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do i = 1,N...ompute �...A(f( i )) = A(f( i )) � �...enddo
while ( ondition )f ...p!data = value;p = p!next;...g(a) (b)Fig. 1. Example of an irregular omputation (a) and a dynami omputation (b)data strutures. In the presene of suh programming omplexities ompil-ers usually run into trouble both analyzing dependenes and exploiting dataloality and extrating parallelism.We may distinguish two important lasses of omplex appliations: irregularand dynami. Irregular appliations are haraterized by the fat that data isstrutured as multi-dimensional arrays, as in regular appliations, but it is ref-erened through array indiretions (arrays with subsripted subsripts). Theseappliations are typially oded using proedural languages like Fortran77. Dy-nami appliations, on the other hand, deal with data organized as omplex,pointer-based strutures (lists, trees, ...), and it is referened through pointers.Typial appliations of this lass are oded using languages like C/C++, Javaor Fortran90.Figure 1 shows example odes for irregular and dynami omputations. The�rst piee of ode represents an irregular histogram redution, where a redu-tion array (A) is updated at some points given by the indiretion array (f). Akey issue in the parallelization of this loop inludes solving the possible ross-iteration true data dependenes due to the indiretion array. For instane, ifarray f is not a permutation we will have suh dependenes. The seond odeorresponds a variable loop where a pointer-based data struture is updated.Now, in the parallelization of this loop we have to solve possible ross-iterationdependenes due to yles in the pointer-based list.In this paper we disuss our reent work about developing eÆient paralleliza-tion tehniques for irregular and dynami appliations. Basially our teh-niques are enlosed into a broad parallelization method, that an be brokendown into several phases: reognizing the irregular/dynami struture of theode, data analysis, and seletion of an ad-ho parallelization tehnique ful-�lling some performane properties.We present some of our reent advanes in this �eld. In partiular, we de-signed a methodology to parallelize odes with irregular redutions exploitingdata loality. From this methodology we derived a number of eÆient loalityoriented run-time parallelizing tehniques. On the other hand, we developed2



new shape analysis tehniques for pointer-based data strutures to enable de-pendene analysis in dynami odes. Suh tehniques may be used to analyzememory referenes needed to develop eÆient optimization and parallelizationmethods for dynami odes.The rest of the paper is organized as follows. setion 2 disusses the methodol-ogy we use to develop our optimization and parallelization ompilation teh-niques for irregular/dynami odes. Next, spei� tehniques for a widelyfound irregular omputational struture, named irregular redution, is de-sribed. Shape analysis tehniques for dynami data strutures are analyzedin setion 4. Finally, onlusions are drawn.2 Parallelization methodology for irregular/dynami odesThis setion desribes a methodology for the eÆient exploitation of the avail-able parallelism in programs with irregular and/or dynami omputation/datastrutures. We developed tehniques to disover ertain program (ode anddata) properties that are essential in the e�etive optimization, as well asparallelization methods that take advantage of suh properties. The paral-lelization methodology proeeds in several stages, as follows:(1) Program struture: Analysis of the omputational struture of the pro-gram, as well as the data strutures used. As a result of this analysis wean reognize the irregular and/or dynami nature of the program.(2) Data analysis: A omplete data analysis is needed to determine whetherparallelism is exploitable, or to enable some optimizations. It is alsoneeded to know where and how suh parallelization/optimization anbe done. In ase of irregular and dynami programs, this stage beomesvery omplex. Two important tasks inluded into this stage are both theanalysis of the data struture and the analysis of memory referenes.The �rst analysis determines how data is organized and the relationshipamong di�erent data items. The seond analysis disovers how data isreferened and the relationship among these data referenes.(3) Program parallelization: Information resulting from program strutureand data analysis allows to deide what spei� parallelization methodis best suited to be used. We are speially interested in the developmentof methods that optimize some important program properties, like dataloality or ommuniation overhead.In the rest of the paper we desribe two representative ase studies in theontext of the onsidered parallelization methodology. The �rst ase study,that onstitutes an important lass of irregular programs, orresponds to odeswith irregular redutions. For these odes the three stages in the parallelization3



