
Progressive Shape Analysis for Real C Codes

F. Corbera
R. Asenjo
E.L. Zapata

September 2001
Technical Report No: UMA-DAC-01/09

Published in:
IEEE Int’l. Conf. on Parallel Processing (ICPP’2001)
Valencia, Spain, September 3-7, 2001

University of Malaga
Department of Computer Architecture
C. Tecnologico • PO Box 4114 • E-29080 Malaga • Spain

Progressive Shape Analysis for Real C Codes �

F. Corbera
Computer Architecture Dept.
University of Málaga. Spain.

corbera@ac.uma.es

R. Asenjo
Computer Architecture Dept.
University of Málaga. Spain.

asenjo@ac.uma.es

E. Zapata
Computer Architecture Dept.
University of Málaga. Spain.

ezapata@ac.uma.es

Abstract

Dynamic and pointer-based data structures are widely
used in symbolic or irregular C codes. However, there is
still a lack of compiler techniques to deal with the auto-
matic optimization of such codes. In this paper we take a
first step towards this final objective: the automatic iden-
tification of the data structure used in the code. More pre-
cisely, we describe the framework and the compiler we have
implemented to capture complex data structures generated,
traversed, and modified in C codes. Our method assigns a
Reduced Set of Reference Shape Graphs (RSRSG) to each
sentence to approximate the shape of the data structure af-
ter the execution of such a sentence. With the properties
and operations that define the behavior of our RSRSG, the
method can accurately detect complex recursive data struc-
tures. The compiler makes a progressive analysis in which
the level of detail is increased during the analysis when
needed. Several experiments are carried out with complex
data structures to validate the capabilities of our compiler.

1. Motivation

Although languages like C, C++, Java, etc., have been
widely used for many years, there is still a lack of com-
piler techniques able to automatically optimize the execu-
tion of real codes written in these languages. The difficul-
ties which have prevented the development of such tech-
niques lie mainly in the huge complexity associated with
pointers and dynamic data structures. In this sense, for For-
tran77 codes – in which these data structures are not allowed
– there are a large number of optimizing and parallelizing
compilers which successfully deal with complex code trans-
formation even in the presence of irregular array access [3].

�This work was supported by the Ministry of Education and Science
(CICYT) of Spain (TIC 2000-1658), by the European Union (BRITE-
EURAM III BE95-1564), by APART: Automatic Performance Analysis:
Resources and Tools, EU Esprit IV Working Group No. 29488

However, new solutions are a must due to the wide accep-
tance of these programming languages and due to the fact
that dynamic data structures are important tools to achieve
good performance and simplify the development of com-
plex codes.

With this motivation, our goal is to propose and imple-
ment new techniques that can be included in compilers to
allow the automatic analysis of real codes based on dynamic
data structures. In a first step, we have selected the shape
analysis subproblem, which aims at estimating at compile
time the shape the data will take at run time. Given this
information, a subsequent analysis would detect whether or
not certain sections of the code can be parallelized because
they access independent data regions.

There are several ways this problem can be approached,
but we focus on the graph-based methods in which the “stor-
age chunks” are represented by nodes, and edges are used
to represent references between them [6], [7], [1]. These
methods use only one graph to approximate the memory af-
ter the execution of each sentence. In this work, we consider
several graphs for each sentence.

Among the first relevant studies which allowed several
graphs were those developed by Jones et al. [5] and Hor-
witz et al. [4], however they are unable to capture complex
data structures. A more recent work that also allows sev-
eral graphs is the one presented by Sagiv et al.[8]. As far as
we know, their method can not deal with the complex data
structures that we handle in this paper.

With this in mind, our proposal is based on approximat-
ing all the possible memory configurations that can arise
after the execution of a sentence by a set of graphs: the
Reduced Set of Reference Shape Graphs (RSRSG). We see
that each RSRSG is a collection of Reference Shape Graphs
(RSG) each one containing several non-compatible nodes.

The rest of the paper is organized as follows: Sect. 2
briefly describes the whole framework, introducing the key
ideas of the method. The node properties and opera-
tions with graphs are described in Sect. 3. In Sect. 4 we
present the operations related with the RSGs included in
an RSRSG. These operations have been implemented in a

compiler which is experimentally validated, in Sect. 5. Fi-
nally, we summarize the main contributions and future work
in Sect. 6.

2. Method overview

Basically, our method is based on approximating all pos-
sible memory configurations that can appear after the exe-
cution of a sentence in the code. Note that due to the control
flow of the program, a sentence could be reached by follow-
ing several paths in the control flow. Each “control path”
has an associated memory configuration which is modified
by each sentence in the path. Each memory configuration is
approximated by a graph we call Reference Shape Graphs
(RSG). Thus, taking all this into account, we conclude that
each sentence in the code will have a set of RSGs associated
with it. This set of RSGs will describe the shape of the data
structure after the execution of this sentence.

