Accurate Shape Analysis for Recursive Data Structures

F. Corbera
R. Asenjo
E.L. Zapata
August 2000
Technical Report No: UMA-DAC-00/33
Published in:

13th Int'l. Workshop on Languages and Compilers for Parallel Computing (LCPC’2000)
IBM T.J. Watson Res. Ctr., Yorktown Heights, New York, NY
August 10-12, 2000

University of Malaga

Department of Computer Architecture
C. Tecnologico = PO Box 4114 « E-29080 Malaga = Spain

Accurate shape analysis for recursive data structures*

F. Corbera, R. Asenjo, and E. Zapata

Dept. Computer Architecture, University of Malaga, Spain
{corbera,asenjo,ezapata}@ac.uma.es

Abstract. Automatic parallelization of codes which use dynamic data structures
is still a challenge. One of the first steps in such parallelization is the automatic
detection of the dynamic data structure used in the code. In this paper we describe the
framework and the compiler we have implemented to capture complex data structures
generated, traversed, and modified in C codes. Our method assigns a Reduced Set
of Reference Shape Graphs (RSRSG) to each sentence to approximate the shape of
the data structure after the execution of such a sentence. With the properties and
operations that define the behavior of our RSRSG, the method can accurately detect
complex recursive data structures such as a doubly linked list of pointers to trees
where the leaves point to additional lists. Other experiments are carried out with real
codes to validate the capabilities of our compiler.

1 Introduction

For complex and time-consuming applications, parallel programming is a must. Automatic
parallelizing compilers are designed with the aim of dramatically reducing the time needed
to develop a parallel program by generating a parallel version from a sequential code without
special annotations. There are several well-known research groups involved in the develop-
ment and improvement of parallel compilers, such as Polaris, PFA, Parafrase, SUIF, etc. We
have noted that the detection step of current parallelizing compilers does a pretty good job
when dealing with regular or numeric codes. However, they cannot manage irregular codes
or symbolic ones, which are mainly based on complex data structures which use pointers in
many cases. Actually, data dependence analysis is quite well known for array-based codes
even when complex array access functions are present [6]. On the other hand, much less
work has been done to successfully determine the data dependencies of code sections using
dynamic data structures based on pointers. This is mainly because of the huge complexity
implicit in this problem. Nevertheless, this is a problem that cannot be avoided due to the
increasing use of dynamic structures and memory pointer references.

With this motivation, our goal is to propose and implement new techniques that can be
included in compilers to allow the automatic parallelization of real codes based on dynamic
data structures. From this goal we have selected the shape analysis subproblem, which
aims at estimating at compile time the shape the data will take at run time. Given this
information, a subsequent analysis would detect whether or not certain sections of the code
can be parallelized because they access independent data regions.

There are several ways this problem can be approached. The simplest strategy consists
in asking the programmer to annotate the sequential code, so helping the compiler with
this extra information [8] following a semiautomatic approach. On the other hand, user
interaction is avoided in many studies, such as the ones based on “access paths” or on
graphs. For example, the method proposed by Matsumoto et al. [10] uses “normalized” path
expressions to maintain the “alias-pair” between pointers. However, we discarded this set

* This work was supported by the Ministry of Education and Science (CICYT) of Spain (TIC96-
1125-C03), by the European Union (BRITE-EURAM III BE95-1564), by APART: Automatic
Performance Analysis: Resources and Tools, EU Esprit IV Working Group No. 29488

of methods as they cannot handle cyclic structures such as double linked lists or trees with
pointers from leaves to parents.

On the other hand, in the graph-based methods the “storage chunks” are represented by
nodes, and edges are used to represent references between them. For example, Chase et al.
[3] define the “Storage Shape Graph” which contains one node for each variable and one for
each allocation site in the program. With this abstraction their method can detect a single
linked list even when new items are appended to the end of the list. However, this method
is not powerful enough to detect insertion of elements in the middle of the list. Plevyak
et al. [11] try to solve Chase’s problem by extending the “Storage Shape Graphs” to the
“Abstract Storage Graph” (ASG). However, the improvements in accuracy are paid for with
too much complexity in comparisons and compression operations. On the other hand, the
method presented by Sagiv et al. [12] is based on what they call “Static Shape Graphs”
(SSG). The main difference between this method and the previous ones lie in the node-name
scheme they use for the nodes, where all the memory locations not directly pointed to by a
pointer variable are fused into a single summary node.

In a previous work [4], we combined and extended Plevyak and Sagiv’s methods allow-
ing more than a summary node per graph among other extensions. However, we keep the
restriction of one graph per sentence in the code. This way, since each sentence of the code
can be reached after following several paths in the control flow, the associated graph should
approximate all the possible memory configurations arising after the execution of this sen-
tence. This restriction leads to memory and time saving, but at the same time it significantly
reduces the accuracy of the method. In this work, we have changed our previous direction
by selecting a tradeoff solution: we consider several graphs with more than a summary node,
while fulfilling some rules to avoid an explosion in the number of graphs and nodes in each
graph.

Among the first relevant studies which allowed several graphs were those developed
by Jones et al. [9] and Horwitz et al. [7]. These approaches are based on a “k-limited”
approximation in which all nodes beyond a k selectors path are joined in a summary node.
The main drawback to these methods is that the node analysis beyond the “k-limit” is very
inexact and therefore they are unable to capture complex data structures. A more recent
work that also allows several graphs and summary nodes is the one presented by Sagiv
et al.[13]. They propose a parametric framework based on a 3-valued logic. To describe
the memory configuration they use 3-valued structures defined by several predicates. These
predicates determine the accuracy of the method. As far as we know the currently proposed
predicates do not suffice to deal with the complex data structures that we handle in this
paper.

