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Abstract

To successfully exploit all the possibilities of current computer/multicomputer
architectures, optimization compiling techniques are a must. However, for codes
based on pointers and dynamic data structures these optimization techniques have
to be necessarily carried out after identifying the characteristics and properties of
the data structure used in the code. In this paper we describe the framework and
the analyzer we have implemented to capture complex data structures generated,
traversed, and modified in codes based on pointers. Our method assigns a Reduced
Set of Reference Shape Graphs (RSRSG) to each statement to approximate the
shape of the data structure after the execution of such a statement. With the
properties and operations that define the behavior of our RSRSG, the method can
accurately detect complex recursive data structures such as a doubly linked list of
pointers to trees where the leaves point to additional lists. Several experiments are

carried out with real codes to validate the capabilities of our analyzer.
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1 Introduction

Programming languages such as C, C++, Fortran90, or Java are widely used for non-
numerical (symbolic) and numerical applications. All these languages allow the use of
complex data structures usually based on pointers and dynamic memory allocation. The
use of complex data structures is very helpful in order to speedup code development and,
besides this, it also may lead to reducing the program execution time. However, compilers
are not able to successfully optimize codes based on these complex data structures for
current computers or multicomputers.

More precisely, when dealing with pointer-based data structures built at run time,
current compilers are not able to capture, from the code text, the necessary information
to exploit locality, automatically parallelize the code, or carry out other important op-
timizations. In other words, if the compiler is not aware of the properties fulfilled by
the data structure used in the code, it is impossible to apply certain optimizations. For
instance, if the compiler does not know that a certain loop is traversing a doubly linked
list, then important techniques such as data prefetching, locality exploiting or parallelism
detection, cannot be applied.

With this motivation, the goal of our research line is to propose and implement new
techniques that can be included in compilers to allow for the automatic optimization of
real codes based on dynamic data structures. As a first step, we have selected the shape
analysis subproblem, which aims at estimating at compile time the shape the data will
take at run time. Given this information, subsequent analysis (not implemented yet)
would focus on particular optimizations, for example, to exploit the memory hierarchy
or to detect whether or not certain sections of the code can be parallelized because they
access independent data regions.

There are other open research lines dealing with the analysis of codes in the presence of
pointers, such as alias analysis or points-to analysis. Basically, these analyses are designed
to determine the superset of locations to which a pointer must or may point (points-to
sets). In this context, there are flow- and context-insensitive approaches such as Steens-
gaard’s algorithm [24] (fast but imprecise), Andersen’s approach [1] (more precise but
non-scalable), and tradeoff solutions [23, 8]. There are also context-sensitive approaches
such as [25] or flow-sensitive analysis [12].

These kinds of pointer analysis provide enough information to allow for some scalar
optimizations, such as Common Subexpression Elimination, Loop Invariant Removal, or

Location Invariant Removal [11]. However, the information provided by the points-to sets



is not accurate enough to allow for more ambitious optimizations such as loop-level auto-
matic parallelization, automatic data distribution, and locality exploiting. Currently, the
majority of research groups rely on manual annotations when dealing with such complex
code optimizations in the presence of pointers, due to points-to analysis is not sufficient.
For instance, Chilimbi et al. ask the programmer to annotate the code to exploit cache lo-
cality [5] or a previous execution profile is needed in order to exploit cache prefetching [4].
In the area of distributed memory locality exploiting and communication optimization,
Zhu and Hendren [26, 27] also rely on code annotations with special compiler directives.
Similarly, Rogers et al. [20] propose a thread-level parallelism in codes annotated with
directives such as futurecall and touch.

However, some groups are trying to automatically extract more information from the
code text to optimize codes based on pointers. For example, Ghiya [9] have implemented
the McCAT compiler to put pointer analysis to work. Basically, this compiler uses points-
to analysis to deal with stack-directed pointers and connection analysis and shape analysis
to deal with heap-directed pointers. This analysis is used for exploiting two parallelism
levels in codes based on recursive data structures: at the function level when routines
traverse disjoint sub-tree structures; and at the loop level in two cases; list traversing and
array of pointers to disjoint structures traversing. However, their shape analysis [10] is too
simple and conservative leading to a serious lack of parallelism exploitation. This shape
analysis determines the shape attribute, TREE, DAG or CYCLE, for the data structures
pointed to by pointer variables. The problem is that the CYCLE attribute, which prevents
any kind of parallelism exploitation, can too easily be associated with a data structure;
for example, when a single linked list grows by inserting new items in the middle instead
of appending them at the end, or because the data structure has a temporary cycle, but
returns to being acyclic in the rest of the code. Besides this, doubly linked lists cannot be
parallelized even when they are traversed by only one kind of selector (next or previous).
In summary, all these drawbacks arise due to the fact that their “shape analysis” does
not keep information about the topological structure of the links in the analysed data
structures. For example, you may know that it is a DAG data structure, but you do not
know which paths may lead to the same heap node of the DAG data structure.

Thus, we have to emphasise that our final goal is to allow for the automatic optimiza-
tion of codes based on recursive data structures, but it is clear that, first of all, better
shape analysis techniques have to be proposed. That is, new approaches to automatically

capture the essential characteristics and properties of heap-allocated data structures are



essential. The goal of this paper, in this initial step, is to describe a new and very accurate
shape analysis algorithm able to identify from the code text the essential properties of
the data structures of the code.

With this in mind, our proposal is based on approximating all the possible memory
configurations that can arise after the execution of a statement by a set of graphs: the
Reduced Set of Reference Shape Graphs (RSRSG). We see that each RSRSG is a collection
of Reference Shape Graphs (RSG) each one containing several non-compatible nodes.
Finally, each node represents one or several memory locations and the edges between
nodes represents links between the represented memory locations. Compatible nodes
are “summarized” into a single one. Two nodes are compatible if they share the same
reference properties. With this framework we can achieve accurate results in a reasonable
analysis time and expending a reasonable ammount of memory. Besides this, we cover
situations that were previously unsolved, such as detection of complex structures (lists of
trees, lists of lists, etc.) and structure permutation, as we will see in this article.

The rest of the paper is organized as follows. Section 2 briefly describes the whole
framework, introducing the key ideas of the method and presenting the data structure ex-
ample that will help in understanding node properties and operations with graphs. These
properties are described in Sect. 3 where we show how the RSG can accurately approxi-
mate a memory configuration. In Sect. 4 we formalize when two RSGs are compatible and
how they can be joined, among other operations related with the RSGs included in an
RSRSG. These operations have been implemented in an analyzer which is experimentally
validated, in Sect. 5, by analyzing several codes based on complex data structures. In
Sect. 6 we compare our proposal with previous related works. Finally, we summarize the

main contributions and future work in Sect. 7.

2 Method overview

Basically, our method is based on approximating by graps all possible memory configura-
tions that can appear after the execution of a statement in the code. We call a collection
of dynamic structures a memory configuration. These structures comprise several memory
chunks, that we call memory locations, which are linked by references. Inside these mem-
ory locations there is room for data and for pointers to other memory locations. These
pointers are called selectors.

Note that due to the control flow of the program, a statement could be reached by

following several paths in the control flow. Each “control path” has an associated memory



configuration which is modified by each statement in the path. Therefore, a single state-
ment in the code modifies all the memory configurations associated with all the control
paths reaching this statement. Each memory configuration is approximated by a graph
we call Reference Shape Graphs (RSG). So, taking all this into account, we conclude that
each statement in the code will have a set of RSGs associated with it.

The RSGs are graphs in which nodes represent memory locations which have similar
reference patterns. To determine whether or not two memory locations should be repre-
sented by a single node, each one is annotated with a set of properties. Now, if several
memory locations share the same properties, then all of them will be represented by the
same node. This way, a possibly unlimited memory configuration can be represented by
a limited size RSG, because the number of different nodes is limited by the number of
properties of each node. These properties are related to the reference pattern used to
access the memory locations represented by the node. Hence the name Reference Shape
Graph. These properties are described in Sect. 3.