The calculation of this set of graphs is carried out by the
symbolic execution of the program over the graphs. In this
way, each program sentence transforms the graphs to reflect
the changes in the memory configurations derived from the
sentence execution.

The RSGs are graphs in which nodes represent memory
locations which have similar reference patterns. Therefore,
a single node can safely and accurately represent several
memory locations (if they are similarly referenced) without
losing their essential characteristics.

To determine whether or not two memory locations
should be represented by a single node, each one is an-
notated with a set of properties. Now, two different mem-
ory locations will be “summarized” in a single node if they
fulfill the same properties. This way, a possibly unlimited
memory configuration can be represented by a limited size
RSG, because the number of different nodes is limited by
the number of properties of each node.

As we have said, all possible memory configurations
which may arise after the execution of a sentence are ap-
proximated by a set of RSGs. We call this set the Reduced
Set of Reference Shape Graphs (RSRSG), since not all the
different RSGs arising in each sentence will be kept. On the
contrary, several RSGs related to different memory configu-
rations will be fused when they represent memory locations
with similar reference patterns. As we will see, there are
also several properties related to the RSGs, and two RSGs
should share these properties to be joined. Therefore, be-
sides the number of nodes in an RSG, the number of differ-
ent RSGs associated with a sentence are limited too. This
union of RSGs greatly reduces the number of RSGs and
leads to a practicable analysis.

The symbolic execution of the code consists in the ab-
stract interpretation of each sentence in the code. This ab-
stract interpretation is carried out iteratively for each sen-

tence until we reach a fixed point in which the result-
ing RSRSG associated with the sentence does not change
any more. This way, for each sentence that modifies dy-
namic structures, we have to define the abstract semantics
which describe how these sentences modify the RSRSG.
We consider six simple instructions that deal with pointers:
� � ����, � � ������, � � 	, � �
�� � ����,
� �
�� � 	, and � � 	 �
��. More complex pointer in-
structions can be built upon these simple ones and temporal
variables. Due to space constraints we cannot describe the
abstract semantics of each one of these sentences (see [2]).

However, we can present a simple example. In Fig. 1 (a)
we see an RSG representing a doubly linked list of two
or more elements. Actually, �� represents the first ele-
ment in the list, �� the middle elements, and �� the last
one. Let us suppose that this RSGs is an input

�� to the
� � ��� � ���� sentence. The first step in the abstract
interpretation of this sentence is the division operation. Fig-
ure 1 (b) shows the resulting

��� and

��� after the divi-
sion. Note that in each one of these graphs there is a single
destination for � � ���. This division process is formally
described in Sect. 4.1. In Fig. 1 (c) we show the result of
the pruning process in which the compiler removes nodes
and links which do not fulfill the graphs’ properties. This
pruning process is formally described in Sect. 4.2. Now,
before removing the � � ��� link in both graphs, the com-
piler has to focus more on one of the RSGs. More pre-
cisely, in

����, we have to materialize from node �� the
node �� which represents the single list item referenced by
� � ���, as we can see in Fig. 1 (d). Finally, we see in
Fig. 1 (e) how we safely remove the link � � ��� in both
graphs to obtain the final

�� and

��.

From a higher perspective, the whole symbolic execu-
tion process can be seen by looking at Fig. 2. For each sen-
tence in the code, the RSRSG� comprises several

��� to
capture all the memory configurations associated with each
path in the control flow graph. During the symbolic execu-
tion of the sentence all these

��� are going to be updated.
The first step comprises the graph division and pruning pro-
cesses after which we obtain several

���� . Then the ab-
stract interpretation of the sentence takes place and usually
the complexity of the RSGs grows. In order to counter this
effect, the compiler carries out a compression of the graph
phase in which each RSG is simplified by the summariza-
tion of compatible nodes in the RSG, to obtain the

� ����
graphs. This step is formally described in Sect. 3.1. Further-
more, some of the

�����s can be fused into a single

���
if they represent similar memory configurations. This oper-
ation greatly reduces the number of RSGs in the resulting
RSRSG. This graph union is described in Sect. 4.3.

