

formance degrades in different ways. For instance, the column in bold highlights

the experiments where Kmeans is scheduled in the big cluster. Depending on the

application scheduled on the little cluster, its execution time varies between 37.8

and 44 seconds. In the row in bold we observe the execution time of Kmeans,

but this time scheduled on the little cluster. In this case, the execution time

varies between 23.7 and 27.3 seconds. As conclusion, Kmeans always performs

better running on the little cluster as compared to the big cluster. The same

applies to the rest of the applications, with the exception of Ssca2 which present

similar execution time for both clusters. This experiment was repeated for the

number of transactions aborted, as well as the energy consumption, obtaining

similar results. The conclusion of these experiments is that, if an application

presents better behavior in one of the clusters with respect to the other, this

behavior remains the same (but with some performance degradation) if another

application runs on the other cluster.

In Table 3.3 we summarize the behavior of the applications when running

concurrently with another application. All the applications show better enery

consumption when running on the little cluster, due to its high efficiency. With

respect to the number of aborted transactions, each application has different be-

havior depending on the cluster on which it is executed. Execution time is, in

general, more favorable to the little cluster. There are several reasons that explain

that behavior. For Kmeans, the number of aborted transactions is smaller in the

little cluster. That means that the high performance offered by the big cluster

is wasted executing transactions that abort. Another reason is that the eventual

improved peak performance offered by the big cluster only benefit CPU-bounded

and cache-hungry applications such as Labyrinth. Lastly, the heavy instrumen-

tation introduced by TinySTM increases the pressure on the memory subsystem

of the processor. The higher frequency at which the big cluster operates not only
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Big Little Big Little Big Little Big Little Big Little

Intr. Intr. Lab. Intr. Ssca2 Intr. KM Intr. Vac. Intr.

149.0s 103.9s 34.4s 88.0s 45.8s 98.9s 44.0s 91.4s 286.0s 96.3s

Intr. Lab. Lab. Lab. Ssca2 Lab. KM Lab. Vac. Lab.

129.3s 91.9s 37.2s 93.5s 36.4s 93.6s 39.9s 91.2s 273.5s 92.2s

Intr. Ssca2 Lab. Ssca2 Ssca2 Ssca2 KM Ssca2 Vac. Ssca2

138.2s 38.6s 35.2s 33.0s 33.1s 35.0s 37.8s 32.8s 277.9s 34.8s

Intr. KM Lab. KM Ssca2 KM KM KM Vac. KM

131.2s 26.3s 34.2s 23.7s 38.3s 26.1s 41.8s 27.3s 274.1s 24.2s

Intr. Vac. Lab. Vac. Ssca2 Vac. KM Vac. Vac. Vac.

143.3s 162.8s 35.8s 140.1s 39.1s 146.2s 41.3s 142.8s 292.3s 164.2s

Table 3.2: Execution time (in seconds) of the applications when running concur-

rently one on the big cluster and another on the little cluster. Intr, Lab, KM, and

Vac stand for Intruder, Labyrinth, Kmeans, and, Vacation, respectively. To help

understand this table, the row in bold marks the experiments where Kmeans

is executed on the little cluster, while the column in bold marks those where

Kmeans is executed on the big cluster. The remaining rows and columns are

organized in the same way for the rest of the applications.

does not help to improve the execution time, but introduces higher contention on

the memory, harming performance in a larger ratio as compared to the little clus-

ter. This behavior has been observed in non-TM memory-bound applications, in

which the latency in the accesses to memory and contention harms performance

on the big cluster. Novel techniques are used to schedule the compute-bound

part of the applications on the big cluster, while the memory-bound sections are

scheduled on the little cluster [68].

Execution time Energy consumption Aborted transactions

Intruder little little similar

Kmeans little little little

Labyrinth big little similar

Ssca2 similar little big

Vacation little little similar

Table 3.3: Summary of the behavior of the applications when executing con-

currently with other application. For each metric, the values “big” and “little”

indicate in which cluster the application performs better; “similar” means that

differences are close to 10% or less.

To finish with this comparison, we want to highlight that the conclusions of

this study are similar to those obtained by the isolated execution of the applica-
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tions. If we compare Table 3.3 with the results in Figure 3.5, we observe some

similarities. The comparison of both clusters when executing applications in iso-

lation is similar to the obtained when executing concurrently two applications

on the heterogeneous processor. This empiric evaluation allows us to conclude

that, for this set of applications, the analysis can be done either in isolation or

concurrently, and results are not affected in a significant way. Note that some

degradation can be observed in the concurrent execution, but application behav-

ior does not change.

3.5 Scheduling TM applications on heterogeneous

CPUs

In this section we present our scheduling model for TM applications on the het-

erogeneous CPU. Our goal is to provide a prototype in which TM applications

can be scheduled across both clusters to improve performance, energy efficiency,

and reduce the overhead produced by aborted transactions.

3.5.1 Scheduling on heterogeneous CPUs

Besides the 3 basic scheduling modes supported by default in big.LITTLE CPUs

(cluster switching, in-kernel switching, and global task scheduling) as described

in Section 2.3, research has been carried out to provide more advanced techniques

that improve energy efficiency and performance. Note that TM is not considered

as part of these models, they consider multi-threaded applications with no special

attention on the mutual exclusion mechanism implemented (if any is required).

Normally, these techniques focus on two kinds of scheduling: thread-to-cluster and

thread-to-core. The thread-to-cluster scheduling process is in charge of deciding

if the application is suitable for running on the big cluster or, on the contrary, it

is prefered to be scheduled on the little cluster. The thread-to-core scheduling,

based on the application requirements and the availability of resources, decides

on the number of cores to use on the given cluster. Recently, some techniques

have been proposed scheduling the applications with higher computing require-

ments on the big cluster [9], scheduling applications based on time and progress

fairness [42], and by tracking the behavior of the application in previous execu-

tions [16].

Our proposal is inspired in the recent work of Libutti et al. [41]. Their sched-

uler performs thread-to-cluster scheduling and gives some hints to the OS to
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perform thread-to-core scheduling. Briefly, this scheduler works in two separate

stages:

1. In the first phase, called analysis phase, applications are executed and ana-

lyzed, and the stake functions are calculated. These functions ara calculated

for each application and each cluster, and depend on the CPU time required

by the application and the contention in computing and memory resources

expected when running concurrently with other applications.

2. In the second phase, scheduling phase, information from the previous phase

is used to schedule the applications. In particular, the values calculated

by the stake functions are used to reduce execution time and minimize

contention in the access to resources. The thread-to-cluster scheduling is

performed attending to the expected resource contention. Applications that

experiment higher contention are scheduled on the big cluster, provided that

it is available for execution. The little cluster is used only for applications

with lower contention or when the big cluster has no resources available.

Once the cluster is selected, the scheduler observes the resources available

and the stake functions of the application for the given cluster. If it is

possible to allocate all the resources needed for the application (this is

information is provided by the stake function), then the application runs

using all the resources needed and in isolation. In case that there are

not enough resources (i.e., the cluster is partially occupied running other

application), then the scheduler informs the OS on the resources needed by

the application. At this point, the execution of the application is in charge

of the OS scheduler.

3.5.2 ScHeTM: A TM-aware scheduler for heterogeneous
CPUs

Inspired by the previous work on schedulers for heterogeneous CPUs, we propose

a model that includes the overhead produced by aborted transactions as well as

energy and performance metrics. We call our proposal ScHeTM (Scheduling -

Heterogeneous CPUs - TM applications).

Our model shares some similarities with the presented by Libutti et al. [41].

Firstly, our scheduler also operates in two stages: a first stage in which ap-

plications are analyzed, and a second stage to perform the scheduling process.

Secondly, the analysis is performed per-application and per-cluster, as in the pre-

vious proposal. Thirdly, this analysis involves the calculation of some functions
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to characterize the application (in our case, we name this function as suitability

function). Lastly, thread-to-cluster scheduling is also performed in our model.

In contrast to these similarities, ScHeTM have some key differences with prior

work. In our case, we do not perform thread-to-core scheduling. We consider that

the applications use all the resources available in the cluster, once the thread-

to-cluster scheduling has been performed. Thread-to-core scheduling techniques

are proposed as future work. Furthermore, in contrast to the stake function

that only consider performance-related measurements, in our suitability function

we take into consideration three metrics: execution time, energy consumption,

and the amount of aborted transactions. Another difference is the addition of 3

parameters to adjust the importance of each one of these 3 metrics. This way,

the behavior of the scheduler can vary depending on the status of the device (i.e.,

the scheduler can focus on minimizing energy consumption if the device is set in

power-saving mode).
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Figure 3.6: Diagram of the proposed scheduler ScHeTM.

Figure 3.6 shows an overview of the design of ScHeTM, which consists of

two phases. During the first phase (A©: design phase) applications are analyzed,

calculating the suitability functions Sbig(T,E,A) and Slittle(T,E,A). These func-

tions are used to score the behavior of the application in the given cluster. The

parameters T , E, and A are metrics depending on execution time, energy con-

sumption, and aborted transactions, respectively. Thus, applications should be

properly instrumented during the execution of this phase to get the T , E, and

A metrics, but this instrumentation can be omitted in the next phase. The

second phase ( B©: scheduling phase) is in charge of assigning applications to clus-

ters (thread-to-cluster scheduling). For simplicity, we assume that applications

come from a task queue and that they should be executed in no particular or-
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der. During this phase, a cluster can be either scheduling an application (if the

cluster was idle) or executing an application that has been scheduled on it. This

phase is executed each time a cluster is idle. In the example of Figure 3.6, we

assume that the little cluster is idle while the big cluster is running an applica-

tion (App. 3). The little cluster then dequeues an application from the input

queue 1© and proceeds to compare both suitability functions of this applica-

tion (Sbig(T,E,A) and Slittle(T,E,A)) 2©. If the result is favorable to the little

cluster (Sbig(T,E,A) ≤ Slittle(T,E,A)), then the application is set to run on

such cluster 3©. Otherwise, the application is more suitable for executing on the

big cluster. As the big cluster is busy, then the application returns to the task

queue 4©. The cluster, still idle, dequeues a new application from the task queue

and repeats the process until it finds one more suitable for its execution. Note

that, if one of the clusters is much better than the other, then the cluster can re-

main idle indefilitely. Thus, a mechanism is requires to ensure that both clusters

eventually receive an application to execute and avoid resource underutilization.

3.5.2.1 Design phase: suitability functions

In general, the suitability function is defined as Sc(T,E,A) = tFc(T ) + eFc(E) +

aFc(A), where c is one of the two clusters (big or little), Fc(T ), Fc(E), and

Fc(A) are functions calculated from the execution time, energy consumption, and

aborted transactions (respectively), and t, e, and a are parameters that weigh

these three characteristics. Note that, in this approach, and T , E, and A follow

”the lower the better” rule, so the suitability function is designed with that in

mind.

Sc(T,E,A) is designed to return values in the range [0,1]. The value 0 means

that the cluster c is not suitable for executing the current application, while the

value 1 means that this cluster is much better than the other. This value is

calculated from the weighted sum of 3 functions (Fc(T ), Fc(E), and Fc(A)) and

3 weights (t, e, and a). The three functions (represented in general as Fc(N),

where c is the current cluster and N is any of the parameters T , E, or A) are

also designed to return values in the range [0,1]. This means that the weights

must fulfill that 0 ≤ t ≤ 1, 0 ≤ e ≤ 1, 0 ≤ a ≤ 1 and t + e + a = 1. The 3

weights are those parameters used to give more importance to one metric than the

others, if the scheduler is set to meet performance, energy, or aborted transactions

constraints. In the evaluation section of this chapter we assess the impact that

tuning up these values can have in the behavior of the system.

The calculation of the Fc(N) is very similar, but different, for each cluster.

In the rest of the section we provide details for the calculation of Flittle(N),
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but a similar process is done for the big cluster. The calculation follows the

formula Flittle(N) = 1 − N(little)/N(big) where N(little) and N(big) indicate

the values measured for the parameter N in the little cluster and big cluster,

respectively. The explanation of this formula is that it returns higher values

if the measurement in the big cluster is higher than in the little cluster. For

instance, for the calculation of energy consumption, the value of Flittle(N) gets

closer to 1 as better is the little cluster executing the application. In the case

Flittle(N) = 0 it means that both clusters perform the same for the metric N .

The opposite calculation has to be performed on the big cluster (i.e., Fbig(N) =

1 − N(big)/N(little)). The difference in performance, energy consumption, or

number of aborted transactions in both clusters can make such formula return

a negative value as the numerator is higher than the denominator. In these

cases, the value is rounded up to 0, as this values already represents that the

other cluster is more suitable for executing the application. Table 3.4 shows an

example of an application, where the three metrics are measured and then Fc(N)

is calculated for all of them in both clusters.

Metric Measured Fbig(N) = Flittle(N) =
value 1−N(big)/N(little) 1−N(little)/N(big)

Execution time big: 10 s. Fbig(T ) = 0.5 Flittle(T ) = 0.0
little: 20 s.

Energy consumption big: 100 J. Fbig(E) = 0.0 Flittle(E) = 0.5
little: 50 J.

Aborted transactions big: 500 Fbig(A) = 0.0 Flittle(A) = 0.6
little: 200

Table 3.4: Calculation of Fc(N) for a sample application in both the big and

little cluster. Negative values mean that the cluster is not suitable for excecuting

the application and are rounded up to 0.

Once these 3 values are calculated for each cluster (6 values in total), then they

can be stored in a table or a similar data structure. The suitability function for

each cluster can be calculated from these values using the formula Sc(T,E,A) =

tFc(T ) + eFc(E) + aFc(A). In a static system, where the parameters t, e, and

a remain unchanged, the suitability function can be calculated before execution

and its results can be used through the scheduling process. In a dynamic system,

where the preferences of the system can change over time, then Sc(T,E,A) can

be recalculated when required. Table 3.5 shows the calculation of Sc(T,E,A) in

a system where the performance, energy consumption and abort rate is balanced.

Data used in this calculation comes from table 3.4. Note that the application

performed better in 2 of the 3 metrics analyzed. As we can observe, the value
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of Sc(T,E,A) is higher in the cluster little, meaning that this cluster is more

suitable for running the application.

Sc(T,E,A) = tFc(T ) + eFc(E) + aFc(A)

Sbig(T,E,A) = 0.17
Slittle(T,E,A) = 0.37

Table 3.5: Calculation of Sc(T,E,A) using the data from Table 3.4 and using

the parameters t = e = a = 1/3.

3.5.2.2 Scheduling phase: application execution

In this model we assume that the applications, which have been already analyzed

to calculate the suitability functions, enter the system from a task queue. This

assumption is similar to that made in HPC schedulers, where a queue manage-

ment system is in charge of deploying the applications to the computing resources.

In addition, is not unusual that users of these systems have to specify some re-

quirements of the application, such as memory and disk usage, and expected

computation time.

At the begining, both clusters are idle and dequeue different tasks from the

task queue. Each cluster tests Sbig(T,E,A) > Slittle(T,E,A) for the application

that has been assigned. If the comparison is favorable to the current cluster

(i.e., true for the big cluster and false for the little cluster), then the application

executes on such cluster. On the contrary, if the comparison is favorable to

the other cluster, then the application is sent back to the task queue. In that

case, a new application is dequeued from the task queue, repeating the previous

evaluation. This way, each cluster executes the applications where execution time

(or energy consumption, or the number of aborted transactions) is predicted to

be lower as compared to the other cluster.

The system described previously presents an important disadvantage, which

is resource underutilization: if a cluster is always worst than the other, then no

application is scheduled there. In some systems this can be tolerable and even

desirable, but in many other cases it is interesting to exploit the full potential

of the heterogeneous CPU. To correct this issue, we define the parameter B

as the maximum number of applications discarded per cluster. A per-cluster

counter, r is set to 0 each time an application is scheduled on such cluster. If

the application is discarded by the cluster, then ScHeTM performs r = r + 1.

In the case r = B, then this application is forced to execute on such cluster,
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regardless of the value of Sc(T,E,A). To soften this change in the behavior of

ScHeTM, instead of comparing the values of Sc(T,E,A), the values compared

come from this formula: Sc(T,E,A) + r ∗ (1− Sc(T,E,A))/B . The intuition of

this formula is to leave the value of Sc(T,E,A) as it is in the first retry (r = 0)

and scale it linearly until r = B. In that case, the value obtained is the constant

1, which is the maximum value returned by Sc(T,E,A). This way, in a system

with more than B applications, each cluster eventually executes at least one.

This simple approach solves the problem of resource underutilization, but has

some disadvantages that we discuss during the evaluation.

3.5.2.3 Evaluation of ScHeTM

ScHeTM is evaluated on the Odroid XU3 platform which is described in Sec-

tion 3.2. The input task queue is composed by 25 applications, which is a random

combination of the 5 applications previously evaluated, using the same config-

uration and input parameters. By checking back Table 3.3, we observe that

Labyrinth is the only application with better performance in the big cluster. To

evaluate a more balanced scenario, we increased the probability of such applica-

tion to appear in the system. In total, 10 out of the 25 applications in the queue

are instances of Labyrinth. In our test we also set the maximum number of re-

jected applications B = 5. All results presented in this section are the average of

10 executions.

In this section we analyze a baseline scheduler, and 4 different configurations

of ScHeTM. We analyze 3 metrics, which correspond to the configurable param-

eters provided in ScHeTM: execution time, energy consumption, and number

of aborted transactions. Each of the metrics is represented by a figure with 3

columns. The two first columns represent the value measured in the little cluster

and the big cluster. The column labeled as “Total SoC” represents the value

observed in the whole system-on-chip as is calcutated in a different way for each

metric.

• In the case of execution time this column is calculated as the maximum

value of the other two, as the time taken to execute all the applications

corresponds to the time employed by the slowest cluster.

• The case of energy consumption is harder to analyze. In our instrumenta-

tion, each cluster measures the energy consumption for the whole chip, as

there are some parts (for instance, the memory subsystem) that are hard

to isolate when two applications are executed simultaneously each in one
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cluster. This means that some of the measurements are taken twice (once

per cluster) as the applications execute concurrently. For this reason, the

column Total SoC represents the maximum value of energy consumed by

any of the clusters (i.e., to avoid adding the same measurements twice, each

cluster records the energy consumption of the whole chip during the exe-

cution and Total SoC is the highest of these values). In practice, usually

corresponds to the energy consumed by the big cluster. We consider this a

valid aproximation as we are interested in the energy consumption of the

whole system, not the individual applications.

• With regards to the number of transactions aborted, we obtain the column

Total SoC by adding the values of the other columns.

Baseline scheduler. Before evaluating ScHeTM, we designed a greedy sched-

uler to be utilized as baseline. The goal is to observe if ScHeTM is able to

improve the results provided by a simple scheduling technique. As in ScHeTM,

we consider that the greedy scheduler receives the applications to be scheduled

from a task queue. Whenever any of the clusters is idle, the greedy scheduler

dequeues an application from the task queue and assigns it for execution on said

cluster. Thus, the greedy scheduler never returns an application back to the task

queue, as every cluster executes the application it receives without considering

its expected performance. Although the scheduling may not be optimal, this

scheduler intends to keep the clusters busy as much as possible.

Figure 3.7 shows the execution time, energy consumption, and aborted trans-

actions when using the greedy algorithm to schedule the task queue of 25 applica-

tions. In this case, execution time is balanced, being the little cluster a bit behind

the performance offered by the big cluster. A similar scenario occurrs for the en-

ergy consumption: both clusters require the similar amount of energy to execute

the applications but, in this case, the big cluster consumes a bit more energy as

compared to the little cluster. A very different situation happens when measur-

ing the number of aborted transactions. In this case, the big cluster aborts more

transactions than the little cluster. Note that the little cluster does not abort 0

transactions, but a very small number of them as compared to the big cluster.

The reason is that the applications that produce more aborted transactions are

scheduled in the big cluster. In particular, Intruder and Kmeans produce mil-

lions of aborted transactions, as compared to the tens, hunderds, or thousands

signaled by the other applications.
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Figure 3.7: Evaluation of the greedy scheduler. Execution time is provided in

seconds, energy consumption in Joules, and aborted transactions in millions.

Balanced ScHeTM. In this scenario, we use ScHeTM to schedule the same

set of applications using a balanced configuration: t = e = a = 1/3. This way,

the system does not have preference for any metric above the others.
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Figure 3.8: Evaluation of ScHeTM using a balanced configuration (t = e = a =

1/3). Execution time is provided in seconds, energy consumption in Joules, and

aborted transactions in millions.

In Figure 3.8 we observe the results obtained by this configuration of ScHeTM.

In this scenario, 17 out of the 25 applications have been scheduled on the big

cluster and the remaining ones on the little cluster. ScHeTM was able to identify

the computing demands of Labyrinth, and all the 10 instances were executed

on the big cluster in every experiment. In the greedy scheduler, Labyrinth used

equally both clusters, depending on the execution. For this reason, execution time

is reduced by 20% when using ScHeTM. In addition, ScHeTM was able to identify

that, for the applications that produce more aborted transactions, execute more

efficiently on the little cluster. By scheduling them on such cluster, the amount

of aborted transactions is reduced by 33% in comparison to the greedy scheduler.

However, as the power-hungry big cluster executes more applications than the

little cluster, energy consumption increases by 7%.

Performance-oriented ScHeTM. As ScHeTM can be configured via its pa-

rameters to set a preference for execution time, energy consumption, or aborted

transactions. In order to emphasize in execution time, we set the parameters

t = 0.7 and e = a = 0.15. This way, execution time has a higher weight in the

calculation of Sc(T,E,A) than the other parameters.
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Figure 3.9 shows the evaluation of ScHeTM using this configuration. Al-

though the number of applications executed on each cluster is the same as in

the balanced configuration, their distribution is different. Only Labyrinth and

Ssca2, which are able to benefit from the extra computational power provided

by the big cluster, are always scheduled on such cluster. This lead to a better

workload distribution, as the little cluster executes only those applications whose

performance does not benefit from the big cluster. As result, we get a reduc-

tion in the total execution time of the system of about 40% compared to the

greedy scheduler. Such reduction in execution time goes along with a reduction

in energy consumption of 15%. The number of aborted transactions remains in

an intermediate value between the greedy scheduler and the balanced version of

ScHeTM, but the current configuration does not focus on reducing this overhead.
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Figure 3.9: Evaluation of ScHeTM using a performance-oriented configuration

(t = 0.7 and e = a = 0.15). Execution time is provided in seconds, energy

consumption in Joules, and aborted transactions in millions.

Efficiency-oriented ScHeTM. This second configuration is designed with the

goal of reducing the energy consumption of the system. Thus, the parameters

are set as e = 0.7 and t = a = 0.15.