As we have said, all possible memory configurations which may arise after the execution
of a statement are approximated by a set of RSGs. We call this set Reduced Set of Refer-
ence Shape Graphs (RSRSG), since not all the different RSGs arising in each statement
will be kept. On the contrary, several RSGs related to different memory configurations
will be fused when they represent memory locations with similar reference patterns. As
we will see, there are also several properties related to the RSGs, and two RSGs should
share these properties to be joined. Therefore, besides the number of nodes in an RSG,
the number of different RSGs associated with a statement are limited too. This union of
RSGs greatly reduces the number of RSGs and leads to a practicable analysis.

To move from the “memory domain” to the “graph domain”, the calculation of the
RSRSGs associated with a statement is carried out by the symbolic execution of the
program over the graphs. In this way, each program statement transforms the graphs
to reflect the changes in memory configurations derived from statement execution. The
abstract semantic of each statement states how the analysis of this statement must
transform the graphs.

Let us illustrate all this with an example. In Fig. 1 we can see a simple code with
seven pointer statements. Our analyzer symbolically executes each statement to build the
RSRSG associated with them. Actually, after the execution of the third statement we
obtain an RSRSG with a single RSG which represents three different memory locations

by three nodes; all of them of the same type, with the same nazt selector, but pointed



to by different pointer variables (pvars). Now, this RSRSG is modified in three different
ways because there are three different paths in the control flow graph, each one with a
different pointer statement. All these paths join in statement 7, and after the execution
of this statement we obtain an RSRSG with two RSGs. This is because the RSGs coming

from statements 5 and 6 are compatible and can be summarized into a single one.
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Figure 1: Building an RSRSG for each statement of an example code.

As we have seen, the symbolic execution of the code consists in the abstract interpre-
tation of each statement in the code. This abstract interpretation is carried out iteratively
for each statement until we reach a fixed point in which the resulting RSRSG associated
with the statement does not change any more [7]. This way, for each statement that
modifies dynamic structures, we have to define the abstract semantics which describes
how these statements modify the RSRSG. We consider six simple instructions that deal
with pointers: * = NULL, v = malloc, x = y, x — sel = NULL, x — sel = y,
and r = y — sel. More complex pointer instructions can be built upon these simple
ones and temporal variables. Due to space constraints we cannot formally describe the
abstract semantics of each one of these statements. However, we intuitively present the
modifications involved in an RSG after the statement symbolic execution:

e The x = NULL statement leads to elimination of the references from the pointer

variable x to any memory location. Therefore we have to remove these references from



the RSG.

e The x = malloc statement simply initializes new memory locations represented in
the RSG by a node referenced by x.

e The z = y modifies the RSG such that all memory locations pointed to by y are now
also pointed to by x. Before this statement and the previous one, we always automatically
insert the x = NULL statement to ensure that before assigning a new value to z, x is
not pointing to any place.

e The statement ©+ — sel = NULL is the most complex one, because it break links
between nodes. This leads to many changes in the properties of the nodes. In order to
obtain an accurate output RSG before removing the x — sel link we divide the RSG into
several rsg;. This division is carried out by taking into account that each rsg; should have
a single destination (node) for the x — sel link. In this way we can better focus on the
several memory configurations represented by the RSG regarding this x — sel link. Each
rsg; is pruned after the division to remove redundant or inexistent nodes or links which
have been conservatively inherited from the parent RSG. We also increase the accuracy of
the method by materializing from the node, the memory location which is the real target
of the x — sel link. After this, this link can be safely removed.

All these processes can be better illustrated by a simple example. In Fig. 2 (a) we see
an RSG representing a doubly linked list of two or more elements. Actually, n; represents
the first element in the list, ny the middle elements, and n3 the last one. Let us suppose
that this RSGs is an input rsg; to the © — nat = NULL statement where x is pointing
to the memory location represented by node n;. As we said, the first step in the abstract
interpretation of this statement is the division operation. Figure 2 (b) shows the resulting
rsgly and rsgly after the division. Note that in each one of these graphs there is a single
destination for x — naxt. This division process is formally described in Sect. 4.1. In
Fig. 2 (¢) we show the result of the pruning process in which the compiler removes nodes
and links which do not fulfill the graphs’ properties. In fact, rsg/; represents a list of
three or more elements and rsg//, is clearly a list of just two items. This pruning process
is formally described in Sect. 4.2. Now, before removing the x — nat link in both graphs,
the compiler has to focus more on one of the RSGs. More precisely, in rsg//y, we have to
materialize from node ny the node ny which represents the single list item referenced by
x — nzxt, as we can see in Fig. 2 (d). Finally, we see in Fig. 2 (e) how we safely remove
the link x — nat in both graphs to obtain the final rsg; and rsgs.

e The v — sel = y statement implies the execution of the same procedure just



Figure 2: Complete process of the abstract interpretation required by the © — nat =
NULL statement.

described for the x — sel = NULL statement (RSG division, pruning, and node materi-
alization) followed by the generation of a link by selector sel from the nodes pointed to
by x to the nodes pointed to by y.

e Finally, the statement x = y — sel leads to the inclusion of a new reference from
the z pvar to all the memory locations pointed to by y — sel. Now, the RSG division,
pruning, and node materialization are carried out for the y — sel link. In this way we
will point with x to the exact memory locations pointed to by y — sel and to no other.

From a higher perspective, the whole symbolic execution process can be seen by looking
at Fig. 3. For each statement in the code we have an input RSRSG; and the correspond-
ing output RSRSG, resulting from the modifications which take place in the memory
configurations after the statement execution. As we said, the RSRSG; comprises several
rsgi; to capture all the memory configurations associated with each path in the control
flow graph. During the symbolic execution of the statement all these rsg;; are going to be
updated. The first step comprises the graph division and pruning processes after which
we obtain several rsg;;;. Then the abstract interpretation of the statement takes place
and usually the complexity of the RSGs grows. In order to counter this effect, the com-
piler carries out a compression of the graph phase in which each RSG is simplified by the
summarization of compatible nodes in the RSG, to obtain the rsg;;, graphs. This step
is formally described in Sect. 3.2. Furthermore, some of the rsg;;.s can be fused into a
single rsg, if they represent similar memory configurations. This graph union operation

is described in Sect. 4.3.
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Figure 3: Schematic description of the symbolic execution of a statement.

2.1 Working example

We present here an hypothetical data structure which will be referred to during the
framework and operations description in the next sections. The data structure, presented
in Fig. 4 (a), is a doubly linked list of pointers to trees. Besides this, the leaves of the trees
have pointers to doubly linked lists. The pointer variable S points to the first element of
the doubly linked list (header list). Each item in this list has three selectors: nxt, pru,
and tree. This tree selector points to the root of a binary tree in which each element has
the [ ft and rgh selectors. Finally, the leaves of the trees point to additional doubly linked
lists. All the trees pointed to by the header list are independent and do not share any
element. In the same way, the lists pointed to by the leaves of the same tree or different

trees are also independent.
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Figure 4: A complex data structure (a), and compact representation of the resulting
RSRSG (b). The real RSRSG generated by the analyzer provides more information than
the one represented.

This data structure is built by a C code that also traverses the elements of the header
list with two pointers and eventually can permute two trees. Our analyzer has processed

this code obtaining an RSRSG for each statement in the program. Figure 4 (b) shows



a compact represetation of the RSRSG obtained for the last statement of the code after
the analysis process. As we will see in the next sections, from the RSRSG represented in
Fig. 4 (b) we can infer the actual properties of the real data structure: the trees and lists

do not share elements and therefore they can be traversed in parallel.

