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Abstract. To successfully exploit all the possibilities of current computer/multi-
computer architectures, optimization compiling techniques are a must. However,
for codes based on pointers and dynamic data structures these optimization tech-
niques have to be necessarily carried out after identifying the characteristics and
properties of the data structure used in the code. In this paper we present one
method able to automatically identify complex dynamic data structures used in
a code even in the presence of arrays of pointers. This method has been imple-
mented in an analyzer which symbolically executes the input code to generate a
set of graphs, called RSRSG (Reduced Set of Reference Shape Graphs), for each
statement. Each RSRSG accurately describes the data structure configuration at
each program point. In order to deal with arrays of pointers we have introduced
two main concepts: the multireference class, and instances. Our analyzer has been
validated with several codes based on complex data structures containing arrays
of pointers which were successfully identified.

1 Introduction

Programming languages such as C, C++, Fortran90, or Java are widely used for non-
numerical (symbolic) and numerical applications. All these languages allow the use of
complex data structures usually based on pointers and dynamic memory allocation. The
use of complex data structures is very helpful in order to speedup code development
and, besides this, it also may lead to reducing the program execution time. However,
compilers are not able to successfully optimize codes based on these complex data
structures for current computers or multicomputers.

More precisely, when dealing with pointer-based data structures usually built at run
time, current compilers are not able to capture, from the code text, the necessary infor-
mation to exploit locality, automatically parallelize the code, or carry out other impor-
tant optimizations. In other words, if the compiler is not aware of the properties fulfilled
by the data structure used in the code, it is impossible to apply certain optimizations.
For instance, if the compiler does not know that a certain loop is traversing a doubly
linked list, then important techniques such as data prefetching, locality exploiting or
parallelism detection, cannot be applied.

With this motivation, the goal of our research line is to propose and implement new
techniques that can be included in compilers to allow for the automatic optimization
of real codes based on dynamic data structures. As a first step, we have selected the
shape analysis subproblem, which aims at estimating at compile time the shape the data
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will take at run time. Given this information, subsequent analysis (not implemented yet)
would focus on particular optimizations, for example, to exploit the memory hierarchy
or to detect whether or not certain sections of the code can be parallelized because they
access independent data regions.

There are several ways this shape analysis problem can be approached, some of
which are based on explicit programmer annotations [9], and others are based on ab-
stracting the properties of data structures by means of “path expressions” [11], “matri-
ces” [6] or graphs. We have focussed on graph-based methods as they are able to explic-
itly keep information about dynamic objects not pointed to by any pointer variable. In
these graphs the nodes represent the “storage chunks” and edges are used to represent
references between them. Some of these graph-based methods use just one graph to ap-
proximate all possible memory configurations for each statement in the code [2, 12, 13],
whereas other methods permit the existence of several graphs per statement to represent
the information more accurately [10, 8, 14]. Our own method belongs to the later class,
and it is described in [4, 5]. Basically, our analyzer generates a reduced set of reference
shape graphs (RSRSG) for each statement in the code. Each RSRSG approximates the
data structure at each corresponding program point. We have compared our analyzer
with other related works in [4, 5], but we emphasize here that to the best of our knowl-
edge, our analyzer is the only one able to accurately identify the data structure at each
statement of a real C code. The analyzed codes are based on complex data structures
such as doubly linked lists, trees, and octrees among others, and combinations of them,
such as a doubly linked list of pointers to trees where the leaves point to doubly linked
lists, etc.

However, our analyzer was not able to handle arrays of pointers as part of the dy-
namic data structure. Therefore, in this paper we describe how we extend our method
to deal with structures containing arrays of pointers. Please, note that this is the main
goal of this paper and that the analyzer details (which are already covered in [4, 5]) can
not be tackled here due to space constrainst. Again, as far as we know, there is no other
previous technique able to automatically identify complex data structures comprising
arrays of pointers. However, arrays of pointers are frequently included in the definition
of complex and dynamic data structures such as sparse matrices and quad/octrees, as
we see in Sect. 5, and therefore they deserve to be taken into account in the area of
shape analysis research.

