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do i = 1,N...
ompute �...A(f( i )) = A(f( i )) � �...enddo
while ( 
ondition )f ...p!data = value;p = p!next;...g(a) (b)Fig. 1. Example of an irregular 
omputation (a) and a dynami
 
omputation (b)data stru
tures. In the presen
e of su
h programming 
omplexities 
ompil-ers usually run into trouble both analyzing dependen
es and exploiting datalo
ality and extra
ting parallelism.We may distinguish two important 
lasses of 
omplex appli
ations: irregularand dynami
. Irregular appli
ations are 
hara
terized by the fa
t that data isstru
tured as multi-dimensional arrays, as in regular appli
ations, but it is ref-eren
ed through array indire
tions (arrays with subs
ripted subs
ripts). Theseappli
ations are typi
ally 
oded using pro
edural languages like Fortran77. Dy-nami
 appli
ations, on the other hand, deal with data organized as 
omplex,pointer-based stru
tures (lists, trees, ...), and it is referen
ed through pointers.Typi
al appli
ations of this 
lass are 
oded using languages like C/C++, Javaor Fortran90.Figure 1 shows example 
odes for irregular and dynami
 
omputations. The�rst pie
e of 
ode represents an irregular histogram redu
tion, where a redu
-tion array (A) is updated at some points given by the indire
tion array (f). Akey issue in the parallelization of this loop in
ludes solving the possible 
ross-iteration true data dependen
es due to the indire
tion array. For instan
e, ifarray f is not a permutation we will have su
h dependen
es. The se
ond 
ode
orresponds a variable loop where a pointer-based data stru
ture is updated.Now, in the parallelization of this loop we have to solve possible 
ross-iterationdependen
es due to 
y
les in the pointer-based list.In this paper we dis
uss our re
ent work about developing eÆ
ient paralleliza-tion te
hniques for irregular and dynami
 appli
ations. Basi
ally our te
h-niques are en
losed into a broad parallelization method, that 
an be brokendown into several phases: re
ognizing the irregular/dynami
 stru
ture of the
ode, data analysis, and sele
tion of an ad-ho
 parallelization te
hnique ful-�lling some performan
e properties.We present some of our re
ent advan
es in this �eld. In parti
ular, we de-signed a methodology to parallelize 
odes with irregular redu
tions exploitingdata lo
ality. From this methodology we derived a number of eÆ
ient lo
alityoriented run-time parallelizing te
hniques. On the other hand, we developed2



new shape analysis te
hniques for pointer-based data stru
tures to enable de-penden
e analysis in dynami
 
odes. Su
h te
hniques may be used to analyzememory referen
es needed to develop eÆ
ient optimization and parallelizationmethods for dynami
 
odes.The rest of the paper is organized as follows. se
tion 2 dis
usses the methodol-ogy we use to develop our optimization and parallelization 
ompilation te
h-niques for irregular/dynami
 
odes. Next, spe
i�
 te
hniques for a widelyfound irregular 
omputational stru
ture, named irregular redu
tion, is de-s
ribed. Shape analysis te
hniques for dynami
 data stru
tures are analyzedin se
tion 4. Finally, 
on
lusions are drawn.2 Parallelization methodology for irregular/dynami
 
odesThis se
tion des
ribes a methodology for the eÆ
ient exploitation of the avail-able parallelism in programs with irregular and/or dynami
 
omputation/datastru
tures. We developed te
hniques to dis
over 
ertain program (
ode anddata) properties that are essential in the e�e
tive optimization, as well asparallelization methods that take advantage of su
h properties. The paral-lelization methodology pro
eeds in several stages, as follows:(1) Program stru
ture: Analysis of the 
omputational stru
ture of the pro-gram, as well as the data stru
tures used. As a result of this analysis we
an re
ognize the irregular and/or dynami
 nature of the program.(2) Data analysis: A 
omplete data analysis is needed to determine whetherparallelism is exploitable, or to enable some optimizations. It is alsoneeded to know where and how su
h parallelization/optimization 
anbe done. In 
ase of irregular and dynami
 programs, this stage be
omesvery 
omplex. Two important tasks in
luded into this stage are both theanalysis of the data stru
ture and the analysis of memory referen
es.The �rst analysis determines how data is organized and the relationshipamong di�erent data items. The se
ond analysis dis
overs how data isreferen
ed and the relationship among these data referen
es.(3) Program parallelization: Information resulting from program stru
tureand data analysis allows to de
ide what spe
i�
 parallelization methodis best suited to be used. We are spe
ially interested in the developmentof methods that optimize some important program properties, like datalo
ality or 
ommuni
ation overhead.In the rest of the paper we des
ribe two representative 
ase studies in the
ontext of the 
onsidered parallelization methodology. The �rst 
ase study,that 
onstitutes an important 
lass of irregular programs, 
orresponds to 
odeswith irregular redu
tions. For these 
odes the three stages in the parallelization3



REAL A(1:ADim)INTEGER f1(1:N1, 1:N2,... ,NnLoops)INTEGER f2(1:N1, 1:N2,... ,NnLoops)...INTEGER fnInd(1:N1, 1:N2,... ,NnLoops)h : do i1 = 1,N1do i2 = 1,N2...do inLoops = 1,NnLoopsCompute �1; �2; ::: �nIndA(f1(i1; i2; ::: inLoops)) = A(f1(i1; i2; ::: inLoops )) + �1A(f2(i1; i2; ::: inLoops)) = A(f2(i1; i2; ::: inLoops )) + �2...A(fnInd(i1; i2; ::: inLoops)) = A(fnInd(i1; i2; ::: inLoops )) + �nIndenddo...enddoenddoFig. 2. Nested loop with multiple irregular redu
tionsmethodology will be dis
ussed. The se
ond 
ase study will fo
us on the se
ondstage, data analysis, for general dynami
 
odes pro
essing pointer-based datastru
tures.3 Programs with irregular redu
tionsMany 
ommon data organizations used in numeri
al appli
ations involve ir-regular memory a

esses, in whi
h array elements are referen
ed by means ofindire
tions. Redu
tion operations are often found in the 
ontext of irregular
odes in s
ienti�
 and numeri
al appli
ations, representing an important 
lassof irregular problems. Redu
tion operations are based in 
ommutative andasso
iative operators, like additions, multipli
ations, and so on.An example of a pie
e of 
ode 
arrying out multiple irregular redu
tions insidea nested loop is shown in Figure 2 (it is also known as histogram redu
tion).A() represents the redu
tion array (that 
ould be multidimensional), whi
h isupdated (the redu
tion operation is an addition in this example) by means ofthe subs
ript arrays f1(), f2(), ... Terms �1, �2, ... represent e�e
tive 
ompu-tation.Considering the parallelization methodology des
ribed in the previous se
tion,the �rst stage 
orresponds to the re
ognition of the irregular redu
tion andthen what arrays work as redu
tion array(s) and whi
h ones as subs
riptarrays. This stage may be a