3 Reference Shape Graph

We present here our framework with a formal description of the RSGs. First, we need to
present the notation used to describe the different memory configurations that may arise

when executing a program.

Definition 3.1 We call a collection of dynamic structures a memory configuration. These
structures comprise several memory chunks, that we call memory locations, which are
linked by references. Inside these memory locations there is room for data and for point-
ers to other memory locations. These pointers are called selectors.

We represent the memory configurations with the tuple M = (L, P, S, PS, LS) where:
L is the set of memory locations; P is the set of pointer variables (pvars) used in the
program; S is the set of selectors declared in the data structures; PS is the set of references
from pvars to memory locations, of the type < pvar,l >, with pvar € P and | € L; and
LS is the set of links between memory locations, of the form < ly, sel,ly > where l; € L
references lo € L by selector sel € S.

We will use L(m), P(m), S(m), PS(m), and LS(m) to refer to each one of these sets

for a particular memory configuration, m. O

Therefore, we can assume that the RSRSG of a program statement is an approximation
of the memory configuration, M, after the execution of this statement. But let us first

describe the RSGs now that we know how a memory configuration is defined.

Definition 3.2 An RSG is a graph represented by the tuple RSG = (N, P, S, PL,NL)
where: N is the set of nodes. Fach node can represent several memory locations if they
fulfill certain common properties; P is the set of pointer variables (pvars) used in the
program; S is the set of declared selectors; PL is the set of references from puvars to
nodes, of the type < pvar,n > with pvar € P and n € N; and NL s the set of links
between nodes, of the type < nq,sel,ny > where ny € N references ny € N by selector

sel € S.



We will use N(rsg), P(rsg), S(rsg), PL(rsg), and NL(rsg) to refer to each one of these
sets for a particular RSG, rsg. U

Note that the P(m) and P(rsg) sets are the same in both memory and graph domains,
so from now on we will refer to them as P. The same can be applied to S(m) and S(rsg).

To obtain the RSG which approximates the memory configuration, M, an abstraction
function is used, F' : M — RSG. This function maps memory locations into nodes and
references to memory locations into references to nodes at the same time. In other words,
F'| translates the memory domain into the graph domain. Function F' extracts some
important properties from a memory location and, depending on these, this location is
translated into a node. Besides this, if several memory locations share the same properties
then this function maps all of them into the same node of the RSG. These properties are:
Type, Structure, Reference pattern, Share information, Simple paths, Touch information,

and Cycle links. These are now described.

3.1 Node properties

1.- The node TYPE property states the data type of the memory locations represented
by this node. Therefore, two memory locations can be mapped into the same node if
they share the same TYPE value. This property leads to the situation where, for the data
structure presented in Fig. 4(a), the nodes representing list memory locations will not be
summarized with those nodes representing tree locations, as we can see in Fig. 4 (b).

2.- The STRUCTURE information avoids the summarization of two nodes which
represent memory locations of the same type but which do not share any element (they
are non-connected components). Two memory locations have the same STRUCTURE value
if there is a path between them. Again, two memory locations can be represented by the
same node if they have the same STRUCTURE value.

3.- The Reference patterns are introduced to represent by different nodes the mem-
ory locations with different reference patterns (type of selectors which point to and from
this memory location). This keeps singular memory locations of the data structure in
separate nodes. For example, the roots and the leaves of the data structure in Fig. 4 (a)
are two kinds of memory locations. The root of one of the trees is referenced by the header
list and the leaves do not point to tree items but to a doubly linked list. Thanks to the
reference patterns, the method results in the RSRSG of Fig. 4 (b), where the root of the
tree, the leaves, and the other tree items are clearly identified.

In order to obtain this behavior, we define two sets SELINset and SELOUTset which

10



contain the set of input/output selectors for a certain location: sel; is in the SELINset(l;)
if [; is referenced from somewhere by selector sel;, or sel; is in SELOUTset(l;) if I;.sel;
points to somewhere outside. Our method can eventually lead to being unable to exactly
determine whether or not a certain selector is in an input or output set for a node,
n. This way, we also define PosSELINset(n) and PosSELOUTset(n) which contain the
selectors which “may” point to/from node n. To know if two nodes can be summarized we
have defined a Boolean function C_REFPAT(ny, ng) that returns true if two nodes represent
memory locations with a similar reference pattern. Basically, we allow the summarization
of two nodes if both of them have the same input and output selectors or we do not know
the input or output selectors of one or both nodes.

4.- The Share information can tell whether at least one of the locations represented
by a node is referenced more than once from other memory locations. Due to the relevance
of this property to inform the compiler about the potential parallelism exhibited by the
analyzed data structure, we use two kinds of attributes for each node: (i) SHARED(n)
with n € N(rsg), is a Boolean function which returns “true” if any of the locations, [y,
represented by n can be referenced by other locations, l; and [3, by different selectors, sel;
and sel;; and (ii) SHSEL(n, sel) with n € N(rsg) and sel € S, is a Boolean function which
returns “true” if any of the memory locations, /1, represented by n can be referenced more
than once by selector sel from other locations, [, and [5.

Let’s illustrate these SHARED and SHSEL properties using the compact representa-
tion of the RSRSG presented in Fig. 4 (b). In this figure, shaded nodes have the
SHARED property set to true. For example, in the header list the middle node ngy is
shared, SHARED(ng)=1, because n, is referenced by selectors nxt and prv. However, the
SHSEL(ng, nat)=SHSEL(ng, prv) =0 which means that by following selector nzt or prv it is
not possible to reach an already visited memory location. Actually, in this example, there
are no selectors with the SHSEL property set to true. Thus, the same happens for node ng
which represents the middle items of the doubly linked lists. We can also see in Fig. 4 (b),
that node ny4 is not shared, which states that, in fact, from memory locations represented
by n1, ne, and ng we always reach different trees which do not share any elements (as we
see in Fig. 4 (a)). Finally, node n; is shared because it is pointed to by selectors list and
prv. However, due to SHSEL(n;,list)=0 we can ensure that two different leaves of the
trees will never point to the same doubly linked list.

Now, two nodes can be summarized if they have the same SHARED and SHSEL attributes.

5.- Simple paths denominates the access path from a pointer variable (pvar) to a

11



location or node if the length of this path is less than or equal to 1. An example of a
simple path is p — s.sel — t in which the pvar p points to the location s which points
to the location t using the selector sel. Note that, in this example, the simple path for ¢
is < p, sel > and the simple path for s is < p,() >. There are codes in which the shape
of the data structure is better approximated by the RSG if we avoid the summarization
of nodes which are “near” to a pvar. With the simple path we consider that a node is
“near” to a pvar if this pvar points to the node directly, or by a path of length one (in
other words, there is a single hop from the pvar to the node).

We define, for a memory location | € L(m), SPATH(l) = {sp1, ..., sp,} where sp; =<
pvar, sel* > with pvar € P. In other words, SPATH(!) is the set of simple paths (pointer
variables and selectors) which point to [ directly (sel* = @)) or through an intermediate
location, I; (< pvar,l; >€ PS(m)A < I;, sel*,1 >€ LS(m)). The length of a simple path,
sp; =< pvar, sel; >, LEN(sp;) = 0 if sel; = () or 1 if sel; = sel € S.

To determine when two nodes can be summarized, we define a Boolean function
C_SPATH(nq, ny, m) which returns true if nodes n; and ny, have compatible SPATH. The
parameter m imposes the constraints in the comparison of nodes. If m = 0 there are less
restrictions to summarize two nodes. In this case, two node SPATHs are compatible if they
comprise the same zero-length simple paths. This particular case of the C_SPATH function
is called C_SPATHO. On the contrary, if m > 0, the two SPATHs also have to share at least
m one-length simple paths. We have found in our experiments that a tradeoff value for
the m parameter is one, for which we can obtain a good description of the data structure
without an excessive growth of nodes. In this case the function is called C_SPATH1.