All the operations just enumerated in this section are de-
scribed in the next two sections.

rsg

x
nxt nxt

n3n2n1

prv nxt prv prv

<nxt,prv> <nxt,prv>
<prv,nxt>

<prv,nxt>

n1

1

2

x

n1

nxt

n2

nxt

n3

x
nxt

n2

nxt

n3

rsg’

rsg’

prv prvnxt prv

<prv,nxt><nxt,prv>
<prv,nxt>

<nxt,prv>

prv nxt prv prv

<prv,nxt><nxt,prv>
<prv,nxt>

<nxt,prv>

nxtprv prv nxt prv nxt
x

n1 n2 n3

<nxt,prv> <nxt,prv>
<prv,nxt>

<prv,nxt>

nxtprv prv nxt

n1 n3

<nxt,prv> <prv,nxt>

2

1

x

rsg’’

rsg’’

(a) (b) (c)
1

x
nxt nxt nxt

n1 n4 n2 n3

prv nxt prv prv prv

<prv,nxt><nxt,prv>
<prv,nxt>

<nxt,prv>
<prv,nxt>

<nxt,prv>

rsg’’’

nxt

n3

prv

<prv,nxt>

1

x

n1 n4

nxtnxt

n2

nxt

n3

2

x

n1

prv nxt prv prv prv

<prv,nxt><nxt,prv>
<prv,nxt>

<nxt,prv>
<prv,nxt>

<nxt,prv>

rsg rsg

prv nxt

<nxt,prv>

(d) (e)

Figure 1. Complete process of the abstract interpretation required by the � � ��� � ���� sentence.

RSRSG i RSRSG o
Symbolic execution of the sentence

*

*

*

i1

ij

in
rsg

ij2

ij1

ijk

and compression

rsg
rsg

rsg

ij1

ijk

ij2

o1rsg

okrsg

rsg om

graph union

rsg

rsg

rsg

rsg
rsg

and pruning
Division Abstract

interpretation
Compatible

Figure 2. Schematic description of the sym-
bolic execution of a sentence.

3. Reference Shape Graph

An RSG is a graph represented by the tuple ��� �
����� �� ��� ��� where: N: is the set of nodes. P: is the
set of pointer variables (pvars) used in the program; S: is the
set of declared selectors; PL: is the set of references from
pvars to nodes, of the type � ���
� � � with ���
 � � and
� � � ; and NL: is the set of links between nodes, of the
type � ���
��� �� � where �� � � references �� � � by
selector
�� � �.

To obtain the RSG which approximates a memory con-
figuration, we extract some important properties from the
memory locations and, depending on these, the locations are
translated into nodes. Besides this, if several memory loca-
tions share the same properties then all of them are mapped
into the same node of the ���. These properties are: Type
states the data type of the memory locations represented by
a node; Structure avoids the summarization of nodes rep-
resenting non-connected components; Reference pattern
keeps singular memory locations of the data structure in
separate nodes; Share information tell whether at least one
of the locations represented by a node is referenced more

than once from other memory locations; Cycle links keeps
information about simple cycles in the structure. In [2] we
present a complete description of these properties. We have
modified the property Simple paths and we have inserted a
new property Touch information. These two properties are
now described:

Simple paths denominates the access path from a
pointer variable (pvar) to a node if the length of this path
is less than or equal to 1. An example of a simple path is
� �
�
�� � � in which the pvar � points to node
 which
points to node � using the selector
��. Note that, in this
example, the simple path for � is � ��
�� � and the sim-
ple path for
 is � �� � �. The length of a simple path,

�� �� ���
�
��� �, LEN�
��� � � if
��� � � or � if

��� �
�� � �.

To determine when two nodes can be summarized, we
define a Boolean function C SPATH���� ����� which re-
turns true if nodes �� and �� have compatible SPATH. The
parameter � imposes the constraints in the comparison of
nodes. If � � �, two node SPATHs are compatible if they
comprise the same zero-length simple paths. This particu-
lar case of the C SPATH function is called C SPATH0. On
the contrary, if � � �, the two SPATHs also have to share
at least � one-length simple paths to be compatible. In this
case the function is called C SPATH1.

Touch information. All previous properties capture
some important issues of the memory configuration and
they change according to the current sentence. However,
sometimes it is necessary to keep track of the memory lo-
cations for several sentences to increase the accuracy of the
RSRSGs. For example, if we deal with a list data structure,
we know that all the middle elements are going to be sum-
marized in a single node. Now, when traversing this list in

a loop, the same summary node will represent non-visited
locations as well as visited ones. On the other hand, during
one acyclic traversal of the list, it would be better to keep
the visited locations in a separate node in such a way that
new changes only affect non-visited nodes.

In order to achieve this behavior in the compiler we as-
sign to each node a new property called TOUCH. This prop-
erty is taken into account only inside loop bodies. In this
case, the TOUCH information of a node is the set of pvars
from which the memory locations represented by the node
have been visited. We understand by “pvar � visit node �”
that the node � has been referenced by �. For example, in
� � 	, the node pointed to by 	 is visited by �. In the same
way, in � � 	 �
��, the node pointed to by selector
��
from node 	 is visited by �.