With this in mind, our proposal is based on approximating all the possible memory con-
figurations that can arise after the execution of a sentence by a set of graphs: the Reduced
Set of Reference Shape Graphs (RSRSG). We see that each RSRSG is a collection of Refer-
ence Shape Graphs (RSG) each one containing several non-compatible nodes. Finally, each
node represents one or several memory locations. Compatible nodes are “summarized” into
a single one. Two nodes are compatible if they share the same reference properties. With this
framework we can achieve accurate results without excessive compilation time. Besides this,
we cover situations that were previously unsolved, such as detection of complex structures
(lists of trees, lists of lists, etc.) and structure permutation, as we will see in this article.

The rest of the paper is organized as follows. Section 2 briefly describes the whole frame-
work, introducing the key ideas of the method and presenting the data structure example
that will help in understanding node properties and operations with graphs. These prop-
erties are described in Sect. 3 where we show how the RSG can accurately approximate a
memory configuration and when two RSGs are compatible. The analysis method have been
implemented in a compiler which is experimentally validated, in Sect. 4, by analyzing several

C codes based on complex data structures. Finally, we summarize the main contributions
and future work in Sect. 5.

2 Method overview

Basically, our method is based on approximating all possible memory configurations that
can appear after the execution of a sentence in the code. Note that due to the control flow of
the program, a sentence could be reached by following several paths in the control flow. Each
“control path” has an associated memory configuration which is modified by each sentence
in the path. Therefore, a single sentence in the code modifies all the memory configurations
associated with all the control paths reaching this sentence. Each memory configuration is
approximated by a graph we call Reference Shape Graphs (RSG). So, taking all this into
account, we conclude that each sentence in the code will have a set of RSGs associated with
it. This set of RSGs will describe the shape of the data structure after the execution of this
sentence.

The calculation of this set of graphs is carried out by the symbolic execution of the
program over the graphs. In this way, each program sentence transforms the graphs to reflect
the changes in the memory configurations derived from the sentence execution. The RSGs
are graphs in which nodes represent memory locations which have similar reference patterns.
Therefore, a single node can safely and accurately represents several memory locations (if
they are similarly referenced) without losing their essential characteristics.

To determine whether or not two memory locations should be represented by a single
node, each one is annotated with a set of properties. Now, two different memory locations
will be “summarized” in a single node if they fulfill the same properties. Note that the node
inherits the properties of the memory locations represented by this node. Besides this, two
nodes can be also summarized if they represent “summarizable” memory locations. This
way, a possibly unlimited memory configuration can be represented by a limited size RSG,
because the number of different nodes is limited by the number of properties of each node.
These properties are related to the reference pattern used to access the memory locations
represented by the node. Hence the name Reference Shape Graph.

As we have said, all possible memory configurations which may arise after the execution
of a sentence are approximated by a set of RSGs. We call this set Reduced Set of Reference
Shape Graphs (RSRSG), since not all the different RSGs arising in each sentence will be
kept. On the contrary, several RSGs related to different memory configurations will be fused
when they represent memory locations with similar reference patterns. There are also several
properties related to the RSGs, and two RSGs should share these properties to be joined.
Therefore, besides the number of nodes in an RSG, the number of different RSGs associated
with a sentence are limited too. This union of RSGs greatly reduces the number of RSGs
and leads to a practicable analysis.

The symbolic execution of the code consists in the abstract interpretation of each sentence
in the code. This abstract interpretation is carried out iteratively for each sentence until we
reach a fixed point in which the resulting RSRSG associated with the sentence does not
change any more [5]. This way, for each sentence that modifies dynamic structures, we have
to define the abstract semantics which describes how these sentences modify the RSRSG.
We consider six simple instructions that deal with pointers: « = NULL, © = malloc, © = vy,
x — sel = NULL, x — sel =y, and x = y — sel. More complex pointer instructions can
be built upon these simple ones and temporal variables.

The output RSRSG resulting from the abstract interpretation of a sentence over an input
RSRSG; is generated by applying the abstract interpretation to each rsg; € RSRSG;. Due
to space constraints we cannot formally describe the abstract semantics of each one of these
sentences. However, we intuitively present the modifications involved in an RSG after the
sentence symbolic execution:

— The x = NULL sentence leads to elimination of the references from the pointer variable
(pvar) z to any memory location. Therefore we have to remove these references from the
RSG.

— The ¢ = malloc sentence simply initializes new memory locations represented in the
RSG by a node referenced by .

— The z = y modifies the RSG such that all memory locations pointed to by y are now
also pointed to by x. Before this sentence and the previous one, we always automatically
insert the x = NULL sentence to ensure that before assigning a new value to x, x is
not pointing to any place.

— The sentence z — sel = NULL is the most complex one, because it break links between
nodes. This leads to many changes in the properties of the nodes. In order to obtain an
accurate output RSG before removing the x — sel link we divide the RSG into several
rsg;. This division is carried out by taking into account that each rsg; should have a
single destination (node) for the — sel link. In this way we can better focus on the
several memory configurations represented by the RSG regarding this — sel link. Each
rsg; is pruned after the division to remove redundant or inexistent nodes or links which
have been conservatively inherited from the parent RSG. We also increase the accuracy
of the method, materializing from the node the memory location which is the real target
of the z — sel link. After this, this link can be safely removed.

— The x — sel = y sentence implies the execution of the same procedure just described
for the x — sel = NULL sentence (RSG division, pruning, and node materialization)
followed by the generation of a link by selector sel from the nodes pointed to by x to
the nodes pointed to by y.