6.- Touch information. Until now, we have seen properties which capture some
important issues of the memory configuration and which change according to the current
statement. However, sometimes it is necessary to keep track of the memory locations for
several statements to increase the accuracy of the RSRSGs. For example, if we deal with
a list data structure, we know that all the middle elements (not pointed to by any pvar)
are going to be summarized in a single node. Now, when traversing this list in a loop, the
same summary node will represent non-visited locations as well as visited ones. On the
other hand, during one acyclic traversal of the list, it would be better to keep the visited
locations in a separate node in such a way that new changes only affect non-visited nodes.

In order to achieve this behavior in the analyzer we assign to each node a new property
called TOUCH. This property is taken into account only inside loop bodies. In this case,

the TOUCH information of a node is the set of pvars from which the memory locations
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represented by the node have been visited. We understand by “pvar z visit node n” that
the node n has been referenced by x. For example, in x = y, the node pointed to by y is
visited by z. In the same way, in x = y — sel, the node pointed to by selector sel from
node y is visited by x.

Now, two memory locations can be summarized in the same node if they have been
“touched” by the same set of pvars. In this way we can keep visited nodes apart from non-
visited ones. However, clearly this new restriction in the summarization will increase the
number of nodes in the RSRSGs. In order to avoid the explosion in the number of nodes
we have to constrain the kind of pvar which can appear in the TOUCH set. More precisely,
only those pvars which are used to traverse dynamic data structures (called induction
pointers by Yuan-Shin Hwang [15] or navigators by Rakesh Ghiya [9]) are eligible to be
included in the set. Taking all this into account, we can finally define for n € N(rsg):
TOUCH(n) = {ipvar|ipvar € iP} where iP is the set of induction pvars found in the code.
Clearly, there should be a preprocessing analyzer pass to identify inductions pvars in the
code. Due to space constraints we cannot describe this preprocessing pass but it is based
on Access Path Expressions [15].

Finally, the compiler also implements an additional improvement to save space and
time. The idea is that after exiting a loop body the TOUCH information regarding the
ipvars of this loop are not needed any more. This way, the compiler removes those ipvars
associated with this loop from the TOUCH set of the nodes.

7.- The Cycle links property is introduced to increase the accuracy of the data
structure representation by avoiding unnecessary edges that can appear during the RSG
updating process. The cycle links of a node, n, are defined as the set of pairs of references
< sel;, sel; > such that when starting at node n and consecutively following selectors sel;
and sel;, the n node is reached again.

This property is very useful for dealing with doubly linked structures. For example,
in the data structure presented in Fig. 2 (a), the elements in the middle of the doubly
linked lists, represented by node ny, have two cycle links: < nxt, prv > and < prv, nat >,
due to starting at a list item and consecutively following selectors nat and prv (or prov
and nzt) the starting item is reached.

We conclude here that the CYCLELINKS property is used during the pruning process.
Thus, in contrast with the other six properties already described, the CYCLELINKS property

does not prevent the summarization of two nodes which do not share the CYCLELINKS sets.
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3.2 Compression of graphs

As we explained in Sect. 2 the code analysis implies symbolically executing each statement
applying the abstract semantics associated with this statement. This symbolic execution
modifies the RSGs included in the input RSRSG. This way, these graphs may contain new
nodes representing new memory locations and/or the properties for certain nodes may
have changed. In other words, after the symbolic execution of a statement over an input
RSRSG, the resulting RSRSG may contain RSGs with redundant information, which can
be removed due to node summarization or compression of the RSG.

In order to do this, after the symbolic execution of a statement, the method applies the
COMPRESS function over the just modified RSGs. However, before explaining this COMPRESS
function, we need to define the C_NODES_RSG one, which identifies the compatible nodes
that will later be summarized. This Boolean function just has to check whether or not
the first six properties previously described are the same for both nodes (as we said in the
previous subsection, the CYCLELINKS property does not affect the compatibility of two
nodes). This way

C_NODES RSG(n;, n;) = true if (TYPE(n;) = TYPE(n;)) A (STRUCTURE(n;) = STRUCTURE(n;)) A
(SHARED(n;) = SHARED(n;)) A (SHSEL(n;, sely) = SHSEL(nj, sely)Vsel, € S) A (TOUCH(n;) =
TOUCH(n;)) A (C_REFPAT(n;,n;) =1) A (C_SPATH(n;,nj,m) =1).

Now, compatible nodes of the same RSG are summarized by the function COMPRESS(rsg) =
rsg. which does not change the set of pvars, P, nor the set of selectors, S, in the new
rsg.. However, the other sets involved in the new rsg. composition are:

e The set of nodes of the compressed RSG, N(rsg.), will contain the nodes which
cannot be summarized with any other plus the nodes resulting from the summarization of
compatible nodes. We use the MERGE_COMP_NODES function to generate a summary node
from a group of compatible nodes, as we will see later. Formally:

N(rsg.) = {n | [n € N(rsg) A (fn; € N(rsg)) A CNODESRSG(n,n;) =1)] V[n=
MERGE_COMP_NODES(n1, ..., k), M1, ..., g € N(rsg) A (Vi = 1..k—1,C_NODES_RSG(n;,n;+1) = 1)]}

e The new set of pvar references, PL(rsg.), is basically the same set of the uncom-
pressed RSG, PL(rsg), but which maps all the nodes into the new ones. This is done
with the n, =MAP_RSG(n) function which maps the old node n € N(rsg) into the new
node n, € N(rsg.):

PL(rsg.) = {< pvar,MAP_RSG(n) >,V < pvar,n >€ PL(rsg)}

e The same idea applies to the set of references for the compressed graph:

NL(rsg.) = {< MAP_RSG(n;), sel, MAP_RSG(n,) >,V < n;, sel,n; >€ NL(rsg)}
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Regarding the MERGE_COMP_NODES function used for the summarization of several com-
patible nodes, we define:
MERGE_COMP_NODES (71, ...nj,) = MERGE_NODES (12, , MERGE_NODES (7, ..., MERGE_NODES (12,1, n1.)...))
The MERGE_NODES(n4, n2) function takes care of the summarization of nodes n;, and ny
into node n. The properties of this new node, n, are set in order to preserve the description
of the data structures represented by the original nodes. This way, MERGE_NODES(n;, ny) =
n, where:
TYPE(n) = TYPE(n;) = TYPE(ng); SHARED(n) = SHARED(n;) = SHARED(ng); SHSEL(n,sel;) =
SHSEL(n1, sel;) = SHSEL(ng, sel;)Vsel; € S; TOUCH(n) = TOUCH(n;) = TOUCH(n3); PosSELOUTset(n)
= PosSELOUTset(n1) UPosSELOUTset(ns); PosSELINset(n) = PosSELINset(n1) U PosSELINset(ns);
SELINset(n) = SELINset(n;) N SELINset(n2); SELOUTset(n) = SELOUTset(n;) N SELOUTset(n2);

CYCLELINKS(n) = {< sel;, sel; > |
< sel;, sel; >€ (CYCLELINKS(n1), CYCLELINKS(n2)) V
< sel;, selj >€ CYCLELINKS(n;) A ng, € N(rsg), < ng, selj,n, >€ NL(rsg) V
< sel;, selj >€ CYCLELINKS(n2) A ng, € N(rsg), < ny, selj,ny, >€ NL(rsg)

This means that the new node will have the same TYPE, SHARED, SHSEL, and TOUCH
properties which actually should be the same in n; and ny to allow the summarization
of both nodes. However, the new reference pattern information behaves conservatively.
If sel; is an input/output selector in both nodes, n; and ny, then it will remain as an
input/output selector in the resulting summarized node, n. The same happens if sel;
is not an input/output selector in both nodes. However, if we are not sure about the
sel; selector in one of the original nodes, then the same uncertainty exists regarding the
resulting summarized node.

