
On the Parallelization of Irregular and

Dynamic Programs �

Oscar Plata, Rafael Asenjo, Eladio Gutiérrez,

Francisco Corbera, Angeles Navarro and Emilio L. Zapata

Department of Computer Architecture, University of Málaga,
29071 Málaga, SPAIN

Abstract

Current compilers show ineffective when optimizing complex applications, both ana-
lyzing dependences and exploiting data locality and extracting parallelism. Complex
applications may be characterized as irregular and dynamic. Irregular applications
arrange data as multi-dimensional arrays and memory is referenced through array
indirections. Dynamic applications organize data as pointer-based structures (lists,
trees, ...) and memory is referenced through pointers. In this paper we discuss a
methodology we designed to develop efficient parallelization techniques for irregular
and dynamic applications, that proceeds in three stages: Recognizing the complex
program structure, data analysis and program parallelization based on code/data
transformations. Two case examples are analyzed in detail in the context of this
methodology: Irregular reductions and shape analysis for dynamic data structures.

Key words: Irregular programs, dynamic programs, pointer-based data structures,
compilers
PACS: ??.??

1 Introduction

Current automatic parallelizers obtain reasonably efficient parallel codes from
most of the regular applications. Such applications deal with data organized
as multi-dimensional arrays, and most of the computations are arranged as
uniform nested loops. However, the compiler efficiency is generally much lower
for other kind of programs, those that include complex computation and/or

� This work was supported by Ministry of Education and Culture (CICYT), Spain,
through grant TIC2003-06623

Preprint submitted to Elsevier Science 3 March 2005

do i = 1,N
...
compute ξ
...
A(f(i)) = A(f(i)) ⊕ ξ
...

enddo

while (condition)
{

...
p→data = value;
p = p→next;
...

}

(a) (b)

Fig. 1. Example of an irregular computation (a) and a dynamic computation (b)

data structures. In the presence of such programming complexities compil-
ers usually run into trouble both analyzing dependences and exploiting data
locality and extracting parallelism.

We may distinguish two important classes of complex applications: irregular
and dynamic. Irregular applications are characterized by the fact that data
is structured as multi-dimensional arrays, as in regular applications, but it is
referenced through array indirections. These applications are typically coded
using procedural languages like Fortran77. Dynamic applications, on the other
hand, deal with data organized as complex, pointer-based structures (lists,
trees, ...), and it is referenced through pointers. Typical applications of this
class are coded using languages like C/C++, Java or Fortran90.

Figure 1 shows example codes for irregular and dynamic computations. The
first piece of code represents an irregular histogram reduction, where a reduc-
tion array (A) is updated at some points given by the indirection array (f). A
key issue in the parallelization of this loop includes solving the possible cross-
iteration true data dependences due to the indirection array. For instance,
if array f is not a permutation we will have such dependences. The second
code corresponds to a variable loop where a pointer-based data structure is
updated. Now, in the parallelization of this loop we have to solve possible
cross-iteration dependences due to cycles in the pointer-based list.

In this paper we discuss our recent work about developing efficient paralleliza-
tion techniques for irregular and dynamic applications. Basically our tech-
niques are enclosed into a broad parallelization method, that can be broken
down into several phases: recognizing the irregular/dynamic structure of the
code, data analysis, and selection of an ad-hoc parallelization technique ful-
filling some performance properties.

We present some of our recent advances in this field. In particular, we de-
signed a methodology to parallelize codes with irregular reductions exploiting
data locality. From this methodology we derived a number of efficient locality
oriented run-time parallelizing techniques. On the other hand, we developed
new shape analysis techniques for pointer-based data structures to enable de-

2

pendence analysis in dynamic codes. Such techniques may be used to analyze
memory references needed to develop efficient optimization and parallelization
methods for dynamic codes.

The rest of the paper is organized as follows. Section 2 discusses the method-
ology we use to develop our optimization and parallelization compilation tech-
niques for irregular/dynamic codes. Next, specific techniques for a widely
found irregular computational structure, named irregular reduction, is de-
scribed. Shape analysis techniques for dynamic data structures are analyzed
in section 4. Finally, conclusions are drawn.

2 Parallelization methodology for irregular/dynamic codes

This section describes a methodology for the efficient exploitation of the avail-
able parallelism in programs with irregular and/or dynamic computation/data
structures. We developed techniques to discover certain program (code and
data) properties that are essential in the effective optimization, as well as
parallelization methods that take advantage of such properties. The paral-
lelization methodology proceeds in several stages, as follows:

(1) Program structure: Analysis of the computational structure of the pro-
gram, as well as the data structures used. As a result of this analysis we
can recognize the irregular and/or dynamic nature of the program.

(2) Data analysis: A complete data analysis is needed to determine whether
parallelism is exploitable, or to enable some optimizations. It is also
needed to know where and how such parallelization/optimization can
be done. In case of irregular and dynamic programs, this stage becomes
very complex. Two important tasks included into this stage are both the
analysis of the data structure and the analysis of memory references.
The first analysis determines how data is organized and the relationship
among different data items. The second analysis discovers how data is
referenced and the relationship among these data references.

(3) Program parallelization: Information resulting from program structure
and data analysis allows to decide what specific parallelization method is
best suited to be used. We are especially interested in the development
of methods that optimize some important program properties, like data
locality or communication overhead.

In the rest of the paper we describe two representative case studies in the
context of the considered parallelization methodology. The first case study,
that constitutes an important class of irregular programs, corresponds to codes
with irregular reductions. For these codes the three stages in the parallelization
methodology will be discussed. The second case study will focus on the second
stage, data analysis, for general dynamic codes processing pointer-based data
structures.

