
A Novel Approach for Detecting Heap-based Loop-carried Dependences∗

A. Tineo, F. Corbera, A. Navarro, R. Asenjo, and E.L. Zapata
Dpt. of Computer Architecture, University of Málaga,

Complejo Tecnologico, Campus de Teatinos, E-29071. Málaga, Spain.
{tineo,corbera,angeles,asenjo,ezapata}@ac.uma.es

Abstract

The problem of data dependences in pointer-based codes
is crucial to various compiler optimizations. The approach
presented in this paper focus on detecting data dependences
induced by heap-directed pointers on loops that access dy-
namic data structures. Knowledge about the shape of the
data structure accessible from a heap-directed pointer, pro-
vides critical information for disambiguating heap accesses
originating from it. Our approach is based on a previ-
ously developed shape analysis that maintains topological
information of the connections among the different nodes
(memory locations) in the data structure. As a novelty, our
approach carries out abstract interpretation of the state-
ments being analyzed, annotating memory locations with
read/write information. This information will be later used
in a very accurate dependence test which we describe in this
paper. We also discuss its application to three different pro-
grams: the sparse matrix-vector product, mst from Olden
and twolf from the SPEC CPU2000 suite.

1 Introduction

Optimizing and parallelizing compilers rely upon accu-
rate static disambiguation of memory references, i.e. de-
termining at compile time if two given memory references
always access disjoint memory locations. Unfortunately
the presence of alias in pointer-based codes makes mem-
ory disambiguation a non-trivial issue. An alias arises in
a program when there are two or more distinct ways to re-
fer to the same memory location. The problem of calcu-
lating pointer-induced aliases, called pointer analysis, has
received significant attention over the past few years [11],
[3]. Pointer analysis can be divided into two distinct sub-
problems: stack-directed analysis and heap-directed analy-
sis. We focus our research in the latter, which deals with
objects dynamically allocated in the heap. An important

∗This work was supported in part by the Ministry of Education of Spain
under contract TIC2003-06623.

body of work has been conducted lately on this kind of
analysis. A promising approach to deal with dynamically
allocated structures consists in explicitly abstracting the dy-
namic store in the form of a bounded graph. In other words,
the heap is represented as a storage shape graph and the
analysis tries to capture some shape properties of the heap
data structures. This type of analysis is called shape analy-
sis and in this context, our research group has developed a
powerful shape analysis framework [2].

The approach presented in this paper focus on detect-
ing data dependences induced by heap-directed pointers
on loops that access pointer-based dynamic data structures.
Particularly, we are interested in the detection of the loop-
carried dependences (henceforth referred as LCDs) that
may arise between the statements in two iterations of the
loop. Knowledge about the shape of the data structure ac-
cessible from heap-directed pointers, provides critical infor-
mation for disambiguating heap accesses originating from
them, in different iterations of a loop, and hence to provide
that there are not data dependences between iterations.

Until now, the majority of LCDs detection techniques
based on shape analysis [3], [6], use as shape information a
coarse characterization of the data structure being traversed
(Tree, DAG, Cycle). One advantage of this type of analysis
is that it enables faster data flow merge operations and re-
duces the storage requirements for the analysis. However,
it also causes a loss of accuracy in the detection of the data
dependences, specially when the data structure being visited
is not a “clean” tree, contain cycles or is modified along the
traverse.

Our approach, on the contrary, is based on a shape anal-
ysis that maintains topological information of the connec-
tions among the different nodes (memory locations) in the
data structure. In fact, our representation of the data struc-
ture provides us a more accurate description of the mem-
ory locations reached when a statement is executed inside
a loop. Moreover, as we will see in the next sections, our
shape analysis is based on the abstract interpretation of the
program statements over the graphs that represent the data
structure at each program point. In other words, our ap-

proach does not relies on a generic characterization of the
data structure shape in order to prove the presence of data
dependences. The novelty is that our approach symboli-
cally executes the statements of the loop being analyzed,
and let us annotate the real memory locations reached by
each statement with read/write information. This informa-
tion will be later used in order to find LCDs in a very accu-
rate dependence test which we describe in this paper. In ad-
dition, we discuss the behavior and effectiveness of our test
when applied to some sample programs. For these exper-
iments we considered the sparse matrix by vector product
and benchmark programs like mst from the Olden suite [1]
and twolf from the SPEC CPU2000 suite [9]. In the light
of these experiments and in the context of real applications,
we believe that our approach provides more accurate results
when compared to previous techniques while the analysis
times are still reasonable.