— Finally, the sentence x = y — sel leads to the inclusion of a new reference from the x
pvar to all the memory locations pointed to by y — sel. Now, the RSG division, pruning,
and node materialization are carried out for the y — sel link. In this way we will point
with z to the exact memory locations pointed to by y — sel and to no other.

After the abstract interpretation of the sentence over the rsg; € RSRSG; we obtain a set
of output rsg,. As we said, we cannot keep all the rsg, arising from the abstract interpre-
tation. On the contrary, each rsg, will be compressed, which means the summarization of
compatible nodes in the rsg,. Furthermore, some of the rsg,s can be fused in a single RSG
if they represent similar memory configurations. This operation greatly reduces the number
of RSGs in the resulting RSRSG. The similarity between memory configurations is defined,
among other properties, by the alias relations between pointer variables.

More specifically, our analysis method has been designed to always avoid the fusion of
two different RSGs, rsg; and rsgs, if a pointer variable z points to different non-compatible
nodes in each RSG (in rsg; ¢ — ny and in rsgs £ — ns). In other words, in our framework,
a pvar can only point to a single node in a certain RSG. This situation concords with the
fact that for a certain sentence in the code, a pvar cannot point to two different memory
locations. However, due to the control flow of the code, we allow an RSG for each control
path due to the fact that for a sentence, a pvar can point to different places when following
different control paths.

All the operations just enumerated in this section (RSG division, pruning, node summa-
rization, joining of compatible RSG, etc.) are described in the next two sections. In order to
better illustrate these operations we present a data structure example which will be refered
to during the framework and operations description.

2.1 Working example

The data structure, presented in Fig. 1, is a doubly linked list of pointers to trees. Besides
this, the leaves of the trees have pointers to doubly linked lists. The pointer variable S points

to the first element of the doubly linked list (header list). Each item in this list has three
pointers: nzt, prv, and tree. This tree selector points to the root of a binary tree in which
each element has the [ft and rgh selectors. Finally, the leaves of the trees point to additional
doubly linked lists. All the trees pointed to by the header list are independent and do not
share any element. In the same way, the lists pointed to by the leaves of the same tree or
different trees are also independent.

] | mxt[]]
list = o X X B
| f-—— - -
L L prvl] L
al | Lt -t
lL"eee
°
°
°
| — - -
al | L -t
R XY 3

Doubly Linked Lists

Fig.1. A complex data structure.

This data structure is built by a C code using the data structure declaration shown in
figure 2 (a). This code also traverses the elements of the header list with two pointers and
eventually can permute two trees. Our compiler has analyzed this code obtaining an RSRSG
for each sentence in the program. Figure 2 (b) shows a compact represetation of the RSRSG
obtained for the last sentence of the code after the compiler analysis.

typedef struct doubly_linked_list {
/* non-pointer fields definition */

. . (prv‘ nxt prv‘ nxt prv‘ nxtw

struct doubly_linked_list *nxt, *prv; ST e —n C e

} doubly_linked_list; o " ™

HEADER LIST

typedef struct tree {
/* non-pointer fields definition */
struct tree *1ft, *rgh;
struct doubly_linked_list *list;

} tree;

TREES

typedef struct header_list {
/* non-pointer fields definition */ [
prv

struct header_list *nxt, *prv; nxt prv | nxt prv

struct tree *tree;
} header_list;

DOUBLY
nxt LINKED

ng LISTS

(a) (b)

Fig. 2. Structure declaration and compact representation of the resulting RSRSG for the data
structure of Fig. 1.

As we will see in the next sections, from the RSRSG represented in Fig. 2 (b) we can infer
the actual properties of the real data structure: the trees and lists do not share elements
and therefore they can be traversed in parallel. These results and other examples of real
codes (sparse matrix-vector multiplication, sparse LU factorization and Barnes-Hut N-body
simulation) with different data structures are presented in Sect. 4. But first, we describe
our framework with a formal description of the RSGs in the next section, followed by the
definition and operations of the RSRSG in Sect. 3.8.

3 Reference Shape Graph

First, we need to present the notation used to describe the different memory configurations
that may arise when executing a program.

Definition 1 We call a collection of dynamic structures a memory configuration. These
structures comprise several memory chunks, that we call memory locations, which are linked
by references. Inside these memory locations there is room for data and for pointers to other
memory locations. These pointers are called selectors.

We represent the memory configurations with the tuple M = (L, P,S, PS,LS) where: L
is the set of memory locations; P is the set of pointer variables (pvars) used in the program;
S is the set of selectors declared in the data structures; PS is the set of references from pvars
to memory locations, of the type < pvar,l >, with pvar € P andl € L; and LS is the set of
links between memory locations, of the form < i, sel,lo > where l; € L references lo € L by
selector sel € S.

We will use L(m), P(m), S(m), PS(m), and LS(m) to refer to each one of these sets for
a particular memory configuration, m. O

Therefore, we can assume that the RSRSG of a program sentence is an approximation of
the memory configuration, M, after the execution of this sentence. But let us first describe
the RSGs now that we know how a memory configuration is defined.

Definition 2 An RSG is a graph represented by the tuple RSG = (N, P, S, PL, NL) where:
N: is the set of nodes. Each node can represent several memory locations if they fulfill
certain common properties; P: is the set of pointer variables (pvars) used in the program;
S: is the set of declared selectors; PL: is the set of references from pvars to nodes, of the
type < pvar,n > with pvar € P and n € N; and NL: is the set of links between nodes, of
the type < nq,sel,ny > where n; € N references no € N by selector sel € S.