In Figure 3.10 we observe the results of this evaluation. From these results we

can deduce that such configuration has a negative effect in the parameter that

was intended to be optimized: energy consumption has increased by 6% com-

pared to the balanced configuration of ScHeTM. The reason for this behavior

is simple: all the applications are more efficient in terms of energy consump-

tion when executing on the little cluster (see Table 3.3 in Section 3.4). When

evaluating the suitability functions, in every case the result of the comparison

Slittle(T,E,A) > Sbig(T,E,A) is true, and the little cluster accepts all the ap-

plications for execution. On the contrary, the big cluster rejects the execution

of the applications and resorts to the mechanism to avoid resource underutiliza-

tion. As result, the big cluster rejects executing 5 applications and is forced to

accept one in spite of its energy efficiency. For this reason, the behavior of the

system is simiar to the greedy scheduler: applications get executed equally by

both clusters. Later we discuss how the effects of this problem can be mitigated.
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Figure 3.10: Evaluation of ScHeTM using an efficiency-oriented configuration

(e = 0.7 and t = a = 0.15). Execution time is provided in seconds, energy

consumption in Joules, and aborted transactions in millions.

Transaction-oriented ScHeTM. The last configuration of ScHeTM that we

are evaluating focuses on reducing the overhead produced by aborted transac-

tions. To set this configuration we use the paramenters a = 0.7 and t = e = 0.15.

Figure 3.11 shows the results of the evaluation of such configuration. The re-

sults are quite similar to the obtained by the balanced configuration of ScHeTM.

The main reason is that in 3 out of the 5 applications the difference in the num-

ber of aborted transactions is not significant. A second reason is that, even if

an application has a lower number of aborted transactions on one of the clus-

ters, the difference in the other parameters (i.e., time and energy) is still more

noticeable. For instance, Ssca2, has 13% more aborted transactions on the big

cluster compared to the little cluster, but is 4 times more energy-efficient in the

later. On the contrary, scheduling Kmeans on the big cluster reduces the number

of aborted transactions by 40%, but it consumes 5 times the energy consumed

by the little cluster. For that reason, the a parameter is less relevant in the ap-

plication behavior as compared to the others, and no substantial benefit can be

obtained from this configuration compared to a balanced execution.
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Figure 3.11: Evaluation of ScHeTM using a transaction-oriented configuration

(a = 0.7 and t = e = 0.15). Execution time is provided in seconds, energy

consumption in Joules, and aborted transactions in millions.
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3.5.2.4 Conclusions

With ScHeTM we explore the possibilies and impact that scheduling TM appli-

cations on heterogeneous CPUs can have in terms of performance, energy con-

sumption, and reducing transaction overhead. With a simple and configurable

model, we are able to obtain up to 40% reduction in execution time and up to

15% reduction in energy consumption, and in both cases reducing or keeping

similar the amount of aborted transactions.

However, we have two concerns about our proposal that should be addressed

by more complex scheduling systems. The first problem is that, if one of the

parameters is always better in one of the cluster, then ScHeTM is not able to

find a schedule better than a greedy scheduler. This is due to our implementation

of the mechanism that avoids resource underutilization, which is designed keeping

simplicity in mind. However, more advanced solutions can consider, instead of

returning applications to the queue when they are not suitable for execution,

keeping them some time on the side. Once the cluster has rejected a number of

applications, then it can have access to the last N rejected applications and have

the opportunity of choosing the one whose execution produces lower degradation

in performance, energy consumption, or aborted transactions. For instance, if

the big cluster rejects 5 applications, then it should have the opportunity of

choosing the one with better Sbig(T,E,A); or that one whose difference between

Sbig(T,E,A) and Slittle(T,E,A) is smaller. The second problem relates to these

metrics whose difference is relatively small compared to the others. We have

observed this when trying to optimize the number of aborted transactions: the

difference in aborted transactions among clusters is smaller than the difference in

energy consumption. Thus, the number of aborted transactions has lower impact

in the overall performance and trying to optimize such parameter does not lead

to a more efficient schedule.

3.5.3 TM on heterogeneous CPUs: conclusions and future
work

In this chapter of the thesis we explore the behavior of an existing STM library

when executed on a big.LITTLE platform. In particular, we test a set of appli-

cations from the STAMP benchmark suite which have been linked with the STM

library TinySTM. These applications are analyzed in both clusters separately,

using both at the same time, and running concurrently an application on each

cluster. Furthermore, we have designed ScHeTM, a scheduler for heterogeneous

CPUs that performs the schedule taking into consideration a TM-related metric
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(aborted transactions).

The main conclusions and contributions of this chapter are the following:

• For the set of applications analyzed, the little cluster presents better scal-

ability and lower energy consumption than the big cluster.

• Applications with higher computing demands still benefit from the power

offered by the big cluster.

• For this set of applications, if an application performs better in cluster

A when executes in isolation, it still executes better (but with degraded

performance) in such cluster when an application is executing concurrently

on cluster B.

• We propose a simple scheduling model that permits to select which param-

eter to optimize: execution time, energy consumption, or aborted transac-

tions. A proper configuration of such parameters results speeds up execu-

tion time in up to 40% and reduces energy consumption in up to 15%.

• We observe that optimizing a well-differentiated parameter (excecution

time, in our case) improves the overall behavior of the application.

• The scheduling scheme is not able to improve a greedy scheduler if the

applications behave always better in one of the cluster, or if the clusters

behave similarly for the selected parameter.

We want to propose some directions for future work. As mentioned in Sec-

tion 3.5.2.4, the mechanism included in our scheduler used to avoid resource

underutilization can be improved to select more appropriate applications. In ad-

dition, the desing phase (training) of the scheduler could be omitted - applications

can be assigned to idle clusters (as in the greedy scheduler) the first time they

are executed and information can be gathered from such execution. In subse-

quent execution, if enough information has been obtained, the application can be

executed followed the policy established by ScHeTM. Additionally, non-TM ap-

plications have to be considered in the model, as many applications do not require

of synchronization or use other synchronization techniques. An immediate way to

include these applications is to consider that they present 0 aborted transactions

(i.e., if no TM is used, then the application does not abort any transaction). Also,

the model should consider implementing a thread-to-core mechanism to comple-

ment the existing thread-to-cluster proposal. This way, applications that do not

require the full cluster, or even single-threaded applications, can be managed by

the scheduler.





4
Transactional Memory on
Heterogeneous CPU+GPU
processors

In multi-core CPUs, TM has emerged as a promising alternative to the use of

locks. As consequence, CPU vendors are including hardware TM as part of their

commercial CPUs [72, 67, 37, 3]. At the same time, GPUs have become default

accelerators for graphics and data-parallel algorithms. For that reason, CPU

vendors are also including integrated GPUs as part of their processors, creating

the so-called Accelerated Processing Units (APUs). However, both worlds (APU

processors and TM) are still separated.

In this chapter we prototype a Software TM (STM) library targeting APU

processors. The goal is to allow for transactions in both the CPU and the GPU si-

multenously. The implementation of TM in heterogeneous CPU-GPU processors

is a challenging task, as both CPU and GPU work under different programming

models. Multi-core CPUs follow the MIMD model, where multiple cores may

operate on different data or a shared memory, while GPUs follow the SIMD

programming model, where multiple threads execute the same instruction (lock-

step execution) on different memory positions. Another challenge is the memory

space. CPUs have access to a main memory via a coherent cache hierarchy. On

the GPU, main memory is accessed via a cache hierarchy where, in most cases,

the L1 data cache is not coherent. In addition, GPUs feature a low-latency

scratch-pad memory (shared memory in CUDA, local memory in OpenCL, or

tiled memory in C++AMP) that can be used to accelerate the management of

GPU-private transactional metadata. Lastly, communication between CPU and

51
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GPU is an important problem to solve. Platform atomics ensure that values com-

municate effectively between both devices, but these operations are expensive in

terms of memory latency.

To better understand and overcome these challenges, we propose APUTM, a

software TM designed to work on APU processors. APUTM can be configured

to run separately on the CPU cores or the GPU, or simultaneously in both de-

vices, ensuring mutual exclusion in any case. APUTM is inspired by NOrec [20],

combining a fast timestamp-based conflict detection mechanism with a precise

value-based validation. For the GPU, APUTM implements a mechanism to allow

for parallel commits of transactions while updating the timestamp information to

communicate with the CPU cores. In our evaluation, we use a synthetic workload

and 3 microbenchmarks to analyze different configurations of APUTM. We pro-

vide a discussion on the impact that our design decisions have on the performance

of APUTM on both devices and provide hints for future improvements.

4.1 Background: NOrec and GPU-STM

The design of APUTM in inspired by two different STM proposals. On the CPU

side, our design takes out some ideas from NOrec, while the GPU side is inspired

by GPU-STM.

NOrec [20] implements conflict detection by comparing the values read from

memory during the transaction with the values in memory at commit time. Mis-

matching values lead to a transaction abort. To speed up this process, NOrec

uses a single global sequence lock to serialize writer transactions. If this lock has

not changed since the last validation, then the transaction commits its changes to

memory immediately and updates the global sequence lock. This way, read-only

transactions are linearized before writer transactions, allowing these to commit

faster.

On the GPU side, GPU-STM [70] offers many features desirable for APU

architectures. In a similar way as NOrec, GPU-STM uses the concept of global

sequence lock, making feasible the integration of both solutions. In addition,

GPU-STM allows for parallel commits of transactions that do not conflict. How-

ever, this is implemented by using a set of locks, which requires executing a high

number of atomic operations. In our design, instead of that, we synchronize

transactions using the global sequential lock and use other techniques to permit

parallel commits.



4.2. APUTM 53

4.2 APUTM

In this section we present APUTM, a software TM designed specifically for APU

architectures. APUTM is aimed at minimizing the number of platform atomic

operations required for proper CPU-GPU communication. This is achieved by

sharing a single global sequence lock (inspired by NOrec) among CPU and GPU

transactions. APUTM implements lazy version management: each transaction

keeps track of its speculative writes to memory in a private write-set, which has

to be committed to memory if the transaction ends with no conflict. Conflict

detection is performed lazily using the aforementioned global sequence lock and

a value-based validation (if required).

In the following subsections we discuss the transactional metadata required to

implement APUTM, the conflict detection and version management mechanism

on both computing devices (CPU and GPU), and some notes on the correctness

of the algorithm.

1 // Global metadata

2 atomic_int * gclock;

1 // Private metadata

2 struct pr_descr{

3 int snapshot;

4 int status; // RUNNING or ABORTED

5 <address ,value > * reads;

6 <address ,value > * writes;

7 };

1 // Wavefront metadata

2 struct wf_descr{

3 atomic_long * commit_mask;

4 atomic_int * leader_id;

5 <address ,owner > * wf_writes;

6 atomic_int * next_write;

7 };

Figure 4.1: Global, private, and wavefront metadata required to implement

APUTM.

4.2.1 Transactional Metadata

As seen in Figure 4.1, we classify the metadata required to implement APUTM

in three types. The first type is global metadata, which is shared by CPU and

GPU transactions and, thus, must be accessed and modified using platform atom-

ics. The only variable of this kind is a global sequence lock, which we will refer

to as gclock. The second type of metadata is private metadata, which is indi-

vidually owned by each CPU transaction and GPU transaction, and consists of

4 items: a snapshot containing the value of gclock the last time the transac-

tion was proven consistent, the status of the transaction (either RUNNING or
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ABORTED), a read-set containing <address,value> pairs of the memory reads

performed by the transaction, and, lastly, a write-set with the same structure

containing the speculative writes to memory. The third type of metadata, called

wavefront metadata, is GPU-specific. This metadata is shared among the GPU

threads that execute in lockstep and is allocated in the scratch-pad memory to

accelerate its utilization. The first element is a bit mask with one bit per thread

within the wavefront called commit-mask used to mark conflicting threads. The

variable leader id contains the identifier of the thread within the wavefront in

charge of accessing global metadata. In addition, it contains a shared write-set

with <address,owner> pairs, which is used to note down the thread within the

wavefront that intends to write to an specified memory address. We call this

shared write-set wf-write-set, and next write is the variable pointing to the next

empty position in such set.

1 TMBegin (){

2 clear(reads)

3 clear(writes)

4 status=RUNNING

5 snapshot=gclock.atomic_load ()

6 if (GPU){

7 next_write.atomic_store (0)

8 clear(commit_mask)

9 }

10 }

11 TMCommit ()

12 {

13 if(GPU)

14 checkWFConflicts ()

15 acquire(global_lock)

16 consistent= checkConsistency ()

17 if(consistent){

18 if(! empty(writes)){

19 for(<addr , val > in writes)

20 mem[addr]=val

21 atomic_add(gclock , 1)

22 }

23 }else{

24 abort

25 }

26 release(global_lock)

27 }

28 TMWrite(addr , val)

29 {

30 if(contains(writes , addr){

31 update(writes , addr , val)

32 }else{

33 add(writes , addr , val)

34 if(GPU) {

35 p=atomic_add(next_write ,1)

36 wf_writes[p]=<addr , tx_id >

37 }

38 }

39 }

40 TMRead(addr)

41 {

42 if(contains(writes , addr){

43 val=get(writes , addr)

44 }else{

45 consistent=

46 checkConsistency ()

47 if(consistent){

48 val=mem[addr]

49 add(reads ,addr ,val)

50 }

51 }

52 return val

53 }

Figure 4.2: Functions provided by the APUTM interface.
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54 checkConsistency (){

55 if(snapshot == gclock.atm_load ())

56 return TRUE

57 do{

58 time=gclock.atm_load ()

59 for(<addr , val > in reads){

60 if(mem[addr ]!=val)

61 return FALSE

62 }

63 }while(time!= gclock.atm_load ())

64 snapshot=time

65 return TRUE

66 }

67 acquire(lck){

68 if(GPU){

69 atomic_store(leader_id ,th_id)

70 if(th_id == leader_id)

71 while(! atomic_cas(lck ,0,1)){}

72 }

73 if(CPU){

74 while(! atomic_cas(lck ,0,1)){}

75 }

76 }

77 checkWFConflicts (){

78 for(<addr1 ,val > in writes{

79 for(<addr2 ,ownr > in wf_writes{

80 if(addr1 ==addr2 &

81 ownr!=th_id &

82 commit_mask(owner)==0){

83 commit_mask(th_id)=1

84 abort

85 }

86 }

87 }

88 for(<addr1 ,val > in reads{

89 for(<addr2 ,ownr > in wf_writes{

90 if(addr1 ==addr2 &

91 owner!= th_id &

92 commit_mask(ownr)==0){

93 commit_mask(th_id)=1

94 abort

95 }

96 }

97 }

98 }

asd

Figure 4.3: Auxiliary functions in APUTM.

Discussion: automatic / semi-automatic metadata generation: The

metadata required by APUTM is implemented as part of the library and its

details are hidden to the users of the library (programmers). However, many

of its data structures can be defined either statically (with pre-defined size) or

dynamically. At the moment, dynamic memory allocation is not supported by

most GPUs and, thus, we consider a static approach. However, this decision

comes with the disadvantage that the size of the read-set, write-set, and the wf-

write-set must be known at compile time. Currently, we expect that programmers

provide an upper bound of the size of these structures to allocate enough room

for transactional metadata. Compilers can also help to determine this value by

performing a static analysis of the code: if the number of read and write accesses

can be determined before execution, then the transactional metadata can be pre-

allocated by the compiler. Otherwise, if the static analysis of the code is not

able to determine the amount of metadata required, a different approach must

be considered. For instance, a pool of memory can be pre-allocated to store all

transactional metadata, and APUTM can be adapted to manage the access to
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such memory space. In case the memory pool reaches its maximum capacity, and

space is still required to store transactional metadata, transactions should abort

(capacity aborts). In that case, APUTM should be replaced by another mutual

exclusion mechanism such as locks. This is a corner case which is unlikely to

appear, as transactions are not intended to operate on data whose size is close to

the amount of main memory installed. This proposal is future work beyond the

scope of this thesis.

4.2.2 Version Management

APUTM implements lazy version management. Figures 4.2 and 4.3 show the

pseudo-code implementing APUTM , which is used to describe version manage-

ment. In the TMBegin operation, both CPU and GPU transactions reset their

write-sets (line 3). GPU transactions also reset their wf-write-set by setting the

next write position to 0 (line 7). TMWrite operations register speculative writes

in both the private write-set (line 31) and the wf-write-set (in case of GPU, lines

34-37), but only if the memory location has not been previously accessed. In the

case of successive writes to the same memory location, only the private write-

set should be updated (line 31, the wf-write-set still keeps the proper ownership

information and does not need to be updated). Values in the private write-set

should be accessed during the TMRead operation in case the memory value of a

previously written location is requested (line 43). During the TMCommit opera-

tion, if there is no conflict, the private write-sets are committed to memory (lines

19-20). Note that GPU transactions executing within the same wavefront com-

mit their write-sets in lockstep. Thus, the conflict detection mechanism should

ensure that this step is only reached by threads that have no conflicts with other

GPU threads within the same wavefront.

4.2.3 Conflict Detection

Conflict detection is performed lazily (i.e., implemented as part of the TMCommit

operation). As the CPU and GPU offer different programming models (MIMD

and SIMD, respectively), conflict detection is implemented differently in each

device.

CPU transactions acquire a global lock to perform the commit operation

(line 15). Once acquired, no changes are permitted to memory by other trans-

actions and the transaction starts the consistency checking (line 16). If gclock

has not changed since the last consistency checking, then the transaction may



4.2. APUTM 57

commit (line 55). Otherwise, the read-set must be validated against the current

values in memory to detect a conflict if one of the values has been modified (lines

60-61). If validation succeeds, the transaction is able to commit its write-set to

memory (lines 19-20), update the value of gclock (line 21) and release the global

lock (line 26). Note that read-only transactions do not update gclock (line 18)

and are linearized at the moment indicated by the current value of gclock.

GPU transactions commit as CPU transactions, but before acquiring the

global lock, APUTM filters out the transactions that conflict with other transac-

tions within the same wavefront (line 14). To do that, they check if their private

write-set contains a value that another transaction within the wavefront intends

to write by checking the wf-write-set (lines 78-87). If the owner of such entry is

a different transaction, then the transaction aborts (lines 80-84). To avoid being

aborted by a doomed (i.e., previously aborted) transaction, the bit corresponding

to the owner transaction is checked from the commit mask (line 82). To inform

other transactions within the wavefront that the current transaction is aborted,

it sets its corresponding bit in the commit mask to 1 (line 83). Modifications

and reads to such mask (lines 82-83, 92-93) should be implemented atomically as

multiple transactions access the mask simultaneously. Note that all transactions

within the wavefront are analyzing the same wf-write-set entry simultaneously.

Following this process, only one of the writers to a given memory location is able

to remain active while the rest of them abort. In addition, if there are multiple

writers to the same memory location, there exist multiple entries in wf-write-set

corresponding to such location. The first of these entries determines which of the

writes will be committed to memory if there are no other conflicts. Once we have

filtered out the transactions that conflict because they intend to write the same

locations, then we have to detect read-write conflicts (i.e., transactions that have

read a memory location that another transaction intends to write). The process

is performed in a similar way as explained before, but comparing the private

read-set of each transaction against the wf-write-set. Transactions that did read

a memory position that another non-aborted transaction intends to write are

marked as conflicting (lines 88-97). At this point, only non-conflicting transac-

tions within the wavefront are still active. These proceed to the second stage

of the conflict detection mechanism, which is detecting conflicts against transac-

tions in other wavefronts and CPU transactions. This is achieved by acquiring

a global lock as in CPU (line 15). Note that all the non-conflicting transactions

will intend to acquire the global lock in parallel with two negative side effects.

Firstly, it can create a deadlock if this is not implemented properly in the SIMT

programming model (see [36] for some examples of this issue). Secondly, even if

implemented correctly, only one of the threads within the wavefront is able to
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acquire the lock creating unnecessary serialization within the wavefront. To over-

come this problem, we select a leader transaction among the active ones within

the wavefront to be in charge of acquiring the global lock in order to allow the

whole wavefront to proceed to conflict detection in parallel (lines 68-72). Usu-

ally, in GPU programming, this is achieved by selecting the thread with lower

ID. However, due to speculative execution, the thread with lower ID might have

conflicted earlier and, thus, would not be active at this moment. Instead of that,

we use a variable shared by the whole wavefront called leader id. Executing in

lockstep, each non-conflicting transaction atomically writes its own ID in such

variable (line 69). Once all writes are performed, the transaction in charge of

acquiring (and later releasing) the global lock is the one whose ID coincides with

the value of leader id (the release lock function is not depicted in Figure 4.3, but

its implementation is similar to the acquire lock function). Note that lockstep

execution combined with atomic operations ensures that all writes to leader id

have been performed before proceeding to acquire the global lock. When the

global lock is acquired by the leader transaction, the whole wavefront proceeds

to conflict detection as in CPU (lines 16-25).

4.2.4 Misellanea

Correctness. Changes in memory performed by committed transactions may

leave the private read-sets of running transactions inconsistent with respect to

the updated memory values, harming the opacity property [32]. As in NOrec [20],

the solution to ensure this property is to check for consistency in each TMRead

operation, if access to memory is required (lines 45-46).

Isolation. APUTM supports weak isolation, in the sense that transactions are

isolated only from other transactions, but not from non-transactional memory

accesses. Dalessandro et al. provide further discussion on weak isolation, which

is observed to be strong enough to provide transactional data-race-free seman-

tics [19].

Nesting. Nesting is currently not supported by APUTM. However, a flattened

nesting approach [34] can be considered. Note that in the GPU side, transac-

tions excecuting in lockstep may have different nesting levels and implementing

wavefront-level optimizations for nesting may not be trivial.

4.2.5 Execution example

Figure 4.4 depicts an example of a program managing transfers between different

bank accounts used in our evaluation.
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1 //Bank account transfer example

2 transfer = getTransfer ()

3 while(transfer != NULL)

4 {

5 TMBegin ()

6 AccFrom = transfer.from

7 AccTo = transfer.to

8 Amount = transfer.amount

9 if(TMRead(accounts[AccFrom ]) > Amount)

10 {

11 TMWrite(accounts[AccFrom],

12 TMRead(accounts[AccFrom ]) - Amount)

13 TMWrite(accounts[AccTo],

14 TMRead(accounts[AccTo]) + Amount)

15 }

16 TMCommit ()

17 transfer = getTransfer ()

18 }

Figure 4.4: Example of a bank transfer program implemented using APUTM

In this example, a computing thread (either a CPU thread or a GPU work-

item) performs a number of transfers between different bank accounts until no

more transfers are available. We assume that a function called getTransfer()

(lines 2 and 17) provides a new transfer to be performed by the thread, or NULL

in case no transfer is available. As the transfer is thread-private, accesses to its

information (origin, destination, and amount to transfer - lines 6 to 8) do not

need to be instrumented. However, accesses to the accounts array, containing

information on the amount of money stored in each account, need to be instru-

mented using TMRead and TMWrite operations. Information on the amount

stored in the origin account is accessed using a TMRead operation and, if funds

are enough to perform the transfer (line 9), then the transfer can be done. This is

achieved by using TMRead to access the amounts stored in the origin and desti-

nation accounts (lines 12 and 14, respectively), and using the TMWrite operation

to update the accounts with the updated amounts (lines 11 and 13). The TM-

Commit operation makes these speculative changes definitive in case no conflict

is detected.