The rest of the paper is organized as follows. In Sect. 2 we provide an overview
of our shape analysis method, briefly summarizing our previous work for the sake of
completeness, as the next sections are based on these ideas. Sect. 3 introduces new con-
tributions to deal with arrays of pointers, such as the multiselector and instance ideas.
These new issues lead to new steps in shape analysis which are described in Sect. 4.
In Sect. 5 we present the experimental results obtained after feeding our analyzer with
several codes based on structures comprising arrays of pointers. Finally, we conclude
with the main contributions and future work in Sect. 6.
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2 Method Overview

Basically, our method presented in [4, 5] is based on approximating all possible mem-
ory configurations that can appear after the execution of a statement in the code. We call
a collection of dynamic structures a memory configuration. These structures comprise
several memory chunks, that we call memory locations, which are linked by references.
Inside these memory locations there is room for data and for pointers to other memory
locations. These pointers are called selectors. Each statement in the code will have a set
of Reference Shape Graphs (RSG) associated with it, which are called a Reduced Set
of Reference Shape Graphs (RSRSG). The RSGs are graphs in which nodes represent
memory locations which have similar reference patterns. To determine whether or not
two memory locations should be represented by a single node, each one is annotated
with a set of properties. Now, if several memory locations share the same properties,
then all of them will be represented by the same node. These properties are described
in [4, 5], but to understand the experimental results we have to explain one of them:
the share information. This property can tell whether at least one of the locations repre-
sented by a node is referenced more than once from other memory locations. In order to
hold the shared information we use two kinds of attributes for each node: SHARED(n)
states if any of the locations represented by the node � can be referenced by other
locations by different selectors, and SHSEL(n, sel) points out if any of the locations
represented by � can be referenced more than once by following the same selector ���
from other locations.

As we have said, all possible memory configurations which may arise after the exe-
cution of a statement are approximated by a set of RSGs we call RSRSG. To move from
the “memory domain” to the “graph domain”, the calculation of the RSRSGs associ-
ated with a statement is carried out by the symbolic execution of the program over the
graphs. In this way, each program statement transforms the graphs to reflect the changes
in memory configurations derived from statement execution. The abstract semantic of
each statement states how the analysis of this statement must transform the graphs. The
whole symbolic execution process can be seen by looking at Fig. 1. For each statement
in the code we have an input ������ and the corresponding output ������ rep-
resenting the memory configurations after statement execution. During the symbolic
execution of the statement all the ����� belonging to������ are going to be updated.
The first step comprises graph division to better focus on the several memory config-
urations represented by the RSG. Pruning removes redundant or nonexistent nodes or
links that may appear after the division operation. Then the abstract interpretation of the
statement takes place and usually the complexity of the RSGs grows. In order to counter
this effect, the analysis carries out a compression operation. In this phase each RSG is
simplified by the summarization of compatible nodes, to obtain the ��� ���� graphs. Fur-
thermore, some of the ������� can be fused into a single ����� if they represent similar
memory configurations. This operation greatly reduces the number of RSGs in the re-
sulting RSRSG.

In the next two sections we present the new extension that allows our analyzer to
deal with dynamic data structures comprising arrays of pointers, as these kinds of data
structures are widely used in C codes. Due to space constraints we have tried to present



4 F. Corbera, R. Asenjo, E.L.Zapata

RSRSG i RSRSG o
Symbolic execution of the sentence

*

*

*

i1

ij

in
rsg

ij2

ij1

ijk

and compression

rsg
rsg

rsg

ij1

ijk

ij2

o1rsg

okrsg

rsg om

graph union

rsg

rsg

rsg

rsg
rsg

and pruning
Division Abstract

interpretation
Compatible

Fig. 1. Schematic description of the symbolic execution of a statement.

a clear idea of our extensions using English and examples, but more technical details
are in [3].

3 Multiselectors

We can view an array of pointers as a set of � selectors (links), all with the same name.
Our original method, briefly described in the previous section, only deals with single
selectors (which represent single links). Thus, the problem arising with the arrays of
pointers is that a single selector name represents several links, and all of them belong
to the same memory location (due to having been allocated by the same malloc instruc-
tion).

We illustrate all this with the following example. Figure 2 shows an example of a
complex data structure definition comprising two arrays of pointers, and it also illus-
trates the corresponding memory configuration after the execution of the last “malloc()”
statement. As we note, ��� is a single selector which can point to a single memory loca-
tion and which can be modified by statements like “x�sel=...”. These kinds of selectors
can be managed by our previous analyzer. However, ���� and ���� represent arrays of
selectors. The difference between ���� and ���� is that we know the size of the ����
array at compile time, but the size of ���� is defined at run time. In any case, we now
want to deal with both types of arrays of selectors, which now have to be modified by
statements like “x�sel1[i]=...” or “x�sel2[i]=...”.