3

REAL A(1:ADim)
INTEGER f1(1:N1, 1:N2,... 1:NnLoops),... fnInd (1:N1 , 1:N2 ,... 1: NnLoops)

h : do i1 = 1,N1
do i2 = 1,N2

...
do inLoops = 1,NnLoops

Compute ξ1, ξ2, ... ξnInd
A(f1(i1, i2, ... inLoops)) = A(f1(i1, i2, ... inLoops)) + ξ1
A(f2(i1, i2, ... inLoops)) = A(f2(i1, i2, ... inLoops)) + ξ2
...
A(fnInd(i1, i2, ... inLoops)) = A(fnInd(i1, i2, ... inLoops)) + ξnInd

enddo
...

enddo
enddo

Fig. 2. Nested loop with multiple irregular reductions

3 Programs with irregular reductions

Many common data organizations used in numerical applications involve ir-
regular memory accesses, in which array elements are referenced by means of
indirections. Reduction operations are often found in the context of irregular
codes in scientific and numerical applications, representing an important class
of irregular problems. Reduction operations are based in commutative and as-
sociative operators, like additions, multiplications, and so on. An example of
a piece of code carrying out multiple irregular reductions inside a nested loop
is shown in Figure 2 (it is also known as histogram reduction). A() represents
the reduction array (that could be multidimensional), which is updated (the
reduction operation is an addition in this example) by means of the subscript
arrays f1(), f2(), ... Terms ξ1, ξ2, ... represent effective computation.

Considering the parallelization methodology described in the previous section,
the first stage corresponds to the recognition of the irregular reduction and
what arrays work as reduction array(s) and which ones as subscript arrays.
This stage is commonly done in a compiler in two steps. The first step is the
recognition of possible reductions using a pattern-mathing or idiom recongni-
tion approach [17]. After that, a data dependence test analyses the potential
reductions selected in the first step to know if they are indeed reductions [2].

Once irregular reductions have been recognized, no further data analysis is
needed because all relevant data are arrays (Fig.2). Due to the subscripted
subscripts, loop–carried data dependences may be present, and they cannot
be detected at compile time (due to the subscript arrays). However, because of
the associative and commutative properties satisfied by the reduction operator,
the possible data dependences may be overcome by code/data transformations.
Such transformations corresponds to the third stage in our methodology.

4

3.1 Locality and affinity: Write affinity based parallelization

In order to optimize data locality through code/data transformations, we first
need to characterize it. Let us take the reduction loop shown in Figure 2 as
a working example. We can distinguish two sources of data locality: Read lo-
cality associated with accesses to read-only and privatizable arrays, and write
locality associated with accesses to the reduction arrays. In (cache-coherent)
shared memory multiprocessors, writes usually have a stronger impact on per-
formance overhead than reads (writes to shared data must propagate and
serialize through the memory hierarchy). So it is much important, from the
performance viewpoint, to optimize writing locality. We distinguish between
two classes of write locality: Intra–iteration and inter–iteration. Intra–iteration
locality corresponds to write locality inside the same nested loop iteration.
Inter–iteration locality, on the other hand, is due to writes on the reduction
arrays executed on different loop iterations. When parallelizing the reduction
code, the class of locality we can exploit depends on the granularity of the
parallelization method. It is usual that the minimum amount of partitionable
code is one full loop iteration. In such case, only inter–iteration locality can
be exploited by code parallelization. If we want to also exploit intra–iteration
locality, we must resort to data reorganizations [13] (basically the contents of
the subscript arrays).

A simple method to exploit inter–iteration locality proceeds in two steps: First,
we state a data distribution of the reduction arrays among all threads that
cooperate in the parallel computation. Second, reduction loop iterations are
assigned to threads in such a way that the number of local writes (writes
to owned reduction array elements) is maximized. Note that these iteration
assignments not only exploit locality but also avoid the need of run-time de-
pendence analysis, as iterations from different threads can be executed with no
write conflicts. In what follows we will describe a framework to define efficient
locality–based loop iteration assignments.

Without loss of generality, let us consider the reduction loop in Figure 2.
A(1:ADim) is the reduction array updated inside a nested loop, with �ı =
(i1, ...inLoops) being the iteration vector. Also let P = {1, 2, ...nThreads} be
the set of threads identifiers that cooperate in the computation, and let Ψ :
{A(1), A(2), ...A(ADim)} → P be a distribution function of the array A on
the threads.

The write access set of the iteration �ı is defined as the set of indices m
such that A(m) is written in such iteration. The write access set is denoted
as Acc�ı(A), and thus Acc�ı(A) = {m ∈ [1, ADim] |A(m) is written in iteration
�ı }. Two iterations, �ı and �j, are write affine if their write access sets are
mapped to the same subset of threads, that is, Ψ(Acc�ı(A)) = Ψ(Acc�j(A)).
Two iterations, �ı and �j, are write dissimilar if their write access sets are

5

mapped to disjoint subsets of threads, that is, Ψ(Acc�ı(A)) ∩ Ψ(Acc�j(A)) = ∅.

Using the write affinity property we will derive an optimal method to par-
allelize histogram reduction loops. Given a data distribution function of the
reduction array, a code transformation of the reduction loop will be defined
such that some performance issues are optimized: parallelism and data lo-
cality are maximized, and computation replication, memory overhead, extra
workload and synchronization overhead are minimized.