Table 4.1 shows a short example of the execution of the code in Figure 4.4

when executed in an APU processor. The example is simplified to 1 CPU thread

that performs a transfer from account 14 to account 15, and two GPU trans-

actions executing within the same wavefront (thus, executing in lockstep) that

perform transfers from accounts 17 to 14 and from accounts 40 to 19, respec-
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CPU Thread GPU WI-0 GPU WI-1
gclock acc14 to acc25 acc17 to acc14 acc40 to acc19 Comments

7 snapshot = 7
reads = {14}
writes = {14}
line = 13

snapshot = 7
reads = {17,14}
writes = {17,14}
line = 16

snapshot = 7
reads = {40,19}
writes = {40,19}
line = 16

CPU TX registered the spec-
ulative read and write of ac-
count 14. GPU TXs registered
their accesses to their accounts
and are able to commit.

9 snapshot = 7
reads = {14,25}
writes = {14,25}
line = 16

- - GPU TX successfully commit
and update gclock. CPU TX
aborts as 1) gclock != snapshot
and 2) acc14 has been modified
by the GPU.

9 snapshot = 9
reads = {}
writes = {}
line = 5

- - CPU TX restarts with an up-
dated snapshot.

9 snapshot = 9
reads = {14,25}
writes = {14,25}
line = 16

- - CPU TX successfully commits
without checking its reads as
gclock == snapshot

Table 4.1: Example of an execution of the program in Figure 4.4 by a CPU trans-

action and 2 GPU transactions executing in lockstep. Both GPU transactions are

able to commit, while the CPU transaction needs to restart once, as it conflicts

with a GPU transaction. TX stands for transaction, accX stands for account X,

and line is the next line in Figure 4.4 to be executed.

tively. Note that there is no conflict between both GPU transactions , but the

CPU transaction conflicts with one of the GPU transactions.

In the first row of Table 4.1 the CPU thread is still executing the transaction

(line 13 of the code in Figure 4.4) while the GPU transactions have reached the

TMCommit operation (line 16). Note that all the snapshots of all the transactions

are still consistent with gclock. In this scenario, the GPU transactions are able

to commit in parallel, updating the value of gclock. In the second row, the GPU

transactions have committed, and the CPU transaction reaches the TMCommit

operation. Now the CPU transaction needs to check the entire read set as its

snapshot is not consistent with the value of gclock. As the account 14 has been

modified by one of the GPU transaction (we assume that the value in memory

is different from the one registered in the read set of the CPU transaction), this

transaction aborts. In the third row we observe how the CPU transaction restarts

execution. By executing the TMBegin operation (line 5), the transaction reads

the current value of gclock into its snapshot and clears its read set and write set.
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In the last row we observe that the CPU transaction is able to commit as there

are no conflicts with other transactions. Note that, as the snapshot is consistent

with gclock, the transaction can commit immediately without checking its read

set, speeding up conflict detection.

4.2.6 Read-Modify-Write transactions

Many applications require mutual exclusion to manage the access to a single

shared data object (for instance, modifying a single entry of an in-memory

database), which is read, modified, and written without interaction with other

objects. Normally, these applications are said to have transactional read-modify-

write accesses. These type of transactions are common and optimizations have

been proposed both in CPUs [52] and GPUs [36]. In this work we include two

optimizations influenced by the work of Holey et al. [36]. Firstly, if two different

transactions read the same memory position, a conflict can be signaled as that

memory position is expected to be written in the future. This way, such conflict

can be detected earlier in the commit phase. Secondly, storage of speculative

reads and writes (i.e., the read-set and the write-set) can be reduced. As every

position being read is expected to be written, the read-set and the write-set can be

unified in a single access log. We call this log, and the APUTM implementation

making use of it, unified log.

Figure 4.5 shows the more relevant changes required in APUTM to implement

the unified log version. In this case, a single unified log is used to store the

address, value read from memory, speculative value to be written to memory,

and some flags indicating if the position is read or written (lines 5-6). Now, in

the GPU implementation, wavefront conflicts can be detected if two transactions

access the same position (lines 17-28) regardless of the type of access (read or

write). Note that now the GPU transactions only examine the unified log, which

is expected to be shorter than the read-set and the write-set separately. In this

case, consistency checking has to be done for memory position that are marked as

read (line 36). In the same manner, the commit operation only writes to memory

the speculative writes (line 52).

The rw flag contains information on the access to memory (read, write, or

read-and-write) that is used in these operations. In the first access to a given

memory location, the flags are set to read or write, depending on the kind of

access. A second access can be clasified as RAR, WAR, RAW, or WAW (read-

after-read, write-after-read, read-after-write, and write-after-write, respectively).

RAR accesses are marked as read, but not written. This way, the memory lo-
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1 // Private metadata

2 struct pr_descr{

3 int snapshot;

4 int status;

5 <address , read_val ,

6 write_val , rw> * unif_log;

7 };

8
9 // Wavefront metadata

10 struct wf_descr{

11 atomic_long * commit_mask;

12 atomic_int * leader_id;

13 <address ,owner > * wf_accesses;

14 atomic_int * next_access;

15 };

16 checkWFConflictsU (){

17 for(<addr1 ,-,-,-> in unif_log{

18 for(<addr2 ,owner > in

wf_accesses{

19 if(addr1 ==addr2 &

20 ownr!=th_id &

21 commit_mask(owner)==0){

22 commit_mask(th_id)=1

23 abort

24 }

25 }

26 }

27 }

28 checkConsistencyU (){

29 if(snapshot == gclock.atm_load ())

30 return TRUE

31 do{

32 time=gclock.atm_load ()

33 for(<addr ,val_read ,-,rw> in

unif_log){

34 if(rw == READ & mem[addr ]!=

val_read)

35 return FALSE

36 }

37 }while(time!= gclock.atm_load ())

38 snapshot=time

39 return TRUE

40 }

41 TMCommit ()

42 {

43 if(GPU)

44 checkWFConflictsU ()

45 acquire(global_lock)

46 consistent=checkConsistencyU ()

47 if(consistent){

48 for(<addr ,-,val_write ,rw > in

unif_log)

49 if (rw == WRITE) mem[addr]=

val

50 atomic_add(gclock , 1)

51 }else{

52 abort

53 }

54 release(global_lock)

55 }

Figure 4.5: Unified log implementation of APUTM.

cation is checked for consitency, but not updated to memory at the end of the

transaction. WAW and RAW accesses are set as written but not read, as consis-

tency checking is not needed. Note that, in a RAW access, the value that is read

corresponds to the speculative value, which does not reside in memory yet. WAR

accesses are set as read-and-write as they need to be checked for consistency and

update memory, if the transaction successfully commits. The value of these flags

is set during the TMRead and TMWrite operations as described above. Further-

more, these operations are modified to register the accesses into the unified log

instead of the separate read-set and write-set.
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4.3 Evaluation

4.3.1 Experimental setup

To perform our experiments we utilize the AMD Kaveri APU 7850K as described

in Section 2.2. We use the maximum number of threads supported by the system

without oversubscription, which is 4 for CPU and 2048 (calculated as 4(wave-

fronts/CU) × 64(wavefront size) × 8(CUs)) for GPU. The system is equipped

with 8 GB of DDR3 memory operating at 1.6 Ghz. To access the capabilities

of the APU processor (i.e, unified memory space and platform atomics) we use

C++AMP with the default options of the compiler integrated in ROCM 1.21.

Results of the experiments are the average of 10 executions.

4.3.2 APUTM characterization

To characterize APUTM, we use a synthetic workload that allows us to model

the number of accesses to memory per transaction and the probability of conflict

among transactions. We test different conflict detection and version management

implementations. The experiment called Gclock-rw refers to the implementation

that uses gclock to speed up conflict detection and that maintains separate read

and write sets. Gclock-u also utilizes gclock for the same purpose but, in this

case, an unified log is used to register both reads and writes. Note that, in the

GPU side, RAR accesses by different transactions within the same wavefronts are

considered conflicts during the checkWFConflicts operation. These two imple-

mentations are also tested without using gclock to speed up conflict detection or

checking for consistency, but directly performing a value-based comparison of the

read-set (or the reads stored in the unified log) against memory. These variants

are called R-set-rw (when the read-set is utilized) and R-set-u (when the reads

in the unified log are utilized). In addition, we test alternative implementations

of these four versions that do not consider opacity guarantees. The goal is to

evaluate a lightweight version of APUTM in which correctness of the program

is delegated to programmers or to a static analysis performed by the compiler.

Note that in all the experiments, the results are correct as the tests are tolerant

to non-opaque TM implementations.

To compare the efficiency of each implementation in each computing device

(i.e., CPU and GPU), we analyze three scenarios that execute 100000 transac-

tions. First, we evaluate two scenarios in which CPU and GPU (separately)

1https://github.com/RadeonOpenCompute/ROCm



64 Chapter 4. Transactional Memory on Heterogeneous CPU+GPU processors

550,3957
310,751

566,8925
373,9708

0
75

150
225
300

CPU ‐ 2  Acc. CPU ‐ 4 Acc. CPU ‐ 8 Acc. GPU ‐ 2 Acc. GPU ‐ 4 Acc. GPU ‐ 8 Acc. APU ‐ 2 Acc. APU ‐ 4 Acc. APU ‐ 8 Acc.

Execution time (ms) varying the number of mem. acceses per TX

Gclock‐rw Gclock‐u R‐set‐rw R‐set‐u
Gclock‐rw (no opacity) Gclock‐u (no opacity) R‐set‐rw (no opacity) R‐set‐u (no opacity)

Figure 4.6: Characterization of APUTM when varying the number of accessed

memory positions.

execute all the transactions. In the third scenario, called APU, both the CPU

and GPU collaborate to execute the same amount of transactions. Specifically,

we establish a static partition of 50000 transactions on the CPU and 50000 trans-

actions on the GPU (note that such partition is not a requirement of APUTM

but is useful to compare the efficiency of both devices).

Figure 4.6 shows the performance of the different APUTM implementations

when executing transactions with different number of accesses to memory. In

general, using gclock improves performance on both devices, as it avoids many

validations of the read-set. However, in the CPU the differences are more notice-

able as compared to the GPU. The reason is that a read-only CPU transaction

does not modify gclock and, thus, the next transaction may commit without

requiring of checking its read-set. In contrast, even if the number of read-only

transactions running of the GPU is the same, is highly unlikely that all transac-

tions within a wavefront are read-only. When committing 64 transactions con-

currently, if at least one performs a write operation, gclock is updated. Then,

the following transactions need to check their read-set against memory. Fur-

thermore, the use of the unified log instead of separate write-set and read-set

has some impact in the performance of the GPU, which is also translated to the

APU implementation. Note that read-only transactions conflict in the unified log

scenarios, harming performance. Lastly, we can observe the cost of implement-

ing opacity. Normally, performance of opaque implementations is lower as the

consistency checking introduces several overheads in the TM instrumentation. It

is worth mentioning that for 8 memory accesses within a transaction the perfor-

mance of the GPU decreases substantially. The reason is that the high number

of concurrent transactions combined with the size of the transactional metadata

(i.e., read-set, write-set and unified log) introduces high pressure in the memory

subsystem harming performance.
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In Figure 4.7 we observe the execution time when increasing the probability

of conflict. This increase does not have an important impact in performance

for different reasons. Firstly, many conflicts are detected when the read-set is

validated during read operations allowing transactions to restart quickly. Sec-

ondly, conflicting transactions do not modify gclock, allowing future transactions

to commit rapidly. Lastly, in GPU transactions, even with lower values of the

probability of conflict there is, at least, one conflicting transaction per wavefront.

Thus, the performance of the whole wavefront is affected in a similar way in spite

of the number of conflicting transactions.
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Figure 4.7: Characterization of APUTM for different probabilities of conflict.

Comparing the use of the unified log with the separate read-set and write-set,

we observe that the latter implementation is more efficient as permits read-only

transactions to commit with no conflicts (in case no other transaction intends

to write any of the read locations). As in previous experiments, non-opaque

experiments produce slighly improved perfomance.

We also compare the number of transactions aborted in CPU and GPU when

executing APUTM across both devices (Figure 4.8.a). In this figure we repre-

sent the quotient of CPU aborted transactions over GPU aborted transactions

for the base Gclock-rw and R-set-rw solutions. The difference is of 3 orders of

magnitude less in the CPU. The reason is that the GPU executes more con-

current transactions than the CPU and, thus, the interaction among different

transaction results in a higher probability of conflict. Note that the behavior is

different depending if gclock is used to speed up conflict detection or not. In both

experiments we observed that there are no noticeable differences in the number

of aborted transactions in the GPU side, so most of the differences come from the

CPU transactions. In the case of the CPU, the Gclock-rw solution speeds up the

commit phase as compared to R-set-rw. This means that, in a given time frame,

more transactions commit their values to memory causing other transactions to

abort. This way, as the probability of conflict increases, aborted transactions in

the CPU also increases. The oposite happens in the R-set-rw solution: as trans-
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actions stall for a longer period in the commit phase, the number of concurrent

CPU transactions is smaller and the amount of aborted transactions is reduced

as compared to the GPU.
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Figure 4.8: CPU and GPU abort analysis of APUTM

In Figure 4.8.b we observe the impact that the use of the unified log and

the opacity checking have in the number of aborted transactions for the high

contention scenario (20% of aborted transactions). Using the unified log (Gclock-

u and R-set-u) has no significant impact in the number of aborted transactions

per device. However, when using separate read-set and write-set we observe

that more transactions abort in the CPU if we use gclock to speed up conflict

detection. The reason is the same described above: more transactions commit in

the CPU in the same amount of time when using gclock and, thus, the probability

of conflict increase. When avoiding the opacity checks, the number of aborted

transactions is reduced in the CPU compared to the GPU. The main reason is

that this opacity checking creates more overhead in the CPU (note that this can

be executed in parallel as long as gclock has not changed, and that the GPU

can benefit from coalesced memory accesses when checking the unified log or the

read-set). This extra overhead in the CPU implies that transactions commit at

a lower rate than the GPU and, thus, the amount of conflicts is, porcentually,

smaller.

In addition to the synthetic workload, we create a hash table as example of

concurrent data structure that can be implemented using APUTM. The Hash

application implements a hash table where entry is managed by an index that

points to the next empty slot in such entry. Upon selecting the appropriate entry

to insert a value, each thread must read the corresponding index (obtaining an

empty position to insert its value) and increase its value (leaving it pointing to

the next empty position). This process is enclosed within a transaction. We have

designed two variants of the algorithm. The first one, called Hash (isolated),

works as described above. The second implementation, Hash (computation),
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intends to simulate an application that uses the hash table by performing some

computation and inserting its result in the designated slot. We added a random

amount of computation for each transaction, with an average of 1000 arithmetic

operations per memory access. In both cases, we run one transaction per available

computing resource (i.e., 4 CPU transactions and 2048 GPU transactions) which

intends to insert a value in a random entry of a hash table with 50000 entries

available.

To evaluate the hash table we use the basic versions that use gclock and the

read-set for validation, both implementing opacity (see Figure 4.9). In this exper-

iment, the use of gclock outperforms the implementation using only the read-set

to check for conflicts. However, when executed in isolation (with no compu-

tation), APUTM does not deliver better execution time over than a sequential

implementation. The reason is that the benchmark presents such a low computa-

tion time that cannot amortize the overhead of the TM library. However, as we

include some computation in the equation, it tips the scales in favor of APUTM

thanks to the parallelism offered by the APU processor. Additionally, commit

ratio (i.e., committedTX/(committedTX + startedTX)) stays around 70% for

both APUTM implementations. It is worth mentioning that most of the conflicts

come from GPU transactions, for two reasons: 1) they are more numerous than

CPU transactions and 2) lockstep execution of wavefront transactions increase

the probability of conflict as they reach the commit stage simultaneously.

4.3.3 Application evaluation

To assess APUTM we designed two applications: Bank and Genetic. Figure 4.10

and Figure 4.11 show the evaluation conducted using both benchmarks.
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Figure 4.9: Evaluation of a hash table implemented using APUTM.
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The first application is based in the Bank kernel provided with TinySTM [26,

25], where a number of money transfers are performed on a set of bank accounts.

Each transfer withdraws money from one account and deposits the same amount

in another account, provided that the original account has enough funds. In

order to avoid inconsistencies, this process is enclosed inside a transaction. For

our experiments, we consider 10000 transfers over a set of a million accounts,

and the origin and destination accounts are chosen randomly. In this case, we

do not set a static partition of the amount of transfers to be executed on each

device. CPU and GPU dynamically acquire and execute transactions until the

total number of transfers is 10000.
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Figure 4.10: Evaluation of Bank implemented using APUTM.

Both APUTM implementations (i.e., using a gclock to accelerate conflict de-

tection, or performing a value-based validation) outperform serial execution and,

as expected, the use of gclock improves performance. The performance provided

by the use of APUTM is not as good as expected compared to serial execution.

However, our goal is to propose a simple design to evaluate our design decisions.

Future optimizations can improve performance of APUTM in different scenar-

ios. Concerning the percentage of CPU transactions, we can observe that about

27% of the transactions run on the CPU (and, thus, 73% of them run on the

GPU) in the implementation not using gclock. The use of this lock gives us a

different scenario, where 64% of the transactions execute on the CPU and 36%

execute on the GPU. The reason of such difference is related to the benefits of

using gclock in CPU, which permits individual transactions to commit quickly.

This way, the CPU can execute more transactions (as compared to the GPU) if
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gclock is employed. Note that the aforementioned workload partition is not stat-

ically performed by the programmer or APUTM: transactions are dynamically

scheduled on the GPU and the CPU when they are idle and there exist pending

transactions to be executed.

The application Genetic implements a genetic algorithm that solves the knap-

sack problem using genetic operations. We are assuming that we have a set of

objects of different weights, and the goal is to fill a bag with objects maximizing

the total weight of the bag up to an upper bound (capacity). Initially, the algo-

rithm creates a pool of random solutions, which are represented using a binary

string. The genetic algorithm works iteratively. In each iteration two random so-

lutions are picked from the pool. Both are evaluated, and the fittest (i.e., closest

to the maximum capacity) is kept, while the other suffers a mutation in some of

its bits. These new solutions replace the old ones. We execute 10000 iterations

of this algorithm on a set of 10 million solutions. Given the low probability of

conflict, TM is a good candidate to implement these iterations in parallel. In our

parallel implementation, CPU and GPU threads enclose this process in transac-

tions, which are used to ensure that two threads do not modify the same items

simultaneously.
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Figure 4.11: Evaluation of Genetic implemented using APUTM.

Figure 4.11 shows the evaluation of the genetic algorithm. The speedup ob-

tained is in the same order of magnitude as in the Bank application. Performance

is slightly better as the probability of conflict is lower, but also due to the the

higher computing demands of this algoritm that hide the overhead of the TM

library more effectively as compared to the Bank application. The amount of

transactions (iterations of the genetic algorithm) executed by each device be-
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haves the same as in Bank for the same reason: gclock permits CPU transactions

to commit faster and, thus, more transactions can be scheduled on such device.

4.4 APUTM: conclusions and future work

In this chapter we present APUTM, a software TM designed specifically for

APU architectures. Multiple implementations are presented: one using a global

sequence lock to commit transactions quickly, another checking for conflicts using

a transaction-private read-set, and two variants of these two using a unified log.

The main goal of these APUTM implementations is to understand the behavior

of transactions on APU processors. Besides that, APUTM is able to outperform

sequential execution in some scenarios.

The main contributions of APUTM are the following:

• It offers a common interface based on TM to implement mutual exclusion

in algorithms deployed on both the GPU and CPU of an heterogeneous

processor.

• It presents different implementation of the TM operations adjusted to the

architectural differences of the CPU and the GPU.

• It provides fine-grained synchronization (i.e., with no kernel termination

requirements) using APU-specific platform atomics.

• If focuses on reducing costly cross-platform communication by minimizing

the use of such platform atomics. Additionally, in the case of the GPU side,

conflicts are detected before accessing main memory for further validation.

We plan to improve APUTM in several ways: coalescing GPU memory ac-

cesses for a better use of memory bandwidth, creating a scheduler for a better

distribution of transactions across devices, and increasing the granularity of GPU

commits from wavefront to work-group to improve performance. In addition, we

plan to extend the evaluation of APUTM. We are currently implementing more

applications to assess APUTM, as well as studying the overhead of the library

with respect to the total execution time and other TM-related metrics.

Discussion: architectural support for transactions on the GPU. In

the CPU world, software TM solutions offer more flexibility but lack the perfor-

mance achieved by hardware TM. As hardware TM is commercially avaiblable,

research is focusing on providing hybrid solutions that combine the best of both
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worlds. For instance, a recent work by Diegues et al. [22] compares the per-

formance of several sofware and hardware TM systems, and considers hybrid

solutions. However, the scope of this work is restricted to multi-core CPUs.

In the same way, future TM proposals for GPUs and heterogeneous systems

will try to have the advantages of both software and hardware approaches by

combining them into a hybrid solution. However, more research is needed before

hardware TM for GPU and heterogeneous architectures become a commercial

product. Thus, given the current state of the art, it is important to study dif-

ferent hardware TM approaches for GPUs, which in the future can lead to more

powerful hybrid solutions and that can be integrated in APU architectures. By

observing the code in Listings 4.3 and 4.2, we can identify some functions that

can be accelerated by hardware. For instance, checking a conflict between trans-

actions within a wavefront is a task that can be accelerated if implemented in

hardware. In addition, with the SIMT execution and transactional metadata

managed by hardware, programmability and performance improvements can be

expected. In Chapter 5 we present a hardware TM solution for GPUs focusing

on the use of scratchpad memory and simplying the programming model by pro-

viding correctness and forward progress guarantees. As we discuss later, some of

its characteristics can be used to implement a hybrid TM for global memory and

(potentially) a solution including the CPU cores.





5 Transactional Memory in
GPU Local Memory

Traditionally, synchronization in GPUs is done by using barriers (which syn-

chronize work-items within a work-group, but not work-items in different work-

groups), memory fences and, more recently, atomic operations in both global

memory and local memory. Having these basic synchronization primitives to

support mutual exclusion usually results in inefficient use of resources, poor per-

formance and high programming complexity. These techniques are normally

used to obtain efficient ad-hoc implementations [45] of non-trivial parallel al-

gorithms. Furthermore, recent research has proposed new lock-based synchro-

nization mechanisms to improve resource utilization and increase programming

flexibility [69, 71, 40]. Given the benefits of TM in the multi-core CPU world, it

has been integrated in GPU in software [12, 70, 36, 55] and hardware [29, 28, 17].

In contrast to other synchronization techniques (e.g., atomics, barriers, locks),

prior work on TM has only targeted global memory. Therefore, applications that

require synchronization at the local memory level have to be developed using

synchronization techniques that come with higher programming costs.

This chapter presents GPU-LocalTM, lightweight hardware TM support for

work-items accessing data at the local memory level. One of the main goals is to

offer TM as an alternative to existing methods (e.g., locks) to the programmer.