REAL A(1:ADim)INTEGER f1(1:N1, 1:N2,... ,NnLoops)INTEGER f2(1:N1, 1:N2,... ,NnLoops)...INTEGER fnInd(1:N1, 1:N2,... ,NnLoops)h : do i1 = 1,N1do i2 = 1,N2...do inLoops = 1,NnLoopsCompute �1; �2; ::: �nIndA(f1(i1; i2; ::: inLoops)) = A(f1(i1; i2; ::: inLoops )) + �1A(f2(i1; i2; ::: inLoops)) = A(f2(i1; i2; ::: inLoops )) + �2...A(fnInd(i1; i2; ::: inLoops)) = A(fnInd(i1; i2; ::: inLoops )) + �nIndenddo...enddoenddoFig. 2. Nested loop with multiple irregular redutionsmethodology will be disussed. The seond ase study will fous on the seondstage, data analysis, for general dynami odes proessing pointer-based datastrutures.3 Programs with irregular redutionsMany ommon data organizations used in numerial appliations involve ir-regular memory aesses, in whih array elements are referened by means ofindiretions. Redution operations are often found in the ontext of irregularodes in sienti� and numerial appliations, representing an important lassof irregular problems. Redution operations are based in ommutative andassoiative operators, like additions, multipliations, and so on.An example of a piee of ode arrying out multiple irregular redutions insidea nested loop is shown in Figure 2 (it is also known as histogram redution).A() represents the redution array (that ould be multidimensional), whih isupdated (the redution operation is an addition in this example) by means ofthe subsript arrays f1(), f2(), ... Terms �1, �2, ... represent e�etive ompu-tation.Considering the parallelization methodology desribed in the previous setion,the �rst stage orresponds to the reognition of the irregular redution andthen what arrays work as redution array(s) and whih ones as subsriptarrays. This stage may be aomplished in a ompiler through the use of4



pattern-mathing or idiom reognition tehniques [17,2℄.One irregular redutions have been reognized, a data analysis of the odeproeeds. As shown in Figure 2, all relevant data (from the viewpoint of thisstage) is organized as arrays, so no further data struture analysis is needed.We next proeed to analyze memory referenes. Due to the subsripted sub-sripts, loop{arried data dependenes may be present, and they annot bedeteted at ompile time (due to the subsript arrays). Tehniques have beendeveloped to detet this kind of data dependenes at run-time [19℄.However, beause of the assoiative and ommutative properties satis�ed bythe redution operator, the possible data dependenes due to the array re-dutions may be overome by ode/data transformations. Suh transforma-tions orresponds to the third stage in our methodology. In the last few yearsvarious ode/data transformations that parallelize irregular redution loopsappeared in the literature (see related work). In the next setions we willdisuss a framework to develop eÆient parallelization tehniques for irreg-ular redution loops. This framework is foused to exploit data loality onshared{memory multiproessor platforms.3.1 Loality and aÆnityIn order to optimize data loality through ode/data transformations, we �rstneed to haraterize it. Without loss of generality, let us take the redutionloop shown in Figure 2 as a working example. We an distinguish two souresof data loality: Read loality assoiated with aesses to read-only and pri-vatizable arrays, and write loality assoiated with aesses to the redutionarrays.In (ahe-oherent) shared memory multiproessors, writes usually have astronger impat on performane overhead than reads (writes must propagateand serialize through the memory hierarhy). So it is muh important, fromthe performane viewpoint, to optimize writing loality.We distinguish between two lasses of write loality: Intra{iteration and inter{iteration. Intra{iteration loality orresponds to write loality inside the samenested loop iteration. Inter{iteration loality, on the other hand, is due towrites on the redution arrays exeuted on di�erent loop iterations.When parallelizing the redution ode, the lass of loality we an exploitdepends on the granularity of the parallelization method. It is usual thatthe minimum amount of partitionable ode is one full loop iteration. In suhase, only inter{iteration loality an be exploited by ode parallelization.If we want to also exploit intra{iteration loality, we must resort to data5