Previous definitions stated a binary relation between two iterations, given a
data distribution function of the reduction array. Such relation will be called
affinity relation. It is easy to see that the affinity relation is an equiva-
lence relation, that is, it satisfies reflexive, symmetric and transitive laws. So,
equivalence classes can be defined. An equivalence class is a subset of write
affine iterations, that is, iterations with their access sets mapped to the same
subset of threads. For Q ⊂ P , let CQ be an affinity equivalence class, then
CQ = {�ı ∈ S |Ψ(Acc�ı(A)) = Q}, where S is the set of iterations.

When using some locality-oriented data distribution function Ψ, for example a
classical block distribution, it would be possible to exploit write inter–iteration
locality by considering those iterations belonging to a same affinity class. From
the parallelization viewpoint, we need to distinguish data independent reduc-
tion iterations.

Two affinity classes, CQ and CR, are defined dissimilar if two iterations,
�ı ∈ CQ and �j ∈ CR, are write dissimilar. Two classes, CQ and CR, are dissimilar
if and only if Q ∩ R = ∅. In a reduction loop the only true data dependences
are caused by writes in the reduction array, thus two write dissimilar iterations
are assured to be data independent. Hence iterations belonging to dissimilar
equivalence classes can be executed fully in parallel, with no write conflicts.
That means that it would not be any parallelization overheads, like extra
memory, synchronizations or computation replication. These are precisely the
issues that we want to minimize in the parallelization of the reduction loop.
In addition, if we can find large sets of dissimilar classes, we would have a lot
of exploitable parallelism.

Using the affinity classes as vertices, we defined the dissimilarity graph(DG)
connecting not dissimilar classes. This graph relates potentially data depen-
dent reduction iterations, for a given data distribution. Non directly connected
vertices in that graph corresponds to dissimilar equivalence classes. Therefore,
if we want to maximize exploitable parallelism, we have to find the maximum
number of non directly connected vertices in the dissimilarity graph. This can
be done by applying a vertex coloring algorithm to it.

As an example, consider a reduction loop with two reductions (indirections),
one reduction array and 4 threads. In this case, the maximum possible number

6

{2,3}C {2}C

{1,3}C

{1,4}C

{1,2}C{3,4}C

{3}C

{2,4}C

{4}C {1}C

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

for color ∈ DG
forall C ∈ color

Execute iterations∈ C
end
C$barrier

end

(a) (b)

Fig. 3. Vertex coloring of a dissimilarity graph (a) and a pseudocode for the parallel
reduction loop based on affinity classes

of equivalence classes is 10. The resulting dissimilarity graph is shown in Fig-
ure 3(a), and after applying the vertex-coloring algorithm we obtain the sets
of classes that can be executed concurrently (vertices with the same color):
DG = { {C{1}, C{2}, C{4}, C{4}}, {C{1,2}, C{3,4}}, {C{1,3}, C{2,4}}, {C{1,4}, C{3,2}} } .
We can schedule a parallel execution of the loop following an inspector/ex-
ecutor scheme. An inspector builds the affinity equivalence classes, the corre-
sponding dissimilarity graph and color it. After the inspection, computations
are scheduled by the executor as shown in Figure 3(b). Iterations in equivalence
classes with the same color are executed in parallel, while a synchronization
point is placed between execution of sets of classes with different colors.

3.2 Compiler implementation

Although the general approach described previously could be used in paral-
lelizing reduction loops, some serious difficulties arise in practice. To maximize
the available parallelism the minimum number of colors in the dissimilarity
graph has to be found. This minimum number of colors is called the vertex-
chromatic index of the graph, and it is known that this problem is NP-hard.
Nevertheless some simplifications can provide a non-optimal coloring with a
polynomial complexity. In addition, to reduce the number of colors certain
restrictions would be desirable, like maximizing the size of the equivalence
classes with the same color, or considering conditions for workload balance.
Such operations, however, would increase significantly the overhead of the
inspection stage. Other difficulty is the fact that the number of possible non-
empty affinity classes grows rapidly with the number of indirections in the
reduction loop.

For example, in Figure 4 it is shown the results for the dissimilarity graph
color computation when two indirections are considered. A greedy coloring
algorithm [9] has been applied, using different initial vertex orders. An im-
portant fact is that an optimum number of colors is obtained if the number
of threads is a power of two. For these cases the number of colors is equal to
the number of threads. As it is seen in Figure 4 the coloring time follows a
complexity O(nThreads4), being nThreads the number of threads.

7

1 2 4 8 16 32
0

10

20

30

40

C
ol

or
s

in
di

ss
im

ila
rit

y
gr

ap
h

Number of threads

1 2 4 8 16 32
0

5

10

15

20

A
ve

ra
ge

 n
um

be
r

of
cl

as
se

s
pe

r
co

lo
r

Number of threads

1 2 4 8 16 32
1

10

100

1000

Number of threads

N
or

m
al

iz
ed

 c
ol

or
in

g
tim

e

Fig. 4. Computation of dissimilarity graph coloring for a loop with two indirections

In order to make practical the implementation of the method in a compiler,
the inspection phase must be lightened. This can be achieved by simplifying
the equivalence class building process. We have developed an approach called
Data Write Affinity with Loop Index Prefetching (DWA–LIP) [10] that is
based both on a block data distribution function and on a restricted defini-
tion of the affinity relation. Instead of using a generic subset of threads, Q,
to characterize an affinity equivalence class, CQ, DWA–LIP uses a pair of
parameters (Bmin, ∆B), being Bmin = min(Q) and ∆B = max(Q)−min(Q).
The dissimilarity test with the new affinity relation is simpler since two itera-
tions will be write dissimilar when their pairs (Bmin, ∆B) do not correspond
to overlapped areas of the reduction array.