Then the programmer can decide which method to use, depending on the needs of

the application. In this sense, GPU-LocalTM is designed in a way that minimizes

overhead in case TM is not used. To achieve this goal, GPU-LocalTM reuses ex-

isting storage resources for version management and includes a lightweight con-

flict detection mechanism based on tables and signatures [10, 13]. Alternative

conflict detection mechanisms can be enabled, based on the resources available

73
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and the performance requirements. Additionally, previous hardware implementa-

tions [29, 28, 17] follow a lazy-lazy scheme (i.e., performing conflict detection and

updates to memory at commit time). Our proposal is, however, eager-eager (i.e.,

performs conflict detection and updates to memory at access time). One of the

advantages of eager-eager implementations is that there only exist a speculative

value for each memory location, as backups are performed after conflict detection,

reducing the storage requirements. In lazy-lazy approaches, speculative values

are stored until the end of the transaction, resulting in a larger memory overhead

as compared to eager-eager implementations.

5.1 Motivating example

Provided that prior work focused on global memory instead of global memory

when implementing TM solutions, in this section we discuss the benefits of the

use of local memory and how TM can improve programmability and performance

when designing applications that use such memory space.

Most OpenCL and CUDA programmming reference manuals recommend the

use of local memory in GPU applications [47, 38] (in fact, about 52% of the sample

applications in the AMD APP SDK for OpenCL and about 60% of the OpenCL

Rodinia [14, 15] applications use local memory). In addition, open source libraries

have been developed that support efficient movement of data between memory

spaces [8]. Programmers are encouraged to use local memory in their kernels to

improve application performance.

As an example, two applications, Hash Table (HT) and Genetic Algorithm

(GA), were implemented on a GPU to be executed by a work-group consisting of

256 work-items (the details of the applications are discussed later in Section 5.4).

The execution is performed via simulation on the Multi2Sim simulation frame-

work [57]. Both applications access shared data allocated in local memory. Thus,

a mutual exclusion mechanism is needed to ensure the correctness of the pro-

grams. We designed 3 versions mutual exclusion mechanism: a coarse-grained

locks (CGL) implementation, a fine-grained locks (FGL) implementation, and,

lastly, a TM implementation based in our proposal. Figure 1.1 (see Section 1.2)

shows the use of a coarse-grained lock in the SIMT programming model, and

the equivalent code using TM (as in our proposal). Fine-grained locking is usu-

ally much harder to use and the specific implementation depends on each kind

of problem. Thus, programmers have to develop a different solution for each

problem, as a generic template for fine-grained locks can not be provided.
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Firstly, we analyze the programming effort and performance of the FGL so-

lutions compared to CGL. Our simulation results show that the HT application

is 90 times faster when using FGL in comparison with CGL. This FGL imple-

mentation relies on the use of atomics, and is highly efficient due to the extra

programming effort devoted to define and manage locks properly. The FGL ver-

sion of the GA application, in contrast, is slower than the CGL version (0.7X).

Lock management becomes much more complicated than in HT, requiring a huge

programming effort. Specifically, each work-item in the FGL version of GA tries

to acquire a set of locks to ensure mutual exclusion. Lock acquisition must be

serialized in order to avoid deadlocks and livelocks. In fact, 17% of the code deals

with lock management operations. Given the extra lock management, the FGL

version of GA is an inefficient solution. This problem occurs in many other ker-

nels, and as a result, FGL is not a common idiom in GPUs. To support fine-grain

synchronization, programmers adopt other techniques that require detailed and

error-prone programming [69, 45]. The simplicity of the TM interface helps to

reduce overall programming complexity.

GPU-LocalTM is intended to be an alternative to locking techniques, with

the aim of improving programmer productivity and efficiency. For instance, the

TM versions of the above applications reduce the number of lines of code by 15%

(HT) and 17% (GA), while our simulations results indicate that we can achieve up

to a 40 times (HT) and a 2 times (GA) speedup versus CGL versions. It should

be noted that GA combined with TM experience some speedup, while when

using FGL it did not (this is discussed in Section 5.4). In order to measure the

programming effort, we calculated the Halstead complexity [33] metric for GA.

The programming effort of the FGL version results in 2.12 times the programming

effort of the CGL implementation. The TM version has a programming effort of

0.81 as compared to the CGL version, which means programming is simplified

since lock management code is avoided.

5.2 GPU-LocalTM Design

In this section we present GPU-LocalTM, our hardware TM design focused on

transactions at local memory level. GPU-LocalTM extends the GPU ISA with

two new instructions, TX Begin and TX Commit. They work at a wavefront

granularity, since wavefronts are the schedulable unit of work on a compute unit.

However, work-items can commit individually. While a wavefront is executing a

transaction (all work-items are running transactionally), other wavefronts can

execute different work-items transactionally or non-transactionally. The sys-
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tem is implicitly transactional, as all local memory accesses performed within

transaction boundaries are considered to be transactional. Due to the lack of

a cache coherence protocol at the local memory level, GPU-LocalTM provides

weak isolation, as transactions are serializable only against other transactions

(non-transactional local memory accesses are silent). Barriers are not allowed

in a transaction, as transactional execution causes wavefront divergence (thus,

not all the work-items may reach the barrier). Finally, a flattened nesting [34]

approach for nested transactions is considered.

Briefly, GPU-LocalTM operates as follows: Once a wavefront executes the

TX Begin instruction, the succeeding memory instructions are considered trans-

actional. Prior to issuing a local memory operation by a work-item, a check for

a possible conflict with a previous memory operation within the work-group is

carried out. If two work-items request access to the same memory location, the

later arriving work-item identifies a conflict (i.e., requester loses). When the con-

flict is detected, the conflicting work-item remains disabled until the wavefront

reaches the end of the transaction (TX Commit). At commit time, those work-

items within the wavefront that were not able to complete their memory accesses

due to conflicts, the transaction rolls back and re-starts from the TX Begin in-

struction. Otherwise, if all the work-items were able to complete, the wavefront

continues execution from the next instruction after the TX Commit.

GPU-LocalTM is designed on top of the baseline GPU architecture as ex-

plained in Section 2.1.2. Figure 5.1 describes such architecture. The imple-

mentation of GPU-LocalTM requires minor logic modifications in the wavefront

scheduler, SIMD and LDS units, as well as space reserved in the vector and scalar

register files and in local memory.

The wavefront scheduler is modified to include simple logic to manage the

transactional execution of wavefronts. Subsection 5.2.1 describes how this is

accomplished. Version management is eager and it is implemented in the LDS

unit. New transactional values are stored in place, while old values are moved

to an area called shadow memory. This region is allocated in local memory, and

tracks ownership information required for conflict detection. Subsection 5.2.3

describes version management in detail. Conflict detection is also eager and

implemented in the SIMD units, in coordination with the wavefront scheduler

(in charge of registering transactional conflicts). Our eager conflict detection

implementation relies on the LDS unit to obtain ownership information about

transactional local memory accesses. In addition, to speed up conflict detection,

signatures may be added to the system. Subsection 5.2.4 describes in detail the

conflict detection mechanism.
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Figure 5.1: Baseline GPU architecture: AMD’s Southern Islands.

5.2.1 Transactional SIMT Execution

As explained in Section 2.1.2.2, the SIMT execution model in our baseline ar-

chitecture is implemented using predication and execution masks. In particular,

a per-wavefront 64-bit execution mask called EXEC contains one bit per work-

item. If the bit associated to a given work-item is set to 1, it means that such

work-item is active and executing instructions. Otherwise, if value of the bit is

0, it means that the work-item remains quiesced.

Whenever a wavefront is executing a transaction, some of its work-items may

find conflicts in their memory accesses. Those work-items that detected a conflict

must be disabled until the end of the transaction (commit time), and then they

are rolled back and restarted. A simple method to mark transactional conflicts

is using the EXEC mask to halt the execution of the work-items that detected

conflicts. However, allowing the conflict manager to modify EXEC can lead to

inconsistent situations as it is explicitly handled by the compiler [4] (i.e., it can

be modified by an ISA instruction). For instance, EXEC is used to implement

loops and conditionals, enabling and disabling work-items that fulfill a condition

(represented in VCC). If a transaction conflicts in a conditional statement, and

the EXEC mask is modified by the GPU-LocalTM in order to disable the work-
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item, it can be re-enabled again by an ISA instruction when the wavefront finishes

the conditional statement (and not when the transaction is re-started). Allowing

GPU-LocalTM to implicitly modify EXEC requires reengineering the compiler

to allow for conditionals and loops inside transactions.

To deal with this situation, we add a new 64-bit transaction conflict mask

(TCM) per wavefront (one bit per work-item) entirely managed by hardware.

TCM is used to mark conflicting work-items running transactionally: when a

work-item detects a conflict it (eagerly) sets its bit in the TCM to 1. Just as

with the EXEC and VCC masks, the TCM is mapped to two consecutive scalar

registers.

With this new mask, transactional SIMT execution proceeds as follows: a

work-item (in a wavefront) is enabled if its bit in EXEC is set (1) and its bit in

TCM is reset (0). Otherwise, the work-item is disabled. Note that TCM will not

be in use when executing non-transactional code. When the work-items within a

wavefront execute TX Begin (see Figure 1.1), the TCM is reset (all bits to 0). If

a conflict is detected by a work-item, its bit in the TCM is set to 1 (the work-item

is disabled, i.e., the requester loses). At commit time (TX Commit), all work-

items with their bits in TCM set to 0 will commit (i.e., those that did not detect

conflicts). If TCM contains at least one bit set to 1, the wavefront re-starts the

transaction for those work-items that detected conflicts. This is accomplished

by copying the TCM to EXEC and returning to TX Begin (where the TCM is

cleared). Finally, when all work-items in the wavefront commit successfully, the

transaction ends, and execution continues after the TX Commit.

As a work-group may have various wavefronts, each one has its own set of

TCM, EXEC and VCC masks operating independently (e.g., some wavefronts

execute transactionally, while others not). Since the TCM is handled by hard-

ware, no modification is needed in the compiler to manage the TCM or to include

loops/conditionals inside transactions.

Table 5.1 shows a simple example of transactional execution using a TCM

to mark conflicting work-items. In this example, during the execution of the

transaction, work-item 1 detects a conflict and it is selected to be aborted and

re-started. In order to do that, this work-item is marked by setting its bit in the

TCM. By performing this action, the work-item is automatically disabled until

the end of the transaction. At commit time, the rest of work-items successfully

complete the transaction (making visible their updates to local memory) and

wait while work-item 1 is re-started. This second time, work-item 1 also commits

successfully.
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Instruction EXEC TCM Mode Comments

... 111...1 - n-TX Non-transactional execution
TX Begin 111...1 000...0 TX Wavefront start transaction
Mem Access 111...1 010...0 TX Conflict detected by WI 1
... 111...1 010...0 TX From here, WI 1 is disabled
TX Commit 111...1 010...0 TX Transaction end

WIs 0, 2, 3 ... commit successfully
Wavefront rollbacks and restarts
WI 1 (TCM is copied to EXEC)

TX Begin 010...0 000...0 TX Only WI 1 retries transaction
... 010...0 000...0 TX No new conflicts detected
TX Commit 010...0 000...0 TX Transaction ends

WI 1 commits successfully

... 111...1 - n-TX Non-transactional execution

Table 5.1: Example of transactional SIMT execution. A work-item (WI) is en-

abled if “EXEC[WI] & not(TCM[WI])”. Single lines separate transaction exe-

cutions. TX means transactional execution and n-TX means non-transactional

execution.

5.2.2 Forward Progress

The transactional SIMT execution model described above does not guarantee

forward progress. The reason is that some of the work-items may conflict an

unlimited number of times, causing the transaction to restart indefinitely for these

work-items (livelock). This situation can be detected at the end of the transaction

if the TCM remains the same after two consecutive transaction re-executions.

Traditionally, hardware TM implementations for CPUs do not deal with this

situation, but provide tools for programmers to solve the problem. For instance,

Intel’s TSX does not guarantee that a given transaction, even when running in

isolation, will eventually finish. However, TSX allows programmers to detect if a

transaction is started for the first time or if it has been restarted. Programmers

can use this feature to implement an alternative fallback code that guarantees

forward progress when the hardware TM is not able to do so. Typically, when this

situation is detected, programmers explicitly abort all the running transactions

and resort on a coarse-grained lock to guarantee mutual exclusion and forward

progress. Thus, two versions of the algorithm (or the mutual exclusion library)

have to be provided by programmers: one using TM and another one using a

different implementation.

In the case of a GPU, this burden is even more noticeable as mutual exclusion

is hard to implement in the SIMT programming model. In addition, one of our
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Figure 5.2: State diagram showing transactional and serialization execution

modes. TX means transaction or transactional. TCMprev represents the con-

tents of the TCM at the end of the previous transaction retry.

goals is to offer TM as a simple interface to implement mutual exclusion. In order

to avoid having the programmer to provide fallback code, GPU-LocalTM includes

a two-level automatic serialization mechanism that provides forward progress

guarantees: wavefront serialization (WfS) and work-group serialization (WgS).

These modes are automatically activated by hardware and without requiring the

programmer intervention. Figure 5.2 provides a state diagram showing the events

that trigger transitions between execution states.

The WfS mode is enabled when a livelock situation is first detected (two

consecutive transaction retries end with the same TCM with some bit/s set to

1). Once in this mode, the transaction is retried a third time but, instead of

clearing the TCM at the beginning of transaction’s execution, only one of the

active bits is reset. In particular, the bit of the conflicting work-item with the

lowest identifier is selected to be set to 0. This action results in the execution

of only the selected work-item within the complete wavefront during the third

transaction retry. If the execution ends with no new conflicts, apart from already

detected in the previous retry (this is determined by testing if the bit of the

selected work-item remains 0), the transaction is again retried, but this time in

normal mode (i.e., transactionally and not using WfS; (TX in Figure 5.2). Thus,

the WfS mode serializes the execution of those work-items that hinder forward

progress.

However, even executing only one work-item per wavefront, a new conflict

can be observed with a work-item from a different wavefront in the same work-

group, leading to the same livelock situation. This occurs when the bit of the

selected work-item remains set to 1 at the end of the WfS execution. In such
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Figure 5.3: Version management (LDS unit, SIMD units) and register check-

pointing (SIMD units) in GPU-LocalTM.

situations, the WfS mode transitions to the WgS mode. In this mode, only the

current wavefront re-executes transactionally. Other transactional wavefronts in

the work-group are aborted and stalled at the TX Begin instruction until the

selected work-item ends execution. Now there is no possibility of a conflict, so

forward progress is assured. After this execution, the transaction is retried again

in normal mode and the stalled wavefronts are allowed to continue execution.

Table 5.2 shows a simple example of a transaction that requires entering the WfS

mode to assure committing all work-items.

Note that, in order to ensure forward progress, the conflict detection mech-

anism must guarantee that executing a single work-item within the work-group

does not abort due to false conflicts or capacity issues. The different conflict

detection mechanisms described in Section 5.2.4 fullfil this property.

5.2.3 Version Management

GPU-LocalTM uses eager version management, where local memory updates are

stored in place, while old values are saved in shadow memory. These values are

used to restore the original state of the local memory in the case of a transaction

abort. As the local memory is multi-banked (32 banks in our baseline GPU
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WI 0 WI 1 WI 2 WI 3

Read A Read B Read C Read D
Write B Write A Write D Write C

TCM
Instruction EXEC TCM prev Mode Comments

TX Begin 1111 0000 - TX Transaction starts
... 1111 1111 - TX Normal transactional execution

Conflict detected by all WIs
TX Commit 1111 1111 - TX Transaction ends

All WIs must re-execute

TX Begin 1111 0000 1111 TX Transaction retries for all WIs
... 1111 1111 1111 TX Again, all WIs detect conflicts
TX Commit 1111 1111 1111 TX Transaction ends

No progress detected (livelock)

TX Begin 1111 0111 1111 WfS Transaction retries for WI 0
... 1111 0111 1111 WfS No new conflicts detected
TX Commit 1111 0111 1111 WfS Transaction ends

WI 0 successfully commits

TX Begin 0111 0000 0111 TX Transact. retries for WIs 1, 2, 3
... 0111 0011 0111 TX WIs 2 and 3 detect conflicts
TX Commit 0111 0011 0111 TX Transaction ends

WI 1 successfully commit
WIs 2 and 3 must re-execute

TX Begin 0011 0000 0011 TX Transaction retries for WIs 2, 3
... 0011 0011 0011 TX WIs 2 and 3 detect conflicts
TX Commit 0011 0011 0011 TX Transaction ends

No progress detected (livelock)

TX Begin 0011 0001 0011 WfS Transaction retries for WI 2
... 0011 0001 0011 WfS No new conflicts detected
TX Commit 0011 0001 0011 WfS Transaction ends

WI 2 successfully commits

TX Begin 0001 0000 0001 TX Transaction retries for WI 3
... 0001 0000 0001 TX No conflicts detected by WI 3
TX Commit 0001 0000 0001 TX Transaction ends

WI 3 successfully commits

Table 5.2: Example of a transactional execution requiring the WfS mode to

assure forward progress, for the code shown above for four work-items within a

wavefront. Single lines separate transactional retries.

architecture), version management is bank-aware (i.e., old values are logged in

the same bank as stored originally, see Figure 5.3). Thus, there are 32 shadow

memory areas. This design provides scalable performance, as GPUs may increase

LDS storage capacity by adding extra banks. Besides, both version management

and conflict detection can be carried out concurrently in different banks.
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Allocating shadow memory areas in local memory saves specific storage re-

sources for version management, but at the cost of reducing the amount of lo-

cal memory space available for the application. Each shadow memory area has

enough room to store backups for all of the local memory variables declared

within the kernel allocated in each bank. These variables are statically allocated

by the compiler in consecutive addresses [4, 57]. The compiler groups all the

variables declared with the local modifier in a single memory chunk. In GPU-

LocalTM, shadow memory is also allocated by the compiler, reserving space in

local memory to backup all the local variables and to store the identifier of the

accessing work-items (owners). The advantage of this implementation is that it

involves simple management.

The main drawback is that it reserves space for every variable declared in local

memory. The consequences of this overhead are: 1) programmers have access to

a smaller amount of local memory, and 2) the maximum number of work-groups

that can run concurrently within the same CU may be reduced. These space

and runtime constraints are discussed in Section 5.3. Note that, after analyzing

the kernel code, a sufficiently smart compiler may allocate shadow memory space

only for the local memory variables accessed within the transaction. That would

reduce pressure on the LDS, allowing for improved concurrency. In this thesis

we assume a worst-case scenario, where the maximum amount of local memory

is required by the kernel. An optimizing compiler should be able to reduce this

memory overhead – we plan to pursue this question in future work.

The organization of the shadow memory is as follows (see Figure 5.4): consider

a set of N words (1 word = 32 bits) declared by the application in local memory,
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a contiguous section of N words is allocated to backup the values, and after this

section, N/4 additional words are reserved to store the owners. Each word in

the ownership region stores 4 owner identifiers, each one in one byte (there are

256 work-items in a work-group). In addition, there are state bits (1 or 2 per

owner) required for conflict detection (see Section 5.2.4). These bits are stored in

vector registers. Given this layout, when a memory access is issued to a location

k, a backup value is stored at word position N + k (if the access is a write), and

the work-item identifier (owner) is stored at word position 2N + k/4, byte k%4.

By adopting this scheme, the hardware required to backup a memory value and

store its owner is minimal, as only an integer add of an offset and simple bit

manipulation must be performed. The use of an offset, on the other hand, avoids

the overhead of saving the address of the accessed word (this is calculated using

the offset). Besides, capacity conflicts are avoided, as each memory location is

ensured to have space for its backup. In contrast, the amount of local memory

available to the application is reduced and could prevent kernels with high local

memory requirements from executing. Note, however, that for those kernels not

using TM, the compiler does not allocate any space for shadow memory.

Register checkpointing. When a transaction starts, the user-visible non-

memory work-item state must be saved (and restored on transaction abort).

This includes vector and scalar registers. Vector registers are checkpointed to a

shadow register file. This is implemented by splitting the vector register file in

each SIMD unit into two equally-sized parts. Every two registers, one for each

part, are paired together so as one of them acts as the backup (shadow) register

of the other (see Figure 5.3). Logically, registers in a pair are connected and a

signal is used to copy the contents of the first register to the second register when

needed. Similar to the shadow memory, the shadow register file is pre-allocated

only for those kernels that use TM. Otherwise, no backup registers are defined.

Scalar registers, on the other hand, are used to store scalar shared data for an

entire wavefront, such as a loop index. In such cases, the use of scalar registers

develops inconsistencies when a transaction aborts inside a loop. For instance,

the loop index of a for-loop might be updated inside a transaction. As this index

is shared by committed and aborted transactions running on different work-items

within the same wavefront, the contents of this shared scalar register is incon-

sistent (i.e., the aborted transactions must roll back to the previous value, while

the committed transactions must keep the new value). To solve this problem, the

compiler must avoid the optimizations that promote the use of scalar registers

(shared by an entire wavefront) and consider the use of vector registers (work-

item private). By disabling this optimization, loops and conditionals are allowed
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within a transaction. For this reason, scalar registers are not checkpointed when

starting a transaction.

5.2.4 Conflict Detection

GPU-LocalTM performs eager conflict detection at a work-item level. During

transactional execution of a wavefront, the LDS unit serializes all local memory

accesses so that, at any time, a memory bank is accessed by at most a single

work-item. Parallel accesses to different banks do not present conflicts, as the

banks have different address ranges.

Given this multi-bank organization, conflict detection proceeds in two steps:

(1) Intra-bank conflict detection: conflicts are detected for memory accesses

within a bank. The conflict detection mechanism works in parallel for all memory

banks (there can be no inter-bank conflicts). This step is responsible for updating

the TCM, assigning a 1 to the bits for those work-items encountering a conflict.

(2) Inter-bank conflict communication: once a conflict is detected in a memory

bank, it is communicated to the rest of banks in order to remove the shadow

memory entries allocated for the conflicting work-items. This is accomplished

through the TCM, avoiding an expensive broadcast operation. TCM informs

each memory bank which work-items detected conflicts (bits set to 1). For each

one of these work-items, all the backups are restored and the associated owner

and state bits information are cleared.

Intra-bank conflicts are detected using a directory composed of the ownership

and state bits information, which is stored in the shadow area (see Figure 5.4).

We have designed two types of directories, which differ in the number of state

bits per owner. In addition, we improve upon these designs with the help of two

types of signatures.

5.2.4.1 Directory-based Conflict Detection (DCD)

For each transactional local memory access, the DCD mechanism checks the

ownership and the state bit (V) associated with the memory location. Depending

on the results of this check, i three actions may follow (see Table 5.3 (a)):

(1) First (new) access: the shadow memory entry has no owner associated

(valid bit V is 0). A copy of the current value of the memory location is backed up

in the corresponding shadow memory entry, and its owner is set to the work-item

that made the access (and setting V to 1).
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(2) Repeated access: the owner of the shadow memory entry is the accessing

work-item. If the access is a read, the value in memory is returned. If it is a write,

the memory is updated (the value was already backed up in shadow memory in

the first access).