omplished in a 
ompiler through the use of4



pattern-mat
hing or idiom re
ognition te
hniques [17,2℄.On
e irregular redu
tions have been re
ognized, a data analysis of the 
odepro
eeds. As shown in Figure 2, all relevant data (from the viewpoint of thisstage) is organized as arrays, so no further data stru
ture analysis is needed.We next pro
eed to analyze memory referen
es. Due to the subs
ripted sub-s
ripts, loop{
arried data dependen
es may be present, and they 
annot bedete
ted at 
ompile time (due to the subs
ript arrays). Te
hniques have beendeveloped to dete
t this kind of data dependen
es at run-time [19℄.However, be
ause of the asso
iative and 
ommutative properties satis�ed bythe redu
tion operator, the possible data dependen
es due to the array re-du
tions may be over
ome by 
ode/data transformations. Su
h transforma-tions 
orresponds to the third stage in our methodology. In the last few yearsvarious 
ode/data transformations that parallelize irregular redu
tion loopsappeared in the literature (see related work). In the next se
tions we willdis
uss a framework to develop eÆ
ient parallelization te
hniques for irreg-ular redu
tion loops. This framework is fo
used to exploit data lo
ality onshared{memory multipro
essor platforms.3.1 Lo
ality and aÆnityIn order to optimize data lo
ality through 
ode/data transformations, we �rstneed to 
hara
terize it. Without loss of generality, let us take the redu
tionloop shown in Figure 2 as a working example. We 
an distinguish two sour
esof data lo
ality: Read lo
ality asso
iated with a

esses to read-only and pri-vatizable arrays, and write lo
ality asso
iated with a

esses to the redu
tionarrays.In (
a
he-
oherent) shared memory multipro
essors, writes usually have astronger impa
t on performan
e overhead than reads (writes must propagateand serialize through the memory hierar
hy). So it is mu
h important, fromthe performan
e viewpoint, to optimize writing lo
ality.We distinguish between two 
lasses of write lo
ality: Intra{iteration and inter{iteration. Intra{iteration lo
ality 
orresponds to write lo
ality inside the samenested loop iteration. Inter{iteration lo
ality, on the other hand, is due towrites on the redu
tion arrays exe
uted on di�erent loop iterations.When parallelizing the redu
tion 
ode, the 
lass of lo
ality we 
an exploitdepends on the granularity of the parallelization method. It is usual thatthe minimum amount of partitionable 
ode is one full loop iteration. In su
h
ase, only inter{iteration lo
ality 
an be exploited by 
ode parallelization.If we want to also exploit intra{iteration lo
ality, we must resort to data5



reorganizations [13℄ (basi
ally the 
ontents of the subs
ript arrays).A simple method to exploit inter{iteration lo
ality pro
eeds in two steps: First,we state a data distribution of the redu
tion arrays among all threads that
ooperate in the parallel 
omputation. Se
ond, redu
tion loop iterations areassigned to threads in su
h a way that the number of lo
al writes (writesto owned redu
tion array elements) is maximized. Note that these iterationassignments not only exploit lo
ality but also avoid the need of run-time de-penden
e analysis, as iterations from di�erent threads 
an be exe
uted withno write 
on
i
ts.In what follows we will des
ribe a framework to de�ne eÆ
ient lo
ality{basedloop iteration assignments.First, we need some de�nitions. Without loss of generality, let us 
onsider theredu
tion loop in Figure 2. A(1:ADim) represents the redu
tion array, whi
his updated inside a nested loop, being ~{ = (i1; i2; :::inLoops) the iteration indexve
tor. Also let P = f1; 2; :::nThreadsg be the set of threads identi�ers that
ooperate in the 
omputation, and let 	 : fA(1); A(2); :::A(ADim)g ! P bea distribution fun
tion of the array A on the threads.De�nition 3.1 The write a

ess set of the iteration ~{ is de�ned as the setof indi
es m su
h that A(m) is written in su
h iteration. The write a

ess setis denoted as A

~{(A), and thus A

~{(A) = fm 2 [1; ADim℄ jA(m) is writtenin iteration ~{ g.De�nition 3.2 Two iterations, ~{ and ~|, are write aÆne if their write a
-
ess sets are mapped to the same subset of threads, that is, 	(A

~{(A)) =	(A

~|(A)).De�nition 3.3 Two iterations, ~{ and ~|, are write dissimilar if their writea

ess sets are mapped to disjoint subsets of threads, that is, 	(A

~{(A)) \	(A

~|(A)) = ;.3.2 Write aÆnity based parallelizationUsing the write aÆnity property de�ned in the previous se
tion we will derivean optimal method to parallelize histogram redu
tion loops. Given a data dis-tribution fun
tion of the redu
tion array, a 
ode transformation of the redu
-tion loop will be de�ned so as some performan
e issues are optimized: paral-lelism and data lo
ality are maximized, and 
omputation repli
ation, memoryoverhead, extra workload and syn
hronization overhead are minimized.Let us start with new de�nitions. De�nition 3.2 in previous se
tion states a6



binary relation between two iterations, given a data distribution fun
tion ofthe redu
tion array. Su
h relation will be 
alled aÆnity relation. It is easyto see that the aÆnity relation is an equivalen
e relation, that is, it satis�esre
exive, symmetri
 and transitive laws. So, equivalen
e 
lasses 
an be de�ned.De�nition 3.4 Given the aÆnity relation, an equivalen
e 
lass is a subsetof write aÆne iterations, that is, iterations with their a

ess sets mapped tothe same subset of threads. Given Q a subset of P , let CQ be an aÆnityequivalen
e 
lass, then CQ = f~{ 2 S j	(A