Summarizing, the goal of this paper is to present our
compilation algorithms which are able to detect LCDs in
loops that operate with pointer-based dynamic data struc-
tures, and to discuss their applicability. The rest of the paper
is organized as follows: Section 2 briefly describes the key
ideas under our shape analysis framework. With this back-
ground, in Section 3 we present our compiler techniques
to automatically identify LCDs in codes based on dynamic
data structures. Next, in Section 4 we summarize some of
the previous works in the topic of data dependences detec-
tion in pointer-based codes. In Section 5 we discuss the
application of our test to some realistic programs. Finally,
in Section 6 we conclude with the main contributions and
ideas for future work.

2 Shape Analysis Framework

The algorithms presented in this paper are designed to
analyze programs with dynamic data structures that are con-
nected through pointers defined in languages like C or C++.
The programs have to be normalized in such a way that each
statement dealing with pointers contains only simple access
paths. This is, we consider six simple instructions that deal
with pointers: x = NULL, x = malloc, x->field =
NULL, x = y, x->field = y and x = y->field,
where x and y are pointer variables and field is a field
name of a given data structure. More complex pointer in-
structions can be built upon these simple ones and temporal
variables. We have used and extended the ANTLR tool [10]
in order to automatically normalize and preprocess the C
codes before the shape analysis.

Basically, our analysis is based on approximating by
graphs (Reference Shape Graphs, RSGs) all possible mem-
ory configurations that can appear after the execution of a
statement in the code. By memory configuration we mean
a collection of dynamic structures. These structures com-
prise several memory chunks, that we call memory loca-

tions, which are linked by references. Inside these mem-
ory locations there may be several fields (data or pointers
to other memory locations). The pointer fields of the data
structure are called selectors. In Fig. 1 we can see a partic-
ular memory configuration which corresponds with a single
linked list. Each memory location in the list comprises the
val data field and the nxt selector (or pointer field). In
the same figure, we can see the corresponding RSG which
capture the essential properties of the memory configuration
by a bounded size graph. In this graph, the node n1 repre-
sent the first memory location of the list, n2 all the middle
memory locations, and n3 the last memory location of the
list.

val nxtval nxtval nxt

p

list

n1 n2 n3
nxt

p

list

val nxt val nxt val nxt

Memory Configuration

Reference Shape Graph (RSG)

Figure 1. Working example data structure and
the corresponding RSG.

Basically, each RSG is a graph in which nodes represent
memory locations which have similar reference patterns. To
determine whether or not two memory locations should be
represented by a single node, each one is annotated with a
set of properties. Now, if several memory locations share
the same properties, then all of them will be represented (or
summarized) by the same node (n2 in our example). These
properties are described in [2].

Each statement of the code may have associated a set of
RSGs, in order to represent all the possible memory config-
uration at each particular program point. In order to gen-
erate the set of RSGs associated with each statement (or in
other words, to move from the “memory domain” to the
“graph domain” in Fig. 1), a symbolic execution of the
statements of the program over the graphs is carried out.
In fact, each program statement transforms the graphs to re-
flect the changes in memory configurations derived from the
statement execution. The abstract semantic of each state-
ment states how the execution of the statement must trans-
form the graphs [2]. This abstract interpretation is carried
out iteratively for each statement until we reach a fixed point
in which the resulting RSGs associated with the statement
does not change any more. All this process is illustrated by
the example of Fig. 2, where we can see how the statements
of the code which builds a single linked list are symbolically
executed until a fixed point is reached.

S1: l=malloc()

S2: p=l

while()
{

S3: a=malloc();

S4: p->nxt=a;

S5: p=a;
}

Iteration 1 Iteration 2 Iteration 3 Iteration 4

l

lp

lp a

lp a

l
ap

l p a

l p a

l pa

l p a

l p a

l pa

l p a

l p a

l pa

Figure 2. Building an RSG for each statement

3 Loop-Carried Dependence Detection

As we have mentioned, we focus on detecting the pres-
ence of LCDs on loops that traverse heap-based dynamic
data structures. Two statements in a loop induce a LCD, if a
memory location accessed by one statement in a given itera-
tion, is accessed by the other statement in a future iteration,
with one of the accesses being a write access.

Our method tries to identify if there is any LCD in the
loop following the algorithm that we outline in Fig. 3. Let’s
recall that our programs have been normalized such that
the statements dealing with pointers contain only simple ac-
cess paths. Let’s assume that statements have been labeled.
The set of the loop body simple statements (named SIM-
PLESTMT) is the input to this algorithm.