(3) Conflict: the owner of the shadow memory entry is a different work-item

than the work-item that issued the access. The TCM is updated to mark this

conflict, setting the bit of the work-item accessing to memory (WI) to 1. In

addition, the backup values of WI are restored and all ownership entries in the

shadow memory for WI are deleted (the work-item is disabled and ready to be

re-started).

Note that, since there is no information on the type of memory access (i.e.,

read or write) stored in shadow memory, the DCD cannot filter out read-read

conflicts. We designed two alternatives to deal with this situation: (i) adding an

extra state bit per owner (see Section 5.2.4.2), (ii) adding per-wavefront signa-

tures (see Section 5.2.4.4).

DCD is a simple and precise approach for detecting conflicts, but at the cost

of an additional local memory access (to the same bank) in order to check the

ownership records. In a later design, this extra access is mostly avoided by using

per-work-item signatures (see Section 5.2.4.3).

5.2.4.2 Shared-Modified DCD (SMDCD)

The DCD mechanism can be improved by having two state bits per owner (instead

of V): the S bit, set to 1 if the location has been accessed by multiple work-

items (being the first one the owner), and the M bit, set to 1 if the location

has been written. These extra bits permit us to filter out read-read conflicts.

The new mechanism is called Shared-Modified Directory-based Conflict Detection

(SMDCD).

The case of both state bits set to 1 at the same time cannot occur because

a conflict has been detected previously. We use this pattern to encode the ”not

set” owner state (see Table 5.3 (b)). When a transaction begins execution, both

S and M are set to 1. For each transactional access to local memory, the SMDCD

mechanism carries out the actions specified in Table 5.3 (b). If a memory location

is being accessed for the first time, SMDCD saves the identity of the owner in

shadow memory and performs a backup of the current memory value if the access

is a write, enabling us to distinguish between reads and writes. A read access to

a memory location owned by a different work-item is allowed, as long as M is 0.

These accesses set S to 1. But if M is 1, a conflict is detected (read after write).
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State Mem. Next State
Owner V Operat. Owner V Action

Read WI 1 back up value; read memory
Not set 0 Write WI 1 back up value; write memory

Read WI 1 read memory
WI 1 Write WI 1 write memory

Read o-WI 1 conflict (R/W→R); abort
o-WI 1 Write o-WI 1 conflict (R/W→W); abort

(a)

State Mem. Next State
Owner S M Operat. Owner S M Action

Read WI 0 0 read memory
Not set 1 1 Write WI 0 1 back up value; write memory

Read WI 0 0/1 read memory
WI 0 0/1 Write WI 0 1 write memory

Read WI 1 0 read memory
WI 1 0 Write WI 1 0 conflict (R→W); abort

Read o-WI 1 0 read memory
o-WI 0/1 0 Write o-WI 0/1 0 conflict (R→W); abort

Read o-WI 0 1 conflict (W→R); abort
o-WI 0 1 Write o-WI 0 1 conflict (W→W); abort

(b)

Table 5.3: Conflict detection using the DCD (a) and SMDCD (b) mechanisms.

WI is the label for the accessing work-item, o-WI is the other work-item, ”0/1”

means 0 or 1. ”Abort” means the following actions: restore backup for WI, delete

WI ownership entries and set TCM[WI] bit to 1.

A write access is allowed only if the owner is the requesting work-item and the

memory location was not accessed by other work-items (S is 0). These accesses

set M to 1. Otherwise, a conflict is flagged (write after read or write after write).

5.2.4.3 DCD and Private Read/Write Signatures (pRWsig)

DCD/SMDCD mechanisms for detecting conflicts require an extra access to a

local memory bank for checking ownership information. To speed up conflict

detection, avoiding most of these extra accesses, a set of private (per work-item)

unified signatures [10] (pRWsig) are defined. There is one signature per local

memory bank and per work-item, which records both reads and writes (unified).

Since there are a large number of signatures, 8-bit Bloom filters are used

to limit the amount of storage resources required. Only one hash function is

defined (see Figure 5.5). For the workloads evaluated, we found that a simple
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Figure 5.5: Signature design (local memory size is per work-group).

pRWsig Test Mem.
WI o-WI Operat. Action

Read/ back up value; insert(pRWsig);
0 0 Write read/write memory

Read/ if owner is not set then back up value;
1 0 Write read/write memory

Read conflict (R/W→R); abort
0/1 1 Write conflict (R/W→W); abort

Table 5.4: Speeding up conflict detection by using private unified signatures

(pRWsig). WI, o-WI, ”0/1” and abort are as in Table 5.3. insert(pRWsig)

inserts intra-bank address in the same-bank signature of WI.

(ib-add mod 8) hash operation works well at the local memory level, where ib-

add refers to the intra-bank position of the accessed memory reference. This hash

function works well because GPU programmers commonly allocate variables in

a coalesced way: in a given bank, a memory access by a work-item is usually

followed by an access to the next memory location by the same or a different

work-item. The above hash function minimizes the number of false conflicts

when consecutive addresses are referenced.

To avoid defining new storage resources, each of these signatures is stored in a

vector register so that it can be accessed efficiently for each transactional reference

to a local memory location. This design reduces the number of vector registers

available to the application by a small amount (see discussion in Section 5.3).

However, if TM is not used, the compiler does not allocate space in the vector

register file for signatures.

When a work-item issues a local memory access, the address is checked for

hits in any of the signatures assigned to the current bank. Possible outcomes

and consequences are described in Table 5.4. An intra-bank conflict is detected

if a signature of a different work-item (o-WI) returns a positive. In this case,

the work-item (WI) issuing the request signals a conflict, restoring its backed-up
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values and clearing its entries in the shadow memory of the accessed bank.

Next, its bit in the TCM is set to 1, disabling the execution of WI until the

end of the transaction. The positive signature test may be false, with a risk of

increasing the abort rate. However, conflict detection is faster as the extra access

to local memory for checking the owner is avoided. The access to pRWsig is done

in parallel to minimize the checking overhead. In fact, as a work-group consists

of 256 work-items, a set of 256 3-to-8 decoders are enough to check pRWsig fully

in parallel. As there are 32 local memory banks, a total of 8K decoders are

required to check, in parallel, all private unified signatures per CU. The cost of

this hardware is negigible compared to the complete CU.

If no signature returns a positive, that means that the memory location is

accessed for the first time. In this case, WI performs a backup of the value stored

in this location, records its ownership in shadow memory and inserts the memory

address in its signature. If, on the other hand, the signature for WI returns a

positive, then we need to determine if the hit was true or false by examining the

ownership information (as with DCD), since the action depends on whether the

owner is WI (no action) or it is not (the backup value). This is the only case

where an extra access to local memory cannot be avoided.

5.2.4.4 DCD/pRWsig and Shared Write-Only Signatures (sWOsig)

As signatures in pRWsig are unified read-read conflicts cannot be filtered out.

To avoid transaction aborts due to these conflicts, a new set of per-wavefront

write-only signatures (sWOsig) are added to GPU-LocalTM in order to register

only the write set (for the entire wavefront). These signatures work in a similar

way as Choi’s helper signatures [18]. A conflict is detected during a memory read

operation if some signatures in both sets, pRWsig and sWOsig, return a positive.

A false read-read conflict would return a positive in the unified signature, but

not in the write-only signature. This allows us to filter out read-read conflicts,

providing a more precise confict detection mechanism.

The use of sWOsig makes sense if the signature size is much smaller than

those in pRWsig. Otherwise, the implementation of separate read and write

signatures would be more efficient. As each signature in pRWsig is small (8 bits),

we lower the storage requirements of sWOsig by drastically reducing the number

of signatures in the set. A way is used to define each signature in sWOsig as

shared by all work-items, belonging to the same wavefront (64 work-items). Then

only 4 signatures in sWOsig exist (one per wavefront within the work-group) per

memory bank, with a total of 128 signatures (32 memory banks). However, as
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pRWsig sWOsig
Test Test Mem.

WI o-WI WF o-WF Operat. Action

0 0 0/1 0/1 Read insert(pRWsig); read memory

back up value; insert(pRWsig);
0 0 0/1 0/1 Write insert(sWOsig); write memory

1 0 0/1 0/1 Read read memory

back up value; insert(sWOsig);
1 0 0 0 Write write memory

1 0 1 0 Write back up value; write memory

0 1 0 0 Read insert(pRWsig); read memory

0 1 0 0 Write conflict (R→W); abort

0 1 0 1 Read conflict (W→R); abort

0 1 0 1 Write conflict (W→W); abort

0 1 1 0 Read conflict (W→R); abort

0 1 1 0 Write conflict (W→W); abort

1 1 0 0 Read read memory

1 1 0 0 Write conflict (R→W); abort

1 1 0 1 Read conflict (W→R); abort

1 1 0 1 Write conflict (W→W); abort

if owner is WI then read memory
1 1 1 0/1 Read else conflict (W→R); abort

if owner is WI then write memory
1 1 1 0/1 Write else conflict (W→W); abort

Table 5.5: Combining private unified signatures (pRWsig) and shared write-only

signatures (sWOsig) to speed up conflict detection and filter out read-read con-

flicts. WI (WF) is the accessing work-item (wavefront). o-WI (o-WF) is other

work-item (wavefront). ”0/1” and abort are as in Table 5.3. insert(pRWsig) is

as in Table 5.4. insert(sWOsig) means insert accessed memory address in the

sWOsig of the wavefront for WI.

many work-items share the same signature, its size is slightly larger (32 bits) than

in pRWsig, in order to avoid fast saturation (many bits of the filter set to 1) [49].

In our design, we use a scalar register to store each one of the shared signatures.

Apart from the size, a key issue to avoid fast signature saturation is a suit-

able design of the hash function. Assuming that programmers write code with

coalesced memory accesses, and similar to the design of pRWsig, a hash func-

tion (ib-add mod 32) is used to minimize false positives when accessing nearby

memory addresses (shared signatures have 32 bits) (see Figure 5.5).

The use of pRWsig and sWOsig together for conflict detection is illustrated

in Table 5.5, which is an extension of Table 5.4. Using sWOsig has two benefits.
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First, it allows us to save unnecessary backups of old values when the memory

access is a read. Second, it permits us to avoid transaction aborts due to read-

read conflicts (e.g., rows 6 and 12 in Table 5.5). The last two rows in Table 5.5

represent a special case where two or more private signatures show a positive (WI

and other/s) and the shared signature for the same wavefront also is a positive.

We can simply signal a conflict, as some work-item in the same wavefront has

written the same memory location before. A more precise response would be to

check if the owner is WI, in which case there would be no conflict (that is, the

positive in pRWsig for other work-items different from WI, o-WI, is false). This

permits us to reduce transaction aborts, but at the cost of an extra access to local

memory bank. We simulated both designs and found no significant differences in

the results.

DCD-based conflict detection can be improved either by adding extra state

bits (SMDCD) or by adding signatures (pRWsig, sWOsig). A directory is a

precise solution because it does not suffer from false positives, as do signatures

(especially if they are near saturation), but the latency for conflict detection is

higher due to an extra access to local memory. In the end, the performance of the

adopted solution depends on the local memory access pattern of the application.

5.3 GPU-LocalTM Modeling

GPU-LocalTM requires slight changes to the GPU microarchitecture. We have

implemented these changes using the Multi2Sim 4.2 simulation framework [57].

This framework supports the Southern Islands family of AMD’s GPUs, used as

the baseline microarchitecture for GPU-LocalTM. Table 5.6 provides the key

features of this microarchitecture.

Transactional SIMT execution overhead. Two instructions, TX Begin

and TX Commit, are added to the GPU ISA to use TM. They are modeled as

scalar instructions, as they affect the entire wavefront. The transactional SIMT

execution is managed by combining the EXEC mask, the TCM and the MCM.

The time spent accessing these masks is modeled by adding an extra cycle per

mask access to the latency of the TX Begin and TX Commit instructions.

Memory latency. Depending on the implementation, GPU-LocalTM ac-

cesses signatures and/or shadow memory for each memory operation in order to

perform conflict detection and version management. These accesses to the sig-

natures in pRWsig/sWOsig and to the shadow area add some overhead. As the

hardware required to access signatures is simple (briefly, it can be implemented
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Feature Value GPU-LocalTM

Compute Units (CU) 32 -

Vector Registers per CU 65536 2276 (2504) (∼3.6%)

Scalar Registers per CU 2048 136 (∼7%)

SIMD Units per CU 4 -

SIMD Lanes 16 -

LDS Size per CU 65536 bytes 37446 bytes (∼57%)

LDS Banks 32 -

Minimum LDS Latency 2 cycles 5 cycles

Table 5.6: Relevant features of the AMD’s Southern Islands GPU implementation

on Multi2Sim 4.2 and the amount of resources required by one work-group using

GPU-LocalTM.

as a set of decoders), we consider that accesses to signatures can be performed in

one cycle. This cycle is added to the latency of memory operations when executed

inside a transaction. Accesses to shadow memory are modeled as regular accesses

to local memory. Thus, when modeling memory accesses, extra latency is added

depending on the number of accesses to shadow memory. As see in Table 5.6,

the latency of a LDS access if 2 cycles. Any access to shadow memory results

in 2 extra cycles to be added to the memory access latency. Note that coalesced

memory accesses allow for parallel access to different memory banks. Thus, the

latency of the memory access is calculated as the latency of the slowest of the 32

banks that can be accessed in parallel.

Storage overhead. Storage resources required in GPU-LocalTM are taken

from those available in the baseline architecture, as described in Table 5.6. The

vector register file is used to hold signatures from the pRWsig set, which reduces

the number of available vector registers by 2048 (256 signatures per bank, and 32

banks per CU) per work-group. Signatures in the sWOsig set are stored in the

scalar register file, using a total of 128 registers (4 shared signatures per bank, and

32 banks per CU). In addition, each wavefront requires its own TCM to manage

the transactional execution, which is also mapped onto scalar registers. As each

work-group is composed of 4 wavefronts, the 4 TCMs use 8 scalar registers (two

registers per TCM). In the general case, 136 scalar registers must be reserved,

which represents about 7% of the total of 2048 available scalar registers.

The amount of local memory available per work-group depends on the size of

the shadow memory. If the user requests N words to store local variables, the

shadow memory allocates another N words for backups and N/4 words for the

ownership records (see Figure 5.4). The total physical amount of local memory is
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64 KB, partitioned in 32 banks. With this size, a total of 29,127 bytes is available

per work-group to store local variables, as the same amount and an additional

7,282 bytes are reserved for the shadow area. This represents an overhead of

about 56% of the total space. However, the AMD architecture exposes half of

the total physical space to each work-group, that is, 32 KB. The other half is

reserved for the system to allow execution of an additional work-group at the

same time. The shadow area could be allocated at runtime in this second half of

the local memory. In such cases, a work-group would have 29,127 out of 32,768

bytes for user variables, but at the cost of disallowing the execution of two work-

groups in parallel (only if they use more than half of the 32 KB available per

work-group). Otherwise, if the complete shadow memory is stored in the same

half of local memory, the storage available per work-group is reduced to 14,563

bytes. On the other hand, the state bits for owners are stored in vector registers

(see Figure 5.4). There is 1 bit (DCD) or 2 bits (SMDCD) per owner. Given a

total of 7,282 owners, 228 (DCD) or 456 (SMDCD) vector registers are required

for storing state bits. Adding the 2,048 vector registers for signatures, 2,276

(DCD) or 2,504 (SMDCD) vector registers must be reserved, which represents

about 3.5% (3.8%) of the total of 65,536 vector registers.

This implementation of GPU-LocalTM puts pressure on storage resources

that can limit the types of kernels that can benefit from this TM support. Note,

however, that one of the main aims in the design of GPU-LocalTM is to min-

imize the amount of extra hardware required, in particular, storage resources.

These storage resources are allocated by the compiler (together with the run-

time). Hence, kernels that do not require TM do not suffer from this storage

overhead.

Programmability challenges. On traditional GPUs (i.e., with no TM sup-

port) the resources needed by a work-group on a given CU must be preallocated

before starting execution. This preallocation limits the execution of work-groups

whose requirements exceed the available resources. These limitations are: 1) the

number of work-groups assigned to the same CU, 2) the number of vector and

scalar registers needed, and 3) the amount of local memory allocated. Our im-

plementation of GPU-LocalTM, which makes use of existing memory resources,

places constraints on GPU execution that must be analyzed before TM is used.

Programmers are only exposed to the changes in the amount of local memory

available. Despite that the total amount of LDS per CU is 64Kb, programmers

are only allowed to use 32Kb per work-group. Thus, the ammout of local mem-

ory addressable by programmers when using GPU-LocalTM changes from 32,768

bytes to 28,084 bytes. Algorithms that plan to benefit from GPU-LocalTM should

be adapted to assume this amount of local memory. The runtime and the com-
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piler can play an important role hiding other restrictions from the programmer.

Traditional compiler techniques, such as register renaming and spilling, can be

implemented to relieve the pressure on the register file. Selecting the number

of concurrent work-groups, when the amount of registers and local memory re-

quired are more than are available in hardware, is made by the runtime and is

transparent to programmers. Lastly, the use of TM can be a decision made by

the compiler. In case of a scarcity of resources, the compiler can choose the most

convenient algorithm or apply a transformation similar to the one shown in the

introduction of this thesis (Figure 1.1), and decide to use a coarse-grained lock

implementation for the critical section.

5.4 Evaluation

Eight benchmarks were designed to evaluate GPU-LocalTM in specific scenarios,

defined for two contention levels (see Table 5.7). All the benchmarks are imple-

mented in three different versions: a version serializing the critical sections, a

TM version where the critical sections are executed as transactions, an atomics

version (only for HT, IT, DB and QU), and a FGL version (only for GC, GA, VA

and KM). The third column in Table 5.7 describes the definition of the critical

sections (CS) for each benchmark, and the last column summarizes the atomics

and FGL versions. Note that the FGL implementations require lock manage-

ment, adding 17%, 10%, 42% and 22% extra lines of code to GA, KM, GC, and

VA, respectively.

These workloads fully exercise the different features present in GPU-LocalTM

(see Table 5.8 for more details on the features of each benchmark). HT and IT

feature read-modify-write transactions, focusing on short transactions. While

transactions in IT perform the same number of reads and writes, HT is designed

to have many read-only transactions. Transactions in DB also perform the same

number of reads and writes, as in IT, but in multiple memory locations. QU

restricts access to only a few memory addresses, but since it is a shared queue,

with a high probability of conflict. VA and GA, on the other hand, stress GPU-

LocalTM with long transactions. In GA, the read and write sets are the same,

and the probability of conflict is high as most of the data is accessed within

concurrent transactions. In addition, memory accesses are not coalesced. VA has

a large data set and, thus, the probability of conflict is lower, since the read set

is larger than the write set. GC also features a larger read set as compared to

the write set but, in contrast to VA, its data set is smaller. KM accesses multiple

coalesced memory locations performing read-modify-write operations.
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Benchmark Description CS serialized / CS as trans-

action

FGL / Atomics

HT In a N-bucket hash table, each WI inserts

elements in a bucket traversing all entries

until locating an empty position

CS comprises reading a location

within the bucket and, if empty,

inserting a value

Atomics: a CAS operation

is used to check the status

of the position and insert-

ing the value

Hash Table HT-LC: 256 buckets; HT-HC: 4 buckets

IT As HT, but each bucket has an index

pointing to the empty position

CS comprises modifying the in-

dex

Atomics: an atomic INC

operation increments the

index

Indexed Table IT-LC: 256 buckets; IT-HC: 4 buckets

VA From STAMP [43], with three groups of

1K elements. 90% of WIs reserve or can-

cel items and 10% insert or delete items

CS comprises the modification of

a number of items depending on

the contention level

FGL: a number of locks

have to be acquired to al-

low access to the items.

Lock acquisition is serial-

ized to avoid deadlocks

Vacation VA-LC: 2 items; VA-HC: 4 items

GC Decentralized algorithm adapted

from[23]. Each WI changes the color of a

node depending on its 2 neighbors

CS comprises modifying the

color of a node after reading the

color of its neighbors

FGL: similarly to VA,

locks protects accesses to

nodes. Lock acquisition is

serialized

Graph Coloring GC-LC and GC-HC using different

graphs

GA Uses a genetic algorithm to solve the

knapsack problem. From a set of solu-

tions, each WI picks 2 and modifies them

using genetic operators, replacing the old

ones

CS comprises selecting two solu-

tions, modifying them, and in-

serting them back to the set

avoiding that different WIs pick

the same elements

FGL: each solution is pro-

tected by a lock. WIs have

to acquire two locks. Lock

acquisition is serialized to

avoid deadlocks

Genetic Algorithm GA-LC: 64 solutions; GA-HC: 8 solutions

KM Clustering algorithm ported from

OpenCL (Rodinia 3.0[14, 15]). All code

is executed in the GPU, storing clusters

in local memory

CS comprises updating the clus-

ter positions depending on the

closest points

FGL: each cluster is pro-

tected by a lock, which is

acquired by using a CAS

operation

K-Means KM-LC: 64 clusters; KM-HC: 8 clusters

DB Simulates an in-memory database where

each WI inserts 2 values in different IT

tables

CS comprises modiying the two

indices that manage the tables

Atomics: atomic INC op-

erations increment the two

indices

DataBase DB-LC: 16 tables; DB-HC: 8 tables

QU Each WI performs 4 enqueue/dequeue

operations on a shared queue managed by

two pointers

CS comprises modifying the

pointers that manage the head

and tail of the queue and insert-

ing/deleting values

Atomics: pointers are

managed by using atomic

ADD operations

Queue QU-LC: 12,5% enqueues; QU-HC: 25%

enqueues

Table 5.7: Benchmarks used to evaluate GPU-LocalTM (LC and HC stand for

low contention and high contention, respectively; CS stands for critical section).

5.4.1 Performance Evaluation

We perform cycle-based simulation utilizing the Multi2Sim 4.2 simulation frame-

work [57]. All transactional data is stored in local memory.
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Speedup. Four TM versions of each bechmark are executed on our simu-

lator, each one using a different conflict detection mechanism: DCD, SMDCD,

DCD+pRWsig and DCD+pRWsig+sWOsig. Figure 5.6 presents the speedup

achieved for those versions relative to the version that serializes the critical sec-

tions.
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Figure 5.6: Speedup of TM and FGL benchmark versions with respect to the

serialized version (pRWsig is DCD+pRWsig; sWOsig is DCD+pRWsig+sWOsig).

Our first observation is that, for all benchmarks, TM performs similar to, or

better than, the serial version, except for the highly contended versions of QU

and DB. QU has a very high conflict probability and only enjoys benefits for the

lightweight and early conflict detection mechanism that DCD+pRWsig provides.

In DB, both versions using signatures improve the performance over the serial

code.