~{(A)) = Qg, where S is the setof iterations.De�nition 3.5 The set of all aÆnity equivalen
e 
lasses in the iteration setS is 
alled the aÆnity quotient set, and denoted as S=a�.When using some lo
ality-oriented data distribution fun
tion 	, for example a
lassi
al blo
k distribution, it would be possible to exploit write inter{iterationlo
ality by 
onsidering those iterations belonging to a same aÆnity equivalen
e
lass. From the parallelization viewpoint, we need to distinguish data inde-pendent redu
tion iterations.De�nition 3.6 Two aÆnity equivalen
e 
lasses, CQ and CR, are de�ned dis-similar if two iterations, ~{ 2 CQ and ~| 2 CR, are write dissimilar.Lemma 1 Two 
lasses, CQ and CR, are dissimilar if and only if Q \ R = ;.In a redu
tion loop the only true data dependen
es are 
aused by writes inthe redu
tion array, thus two write dissimilar iterations are assured to be dataindependent. Hen
e iterations belonging to dissimilar equivalen
e 
lasses 
anbe exe
uted fully in parallel, with no write 
on
i
ts. That means that it wouldnot be any parallelization overheads, like extra memory, syn
hronizations or
omputation repli
ation. These are pre
isely the issues that we want to min-imize in the parallelization of the redu
tion loop. In addition, if we 
an �ndlarge sets of dissimilar equivalen
e 
lasses, we would have a lot of exploitableparallelism.De�nition 3.7 The dissimilarity graph, denoted as DG(S=a�) = (NDG; EDG),is de�ned as an undire
ted graph whose verti
es are aÆnity equivalen
e 
lasses,that is, NDG is the aÆnity quotient set S=a�. There exists an edge betweentwo 
lasses in the graph if su
h 
lasses are not dissimilar.The dissimilarity graph relates potentially data dependent redu
tion itera-tions, for a given data distribution fun
tion. Non dire
tly 
onne
ted verti
esin that graph 
orresponds to dissimilar equivalen
e 
lasses, that 
ontain dataindependent iterations. Therefore, if we want to maximize exploitable paral-lelism, we have to �nd the maximum number of non dire
tly 
onne
ted verti
esin the dissimilarity graph. This 
an be done by applying a vertex 
oloring al-7
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Fig. 3. Vertex 
oloring of a dissimilarity graphfor 
olor 2 DG(S=a�)forall C 2 
olorExe
ute iterations2 CendC$barrierendFig. 4. Parallel redu
tion loop based on aÆnity 
lassesgorithm to the graph. Resulting from the 
oloring pro
ess sets of dissimilar
lasses are obtained. Iterations from the 
lasses in ea
h one of these sets 
anbe exe
uted fully in parallel be
ause they write in non 
on
i
ting areas of theredu
tion array.As an example, 
onsider a redu
tion loop with two redu
tions (indire
tions),one redu
tion array, four threads, and a 
ertain distribution fun
tion 	. Inthis 
ase, the maximum possible number of equivalen
e 
lasses in the aÆnityquotient set is 10, and would be as follows:S=a� = fCf1g; Cf2g; Cf3g; Cf4g; Cf1;2g; Cf1;3g; Cf1;4g; Cf2;3g; Cf2;4g; Cf3;4gg:The resulting dissimilarity graph is shown in Figure 3. After applying thevertex-
oloring algorithm to this graph we 
an obtain the sets of 
lasses than
an be exe
uted 
on
urrently. Verti
es with the same 
olor in the graph arenot dire
tly 
onne
ted. Therefore, sets of dissimilar equivalen
e 
lasses 
an beobtained by grouping together all 
lasses with the same 
olor, that is:n fCf1g; Cf2g; Cf4g; Cf4gg; fCf1;2g; Cf3;4gg; fCf1;3g; Cf2;4gg; fCf1;4g; Cf3;2gg o :We 
an s
hedule a parallel exe
ution of the redu
tion loop following an in-spe
tor/exe
utor s
heme. An inspe
tor builds the aÆnity equivalen
e 
lasses,the 
orresponding dissimilarity graph and 
olor it. After the inspe
tion stage,
omputations are s
heduled by the exe
utor as shown in Figure 4. Iterationsin equivalen
e 
lasses with the same 
olor are exe
uted in parallel, while a syn-
hronization point is pla
ed between exe
ution of sets of 
lasses with di�erent
olors. 8
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Fig. 5. Computation of dissimilarity graph 
oloring for a loop with two indire
tions3.3 Compiler implementationAlthough the general and theoreti
al approa
h des
ribed in the previous se
-tion 
ould be used in parallelizing redu
tion loops, however some serious dif-�
ulties arise in pra
ti
e. To maximize the available parallelism the minimumnumber of 
olors in the dissimilarity graph has to be found. This minimumnumber of 
olors is 
alled the vertex-
hromati
 index of the graph, and it isknown that a general algorithm to 
ompute it is NP-hard. Nevertheless somesimpli�
ations 
an provide a non-optimal 
oloring with a polynomial 
omplex-ity. In addition, to redu
e the number of 
olors 
ertain restri
tions would bedesirable, like maximizing the size of the equivalen
e 
lasses with the same
olor, or 
onsidering 
onditions for workload balan
e. Su
h operations, how-ever, would in
rease signi�
antly the overhead of the inspe
tion stage. Anaddition diÆ
ulty is the fa
t that the number of possible non-empty aÆnity
lasses grows rapidly with the number of indire
tions in the redu
tion loop.For example in Figure 5 it is shown the results for the dissimilarity graph
olor 
omputation when two indire
tions are 
onsidered. A greedy 
oloringalgorithm [9℄ has been applied, using di�erent initial vertex orders. An im-portant fa
t is that a optimum number of 
olors is obtained if the number ofthreads is a power of two. For these 
ases the number of 
olors is equal tothe number of threads. As it is seen in Figure 5 the 
oloring time follows a
omplexity O(nThreads4), being nThreads the number of threads.In order to make pra
ti
al the implementation of the method in a 
ompiler, theinspe
tion phase must be lightened. This fa
t 
an be a
hieved by simplifying9



2 indi-re
tions 3 indi-re
tions 4 indi-re
tionsPrivatization 4.5 1.9 2.44threads Lo
al{Write 10.6 6.4 1.9DWA{LIP 11.5 7.2 5.0Privatization 7.8 2.0 2.58threads Lo
al{Write 11.3 11.8 4.9DWA{LIP 12.5 12.6 7.7Table 1Speedups for the EULER 
ode using privatization, Lo
al{Write and DWA{LIPthe equivalen
e 
lass building pro
ess.We have developed an approa
h 
alled Data Write AÆnity with Loop IndexPrefet
hing (DWA{LIP) that is based both on a blo
k data distribution fun
-tion and on a restri
ted de�nition of the aÆnity relation. Instead of using ageneri
 subset of threads, Q, to 
hara
terize an aÆnity equivalen
e 
lass, CQ,DWA{LIP uses a pair of parameters (Bmin;�B), being Bmin = min(Q) and�B = max(Q) � min(Q). The dissimilarity test with the new aÆnity rela-tion is simpler sin
e two iterations will be write dissimilar when their pairs(Bmin;�B) do not 
orrespond to overlapped areas of the redu
tion array.This simpli�
ation in the de�nition of the aÆnity relation has a negative ef-fe
t be
ause there are pairs of write dissimilar iterations that no longer arere
ognize as su
h with the new de�nition. This redu
es the dete
ted paral-lelism to be exploited in the exe
ution phase. Nevertheless the new simpli�edaÆnity relation allows the inspe
tor to be lighter and makes possible an ef-�
ient s
hedule of the exe
ution of dissimilar 
lasses during the exe
utionphase [10,11℄.In Figure 1 experimental results for di�erent methods are shown (see relatedwork). A 
ode that implements Euler di�erential equations has been used. It
ontains some redu
tion loops with 2, 3 and 4 indire
tions, 
arrying out mag-nitude 
omputations over edges, fa
es and tetrahedra, respe
tively. The inputdata 
orrespond to a mesh des
ription of 800Knodes and 
onne
tivity 18. Wehave tested a privatization-based method, in parti
ular Array Expansion [15℄,and two aÆnity-based methods, Lo
al{Write and DWA{LIP. Sin
e input dataexhibit a low inter{iteration lo
ality the privatization-based method has a loweÆ
ien
y in 
ontrast to aÆnity-based methods. When the number of indire
-tions grows the intra{iteration lo
ality is poorer and thus the performan
e ofall methods de
reases. 10