Now, two nodes can be summarized if they have been
“touched” by the same set of pvars. However, clearly this
new restriction in the summarization will increase the num-
ber of nodes in the RSRSGs. In order to avoid the explosion
in the number of nodes we have to constrain the kind of pvar
which can appear in the TOUCH set. More precisely, only
those pvars which are used to traverse dynamic data struc-
tures (called induction pointers by Yuan-Shin Hwang [9])
are eligible to be included in the set. Taking all this into ac-
count, we can finally define for � � ��

��: TOUCH��� �
�����
�����
 � ��� where �� is the set of induction pvars
found in the code. Clearly, there should be a preprocessing
compiler pass to identify inductions pvars in the code. Due
to space constraints we cannot describe this preprocessing
pass but it is based on Access Path Expressions [9].

Finally, the compiler also implements an additional im-
provement to save space and time. The idea is that after exit-
ing a loop body the TOUCH information regarding the ipvars
of this loop are not needed any more. This way, the com-
piler removes those ipvars associated with this loop from
the TOUCH set of the nodes.

3.1. Compression of graphs

As we explained in Sect. 2, after the symbolic execution
of a sentence over an input RSRSG, the resulting RSRSG
may contain RSGs with redundant information, which can
be removed due to node summarization or compression of
the RSG.

In order to do this, after the symbolic execution of a sen-
tence, the method applies the COMPRESS function over the
just modified RSGs. However, before explaining this COM-
PRESS function, we need to define the C NODES RSG one,
which identifies the compatible nodes that will later be sum-
marized. This Boolean function just has to check whether
or not some of the properties are the same for both nodes.
This way

C NODES RSG���� ��� � ���� if (TYPE���� � TYPE������
(STRUCTURE���� � STRUCTURE����� � (SHARED���� �
SHARED����� � (SHSEL���� ����� � SHSEL��� � ���������� �
�� � (TOUCH���� � TOUCH����� � (C REFPAT���� ��� � ��
�(C SPATH���� �� �	� � ��

where SHARED and SHSEL keep the shared information
of a node, and C REFPAT���� ��� tell if both nodes have
compatible reference pattern information (see [2]).

Now, compatible nodes of the same RSG are summa-
rized by the function COMPRESS�

�� �

��, where:

� The set of nodes of the compressed RSG, ��

���,
will contain the nodes which cannot be summarized with
any other plus the nodes resulting from the summarization
of compatible nodes. We use the MERGE COMP NODES
function to generate a summary node from a group of com-
patible nodes, as we will see later. Formally:

������� � �� � �� � ������ � ���� � ������� �
C NODES RSG��� ��� � ��� �
�� � MERGE COMP NODES����

� ���� ���

� �� � ������
� ��
 � �

� � �� C NODES RSG���� ����� � ����

� The new set of pvar references,���

���, is basically the
same set of the uncompressed RSG, ���

��, but which
maps all the nodes into the new ones. This is done with
the �� �MAP RSG��� function which maps the old node
� � ��

�� into the new node �� � ��

���:

�������� � �� �����MAP RSG��� �� � � ����� � ��
��������

� The same idea applies to the set of references for the
compressed graph:

�������� � �� MAP RSG����� ����MAP RSG���� ��
� � ��� ���� �� �� ��������

Regarding the MERGE COMP NODES function used for
the summarization of several compatible nodes, we define:

MERGE COMP NODES����

��� � MERGE NODES����
MERGE NODES����

� MERGE NODES������ ���

��

The MERGE NODES���� ��� function takes care of the
summarization of nodes �� and �� into node �. The prop-
erties of this new node, �, are set in order to preserve the
description of the data structures represented by the origi-
nal nodes. This way, MERGE NODES���� ��� � �, where:

�SELINset��� � SELINset���� 	 SELINset����
�SELOUTset��� � SELOUTset���� 	 SELOUTset����
�PosSELINset��� � �SELINset����
 SELINset����

PosSELINset����
 PosSELINset����� � SELINset���
�PosSELOUTset��� � �SELOUTset����
 SELOUTset����

 PosSELOUTset����
 PosSELOUTset������
SELOUTset���
�CYCLELINKS��� � �� ����� ���� � �
� ����� ���� �� �CYCLELINKS�����CYCLELINKS����� �
� ����� ���� �� CYCLELINKS���� � ��� � �������

� ��� ����� �� �� ������� �
� ����� ���� �� CYCLELINKS���� � ��� � �������

� ��� ����� �� �� ��������

The sets SELINset, SELOUTset, PosSELINset
and PosSELOUTset keep the reference pattern informa-
tion of nodes (see [2]). The new node � will have the
same TYPE, STRUCTURE, SHARED, SHSEL, and TOUCH
properties which actually should be the same in �� and ��
to allow the summarization of both nodes. However, the
new reference pattern information behaves conservatively.
If
��� is or it is not an input/output selector in both nodes,
�� and ��, then it will remain the same in �. In other case,

��� becomes a possible input/output selector.