reorganizations [13℄ (basially the ontents of the subsript arrays).A simple method to exploit inter{iteration loality proeeds in two steps: First,we state a data distribution of the redution arrays among all threads thatooperate in the parallel omputation. Seond, redution loop iterations areassigned to threads in suh a way that the number of loal writes (writesto owned redution array elements) is maximized. Note that these iterationassignments not only exploit loality but also avoid the need of run-time de-pendene analysis, as iterations from di�erent threads an be exeuted withno write onits.In what follows we will desribe a framework to de�ne eÆient loality{basedloop iteration assignments.First, we need some de�nitions. Without loss of generality, let us onsider theredution loop in Figure 2. A(1:ADim) represents the redution array, whihis updated inside a nested loop, being ~{ = (i1; i2; :::inLoops) the iteration indexvetor. Also let P = f1; 2; :::nThreadsg be the set of threads identi�ers thatooperate in the omputation, and let 	 : fA(1); A(2); :::A(ADim)g ! P bea distribution funtion of the array A on the threads.De�nition 3.1 The write aess set of the iteration ~{ is de�ned as the setof indies m suh that A(m) is written in suh iteration. The write aess setis denoted as A~{(A), and thus A~{(A) = fm 2 [1; ADim℄ jA(m) is writtenin iteration ~{ g.De�nition 3.2 Two iterations, ~{ and ~|, are write aÆne if their write a-ess sets are mapped to the same subset of threads, that is, 	(A~{(A)) =	(A~|(A)).De�nition 3.3 Two iterations, ~{ and ~|, are write dissimilar if their writeaess sets are mapped to disjoint subsets of threads, that is, 	(A~{(A)) \	(A~|(A)) = ;.3.2 Write aÆnity based parallelizationUsing the write aÆnity property de�ned in the previous setion we will derivean optimal method to parallelize histogram redution loops. Given a data dis-tribution funtion of the redution array, a ode transformation of the redu-tion loop will be de�ned so as some performane issues are optimized: paral-lelism and data loality are maximized, and omputation repliation, memoryoverhead, extra workload and synhronization overhead are minimized.Let us start with new de�nitions. De�nition 3.2 in previous setion states a6



binary relation between two iterations, given a data distribution funtion ofthe redution array. Suh relation will be alled aÆnity relation. It is easyto see that the aÆnity relation is an equivalene relation, that is, it satis�esreexive, symmetri and transitive laws. So, equivalene lasses an be de�ned.De�nition 3.4 Given the aÆnity relation, an equivalene lass is a subsetof write aÆne iterations, that is, iterations with their aess sets mapped tothe same subset of threads. Given Q a subset of P , let CQ be an aÆnityequivalene lass, then CQ = f~{ 2 S j	(A~{(A)) = Qg, where S is the setof iterations.De�nition 3.5 The set of all aÆnity equivalene lasses in the iteration setS is alled the aÆnity quotient set, and denoted as S=a�.When using some loality-oriented data distribution funtion 	, for example alassial blok distribution, it would be possible to exploit write inter{iterationloality by onsidering those iterations belonging to a same aÆnity equivalenelass. From the parallelization viewpoint, we need to distinguish data inde-pendent redution iterations.De�nition 3.6 Two aÆnity equivalene lasses, CQ and CR, are de�ned dis-similar if two iterations, ~{ 2 CQ and ~| 2 CR, are write dissimilar.Lemma 1 Two lasses, CQ and CR, are dissimilar if and only if Q \ R = ;.In a redution loop the only true data dependenes are aused by writes inthe redution array, thus two write dissimilar iterations are assured to be dataindependent. Hene iterations belonging to dissimilar equivalene lasses