3.4 Related workOne of the most popular methods to parallelize redu
tion loops is based onthe privatization of the redu
tion arrays [1℄. This way, iterations be
ome dataindependent (no write 
on
i
ts) allowing a free s
heduling of iterations in thethreads. Although several versions and optimizations of these methods wereproposed [15℄, privatization-based te
hniques have important drawba
ks, likea large extra memory requirement (redu
tion arrays must be repli
ated on allthreads) and no exploitation of data lo
ality.Instead of distributing loop iterations, another group of te
hniques uses dis-tribution of the redu
tions arrays. This approa
h avoids the extra memoryoverhead dis
ussed previously, and make possible to take data lo
ality into
onsideration. In these methods iterations are partitioned and assigned to thethreads on the basis of a previously 
hosen data distribution for the redu
tionarrays. However, some spe
i�
 te
hnique must be used to solve data depen-den
es due to write 
on
i
ts in the redu
tion arrays [12,10,11℄.The approa
h 
alled Lo
al{Write [12℄ parallelize redu
tion loops exploitingwrite lo
ality, as with DWA{LIP. However, this method is based on apply-ing loop-splitting to those iterations belonging to aÆnity 
lasses CQ withCard(Q) > 1 (that is, Q has two or more threads). For these split iterationsthe 
omputations are repli
ated whi
h implies an e�e
tive loss of parallelism.4 Analysis of Dynami
 Programs4.1 Motivation of the shape analysisProgramming languages su
h as C, C++, Fortran90, or Java are widely usedfor non-numeri
al (symboli
) and numeri
al appli
ations. All these languagesallow the use of 
omplex data stru
tures usually based on pointers and dy-nami
 memory allo
ation. The use of 
omplex data stru
tures is very helpfulin order to speedup 
ode development and, besides this, it also may lead toredu
ing the program exe
ution time. However, 
ompilers are not able to su
-
essfully optimize 
odes based on these 
omplex data stru
tures for 
urrent
omputers or multi
omputers. This is due to 
urrent 
ompilers are not ableto 
apture, from the 
ode text, the ne
essary information to exploit lo
ality,automati
ally parallelize the 
ode, or 
arry out other important optimizationsin pointer-based 
odes.With this motivation, the goal of our resear
h line is to propose and implement11



new te
hniques that 
an be in
luded in 
ompilers to allow for the automati
optimization of real 
odes based on dynami
 data stru
tures. As a �rst step,we have sele
ted the shape analysis subproblem, whi
h aims at estimating at
ompile time the shape the data will take at run time. Given this information,subsequent analysis (not implemented yet) would fo
us on parti
ular opti-mizations, for example, to exploit the memory hierar
hy or to dete
t whetheror not 
ertain se
tions of the 
ode 
an be parallelized be
ause they a

ess in-dependent data regions. Therefore, this work is part of the �rst step (programstru
ture analysis) of our parallelization methodology.There are other open resear
h lines dealing with the analysis of 
odes in thepresen
e of pointers, su
h as alias analysis or points-to analysis. Basi
ally,these analysis are designed to determine the superset of lo
ations to whi
h apointer must or may point (points-to sets) [7℄. These kinds of pointer anal-ysis provide enough information to allow for some s
alar optimizations, su
has Common Subexpression Elimination, Loop Invariant Removal, or Lo
ationInvariant Removal [8℄. However, the information provided by the points-tosets is not a

urate enough to enable more ambitious optimizations su
h asloop-level automati
 parallelization, automati
 data distribution, and lo
alityexploiting. Currently, the majority of resear
h groups rely on manual annota-tions when dealing with su
h 
omplex 
ode optimizations in the presen
e ofpointers, due to points-to analysis is not suÆ
ient. For instan
e, Chilimbi etal. ask the programmer to annotate the 
ode to exploit 
a
he lo
ality [4℄ or aprevious exe
ution pro�le is needed in order to exploit 
a
he prefet
hing [3℄.In the area of distributed memory lo
ality exploiting and 
ommuni
ation op-timization, Zhu and Hendren [22℄ also rely on 
ode annotations with spe
ial
ompiler dire
tives. Similarly, Rogers et al. [18℄ propose a thread-level paral-lelism in 
odes annotated with dire
tives su
h as future
all and tou
h.However, some groups are trying to automati
ally extra
t more informationfrom the 
ode text to optimize 
odes based on pointers. For example, Ghiya [8℄have implemented the M
CAT 
ompiler to put pointer analysis to work. Basi-
ally, this 
ompiler uses points-to analysis to deal with sta
k-dire
ted pointersand 
onne
tion analysis and shape analysis to deal with heap-dire
ted point-ers. This analysis is used for exploiting two parallelism levels in 
odes basedon re
ursive data stru
tures whi
h do not 
hange their shape while they aretraversed: at the fun
tion level when routines traverse disjoint sub-tree stru
-tures; and at the loop level in two 
ases; single liked list traversing and arrayof pointers to disjoint stru
tures traversing. However, their shape analysis istoo simple and 
onservative leading to a serious la
k of parallelism exploita-tion. This is mainly due to it does not keep information about the topologi
alstru
ture of the links between heap lo
ations.Thus, we have to emphasize that our �nal goal is to allow for the automati
 op-timization of 
odes based on re
ursive data stru
tures, but it is 
lear that, �rst12



of all, better shape analysis te
hniques have to be proposed. That is, new ap-proa
hes to automati
ally 
apture the essential 
hara
teristi
s and propertiesof heap-allo
ated data stru
tures are essential. With this in mind, our pro-posal is based on approximating all the possible memory 
on�gurations that
an arise after the exe
ution of a statement by a set of graphs: the Redu
edSet of Referen
e Shape Graphs (RSRSG). With our framework we 
an a
hievea

urate results in a reasonable analysis time and expending a reasonableammount of memory. Besides this, we 
over situations that were previouslyunsolved, su
h as dete
tion of 
omplex stru
tures (arrays of pointers, lists oftrees, lists of lists, et
.) and stru
ture permutation, as we will see in the nextse
tions.4.2 Method overviewBasi
ally, our method is based on approximating by graphs all possible mem-ory 
on�gurations that 
an appear after the exe
ution of a statement in the
ode. We 
all a 
olle
tion of dynami
 stru
tures amemory 
on�guration. Thesestru
tures 
omprise several memory 
hunks, that we 
all memory lo
ations,whi
h are linked by referen
es. Inside these memory lo
ations there is roomfor data and for pointers to other memory lo
ations. These pointers are 
alledsele
tors.Note that due to the 
ontrol 
ow of the program, a statement 
ould be rea
hedby following several paths in the 
ontrol 
ow. Ea
h \
ontrol path" has an as-so
iated memory 
on�guration whi
h is modi�ed by ea
h statement in thepath. Therefore, a single statement in the 
ode modi�es all the memory 
on-�gurations asso
iated with all the 
ontrol paths rea
hing this statement. Ea
hmemory 
on�guration is approximated by a graph we 
all Referen
e ShapeGraph (RSG). So, taking all this into a