Finally, regarding the CYCLELINKS sets, the resulting node n keeps the common cycle
links sets from the original nodes, n; and ny. In addition, a cycle link, < sel;, sel; >,
from one of the nodes, for example, nq, is also included in the cycle link set of the node

n if the first selector sel; is not a link selector in the other node, n,.

4 Reduced Set of RSGs

We have already seen that an RSG describes a memory configuration by a finite graph.
The execution of each statement in the program can modify the memory configuration and
thus the RSG. However, due to the control flow of the program, the same statement could
be reached by several control paths leading to several memory configurations depending
on the path. This way, there could also be several RSGs for the same program statement.

In our method, we maintain the representation of all these RSGs with the Reduced Set
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of Reference Shape Graphs (RSRSG). Therefore, each statement in the program has an
associated RSRSG which approximately describes all possible memory configurations that
may arise after the execution of this statement.

However, the number of RSGs stored in an RSRSG could be prohibitive if we do
not apply some simplifications while keeping reasonable accuracy in the representation.
Actually, this simplification consists in allowing the union of some of the RSGs which
fulfill certain conditions. After the union, the resulting RSG should represent all the
locations approximated by the original RSGs and the relevant shape information should
be maintained.

More precisely, two graphs, rsg; and rsg;, can be joined in a single one if they
are compatible. Thus, we define COMPATIBLE(rsg;,rsgs) = true if ALIAS(rsg;) =
ALIAS(rsgs)) A COMP_NODES(rsgi,rsgs) = 1. We see that two graphs, rsg; and rsgs,
are compatible if they fulfill two conditions: i) the alias relation between pvars of both
graphs are the same; and ii) certain nodes in both graphs are compatible. This leads us
to define the alias relation between pvars and the compatibility condition between certain
nodes in the graphs:

- ALIAS(rsg) is the set of alias relations, alr;, in the rsg graph, where each alr; identifies
all the pvars pointing to the same node n;:

ALIAS(rsg) = {alry,...,alr,} where alr; = {pvary,..,pvar,, € P} if In; € N(rsg)| <
pvary,n; >, .., < puary,,n; >€ PL(rsg)

- COMP_NODES(rsg;, rsgs) is a Boolean function which returns true if the nodes directly
pointed to by the same pvar are compatible, which happens when they have similar
properties (and therefore these nodes can be summarized). This function is formalized
in two steps: the first one identifies the nodes from both RSGs, n; € N(rsg;) and ny, €
N(rsgy), which are pointed to by the same pvar; the second step determines whether
these nodes have similar properties using an additional Boolean function C_NODES:

COMP_NODES(rsg1,7sg2) = true if Vpvar; € P, < pvari,n; >€ PL(rsgi) A < pvar;,ny >€
PL(rsg2) A CNODES(nj,ny) = 1.
where C_NODES(ni,ns2) = true if (TYPE(ny) = TYPE(n2)) A (SHARED(n;) = SHARED(ng)) A
(SHSEL(n, sel;) = SHSEL(ng, sel;)Vsel; € S) A (TOUCH(n;) = TOUCH(n2)) A (C_REFPAT(ni,ns) =
1) A (C_SPATH(ni,ng,m) = 1).

We can see here that C_NODES_RSG and C_NODES are quite similar, but they differ in
that the latter does not check the STRUCTURE property. This is because of the excessive
complexity involved in checking this property for all the nodes of two different RSGs.
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In the following subsections, we describe the operations that can be carried out with
the RSGs of an RSRSG. In the worst case, the sequence of operations that the analyzer
carries out in order to symbolically execute a statement, as we have seen in Fig. 3, are:
graph division, graph prune, statement symbolic execution (RSG modification), RSG
compression, and RSG union to build the final RSRSG. In fact, the RSG compression has

already been presented in Sect. 3.2, so we focus on the other operations.

4.1 Graph division

The division operation takes place for the © — sel = NULL, x — sel =y and y = x —
sel. The goal of this operation is to split the input rsg into several graphs, such that for
each one of these graphs, the node directly pointed to by x points to a single node by
selector sel. Basically, with the division, we try to recover the individual characteristics of
memory configurations that were fused into a single RSG in a previous statement. Going
back to Fig. 2 (a) and (b), we can see how the rsg is divided into graphs rsgf; and rsg/s.

The original graph is presented in Fig. 2(a). Note that the node directly pointed to by
x, ny, points to two different nodes by selector nzt. Therefore, we divide this graph into
two different ones in such a way that in each resulting graph, n; points to a single node
by nxt. We see these two graphs in Fig. 2(b), where in rsg/; the node n; only points to
node ny and in 7sg/y this node only points to node ngs.

We define DIVIDE(rsg, x, sel) = {rsgi, .., rsg,} which divides the rsg in the set {rsgi, .., 7sg,}
regarding the pvar x and selector sel. This division is carried out in the following way.
If n € N(rsg)| < z,n >€ PL(rsg), then, V < n,sel,n; >€ NL(rsg), we create a rsg/;
such that N(rsgl;) = N(rsg), PL(rsgl;) = PL(rsg) and NL(rsgl;) = NL(rsg) \ {<
n,sel,n; >€ NL(rsg), Vn; # n;}. Each rsg/; can contain a single node n; pointed to by

n by selector sel.

4.2 Graph pruning

After graph division, there can be nodes or links which are not compliant with the new
properties of these graphs. For example, if a node n belongs to an rsg; (which results
from the division of rsg) in which SELIN(n, sel) = 1 there should be a node n; pointing to
n by selector sel (< n;, sel,n >€ NL(rsg;)). If such a node, n;, cannot be found we know
that node n does not belong to this rsg; and therefore the node and all its links can be
removed from this graph. Actually, this node n will be present in other RSGs resulting
from the graph division and in some of these RSGs the node will fulfill the SELIN property.
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In our previous example we can see how the two divided graphs of Fig. 2(b) are
simplified into the graphs presented in Fig. 2(c). Note that rsg//; is obtained after the
pruning of rsgfy, in which we can safely remove the link < ns,prv,n; > due to it not
fulfilling the cycle link properties of node nz. This property states that subsequently
following prv and nat from node ns, this n3 should be reached, but this does not happen
for the above-mentioned link. Regarding rsg//y, note that the same happens for the link
< ng, prv,n; >. Besides this, because node n3 is not shared by selector nxt and we are
sure that < ny,nxt,ng > exists, we can conclude that < ns, nxt, ng > should be removed.
This implies the elimination of < ns,prv,n, > due to cycle link properties. After this
elimination, node my cannot be reached and is therefore removed from rsg/y. In our
implementation, these latter steps actually take place during the node materialization
included in the abstract interpretation. In any case, it is important to note that the false
value in share attributes leads to a more aggressive pruning which simplifies the RSRSGs
and greatly contributes to avoid an explosion in the number of nodes.

To formalize the pruning process, our method uses two Boolean functions to deter-
mine whether a node, N.PRUNE(n), or a link, NL_PRUNE(< n;, sel, ny >), fulfill the graph
properties:

e A certain node, n, is removed from the graph only taking into account the reference
pattern property. That is, if the SELIN/SELOUT functions assert that the node is referenced
by selector sel or that this node references by sel to another node, these conditions should
be hold. In other cases, the node should be eliminated from the graph. More formally

N_PRUNE(n) = true if (Isel; €SELOUTset(n) A sel; ¢posSELOUTset(n) A Fng € N(rsg),<
n, sel;,no >€ NL(rsg)) V (3sel; €ESELINset(n) A sel; ¢posSELINset(n) A Bno € N(rsg), <
ny, selj,n >€ NL(rsg)).

e On the other hand, the link restrictions arise due to the CYCLELINKS property. For
example, let’s assume a certain node, n, has a set of CYCLELINKS which comprises this
particular one: < sely,sel, >. This cycle link points out that the memory locations
represented by the node points to others by selector sel;, and those ones point to the
original locations by selector sel,. Therefore, in our example, if the node ny pointed to
by n; does not point again to n; using selectors sel; and sels, respectively, we can safely
remove the link < ny, sel;, ny >. Formally

NL_PRUNE(< nq, selj,ny >) = true if 3 < sel;, sel; >€ CYCLELINKS(n1) | < ng,selj,ni >¢
NL(rsg).