anbe exeuted fully in parallel, with no write onits. That means that it wouldnot be any parallelization overheads, like extra memory, synhronizations oromputation repliation. These are preisely the issues that we want to min-imize in the parallelization of the redution loop. In addition, if we an �ndlarge sets of dissimilar equivalene lasses, we would have a lot of exploitableparallelism.De�nition 3.7 The dissimilarity graph, denoted as DG(S=a�) = (NDG; EDG),is de�ned as an undireted graph whose verties are aÆnity equivalene lasses,that is, NDG is the aÆnity quotient set S=a�. There exists an edge betweentwo lasses in the graph if suh lasses are not dissimilar.The dissimilarity graph relates potentially data dependent redution itera-tions, for a given data distribution funtion. Non diretly onneted vertiesin that graph orresponds to dissimilar equivalene lasses, that ontain dataindependent iterations. Therefore, if we want to maximize exploitable paral-lelism, we have to �nd the maximum number of non diretly onneted vertiesin the dissimilarity graph. This an be done by applying a vertex oloring al-7
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Fig. 3. Vertex oloring of a dissimilarity graphfor olor 2 DG(S=a�)forall C 2 olorExeute iterations2 CendC$barrierendFig. 4. Parallel redution loop based on aÆnity lassesgorithm to the graph. Resulting from the oloring proess sets of dissimilarlasses are obtained. Iterations from the lasses in eah one of these sets anbe exeuted fully in parallel beause they write in non oniting areas of theredution array.As an example, onsider a redution loop with two redutions (indiretions),one redution array, four threads, and a ertain distribution funtion 	. Inthis ase, the maximum possible number of equivalene lasses in the aÆnityquotient set is 10, and would be as follows:S=a� = fCf1g; Cf2g; Cf3g; Cf4g; Cf1;2g; Cf1;3g; Cf1;4g; Cf2;3g; Cf2;4g; Cf3;4gg:The resulting dissimilarity graph is shown in Figure 3. After applying thevertex-oloring algorithm to this graph we an obtain the sets of lasses thanan be exeuted onurrently. Verties with the same olor in the graph arenot diretly onneted. Therefore, sets of dissimilar equivalene lasses an beobtained by grouping together all lasses with the same olor, that is:n fCf1g; Cf2g; Cf4g; Cf4gg; fCf1;2g; Cf3;4gg; fCf1;3g; Cf2;4gg; fCf1;4g; Cf3;2gg o :We an shedule a parallel exeution of the redution loop following an in-spetor/exeutor sheme. An inspetor builds the aÆnity equivalene lasses,the orresponding dissimilarity graph and olor it. After the inspetion stage,omputations are sheduled by the exeutor as shown in Figure 4. Iterationsin equivalene lasses with the same olor are exeuted in parallel, while a syn-hronization point is plaed between exeution of sets of lasses with di�erentolors. 8
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Fig. 5. Computation of dissimilarity graph oloring for a loop with two indiretions3.3 Compiler implementationAlthough the general and theoretial approah desribed in the previous se-tion ould be used in parallelizing redution loops, however some serious dif-�ulties arise in pratie. To maximize the available parallelism the minimumnumber of olors in the dissimilarity graph has to be found. This minimumnumber of olors is alled the vertex-hromati index of the graph, and it isknown that a general algorithm to ompute it is NP-hard. Nevertheless somesimpli�ations an provide a non-optimal oloring with a polynomial omplex-ity. In addition, to redue the number of olors ertain restritions would bedesirable, like maximizing the size of the equivalene lasses with the sameolor, or onsidering onditions for workload balane. Suh operations, how-ever, would inrease signi�antly the overhead of the inspetion stage. Anaddition diÆulty is the fat that the number of possible non-empty aÆnitylasses grows rapidly with the number of indiretions in the redution loop.For example in Figure 5 it is shown the results for the dissimilarity grapholor omputation when two indiretions are onsidered. A greedy oloringalgorithm [9℄ has been applied, using di�erent initial vertex orders. An im-portant fat is that a optimum number of olors is obtained if the number ofthreads is a power of two. For these ases the number of olors is equal tothe number of threads. As it is seen in Figure 5 the oloring time follows aomplexity O(nThreads4), being nThreads the number of threads.In order to make pratial the implementation of the method in a ompiler, theinspetion phase must be lightened. This fat an be ahieved by simplifying9