Since ���� and ���� are not single selectors, we have called them multiselectors.
In order to take into account multiselectors in our method we have introduced in our
analyzer two new important concepts: instance and multireference class. The idea is
the following: since our method is already able to deal with single selectors our goal
is now to include a previous step in the symbolic execution process to focus on one
of the selectors included in a particular multiselector. In other words, a statement like
“x�sel1[i]=...” is going to update a single selector (a particular selector included in the
multiselector ����), but before applying the symbolic execution, first we have to identify
the particular sel1[i] which is going to be updated. The instances and multireference
classes will help us to develop this preprocessing stage.
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typedef struct str �
...
struct str1 *sel;
struct str2 *sel1[256];
struct str **sel2;

�
x=(str *)malloc(sizeof(
struct str));
x->sel2=(str **)malloc(n*
sizeof(str *));

256 n

. . .

str2

str2

str2

str

str

. . .

x

str1

sel sel1 sel2

Fig. 2. Example of data structure containing arrays of pointers

3.1 Instances

An instance of a multiselector represents a subset of links belonging to this multise-
lector. In other words, an instance identifies a subregion in the array of pointers. For
example, for the statement 	 � ����
� the analyzer creates an instance in the multis-
elector ��� (the one directly pointed to by 	), which represents the 
 position of array
���. This way, this instance can be processed and modified by the analyzer as if it were
a single selector.

In our method, the set of variables which are used to index the arrays of pointers is
called IVARS. Now, an instance, 
��, is identified by two sets, � 
��
 �
�� � where:

� 
�� � �
� � IVARS�, is the set of index variables which identifies the array
position represented by the instance.

� �
�� � �
� � IVARS�, is the set of index variables that have previously visited
the array position represented by the instance, but which are currently indexing other
array positions.

The reason to keep the �
�� set, is to achieve a more accurate description and pro-
cessing of the link represented by 	� ����
� inside a loop body in which the variable 

does not take the same value twice. Therefore, the reference 	 � ����
� always identi-
fies a different position of the array ��� and the analyzer will be able to avoid updating
regions of the data structures already updated in a previous iteration of the loop.

The functions 
���
��� and �
���
��� provide the 
�� and �
�� sets respectively.
Now, we can say that there are two types of instances:

� Single instance. These instances represent exactly one position of the array and
they can be handled as a single selector. The instance 
�� is a single instance if 
���
���
�� �, which means that there is an index variable in the 
�� set for the corresponding

�� instance.

�Multiple instance. These instances represent more than one array position, i.e. one
array region. Now, if 
�� is a multiple instance, then 
���
��� � �.

We illustrate all these concepts with an example. In Fig. 3 we can see a graph as-
sociated with the statement 4 of the code presented in the same figure. Actually, at this
program point, the pointer variable (pvar) ���� is pointing to the root of the tree repre-
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sented by node ��. This tree root contains an array of pointers to the children, called
��
��. Therefore, the node �� contains the ��
��multiselector. In this example, for this
multiselector, there are three instances represented by three circular nodes.

... (tree pvar points to a previ-
ously created tree)
1 for (i=0; i<n; i++) {
2 j = ...
3 if (j == i) {
4 tree->child[j] = ....
5 ...
6 }
7 else {
8 ...
9 }
10 }
11 }

0
0vivs=

ivs={i,j} 0ivs=
vivs={i}

tree

child
n1

NULL

child
n2

Fig. 3. Code example and graph representation of the instances.

If statement 4 is reached, clearly index variables 
 and � share the same value and
the corresponding RSRSG will reflect this fact. Actually, the first instance, identified
by � �

 ��
 � � (which means 
�� � �

 ��
 �
�� � �), represents the single array
position indexed by variables 
 or �. Clearly, this is a single instance as index variables

 or � have a single value at this program point and this way they index a single array
position. The �
�� � � for this instance states that this array position was not previously
visited by any index variable.

The second instance is identified by � �
 �
� �. This is a multiple instance repre-
senting all the array positions not indexed at the current statement by any index variable
but previously visited by the index variable 
 in previous iterations of the loop at state-
ment 1. Finally, the last instance, identified by � (� �
 � �), represents all the other
array positions: not indexed now or before by index variable 
.