We will use N(rsg), P(rsg), S(rsg), PL(rsg), and NL(rsg) to refer to each one of these
sets for a particular RSG, rsg. O

Note that the P(m) and P(rsg) sets are the same in both memory and graph domains,
so from now on we will refer to them as P. The same can be applied to S(m) and S(rsg).

To obtain the RSG which approximates the memory configuration, M, an abstraction
function is used, F' : M — RSG. This function maps memory locations into nodes and
references to memory locations into references to nodes at the same time. In other words,
F, translates the memory domain into the graph domain. This, function F' comprises three
functions: F, : L — N takes care of mapping memory locations into nodes; F}, : PS — PL
maps references from pvars to memory locations into references from pvars to nodes, and
F; : LS — NL maps links between locations into links between nodes.

Proposition 1 [t is easy to see that:

— Fy(< pvar,l >) =< pvar,n > iif F,(I) =n
- F'l(< ly,sel,ls >) =< ny,sel,ny > Zlf Fn(ll) =ni A\ Fn(l2) = nsy

which means that translating references to locations into references to nodes is trivial after
mapping locations into nodes. This translates almost all the complexity involved in function
F to function F,, which actually maps locations into nodes. |

Now we focus on F),, which extracts some important properties from a memory location
and, depending on these, this location is translated into a node. Besides this, if several
memory locations share the same properties then this function maps all of them into the
same node of the RSG. Due to this dependence on the location properties, the F,, function
will be described during the presentation of the different properties which characterize each
node. These properties are: Type, Structure, Reference pattern, Share information, and
Cycle links. These are now described.

3.1 Type

This property tries to extract information from the code text. The idea is that two pointers
of different types should not point to the same memory location (for example, a pointer to a
graph and another to a list). Also, the memory location pointed to by a graph pointer should
be considered as a graph. This way, we assign the TYPE property, of a memory location [,
from the type of the pointer variable used when that memory location [is created (by malloc
or in the declarative section of the code).

Therefore, two memory locations, [; and [», can be mapped into the same node if they
share the same TYPE value: If F,,(I1) = F,(l2) = n then TYPE(l;) = TYPE(ly), where the
TYPE() function returns the TYPE value. Note that we can use the same property name and
function, TYPE(), for both memory locations and nodes. Clearly, TYPE(n) = TYPE(l) when
F,(l) =n.

This property leads to the situation where, for the data structure presented in Fig. 1,
the nodes representing list memory locations will not be summarized with those nodes
representing tree locations, as we can see in Fig. 2 (b).

3.2 Structure

As we have just seen, the TYPE property keeps two different nodes for two memory locations
of different types. However, we also want to avoid the summarization of two nodes which
represent memory locations of the same type but which do not share any element. That is,
they are non-connected components. This behavior is achieved by the use of the STRUCTURE
property, which takes the same value for all memory locations (and nodes) belonging to the
same connected component. Again, two memory locations can be represented by the same
node if they have the same STRUCTURE value: If F},(l,) = F,,(l5) = n then STRUCTURE(l,) =
STRUCTURE(/})

This leads to the condition that two locations must fulfill in order to share the same
STRUCTURE value: STRUCTURE(l,) = STRUCTURE(ly) = wval iif 3ly,..., (< la,sely,l; >, <
ly,sela, 1o >, ..., < l;,seljp1,ly >€ LS) V (< ly, seli, i >, <1y, sela,ly >, ..., <l;,selip1,ly, >€
LS), which means that two memory locations, [, and [;, have the same STRUCTURE value if
there is a path from I, to I, (first part of the previous equation) or from I to I, (second
part of the equation). In the same way we can define STRUCTURE(n).

3.3 Simple paths

The SPATH property further restricts the summarizing of nodes. Simple paths denominates
the access path from a pointer variable (pvar) to a location or node. An example of a simple
path is p — s in which the pvar p points to the location s. In this example the simple path
for sis <p >.

The use of the simple path avoids the summarization of nodes which are directly pointed
to by the pvars, and therefore these nodes are the entry points to the data structure. We
define the SPATH property for a memory location | € L(m) as SPATH(!) = p1,..,p, where
< pi,I >€ PS(m). This property is similarly defined for the RSG domain. Now, two memory
locations are represented by the same node if they have the same SPATH (If F},(l1) = F,,(l2)
then SPATH(I;) = SPATH(l5)).

3.4 Reference patterns

This new property is introduced to classify and represent by different nodes the memory
locations with different reference patterns. We understand by reference pattern the type
of selectors which point to a certain memory location and which point from this memory
location to others.

This is particularly useful for keeping singular memory locations of the data structure in
separate nodes. For example, the head/tail and the rest of the elements of a single linked list
are two kinds of memory locations. These will be represented by different nodes, because the
head location is not referenced by other list entries and the tail location does not reference
any other list location. The same would also happen for more complex data structures built
upon more simple structures (such as lists of lists, trees of lists, etc.). For example, in Fig. 1,
the root of one of the trees is referenced by the header list and the leaves do not point to
tree items but to a doubly linked list. Thanks to the reference patterns, the method results
in the RSRSG of Fig. 2 (b), where the root of the tree, the leaves, and the other tree items
are clearly identified.

In order to obtain this behavior, we define two sets SELINset and SELOUTset which
contain the set of input/output selectors for a certain location: SELINset(ly) = {sel; €
S|E|lg € L,< 1y, sel;,l; >€ LS} and SELOUTSGt(ll) = {selz S S|3l2 € L,< ly,sel;,ly >€
LS}, where we see that sel; is in the SELINset(l;) if Iy is referenced from somewhere by
selector sel;, or sel; is in SELOUTset(l) if [;.sel; points to somewhere outside.