Additionally, we should note that this pruning is an iterative process, because after
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the elimination of some nodes or links there may appear more nodes or links which do
not fulfill the rules and should be removed too. This way, the pruning process ends when
all the nodes and links fulfill the graph properties. The whole process can be expressed
as PRUNE(rsg) = rsg,. This iterative function starts with rsgy = rsg. Next, Vi = 1..n:

N(rsg;) = N(rsgi—1) \ {n € N(rsgi—1)|[N.PRUNE(n) = 1}; PL(rsg;) = PL(rsgi—1) \ {<
pvar,n >€ PL(rsg;—1)|N.PRUNE(n) = 1} and NL(rsg;) = NL(rsgi—1) \ {< ni,sel,ne >€
NL(rsgi—1)|(N_.PRUNE(n;) = 1) V (N_PRUNE(ny) = 1) V (NL_PRUNE(< ny, sel,ng >) = 1)}
where for each iteration we remove the nodes and links for which functions N_PRUNE and
NL_PRUNE return true. The process ends when we reach the graph rsg, which holds Vn €
N(rsgn), N.PRUNE(n) =0 AV < ny, sel,ny >€ NL(rsg,), NL_PRUNE(< ny, sel,ny >) = 0.

4.3 Graph union

Two compatible graphs rsg; and rsgs, (COMPATIBLE(rsg1,7sg2) = 1), can be fused in a
single graph, rsg, which captures the data structure information represented by the two
original graphs. This union of graphs is carried out by the JOIN(rsg;, rsgs) = rsg function
which builds the new graph, rsg, from the original ones, rsg; and rsgy. This function
does not modify the pvars set, P, nor the selectors set, S. On the contrary, the nodes set,
N, and link sets, PL and N L, should be updated.

In particular, some of the nodes of rsg; and rsg, are going to be summarized if they are
compatible. Now, using the function MERGE_NODES described in Sect. 3.2 we can describe
the sets N, PL, and NL of the new RSG, resulting from the union of rsg; and rsgs:

e The set of nodes, N, for the new graph, rsg, comprises three subsets: the non-
compatible nodes from rsg;, the non-compatible nodes from rsg,, and the nodes resulting
from the union of compatible nodes (MERGE_NODES):

N(rsg) = {n; € N(rsg1)|#n; € N(rsgs), CNODES(n;,n;) = 1)} U {n; € N(rsgs)|#n; €
N(rsgi1), C.NODES(n;j,n;) = 1)} U {n =MERGE_NODES(n;,n;), Vn; € N(rsgi), Vn; € N(rsgs)|
(C_NODES(n;,n;) = 1)}

We define the MAP(n;) function which points out which node of the new graph rsg is
now representing a certain node of the rsg; or rsg,. By using this MAP function it is easy
to describe the new PL(rsg) and NL(rsg) sets.

e The set of references from pvars to nodes PL(rsg) are obtained by translating the
old references from rsg; and rsgs to the new graph using the MAP function.

PL(rsg) = {< pvar, MAP(n;) > | V(< pvar,n; >€ PL(rsg1)} U
{< pvar, MAP(n;) > | Y(< pvar,n; >€ PL(rsg>)}
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e Similarly, we obtain the set of links between nodes:

NL(rsg) = {< MAP(n;),selj, MAP(ny) > | V < n;,selj,ny >€ NL(rsg1)} U
{< MAP(n;),selj, MAP(ny) > | VY < n;,selj,ng >€ NL(rsgs)}

This way, in the new graph, rsg, we keep all the references and links existing in the
original graphs, rsg; and rsgs, just changing the source and destination nodes for the
corresponding ones of the new graph using the MAP function. Thus, the new rsg resulting
from the union of two compatible graphs has been completely defined. We emphasize
here that due to this RSG union we can save a great amount of memory space, but at
the same time we enable the representation of several memory configurations (which are

not completely equal) with the same RSG.

5 Experimental results

All the previously described operations and properties have been implemented in an ana-
lyzer written in C which can be fed with an input code to generate the RSRSG associated
with each statement of the code. The codes have to be preprocesed in a first step to just
keep the statements dealing with pointers. In addition, since our analyzer only considers
the six pointer statements described in Sect. 2, the preprocessor has to translate other
complex pointer statements into the allowed ones.

Furthermore, before the symbolic execution of the code, the preprocessor can also
extract some important information from the program in a previous pass. For example,
a quite frequent pattern arising in C codes based on dynamic data structures is: while
(x !'= NULL) {...}. In this case the analyzer can assert that at the entry of the while
body the pvar x # NULL. Besides this, if we have not exited the while body with a
break statement, we can also ensure that just after the while body the pvar x = NULL.
This information is used to simplify the analysis and increase the accuracy of the method.
More precisely, we can reduce the number of RSGs and/or reduce the complexity of this
RSG by diminishing the number of memory configurations represented by each RSG.
Other statements from which we can extract useful information are IF-THEN-ELSE, FOR
loops, or any conditional statement.

The implementation of this idea has been carried out by the definition of certain pseu-
doinstructions that we call FORCE. These pseudoinstructions are inserted in the code by
the preprocessor of the analyzer and will be symbolically executed as a regular state-
ment. Therefore, each one of these FORCE statements has its own abstract semantics

and its own associated RSRSG. The FORCE pseudoinstructions we have taken into ac-
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count are: FORCE[,——nu1)(759), FORCE—nuLL)(759), FORCE[;——y(r5g), FORCE[;1—y(59),
FORCE[y s sei==nNu 1] (T59).

In addition, we have found that the FORCE[,1—nyp1z) pseudoperation can be also placed
just before the following statements: x — sel = NULL, x — sel =y y y = x — sel,
under the assumption that the code is correct. That is, it makes sense to assume that
before the execution of all these three statements, = is not NULL (in other cases the code
would produce an error at execution time). The same can be assumed for any statement
with an occurrence of the type x — wval, where val is a non-pointer field of the structure
pointed to by z. All this preprocessing is now done by hand but we plan to have an

automatic preprocessor soon.

5.1 Progressive analysis

As we have seen, the set of properties associated with a node allows the analyzer to
keep in separate nodes those memory locations with different properties. Obviously, the
number of nodes in the RSRSGs depends on the number of properties and also on the
range of values these properties can take. The higher the number of properties the better
the accuracy in the memory configuration representation, but also the larger the RSRSGs
and memory wastage.

Fortunately, not all the properties are needed to achieve a precise description of the
data structure in all the codes. That is, simpler codes can be successfully analyzed taking
into account fewer properties, and complex programs will need more compilation time
and memory due to all the properties have to be considered. Bearing this in mind, we
have implemented the analyzer to carry out a progressive analysis which starts with fewer
constraints to summarize nodes, but, when necessary, these constraints are increased to
reach a better approximation of the data structure used in the code.