For example, if 
 � �, at statement 4, the instance � �

 ��
 � � represents the
position 5 of the array, the instance � �
 �
� � represents positions 0 to 4 and the
instance � identifies positions 6 to the final one.

3.2 Multireference Classes

As we saw in Sect. 2, our method symbolically executes each statement of the code,
and some of the operations included in the symbolic execution are graph compression
and union and graph division. Graph compression and union operations are necessary
to avoid an explosion in the number of nodes and graphs associated with each statement
to describe the data structure at each program point. On the other hand, the goal of the
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Fig. 4. Compression and division with multireference classes

division operation is to focus on the area of the graph which is going to be modified
by the symbolic execution of a statement, leading to a much more accurate updating
of the RSRSGs. These operations were defined and work well for single selectors, but
something new has to be introduced to also deal with multiselectors: the multireference
classes, (��).

After the allocation of a new memory location, multiselectors are labeled with a
certain multireference class. During the graph compression and union operations, com-
patible nodes which represent similar memory locations are fused or summarized into a
single one. When two nodes are summarized the destinations of their selectors and mul-
tiselectors may be joined as well, but multiselector preserves their multireference class.
Thus, if for a later statement the analyzer wants to focus on one of the summarized
nodes, it is possible to separate them, thanks to the multireference classes.

We can better illustrate this with the example in Fig. 4. First we note in Fig. 4 (a) that
nodes �� and �� have the same multiselector���, but links from node �� are labeled
with��� and those from �� belong to the multireference class���. Let’s suppose that
nodes �� and �� are compatible and can be summarized into a new node � � in Fig. 4
(b). Some of the destination nodes are also joined but the multireference classes allow
the analyzer to accurately focus on node �� or �� if they have to be modified later
(Fig. 4 (c)).

Having introduced these two key concepts associated with multiselectors we can
move on to briefly describe how the symbolic execution of the statements has to be
modified to take into account this new information.

4 Extended Symbolic Execution for Multiselectors

As we said in Sect. 2, the symbolic execution of a statement carries out the generation of
the output RSRSG� which captures the modifications, due to this statement, in the data
structures represented by the input RSRSG�. Basically, as we explained in Fig. 1, the
symbolic execution process first focusses on the section of the graphs which are going
to be updated, to subsequently carry out the abstract interpretation of the statement
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which conveniently modifies the graphs. Finally, graphs are compressed and some of
them joined for the sake of memory wastage minimization.

This scheme is valid for statements in which only single selector are involved. How-
ever, if the statement includes multiselectors, 	 � ����
� � ����, 	 � ����
� � �
and � � 	� ����
�, the analyzer must first identify the 
 position of the array of point-
ers to focus on the particular link represented by ����
�. If we are able to do this, then
we can later apply the single selector procedure because we have translated a multi-
selector into a single selector. Since we are carrying out an analysis at compile time,
sometimes the method has to behave conservatively: if we cannot identify the particular

 selector we have to update all the links that may be represented by the ����
� selector.
Fortunately, the analyzer normally avoids inaccurate updates since it is able to exclude
several links that are definitely not represented by ����
�. Basically, in order to focus
on a single selector from a multiselector, the analyzer implements two previous steps
as we can see in Fig. 5: multireference class division and instantiation. These two pre-
processing stages are executed only for the symbolic execution of statements involving
multiselector, and are briefly described next.

4.1 Multireference Class Division

For a given statement like 	 � ����
�, the multireference class division operation just
splits the different configurations of the links represented by multiselector sel into sev-
eral graphs. These different configurations are in the same graph after a graph union
operation and may coexist in the graph domain for the sake of memory saving. How-
ever, in the memory domain those configuration are exclusive and the analyzer has to
separate them. In other words, in order to increase the accuracy of the method, before
updating a graph, the analyzer looks for the most precise description of the memory
configurations which are going to be updated.

More precisely, given an ���� to be updated by a statement, the multireference class
division will split the ���� into as many graphs ������

� as there are multireference
classes in the multiselector, as we can see in Fig. 5. Note that the number of multiref-
erence classes that may appear in a multiselector is limited as a multireference class is
just an identifier of a subset of links that may be represented by a multiselector. Since
the number of links represented by a multiselector is finite (due to there being a finite
number of nodes), the number of subsets of links is also finite.
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Fig. 6. An example of graph that has to be updated.