Regarding atomics, the FGL versions of HT, IT, DB and QU outperform the

TM versions, as they are highly optimized. However, the transactional versions

neither involve declaration of additional data structures nor the burden of atomic

operation management by the programmer. On the other hand, our simulations

show that TM outperforms FGL for VA and GA. The reason is that the use of

atomics results in significant overhead for these algorithms due to lock acquisition-

release and the mechanisms needed to avoid deadlocks. In addition, FGL requires

much greater programming effort than TM.

TM and FGL do not scale well for KM and GA. In GA, the SIMT execution

of long transactions hurts performance since work-items that finish the trans-

action have to wait for the complete wavefront. In KM, the critical section is

small compared to the rest of the code, such that the advantages of using TM

cannot amortize the associated overhead. The main source of overhead is due
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to a significant number of memory accesses that suffer from high contention, as

multiple work items try to access the same clusters. This situation results in the

serialization of lock acquisition/release operations in FGL, and a high number of

retries in TM, which represents more than half of the execution time.

The use of both types of signatures (pRWsig and sWOsig) benefits bench-

marks such as HT and GC, where many read-only transactions avoid aborting

unnecessarily.

Execution breakdown. Figure 5.7 shows the execution breakdown for all

TM and FGL versions of the benchmarks. Our simulations show that most of

the overhead occurs during memory operations, as many cycles are spent during

conflict detection. However, the use of signatures avoids extra accesses to local

memory. For this reason, lower memory overhead is observed in the pRWsig and

sWOsig TM versions, as compared to those based only on DCD and SMDCD. The

VA benchmark experiences a lower rate of conflicts in both scenarios, and due to

its larger critical section, the overhead of transaction management is negligible.
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Figure 5.7: Normalized execution breakdown. TXBegin, TXCommit, and Mem.

Overheads represent the overheads introduced by the TM system. TX Code

represents code executed within a transaction, while Non-TX Code represents

code executed outside transactions. Columns 1 to 4 stand for pRWsig, sWOsig,

DCD and SMDCD TM versions, respectively.

Transactional instructions. Figure 5.8 shows the percentage of instruc-

tions executed within transactions over the total number of instructions exe-

cuted for each workload. From our simulations we find that HT-LC and IT-LC

execute less than 30% of their instructions transactionally, as transactions are

short and the probability of conflict is small. KM also has a small fraction of

its code running within a transaction. GC and HT-HC reduces their fraction of

transactional instructions for sWOsig versus pRWsig. The fast conflict detection

provided by shared signatures and the ability to complete read-only transactions

without conflicts results in this behaviour.

Commit ratio. Figure 5.9 shows the ratio of transactions committed over

the number of transactions started for each workload. As work-items within a

wavefront execute in lockstep, the commit ratio is calculated per wavefront, as
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Figure 5.8: Instructions executed within transactions normalized to the total

number of instructions executed.

this metric is more directly related to workload throughput. In general, the TM

versions based on DCD and SMDCD result in a higher commit ratio, as they are

not affected by false positives introduced by the signatures. In some applications,

such as DB, HT-HC and GC, the use of signatures improves the commit ratio.

Comparing these results with the speedup (see Figure 5.6), we can observe some

correlation. The reason is that these applications benefit from the layout of the

signatures, and fewer transactions experience re-executions.

False positives. Signatures may return false positives (which are considered

conflicts) if the bit to be checked from the signature in the current memory access

coincides with the bit set by a previous access to a different memory position (i.e.,

a signature alias). Figure 5.10 shows the ratio of false positives that occur in the

TM versions based on signatures, with respect to the total number of positives.

In many scenarios, this ratio is high due to the small size of the signatures. In

most cases, false positives result from read-read conflicts that can be filtered out

when using shared signatures (sWOsig). DB, however, does not benefit from the

use of shared signatures because they saturate.
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Figure 5.9: Commit ratio.

Forward progress. Figure 5.11 shows the percentage of transactions that

execute in transactional, wavefront serialization and work-group serialization
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Figure 5.10: False positives.
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Figure 5.11: Transactional and serialization execution modes. Columns 1 to 4

stand for pRWsig, sWOsig, DCD and SMDCD TM versions, respectively.

modes. In most cases, many transactions (up to 90% in HT-HC) resort to seri-

alization mode (especially, WfS) to assure forward progress. The reason is that,

as work-items within a wavefront execute in SIMT fashion, most of the conflicts

remain after a transaction retry. We analyzed that scenario (HT-HC), and on

average, 48 out of the 64 work-items belonging to the same wavefront conflict

when the serialization mode is required.

Discussion. As GPU-LocalTM is configurable, this simulation-based evalua-

tion can serve as guide to programmers or a hint to the compiler to select the most

suitable conflict detection algorithm, or to predict the performance when storage

resources are not available. The mechanism that exhibits the highest memory

overhead is DCD+pRWsig+sWOsig, as it uses vector registers, scalar registers

and shadow memory. This method works well for applications with many read-

only transactions, such as HT and GC, as conflicts can be detected quickly with

the use of signatures and read-only transactions do not conflict. DCD+pRWsig

does not use shared signatures, reducing pressure on the scalar register file. This

method is more effective for applications that perform read-modify-write opera-
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tions. QU, IT, VA and DB are examples that perform similar (or better) when

using only pRWsig. Since DCD and SMDCD do not use vector registers, they are

well suited for applications that require a large number of those registers. The

effectiveness of these methods is limited to applications exhibiting a rather ran-

dom access pattern (as GA), where the false positive rate can harm performance

if using signatures (as HT-LC, IT-LC, and KM).

Table 5.8 summarizes the main transactional features of the benchmarks and

the configuration of GPU-LocalTM to obtain best performance according to the

evaluation.

Best performing
Bench. Features GPU-LocalTM configuration

HT Short transactions sWOsig (HT-HC), DCD (HT-LC)
Read-only transactions

IT Short transactions pRWsig (IT-HC), sWOsig (IT-LC)
Read-modify-write

VA Long transactions Any
Few conflicts

GC Read-only transactions sWOsig

GA Long transactions DCD
Read-modify-write

KM Long transactions DCD (KM-HC), sWOsig (KM-LC)
Multiple accesses

DB Short transactions pRWsig,sWOsig (DB-HC),
Multiple accesses sWOsig (DB-LC)

QU Short transactions pRWsig
Many conflicts

Table 5.8: Workload features and the best performing GPU-LocalTM version.

5.5 Improving the serialization mechanism

The wavefront serialization mode implemented in GPU-LocalTM selects a single

work-item within the wavefront for execution. Specifically, whenever two consec-

utive retries of the transaction finish with the same TCM mask, the work-item

with lower identifier is the one selected to retry in wavefront serialization mode.

This choice has two important consequences.

The first consequence is that by choosing only one work-item for re-execution

may not be optimal and multiple work-items could be selected at the same time.

Figure 5.12 shows an example of this scenario, simplified to represent wavefronts
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of 4 work-items. Initially, the 4 work-items read different memory positions. We

assume that memory positions A, B, C and D are located in different memory

banks, and reading these memory positions can be done in parallel 1©. Then,

work-items 0 and 1 try to write to memory positions that make them conflict

with each other. The same applies to work-items 2 and 3. As memory positions

A, B, C and D are located in different memory banks, the conflict detection

mechanism executes in parallel in each memory bank and the 4 transactions

abort 2©. In this case, the TCM mask holds the value 1111 and the transaction

retries for the 4 work-items 3©. In the second retry the same scenario will happen

activating the wavefront serialization mode. 4©. In the GPU-LocalTM wavefront

serialization mode, work-item 0 is the only one active to retry the transaction 5©.

After work-item 0 is done, work-items 1, 2 and 3 are be available for execution.

Work-item 1 completes in the next retry, but work-items 2 and 3 find the same

deadlock issue and the wavefront serialization mode is required again 6©. In

summary, in order to finish this transaction, the wavefront serialization mode is

required to be active twice 7©. However, when entering the wavefront serialization

mode for the first time, we could execute work-items 0 and 2 in parallel with no

conflicts, as they access different data 8©. After that work-items 1 and 3 have

no conflict in their memory access and they finish without requiring serialization

9©. Concluding, the serialization mechanism proposed in GPU-LocalTM could

be improved by detecting data dependencies and choosing multiple work-items

for re-execution. We propose an extension to the serialization mechanism that

allows for choosing more than one work-item when running the WfS mode. We

call this new mechanism the multiple selection mechanism, while selecting only

one work-item is called the single selection.
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Wr C

TCM = 1111

TCM = 1111
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No-progress detected
Enable wavefront serialization
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TCM = 0001
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 WI-0 is re-executed

no-progress detected
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Figure 5.12: Multiple work-item serialization mechanism compared to GPU-

LocalTM.
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The second consequence of choosing for re-execution the work-item with lower

identifier can affect performance in some cases. Figure 5.13 shows an an scenario

where work-items 0, 1 and 2 write to memory addresses accessed by work-item

3 while work-item 3 writes to a memory address accessed by work-item 2 1©.

Assuming coalesced memory accesses, writes are performed simultaneously and

conflict. In this case, TCM holds he value 1111 2© and, after re-executing the

transaction and reaching the same situation, GPU-LocalTM activates the seri-

alization mechanism 3©. This guarantees forward progress for work-item 0 4©,

but the remaining work-items need another 2 re-executions in serial mode to be

able to complete ( 5©, 6©, 7©). This could be solved quicker if, after detecting

the deadlock, the serialization mechanism chooses work-item 3 for re-execution

in the first place 8©. In that case, work-item 3 finishes its transaction after the

first iteration in serial mode 9©. The remaining work-items have no conflicts and

would finish without requiring the use of serialization. We also implement two

modes, called ascending and descending which allow for selecting the order of

execution of work-items when in WfS or WgS.
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TCM = 0000  Transactional exec. completes 7

Figure 5.13: Descending work-item serialization mechanism compared to GPU-

LocalTM.

Considering the order (ascending or descending) and the choice of work-

items (single or multiple) gives us 4 implemetations of the serialization mech-

anism (ascending-single, descending-single, ascending-multiple, and descending-

multiple).

The ascending or descending modes are easy to design from the base GPU-

LocalTM implementation, as they only differ in the direction the TCM is pro-

cessed when entering the WfS or WgS modes. To implement the multiple mode,
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a new 64-bit multiple conflict mask (MCM) is defined per wavefront. Similarly

to the TCM, the MCM holds one bit per work-item within a wavefront and is

also mapped to two consecutive scalar registers. The MCM is used to mark the

subset of multiple work-items to re-execute in WfS mode: those work-items with

its MCM bit set to 1 belong to such subset. Initially, when the transaction starts

for the first time, every bit of the MCM is set to 1. To build the subset, the

MCM is updated whenever a conflict is detected. The offending work-item com-

pares its identifier with that of the owner of the accessed memory location (this

information is obtained from the ownership records stored in the shadow area).

The owner is always the work-item that made the first transactional access to

the memory location (see DCD mechanism in Table 5.3). Thus, the owner is the

work-item with which the offending work-item has conflicted to. However, when

using the SMDCD mechanism, there is one case where the owner is the same

work-item as the offending one (row six in the SMDCD mechanism in Table 5.3).

So, if SMDCD is used for conflict detection, the policy is as follows: if the con-

flicting work-item is also the owner, its bit in the MCM is reset to 0 and it is not

re-executed in the next retry.

Assuming we use ascending WfS mode, if the identifier of the work-item that

detects the conflict is lower than that of the owner of the memory location, its bit

in the MCM is left as 1. That is, this work-item is a candidate for re-execution.

Otherwise, if the identifier is higher, its bit in the MCM is reset to 0. The opposite

happens when the descending mode is used. Once the transaction ends and the

WfS mode is required, the MCM is used to update the TCM before retrying

the transaction: TCM ← TCM & not(MCM). Table 5.9 shows the transactional

execution of the same code in Table 5.2, but considering a multiple-ascending WfS

mode. Now, the transaction is retried three times before committing, instead of

six times as in the basic (single-ascending) WfS mode.

5.5.1 Work-item selection mechanism evaluation

The four work-item selection mechanisms (single-ascending, single-descending,

multiple-ascending, and multiple-descending), used in WfS mode, are evaluated

for HT, IT, GC and KM (VA, GA, DB, and QU do not show significant differences

in the results). When WgS mode is enabled, only single-ascending or single-

descending work depending on the option selected in WfS.

Figure 5.14 shows the speedup obtained in our simulations for all work-item

selection mechanisms, with respect to DCD+pRWsig using the basic single-

ascending option. It is observed that selecting multiple work-items in WfS mode
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TCM
Instruction EXEC TCM prev MCM Mode Comments

TX Begin 1111 0000 - 1111 TX Transaction starts
... 1111 1111 - 1010 TX Transactional execu-

tion
All WIs detect conflicts

TX Commit 1111 1111 - 1010 TX Transaction ends
All WIs must re-
execute

TX Begin 1111 0000 1111 1111 TX Transac. retries for
WIs

... 1111 1111 1111 1010 TX All WIs detect conflicts
TX Commit 1111 1111 1111 1010 TX Transaction ends

No progress detected

TX Begin 1111 0101 1111 - WfS Transac. retries WIs 0,
2

... 1111 0101 1111 - WfS No new conflicts
TX Commit 1111 0101 1111 - WfS Transaction ends

WIs 0, 2 commit

TX Begin 0101 0000 0101 1111 TX Transac. retries for 1,
3

... 0101 0000 0101 1111 TX No conflicts detected
TX Commit 0101 0000 0101 1111 TX Transaction ends

WIs 1, 3 commit

Table 5.9: Example of a transactional execution using the multiple-ascending

WfS mode, taking the same code as in Table 5.2. WfS mode uses the MCM.

In WfS mode, the TCM is updated as ”TCM & not(MCM)” before retrying the

transaction.
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Figure 5.14: Speedup for the different work-item selection schemes used in WfS

mode.

improves performance by up to 30%. The use of the descending option exhibits

better or similar performance than their ascending counterpart, depending on the

memory access pattern. KM-HC is the only one that performs worse when using

multiple-ascending due to the high rate of false positives caused in the signatures
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used for conflict detection.

Figure 5.15 shows the normalized transactional execution breakdown for all

work-item selection schemes. In general, selecting multiple work-items improves

performance, reducing the execution time in transactions. In addition, memory

overhead due to updates of MCM have no noticeable impact in performance. The

reason is that choosing multiple work-items for execution pays off is that memory

overhead can be hidden.
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Figure 5.15: Normalized execution breakdown. Labels 1 to 4 stand for single-

ascending, single-descending, multiple-ascending and multiple-descending, re-

spectively.

Figure 5.16 shows the fraction of transactions that require the use of serializa-

tion for each benchmark. In some cases, there is no difference in the number of

transactions in each execution mode. In HT-LC, GC-HC and GC-LC the number

of transactions entering the WgS mode is slightly higher for the multiple work-

item serialization option. The reason is the relatively high rate of false conflicts

in signatures while in the WfS mode, that requires entering WgS mode to assure

forward progress.
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Figure 5.16: Normalized transactional execution mode. Labels 1 to 4 stand for

single-ascending, single-descending, multiple-ascending and multiple-descending,

respectively.
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5.6 GPU-LocalTM: conclusions and future work

In this chapter we present GPU-LocalTM as a hardware TM proposal for GPUs

that focuses on the use of local memory. GPU-LocalTM is designed to limit the

amount of extra hardware required to support TM, as well as to minimize trans-

action overhead. Different proposals for conflict detection and forward progress

are presented, which could be selected by the compiler/programmer, depending

on the transactional memory access patterns or the availability of storage re-

sources. Our experiments show that GPU-LocalTM outperforms the execution

of kernels that rely on serialization to solve local memory conflicts. In addition,

the programming effort to develop the application is, in general, much lower as

compared to using fine-grained locking.

The key features and contributions of GPU-LocalTM are:

• Presents a novel hardware TM design for local memory, focusing on reduc-

ing the memory imprint required for transaction management. With re-

gards to this aspect, GPU-LocalTM only allocates memory resources from

existing storage if TM is required by the kernel.

• Offers a simple interface to reduce programming complexity when imple-

menting mutual exclusion on GPUs. This interfaces improves programma-

bility over both fine-grained locks and coarse-grained locks solutions.

• Additionally, integrates an automatic serialization mechanism that prevents

programmers from having to implement alternative non-TM code to ensure

forward progress. This mechanism can be improved to allow for parallel

execution of transactions that are unlikely to conflict.

• Implements multiple conflict detection and version management mecha-

nisms which can be selected by the compiler or the programmer depending

on their expected effectiveness or resource limitations.

• Outperforms coarse-grained locks and fine-grained locks implementations

for algorithms with low contention (i.e., close to data-parallel programs,

which is the main focus of GPUs). In high-contention scenarios, program-

mers can opt for a sequential implementation which can be offloaded to the

CPU or executed by the GPU with a simple code transformation performed

by the compiler.

GPU-LocalTM can be improved in different ways. These improvements are

proposed as future work.
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Discussion: reducing the memory footprint. The memory resources al-

located by GPU-LocalTM can be considered high in scenarios where many work-

groups are executed concurrenty and/or each work-group makes intensive use of

local memory. In the current design, GPU-LocalTM aims to minimize the mem-

ory resources to be added to the GPU compute units. We achieved this goal by

reusing existing allocation. In future work, and if vendors consider implementing

a similar approach, dedicated memory structures can be added to allocate trans-

actional metadata such as backup variables and signatures. Another solution can

be the dynamic allocation of these structures. For instance, space to back up

memory positions can be dynamically allocated when required instead of being

pre-allocated by the compiler as in our proposal. This new approach, with the

advantage of a better use of the memory resources, has two important drawbacks.

Firstly, the latency of memory operation increases, as memory allocation becomes

more complex as compared to our simple index-managed approach. Secondly, dy-

namic allocation can fail in the cases where register or memory usage is close to

the hardware limits. Usually, this results in aborting the current transactions

due to capacity issues. However, the serialization mechanism of GPU-LocalTM

should be re-engineered to deal with that situation, as it fundamentally considers

that there are no conflicts due to capacity or false positive issues.

Discussion: integrating the global memory space.

Global memory space can be integrated with GPU-LocalTM in different ways.

In this thesis, we discuss two options: pure hardware TM and hybrid TM.

Our proposed eager-eager solution can be extended to use global memory.

Following the same principle as in GPU-LocalTM, existing memory resources

should be used to store transactional metadata. The L1 data cache can serve

the purpose of storing speculative values accessed within a compute unit. Note

that in current GPU architectures L1 caches are not coherent and, thus, a sim-

plified version of a cache coherent protocol has to be implemented. The use of

signatures as in GPU-LocalTM is more complex in a global memory scenario

for several reasons. Firstly, the number of signatures required is very high as

the number of work-items to be supported by a GPU is higher as compared to

an individual compute unit. Secondly, as these signatures should be evaluated

for each memory access, such evaluation is either too slow (if performed sequen-

tially with simple hardware) or too complex to implement in hardware. Lastly,

allocation of the signatures is restricted to global memory, as it is visible by all

work-items within the GPU, but the latency of such memory space is too high

and using signatures would not provide benefits over a value-based comparison.

In that sense, dedicated fast storage and hardware should be added to hold and

manipulate signatures.
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A lightweight solution for the global and local memory integration is to con-

sider a hybrid approach. The hardware proposed in GPU-LocalTM can deal with

the SIMT execution. The conflict detection mechanisms implemented in GPU-

LocalTM can be extended to detect conflicts in global memory for a given work-

group by carving out space from the L1 cache in the same way as GPU-LocalTM

uses space from the local memory. Once the hardware TM has detected local

and global memory conflicts for all the work-items within a given work-group,

then a software technique can be used to detect conflicts coming from work-items

belonging to different work-groups. Although software techniques can be slower

than hardware TM, we do believe that it can be an effective solution. As GPU

programmers usually then to exploit locality within the work-group, conflicts

taking place within the a work-group can be detected quickly using dedicated

hardware such as GPU-LocalTM. In general, conflicts between different work-

gruops should be the less common case, which can be solved by software without

requiring dedicated hardware.
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In this thesis we face the intersection of TM and heterogeneous architectures

from different perspectives.

Chapter 3 presents an analysis of existing software TM and a set of widely

used benchmarks running on an heterogeneous big.LITTLE CPU. Generally, the

little cores present lower energy consumption when running the set of applications

evaluated; an expected result as it is the intended behavior of the big.LITTLE

processor. Nonetheless, not every application is able to benefit from the extra

computing power offered by the big cores. The instrumentation that the TM li-

brary adds to memory operations produce that the more powerful cores introduce

more pressure on the memory system, which in some cases is detrimental. Ad-

ditionally, the applications with higher abort rate increase the amount of wasted

work when executed on the big cluster as compared to the little cluster. For

this reason, only applications with high computing requirements compared to

the overhead of the TM system are able to benefit from the big cores.

Provided that application performance is different depending on the clus-

ter, we designed a simple scheduler for heterogeneous processors called ScHeTM.

ScHeTM is a thread-to-cluster scheduled that assigns TM-instrumented appli-

cations to the different clusters of the heterogeneous processors. ScHeTM is

configurable to focus on 1) improving performance, 2) reducing energy consump-

tion, or 3) minimizing the amount of work wasted by aborted transactions. When

focusing on performance, ScHeTM is able to effectively assign applications to the

most suitable cluster. As the little cluster is always more energy efficient than

the big cluster, the use of ScHeTM is not able to improve the results obtained by

naive scheduling techniques. The difference between both clusters in the number

of aborted transactions is not as noticeable as the difference in energy consump-

tion and performance. For this reason, the impact in the schedule performed by
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ScHeTM is smaller compared to the other metrics. In the end, given the proper

configuration of ScHeTM, execution time of the tested applications is reduced in

40% and their energy consumption in 15%.

Results of Chapter 3 are available in the following publications:

Energy Efficiency of Software Transactional Memory in a Heterogeneous

Architecture. Emilio Villegas, Alejandro Villegas, Angeles Navarro, Rafael

Asenjo, Yash Ukidave, and Oscar Plata.

In 8th Workshop on the Theory of Transactional Memory (WTTM 2016

co-located with PODC 2016).

Chicago (IL), USA, July 2016

Evaluación del Consumo Energético de la Memoria Transaccional Software

en Procesadores Heterogéneos. Emilio Villegas, Alejandro Villegas, Angeles

Navarro, Rafael Asenjo and Oscar Plata.

In XXVII Jornadas de Paralelismo, JP’16.

Salamanca, Spain, September 2016

Planificación thread-to-cluster de aplicaciones que utilizan memoria transac-

cional sobre un procesador heterogéneo. Alejandro Villegas, Ernesto Rittwa-

gen, Angeles Navarro, Rafael Asenjo and Oscar Plata.

In XXVIII Jornadas de Paralelismo, JP’17.

Málaga, Spain, September 2017

Chapter 4 explores TM and heterogeneous CPU+GPU processors (also known

as APU processors). In this case, the focus is implementing software TM on top

of such architecture. The goals are 1) providing an unified and simple interface to

implement mutual exclusion using TM on both sides (CPU and GPU), 2) explore

an implementation adapted to the particular characteristics of each application,

and 3) design a lightweight communication method to perform cross-platform

conflict detection with minimum overhead.