More precisely, the analysis comprises three levels: L, Ly, and L3, from less to more

complexity as we explain next:

e [Lq: In this level the TOUCH sets are not built nor taken into account and only the

C_SPATHO condition is used.
e [,: This level is based on the previous one but now using the C_SPATH1.

e [3: This is the higher level in which all the properties including the TOUCH one are

taken into account.
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Working Ex. S.Mat-Vec S.Mat-Mat S.LU Barnes-Hut

Level L1 / L2 / L3 L1 / L2 / L3 L1 / L2 / L3 L1 L1 / L2 / L3

Time | 0°03”/0°05” /006" | 0°017 /0027 /0°03" | 0°20” /0°38” /1°00” | 7'50” | 556" /0'34” /206"

MBytes 2.11/2.78/3.02 1.37/1.85/2.17 8.13/11.45/12.68 | 99.46 | 37.82/8.82/8.94

Lines 213 104 156 164 216

Table 1: Time and space required by the analyzer to process several codes with different
number of code lines.

With this tool we have analyzed several codes: the one described in Sect. 2.1 (working
example), the sparse Matrix by vector multiplication, the sparse Matrix by Matrix mul-
tiplication, the Sparse LU factorization, and the Barnes-Hut code. The first four codes
were successfully analyzed in the first level of the analyzer, L. However, for the Barnes-
Hut program the highest accuracy of the RSRSGs was obtained in the last level, Lj, as
we explain in Sect. 5.4. All these codes where processed by our analyzer in a Pentium
4 1.6 GHz with 128 MB main memory. The time and memory required by the analyzer
are summarized in Table 1. In this table we also show the number of code lines after the
preprocessing of the original C codes. The particular aspects of these codes are described

next.

5.2 Working example’s RSRSG

We refer in this subsection to the code that generates, traverses, and modifies the data
structure presented in Fig. 4 (a). A compact representation of the resulting RSRSG for
the last statement of the code can be seen in Fig. 4 (b). Although we do not show the code
due to space constraints, we have to say that this code presents an additional difficulty
due to some tree permutations being carried out during data structure modification. The
problem arising during structure permutation is that it is very easy to temporally assign
the SHARED=true property to the root of one of the trees that we are permutating, when
this root is temporally pointed to by two different locations from the header list. If this
shared property remains true after the permutation we would have a shaded n4 node in
Fig. 4 (b). This would imply that two different items from the header list can point to the
same tree (which would prevent the parallel execution of traversing the trees). However,
this problem is solved because, after the permutation, the method reassigns false to the
shared property thanks to the combination of our properties and the division of graph
operations. Summarizing, after the analysis of this code, the compact representation of the

resulting RSRSG for the last statement of the program (Fig. 4 (b)) accurately describes
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the data structure depicted in Fig. 4 (a) in the sense that: (i) The analyzer successfully
detects the doubly linked list which is acyclic by selectors nxt or prv and whose elements
point to binary trees; (ii) As SHSEL(n4,tree)=0, we can say that two different items of
the header list cannot point to the same tree; (iii) At the same time, since no tree node
(n4, ns and ng) is shared, we can say that different trees do not share items; (iv) The
same happens for the doubly linked list pointed to by the tree leaves: all the lists are
independent, there are no two leaves pointing to the same list, and these lists are acyclic
by selectors nxt or pro.

Besides this, our analyzer has also processed four codes which generate, traverse, and

modify complex dynamic data structures which we describe next.

5.3 Sparse matrix codes

Here we deal with some irregular codes which implements sparse matrix operations: the
sparse matrix by vector multiplication, r = M X v; the sparse matrix-matrix multiplica-
tion, A = B x C'; and the sparse LU factorization, A = LU.

The sparse matrices are stored in memory as a header doubly linked list with pointers
to other doubly linked lists which store the matrix rows (if the matrix is row-wise) or
columns (for column-wise matrices). The sparse vectors, v and r are also doubly linked
lists. In Fig. 5(a) we can see the main data structures for the matrix vector multiplication

code.

ow J List

[ prv mt@ nxt prv

xt| | prv mxt| |prv

M fPfV‘ML—_R\m pro[ma | HEADER
L row J L row J L
|

nxt J ROWS

\J \l
. - . .
: (XY
M ’["__’D‘ h D ° *
. . .
. 0 . . v
o prv| nxt prv | nxt prv| nxt | VECTOR
i O [} i
D—[’:D‘ Teee- D D D
r
—'[ prv| nxt prv | nxt prv | nxt J VECTOR
HEADER ROWS VECTOR VECTOR

(%) (b)

Figure 5: Sparse matrix-vector multiplication data structure and compacted RSRSG.

After the analysis process, carried out by our analyzer, the resulting RSRSG accurately
represents the data structures. Actually, in Fig. 5(b) we present a compact representation
of the resulting RSRSG for the last statement of the matrix vector code. First, note that

the three structures involved in this code are kept in separate subgraphs. Even when the
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data type for vectors v and r and rows of M, is the same, the STRUCTURE property avoids
the union of these graphs into a single one. This RSRSG states that the rows of the
matrix are pointed to from different elements of the header list (there is no selector with
the shared property set to true). Also, the doubly linked lists which store the rows of M
and the vectors v and r are acyclic by selectors nxt and prv. Regarding the sparse matrix
matrix multiplication, a similar RSRSG is also obtained, but instead of one matrix and
two vectors representation we have three different matrix graphs.

On the other hand, the sparse LU factorization code solves non-symmetric sparse
linear systems by applying the LU factorization of the sparse matrix. Here, the sparse
matrix is a list of pointers to sparse columns. However, this code is much more com-
plex to analyze due to the partial pivoting and column permutation which takes place
in the factorization in order to provide numerical stability and preserve the sparseness.
The compact representation of the corresponding RSRSG represents a sparse matrix like
matrix M in Fig. 5(b). In this case, a pointer variable A (instead M) points to a doubly
linked list, the header list. Each node of this list points to a single doubly linked list
which represents a matrix column. Due to SHSEL being false for all selectors we conclude
that the header list and the column lists are acyclic structures when they are traversed
by a single selector type and that different elements of the header list should point to
different columns. A subsequent analysis of the code and the RSRSG associated with
each statement would be able to state that several sparse matrix columns can be updated
in parallel during factorization and, in addition, it is also possible to update each column

in parallel.

5.4 Barnes-Hut N-body simulation

This code deserves more attention due to it being a good example in which the analyzer
has to sequentially carry out the three levels of compilation in the progressive analysis.

This code is based on the algorithm presented in [2] which is used in astrophysics. In
fact, this application simulates the evolution of a system of bodies under the influence
of gravitational forces. It is a classical gravitational N-body simulation, in which each
body is modeled as a point mass. The simulation proceeds over time-steps, each step
computing the net force on every body and thereby updating that body’s position and
other attributes. The data structure used in this code is based on a hierarchical octree
representation of space in three dimensions.

In Fig. 6(a) we present a schematic view of the data structure used in this code.
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The bodies are stored by a single linked list pointed to by the pvar Lbodies. The octree
represents the several subdivisions of the 3D space. That is, the root of the tree represents
the whole space, each one of its children represents a single subsquare of this space, and
so on. This way, each leaf of the octree represents a subsquare which contains a single
body and therefore points to this body stored in the Lbodies list. Each octree node which
is not a leaf has a pointer child pointing to the first of its eight children which are linked

by selector next.
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Figure 6: Barnes-Hut data structure and compacted RSRSG.

The three main steps in the algorithm are: (i) The creation of the octree and the
pointers from the elements of the octree to the elements of the Lbodies list; (ii) for each
subsquare in the octree, compute the center of mass and total mass for all the particles
it contains; and (iii) for each particle, traverse the tree to compute the forces on it.

All the traversals of the octree are carried out in the code in recursive calls. Due
to the fact that our analyzer is still not able to perform an interprocedural analysis,
we have manually carried out the inline of the subroutine and the recursivity has been
transformed into a loop. This loop uses a stack pointing to the nodes which are referenced
during the octree traversal. This stack is also considered in Fig. 6 (a) and obtained in the
corresponding RSRSG, Fig. 6 (b).