This operation can be better illustrated by the example in Fig. 6 where we can see
a hypothetical ���� before the execution of statement of the type “� � ����
� � ���”.
In this graph, the pointer variable � is pointing to a memory location containing the
multiselector ���. There are two instances associated with this multiselector which are
identified by (� �
 �
� �), instance 
���, and �, instance 
���. Both instances are
pointing to other locations and the links are labeled with two multireference classes,
��� and���.

Put simply, this graph represents an array of pointers, �, where the already visited
positions (instance 
���) are pointing to NULL, ���, or to single linked lists of two
or more elements (��, ��, and ��), ���, depending of the followed path reaching the
statement in the control flow graph. On the other hand, non-visited positions of array �
(instance 
���) may point to a single memory location ��,���, or to NULL,���
���.

The multireference class division operation generates the two different graphs we
can see in Fig. 7. The first graph, Fig. 7 (a), is obtained just by keeping the links belong-
ing to multireference class���, whereas the second graph, Fig. 7 (b), keeps those links
of the multireference class���. Now we have identified two possible memory config-
urations (two possible data structures) that may reach the statement “�� ����
� � ���”.
Note that in this example, these two memory configurations reach the same statement
after following two different paths in the control flow graph of the analyzed code. The
analyzer has to conservatively update each memory configuration according to the new
“�� ����
� � ���” statement because at compile time the analyzer does not know which
path is going to be the one executed at run time.

4.2 Instantiation

After the multireference class division, several graphs ������
� are going to be modified

by the instantiation operation. The goal now is to focus on the particular 
 position of
the array of pointers to successfully translate a multiselector into a single selector. In
order to do this, the analyzer has to generate a new single instance to represent the 
 link
of the multiselector ���. This particular link will be later processed as a single selector
by the subsequent compiler passes as can be seen in Fig. 5.

More precisely, for a statement of the type 	 � ����
�, the new single instance has
to fulfill that 
�� � �

 ����. In the worst case, the new instance would inherit all the
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Fig. 7. Graphs obtained after the multireference class division.

links which point to other memory locations from the other already existing instances.
This is the most conservative case in which the analyzer is not able to extract more
precise information about the particular 
 position of the array involved in the statement.
However, in most cases, the analyzer would be able to identify some relations between
index variables. These relations are stored in an index variable relation table, IVRT,
which is going to help in reducing the number of links that the new single instances
have to inherit.

This IVRT�
��
 
��
 ��� table has to be generated in a preprocessing compiler pass
to store the relations between index variables 
�� and 
�� for the statement ��. The IVRT
table also holds the relations between an index variable now (in the current iteration of
a loop) and before (in a previous iteration) using the expression IVRT�
�
 ���
��
 ���,
where ���
�� represents the old values taken by 
� in previous iterations of the loop. The
possible values for IVRT�
��
 
��
 ��� are: eq, if 
�� and 
�� have the same value at ��;
neq, if they are different; or unk, if the relation between them is unknown. We are also
studying including in the �� �� generation pass more precise array region descriptions
such as those presented in [7] which also deals with non-affine access functions.

The IVRT holds key information regarding the initialization of the links correspond-
ing to the new single instance. This way, the new single instance � �
�
 � � has to
inherit all the links of the compatible instances, which are those that do not contain � in
the 
�� set where IVRT�

 �
 ��� � ���. This is due to the fact that if 
 �� � in ��, then
the instances with 
�� � ��
 ���� do not represent the 
 position of the array. Besides, if
IVRT�

 ���
�
 ��� � ���, then the new single instance � �
�
 � � will not inherit the
links of instances of the type � ���
 �

 ���� �.

We can better explain these ideas by reference to Fig. 7. Let’s suppose that the
analyzer has found out in a previous step that IVRT�

 ���
�
 ��� � ���, which means
that for the code statement �� the index variable 
 has a new value which has never been
taken by this variable in this statement �� (in a previous iteration). Now, the analyzer
has to generate a new single instance � �
�
 � � as we see in Fig. 8. Note that this new
instance only inherits the links of the � instance since the� �
 �
� � instance identifies
already visited positions of the array and we know that 
 now has a different value.

The number of instances that can appear in any multiselector is limited by the num-
ber of index variables and, as we said, an instance is just a pair of sets of index variables.
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Fig. 8. Resulting graphs after instantiation.

In addition, in these sets they will not appear all possible index variables, but just those
involved in the traversing of an array of pointers. These index variables are removed
from the instances when the symbolic execution leaves the loop in which the array of
pointer is traversed. Subsequently, instances with the same sets are fused and conse-
quently the number of instances decreased.