ount, we 
on
lude that ea
h state-ment in the 
ode will have a set of RSGs asso
iated with it.4.2.1 RSGs and node propertiesThe RSGs are graphs in whi
h nodes represent memory lo
ations whi
h havesimilar referen
e patterns. To determine whether or not two memory lo
ationsshould be represented by a single node, ea
h one is annotated with a setof properties. Now, if several memory lo
ations share the same properties,then all of them will be represented by the same node. This way, a possiblyunlimited memory 
on�guration 
an be represented by a limited size RSG,be
ause the number of di�erent nodes is limited by the number of propertiesof ea
h node. These properties are related to the \referen
e pattern" usedto a

ess the memory lo
ations represented by the node. Hen
e the name13



Referen
e Shape Graph. These properties are brie
y des
ribed here, but amore detailed des
ription 
an be found in [6℄:1. Type: This property states the data type of the memory lo
ations repre-sented by a node.2. Stru
ture: This information avoids the summarization into the same nodeof memory lo
ations belonging to non-
onne
ted data stru
tures (i.e. bothdata stru
tures do not share any element).3. Simple Paths (SPATH): This property avoids the summarization ofmemory lo
ations near pointer variables. Sin
e data stru
tures are a

essedand modify via pointer variables, by keeping a pre
ise des
ription of the mem-ory lo
ation near the pointer variables the 
ompiler will 
arry out a morea

urate shape analysis.4. Referen
e Patterns: For ea
h node, this property is represented by twosets: SELINset 
ontains the sele
tors whi
h referen
e the node from othernodes and SELOUTset 
ontains the sele
tors whi
h point from this node toothers. For example, in a doubly linked list, a node representing the last itemof the list has SELINset=fnextg and SELOUTset=fprevg, be
ause next is an\input" sele
tor rea
hing the node and prev is an \output" sele
tor leavingthe node. Only nodes with similar referen
e patterns 
an be summarized intoa single one.5. Share Information: This property 
an tell whether at least one of the lo-
ations represented by a node is referen
ed more than on
e from other memorylo
ations. We use two kinds of attributes for ea
h node: SHARED(n) statesif any of the lo
ations represented by the node n 
an be referen
ed by otherlo
ations by di�erent sele
tors, and SHSEL(n, sel) points out if any of thelo
ations represented by n 
an be referen
ed more than on
e by following thesame sele
tor sel from other lo
ations.6. Tou
h Information: This property is taken into a

ount only inside loopbodies to avoid the summarization of already visited lo
ations with non-visitedones.7. Cy
le Links: This information is introdu
ed to in
rease the a

ura
y of thedata stru
ture representation by avoiding unne
essary edges that 
an appearduring the RSG updating pro
ess. The 
y
le links of a node, n, are de�nedas the set of pairs of referen
es < seli; selj > su
h that when starting at noden and 
onse
utively following sele
tors seli and selj, the node n is rea
hedagain.As we have said, all possible memory 
on�gurations whi
h may arise after theexe
ution of a statement are approximated by a set of RSGs. We 
all this set14



Redu
ed Set of Referen
e Shape Graphs (RSRSG), sin
e not all the di�erentRSGs arising in ea
h statement will be kept. On the 
ontrary, several RSGsrelated to di�erent memory 
on�gurations will be fused when they representmemory lo
ations with similar referen
e patterns. There are also several prop-erties related to the RSGs, and two RSGs should share these properties tobe joined. Therefore, besides the number of nodes in an RSG, the numberof di�erent RSGs asso
iated with a statement are limited too. This union ofRSGs greatly redu
es the number of RSGs and leads to a pra
ti
able analysis.4.2.2 Generating the RSRSGs: the symboli
 exe
utionTo move from the \memory domain" to the \graph domain", the 
al
ulationof the RSRSGs asso
iated with a statement is 
arried out by the symboli
exe
ution of the program over the graphs. In this way, ea
h program state-ment transforms the graphs to re
e
t the 
hanges in memory 
on�gurationsderived from statement exe
ution. The abstra
t semanti
 of ea
h statementstates how the analysis of this statement must transform the graphs.Let us illustrate all this with an example. In Figure 6 we 
an see a simple 
odewith seven pointer statements. Our analyzer symboli
ally exe
utes ea
h state-ment to build the RSRSG asso
iated with them. A
tually, after the exe
utionof the third statement we obtain an RSRSG with a single RSG whi
h repre-sents three di�erent memory lo
ations by three nodes; all of them of the sametype, with the same nxt sele
tor, but pointed to by di�erent pointer variables(pvars). Now, this RSRSG is modi�ed in three di�erent ways be
ause thereare three di�erent paths in the 
ontrol 
ow graph, ea
h one with a di�erentpointer statement. All these paths join in statement 7, and after the exe
utionof this statement we obtain an RSRSG with two RSGs. This is be
ause theRSGs 
oming from statements 5 and 6 are 
ompatible and 
an be summarizedinto a single one.The whole symboli
 exe
ution pro
ess 
an be seen by looking at Fig. 7. Forea
h statement in the 
ode we have an input RSRSGi and the 
orrespond-ing output RSRSGo representing the memory 
on�gurations after statementexe
ution. During the symboli
 exe
ution of the statement all the rsgij be-longing to RSRSGi are going to be updated. The �rst step 
omprises graphdivision to better fo
us on the several memory 
on�gurations represented bythe RSG. Pruning removes redundant or nonexistent nodes or links that mayappear after the division operation. Then the abstra
t interpretation of thestatement takes pla
e and usually the 
omplexity of the RSGs grows. In orderto 
ounter this e�e
t, the analysis 
arries out a 
ompression operation. In thisphase ea
h RSG is simpli�ed by the summarization of 
ompatible nodes, toobtain the rsg�ijk graphs. Furthermore, some of the rsg�ijk 
an be fused into asingle rsgok if they represent similar memory 
on�gurations. This operation15



if (cond1)

if (cond2)

3. z = malloc();

1. x = malloc();
2. y = malloc();

4. x.nxt := z

5. y.nxt := z

6. z = NULL

7. h = malloc();
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Fig. 6. Building an RSRSG for ea
h statement of an example 
ode
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hemati
 des
ription of the symboli
 exe
ution of a statement.greatly redu
es the number of RSGs in the resulting RSRSG.The abstra
t interpretation is 
arried out iteratively for ea
h statement un-til we rea
h a �xed point in whi
h the resulting set of rsgoj asso
iated withthe statement does not 
hange any more. This way, for ea
h statement thatmodi�es dynami
 stru
tures, we have to de�ne the abstra
t semanti
s whi
hdes
ribe how these statements modify the rsgij. We 
onsider six simple in-stru
tions that deal with pointers: x = NULL, x = mallo
, x = y, x! sel =NULL, x ! sel = y, and x = y ! sel. More 
omplex pointer instru
tions
an be built upon these simple ones and temporal variables. Due to spa
e
onstraints we 
annot formally des
ribe the abstra
t semanti
s of ea
h one ofthese statements. However, we intuitively present the modi�
ations involvedin an RSG after the statement symboli
 exe
ution:� The x = NULL statement leads to elimination of the referen
es from thepointer variable (pvar) x to any memory lo
ation. Therefore we have toremove these referen
es from the RSG.� The x = mallo
 statement simply initializes new memory lo
ations repre-sented in the RSG by a node referen
ed by x.16