3.5 Share information

This is a key property for informing the compiler about the potential parallelism exhibited
by the analyzed data structure. Actually, the share information can tell whether at least
one of the locations represented by a node is referenced more than once from other memory
locations. That is, a shared node represents memory locations which can be accessed from
several places and this may prevent the parallelization of the code section which traverses
these memory locations. From another point of view, this property helps us to determine if
a cycle in the RSG graph is representing cycles in the data structure approximated by this
RSG or not.
Due to the relevance of this property, we use two kinds of attributes for each node:

— SHARED(n) with n € N(rsg), is a Boolean function which returns “true” if any of the
locations, I1, represented by n are referenced by other locations, l» and I3, by different
selectors, sel; and sel;. Therefore, this SHARED function tells us whether there may be a
cycle in the data structure represented by the RSG or not. If SHARED(n) is 0, we know
that even if we reach the node n by sel; and later by sely, we are actually reaching two
different memory locations represented by the same n node, and therefore there is no
cycle in the approximated data structure.

— SHSEL(n, sel) with n € N(rsg) and sel € S, is a Boolean function which returns “true”
if any of the memory locations, [;, represented by n can be referenced more than once
by selector sel from other locations, l> and l3. This way, with the SHSEL function, we
can distinguish two different situations that can be represented by an RSG with a node,

n, and a selector, sel, pointing to itself. If SHSEL(n, sel) = 0 we know that this node
is representing an acyclic unbounded data structure (the size is not known at compile
time). For example, in a list, all the elements of the list (locations) are represented by
the same node, n, but following selector sel we always reach a different memory location.
On the other hand, if SHSEL(n, sel) = 1, for the same list example, by following selector
sel we can reach an already visited location, which means that there are cycles in the
data structure.

Let’s illustrate these SHARED and SHSEL properties using the compact representation of
the RSRSG presented in Fig. 2 (b). In this Fig., shaded nodes have the SHARED property set
to true. For example, in the header list the middle node ns is shared, SHARED(n5)=1, because
ny is referenced by selectors nzt and prv. However, the SHSEL(ns, nzt)=SHSEL(n, prv) =0
which means that by following selector nzt or prov it is not possible to reach an already
visited memory location. Actually, in this example, there are no selectors with the SHSEL
property set to true. So, the same happens for node ng which represents the middle items
of the doubly linked lists.

We can also see in Fig. 2 (b), that node n4 is not shared, which states that, in fact, from
memory locations represented by n1, no, and n3 we can reach different trees which do not
share any elements (as we see in Fig. 1). Finally, node n7 is shared because it is pointed to
by selectors list and prv. However, due to SHSEL(n7, list)=0 we can ensure that two different
leaves of the trees will never point to the same doubly linked list.

3.6 Cycle links

The goal of this property is to increase the accuracy of the data structure representation by
avoiding unnecessary edges that can appear during the RSG updating process.

The cycle links of a node, n, are defined as the set of pairs of references < sel;, sel; >
such that when starting at node n and consecutively following selectors sel; and sel;, the
n node is reached again. More precisely, for n € N(rsg) we define: CYCLELINKS(n) = {<
sel;, sel; > |sel;, sel; € S}, such that if < sel;, sel; >€ CYCLELINKS(n) then: VI;, Fi,(I;) = n,
if < li,seli,lj >€ LS then 3 < lj,selj,li >e LS

This CYCLELINKS set maintains similar information to that of “identity paths” in the
Abstract Storage Graph (ASG) [11], which is very useful for dealing with doubly-linked
structures. For example, in the data structure presented in Fig. 1, the elements in the middle
of the doubly linked lists have two cycle links: < nzt, pro > and < prv,nzt >, due to starting
at a list item and consecutively following selectors nzt and prv (or prv and nzxt) the starting
item is reached. Note, that this does not apply to the first or last element of the doubly linked
list. This property is captured in the RSRSG shown in Fig. 2 (b) where we see three nodes
for the double linked lists (one for the first element of the list, another for the last element,
and another between them to represent the middle items in the list). This middle node, ns,
is annotated by our compiler with CYCLELINKS(ng) = {< nzt,prv >, < prv,nzt >}.

We conclude here that the CYCLELINKS property is used during the pruning process
which take place after the node materialization and RSG modification. So, in contrast with
the other four properties described in previous subsections, the CYCLELINKS property does
not prevent the summarization of two nodes with do not share the CYCLELINKS sets and
therefore do not affect the F;, function.

3.7 Compression of graphs

After the symbolic execution of a sentence over an input RSRSG, the resulting RSRSG may
contain RSGs with redundant information, which can be removed due to node summarization
or compression of the RSG.

In order to do this, after the symbolic execution of a sentence, the method applies the
COMPRESS function over the just modified RSGs. This COMPRESS function first call to the
boolean C_NODES_RSG one, which identifies the compatible nodes that will later be sum-
marized. This Boolean function just has to check whether or not the first five properties
previously described are the same for both nodes (as we said in the previous subsection the
CYCLELINKS property does not affect the compatibility of two nodes).

There is a similar function which returns true when two memory locations are compatible.
With this, we can finally define F}, as the function which maps all the compatible memory
locations into the same node, which happens when they have the same TYPE, STRUCTURE,
SHARED and SPATH properties, and compatible reference patterns.