Due to space constraints we cannot cover additional important issues such as IVRT
generation and index variable analysis and scope; however, these are described in [3].

5 Experimental Results

With the previously described ideas we have extended the analyzer presented in [4, 5]
to allow for the automatic detection of the data structures at each program point for
codes based not only on single selectors but also on multiselectors. With this analyzer
we have analyzed several codes in which the dominant data structure comprises arrays
of pointers.

As we have seen, the set of properties associated with a node allows the analyzer
to keep in separate nodes those memory locations with different properties. Obviously,
the number of nodes in the RSRSGs depends on the number of properties and also on
the range of values these properties can take. The higher the number of properties the
better the accuracy in the memory configuration representation, but also the larger the
RSRSGs and memory wastage.

Fortunately, not all the properties are needed to achieve a precise description of the
data structure in all the codes. That is, simpler codes can be successfully analyzed tak-
ing into account fewer properties, and complex programs will need more compilation
time and memory due to all the properties that have to be considered to achieve ac-
curate results. Bearing this in mind, we have implemented the analyzer to carry out a
progressive analysis which starts with fewer constraints to summarize nodes, but, when
necessary, these constraints are increased to reach a better approximation of the data
structure used in the code. More precisely, the compiler analysis comprises three levels:
��, ��, and ��, from less to more complexity.

The analyzed codes are the sparse matrix vector multiplication, sparse matrix ma-
trix multiplication, sparse LU factorization, and the kernel of the Barnes-Hut N-body



12 F. Corbera, R. Asenjo, E.L.Zapata

Table 1. Time and space required by the analyzer to process several codes

Time Space (MB)
Level �� / �� / �� �� / �� / ��

S.Mat-Vec 0’03”/0’04”/0’05” 0.92/1.03/1.2
S.Mat-Mat 0’12”/0’14”/0’16 1.19/1.31/1.49
S.LU fact. 2’50”/3’03”/- 3.96/4.18/-
Barnes-Hut 61’24”/69’55”/0’54” 40.14/42.86/3.06

simulation. In Table 1 we present the time and memory required by the analyzer to pro-
cess these codes in a Pentium III 500 MHZ with 128 MB main memory. The first three
codes were successfully analyzed in the first level of the analyzer, ��. However, for the
Barnes-Hut code the highest accuracy of the RSRSGs was obtained in the last level,
��, as we explain in Sect. 5.2. For the Sparse LU factorization, our analyzer runs out of
memory in ��. We now briefly describe the results for the analyzed codes.

5.1 Sparse Codes

Here we deal with three sparse irregular codes which implement sparse matrix op-
erations: matrix vector multiplication, � �  � �, matrix by matrix multiplication,
! � " � #, and sparse LU factorization,! � �� .

In the two first codes, sparse matrices ,!, and" are stored in memory as an array
of pointers, ��$, pointing to doubly linked lists which store the matrix rows. Matrix #
is similarly stored by columns instead of by rows. The sparse vectors � and � are also
doubly linked lists. This can be seen in Fig. 9(a). Note that vector � grows during the
matrix vector multiplication process.

v rM
row

ROWS VECTOR VECTOR

prvnxt nxt prv

nxt

prv

MATRIX
HEADER

0M
row

NULLnxtnxt

v
nxt nxt

nxtnxtnxt

prv nxt prv prv prv nxt

prv nxt prv prv

prvprvprv

HEADER
MATRIX

r
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n2 n3 n4 n5

n6 n7 n8

n9 n10 n11
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Fig. 9. Sparse matrix-vector multiplication data structure and compacted RSRSG.

On the other hand, the sparse LU factorization solves non-symmetric sparse linear
systems by applying the LU factorization of the sparse matrix. Here, the sparse matrix
is stored by columns. However, this code is much more complex to analyze due to
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the matrix filling, partial pivoting, and column permutation which takes place in the
factorization in order to provide numerical stability and preserve the sparseness. After
the analysis process, carried out by our analyzer at level L1, the resulting RSRSGs
accurately represent the data structure at each program point for the three codes.