2 indi-retions 3 indi-retions 4 indi-retionsPrivatization 4.5 1.9 2.44threads Loal{Write 10.6 6.4 1.9DWA{LIP 11.5 7.2 5.0Privatization 7.8 2.0 2.58threads Loal{Write 11.3 11.8 4.9DWA{LIP 12.5 12.6 7.7Table 1Speedups for the EULER ode using privatization, Loal{Write and DWA{LIPthe equivalene lass building proess.We have developed an approah alled Data Write AÆnity with Loop IndexPrefething (DWA{LIP) that is based both on a blok data distribution fun-tion and on a restrited de�nition of the aÆnity relation. Instead of using ageneri subset of threads, Q, to haraterize an aÆnity equivalene lass, CQ,DWA{LIP uses a pair of parameters (Bmin;�B), being Bmin = min(Q) and�B = max(Q) � min(Q). The dissimilarity test with the new aÆnity rela-tion is simpler sine two iterations will be write dissimilar when their pairs(Bmin;�B) do not orrespond to overlapped areas of the redution array.This simpli�ation in the de�nition of the aÆnity relation has a negative ef-fet beause there are pairs of write dissimilar iterations that no longer arereognize as suh with the new de�nition. This redues the deteted paral-lelism to be exploited in the exeution phase. Nevertheless the new simpli�edaÆnity relation allows the inspetor to be lighter and makes possible an ef-�ient shedule of the exeution of dissimilar lasses during the exeutionphase [10,11℄.In Figure 1 experimental results for di�erent methods are shown (see relatedwork). A ode that implements Euler di�erential equations has been used. Itontains some redution loops with 2, 3 and 4 indiretions, arrying out mag-nitude omputations over edges, faes and tetrahedra, respetively. The inputdata orrespond to a mesh desription of 800Knodes and onnetivity 18. Wehave tested a privatization-based method, in partiular Array Expansion [15℄,and two aÆnity-based methods, Loal{Write and DWA{LIP. Sine input dataexhibit a low inter{iteration loality the privatization-based method has a loweÆieny in ontrast to aÆnity-based methods. When the number of indire-tions grows the intra{iteration loality is poorer and thus the performane ofall methods dereases. 10



3.4 Related workOne of the most popular methods to parallelize redution loops is based onthe privatization of the redution arrays [1℄. This way, iterations beome dataindependent (no write onits) allowing a free sheduling of iterations in thethreads. Although several versions and optimizations of these methods wereproposed [15℄, privatization-based tehniques have important drawbaks, likea large extra memory requirement (redution arrays must be repliated on allthreads) and no exploitation of data loality.Instead of distributing loop iterations, another group of tehniques uses dis-tribution of the redutions arrays. This approah avoids the extra memoryoverhead disussed previously, and make possible to take data loality intoonsideration. In these methods iterations are partitioned and assigned to thethreads on the basis of a previously hosen data distribution for the redutionarrays. However, some spei� tehnique must be used to solve data depen-denes due to write onits in the redution arrays [12,10,11℄.The approah alled Loal{Write [12℄ parallelize redution loops exploitingwrite loality, as with DWA{LIP. However, this method is based on apply-ing loop-splitting to those iterations belonging to aÆnity lasses CQ withCard(Q) > 1 (that is, Q has two or more threads). For these split iterationsthe omputations are repliated whih implies an e�etive loss of parallelism.4 Analysis of Dynami Programs4.1 Motivation of the shape analysisProgramming languages suh as C, C++, Fortran90, or Java are widely usedfor non-numerial (symboli) and numerial appliations. All these languagesallow the use of omplex data strutures usually based on pointers and dy-nami memory alloation. The use of omplex data strutures is very helpfulin order to speedup ode development and, besides this, it also may lead toreduing the program exeution time. However, ompilers are not able to su-essfully optimize odes based on these omplex data strutures for urrentomputers or multiomputers. This is due to urrent ompilers are not ableto apture, from the ode text, the neessary information to exploit loality,automatially parallelize the ode, or arry out other important optimizationsin pointer-based odes.With this motivation, the goal of our researh line is to propose and implement11