After the L; analysis of the code, the resulting RSRSG for the last statement of the
code does not correspond with the real properties of the data structure used in the code.
The problem is that the summary node ng, which represents the middle elements of the
Lbodies list fulfill SHSEL(body) = true. This would imply that there may be different
leaves in the octree pointing to the same body in the Lbodies list. This inaccuracy is due
to an imprecise analysis during the generation of the list of children in the octree.

This inaccuracy is avoided moving on to the Ly level, thanks to the use of C_.SPATH1.
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The resulting RSRSG can be seen in Fig. 6(b), where the summary node ng fulfills
SHSEL(ng, body) = false, in line with the real data structure. However, due to the stack
we use to assist the octree traversal, there is a problem that cannot be solved in L, for
the (iii) step of the algorithm: nodes ns, n3, and ny are shared by selector node from the
Stack data structure. This would prevent the parallel traversal of the octree and does not
fit with the real data structure. The lack of accuracy is now due to the fact that, during
the traversal of the octre, visited nodes are summarized with non-visited ones.

However, by switching to the L3 compilation level this problem is solved thanks to the
TOUCH property which keeps in separated summary nodes visited and non-visited nodes.
A subsequent analysis of the code can state that the tree can be traversed and updated
in parallel.

However, regarding the Table 1, there is a paradoxical behavior that deserves an
explanation: Ly and L3 expend less time and memory than L;. As was briefly described in
the example in Sect. 4.2, when SHARED and SHSEL are false there are more nodes and links
pruned during the abstract interpretation and graph compression phase of the symbolic
execution of a statement. In this code, for the Ly and L3 levels, the SHSEL(ng, body) = false
leads to more pruning and graph simplifications counteracting the increase in complexity

due to the use of the C_SPATH1 and TOUCH properties.

6 Related works

There are several ways the shape analysis problem can be approached. The simplest
strategy consists in asking the programmer to annotate the sequential code, so helping
the analyzer with this extra information [14] following a semiautomatic approach. On the
other hand, user interaction is avoided in many studies, such as the ones based on “access
paths” or on graphs. For example, the method proposed by Matsumoto et al. [18] uses
“normalized” path expressions to maintain the “alias-pair” between pointers. However,
we discarded this set of methods as they cannot handle cyclic structures such as double
linked lists or trees with pointers from leaves to parents.

On the other hand, in the graph-based methods the “storage chunks” are represented
by nodes, and edges are used to represent references between them. For example, Chase
et al. [3] define the “Storage Shape Graph” which contains one node for each variable and
one for each allocation site in the program. With this abstraction their method can detect
a single linked list even when new items are appended to the end of the list. However, this

method is not powerful enough to detect insertion of elements in the middle of the list.
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Plevyak et al. [19] try to solve Chase’s problem by extending the “Storage Shape Graphs”
to the “Abstract Storage Graph” (ASG). However, the improvements in accuracy are paid
for with too much complexity in comparisons and compression operations. On the other
hand, the method presented by Sagiv et al. [21] is based on what they call “Static Shape
Graphs” (SSG). The main difference between this method and the previous ones lie in the
node-name scheme they use for the nodes, where all the memory locations not directly
pointed to by a pointer variable (pvar) are fused into a single summary node.

In a previous work [6] we saw that ASG or SSG were not sufficient to deal with the
complex data structures we presented in the previous section. In that way, we combined
and extended Plevyak and Sagiv’s methods allowing for more than a summary node
per graph among other extensions. However, we keep the restriction of one graph per
statement in the code. This way, since each statement of the code can be reached after
following several paths in the control flow, the associated graph should approximate all
the possible memory configurations arising after the execution of this statement. This
restriction leads to memory and time savings, but at the same time it significantly reduces
the method’s accuracy. Since we are mainly concerned with the precision achieved by our
method, in the current work we have changed our previous direction by selecting a tradeoff
solution: we consider several graphs with more than a summary node, while fulfilling some
rules to avoid an explosion in the number of graphs and nodes in each graph.

Among the first relevant studies which allowed several graphs per statement were
those developed by Jones et al. [16] and Horwitz et al. [13]. These approaches are based
on a “k-limited” approximation in which all nodes beyond a k selectors path are joined
in a summary node. The main drawback to these methods is that the node analysis
beyond the “k-limit” is very inexact and therefore they are unable to capture complex
data structures. A more recent work that also allows several graphs and summary nodes
is the one presented by Sagiv et al.[22]. They propose a parametric framework based
on a 3-valued logic. To describe the memory configuration they use 3-valued structures
defined by several predicates. These predicates determine the accuracy of the method.
However, as far as we know the currently proposed predicates do not suffice to deal with
the complex data structures that we handle in this paper.

There are three main differences between our shape analysis method and that of Sagiv
et al. [22]. The first is that in our work we consider important properties, such as the
“reference patterns” and “touch information”, among others, which lead to a more precise

description of the data structure used in the code. Second, we join similar reference shape
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graphs (RSGs) to build a reduced set of RSGs for each program point, while in [22]
they keep all the graphs. We think that this may explain why their Three-Valued-Logic
Analyzer (TVLA) runs out of memory for simple codes such as the singly linked list insert
sort and bubble sort using the multiple structure approach [17]. Third, they recognize
that their TVLA engine is only useful to analyse small programs and report experimental
results for small, singly linked list operations (insert, reverse, sort, etc.). However, they
have not published experimental results successfully dealing with real codes based on the
combination of complex data structures such as doubly linked lists pointing to trees or
to other lists, etc. Besides, it is probably unfair to compare their Java-written TVLA
running on a Pentium I1-400MHz with our C-written analyzer on a Pentium ITI-500MHz,
but to give an idea of performance we can point out that in [17] they report 186 sec.
to analyse the bubble sort routine using the single structure approach. Our analyzer
precisely captures the memory configuration at each statement of this routine in less than
3 sec. In summary, and to the best of our knowledge, our analyzer is the only one able

to accurately identify the complex data structures described in the previous section.

7 Conclusions and future work

We have developed an analyzer which can be fed with a code to determine the RSRSG
associated with each statement of the code. Each RSRSG contains several RSGs, each
one representing the different data structures which may arise after following different
paths in the control flow graph of the code. However, several RSGs can be joined if they
represent similar data structures, in this way reducing the number of RSGs associated with
a statement. Every RSG contains nodes which represent one or several memory locations.
To avoid an explosion in the number of nodes, all the memory locations which are similarly
referenced are represented by the same node. This reference similarity is captured by the
properties we assign to the memory locations. In comparison with previous works, we have
increased the number of properties assigned to each node. This leads to more nodes in the
RSG because the nodes now have to fulfill more properties to be summarized. However,
by avoiding the summarization of these nodes, we keep a more accurate representation
of the data structure. This is a key issue when analyzing the parallelism exhibited by a
code.

Our analyzer symbolically executes each statement in the code, transforming the RSGs
to reflect the modifications in the data structure that are carried out due to the execution

of the statement. We have validated the analyzer with several codes which generate,
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traverse, and modify complex dynamic data structures, such as a doubly linked list of
pointers to trees where the leaves point to other doubly linked lists. Other structures,
such as a list of lists or the n-body data structure, have been also accurately identified
by the analyzer, even in the presence of structure permutations (for example, column
permutations in the sparse LU code). As far as we know, there is no analyzer achieving
such successful results for these kinds of data structures appearing in real codes. We are
currently optimizing the analyzer implementation to further reduce the analysis time and
memory requirements presented in table 1.

In the near future we will develop an additional analyzer pass that will automatically
analyze the RSRSGs and the code to determine the parallel loops of the program and

allow the automatic generation of parallel code.
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