Regarding the sparse matrix vector multiplication, in Fig. 9(b) we present a compact
representation of the resulting RSRSG for the last statement of the code. Nodes where
the SHARED��� property is true are shaded in the figures. In this RSRSG we can clearly
see the three main data structures involved in the sparse matrix vector multiplication
( , �, and �). Each vector is represented by three nodes and the central one represents
all the middle items of the doubly linked list. The sparse matrix is pointed to by pointer
variable  which is actually an array of pointers with the multiselector ��$. This
multiselector has, for the last statement of the code, a single instance (�) representing
all the positions (pointers) of the array. In the RSRSG we can see that these pointers
can point to NULL (there is no element in the row), to a single node (the row has just
one entry), or to a doubly linked list of two or more elements. For the matrix matrix
multiplication, matrices !, ", and # are also clearly identified by three graphs like the
one just described before. The same happens for the in-place sparse LU factorization
where the resulting LU matrix is stored where the original matrix A was.

To properly interpret this graph representation of the sparse matrices we have to
say that the analyzer also knows that the SHSEL��
 ���� for all the nodes and all selec-
tors is false. Remember that SHSEL��
 ���� �false means that all the locations repre-
sented by � can not be referenced more than once by following the same selector ���
from other locations. This leads to several conclusions: (i) the doubly linked lists are
acyclic when traversed by following just one kind of selector (�	� or %��), since the
SHSEL��
 �	��=false points out that a node can not be pointed to twice by other nodes
using selector �	� (the same for %��); (ii) different pointers of the array ��$ point to
different rows, as SHSEL���
 ��$� � false; (iii) besides this, the doubly linked lists do
not share elements between them.

Using this information, a subsequent compiler pass would be able to identify the
traversals of the rows for prefetching or locality exploiting. Furthermore, the analyzer
would state that the sparse matrix rows/columns can be updated in parallel for some
loops of the codes, and that it is also possible to update each row/column in parallel.

5.2 Barnes-Hut N-Body Simulation

This code is based on the algorithm presented in [1] which is used in astrophysics. In
Fig. 10(a) we present a schematic view of the data structure used in this code. The
bodies are stored by a single linked list pointed to by the pvar �&��
��. The octree
represents the several subdivisions of the 3D space. Each leaf of the octree represents a
subsquare which contains a single body and therefore points to this body stored in the
�&��
�� list. Each octree node which is not a leaf has an array ��
�� of eight pointers
to its children.

The three main steps in the algorithm are: (i) The creation of the octree and list
(ii) for each subsquare, compute the center of mass and total mass; and (iii) for each
particle, traverse the tree, to compute the forces on it.
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Fig. 10. Barnes-Hut data structure and compacted RSRSG.

All the traversals of the octree are carried out in the code by recursive calls. Due
to the fact that our analyzer is still not able to perform an interprocedural analysis,
we have manually carried out the inlining of the subroutine and the recursivity has
been transformed into a loop. This loop uses a stack pointing to the nodes which are
referenced during the octree traversal. This stack is also considered in Fig. 10 (a) and
obtained in the corresponding RSRSG, Fig. 10 (b). The first step of the code, (i), is
successfully analyzed in level �� but the best accurate description of the data structures
used in steps (ii) and (iii) are obtained in level ��.

However, regarding Table 1, there is paradoxical behavior that deserves explanation:
�� expends less time and memory than �� and ��. In �� SHARED and SHSEL remain
false for more nodes and links which leads to more nodes and links being pruned during
the abstract interpretation and graph compression phase of the symbolic execution of
the statements. This leads to significantly reducing the number of nodes and graphs,
which reduces memory and time requirements.

6 Conclusions and Future Work

In this work we have extended our shape analysis techniques to allow for the automatic
detection of dynamic data structures based on arrays of pointers that we have called
multiselectors. In order to accurately support multiselectors we propose the use of mul-
tireference classes and instances. On the one hand, the multireference classes point out
which are the possible configurations of links that may coexist for a given statement.
On the other hand, the instances are the key to focussing on the particular position of
the array of pointers which is actually involved in a statement including a reference to
a multiselector (����
�).

To validate these techniques we have implemented them in an analyzer which can
be fed with C code and returns the data structures at each program point. This analyzer
has reported very accurate descriptions of the data structures used in the tested codes,
requiring a reasonable amount of memory and time. To the best of our knowledge there
is no other implementation able to achieve such successful results for complex C codes
like the ones presented here.
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Information about data structure is critical in order to carry out further compiler
optimizations such as locality exploiting or automatic parallelization. In the near future
we will approach the issue of these additional compiler passes, but before this we want
to tackle the recursive calls problem.
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