3.8 Reduced Set of RSGs

We have already seen that an RSG describes a memory configuration by a finite graph.
The execution of each sentence in the program can modify the memory configuration and
thus the RSG. However, due to the control flow of the program, the same sentence could
be reached by several control paths leading to several memory configurations depending on
the path. This way, there could also be several RSGs for the same program sentence. In our
method, we maintain the representation of all these RSGs with the Reduced Set of Reference
Shape Graphs (RSRSG).

Therefore, each sentence in the program has an associated RSRSG which approximately
describes all possible memory configurations that may arise after the execution of this sen-
tence.

However, the number of RSGs stored in an RSRSG could be prohibitive if we do not apply
some simplifications while keeping reasonable accuracy in the representation. Actually, this
simplification consists in allowing the union of some of the RSGs which fulfill certain con-
ditions. After the union, the resulting RSG should represent all the locations approximated
by the original RSGs and the relevant shape information should be maintained.

More precisely, two graphs, rsg; and rsgs, can be joined in a single one if they are
compatible which hapens when they fulfill two conditions: i) the alias relation between pvars
of both graphs are the same; and ii) certain nodes in both graphs are compatible. This leads
us to define the alias relation between pvars and the compatibility condition between certain
nodes in the graphs:

— ALIAS(rsg) is the set of alias relations, alr;, in the rsg graph, where each alr; identifies
all the pvars pointing to the same node n;.

— COMP_NODES(rsgi,7sg2) is a Boolean function which returns true if the nodes directly
pointed to by the same pvar are compatible, which happens when they have similar
properties (and therefore these nodes can be summarized).

Let us note again that we only impose node compatibility on those nodes directly pointed
to by the same pvar. On the other hand, this node compatibility is fulfilled when two nodes
have the same TYPE, SHARED and SHSEL properties and they have a similar reference pattern.

Finally, there are several operations that can be carried out with the RSGs of an RSRSG.
In the worst case, the sequence of operations that the compiler carries out in order to sym-
bolically execute a sentence are: graph division, graph prune, sentence symbolic execution
(RSG modification), RSG compression and RSG union to build the final RSRSG. In fact, the
RSG compression has already been summarized in Sect. 3.7. However, the graph division,
prune and union operations cannot be described in this paper due to space constraints.

4 Experimental results

All the previously mentioned operations and properties have been implemented in a compiler
written in C which analyzes a C code to generate the RSRSG associated with each sentence

of the code. As we said, the symbolic execution of each sentence over an RSRSG is going to
generate a modified RSRSG. Before the symbolic execution of the code, the compiler can
also extract some important information from the program in a previous pass. For example,
a quite frequent pattern arising in C codes based on dynamic data structures is the following:
while (x != NULL) { ... }.

In this case the compiler can assert that at the entry of the while body the pvar x #
NULL. Besides this, if we have not exited the while body with a break sentence, we can
also ensure that just after the while body the pvar = NULL. This information is used
to simplify the analysis and increase the accuracy of the method. More precisely, we can
reduce the number of RSGs and/or reduce the complexity of this RSG by diminishing the
number of memory configurations represented by each RSG. Other sentences from which we
can extract useful information are IF-THEN-ELSE, FOR loops, or any conditional sentence.

The implementation of this idea has been carried out by the definition of certain pseu-
doinstructions that we call FORCE. These pseudoinstructions are inserted in the code by the
first pass of the compiler and will be symbolically executed as a regular sentence. There-
fore, each one of these FORCE sentences has its own abstract semantics and its own associ-
ated RSRSG. The FORCE pseudoinstructions we have considered are: FORCE[,——ny£L](759),
FDRCE[z!:NULL](TSg)a FORCE[z::y](rsg)v FORCE[I!zy](rsg)a FDRCE[z%sel::NULL](TSg)'

In addition, we have found that these FORCE pseudoperations can be also placed just
before the following sentences: © — sel = NULL, z — sel = yy y = ¢ — sel, under
the assumption that the code is correct. That is, it makes sense to assume that before the
execution of all these three sentences, = is not NULL (in other cases the code would produce
an error at execution time). The same can be assumed for any sentence with an occurrence
of the type x — wal, where val is a non-pointer field of the structure pointed to by z. In these
cases, we can safely insert just before these sentences the pseudoinstruction FORCE[,1—ny L 1)

With the compiler described we have analyzed the code which generates, traverses, and
modifies several codes: the working example presented in section 2.1, the Sparse Matrix-
vector multiplication, the Sparse LU factorization and the Barnes-Hut code. All these codes
were analyzed by our compiler in a Pentium III 500MHz with 128MBytes main memory.
The time and memory required by the compiler are summarized in table 1. The particular
aspects of these codes are described next.

Working Example|S. Matrix-vector|S. LU factorization|Barnes-Hut
Time 0°13” 0°04” 1’38” 4047
Space 2.7 MB 1.6 MB 24 MB 47 MB

Table 1. Time and space required by the compiler to analyze several codes

4.1 Working example’s RSRSG

We refer in this subsection to the code that generates, traverses, and modifies the data
structure presented in Fig. 1. A compact representation of the resulting RSRSG for the last
sentence of the code can be seen in Fig. 2 (b). Although we do not show the code due to
space constraints, we have to say that this code presents an additional difficulty due to some
tree permutations being carried out during data structure modification. The problem arising
during structure permutation is that it is very easy to temporally assign the SHARED=true
property to the root of one of the trees that we are permutating, when this root is temporally
pointed to by two different locations from the header list. If this shared property remains true
after the permutation we would have a shaded n4 node in Fig. 2 (b). This would imply that

two different items from the header list can point to the same tree (which would prevent the
parallel execution of traversing the trees). However, this problem is solved because, after the
permutation, the method reassigns false to the shared property thanks to the combination
of our properties and the division of graph operations. Summarizing, after the compiler
analyzes this code, the compact representation of the resulting RSRSG for the last sentence
of the program (Fig. 2 (b)) accurately describes the data structure depicted in Fig. 1 in the
sense that: (i) The compiler successfully detects the doubly linked list which is acyclic by
selectors nzt or prv and whose elements point to binary trees; (ii) As SHSEL(n4, tree)=0,
we can say that two different items of the header list cannot point to the same tree; (iii) At
the same time, as no tree node (n4, ns and ng) is shared, we can say that different trees
do not share items; (iv) The same happens for the doubly linked list pointed to by the tree
leaves: all the lists are independent, there are no two leaves pointing to the same list, and
these lists are acyclic by selectors nzt or prv.