Summarizing, our algorithm can be divided into the fol-
lowing steps:

1. Only the simple pointer statements, Si, that ac-
cess the heap inside the loop are annotated with a De-
pendence Touch, DepTouch, directive. A Dependence
Touch directive is defined as DepTouch(AccPointer,
AccAttrSi, AccField). It comprises three important
pieces of information regarding the access to the heap in
statement Si: i) The access pointer, AccPointer: is
the stack declared pointer which access to the heap in the
statement; ii) The access attribute, AccAttSi: identifies
the type of access in the statement (ReadSi or WriteSi);
and iii) The access field, AccField: is the field of the
data structure pointed to by the access pointer. For in-
stance, an S1: aux = p->nxt statement should be an-
notated with DepTouch(p, ReadS1, nxt), whereas
the S4: aux3->val = tmp statement should be anno-
tated with DepTouch(aux3, WriteS4, val).

2. The Dependence Groups, are created. A Dependence
Group, DepGroupg , is a set of access attributes fulfilling
two conditions: a) all the access attributes belong to De-
pendence Touchs with the same access field (g) and with
access pointers of the same data type; and b) at least one
of these access attributes is a WriteSi. In other words, a
DepGroupg is related to a set of statements in the loop
that may potentially lead to a LCD, which happens if: i)

the analyzed statement makes a write access (WriteSi) or
ii) there are other statements accessing to the same field (g)
and one of the access is a write. We outline in Fig. 4 the
function Create Dependence Groups. It creates De-
pendence Groups, using as an input the set of Dependence
Touch directives, DEPTOUCH. Note that it is possible to
create a Dependence Group with just one WriteSi attribute.
This Dependence Group would help us to check the output
dependences for the execution of Si in different loop itera-
tions. As we see in Fig. 4 the output of the function is the
set of all the Dependence Groups, named DEPGROUP.

Associated with each DepGroupg , our algorithm ini-
tializes a set called AccessPairsGroupg (see Fig. 3).
This set is initially empty but during the analysis pro-
cess it may be filled with the pairs named access pairs.
An access pair comprises two ordered access attributes.
For instance, a DepGroupg = {ReadSi, WriteSj,
WriteSk} with an AccessPairsGroupg comprising the
pair <ReadSi,WriteSj> means that during the analysis the
same field, g, of the same memory location may have been
first read by the statement Si and then written by statement
Sj , clearly leading to an anti-dependence. The order inside
each access pairs is significant for the sake of discriminat-
ing between flow, anti or output dependences. The set of all
AccessPairsGroup’s is named ACCESSPAIRSGROUP.

3. The shape analyzer is fed with the instrumented code.
As we have mentioned, the shape analyzer is described in
detail in [2] and briefly introduced in Section 2. In this step,
our algorithm calls the Shape Analysis function whose
inputs are the set of simple statements SIMPLESTMT, the
set of DepTouch directives, DEPTOUCH, and the set of De-
pendence Groups, DEPGROUP. The output of this function
is the final set ACCESSPAIRSGROUP. In Fig. 5 we outline
the necessary extension to the shape analysis presented in
[2] in order to deal with the dependence analysis.

Let’s see more precisely how the Shape Analysis
function works. The simple statements of the loop body are
executed according to the program control flow, and each
execution takes the graphs from the previous statement and
modifies it (producing a new set of graphs). When a state-
ment Sj , belonging to the analyzed loop and annotated with
a DepTouch directive, is symbolically executed, then the
access pointer of the statement, AccPointer, points to
a node, n, that has to represent a single memory location.
Each node n of an Sj’s RSG graph, has a Touch Set asso-
ciated with it, TOUCHn. The DepTouch directive is also
interpreted by the analyzer leading to the updating of that
TOUCHn set.

This TOUCH set updating process can be formalized as
follows. Let be
DepTouch(AccPointer,AccAttSj,AccField)
the Dependence Touch directive attached to sentence Sj .
Let’s assume that AccAttSj belongs to a Dependence

fun LCDs Detection (SIMPLESTMT)
1. ∀ Si ∈ SIMPLESTMT that accesses the heap

Attach(Si, DepTouch(AccPointer,AccAttSi,AccField));
2. DEPGROUP = Create Dependence Groups(DEPTOUCH);

∀ DepGroupg ∈ DEPGROUP
AccessPairsGroupg = ∅ ;