This simplification in the definition of the affinity relation has a negative effect
because there are pairs of write dissimilar iterations that no longer are recog-
nize as such with the new definition. This reduces the detected parallelism to
be exploited in the execution phase. Nevertheless the simplified affinity rela-
tion allows the inspector to be lighter and makes possible an efficient schedule
of dissimilar classes during the execution phase [10,11].

In Table 1 experimental results for different methods are shown (see related
work). A code that implements Euler differential equations has been used.
It contains some reduction loops with 2, 3 and 4 indirections, carrying out
magnitude computations over edges, faces and tetrahedra, respectively. The
input data correspond to a mesh description of 800Knodes and connectivity
18. We have tested a privatization-based method, in particular Array Expan-
sion [15], and two affinity-based methods, Local–Write and DWA–LIP. The
speedup has been calculated as the quotient between the execution time of
the parallel privatization version but using only one thread and the parallel
time of the corresponding version.

8

2 indirections 3 indirections 4 indirections
Privatization 4.5 1.9 2.4

4
th

re
a
d
s

Local–Write 10.6 6.4 1.9
DWA–LIP 11.5 7.2 5.0

Privatization 7.8 2.0 2.5

8
th

re
a
d
s

Local–Write 11.3 11.8 4.9
DWA–LIP 12.5 12.6 7.7

Table 1
Speedups for the EULER code using privatization, Local–Write and DWA–LIP

We can highlight two important aspects about these experiments. First, the
reason of the better behavior of the affinity-based methods is that a data
set with low inter–iteration locality was chosen. This bahavior was expected
because privatization-based methods do not take into account any locality
consideration at all. The second observation is that the performance of all
methods decreases when the number of indirections grows. Having more in-
directions causes a poorer intra-iteration locality because the probability to
access distant reduction array elements inside an iteration is higher. Thus the
performance of all methods decreases: the privatization-based one because it
does not exploit locality and those based on affinity due to the parallelism loss
paid by restricting the affinity relation in practice. Nevertheless, in general,
methods exploiting locality are able to keep better performance in parallel.

3.3 Related work

One of the most popular methods to parallelize reduction loops is based on
the privatization of the reduction arrays [1]. This way, iterations become data
independent (no write conflicts) allowing a free scheduling of iterations in the
threads. Although several versions and optimizations of these methods were
proposed [15], privatization-based techniques have important drawbacks, like
a large extra memory requirement (reduction arrays must be replicated on all
threads) and no exploitation of data locality.

Instead of distributing loop iterations, another group of techniques uses dis-
tribution of the reductions arrays. This approach avoids the extra memory
overhead discussed previously, and makes possible to take data locality into
consideration. In these methods iterations are partitioned and assigned to the
threads on the basis of a previously chosen data distribution for the reduction
arrays. However, some specific technique must be used to solve data depen-
dences due to write conflicts in the reduction arrays [12,10,11].

The approach called Local–Write [12] parallelize reduction loops exploiting
write locality, as with DWA–LIP. However, this method is based on apply-
ing loop-splitting to those iterations belonging to affinity classes CQ with
Card(Q) > 1 (that is, Q has two or more threads). For these split iterations
the computations are replicated, which implies an effective loss of parallelism.

9

4 Analysis of Dynamic Programs

4.1 Motivation of the shape analysis

Programming languages such as C, C++, Fortran90, or Java are widely used
for non-numerical (symbolic) and numerical applications. All these languages
allow the use of complex data structures usually based on pointers and dy-
namic memory allocation. The use of complex data structures is very helpful
in order to speedup code development and, besides this, it also may lead to
reducing the program execution time. However, compilers are not able to suc-
cessfully optimize codes based on these complex data structures for current
computers or multicomputers. This is due to current compilers are not able
to capture, from the code text, the necessary information to exploit locality,
automatically parallelize the code, or carry out other important optimizations
in pointer-based codes.

With this motivation, the goal of our research line is to propose and implement
new techniques that can be included in compilers to allow for the automatic
optimization of real codes based on dynamic data structures. As a first step,
we have selected the shape analysis subproblem, which aims at estimating at
compile time the shape the data will take at run time. Given this information,
subsequent analysis (not implemented yet) would focus on particular opti-
mizations, for example, to exploit the memory hierarchy or to detect whether
or not certain sections of the code can be parallelized because they access in-
dependent data regions. Therefore, this work is part of the first step (program
structure analysis) of our parallelization methodology.

There are other open research lines dealing with the analysis of codes in the
presence of pointers, such as alias analysis or points-to analysis. Basically,
these analysis are designed to determine the superset of locations to which a
pointer must or may point (points-to sets) [7]. These kinds of pointer anal-
ysis provide enough information to allow for some scalar optimizations, such
as Common Subexpression Elimination, Loop Invariant Removal, or Location
Invariant Removal [8]. However, the information provided by the points-to
sets is not accurate enough to enable more ambitious optimizations such as
loop-level automatic parallelization, automatic data distribution, and locality
exploiting. Currently, the majority of research groups rely on manual annota-
tions when dealing with such complex code optimizations in the presence of
pointers, due to points-to analysis is not sufficient. For instance, Chilimbi et
al. ask the programmer to annotate the code to exploit cache locality [4] or a
previous execution profile is needed in order to exploit cache prefetching [3].
In the area of distributed memory locality exploitation and communication
optimization, Zhu and Hendren [21] also rely on code annotations with spe-
cial compiler directives. Similarly, Rogers et al. [18] propose a thread-level
parallelism in codes annotated with directives such as futurecall and touch.