Finally, regarding the CYCLELINKS sets, the resulting
node � keeps the common cycle links sets from the original
nodes, �� and ��. In addition, a cycle link, �
����
��� �,
from one of the nodes, for example, ��, is also included in
the cycle link set of the node � if the first selector
��� is not
a link selector in the other node, ��.

4. Reduced Set of RSGs

We have already seen that an RSG describes a memory
configuration by a finite graph. Due to the control flow of
the program, the same sentence could be reached by sev-
eral control paths leading to several memory configurations.
This way, there could also be several RSGs for the same
program sentence. In our method, we maintain the repre-
sentation of all these RSGs with the Reduced Set of Refer-
ence Shape Graphs (RSRSG).

However, the number of RSGs stored in an RSRSG
could be prohibitive if we do not apply some simplifica-
tions while keeping reasonable accuracy in the representa-
tion. Actually, this simplification consists in allowing the
union of some of the RSGs which fulfill certain conditions.
After the union, the resulting RSG should represent all the
locations approximated by the original RSGs and the rele-
vant shape information should be maintained.

More precisely, two graphs,

�� and

��, can be
joined in a single one if they are compatible. Thus, we
define COMPATIBLE������ ����� � true if ALIAS������ �

ALIAS������� � COMP NODES������ ����� � �. We see that
two graphs,

�� and

��, are compatible if they fulfill
two conditions: i) the alias relation between pvars of both
graphs are the same; and ii) certain nodes in both graphs
are compatible. This leads us to define the alias relation be-
tween pvars and the compatibility condition between certain
nodes in the graphs:

- ALIAS�

�� is the set of alias relations, ��
�, in the

� graph, where each ��
� identifies all the pvars pointing
to the same node ��:
ALIAS����� � ������

� �����where ���� � �����

� ��� �
�� if ��� � ������� � ���� �� ��

� � ���� �� �� �������

- COMP NODES�

���

��� is a Boolean function which
returns true if the nodes directly pointed to by the same
pvar are compatible. This function is formalized in two

steps: the first one identifies the nodes from both RSGs,
�� � ��

��� and �� � ��

���, which are pointed to
by the same pvar; the second step determines whether these
nodes have similar properties using an additional Boolean
function C NODES:
COMP NODES������ ����� � ���� if ������ � ��
� ������ �� �� ��������� � ������ �� �� �������� �
C NODES��� � ��� � �

Where
C NODES���� ��� � ���� if �TYPE���� � TYPE������
�SHARED���� � SHARED����� � �SHSEL���� ����� �
SHSEL���� ���������� � �� � �TOUCH���� � TOUCH������
�C REFPAT���� ��� � �� � �C SPATH���� ���	� � ��

In the following subsections, we describe the operations
that can be carried out with the RSGs of an RSRSG, as we
have seen in Fig. 2.

4.1. Graph division

The division operation takes place for the � �
�� �
����, � �
�� � 	 and 	 � � �
��. The goal of this
operation is to split the input

� into several graphs, such
that for each one of these graphs, the node directly pointed
to by � points to a single node by selector
��. Going back
to Fig. 1 (a), we can see how the

� is divided into graphs

��� and

��� (Fig. 1 (b)), in such a way that in each re-
sulting graph, �� points to a single node by ���.

Basically, with the division, we try to recover the indi-
vidual characteristics of memory configurations that were
fused into a single RSG in a previous sentence. However,
this division can generate redundant or inexistent nodes, and
links which should be removed by the subsequent PRUNE
operation, achieving a more precise representation.

We define DIVIDE�

�� ��
��� � �

��� ���

���
which divides the

� in the set �

��� ���

��� regarding
the pvar � and selector
��. This division is carried out in the
following way. If � � ������� � ��� �� �������, then,
� � �� ���� �� �� ������� , we create a

��� such that
�����
�� � ������, ������
�� � ������� and ������
�� �

������� � �� �� ���� �� �� �������� ��� �� ���. Each

��� can contain a single node �� pointed to by � by se-
lector
��. This

��� is subsequently pruned to obtain the
definitive

�� � PRUNE�

���� for the DIVIDE function.
This pruning process is described next.

4.2. Graph pruning

After graph division, there can be nodes or links in a
graph which are not compliant with the new properties of
this graph. These nodes or links can be removed because
they belong to other graph resulting from the division oper-
ation.