3. ACCESSPAIRSGROUP = Shape Analysis(SIMPLESTMT, DEPTOUCH, DEPGROUP);
4. ∀ AccessPairsGroupg ∈ ACCESSPAIRSGROUP

Depg = LCD Test(AccessPairsGroupg);
if ∀ g, Depg == NoDep then

return(NoLCD);
else

return(Depg);
endif;

end

Figure 3. Our dependences detection algorithm.

fun Create Dependence Groups(DEPTOUCH)
DEPGROUP = ∅;
∀ DepTouch(AccPointeri,AccAttSi,AccFieldi) ∈ DEPTOUCH

if [(AccAttSi == WriteSi) or
∃ DepTouch(AccPointerj,AccAttSj,AccFieldj) being j 6= i /
(AccFieldi == AccFieldj) and (TYPE(AccPointeri) == TYPE(AccPointerj)) and
(AccAttSi == WriteSi or AccAttSj == WriteSj)] then

g = AccFieldi;
if @ DepGroupg ∈ DEPGROUP then

DepGroupg = {AccAttSi}; DEPGROUP = DEPGROUP ∪ {DepGroupg};
else

DepGroupg = DepGroupg ∪ {AccAttSi};
endif;

endif;
return(DEPGROUP);

Figure 4. Create Dependence Groups function.

Group, DepGroupg . Let n be the node pointed to by the
access pointer, AccPointer, in the symbolic execution
of the statement Sj . Let be {AccAttSk} the set of access
attributes which belongs to the TOUCHn set, where k

represents all the statements Sk, which have previously
touched the node. TOUCHn could be an empty set.
Then, when this node is going to be touched by the above
mentioned DepTouch directive, the updating process that
we show in Fig. 5 takes place.

As we note in Fig. 5, if the TOUCHn set was orig-
inally empty we just append the new access attribute
AccAttSj of the DepTouch directive. However, if the
TOUCHn set does already contains other access attributes,
{AccAttSk}, two actions take place: first, an updating of
the AccessPairsGroupg associated with the DepGroupg

happens; secondly, the access attribute AccAttSj is ap-
pended to the TOUCHn set of the node, i.e., TOUCHn =

TOUCHn ∪ {AccAttSj}.
The algorithm for updating the AccessPairsGroupg is

shown in Fig. 5. Here we check all the access attributes
of the statements that have touched previously the node
n. If there is any access attribute, AccAttSk which be-
longs to the same DepGroupg that AccAttSj (the cur-
rent statement), then a new access pair is appended to the
AccessPairsGroupg. The new pair is an ordered pair
<AccAttSk, AccAttSj> which indicates that the memory

location represented by node n has been first accessed by
statement Sk and later by statement Sj , being Sk and Sj

two statements associated with the same dependence group,
and so a conflict may occur. Note that in the implementation
of an AccessPairsGroupg there will be no redundancies
in the sense that a given access pair can not be stored twice
in the group.

4. In the last step, our LCD Test function will check
each one of the AccessPairGroupg updated in step 3.
This function is detailed in the code of Fig. 6. If an
AccessPairGroupg is empty, the statements associated
with the corresponding DepGroupg does not provoke any
LCD. On the contrary, depending on the pairs comprised by
the AccessPairsGroupg we can raise some of the depen-
dence patterns provided in Fig. 6, thus LCD is reported.

We note that the LCD Test function must be performed
for all the AccessPairGroups updated in step 3. When
we verify for all the AccessPairGroups, that none of the
dependence patterns is found, then our algorithm informs
that the loop does not contain LCD dependences (NoLCD)
due to heap-based pointers.

3.1 An example

Let’s illustrate via a simple example how our approach
works. Fig. 7(a) represents a loop that traverses the data
structure of Fig. 1. This is, this loop is going to be exe-

fun Shape Analysis(SIMPLESTMT, DEPTOUCH, DEPGROUP)
· · ·
∀ Sj ∈ SIMPLESTMT

· · ·
if DepTouch(AccPointer,AccAttSj,AccField) attached to Sj then

AccessPairsGroupg = TOUCH Updating(TOUCHn, AccAttSj, DepGroupg);
endif;
· · ·

return(ACCESSPAIRSGROUP);

fun TOUCH Updating(TOUCHn, AccAttSj, DepGroupg)
if TOUCHn == ∅ then /* The Touch set was originally empty */

TOUCHn = {AccAttSj}; /* just append the new access attribute */
else /* The Touch set was not empty */

AccessPairsGroupg = AccessPairsGroup Updating(TOUCHn, AccAttSj, DepGroupg);
/* update the access pairs group set */