10

However, some groups are trying to automatically extract more information
from the code text to optimize codes based on pointers. For example, Ghiya [8]
have implemented the McCAT compiler to put pointer analysis to work. Basi-
cally, this compiler uses points-to analysis to deal with stack-directed pointers
and connection analysis and shape analysis to deal with heap-directed point-
ers. This analysis is used for exploiting two parallelism patterns in codes based
on recursive data structures which do not change their shape while they are
traversed: at the function level when routines traverse disjoint sub-tree struc-
tures; and at the loop level in two cases: tree-like traversing and DAG struc-
tures that are navigated acyclically (although a manual assertion is needed in
this case). However, their shape analysis is too simple and conservative leading
to a serious lack of parallelism exploitation. This is mainly due to it does not
keep information about the topological structure of the links between heap
locations.

Thus, we have to emphasize that our final goal is to allow for the automatic
optimization of codes based on recursive data structures, but it is clear that,
first of all, better shape analysis techniques have to be proposed. That is, new
approaches to automatically capture the essential characteristics and proper-
ties of heap-allocated data structures are essential.

4.2 Method overview

Basically, our method is based on approximating by graphs all possible mem-
ory configurations that can appear after the execution of a statement in the
code. We call a collection of dynamic structures a memory configuration. These
structures comprise several memory chunks, that we call memory locations,
which are linked by references. Inside these memory locations there is room
for data and for pointers to other memory locations. These pointers are called
selectors.

Note that due to the control flow of the program, a statement could be reached
by following several paths in the control flow. Each “control path” has an as-
sociated memory configuration which is modified by each statement in the
path. Therefore, a single statement in the code modifies all the memory con-
figurations associated with all the control paths reaching this statement. Each
memory configuration is approximated by a graph we call Reference Shape
Graph (RSG). So, taking all this into account, we conclude that each state-
ment in the code will have a set of RSGs associated with it.

4.2.1 RSGs and node properties

The RSGs are graphs in which nodes represent memory locations which have
similar reference patterns. To determine whether or not two memory locations

11

should be represented by a single node, each one is annotated with a set
of properties. Now, if several memory locations share the same properties,
then all of them will be represented by the same node. This way, a possibly
unlimited memory configuration can be represented by a limited size RSG,
because the number of different nodes is limited by the number of properties
of each node. These properties are related to the “reference pattern” used
to access the memory locations represented by the node. Hence the name
Reference Shape Graph. These properties are briefly described here, but a
more detailed description can be found in [6]:

1. Type: This property states the data type of the memory locations repre-
sented by a node.

2. Structure: This information avoids the summarization into the same node
of memory locations belonging to non-connected data structures (i.e. both
data structures do not share any element).

3. Simple Paths (SPATH): This property avoids the summarization of
memory locations near pointer variables. Since data structures are accessed
and modify via pointer variables, by keeping a precise description of the mem-
ory location near the pointer variables the compiler will carry out a more
accurate shape analysis.

4. Reference Patterns: For each node, this property is represented by two
sets: SELINset contains the selectors which reference the node from other
nodes and SELOUTset contains the selectors which point from this node to
others. For example, in a doubly linked list, a node representing the last item
of the list has SELINset={next} and SELOUTset={prev}, because next is an
“input” selector reaching the node and prev is an “output” selector leaving
the node. Only nodes with similar reference patterns can be summarized into
a single one.

5. Share Information: This property can tell whether at least one of the lo-
cations represented by a node is referenced more than once from other memory
locations. We use two kinds of attributes for each node: SHARED(n) states
if any of the locations represented by the node n can be referenced by other
locations by different selectors, and SHSEL(n, sel) points out if any of the
locations represented by n can be referenced more than once by following the
same selector sel from other locations.

6. Touch Information: This property is taken into account only inside loop
bodies to avoid the summarization of already visited locations with non-visited
ones.

7. Cycle Links: This information is introduced to increase the accuracy of the
data structure representation by avoiding unnecessary edges that can appear

12

if (cond1)

if (cond2)

3. z = malloc();

1. x = malloc();
2. y = malloc();

4. x.nxt := z

5. y.nxt := z

6. z = NULL

7. h = malloc();

nxtx nxtx

nxty

nxtx

nxty

nxt

z

nxt

nxtx

nxty

nxtx

nxty

nxt

z

nxt

nxtx

nxty

nxt

nxtx

nxty

nxtx

nxty

nxt

z

+

RSG

RSRSG

RSG

RSRSG

RSG

RSRSG

RSG

RSRSG

RSRSG

h

RSG1

h

RSG2

z

RSG

RSRSG

RSG

RSRSG

Fig. 5. Building an RSRSG for each statement of an example code

during the RSG updating process. The cycle links of a node, n, are defined
as the set of pairs of references < seli, selj > such that when starting at node
n and consecutively following selectors seli and selj , the node n is reached
again.

As we have said, all possible memory configurations which may arise after the
execution of a statement are approximated by a set of RSGs. We call this set
Reduced Set of Reference Shape Graphs (RSRSG), since not all the different
RSGs arising in each statement will be kept. On the contrary, several RSGs
related to different memory configurations will be fused when they represent
memory locations with similar reference patterns. This union of RSGs greatly
reduces the number of RSGs and leads to a practicable analysis.

4.2.2 Generating the RSRSGs: the symbolic execution

In our approach, we consider six simple instructions that deal with pointers:
x = NULL, x = malloc, x = y, x → sel = NULL, x → sel = y, and
x = y → sel. More complex pointer instructions can be built upon these
simple ones and temporal variables.