In our previous example we can see how the two di-
vided graphs of Fig. 1(b) are simplified into the graphs pre-
sented in Fig. 1(c). Note that

���� is obtained after the

pruning of

���, in which we can safely remove the link
� ��� �
�� �� � due to it not fulfilling the cycle link prop-
erties of node ��. This property states that subsequently
following �
� and ��� from node ��, this �� should be
reached, but this does not happen for the above-mentioned
link. Regarding

����, note that the same happens for the
link � ��� �
�� �� �. Besides this, because node �� is not
shared by selector��� and we are sure that� ��� ���� �� �

exists, we can conclude that � ��� ���� �� � should be re-
moved. This implies the elimination of � ��� �
�� �� �

due to cycle link properties. After this elimination, node � �

cannot be reached and is therefore removed from

��� �. It
is important to note that the false value in share attributes
leads to a more aggressive pruning which simplifies the
RSRSGs and greatly contributes to avoid an explosion in
the number of nodes.

To formalize the pruning process, our method uses
two Boolean functions to determine whether a node,
N PRUNE���, or a link, NL PRUNE�� ���
��� �� ��, ful-
fill the graph properties:

� A certain node, �, is removed from the graph only tak-
ing into account the reference pattern property. That is, if
the reference patterns sets assert that the node is referenced
by selector
�� or that this node references by
�� to another
node, these conditions should be hold. In other cases, the
node should be eliminated from the graph. More formally
N PRUNE��� � ���� if ������ � SELOUTset��� � ���� ��
posSELOUTset��� � ��� � �������� �� ����� �� ��
�������� � ������ � SELINset��� � ���� �� pos-
SELINset��� � ��� � �������� ��� ����� � �� ��������

� On the other hand, the link restrictions arise due to
the CYCLELINKS property. For example, let’s assume a
certain node, �, has a set of CYCLELINKS which com-
prises this particular one: �
����
��� �. This cycle link
points out that the memory locations represented by the
node points to others by selector
���, and those ones point
to the original locations by selector
���. Therefore, in our
example, if the node �� pointed to by �� does not point
again to �� using selectors
��� and
���, respectively, we
can safely remove the link � ���
���� �� �. Formally

NL PRUNE�� ��� ����� �� �� � ���� if � � ����� ���� ��
CYCLELINKS����� � ��� ����� �� ��� �������

Additionally, we should note that this pruning is an iter-
ative process, because after the elimination of some nodes
or links there may appear more nodes or links which do not
fulfill the rules and should be removed too. This way, the
pruning process ends when all the nodes and links fulfill
the graph properties. The whole process can be expressed
as PRUNE�

�� �

��. This iterative function starts with

�� �

�. Next, 	� � ����:
������� � ��������� � �� � ����������N PRUNE��� � ���
�������� � ���������� � �� ����� � �� �����������
N PRUNE��� � �� and
�������� � ���������� � �� ��� ���� �� �� �����������
�N PRUNE���� � �� � �N PRUNE���� � ���
�NL PRUNE�� ��� ���� �� �� � ���

where for each iteration we remove the nodes and links for
which functions N PRUNE and NL PRUNE return true. The
process ends when we reach the graph

�� which holds
�� � ��������N PRUNE��� � � � � � ��� ���� �� ��

���������NL PRUNE�� ��� ���� �� �� � �

4.3. Graph union

To obtain the RSRSG for a sentence, two compatible
graphs

�� and

��, (COMPATIBLE ������ ����� � �),
can be fused in a single graph,

�, which captures the
data structure information represented by the two origi-
nal graphs. This union of graphs is carried out by the
JOIN�

���

��� �

� function. Some of the nodes of

�� and

�� are going to be summarized if they are com-
patible. Now, using the function MERGE NODES described
in Sect. 3.1 we can describe the sets � , ��, and �� of the
new

�, resulting from the union of

�� and

��:

� The set of nodes, � , for the new graph,

�, com-
prises three subsets: the non-compatible nodes from

��,
the non-compatible nodes from

��, and the nodes result-
ing from the union of compatible nodes (MERGE NODES):

������ � ��� � ����������� � ��������C NODES���� ���
� ���
 ��� � ����������� � ��������C NODES���� ��� �
���
 �� � MERGE NODES���� ���� ��� � �������� ��� �
���������C NODES���� ��� � ���

We use a MAP���� � � function to describe the new
���

�� and���

�� sets. This function points out which
node � of the new graph is now representing the node � �

from

�� or

��.
� The set of references from pvars to nodes ���

�� are

obtained by translating the old references from

�� and

�� to the new graph using the MAP function.
������� � �� ������ ���� � � ��� ��� �� �� ���������

�� ������ ���� � � ��� ��� �� �� ���������

� Similarly, we obtain the set of links between nodes:
������� � �� ��� ����� ���� ���� ���� � � � � ��� ���� �
�� �� ���������
 �� ��� ����� ���� ���� ���� � � �
� ��� ���� � �� �� ���������

This way, in the new graph,

�, we keep all the ref-
erences and links existing in the original graphs,

�� and

��, just changing the source and destination nodes.