TOUCHn = TOUCHn ∪ {AccAttSj}; /* append the new access attribute */
endif;

return(AccessPairsGroupg);

fun AccessPairsGroup Updating(TOUCHn, AccAttSj, DepGroupg)
∀ AccAttSk ∈ TOUCHn

if AccAttSk ∈ DepGroupg then /* AccAttSk and AccAttSj ∈ DepGroupg */
AccessPairsGroupg = AccessPairsGroupg ∪ {<AccAttSk,AccAttSj>};

/* A new ordered pair is appended */
endif;

return(AccessPairsGroupg);

Figure 5. Shape Analysis function extension, TOUCH Updating and AccessPairsGroup Updating
functions.

fun LCD Test(AccessPairsGroupg)
if <WriteSi,ReadSj> ∈ AccessPairsGroupg

then return(FlowDep); /* Flow dep. */
if <ReadSi,WriteSj> ∈ AccessPairsGroupg

then return(AntiDep); /* Anti dep. */
if <WriteSi,WriteSj> ∈ AccessPairsGroupg

then return(OutputDep); /* Output dep. */
if <WriteSi,WriteSi> ∈ AccessPairsGroupg

then return(OutputDep); /* Output dep. */
endif

return(NoDep); /* no LCD detected */

Figure 6. LCD test.

cuted after the building of the linked list data structure due
to the code of Fig. 2. In the loop, the statement tmp =
p->val read a memory location that has been written by
p->nxt->val = tmp in a previous iteration, so there is
a LCD between both statements.

In order to automatically detect this LCD, we use an
ANTLR-based preprocessing tool that atomizes the com-
plex pointer expressions into several simple pointer state-
ments which are labeled, as we can see in Fig. 7(b). For
instance, the statement p->nxt->val = tmp; has been
decomposed into two simple statements: S2 and S3. After
this step, the SIMPLESTMT set will comprise four simple
statements.

Next, by applying the first step of our algorithm to find
LCDs, the DepTouch directive is attached to each sim-

p = list;
while (p->nxt != NULL)
{

tmp = p->val;
p->nxt->val = tmp;
p = p->nxt;

}
(a)

p = list;
while (p -> nxt != NULL)
{
S1: tmp = p->val; DepTouch(p, ReadS1, val);
S2: aux = p->nxt; DepTouch(p, ReadS2, nxt);
S3: aux->val = tmp; DepTouch(aux, WriteS3, val);
S4: p = p->nxt; DepTouch(p, ReadS4, nxt);
}

(b)

Figure 7. (a) Loop traversal of a dynamic data
structure; (b) Instrumented code.

ple statement in the loop that accesses the heap, as we
can also appreciate in Fig. 7(b). For example, the state-
ment S2: aux = p->nxt has been annotated with the
DepTouch(p, ReadS2, nxt), stating that the access
pointer is p, the access attribute is ReadS2 (which means
that the S2 statement makes a read access to the heap) and
finally, that the read access field is nxt. This first step of
our method have been also implemented with the help of
ANTLR.

Next we move on to the second step in which we
point out that statements S1 and S3 in our code exam-
ple meet the requirements to be associated with a de-
pendence group: both of them access the same access
field (val) with pointers of the same type (p and aux),
being S3 a write access. We will define this depen-
dence group as DepGroupval={ReadS1, WriteS3}. Be-
sides, the associated AccessPairsGroupval set will be,
at this point, empty. Therefore, after this step, DEP-
GROUP = {DepGroupval} and ACCESSPAIRSGROUP =
{AccessPairsGroupval}.

Let’s see now how step 3 of our algorithm proceeds. As
we have mentioned, Fig. 1 represents the only RSG graph
of the RSGs set at the loop entry point. Remember that our
analyzer is going to symbolically execute each of the state-
ments of the loop iteratively until a fixed point is reached.
This is, all the RSG graphs in the RSGs set associated with
each statement will be updated at each symbolic execution
and the loop analysis will finish when all the graphs in all
the RSGs do not change any more.

n1 n2 n3
nxt

p

list

n1 n2 n3
nxt

p

list

WriteS3

n2 n3
nxt

n1

p

list

ReadS1,
ReadS2

n4

aux

n2 n3
nxt

n1

p

list

ReadS1
ReadS2

n4

aux

WriteS3

n2 n3
nxt

n1

p

list

ReadS1
ReadS2
ReadS4

n4

aux

FIRST
ITERATION

S1: tmp = p->val;

S3: aux->val = tmp;

S4: p = p->nxt;

S2: aux = p->nxt;
ReadS1

S1: tmp = p->val;

WriteS3
ReadS1

n2 n3
nxt

n1

p

list

ReadS1
ReadS2
ReadS4

n4

aux

SECOND
ITERATION

Figure 8. Initial RSG at loop entry and resul-
tant RSG graphs when executing statements.