Besides this, our compiler has also analyzed three C program kernels which generate,
traverse, and modify complex dynamic data structures which we describe next.

4.2 Sparse matrix-vector multiplication
Here we deal with an irregular code which implements a sparse matrix by vector multiplica-
tion, r = M x v. The sparse matrix, M, is stored in memory as a header doubly linked list

with pointers to other doubly linked lists which store the matrix rows. The sparse vectors,
v and r are also doubly linked lists. This can be seen in Fig. 3(a). Note that vector r grows

during the multiplication process.
v r M f prv‘ nxt L—_m‘ nxt prv‘ nxtw HfstTER
L row J L row J L row J
nxt| | prv nxt| |prv
v v [pw

nxt prv | nxt prv nxt} ROWS

nxt prv r&(prv
ROWS VECTOR VECTOR

(a) (b)

\l

T
A : AR IE
00 0 O

HEADER
LisT

nxt J VECTOR

prv nxt J VECTOR

Fig. 3. Sparse matrix-vector multiplication data structure and compacted RSRSG.

After the analysis process, carried out by our compiler, the resulting RSRSG accurately
represents this data structure. Actually, in Fig. 3(b) we present a compact representation of
the resulting RSRSG for the last sentence of the code. First, note that the three structures
involved in this code are kept in separate subgraphs. Even when the data type for vectors
v and r and rows of M, is the same, the STRUCTURE property avoids the union of these
graphs into a single one. This RSRSG states that the rows of the matrix are pointed to
from different elements of the header list (there is no selector with the shared property set
to true). Also, the doubly linked lists which store the rows of M and the vectors v and r are
acyclic by selectors nxt and prov.

The same RSRSG is also reached just before the execution of the outermost loop which
takes care of the matrix multiplication, but without the r subgraph which is generated
during this multiplication.

4.3 Sparse LU factorization

The kernel of many computer-assisted scientific applications is to solve large sparse linear
systems. We find examples of these kinds of applications in optimization problems, linear
programming, simulation, circuit analysis, fluid dynamics computation, and numeric solu-
tions of differential equations in general. The code we analyze now is one of these solvers: a
sparse LU factorization. This algorithm presents a good case study and is a representative
computational code for many other irregular problems. Actually, this problem represents
those in which the computational load grows with the execution time (fill-in) and matrix
coefficients change their coordinates due to row/column permutations (pivoting).

More specifically, our working example application solves non-symmetric sparse linear
systems by applying the LU factorization of the sparse matrix, computed by using a gen-
eral method [1]. These methods directly solve the sparse problem and share the same loop
structure of the corresponding dense code. In particular, we have implemented an in-place
code for the direct right-looking LU algorithm, where an n-by-n matrix A is factorized.
The code includes a row pivoting operation (partial pivoting) to provide numerical stability
and preserve sparseness. The input matrix A columns as well as the resulting in place LU
columns are stored in one-dimensional doubly linked lists (see Fig. 4 (a)), to facilitate the
insertion of new entries and to allow column permutations.

' nxt .
A = ©O0O0O - HEADER
: LisT
col
A f prv‘ nxltm‘ nxt prv‘ nxlw HEADER
L col J L col J L col J List
nxt | | prv ‘
eee COLUMNS l

) 1 \) \)

. 0 0 0

. . . .

[Prv nx% nxt prv "Xl} COLUMNS
. .] O
) A A A
(a)

(b)

Fig. 4. Sparse LU factorization data structure and compacted RSRSG.

After the LU code analysis we obtain the same RSRSG for the sentences just after the
matrix initialization and after the LU factorization. A compact representation of this RSRSG
is shown in Fig. 4(b). As we can see, variable A points to a doubly linked list, the header
list. Each node of this list points to a single doubly linked list which represents a matrix
column. Due to SHSEL being false for all selectors we conclude that the header list and the
column lists are acyclic structures when they are traversed by a single selector type and
that different elements of the header list should point to different columns. A subsequent
analysis of the code and the RSRSG associated with each sentence would be able to state
that several sparse matrix columns can be updated in parallel during factorization and, in
addition, it is also possible to update each column in parallel.

4.4 Barnes-Hut N-body simulation

This code is based on the algorithm presented in [2] which is used in astrophysics. In fact, this
application simulates the evolution of a system of bodies under the influence of gravitational
forces. It is a classical gravitational N-body simulation, in which each body is modeled as
a point mass. The simulation proceeds over time-steps, each step computing the net force
on every body and thereby updating that body’s position and other attributes. The data
structure used in this code is based on a hierarchical octree representation of space in three
dimensions. In two dimensions, a quadtree representation is used. However, due to memory
constraints (the octree and the quadtree versions run out of memory in our 128MB Pentium
IIT) we have simplified the code to use a binary tree.