5. Experimental results

All the previously described operations and properties
have been implemented in a compiler written in C which
analyzes a C code to generate the RSRSG associated with
each sentence of the code.

As we have seen, the set of properties associated with a
node allows the compiler to keep in separate nodes those
memory locations with different properties. Obviously, the
number of nodes in the RSRSGs depends on the number of

S.Mat-Vec S.Mat-Mat
Level �� / �� / �� �� / �� / ��

Time 0’03”/0’05”/0’07” 0’51”/1’36”/1’57”
Space (MB) 1.37/1.85/2.17 8.13/11.45/12.68

S.LU fact. Barnes-Hut
Level �� �� / �� / ��

Time 12’15” 17’01”/1’47”/3’21”
Space (MB) 99.46 44.46/12.44/21.31

Table 1. Time and space required by the com-
piler to analyze several codes

properties and also on the range of values these properties
can take. The higher the number of properties the better the
accuracy in the memory configuration representation, but
also the larger the RSRSGs and memory wastage. Fortu-
nately, not all the properties are needed to achieve a precise
description of the data structure in all the codes.

Bearing this in mind, we have implemented the compiler
to carry out a progressive analysis which starts with fewer
constraints to summarize nodes, but, when necessary, these
constraints are increased to reach a better approximation of
the data structure used in the code. More precisely, the com-
piler analysis comprises three levels:

� ��: In this level the TOUCH sets are not built nor taken
into account and only the C SPATH0 condition is used.

� ��: This level is based on the previous one but now
using the C SPATH1.

� ��: This is the higher level in which all the properties
including the TOUCH one are taken into account.

With this compiler we have analyzed several C codes:
the sparse Matrix by vector multiplication, the sparse Ma-
trix by Matrix multiplication, the Sparse LU factorization,
and the Barnes-Hut code. The first three codes were suc-
cessfully analyzed in the first level of the compiler, �� (a
detailed description of these codes and the compiler results
is in [2]). However, for the Barnes-Hut program the high-
est accuracy of the RSRSGs was obtained in the last level,
��, as we explain in Sect. 5.1. All these codes where ana-
lyzed by our compiler in a Pentium III 500 MHZ with 128
MB main memory. The time and memory required by the
compiler are summarized in Table 1.

As we mentioned, all sparse codes are accurately ana-
lyzed in the compiler �� level. However, in Table 1 we also
present time and memory requirements of levels �� and ��

to illustrate how increasing the number of properties usu-
ally leads to higher compilation times and larger memory
pools. For the Sparse LU factorization, our compiler runs
out of memory in�� and�� in our 128 MB Pentium III and,
therefore, only values for �� level are provided. The excep-
tion in Table 1 is due to the Barnes-Hut N-body simulation

which is described next.

5.1. Barnes-Hut N-body simulation

This code deserves more attention due to it being a good
example in which the compiler has to sequentially carry out
the three levels of compilation in the progressive analysis.

This code is a classical gravitational N-body simulation
which simulates the evolution of a system of bodies under
the influence of gravitational forces. The data structure used
in this code is based on a hierarchical octree representa-
tion of space in three dimensions. In Fig. 3(a) we present a
schematic view of the data structure used in this code. The
bodies are stored by a single linked list pointed to by the
pvar ������
. The octree represents the several subdivi-
sions of the 3D space.

The three main steps in the algorithm are: (i) The cre-
ation of the octree; (ii) for each subsquare in the octree,
compute the center of mass and total mass for all the parti-
cles it contains, traversing the tree; and (iii) for each parti-
cle, traverse the tree to compute the forces on it.

All the traversals of the octree are carried out in the code
in recursive calls. Due to the fact that our compiler is still
not able to perform an interprocedural analysis, we have
manually carried out the inline of the subroutine and the
recursivity has been transformed into a loop. This loop uses
a stack pointing to the nodes which are referenced during
the octree traversal. This stack is also considered in Fig. 3
(a) and obtained in the corresponding RSRSG, Fig. 3 (b).

After the �� analysis of the code, the resulting RSRSG
for the last sentence of the code does not correspond with
the real properties of the data structure used in the code. The
problem is that the summary node ��, which represents the
middle elements of the ������
 list fulfill SHSEL(body) =
true. This would imply that there may be different leaves
in the octree pointing to the same body in the ������

list. This inaccuracy is due to an imprecise analysis dur-
ing the generation of the list of children in the octree, and
it is avoided moving on to the �� level, thanks to the use of
C SPATH1. The resulting RSRSG can be seen in Fig. 3(b),
where the summary node �� fulfills SHSEL���� ���	� =
false, in line with the real data structure. However, due to
the stack we use to assist the octree traversal, there is a prob-
lem that cannot be solved in ��: nodes ��, ��, and �� are
shared by selector ���� from the ����� data structure. This
would prevent the parallel traversal of the octree in steps (ii)
and (iii).