Now, in the first loop iteration, the statements S1, S2, S3
and S4 are executed by the shape analyzer. The resultant
RSG graphs when these statements are symbolically exe-
cuted, taking into account the attached DepTouch direc-
tives, are shown in Fig. 8. Executing S1 will produce that
the node pointed to by p (n1) is touched by ReadS1. When
executing S2, aux = p->nxt will produce the material-
ization of a new node (the node n4), and the node pointed
to by p will be touched by ReadS2. Next, the execution of
S3 will touch with a WriteS3 attribute, the node pointed
to by aux (n4). Finally, the execution of S4 will touch with
a ReadS4 attribute the node n1, and then p will point to
node n4.

In the second loop iteration, when executing S1 over the

RSG graph that results from the previous symbolic execu-
tion of S4, we find that the nodes pointed to by p (now
node n4) is touched by ReadS1. When touching this node,
the TOUCH Updating function detects that the node has
been previously touched because TOUCHn4 ={WriteS3}.
Since the set is not empty, the function will call to the
AccessPairsGroup Updating function. Now, this
function will check each access attribute in the TOUCHn4

set, and it will look for a dependence group for such
access attribute. In our example, WriteS3 is in the
DepGroupval. In this case, since the new access at-
tribute that is touching the node (ReadS1) belongs to the
same dependence group, a new access pair is appended to
the AccessPairsGroupval= {<WriteS3, ReadS1>}. This
fact is indicating that the same memory location (in this case
the field val in node n4) has been reached by a write access
from statement S3, followed by a read access from state-
ment S1.

The shape analyzer follows, iteratively, the symbolic
execution of statements in the loop until a fixed point
is reached. The resultant RSG graph is shown in
Fig. 9. We also get at the end of the analysis that
AccessPairsGroupval= {<WriteS3, ReadS1>}.

n1

p

list

ReadS1
ReadS2
ReadS4

WriteS3

n2 n3
nxt

n4

aux

n5

WriteS3
ReadS1
ReadS2
ReadS4

Figure 9. Resultant RSG when the fixed point
is reached. The TOUCH sets are illustrated.

Our algorithm applies now the fourth step: the LCD
test (Fig. 6). Our LCD test reports a FlowDep
(flow dependence), because the only access pair group,
AccessPairGroupval in the ACCESSPAIRSGROUP set,
contains a <WriteS3, ReadS1> pair. As we see, our de-
pendences detection algorithm accurately captures the LCD
that appears in the loop.

4 Related work

Some of the previous works on dependences detection
on pointer-based codes, combine dependence analysis tech-
niques with pointer analysis [4], [7], [5]. The focus of these
techniques is on identifying dependences at the function-
call level and they do not consider the detection in the loop
context, which is the goal in our approach.

More recently, some authors [3], [6] have proposed de-
pendence analysis tests based on shape analysis in the con-
text of loops that traverse dynamic data structures, and these
approaches are more related to our work. For instance,
Ghiya and Hendren [3] proposed a test for identifying LCDs
that relies on the shape of the data structure being traversed

(Tree, DAG or Cycle), as well as on the computation of
the access paths for the pointers in the statements being
analyzed. On the other hand, Hwang and Saltz proposed
a new technique to identify LCDs in programs that tra-
verse cyclic data structures [6]. This approach automati-
cally identifies acyclic traversal patterns even in cyclic (Cy-
cle) structures. For this purpose, the compilation algorithm
isolates the traversal patterns from the overall data structure,
and next, it deduces the shape of these traversal patterns
(again Tree, DAG or Cycle). Once they have extracted the
traversal-pattern shape information, dependence analysis is
applied to detect LCDs. One limitation of these approaches
is that they are just able to analyze loops that navigate data
structures in a “clean” tree-like traverse.

We differ from previous works in that our technique let
us annotate the memory locations reached by each heap-
directed pointer with read/write information. This feature
let us analyze quite accurately loops that traverse and mod-
ify generic heap-based dynamic data structures. Our algo-
rithm is able to identify accurately the dependences that
appears even in loops that navigate (and modify) com-
plex structures in traversals that contain cycles, as we have
demonstrated in [8]. Besides we can successfully discrimi-
nate among flow, anti and output dependences which is vi-
tal in optimizing and parallelizing compilers. The previous
works were unable to compute that information. Our goal
here is to put our analysis to work with larger codes and to
study the applicability of our method to real programs.