Our proposal, called APUTM defines an unified TM interface with different

implementations. In the case of the GPU, whose architecture can support thou-

sands of parallel transactions, APUTM solves per-wavefront conflicts prior to

accessing to main memory in order to reduce pressure on the memory subsys-

tem. Additionally, a timestamp-based solution inspired in prior CPU and GPU
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software TM [20, 70] is used to minimize the communication overhead. This

communication is effectively done using the platform-atomic operations available

in HSA-compliant heterogeneous processors.

Results of Chapter 4 are available in the following publications:

Towards a Software Transactional Memory for heterogeneous CPU-GPU pro-

cessors. Alejandro Villegas, Angeles Navarro, Rafael Asenjo and Oscar Plata.

In 3rd IEEE International Workshop on Reengineering for Parallelism in

Heterogeneous Parallel Platforms (Repara 2017, part of ParCo2017).

Bologna, Italy, September 2017

Lastly, Chapter 5 proposes the use of TM in GPU architectures focusing

on transactions that make use of the local (scratchpad) memory. The main

challenges found in implementing TM on top of said memory space are the lack

of a cache that can be used for both storage and for conflict detection support

as in commercial CPUs, the limited amount of memory resources available, and

coupling the transactional execution with the SIMT execution model.

Our proposal, GPU-LocalTM, is intended to minimize the amount of extra

hardware required to manage transactions. In this sense, transactional metadata

is allocated in existing storage such as registers and local memory. This alloca-

tion of resources is performed by the compiler and, thus, these resources are freely

available if TM is not required. Additionally, it offers different conflict detection

mechanism that can be selected by the user or the compiler attending to the re-

sources available and program requirements. Furthermore, the SIMT execution

is modified to consider transactions. The implementation of the transactional

SIMT execution presented in GPU-LocalTM has two main advantages: 1) it is

hardware-managed and does not require complex changes in the program or the

compiler, and 2) it integrates an automatic serialization mechanism that ensures

forward progress without requiring programmers to implement a fallback code.

Our simulation-based evaluation shows that our GPU-LocalTM is able to out-

perform GPU coarse-grained locks implementations of mutual exclusion. In some

programs, fine-grained locks implementations are slower than GPU-LocalTM as

the lock management overhead can be prohibitive in SIMT execution. If the pro-

gram permits a simple atomic-based implementation, then performance is better

than using GPU-LocalTM, but at the cost of a higher programming effort. With

regards to programming effort, the simple GPU-LocalTM interface simplifies the

implementation of mutual exclusion when compared to coarse-grained locks, fine-

grained locks, atomics, and ad-hoc implementations.
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Results of Chapter 5 are available in the following publications:

Hardware support for Local Memory Transactions on GPU Architectures.

Alejandro Villegas, Angeles Navarro, Rafael Asenjo, Oscar Plata, Rafael Ubal

and David Kaeli.

In 10th ACM SIGPLAN Workshop on Transactional Computing (TRANS-

ACT 2015, part of FCRC 2015).

Portland (OR), USA. June 2015

Memoria Transaccional Hardware en Memoria Local de GPU. Alejandro Vil-

legas, Angeles Navarro, Rafael Asenjo and Oscar Plata.

In XXVI Jornadas de Paralelismo, JP’15.

Córdoba, Spain, September 2015

Improvements in Hardware Transactional Memory for GPU Architectures.

Alejandro Villegas, Rafael Asenjo, Angeles Navarro and Oscar Plata.

In 19th Workshop on Compilers for Parallel Computing, (CPC’16).

Valladolid, Spain, July 2016

Hardware support for scratchpad memory transactions on GPU architec-

tures. Alejandro Villegas, Angeles Navarro, Rafael Asenjo, Oscar Plata,

Rafael Ubal and David Kaeli.

In 23rd International European Conference on Parallel and Distributed Com-

puting, EuroPar’17

Santiago de Compostela, Spain, September 2017

Lightweight Hardware Transactional Memory for GPU Scratchpad Memory.

Alejandro Villegas, Rafael Asenjo, Angeles Navarro, Oscar Plata, and David

Kaeli.

In IEEE Transactions on Computers no. 99 doi:10.1109/TC.2017.2776908

November 2017
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6.1 Future work

To conclude this thesis, we want to propose future research lines related with our

work.

As mentioned in Chapter 3, ScHeTM can be improved in different ways: the

mechanism included in our scheduler used to avoid resource underutilization can

be improved, the training phase can be reduced (or omitted), and applications

not using TM have to be included in our model. Currently, we are improving this

work using a different approach. We are embedding the behavior of ScHeTM into

the TM library itself instead of considering it a separate scheduling mechanism.

The goal is that the applications can dynamically select the most appropriate

cluster for execution on-the-fly (i.e., the application can start executing on one

cluster, and switch to a different cluster if it is required). With this approach,

irregular applications can switch from one cluster to another in case the behavior

changes during the execution. In addition we are studying better metrics (such

as transactions executed per watt and per second) to improve the scheduling

mechanism.

APUTM, presented in Chapter 4, opens a promising research line. As ap-

plications start to require more advanced CPU-GPU synchronization methods,

APUTM can be used as baseline for future heterogeneous software, hardware, and

hybrid TM implementations. The hybrid solution is especially relevant, as cur-

rent CPUs support hardware TM, but synchronization with the integrated GPU

has to be done via software. Hybrid solutions can also consider implementing

some of the TM-related operations (such as metadata management) in hardware

to speed up our current software proposal. For instance, GPUs can provide hard-

ware to deal with the transactional SIMT execution as in GPU-LocalTM. Besides

these proposals, future work can explore different TM implementations for the

APUTM interface and improve its performance.

Lastly, in Chapter 5 we present GPU-LocalTM as a hardware TM for GPUs.

Future work can extend our approach to consider transactions sharing both global

memory and local memory addresses. In particular, our proposal can be used as

hardware support for a more flexible and advances hybrid TM solution. Briefly,

transactions within the same work-group can detect their conflict via hardware,

while synchronization with different work-groups (or even a multi-core CPU) can

be done using software techniques.





Apéndice A
Resumen en español

Si observamos las necesidades computacionales de hoy, y tratamos de predecir

las necesidades del mañana, podemos concluir que el procesamiento heterogéneo

estará presente en muchos dispositivos y aplicaciones: desde teléfonos móviles

hasta supercomputadores, pasando por coches y ciudades inteligentes. El motivo

es lógico: algoritmos diferentes y datos de naturaleza diferente encajan mejor

en unos dispositivos de cómputo que en otros. Pongamos como ejemplo una

tecnoloǵıa de vanguardia como son los veh́ıculos inteligentes. En este tipo de

aplicaciones la computación heterogénea no es una opción, sino una obligación.

En este tipo de veh́ıculos se recolectan y analizan imágenes, tarea para la cual

los procesadores gráficos (GPUs) son muy eficientes tanto energéticamente como

computacionalmente. Muchos de estos veh́ıculos deben utilizan algoritmos sencil-

los, pero con grandes requerimientos de tiempo real. Por tanto, las partes cŕıticas

de estos algoritmos pueden implementarse directamente en hardware utilizando

FPGAs. Y, por supuesto, los tradicionales procesadores multinúcleo tienen un

papel fundamental en estos sistemas, tanto organizando el trabajo de otros co-

procesadores o aceleradores como ejecutando tareas en las que ningún otro proce-

sador es más eficiente. No obstante, los procesadores tampoco siguen siendo dis-

positivos homogéneos. Los diferentes núcleos de un procesador pueden compartir

un ISA, pero ofrecer diferentes caracteŕısticas en términos de potencia y consumo

energético que se adapten a las necesidades de cómputo de la aplicación.

Programar este conjunto de dispositivos es una tarea compleja. Para ac-

ceder a estos dispositivos se han creado diferentes tecnoloǵıas. Como ejemplo,

OpenCL [38] proporciona una interfaz que permite comunicar distintos elementos

de cómputo manteniendo la portabilidad (aunque no garantice que el rendimiento

se mantenga de un dispositivo a otro). En este y otros lenguajes similares existen



116 Apéndice A. Resumen en español

mecanismos para sincronizar los distintos dispositivos, aunque son muy básicos.

Habitualmente, esta sincronización se basa en operaciones atómicas, ejecución y

terminación de kernels, barreras y señales. Con estas primitivas de sincronización

los programadores pueden construir otras extructuras más complejas. El objetivo

de los programadores es obtener mejores soluciones para garantizar la exclusión

mutua en el acceso a datos compartidos. Sin embargo, la programación de estos

mecanismos normalmente es tediosa y propensa a fallos. La memoria transac-

cional (TM por sus siglas en inglés) [35] se ha propuesto como un mecanismo

avanzado a la vez que simple para garantizar la exclusión mutua. TM propor-

ciona una interfaz sencilla para definir las secciones de código en las que se debe

garantizar la exclusión mutua (sección cŕıtica). TM emplea un mecanismo de

sincronización optimista capaz de mejorar otros mecanismos de sincronización

basados en cerrojos. La popularidad actual de TM es tal que está siendo includo

como parte de los futuros estándares de C++.

Por su parte, los fabricantes de procesadores están incluyendo TM en sus

CPUs para complementar otras opciones de sincronización más básicas. Intel

proporciona una extension a su ISA llamada TSX para soportar TM [72]. Por

su parte, IBM ha impementado distintos sistemas de TM en sus procesadores

IBM BlueGene/Q [67], System z [37] y Power 8 [3]. En cuanto a las GPUs, aún

no existen productos comerciales, pero TM es un campo de investigación activo

tanto en implementaciones software [12, 70, 36] como hardware [29, 28, 17]. Dada

la importancia que está cobrando TM en distintos tipos de procesadores, es im-

portante comprender cómo TM puede adaptarse a los procesadores heterogéneos.

Desde nuestro punto de vista, es interesante comprobar cómo funcionan las im-

plementaciones software (STM), hardware (HTM) en estos dispositivos y qué

papel puede jugar la planificación en ellos.

A.1 Motivación y cuestiones de investigación

Dada la creciente demanda de poder de procesamiento y de una alta eficiencia

energética, los procesadores heterogéneos están siendo un producto por el que

la industria está apostando muy fuerte. Sin embargo, la complejidad es estos

sistemas pone una carga de trabajo importante en los programadores. Tando

la industria como la comunidad investigadora están tratando de reducir este

esfuerzo de programación proporcionando nuevos modelos de programación y

técnicas de planificación [5, 46, 50]. Dado que TM es una técnica efectiva en

CPUs homogéneas, es importante entender su aplicabilidad en arquitecturas het-

erogéneas.
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El área de investigación de TM en dispositivos heterogéneos es enorme. En

primer lugar, TM puede ser implementado en software, hardware o como una

solución h́ıbrida. Además, las técnicas de planificación de transacciones son un

área de investigación activa [48, 53, 73] que trata de maximizar los beneficions

proporcionados por TM. Una vez seleccionada una de estas áreas de investi-

gación, ésta puede aplicarse a diferentes dispositivos heterogéneos. Por ejemplo,

puede aplicarse a CPUs heterogéneas de la familia big.LITTLE diseñada por

ARM. También puede aplicarse a los procesadores tipo APU, que integran una

CPU multinúcleo y una GPU dentro del mismo chip. Por último, TM puede

implementarse como una caracteŕıstica especial de uno de los aceleradores de un

sistema heterogéneo.

Dada esta intersección entre diferentes áreas de investigación en TM y difer-

entes dipositivos heterogéneos, la principal pregunta que trata de responder esta

tesis es: ¿Podemos aplicar TM en dispositivos heterogéneos? Y, más

concretamente, tratamos de responder a otras preguntas: ¿Puede la planificación

mejorar el rendimiento de TM en una CPU heterogénea? ¿Es posible, con la tec-

noloǵıa actual, implementar TM en un procesador APU? y ¿Es posible realizar

un diseño de TM en una GPU utilizando los recursos hardware disponibles en

ella¿.

Las principales contribuciones de esta tesis, y las publicaciones asociadas, que

tratan de responder a estas preguntas son:

• Un análisis de una popular libreŕıa de TM por software ejecutada sobre

una CPU heterogénea [65, 66] y una propuesta de planificación que tenga

en cuenta las caracteŕısticas de TM [64].

• Una implementación de TM por software para procesadores APU [62]. El

objetivo principal es minimizar la comunicación entre CPU y GPU, y com-

prender las ventajas y desventajas de TM en estos dispositivos.

• Una diseño de TM por hardware para un acelerador de tipo GPU [63, 61,

59, 60, 58]. Más concretamente, tratamos de proporcionar soporte TM en

la memoria tipo scratchpad ofrecida por estos aceleradores.

Esta tesis se organiza de la siguiente forma. En el caṕıtulo 1 1 se describen dis-

tintos tipos de arquitecturas heterogéneas, TM, y se proporciona una motivación

para esta tesis. El caṕıtulo 3 proporciona el análisis de una libreŕıa de TM

por software ejecutandose sobre un procesador heterogéneo y proporciona una

propuesta de planificación de aplicaciones instrumentadas con TM. El caṕıtulo 4

presenta una diseño novedoso de una libreŕıa TM por software para procesadores
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APU. El caṕıtulo 5 describe nuestra propuesta de diseño hardware para propor-

cionar TM en GPUs. Por último, el caṕıtulo 6 presenta las conclusiones de esta

tesis.

A.2 Memoria transaccional en CPUs heterogéneas

En este caṕıtulo analizamos la utilización de memoria transaccional software en

una CPU heterogénea de la familia big.LITTLE y proponemos un mecanismo de

planificación para mejorar su eficiencia energética y rendimiento.

Análisis de las aplicaciones con TM sobre una CPU heterogénea. En

primer lugar, realizamos un estudio del conjunto de aplicaciones STAMP [43] uti-

lizando la libreŕıa de TM por software TinySTM [25, 26]. A diferencia del trabajo

previo [31, 30, 44, 27, 7, 6, 54], que utiliza simuladores para estimar rendimiento

y consumo energético, nuestro análisis se realiza sobre hardware real utilizando

monitores de enerǵıa. El hardware utilizado es el sistema ODROID XU3 [2] que

incorpora un procesador de la familia big.LITTLE de ARM fabricado por Sam-

sung (ver Figura A.1) y sensores de enerǵıa INA231 de Texas Instruments1 El

procesador incorpora, además, una GPU MALI-T628 y 2 Gbytes de memoria

DDR3 de bajo consumo. El sistema operativo instalado sobre el dispositivo es el

Linux odroid 3.10.59+.

Del análisis de estas aplicaciones concluimos que las aplicaciones escalan mejor

en los núcleos orientados al bajo consumo. Todas las aplicaciones presentan

un menor consumo energético en dichos núcleos. En cuanto al rendimiento, la

mayoria de las aplicaciones se ejecutan más rápidamente en los procesadores

de bajo consumo. El principal motivo es que son aplicaciones memory bound

que no solo no aprovechan la potencia de cómputo de los núcleos orientados al

rendimiento, sino que introducen mayor sobrecarga en el subsistema de memo-

ria. Por contra, aquellas aplicaciones con mayores requerimientos de cómputo śı

pueden aprovechar la mayor potencia de los núcleos orientados al rendimiento.

Dicho análisis se ha realizado de forma aislada para cada aplicación. Sin

embargo, en un escenario real, varias aplicaciones pueden ejecutarse de forma

simutánea en el mismo sistema. En este escenario, unas aplicaciones ocuparán

los núcleos little, orientados al bajo consumo, mientras que otras ocuparán los

núcleos big, orientados al rendimiento. Para considerar esta situación, hemos real-

izado un estudio de las aplicaciones cuando ambos tipos de núcleos se encuentran

ocupados simultáneamente, cada uno ejecutando una aplicación. El resultado de

1http://www.ti.com/product/INA231
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Figure A.1: Esquema del procesador big.LITTLE Exynos 5422 de Samsung in-

tegrado en la plataforma ODROID XU3.

este análisis es que ofrecen un rendimiento similar a cuando se ejecutan de forma

aislada, pero con una pequeña degradación.

La tabla A.1 resume el resultado de este análisis. En ella se compara el con-

sumo energético, el tiempo de cómputo y el número de transacciones abortadas

en ambos tipos de núcleos. Señalamos que, si las diferencias en los resultados

son menores al 10%, indicamos que ambos tipos de núcleos son similares. En

ella observamos que los núcleos little siempre son energéticamente más eficientes

que los big. En cuanto a tiempo de cómputo, únicamente la aplicación labyrinth,

que tiene mayor carga computacional, es capaz de aprovechar la potencia de los

núcleos big. El número de transacciones que abortan es un factor que depende

de cada aplicación y de cada tipo de núcleo.

Tiempo de ejecución Consumo energético Transacciones abortadas

Intruder little little similar

Kmeans little little little

Labyrinth big little similar

Ssca2 similar little big

Vacation little little similar

Table A.1: Resumen del rendimiento, consumo energético y número de transac-

ciones abortadas de cada aplicación. Se indica qué tipo de núcleos es el más

eficiente, o similar si las diferencias son menores al 10%.
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Planificación de aplicaciones con TM sobre una CPU heterogénea.

Dado el análisis previo, se ha diseñado un planificador llamado ScHeTM (Scheduling

- Heterogeneous CPUs - TM applications) para CPUs heterogéneas que tiene

en cuenta los resultados obtenidos en tiempo de ejecución, consumo energético y

número de transacciones abortadas para realizar la planificación.

App. 0
),,( AETS little

),,( AETS big

App. N
),,( AETS little

),,( AETS big

…

Design
Phase

Scheduling
Phase

App. 2 App. 0 App. 1…

Big 
Cluster

Little 
Cluster

App. 3

Task queue

Scheduling Running

App. 1

),,( AETS little),,( AETS big >

Execute

Enqueue

Dequeue

A B

1

3

4 2

Cluster state:

Figure A.2: Diagrama del planificador ScHeTM.

La figura A.2 muestra el diseño de ScHeTM. Este diseño se compone de 2

fases. En una primera fase (A©: design phase), las aplicaciones son analizadas,

calculando una función de idoneidad Sc(T,E,A), siendo los parámetros T , E, y A

medidas del tiempo de cómputo, consumo de enerǵıa y transacciones abortadas,

y c se refiere bien al cluster big o al cluster little. Por tanto, para cada aplicación,

ScHeTM debe calcular las funciones Sbig(T,E,A) e Slittle(T,E,A). La función

de idoneidad, acotada entre 0 y 1, indica cómo de bien se adapta la aplicación a

cada uno de los clusters. Valores cercanos al 0 indican que la aplicación tendrá

un mal comportamiento en dicho cluster, mientras que valores cercanos al 1

indican que la aplicación se adapta mejor a dicho cluster. Para el cálculo de estas

funciones, las aplicaciones deben estar debidamente instrumentadas, pero dicha

instrumentación puede omitirse para pasar a la siguiente fase.

Una vez calculadas estas funciones, ScHeTM está listo para recibir aplica-

ciones (por simplicidad, asumimos que las aplicaciones vienen proporcionadas

en una cola) y comienza la segunda fase ( B©: scheduling phase). En esta fase,

un cluster se puede encontrar en 2 estados diferentes: o bien planificando una

aplicación (si está ocioso), o bien ejecutando una aplicación que le haya sido asig-

nada. La segunda fase se ejecuta cada vez que un cluster queda ocioso y existen

aplicaciones pendientes de planificar. En nuestro ejemplo estamos suponiendo el

cluster big ocupado ejecutando una aplicación y, por tanto, no necesita planificar
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ninguna, y el cluster little ocioso. En este caso, es el cluster little el que recibe

una aplicación de la cola de aplicaciones 1©. A continuación se verifica si dicho

cluster es idóneo para ejecutar la aplicación. Para ello, se comparan los valores

Sbig(T,E,A) e Slittle(T,E,A) 2©. Si esta función tiene un valor mayor en el

cluster que se encuentra ocioso, entonces la aplicación se planifica a ejecutar en

dicho cluster. En nuestro ejemplo, si Sbig(T,E,A) ≤ Slittle(T,E,A) (esto es, la

condición 2© es falsa), la aplicación pasa a ejecución en el cluster little 3©. Por

el contrario, si esta función tiene un valor menor en el cluster ocioso, entonces

la ejecución de la aplicación se pospone. En nuestra implementación, la apli-

cación es devuelta a la cola 4©. En ese caso, el cluster ocioso recibe una nueva

aplicación a ejecutar, repitiendo este proceso. Para evitar que el cluster quede

ocioso demasiado tiempo, cada vez una aplicación es rechazada se relajan las

condiciones para aceptar la ejecución de nuevas aplicaciones. Esto se consigue

incrementando la función Sc(T,E,A) del cluster ocioso para permitirle ser más

cercana a Sc(T,E,A) del otro cluster.

En nuestras pruebas, y dependiendo de su configuración, ScHeTM consigue

reducir en hasta un 40% el tiempo de cómputo y un 15% la enerǵıa necesaria para

ejecutar un conjuto de aplicaciones del benchmark suite STAMP en comparación

con un planificador ávido. Además, ScHeTM también logra reducir el número

de transacciones que abortan ya que planifica las aplicaciones en el cluster más

adecuado para su ejecución.

A.3 Memoria transaccional en procesadores APU

En los procesadores multinúcleo, TM ha aparecido como una alternativa prom-

etedora a las técnicas basadas en cerrojos para garantizar exclusión mutua y está

siendo incluida como parte de procesadores comerciales [72, 67, 37, 3]. De igual

forma, dado que las GPUs se están convirtiendo en el acelerador más popular de

la actualidad, los fabricantes están integrándolas dentro del mismo chip, creando

las llamadas APUs (Accelerated Processing Units). Sin embargo, TM y las APUs

son todav́ıa mundos separados.

En este caṕıtulo proponemos una libreŕıa de TM software enfocada a su uso en

procesadores APU. El objetivo es que las transacciones puedan ejecutarse tanto

en CPU como en GPU simultáneamente y que se permita la sincronización en

forma de exclusión mutua entre ambos dispositivos. Nuestra propuesta, llamada

APUTM, se enfoca en minimizar la comunicación entre la CPU y la GPU de los

metadatos requeridos para manejar TM.
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APUTM se basa en NOrec [20] y GPU-STM [70]. En nuestra implementación,

todas las transacciones (tanto de CPU como de GPU) comparten un reloj global.