� The x = y modi�es the RSG su
h that all memory lo
ations pointed to byy are now also pointed to by x. Before this statement and the previous one,we always automati
ally insert the x = NULL statement to ensure thatbefore assigning a new value to x, x is not pointing to any pla
e.� The statement x ! sel = NULL is the most 
omplex one, be
ause itbreak links between nodes. This leads to many 
hanges in the properties ofthe nodes. In order to obtain an a

urate output RSG before removing thex ! sel link we divide the RSG into several rsgj. This division is 
arriedout by taking into a

ount that ea
h rsgj should have a single destination(node) for the x ! sel link. In this way we 
an better fo
us on the severalmemory 
on�gurations represented by the RSG regarding this x! sel link.Ea
h rsgj is pruned after the division to remove redundant or inexistentnodes or links whi
h have been 
onservatively inherited from the parentRSG. We also in
rease the a

ura
y of the method by materializing fromthe node the memory lo
ation whi
h is the real target of the x ! sel link.After this, this link 
an be safely removed.All these pro
esses 
an be better illustrated by a simple example. InFig. 8 (a) we see an RSG representing a doubly linked list of two or moreelements. A
tually, n1 represents the �rst element in the list, n2 the middleelements, and n3 the last one. Let us suppose that this RSGs is an inputrsgi to the x! nxt = NULL statement where x is pointing to the memorylo
ation represented by node n1. As we said, the �rst step in the abstra
tinterpretation of this statement is the division operation. Figure 8 (b) showsthe resulting rsg01 and rsg02 after the division. Note that in ea
h one of thesegraphs there is a single destination for x ! nxt. In Fig. 8 (
) we show theresult of the pruning pro
ess in whi
h the 
ompiler removes nodes and linkswhi
h do not ful�ll the graphs' properties. In fa
t, rsg001 represents a list ofthree or more elements and rsg002 is 
learly a list of just two items. Now,before removing the x! nxt link in both graphs, the 
ompiler has to fo
usmore on one of the RSGs. More pre
isely, in rsg001, we have to materializefrom node n2 the node n4 whi
h represents the single list item referen
edby x ! nxt, as we 
an see in Fig. 8 (d). Finally, we see in Fig. 8 (e) howwe safely remove the link x ! nxt in both graphs to obtain the �nal rsg1and rsg2.� The x ! sel = y statement implies the exe
ution of the same pro
edurejust des
ribed for the x! sel = NULL statement (RSG division, pruning,and node materialization) followed by the generation of a link by sele
torsel from the nodes pointed to by x to the nodes pointed to by y.� Finally, the statement x = y ! sel leads to the in
lusion of a new referen
efrom the x pvar to all the memory lo
ations pointed to by y ! sel. Now,the RSG division, pruning, and node materialization are 
arried out for they ! sel link. In this way, we will point with x to the exa
t memory lo
ationspointed to by y ! sel and to no other.
17
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ess of the abstra
t interpretation required by thex! nxt = NULL statement.4.2.3 Dealing with arrays of pointers: multisele
torsWe 
an view an array of pointers as a set of n sele
tors (links), all with thesame name. Our original method, brie
y des
ribed before, only deals withsingle sele
tors (whi
h represent single links). Thus, the problem arising withthe arrays of pointers is that a single sele
tor name represents several links,and all of them belong to the same memory lo
ation (due to having beenallo
ated by the same mallo
 instru
tion).We illustrate all this with the following example. Figure 9 shows an exampleof a 
omplex data stru
ture de�nition 
omprising two arrays of pointers, andit also illustrates the 
orresponding memory 
on�guration after the exe
utionof the last \mallo
()" statement. As we note, sel is a single sele
tor whi
h 
anpoint to a single memory lo
ation and whi
h 
an be modi�ed by statementslike \x!sel=...". These kinds of sele
tors 
an be managed by our previous18



typedef stru
t str f...stru
t str1 *sel;stru
t str2 *sel1[256℄;stru
t str **sel2;gx=(str *)mallo
(sizeof(stru
t str));x->sel2=(str **)mallo
(n*sizeof(str*));
256 n

. . . . . .

str2

x

str1

sel sel1 sel2

str2

str2

str

str

Fig. 9. Example of data stru
ture 
ontaining arrays of pointersanalyzer. However, sel1 and sel2 represent arrays of sele
tors. The di�eren
ebetween sel1 and sel2 is that we know the size of the sel1 array at 
ompiletime, but the size of sel2 is de�ned at run time. In any 
ase, we now want todeal with both types of arrays of sele
tors, whi
h now have to be modi�ed bystatements like \x!sel1[i℄=..." or \x!sel2[i℄=...".Sin
e sel1 and sel2 are not single sele
tors, we have 
alled them multisele
tors.In order to take into a

ount multisele
tors in our method we have introdu
edin our analyzer the following pro
edure: sin
e our method is already able todeal with single sele
tors our goal is now to in
lude a previous step in thesymboli
 exe
ution pro
ess to fo
us on one of the sele
tors in
luded in a par-ti
ular multisele
tor. In other words, a statement like \x!sel1[i℄=..." is goingto update a single sele
tor (a parti
ular sele
tor in
luded in the multisele
-tor sel1), but before applying the symboli
 exe
ution, our analizer start byidentifying the parti
ular sel1[i℄ whi
h is going to be updated, to subsequentlypro
eed with the abstra
t interpretation.4.3 Experimental resultsOur RSRSG analyzer has been written in C and 
an be fed with an input
ode to generate the RSRSG asso
iated with ea
h statement of the 
ode. The
odes have to be prepro
essed in a �rst step to just keep the statements dealingwith pointers. We have implemented the analyzer to 
arry out a progressiveanalysis whi
h starts with fewer 
onstraints to summarize nodes, but, whenne
essary, these 
onstraints are in
reased to rea
h a better approximation ofthe data stru
ture used in the 
ode. More pre
isely, the analysis 
omprisesthree levels: L1, L2, and L3, from less to more 
omplexity as we explain in [6℄.With this tool we have analyzed several 
odes: an arti�
ial 
ode that we 
all\working example", the sparse Matrix by ve
tor multipli
ation, the sparseMatrix by Matrix multipli
ation, the Sparse LU fa
torization, and the Barnes-Hut 
ode. These �ve 
odes have two implementations, one in whi
h arrays ofpointers are implemented by doubly linked lists and the other in whi
h arrays19