5 Experimental results

We have implemented all the algorithms presented in this
paper. We have tested our prototype implementation on sev-
eral small examples (see [8]). In order to prove the effec-
tiveness of our method on larger C programs, we have con-
sidered 3 codes. The first one is a custom-made program
that represents the kernel of typical real world applications
which deal with dynamic data structures: the sparse matrix-
vector product. It is available through our website1. The
last two programs were taken from well established bench-
marks, mst from the Olden suite [1] and twolf from the
SPEC CPU2000 suite [9].

For these tests, we focused our analysis on certain loops
that carry a significant amount of execution time. That in-
formation was gathered through profiling. At a first stage,
the programs were digested by our preprocessing tool based
on ANTLR to discard statements not involved in heap ac-
cesses and to mark the useful statements with DepTouch
information. At this point of development, interprocedural
analysis is not yet supported so, as a temporal solution, in-
lining of functions was performed. Besides, some manual
adjustments were needed in order to fully adapt the input

1http://www.ac.uma.es/∼asenjo/research/codes.html

code to the test dependence module. However, it should
be noted that the method itself is fully automatic. Table 1
shows some statistics for the tests, run in a Pentium IV
2.8GHz with 256MBytes. The measured Times include
the underlaying shape analysis. In addition, the times take
into account the creation of the data structures which are
accessed in the analyzed loops. In fact, No. Stmt. repre-
sents the number of simple statements of the analyzed input
code, including the statements of the studied loop as well
as the statements for the corresponding data structures cre-
ation. No. It. represents the number of iterations that our
method needs to reach a fixed point. No. Graphs is the
number of RSG graphs generated for each code, including
the temporal graphs that may appear during a statement ex-
ecution, whereas Graphs/Stmt. represents the RSG graphs
per statement ratio.

Our first program computes the product of a sparse ma-
trix by a sparse vector. We apply our analysis to the loop
that computes the product. In this loop, the elements of the
output data structure are created while the matrix and the
input vector are traversed. For the studied loop, the analysis
determines that there is no dependence because the nodes
that are read (those from the matrix and the input vector)
are different in every iteration from the nodes that are writ-
ten (those from the output vector). Thus, the method reports
NoDep, therefore the loop could be parallelized. As we see
in Table 1, the analysis time is reasonable even though the
number of RSG graphs generated during the analysis, and
the number of iterations to find the fixed point are high.

Our next code, mst is a program from the Olden bench-
mark suite. In mst’s data structure there is an array of ver-
texes. Each of them holds a hash table that must store infor-
mation about every other vertex. The profiling of the code
discovered that more than 85% of the execution time was
spent in an inner loop of the AddEdges function. So we
select that loop for the study with our tool. In that loop,
hash tables for the nodes are populated with information
about every other node. It is undecidable at compile-time
the order of writing for the entries in the hash tables, so all
kind of dependences arise (flow, anti, output). The method
reports all these dependences and the statements for which
each dependence appears. This latter information is very
important to improve data-cache performance. We see in
Table 1 that this is the code for which the number of gener-
ated RSG graphs and the number of iterations to reach the
fixed point are the smallest. As a consequence, the analysis
time is significantly short.

The last code considered is twolf, from SPEC CPU2000.
It is considerably larger in size than the previous programs
(roughly 20,000 lines of code). Profiling was performed to
find the most computationally expensive loops. We found
that the loop contained in the new dbox a function con-
sumed more than 30% of the execution time, so we focused

Program Time No. Stmt. No. It. No. Graphs Graphs/Stmt.

matrix-vector 1 min 47 sec 120 315 170450 1420
mst 0.7 sec 62 70 3314 53

twolf 5 min 54 sec 154 149 112803 732

Table 1. Time and other measures for the codes.

our analysis in that loop. On the other hand, twolf ’s data
structure is more complicated than those from the previous
examples. For the studied loop, 3 dynamic interconnected
structures are involved. A list is traversed reading values to
index another list. The elements of the indexed list are then
processed to compute some values. It is possible to access
the same elements in different iterations of the list, so de-
pendences arise again and the method reports all of them ac-
curately. The results for this code (Table 1) are very telling.
It is the biggest code, but it is not the one with the highest
number of generated RSG graphs. In fact, the ratio of RSGs
per statement is smaller than for the matrix-vector code. As
a consequence, the number of iterations to reach the fixed
point is smaller than in the matrix-vector case. However, the
analysis time is the worst. The reason is due to the complex
nature of the twolf’s RSG graphs. We have verified that
the majority of the nodes in the twolf’s graphs, are heav-
ily connected with each other, what produces an important
time consumption every time that internal operations of the
shape analysis take place (materialization of nodes, summa-
rization of nodes, comparison of graphs, etc.). This obser-
vation tell us that optimization of these internal operations
of the shape analysis tool must be addressed.