To move from the “memory domain” to the “graph domain”, the calculation
of the RSRSGs associated with a statement is carried out by the symbolic
execution of the program over the graphs. In this way, each simple statement
transforms the graphs to reflect the changes in memory configurations derived
from statement execution. The abstract semantic of each statement states
how the analysis of this statement must transform the graphs. The abstract
interpretation is carried out iteratively for each statement until we reach a
fixed point in which the resulting set of RSGs associated with the statement
does not change any more.

13

typedef struct str {
...

struct str1 *sel;

struct str2 *sel1[256];

struct str **sel2;

}
x=(str *)malloc(sizeof(struct str));

x->sel2=(str **)malloc(n*sizeof(str *));

256 n

.

str2

x

str1

sel sel1 sel2

str2

str2

str

str

Fig. 6. Example of data structure containing arrays of pointers

Let us illustrate this with an example. In Figure 5 we can see a simple code with
seven pointer statements. Our analyzer symbolically executes each statement
to build the RSRSG associated with them. Actually, after the execution of the
third statement we obtain an RSRSG with a single RSG which represents three
different memory locations by three nodes; all of them of the same type, with
the same nxt selector, but pointed to by different pointer variables (pvars).
Now, this RSRSG is modified in three different ways because there are three
different paths in the control flow graph, each one with a different pointer
statement. All these paths join in statement 7, and after the execution of this
statement we obtain an RSRSG with two RSGs. This is because the RSGs
coming from statements 5 and 6 are compatible and can be summarized into
a single one.

4.2.3 Dealing with arrays of pointers: multiselectors

We can view an array of pointers as a set of n selectors (links), all with the
same name. Our original method, briefly described before, only deals with
single selectors (which represent single links). Thus, the problem arising with
the arrays of pointers is that a single selector name represents several links,
and all of them belong to the same memory location (due to having been
allocated by the same malloc instruction).

We illustrate all this with the following example. Figure 6 shows an example
of a complex data structure definition comprising two arrays of pointers, and
it also illustrates the corresponding memory configuration after the execution
of the last “malloc()” statement. As we note, sel is a single selector which can
point to a single memory location and which can be modified by statements
like “x→sel=...”. These kinds of selectors can be managed by our previous
analyzer. However, sel1 and sel2 represent arrays of selectors. The difference
between sel1 and sel2 is that we know the size of the sel1 array at compile
time, but the size of sel2 is defined at run time. In any case, we now want to
deal with both types of arrays of selectors, which now have to be modified by
statements like “x→sel1[i]=...” or “x→sel2[i]=...”.

Since sel1 and sel2 are not single selectors, we have called them multiselectors.

14

In order to take into account multiselectors in our method we have introduced
in our analyzer the following procedure: since our method is already able to
deal with single selectors our goal is now to include a previous step in the
symbolic execution process to focus on one of the selectors included in a par-
ticular multiselector. In other words, a statement like “x→sel1[i]=...” is going
to update a single selector (a particular selector included in the multiselec-
tor sel1), but before applying the symbolic execution, our analyzer start by
identifying the particular sel1[i] which is going to be updated, to subsequently
proceed with the abstract interpretation.

4.3 Experimental results

Our RSRSG analyzer has been written in C and can be fed with an input
code to generate the RSRSG associated with each statement of the code. The
codes have to be preprocessed in a first step to just keep the statements dealing
with pointers. We have implemented the analyzer to carry out a progressive
analysis which starts with fewer constraints to summarize nodes, but, when
necessary, these constraints are increased to reach a better approximation of
the data structure used in the code. More precisely, the analysis comprises
three levels: L1, L2, and L3, from less to more complexity as we explain in [6].

With this tool we have analyzed several codes: an artificial code that we call
“working example”, the sparse Matrix by vector multiplication, the sparse
Matrix by Matrix multiplication, the Sparse LU factorization, and the Barnes-
Hut code. These five codes have two implementations, one in which arrays of
pointers are implemented by doubly linked lists and the other in which arrays
of pointers are kept.

The first four codes were successfully analyzed in the first level of the analyzer,
L1. However, for the Barnes-Hut program the highest accuracy of the RSRSGs
was obtained in the last level, L3. All these codes where processed by our
analyzer in a Pentium 4 1.6 GHz with 128 MB main memory. The time and
memory required by the analyzer are summarized in Table 2. In this table we
also show the number of code lines after the preprocessing of the original C
codes. The particular aspects of these codes are described next.

1. Working example’s RSRSG. This code generates, traverses, and modi-
fies the data structure presented in Figure 7 (a). A compact representation of
the resulting RSRSG for the last statement of the code can be seen in Figure 7
(b). The data structure is a doubly linked list of pointers to trees (header list).
Besides this, the leaves of the trees have pointers to doubly linked lists. All
the trees pointed to by the header list are independent and do not share any
element. In the same way, the lists pointed to by the leaves of the same tree
or different trees are also independent.