Working Ex. S.Mat-Ve
 S.Mat-Mat S.LU Barnes-HutLevel L1 / L2 / L3 L1 / L2 / L3 L1 / L2 / L3 L1 / L2 / L3 L1 / L2 / L3Codes without arrays of pointersTime 0'03"/0'05"/0'06" 0'01"/0'02"/0'03" 0'20"/0'38"/1'00" 7'50"/-/- 5'56"/0'34"/2'06"MBytes 2.11/2.78/3.02 1.37/1.85/2.17 8.13/11.45/12.68 99.46/-/- 37.82/8.82/8.94Lines 213 104 156 164 216Codes in
luding arrays of pointersTime 0'05"/0'07"/0'08" 0'01"/0'01"/0'01" 0'04"/0'06"/0'06" 1'08"/1'12"/- 23'08/25'27"/0'21"MBytes 1.77/2.29/2.50 0.92/1.03/1.2 1.19/1.31/1.49 3.96/4.18/- 40.14/42.86/3.06Lines 144 87 103 143 177Table 2Time and spa
e required to pro
ess several 
odes with di�erent number of 
ode linesof pointers are keep.The �rst four 
odes were su

essfully analyzed in the �rst level of the analyzer,L1. However, for the Barnes-Hut program the highest a

ura
y of the RSRSGswas obtained in the last level, L3. All these 
odes where pro
essed by ouranalyzer in a Pentium 4 1.6 GHz with 128 MB main memory. The time andmemory required by the analyzer are summarized in Table 2. In this table wealso show the number of 
ode lines after the prepro
essing of the original C
odes. The parti
ular aspe
ts of these 
odes are des
ribed next.(1) Working example's RSRSG. This 
ode generates, traverses, and mod-i�es the data stru
ture presented in Figure 10 (a). A 
ompa
t represen-tation of the resulting RSRSG for the last statement of the 
ode 
anbe seen in Figure 10 (b). The data stru
ture is a doubly linked list ofpointers to trees (header list). Besides this, the leaves of the trees havepointers to doubly linked lists. All the trees pointed to by the headerlist are independent and do not share any element. In the same way, thelists pointed to by the leaves of the same tree or di�erent trees are alsoindependent.This data stru
ture is built by a C 
ode that also traverses the ele-ments of the header list with two pointers and eventually 
an permutetwo trees. From the properties asso
iated with the nodes in the RSRSGrepresented in Figure 10 (b) we 
an infer the a
tual properties of the realdata stru
ture: the trees and lists do not share elements and thereforethey 
an be traversed in parallel. More pre
isely: (i) The analyzer su
-
essfully dete
ts the doubly linked list whi
h is a
y
li
 by sele
tors nxt orprv and whose elements point to binary trees; (ii) Two di�erent items ofthe header list 
annot point to the same tree; (iii) Di�erent trees do notshare items; (iv) The same happens for the doubly linked list pointed toby the tree leaves: all the lists are independent, there are no two leavespointing to the same list, and these lists are a
y
li
 by sele
tors nxt orprv. 20
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LINKED(a) (b)Fig. 10. A 
omplex data stru
ture (a), and 
ompa
t representation of the resultingRSRSG (b)The other implementation of this 
ode is based on an array of pointersto the trees instead of the header list. Again, the analyzer 
an extra
tthe same 
on
lusions 
ommented in the previous paragraph.(2) Sparse matrix 
odes. Here we deal with some irregular 
odes whi
himplements sparse matrix operations: the sparse matrix by ve
tor multi-pli
ation, r = M�v; the sparse matrix-matrix multipli
ation,A = B�C;and the sparse LU fa
torization, A = LU .The sparse matri
es are stored in memory as a header doubly linked list(or an array of pointers) with pointers to other doubly linked lists whi
hstore the matrix rows (if the matrix is row-wise) or 
olumns (for 
olumn-wise matri
es). In �gure 11 (a) we show the sparse matrix data stru
turefor a row-wise matrix where the matrix header is implemented by anarray of pointers. The sparse ve
tors, v and r are doubly linked lists. Afterthe analysis pro
ess, 
arried out by our analyzer, the resulting RSRSGa

urately represents the data stru
tures. In the resulting RSRSG for thelast statement of these 
odes we 
an identify the main properties of thedata stru
tures: (i) The rows of the matrix are pointed to from di�erentelements of the header list/array; (ii) The doubly linked lists whi
h storethe rows of the matri
es and the ve
tors are a
y
li
 by sele
tors nxt andprv. A subsequent analysis of the 
ode and the RSRSG asso
iated withea
h statement would be able to state that several sparse matrix row 
anbe traversed and updated in parallel and, in addition, it is also possibleto update ea
h row in parallel.(3) Barnes-Hut N-body simulation. The stru
ture used in this 
ode isbasi
ally an o
tree where ea
h leaf points to an element of a single linkedlist. In the implementation whi
h avoids pointer arrays, ea
h o
tree nodewhi
h is not a leaf has a pointer 
hild pointing to the �rst of its eight 
hil-dren whi
h are linked by sele
tor next. If pointer arrays are allowed, thepointers to the eight 
hildren are stored in an array of pointers, as we 
an21
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ture to store sparse matri
es and ve
tors (a), and Barnes Hutmain data stru
ture (b)see in �gure 11 (b). The analysis of this 
ode enable the parallel traversalof the o
tree whi
h is pre
isely 
aptured by the obtained RSRSG's.4.4 Related workThere are several ways the shape analysis problem 
an be approa
hed. Wehave fo
us in the graph-based methods in whi
h the \storage 
hunks" arerepresented by nodes, and edges are used to represent referen
es between them.For example, Plevyak et al. [16℄ have proposed the the \Abstra
t StorageGraph" (ASG), while Sagiv et al. [20℄ improved the ASG method with whatthey 
all \Stati
 Shape Graphs" (SSG). In a previous work [5℄ we saw thatASG or SSG were not suÆ
ient to deal with the 
omplex data stru
tureswe presented in the previous se
tion. Basi
ally, ASG and SSG approa
heswere too impre
ise and too 
onservative in many simple 
ases, due to theyasso
iate just one graph with ea
h statement in the 
ode. Besides, too mu
hinformation is fused in a single node and then it is impossible to 
apturethe real properties of the data stru
tures represented by the graphs. We haveover
ome this drawba
k by 
onsidering several graphs per statement, whileful�lling some rules to avoid an explosion in the number of graphs and nodesin ea
h graph.A more re
ent work that also allows several graphs per statement is the onepresented by Sagiv et al. [21℄. They propose a parametri
 framework based on a3-valued logi
. To des
ribe the memory 
on�guration they use 3-valued stru
-tures de�ned by several predi
ates. However, as far as we know the 
urrentlyproposed predi
ates do not suÆ
e to deal with the 
omplex data stru
turesthat we handle in this paper. There are several di�eren
es between our shapeanalysis method and that of Sagiv et al. [21℄. The main one is that we joinsimilar RSGs to build a redu
ed set of RSGs for ea
h program point, while22