However, by switching to the �� compilation level this
problem is solved for traversal (iii) thanks to the TOUCH
property. A subsequent analysis of the code can state that
the tree can be traversed and updated in parallel on step (iii).

However, regarding the Table 1, there is a paradoxical
behavior that deserves an explanation: �� and �� expend

LIST OF
BODIES

child

Root

OCTREE

STACK

node
nxt

nxt
body

Lbodies

nxtStack

Lbodies
nxt

n5

nxt

n6

nxt

n7

nxt

node

n10

body nxt

n2

child

OCTREE

body nxt

n3

child body nxt

n4

child

Root
body nxt

n1

child
Stack

nxt

node

n8

LIST OF BODIES

nxt

node

n9

STACK

(a) (b)

Figure 3. Barnes-Hut data structure and compacted RSRSG.

less time and memory than ��. As was briefly described
in the example in Sect. 4.2, when SHARED and SHSEL
are false there are more nodes and links pruned during the
abstract interpretation of a sentence. In this code, for the
�� and �� levels, the SHSEL���� ���	� = false leads to
more pruning and graph simplifications counteracting the
increase in complexity.

6. Conclusions and future work

We have developed a compiler which can analyze a C
code to determine the RSRSG associated with each sen-
tence of the code. Each RSRSG contains several RSGs,
each one representing the different data structures which
may arise after following different paths in the control flow
graph of the code. However, several RSGs can be joined if
they represent similar data structures, in this way reducing
the number of RSGs associated with a sentence. Every RSG
contains nodes which represent one or several memory loca-
tions. To avoid an explosion in the number of nodes, all the
memory locations which are similarly referenced are repre-
sented by the same node. This reference similarity is cap-
tured by the properties we assign to the memory locations.
In comparison with previous works, we have increased the
number and complexity of properties assigned to each node.
This leads to more nodes in the RSG, however, we keep a
more accurate representation of the data structure. This is
a key issue when analyzing the parallelism exhibited by a
code. Besides, the compiler carries out a progressive anal-
ysis, increasing the complexity of the compilation process
only for those codes which really need it.

We have validated the compiler with several C codes
which generate, traverse, and modify complex dynamic data
structures.

In the near future we want to face the interprocedural
analysis problem to deal with recursive calls. We will also
develop an additional compiler pass that will automatically
analyze the RSRSGs and the code to determine the parallel
loops and allow the automatic generation of parallel code.

References

[1] F. Corbera, R. Asenjo and E.L. Zapata. New shape analy-
sis for automatic parallelization of C codes. In ACM Inter-
national Conference on Supercomputing, 220–227, Rhodes,
Greece, June 1999.

[2] F. Corbera, R. Asenjo and E.L. Zapata. Accurate Shape
Analysis for Recursive Data Structures. In 13th Int’l. Work-
shop on Languages and Compilers for Parallel Computing,
IBM T.J. Watson Res. Ctr., New York, August 2000.

[3] E. Gutirrez, R. Asenjo, O. Plata and E.L. Zapata. Automatic
Parallelization of Irregular Applications. J. Parallel Com-
puting, vol. 26, no. 13-14, December 2000, pp. 1709-1738.

[4] S. Horwitz, P. Pfeiffer, and T. Reps. Dependence Analysis
for Pointer Variables. In Proceedings of the SIGPLAN Con-
ference on Programming Language Design and Implemen-
tation, 28-40, June 1989.

[5] N. Jones and S. Muchnick. Flow Analysis and Optimization
of Lisp-like Structures. In Program Flow Analysis: Theory
and Applications, S. Muchnick and N. Jones, Englewood
Cliffs, NJ: Prentice Hall, Chapter 4, 102-131, 1981.

[6] J. Plevyak, A. Chien and V. Karamcheti. Analysis of Dy-
namic Structures for Efficient Parallel Execution. In Lan-
guages and Compilers for Parallel Computing, Eds. Lectures
Notes in Computer Science, vol 768, 37-57. Berlin Heidel-
berg New York: Springer-Verlag 1993.

[7] M. Sagiv, T. Reps and R. Wilhelm. Solving Shape-Analysis
problems in Languages with destructive updating. ACM
Transactions on Programming Languages and Systems,
20(1):1-50, January 1998.

[8] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape anal-
ysis via 3-valued logic. In Conf. Record of the 26th ACM
Symposium on Principles of Programming Languages, San
Antonio, TX, ACM, NY, Jan. 1999, pp. 105-118.

[9] Y. Hwang and J. Saltz. Identifying DEF/USE information
of statements that construct and traverse dynamic recursive
data structures In Proceedings of 10th International Work-
shop on Languages and Compilers for Parallel Computing,
University of Minnesota, August 1997.