15

Working Ex. S.Mat-Vec S.Mat-Mat S.LU Barnes-Hut

Level L1 / L2 / L3 L1 / L2 / L3 L1 / L2 / L3 L1 / L2 / L3 L1 / L2 / L3

Codes without arrays of pointers

Time 0’03”/0’05”/0’06” 0’01”/0’02”/0’03” 0’20”/0’38”/1’00” 7’50”/-/- 5’56”/0’34”/2’06”

MBytes 2.11/2.78/3.02 1.37/1.85/2.17 8.13/11.45/12.68 99.46/-/- 37.82/8.82/8.94

Lines 213 104 156 164 216

Codes including arrays of pointers

Time 0’05”/0’07”/0’08” 0’01”/0’01”/0’01” 0’04”/0’06”/0’06” 1’08”/1’12”/- 23’08/25’27”/0’21”

MBytes 1.77/2.29/2.50 0.92/1.03/1.2 1.19/1.31/1.49 3.96/4.18/- 40.14/42.86/3.06

Lines 144 87 103 143 177

Table 2
Time and space required to process several codes with different number of code lines

S

tree

prv
lft

rgh

list

prv

nxt

Doubly Linked ListsTreesList
Header

nxt

lft rgh

list

lft rgh

list

lft rgh

list

tree tree tree

nxtprv prv nxt prv nxt
S

TREES

nxtprv prv nxt prv nxt

n1 n2 n3

n4

n7 n8 n9

n5

n6

HEADER LIST

DOUBLY

LISTS
LINKED

(a) (b)

Fig. 7. A complex data structure (a), and compact representation of the resulting
RSRSG (b)

This data structure is built by a C code that also traverses the elements of the
header list with two pointers and eventually can permute two trees. From the
properties associated with the nodes in the RSRSG represented in Figure 7 (b)
we can infer the actual properties of the real data structure. More precisely:
(i) The analyzer successfully detects the doubly linked list which is acyclic
by selectors nxt or prv ; (ii) Two different items of the header list cannot
point to the same tree; (iii) Different trees do not share items; (iv) The same
happens for the doubly linked list pointed to by the tree leaves: all the lists
are independent, there are no two leaves pointing to the same list, and these
lists are acyclic by selectors nxt or prv.

The other implementation of this code is based on an array of pointers to
the trees instead of the header list. Again, the analyzer can extract the same
conclusions commented in the previous paragraph.

2. Sparse matrix codes. Here we deal with some irregular codes which im-
plements sparse matrix operations: the sparse matrix by vector multiplication,

16

row nxt

prv

nxt prv

v

nxt prv

M

HEADER VECTORVECTORROWS
LIST

nxt prv

r

BODIES
LIST OF

Root

nxt

body

nxt
Lbodies

child
OCTREE

Stack nxt

node

STACK

(a) (b)

Fig. 8. Data structure to store sparse matrices and vectors (a), and Barnes Hut
main data structure (b)

r = M×v; the sparse matrix-matrix multiplication, A = B×C; and the sparse
LU factorization, A = LU .

The sparse matrices are stored in memory as a header doubly linked list (or
an array of pointers) with pointers to other doubly linked lists which store the
matrix rows (if the matrix is row-wise) or columns (for column-wise matri-
ces). In figure 8 (a) we show the sparse matrix data structure for a row-wise
matrix where the matrix header is implemented by an array of pointers. The
sparse vectors, v and r are doubly linked lists. After the analysis process, car-
ried out by our analyzer, the resulting RSRSG accurately represents the data
structures. In the resulting RSRSG for the last statement of these codes we
can identify the main properties of the data structures: (i) The rows of the
matrix are pointed to from different elements of the header list/array; (ii) The
doubly linked lists which store the rows of the matrices and the vectors are
acyclic by selectors nxt and prv. A subsequent analysis of the code and the
RSRSG associated with each statement would be able to state that several
sparse matrix row can be traversed and updated in parallel and, in addition,
it is also possible to update each row in parallel.

3. Barnes-Hut N-body simulation. The structure used in this code is
basically an octree where each leaf points to an element of a single linked list.
In the implementation which avoids pointer arrays, each octree node which is
not a leaf has a pointer child pointing to the first of its eight children which
are linked by selector next. If pointer arrays are allowed, the pointers to the
eight children are stored in an array of pointers, as we can see in figure 8 (b).
The analysis of this code enable the parallel traversal of the octree which is
precisely captured by the obtained RSRSG’s.

17

4.4 Related work

There are several ways the shape analysis problem can be approached. We
have focused on the graph-based methods in which the “storage chunks” are
represented by nodes, and edges are used to represent references between them.
For example, Plevyak et al. [16] have proposed the “Abstract Storage Graph”
(ASG), while Sagiv et al. [19] improved the ASG method with what they call
“Static Shape Graphs” (SSG). In a previous work [5] we saw that ASG or SSG
were not sufficient to deal with the complex data structures we presented in the
previous section. Basically, ASG and SSG approaches were too imprecise and
too conservative in many simple cases, due to they associate just one graph
with each statement in the code. Besides, too much information is fused in a
single node and then it is impossible to capture the real properties of the data
structures represented by the graphs. We have overcome this drawback by
considering several graphs per statement, while fulfilling some rules to avoid
an explosion in the number of graphs and nodes in each graph.

A more recent work that also allows several graphs per statement is the one
presented by Sagiv et al. [20]. They propose a parametric framework based on a
3-valued logic. To describe the memory configuration they use 3-valued struc-
tures defined by several predicates. However, as far as we know the currently
proposed predicates do not suffice to deal with the complex data structures
that we handle in this paper. There are several differences between our shape
analysis method and that of Sagiv et al. [20]. The main one is that we join
similar RSGs to build a reduced set of RSGs for each program point, while
in [20] they keep all the graphs (multiple structure approach) or just one
(single structure approach). We think that this may explain why their Three-
Valued-Logic Analyzer (TVLA) runs out of memory for simple codes such as
the singly linked list bubble sort using the multiple structure approach [14].
Besides, they recognize that their TVLA engine is only useful to analyze small
programs and report experimental results for small, singly linked list opera-
tions (insert, reverse, sort, etc.), as we can see in Table 3. However, they have
not published experimental results successfully dealing with real codes based
on the combination of complex data structures such as doubly linked lists
pointing to trees or to other lists, etc. In this Table 3 we also compare their
Java-written TVLA running on a Pentium II-400MHz with our C-written an-
alyzer on a Pentium III-500MHz.