RSRSG TVLA (se
.)Code Lines Time Memory Single Multiple
reate 9 In
luded in all 0.51 0.40dellall 7 0.07s 133KB 0.42 0.44delete 14 0.25s 179KB 2.73 5.18fumble 10 0.09s 146KB 1.40 1.47getlast+rot 11 0.14s 163KB .78+.62 1.47+.88insert 17 0.16s 197KB 2.86 2.77merge 26 1.15s 387KB 8.25 12.01reverse 10 0.15s 159KB 1.21 1.46swap 8 0.09s 152KB 0.7 0.61bublesort 32 2.52s 389KB 186.60 out of sp.Table 3Comparing RSRSG with TVLAin [21℄ they keep all the graphs (multiple stru
ture approa
h) or just one(single stru
ture approa
h). We think that this may explain why their Three-Valued-Logi
 Analyzer (TVLA) runs out of memory for simple 
odes su
h asthe singly linked list bubble sort using the multiple stru
ture approa
h [14℄.Besides, they re
ognize that their TVLA engine is only useful to analyze smallprograms and report experimental results for small, singly linked list opera-tions (insert, reverse, sort, et
.), as we 
an see in Table 3. However, they havenot published experimental results su

essfully dealing with real 
odes basedon the 
ombination of 
omplex data stru
tures su
h as doubly linked listspointing to trees or to other lists, et
. In this Table 3 we also 
ompare theirJava-written TVLA running on a Pentium II-400MHz with our C-written an-alyzer on a Pentium III-500MHz.5 Con
lusionsThis paper addresses the problem of automati
 parallelization of irregularand dynami
 appli
ations. From our work on this problem we may derive twomain 
on
lusions. First, a 
omplete and powerful data analysis is fundamental.This analysis must in
lude, at least, two important tasks: Analysis of the dataorganization, and analysis of the memory referen
es. In irregular 
odes, dataorganization analysis is not diÆ
ult as typi
ally data is arranged as arrays.However, memory referen
es are dynami
 and data dependant. In dynami

odes, however, both analysis are very 
omplex. In this line, we have developedshape analysis te
hniques to 
apture properties of 
omplex pointer-based datastru
tures.The se
ond 
on
lusion is that we 
onsider a promising way to obtain an e�e
-tive parallelization to design ad-ho
 te
hniques for spe
i�
 
omplex 
omputa-23



tional stru
tures. For instan
e, we dis
ussed an eÆ
ient solution for irregularredu
tions. In a similar way, on
e the data organization of a pointer-based 
odehas been identi�ed, it is possible to develop eÆ
ient automati
 te
hniques totraverse and update these data stru
tures (trees, linked-lists, ...) in parallel.Referen
es[1℄ W. Blume, R. Doallo, R. Eigenmann, et al. Parallel programming with Polaris.IEEE Computer, 29(12):78{82, 1996.[2℄ W. Blume and R. Eigenmann. The range test: A dependen
e test for symboli
,non-linear expressions. ACM Int'l Conf. on Super
omputing (ICS'94), pp. 528{537, 1994.[3℄ T.M. Chilimbi. EÆ
ient representations and abstra
tions for quantifying andexploiting data referen
e lo
ality. ACM SIGPLAN Conf. on ProgrammingLanguages Design and Implementation (PLDI'01), pp. 191{202, 2001.[4℄ T.M. Chilimbi, M.D. Hill and J.R. Larus. Ca
he-
ons
ious stru
ture layout.ACM SIGPLAN Conf. on Programming Languages Design and Implementation(PLDI'99), pp. 1{12, 1999.[5℄ F. Corbera, R. Asenjo, and E.L. Zapata. New shape analysis for automati
parallelization of C 
odes. ACM Int'l Conf. on Super
omputing (ICS'99), pp.220{227, 1999.[6℄ F. Corbera, R. Asenjo, and E.L. Zapata. A

urate shape analysis for re
ursivedata stru
tures. Int'l. Workshop on Languages and Compilers for ParallelComputing (LCPC'2000), pp. 1{15, 2000.[7℄ M. Das. Uni�
ation-based pointer analysis with dire
tional assignments. ACMSIGPLAN Noti
es, 35(5):35{46, 2000.[8℄ R. Ghiya. Putting Pointer Analysis to Work. PhD thesis, S
hool of Comp. S
i.,M
Gill Univ., Montreal, 1998.[9℄ A. Gibbons Algorithmi
 Graph Theory. Cambridge University Press, 1999.[10℄ E. Guti�errez, O. Plata and E.L. Zapata. A 
ompiler method for the parallelexe
ution of irregular redu
tions in s
alable shared memory multipro
essors.ACM Int'l. Conf. on Super
omputing (ICS'2000), pp. 78{87, 2000.[11℄ E. Guti�errez, O. Plata and E.L. Zapata. Improving Parallel Irregular Redu
tionsUsing Partial Array Expansion. IEEE/ACM Int'l. Conf. for High Performan
eComputing and Communi
ations (SC'2001), 2001.[12℄ H. Han and C-W. Tseng. EÆ
ient 
ompiler and run-time support for parallelirregular redu
tions. Parallel Computing, 2000. 26(13{14):1861{1887.24



[13℄ H. Han and C-W. Tseng. Improving lo
ality for adaptive irregular s
ientif
odes. Int'l. Workshop on Languages and Compilers for Parallel Computing(LCPC'2000), pp. 173-188, 2000.[14℄ T. Lev-Ami and M. Sagiv. TVLA: A system for implementing stati
 analyses.Stati
 Analysis Symp., pp. 280{301, 2000.[15℄ Y. Lin and D. Padua. On the automati
 parallelization of sparse and irregularfortran programs. 4th Workshop on Languages, Compilers and RuntimeSystems for S
alable Computers (LCR'98), 1998.[16℄ J. Plevyak, A. Chien and V. Karam
heti. Analysis of dynami
 stru
tures foreÆ
ient parallel exe
ution. Int'l. Workshop on Languages and Compilers forParallel Computing (LCPC'93), pp. 37{57, 1993.[17℄ W.M. Pottenger and R. Eigenmann. Idiom re
ognition in the Polarisparallelizing 
ompiler. ACM Int'l Conf. on Super
omputing (ICS'95), pp. 444{448, 1995.[18℄ A. Rogers, M.C. Carlisle, J.H. Reppy and L.J. Hendren. Supporting dynami
data stru
tures on distributed-memory ma
hines. ACM Trans. on ProgrammingLanguages and Systems (TOPLAS), 17(2):233{263, 1995.[19℄ L. Rau
hwerger and D. Padua. The privatizing DOALL test: A run-timete
hnique for DOALL loop identi�
ation and array provatization. ACM Int'lConf. on Super
omputing (ICS'94), pp. 33{43, 1994.[20℄ M. Sagiv, T. Reps and R. Wilhelm. Solving shape-analysis problems in laguageswith destru
tive updating. ACM Trans. on Programming Languages andSystems (TOPLAS), 20(1):1{50, 1998.[21℄ M. Sagiv, T. Reps and R. Wilhelm. Parametri
 shape analysis via 3-valuedlogi
. Symp. on Prin
iples of Programming Languages, pp. 105{118, 1999.[22℄ Y. Zhu and L. Hendren. Lo
ality analysis for parallel C programs. IEEE Trans.on Parallel and Distributed Systems (TPDS), 10(2):99{114, 1999.

25