In Fig. 5(a) we present a schematic view of the data structure used in this code. The
bodies are stored by a single linked list pointed to by the pvar Lbodies.

root

LIST OF BODIES

TREE

ZRVIRN RVIRN
e o o e o o
(][] e e []
Lbodies i R ey ,D LIST OF TREE
BODIES
(a) (b)

Fig. 5. Barnes-Hut data structure and compacted RSRSG.

After the code analysis, the compact representation of the RSRSG at the end of each step
of the algorithm is presented in Fig. 5(b). We can see that the root of the tree is represented
by node ni, the middle elements of the tree by node ns and the leaves by ns. Note that
these leaves can point to any body stored in the Lbodies list represented by nodes ng, ns,
and ng. As tree nodes are not shared and selectors also have the SHSEL property set to false,
a subsequent analysis of the code can state that the tree can be traversed and updated in
parallel. This analysis can also conclude that there are no two different leaves pointing to
the same body (entry in the Lbodies list) due to nodes n4, ns, and ng not being shared by
selector body.

5 Conclusions and future work

We have developed a compiler which can analyze a C code to determine the RSRSG as-
sociated with each sentence of the code. Each RSRSG contains several RSGs, each one
representing the different data structures which may arise after following different paths in
the control flow graph of the code. However, several RSGs can be joined if they represent
similar data structures, in this way reducing the number of RSGs associated with a sentence.
Every RSG contains nodes which represent one or several memory locations. To avoid an
explosion in the number of nodes, all the memory locations which are similarly referenced
are represented by the same node. This reference similarity is captured by the properties we
assign to the memory locations. In comparison with previous works, we have increased the
number of properties assigned to each node. This leads to more nodes in the RSG because

the nodes now have to fulfill more properties to be summarized. However, by avoiding the
summarization of these nodes, we keep a more accurate representation of the data structure.
This is a key issue when analyzing the parallelism exhibited by a code.

Our compiler symbolically executes each sentence in the code, transforming the RSGs to
reflect the modifications in the data structure that are carried out due to the execution of
the sentence. We have validated the compiler with several C codes which generate, traverse,
and modify complex dynamic data structures, such as a doubly linked list of pointers to
trees where the leaves point to other doubly linked lists. Other structures have been also
accurately identified by the compiler, even in the presence of structure permutations (for
example, column permutations in the sparse LU code). As far as we know, there is no
compiler achieving such successful results for these kinds of data structures appearing in
real codes.

In the near future we will develop an additional compiler pass that will automatically
analyze the RSRSGs and the code to determine the parallel loops of the program and allow
the automatic generation of parallel code.

References

1. R. Asenjo. Sparse LU Factorization in Multiprocessors. Ph.D. Dissertation, Dept. Computer
Architecture, Univ. of Mélaga, Spain, 1997.

2. J. Barnes and P. Hut. A Hierarchical O(n- log n) force calculation algorithm. Nature v.324,
December 1986.

3. D. Chase, M. Wegman and F. Zadeck. Analysis of Pointers and Structures. In SIGPLAN Con-
ference on Programming Language Design and Implementation, 296-310. ACM Press, New
York, 1990.

4. F. Corbera, R. Asenjo and E.L. Zapata New shape analysis for automatic parallelization of C
codes. In ACM International Conference on Supercomputing, 220-227, Rhodes, Greece, June
1999.

5. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of
programs by construction of approximation of fized points. In Proceedings of the ACM Sympo-
sium on Principles of Programming Languages. ACM Press, New York. 238-252, 1977.

6. J. Hoeflinger and Y. Paek The Access Region Test. In Twelfth International Workshop on
Languages and Compilers for Parallel Computing (LCPC’99), The University of California,
San Diego, La Jolla, CA USA, August, 1999.

7. S. Horwitz, P. Pfeiffer, and T. Reps. Dependence Analysis for Pointer Variables. In Proceedings
of the SIGPLAN Conference on Programming Language Design and Implementation, 28-40,
June 1989.

8. J. Hummel, L. J. Hendren and A. Nicolau A General Data Dependence Test for Dynamic,
Pointer-Based Data Structures. In Proceedings of the SIGPLAN Conference on Programming
Language Design and Implementation, pages 218-229. ACM Press, 1994.

9. N. Jones and S. Muchnick. Flow Analysis and Optimization of Lisp-like Structures. In Program
Flow Analysis: Theory and Applications, S. Muchnick and N. Jones, Englewood Cliffs, NJ:
Prentice Hall, Chapter 4, 102-131, 1981.

10. A. Matsumoto, D. S. Han and T. Tsuda. Alias Analysis of Pointers in Pascal and Fortran 90:
Dependence Analysis between Pointer References. Acta Informatica 33, 99-130. Berlin Heidel-
berg New York: Springer-Verlag, 1996.

11. J. Plevyak, A. Chien and V. Karamcheti. Analysis of Dynamic Structures for Efficient Parallel
Ezecution. In Languages and Compilers for Parallel Computing, U. Banerjee, D. Gelernter,
A. Nicolau and D. Padua, Eds. Lectures Notes in Computer Science, vol 768, 37-57. Berlin
Heidelberg New York: Springer-Verlag 1993.

12. M. Sagiv, T. Reps and R. Wilhelm. Solving Shape-Analysis problems in Languages with de-
structive updating. ACM Transactions on Programming Languages and Systems, 20(1):1-50,
January 1998.

13. M. Sagiv, T. Reps, and R. Wilhelm, Parametric shape analysis via 8-valued logic. In Conference
Record of the Twenty-Sixth ACM Symposium on Principles of Programming Languages, San
Antonio, TX, Jan. 20-22, ACM, New York, NY, 1999, pp. 105-118.