Summarizing, these results have shown us that a smaller
number of graphs per statement will need less iterations to
reach the fixed point. But this is not a guarantee that the
analysis times will be smaller. Another surprising result is
that although the number of generated graphs is very high,
we think that the times are still reasonable. Let’s keep in
mind that our approach is able to provide very accurate
data dependence information in the context of real codes
which traverse and modify generic and complex heap-based
data structures. One key aspect of our method is that it al-
lows elements of the data structure to be created inside the
traversals (like in the matrix-vector product), as well as con-
veniently distinguish between flow, anti and output depen-
dences, which is basic for doing data-cache optimizations.
Let’s recall that all these aspects are left out in every other
approach we know. In short, the results have been promis-
ing, but at this stage, we think that this kind of analysis is
suitable for analyzing only selected parts of the code, for
instance the computationally most expensive loops, as we
have done in these experiments.

6 Conclusion and Future Work

We have presented a compilation technique that is able
to identify LCDs in loops that traverse and modify general

pointer-based dynamic data structures. Our main contribu-
tion is that we have designed a LCD test that let us extend
the scope of applicability to any program that handle any
kind of dynamic data structure. Moreover, our dependence
test let us discern accurately the type of dependence: flow,
anti, output. We have conducted some tests that prove it
can be useful for real-life programs. However, more work
is necessary in order to optimize the internal operations of
the shape analyzer to achieve a faster test.

References

[1] M. C. Carlisle and A. Rogers. Software caching and compu-
tation migration in olden. In ACM Symposium on Principles
and Practice of Parallel Programming (PPoPP), July 1995.

[2] F. Corbera, R. Asenjo, and E. Zapata. A framework to cap-
ture dynamic data structures in pointer-based codes. Trans-
actions on Parallel and Distributed System, 15(2):151–166,
2004.

[3] R. Ghiya, L. J. Hendren, and Y. Zhu. Detecting parallelism
in c programs with recursive data strucutures. In Proc. 1998
International Conference on Compiler Construction, pages
159–173, March 1998.

[4] S. Hortwitz, P. Pfeiffer, and T. Repps. Dependence analysis
for pointer variables. In Proc. ACM SIGPLAN’89 Confer-
ence on Programming Language Design and Implementa-
tion), pages 28–40, July 1989.

[5] J. Hummel, L. J. Hendren, and A. Nicolau. A general
data dependence test for dynamic, pointer-based data struc-
tures. In Proc. ACM SIGPLAN’94 Conference on Program-
ming Language Design and Implementation), pages 218–
229, June 1994.

[6] Y. S. Hwang and J. Saltz. Identifying parallelism in pro-
grams with cyclic graphs. Journal of Parallel and Dis-
tributed Computing, 63(3):337–355, 2003.

[7] J. R. Larus and P. N. Hilfinger. Detecting conflicts between
structure accesses. In Proc. ACM SIGPLAN’88 Conference
on Programming Language Design and Implementation),
pages 21–34, July 1988.

[8] A. Navarro, F. Corbera, R. Asenjo, A. Tineo, O. Plata, and
E. Zapata. A new dependence test based on shape analysis
for pointer-based codes. In The 17th International Work-
shop on Languages and Compilers for Parallel Computing
(LCPC ’04), West Lafayette, IN, USA, September 2004.

[9] S. P. E. C. (SPEC). SPEC CPU2000 V1.2 Documentation,
2000. http://www.spec.org/cpu2000/docs/.

[10] T.J.Parr and R. Quong. ANTLR: A predicated-LL(k) parser
generator. Journal of Software Practice and Experience,
25(7):789–810, July 1995.

[11] R. P. Wilson and M. S. Lam. Efficient context-sensitive
pointer analysis for C programs. In Proc. ACM SIGPLAN’95
Conference on Programming Language Design and Imple-
mentation, pages 1–12, La Jolla, California, June 1995.