Este reloj es registrado por cada transacción al inicio y es actualizado cada vez

que una transacción termina con éxito. De esta forma, las transacciones pueden

verificar rápidamente si han tenido conflictos con otras. Si el reloj tiene el mismo

valor que el registrado al inicio de la transacción, ésta puede actualizar la memoria

directamente sin señalar ningún conflicto. En caso de que el reloj haya cambi-

ado, se requieren otras verificaciones. Para ello, cada transacción de CPU y GPU

almacena, de forma privada, el conjunto de valores leidos de memoria y los val-

ores especulativos a escribir en ella. En caso de que los valores leidos no hayan

sido alterados, la transacción puede hacer definitivos en memoria sus valores es-

peculativos. En otro caso, la transacción debe reiniciar descartando los valores

especulativos. Puesto que dentro de la GPU varias transacciones pueden com-

partir el mismo contador de programa (ejecución en lockstep), detectar conflictos

entre dichas transacciones en un proceso complicado. Para ello se ha consider-

ado una estructura que almacena los datos modificados por un wavefront (hilos

que se ejecutan en lockstep). Comprobando esta estructura en paralelo, dichas

transacciones pueden verificar si tienen conflictos con alguna otra, y detener su

ejecución antes de comprobar conflictos con otros wavefronts y con las transac-

ciones en CPU. La figura A.3 muestra los metadatos necesarios para implementar

la funcionalidad previamente descrita. Remitimos al lector a las figuras 4.2 y 4.3

del caṕıtulo 4 para verificar el pseudocódigo que describe la funcionalidad previ-

amente expuesta.

1 // Global metadata

2 atomic_int * gclock;

1 // Private metadata

2 struct pr_descr{

3 int snapshot;

4 int status; // RUNNING or ABORTED

5 <address ,value > * reads;

6 <address ,value > * writes;

7 };

1 // Wavefront metadata

2 struct wf_descr{

3 atomic_long * commit_mask;

4 atomic_int * leader_id;

5 <address ,owner > * wf_writes;

6 atomic_int * next_write;

7 };

Figure A.3: Metadatos globales, privados y de wavefront necesarios para imple-

mentar APUTM.

APUTM ha sido diseñado para respetar la propiedad de opacidad [32] verifi-

cando que la memoria es consistente con la transacción en cada acceso. Además,

se ha considerado un modelo en el que los conjuntos de lectura y escritura pri-

vados a cada transacción son unificados. De esta forma 1) se ahorra espacio de
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almacenamiento de metadatos, 2) se acelera la detección de conflictos en transac-

ciones que realizan operaciones de lectura-modificación-escritura sobre la misma

posición de memoria, a cambio de 3) perder precisión en la detección de conflictos

de transacciones de solo lectura o que modifican posiciones diferentes a las leidas.

Para la evaluación de APUTM se ha diseñado una carga de trabajo sintética

que estresa distintas caracteŕısticas del sistema con el fin de caracterizarlo. Además,

se han diseñado 3 microbenchmarks para evaluar nuestra propuesta en escenarios

más realistas.

De nuestras pruebas se extraen varias conclusiones. En primer lugar, la es-

calabilidad en CPU es mayor dado que aprovecha mejor las detección rápida

de conflictos utilizando el reloj global Además, la ejecución lockstep en la GPU

no favorece al modelo transaccional ya que un conflicto por parte de una única

transaccion afecta al rendimiento de todo un wavefront. En segundo lugar, con

un reparto de carga dinámico, la CPU tiende a ejecutar más transacciones siem-

pre que el reloj global esté en uso. En caso de omitir su utilización, el reparto

de carga dinámico asigna más transacciones a la GPU. En tercer lugar, la mayor

parte de los conflictos ocurren en la GPU debido 1) a la ejecución en lockstep que

no permite desacoplar la ejecución de transacciones que tienen conflicto y 2) al

mayor número de transacciones simultáneas en ejecución. Por último, APUTM

consigue mejorar el rendimiento de la ejecución secuencial en aquellos escenarios

con suficiente carga de trabajo para amortizar la sobrecarga introducida por la

instrumentación software de la transacción.

A.4 Memoria transaccional en memoria local de

GPU

Los procesadores gráficos (GPUs) han sido adoptados como aceleradores muy

populares en aplicaciones que presentan un gran paralelismo de datos gracias a

su modelo de ejecución Single Instruction - Multiple Thread (SIMT), su jerarqúıa

de memoria y la disponibilidad de cientos o miles de núcleos de ejecución. Tec-

noloǵıas como CUDA [47] y OpenCL [38] permiten el acceso a este hardware

para el cómputo de propósito general. En este paper utilizamos la nomenclatura

de OpenCL. Una GPU está compuesta de varios núcleos SIMT llamados com-

pute units (CU). Los hilos de ejecución se denominan work-items y se agrupan

en work-groups. Un programa a ejecutar se denomina kernel, y está compuesto

por varios work-groups. En número de work-groups y work-items es definido

por el programador. Un work-group es siempre planificado a una misma CU, y
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una CU puede ejecutar varios work-groups. Los recursos hardware de la CU son

repartidos estáticamente entre todos los work-groups, propiciando cambios de

contexto muy ligeros. Dentro de la CU, los work-items de un mismo work-group

son agrupados en wavefronts de tamaño fijo. Dentro de la CU, el wavefront es la

unidad planificable. Una CU posee dos espacios de memoria direccionables por

los work-items: memoria global y memoria local. La memoria global es accedida

por todos los work-items que se encuentran en ejecución. Esta memoria, de gran

tamaño, tiene una gran latencia (en parte aliviada por una jerarqúıa de caches

no coherentes) y se puede utilizar para comunicar work-items de work-groups

planificados en distintas CUs, además de ser la que comunica la GPU con la

CPU anfitrión. La memoria local tiene una latencia y tamaño menores. Existe

un espacio de memoria local en cada una de las CU. Los work-items de un work-

group planificado en una CU tienen acceso a esta memoria de forma compartida.

Debido a su baja latencia, la memoria local es utilizada como scratchpad por

los work-items de un mismo work-group. Work-items pertenecientes a diferentes

work-groups planificados sobre la misma CU no comparten la memoria local de

forma lógica (esto es, no pueden utilizarla para comunicarse entre ellos), pero

śı de forma f́ısica. Además de estos dos espacios direccionables, cada work-item

posee su propio espacio de memoria privado, t́ıpicamente mapeado en registros.

En general, las aplicaciones paralelas con múltiples hilos de ejecución deben

utilizar mecanismos expĺıcitos para la sincronización. Esta sincronización puede

deberse a la necesidad de establecer secciones cŕıticas en las que la exclusión

mútua esté garantizada. Sin embargo, en el modelo de ejecución SIMT esto

supone un reto mayor que en otras arquitecturas. Una solución t́ıpica es seri-

alizar la ejecución. En este caso, sólo un hilo ejecuta la sección cŕıtica de forma

secuencial, limitando el paralelismo de la aplicación. Otra solución consiste en

delegar la ejecución de la sección cŕıtica a la CPU anfitrión. Sin embargo, si los

datos protegidos por la sección cŕıtica se encuentran en memoria local, habŕıa

que copiarlos a memoria global, y luego al espacio direccionable por la CPU, lo

que requiere una gran cantidad de ciclos de reloj. Otra posible solución consiste

en implementar un mecanismo de sincronización basado en cerrojos utilizando

operaciones atómicas. Implementar cerrojos de grano grueso es una solución

fácilmente adoptable por los programadores. Sin embargo, el acceso a la sección

cŕıtica se hace en serie, perjudicando el rendimiento. Los cerrojos de grano fino,

a priori, pueden ser una solución más eficiente. Sin embargo, es más dif́ıcil de

implementar y propenso a deadlocks y livelocks.

La memoria transaccional (TM) [35] se ha propuesto como una alternativa

prometedora al uso de cerrojos. En las arquitecturas GPU están empezando a

aparecer los primeros trabajos de TM, tanto software [12, 70, 36, 55] como hard-
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Figure A.4: Recursos de memoria alojados por GPU-LocalTM.

ware [29, 28, 17]. En este caṕıtulo de la tesis nos centramos en las soluciones

hardware. Los trabajos de investigación en TM por hardware para arquitec-

turas GPU únicamente consideran el espacio de memoria global. Además, estas

propuestas requieren cambios significativos en el hardware y organización de la

GPU, motivos por los que los fabricantes pueden estar menos motivados para su

implantación. Además, el espacio de memoria local no ha sido tenido en consid-

eración. Este espacio de memoria es importante para los programadores, puesto

que es utilizado para mejorar de forma significativa el rendimiento de sus aplica-

ciones. Por estos motivos, en esta tesis proponemos un soporte TM hardware en

GPU que sea ligero, eficiente, y que cubra el espacio de memoria local.

Nuestra propuesta, GPU-LocalTM, extiende el ISA de la arquitectura con 2

nuevas instrucciones para marcar el comienzo y final de la transacción: TX Begin

y TX Commit. Estas instrucciones pueden ser utilizadas por los compiladores

para proporcionar sentencias de más alto nivel en lenguajes como OpenCL. Den-

tro de una transacción, todas las operaciones sobre memoria local gestionadas por

la unidad de acceso a memoria son consideradas transaccionales (esto es, no ex-

isten unas instrucciones de lectura y escritura expĺıcitas TX Read y TX Write).

Además, nuestra propuesta no requiere la inclusión de elementos de memoria

nuevos para almacenar los metadatos de la transacción, sino que aprovecha los

ya existentes en las CU de la GPU. La figura A.4 muestra los elementos de la CU

que se ven afectados por la implementación de GPU-LocalTM. Para implementar

GPU-LocalTM se requiren cambios en el modelo de ejecución SIMT, y se necesita

implementar mecanismos de detección de conflictos y gestión de versiones.
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Modelo de ejecución SIMT transaccional. El modelo de ejecución SIMT

presente en las GPU se basa en el uso de máscaras de ejecución. En nuestra

arquitectura de base (AMD Southern Islands), estas máscaras se llaman EXEC y

VCC. Cada wavefront mantiene una copia privada de estas máscaras, que tienen

un bit por cada work-item en el wavefront. Estas máscaras son de 64 bits puesto

que un wavefront contine 64 work-items. La máscara EXEC indica qué work-

items dentro del wavefront están activos, mientras que VCC funciona como un

flag Z, indicando el resultado de las instrucciones aritméticas y de comparación.

Con estas máscaras, los compiladores implementan bucles, condiciones y saltos

utilizando un mecanismo de predicación.

En nuestra implementación de TM proponemos el uso de una nueva máscara

Transaction Conflict Mask (TCM) por wavefront, mapeada en un registro escalar,

que indica qué work-item ha presentado un conflicto en los accesos a memoria.

La máscara TCM, de 64 bits, es inicializada a 0 al comienzo de la transacción.

En un acceso a memoria, si se detecta un conflicto, se pone a 1 el bit de TCM

correspondiente al work-item que ha detectado el conflicto (este mecanismo se

conoce como requester loses). Si, al finalizar la transacción, TCM está a 0, sig-

nifica que no ha habido ningún conflicto y, por tanto, la transacción se da por

correcta y finalizada. Un 1 en alguno de los bits indica un conflicto. En este

caso, la instrucción TX Commit copia TCM en EXEC y provoca un salto a la

instrucción TX Begin. De esta forma, se reinicia la transacción sólo para aquel-

los work-items que presentaron conflictos. Este mecanismo no garantiza progreso

de la transacción: es posible que la instrucción TX Commit deba reiniciar la

transacción varias veces y se encuentre ante un bucle de reintentos infinitos de-

bido a un conflicto en los accesos por parte de 2 o más work-items. Esto se

detecta al comprobar que dos veces consecutivas se ha reiniciado la transacción

sin ningún cambio en TCM, indicando que no ha habido progreso desde el último

reintento. Una vez detectada esta situación, proponemos una solución que fun-

ciona a 2 niveles. La primera medida es activar un mecanismo que hemos llamado

wavefront serialization (WfS). En este caso, tras detectar la situación de no pro-

greso, se reinicia la transacción ejecutando únicamente 1 work-item de todo el

wavefront. Esto se logra cambiando uno de los bits de TCM de 1 a 0 al comienzo

del reintento. De esta forma, si el conflicto ocurŕıa entre work-items del mismo

wavefront, WfS serializa esta ejecución y el conflicto desaparece. No obstante,

es posible que el origen del conflicto sea un wavefront diferente. En este caso, si

WfS no logra garantizar el progreso, se activa el modo Work-group serialization

(WgS). Este modo funciona igual que WfS para el wavefront actual (es decir,

permite la ejecución de un único work-item). Sin embargo, las transacciones en

el resto de wavefronts del mismo work-group son reiniciadas y retenidas hasta que
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Figure A.5: Diagrama de estado mostrando los modos de ejecución transaccional

y de serialización. TX significa transacción, mientras que TCMprev representa

el contenido de TCM en el último reintendo de ejecutar una transacción.

el work-item ejecutándose termina su transacción. De esta forma se garantiza el

progreso, ya que no es posible que un único work-item ejecutandose dentro del

work-group detecte conflicto alguno. La figura A.5 muestra un diagrama de tran-

sición entre los diferentes modos de serialización, explicando el proceso descrito

previamente.

Además de estos modos de serialización, se han propuesto 2 optimizaciones [59].

La primera de ellas es un mecanismo de selección que permite escoger el work-item

a ejecutar en WfS. Dependiendo del patrón de acceso a memoria, esta selección

puede tener impacto en el rendimiento de la aplicación. La segunda optimización

consiste en analizar el patrón de acceso a memoria de las transacciones que han

tenido un conflicto. Este análisis permite que durante WfS puedan ejecutarse en

paralelo varias transacciones que previamente se ha comprobado que no generan

conflicto. Estas optimizaciones permiten mejorar el rendimiento de los mecanis-

mos de serialización en hasta un 30%.

Gestión de versiones. La gestión de versiones se encarga de mantener los

valores especulativos de la transacción, y hacerlos definitivos en caso de que la

transacción termine con éxito. En el caso de los valores de memoria local, se ha

reservado un área llamada shadow memory para realizar copias de seguridad de

los valores en memoria, mientras que los valores especulativos se almacenan en su

ubicación final (esto se conoce como gestión de versiones eager). En la figura A.4

se observa el área de shadow memory reservada en cada banco de memoria lo-

cal. En ella se almacena, por cada palabra de memoria local, una palabra para

salvaguardar temporalmente el valor no especulativo y un byte que contiene el

identificador del work-item que ha accedido a dicha palabra. Nótese que este



128 Apéndice A. Resumen en español

espacio se ha reservado de memoria local existente, por lo que no es necesario

añadir nuevos elementos de almacenamiento para este propósito. No obstante,

esto limita la cantidad de espacio en memoria local que los programadores tienen

disponible. De la misma forma que las variables de memoria local, el estado

de los registros debe ser salvaguardado, y restaurado en caso de conflicto. Para

ello se propone que los registros se agrupen por pares y que, por cada registro

utilizado, exista un shadow register para mantener el último valor consistente de

dicho registro. Cabe señalar que esta nueva disposición de memoria local y reg-

istros únicamente afecta a aquellos programas que utilizan GPU-LocalTM. Los

programas que no necesitan de TM para su ejecución no se ven afectados por

esta configuración.

Detección de conflictos. La detección de conflictos se encarga de compro-

bar si dos o más transacciones acceden a la misma posición de memoria y, en ese

caso, señalar un conflicto para proceder al reinicio de la transacción. En nuestra

propuesta, los conflictos se detectan en el momento de acceso a memoria, y justo

antes de servir dicho acceso (detección de conflictos eager). En GPU-LocalTM

se han propuesto 4 mecanismos distintos de detección de conflicto.

• DCD: Directory-based Conflict Detection. Señala un conflicto si el work-

item accede a una posición previamente accedida por otro. Esta información

se encuentra en shadow memory y es establecida cuando un work-item ac-

cede a memoria sin conflicto. Nótese que dos accesos de lectura a la misma

posición resulta en un (falso) conflicto, ya que no se almacena información

suficiente para distinguir entre accesos de lectura y escritura.

• SMDCD: Shared-Modified Directory-based Conflict Detection. Este mecan-

ismo extiende a DCD incluyendo bits S y M. El bit M indica si el acceso

a memoria es de escritura, y el bit S indica si varias transacciones han

leido la posición. Utilizando ambos bit se permite el acceso a la misma

palabra de memoria siempre que los accesos sean únicamente de lecturas,

proporcionando un método más preciso que DCD.

• pRWsig: private Read-Write signatures. Este método extiende a DCD.

Además de en shadow memory, los accesos a memoria se registran en sig-

naturas [10]. El objetivo es utilizar la información almacenada en dichas

signaturas para acelerar la detección de conflictos, ya que su evaluación es

más rápida que el acceso a shadow memory. En este caso, cada work-item

mantiene una signatura por banco de memoria en el que registra sus ac-

cesos a memoria, tanto de lectura como de escritura. Antes de acceder a

memoria, se evalúan las signaturas de todos los work-items en ese mismo
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banco de memoria. Un positivo en una asignatura de un work-item distinto

al que accede a memoria se trata como un conflicto. Este método es más

rápido, pero menos preciso, que DCD y no permite distinguir entre accesos

de lectura y escritura.

• sWOsig: shared Write-Only signatures. Es un método que extiende a

pRWsig (esto es, coexisten pRWsig y sWOsig). En este método se utilizan

unas signaturas para registrar los accesos de escritura de un wavefront al

completo. Se utiliza para diferenciar entre accesos de lectura y escritura

durante la detección de conflictos. Un acceso que causa un positivo en

pRWsig de un work-item distinto al actual, pero que no causa un positivo

en sWOsig, es un acceso del tipo RAR (read-after-read) y, por tanto, per-

mitido para la transacción. En este caso, los accesos de escritura con éxito

deben registrarse tanto en la pRWsig privada al work-item que accede a

memoria como a la sWOsig de su wavefront.

GPU-LocalTM se ha evaluado utilizando el simulador de GPUs Multi2Sim 4.2

simulation framework [57] que incluye un modelo de GPU de la familia Southern

Islands de AMD. La tabla A.2 contiene un resumen de las caracteŕısticas de las

CU de dicha familia y los recursos necesarios para la implementación de GPU-

LocalTM. Nótese que la gestión de versiones y detección de conflictos incrementan

la latencia de los accesos a memoria local.

Caracteŕıstica Valor GPU-LocalTM

Unidades de cómputo (CU) 32 -

Registros vectoriales por CU 65536 2276 (2504) (∼3.6%)

Registros escalares por CU 2048 136 (∼7%)

Tamaño de memoria local 65536 bytes 37446 bytes (∼57%)

Bancos de memoria local 32 -

Latencia de memoria local 2 ciclos 5 ciclos

Table A.2: Caracteŕısticas más relevantes de la familia de GPUs Southern Islands

de AMD según su implementación en el simulador Multi2Sim 4.2, y los recursos

necesarios para implementar GPU-LocalTM.

En nuestra evaluación, utilizando un total de 8 aplicaciones comprobamos que

GPU-LocalTM mejora el rendimiento tanto de cerrojos de grano grueso como de

implementaciones de grano fino (con cerrojos de grano fino o atómicos) en esce-

narios de baja contención. Este tipo de escenarios es el más común en GPUs dado

que es muy cercano a programas con paralelismo de datos. En escenarios de mayor

contención, y dado que GPU-LocalTM es completamente configurable, el compi-
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lador o el programador puede decidir qué implementación de los mecanismos de

detección de conflicto es el más adecuado o bien realizar una transformación de

código e implementar una solución con cerrojos de grano grueso.

A.5 Conclusiones

En esta tesis se ha abordado la aplicación de TM sobre dispositivos heterogéneos

desde diferentes puntos de vista.

En el caṕıtulo 3 se analiza el comportamiento de una libreŕıa de software

TM en una CPU heterogénea. El resultado de dicho análisis se utiliza para

diseñar un planificador para procesadores heterogéneos que tenga en cuenta las

caracteŕısticas de TM. Como resultado, en nuestra evaluación se ha conseguido

disminuir el tiempo de cómputo en un 40% y reducir el consumo de enerǵıa un

15% respecto a un planificador ávido. Las publicaciones relacionadas con este

caṕıtulo son las siguientes:

Energy Efficiency of Software Transactional Memory in a Heterogeneous

Architecture. Emilio Villegas, Alejandro Villegas, Angeles Navarro, Rafael

Asenjo, Yash Ukidave, and Oscar Plata.

In 8th Workshop on the Theory of Transactional Memory (WTTM 2016

co-located with PODC 2016).

Chicago (IL), USA, July 2016

Evaluación del Consumo Energético de la Memoria Transaccional Software

en Procesadores Heterogéneos. Emilio Villegas, Alejandro Villegas, Angeles

Navarro, Rafael Asenjo and Oscar Plata.

In XXVII Jornadas de Paralelismo, JP’16.

Salamanca, Spain, September 2016

Planificación thread-to-cluster de aplicaciones que utilizan memoria transac-

cional sobre un procesador heterogéneo. Alejandro Villegas, Ernesto Rittwa-

gen, Angeles Navarro, Rafael Asenjo and Oscar Plata.

In XXVIII Jornadas de Paralelismo, JP’17.

Málaga, Spain, September 2017
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El caṕıtulo 4 presenta APUTM, una implementación TM software para proce-

sadores del tipo APU. APUTM permite la ejecución de transacciones tanto en

GPU como en CPU utilizando la misma interfaz de programación, pero propor-

cionando un mecanismo ligero para la sincronización entre ambos dispositivos

y utilizando implementaciones adaptadas a cada uno de ellos. Los resultados

obtenidos en este caṕıtulo han sido publicados en:

Towards a Software Transactional Memory for heterogeneous CPU-GPU pro-

cessors. Alejandro Villegas, Angeles Navarro, Rafael Asenjo and Oscar Plata.

In 3rd IEEE International Workshop on Reengineering for Parallelism in

Heterogeneous Parallel Platforms (Repara 2017, part of ParCo2017).

Bologna, Italy, September 2017

Por último, el caṕıtulo 5 presenta un diseño de TM por hardware, enfocado

a la memoria local de GPU. Las principales novedades de este diseño son la

inclusión de un mecanismo de serialización para garantizar el progreso de las

transacciones sin intervención del programador, la propuesta de un sistema con-

figurable que reutiliza los recursos de memoria disponible, y la implementación

de varios métodos de detección de conflictos permitiendo la selección del mejor

adaptado a la carga de trabajo. Las publicaciones asociadas a este caṕıtulo son:

Hardware support for Local Memory Transactions on GPU Architectures.

Alejandro Villegas, Angeles Navarro, Rafael Asenjo, Oscar Plata, Rafael Ubal

and David Kaeli.

In 10th ACM SIGPLAN Workshop on Transactional Computing (TRANS-

ACT 2015, part of FCRC 2015).

Portland (OR), USA. June 2015

Memoria Transaccional Hardware en Memoria Local de GPU. Alejandro Vil-

legas, Angeles Navarro, Rafael Asenjo and Oscar Plata.

In XXVI Jornadas de Paralelismo, JP’15.

Córdoba, Spain, September 2015

Improvements in Hardware Transactional Memory for GPU Architectures.

Alejandro Villegas, Rafael Asenjo, Angeles Navarro and Oscar Plata.
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In 19th Workshop on Compilers for Parallel Computing, (CPC’16).

Valladolid, Spain, July 2016

Hardware support for scratchpad memory transactions on GPU architec-
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