5 Conclusions

This paper addresses the problem of automatic parallelization of irregular
and dynamic applications. From our work on this problem we may derive two
main conclusions. First, a complete and powerful data analysis is fundamental.
This analysis must include, at least, two important tasks: Analysis of the data

18

RSRSG TVLA (sec.)

Code Lines Time Memory Single Multiple

create 9 Included in all 0.51 0.40

dellall 7 0.07s 133KB 0.42 0.44

delete 14 0.25s 179KB 2.73 5.18

fumble 10 0.09s 146KB 1.40 1.47

getlast+rot 11 0.14s 163KB .78+.62 1.47+.88

insert 17 0.16s 197KB 2.86 2.77

merge 26 1.15s 387KB 8.25 12.01

reverse 10 0.15s 159KB 1.21 1.46

swap 8 0.09s 152KB 0.7 0.61

bublesort 32 2.52s 389KB 186.60 out of sp.

Table 3
Comparing RSRSG with TVLA

organization, and analysis of the memory references. In irregular codes, data
organization analysis is not difficult as typically data is arranged as arrays.
However, memory references are dynamic and data dependent. In dynamic
codes, however, both analysis are very complex. In this line, we have developed
shape analysis techniques to capture properties of complex pointer-based data
structures.

The second conclusion is that we consider a promising way to obtain an effec-
tive parallelization to design ad-hoc techniques for specific complex computa-
tional structures. For instance, we discussed an efficient solution for irregular
reductions. In a similar way, once the data organization of a pointer-based code
has been identified, it is possible to develop efficient automatic techniques to
traverse and update these data structures (trees, linked-lists, ...) in parallel.

References

[1] W. Blume, R. Doallo, R. Eigenmann, et al. Parallel programming with Polaris.
IEEE Computer, 29(12):78–82, 1996.

[2] W. Blume and R. Eigenmann. The range test: A dependence test for symbolic,
non-linear expressions. ACM Int’l Conf. on Supercomputing, 1994.

[3] T.M. Chilimbi. Efficient representations and abstractions for quantifying and
exploiting data reference locality. ACM SIGPLAN Conf. on Programming
Languages Design and Implementation, 2001.

[4] T.M. Chilimbi, M.D. Hill and J.R. Larus. Cache-conscious structure layout.
ACM SIGPLAN Conf. on Programming Languages Design and Implementation,
1999.

[5] F. Corbera, R. Asenjo, and E.L. Zapata. New shape analysis for automatic
parallelization of C codes. ACM Int’l Conf. on Supercomputing, 1999.

19

[6] F. Corbera, R. Asenjo, and E.L. Zapata. Accurate shape analysis for recursive
data structures. Int’l. Workshop on Languages and Compilers for Parallel
Computing, 2000.

[7] M. Das. Unification-based pointer analysis with directional assignments. ACM
SIGPLAN Notices, 35(5):35–46, 2000.

[8] R. Ghiya. Putting Pointer Analysis to Work. PhD thesis, School of Comp. Sci.,
McGill Univ., Montreal, 1998.

[9] A. Gibbons Algorithmic Graph Theory. Cambridge University Press, 1999.

[10] E. Gutiérrez, O. Plata and E.L. Zapata. A compiler method for the parallel
execution of irregular reductions in scalable shared memory multiprocessors.
ACM Int’l. Conf. on Supercomputing, 2000.

[11] E. Gutiérrez, O. Plata and E.L. Zapata. Improving Parallel Irregular Reductions
Using Partial Array Expansion. IEEE/ACM Int’l. Conf. for High Performance
Computing and Communications, 2001.

[12] H. Han and C-W. Tseng. Efficient compiler and run-time support for parallel
irregular reductions. Parallel Computing, 2000. 26(13–14):1861–1887.

[13] H. Han and C-W. Tseng. Improving locality for adaptive irregular scientific
codes. Int’l. Workshop on Languages and Compilers for Parallel Computing,
2000.

[14] T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static analysis.
Static Analysis Symp., 2000

[15] Y. Lin and D. Padua. On the automatic parallelization of sparse and irregular
fortran programs. 4th Workshop on Languages, Compilers and Runtime
Systems for Scalable Computers ,1998.

[16] J. Plevyak, A. Chien and V. Karamcheti. Analysis of dynamic structures for
efficient parallel execution. Int’l. Workshop on Languages and Compilers for
Parallel Computing, 1993.

[17] W.M. Pottenger and R. Eigenmann. Idiom recognition in the Polaris
parallelizing compiler. ACM Int’l Conf. on Supercomputing, 1995.

[18] A. Rogers, M.C. Carlisle, J.H. Reppy and L.J. Hendren. Supporting dynamic
data structures on distributed-memory machines. ACM Trans. on Programming
Languages and Systems, 17(2):233–263, 1995.

[19] M. Sagiv, T. Reps and R. Wilhelm. Solving shape-analysis problems in
languages with destructive updating. ACM Trans. on Programming Languages
and Systems, 20(1):1–50, 1998.

[20] M. Sagiv, T. Reps and R. Wilhelm. Parametric shape analysis via 3-valued
logic. Symp. on Principles of Programming Languages, 1999.

[21] Y. Zhu and L. Hendren. Locality analysis for parallel C programs. IEEE Trans.
on Parallel and Distributed Systems, 10(2):99–114, 1999.

20