new tehniques that an be inluded in ompilers to allow for the automatioptimization of real odes based on dynami data strutures. As a �rst step,we have seleted the shape analysis subproblem, whih aims at estimating atompile time the shape the data will take at run time. Given this information,subsequent analysis (not implemented yet) would fous on partiular opti-mizations, for example, to exploit the memory hierarhy or to detet whetheror not ertain setions of the ode an be parallelized beause they aess in-dependent data regions. Therefore, this work is part of the �rst step (programstruture analysis) of our parallelization methodology.There are other open researh lines dealing with the analysis of odes in thepresene of pointers, suh as alias analysis or points-to analysis. Basially,these analysis are designed to determine the superset of loations to whih apointer must or may point (points-to sets) [7℄. These kinds of pointer anal-ysis provide enough information to allow for some salar optimizations, suhas Common Subexpression Elimination, Loop Invariant Removal, or LoationInvariant Removal [8℄. However, the information provided by the points-tosets is not aurate enough to enable more ambitious optimizations suh asloop-level automati parallelization, automati data distribution, and loalityexploiting. Currently, the majority of researh groups rely on manual annota-tions when dealing with suh omplex ode optimizations in the presene ofpointers, due to points-to analysis is not suÆient. For instane, Chilimbi etal. ask the programmer to annotate the ode to exploit ahe loality [4℄ or aprevious exeution pro�le is needed in order to exploit ahe prefething [3℄.In the area of distributed memory loality exploiting and ommuniation op-timization, Zhu and Hendren [22℄ also rely on ode annotations with speialompiler diretives. Similarly, Rogers et al. [18℄ propose a thread-level paral-lelism in odes annotated with diretives suh as futureall and touh.However, some groups are trying to automatially extrat more informationfrom the ode text to optimize odes based on pointers. For example, Ghiya [8℄have implemented the MCAT ompiler to put pointer analysis to work. Basi-ally, this ompiler uses points-to analysis to deal with stak-direted pointersand onnetion analysis and shape analysis to deal with heap-direted point-ers. This analysis is used for exploiting two parallelism levels in odes basedon reursive data strutures whih do not hange their shape while they aretraversed: at the funtion level when routines traverse disjoint sub-tree stru-tures; and at the loop level in two ases; single liked list traversing and arrayof pointers to disjoint strutures traversing. However, their shape analysis istoo simple and onservative leading to a serious lak of parallelism exploita-tion. This is mainly due to it does not keep information about the topologialstruture of the links between heap loations.Thus, we have to emphasize that our �nal goal is to allow for the automati op-timization of odes based on reursive data strutures, but it is lear that, �rst12



of all, better shape analysis tehniques have to be proposed. That is, new ap-proahes to automatially apture the essential harateristis and propertiesof heap-alloated data strutures are essential. With this in mind, our pro-posal is based on approximating all the possible memory on�gurations thatan arise after the exeution of a statement by a set of graphs: the ReduedSet of Referene Shape Graphs (RSRSG). With our framework we an ahieveaurate results in a reasonable analysis time and expending a reasonableammount of memory. Besides this, we over situations that were previouslyunsolved, suh as detetion of omplex strutures (arrays of pointers, lists oftrees, lists of lists, et.) and struture permutation, as we will see in the nextsetions.4.2 Method overviewBasially, our method is based on approximating by graphs all possible mem-ory on�gurations that an appear after the exeution of a statement in theode. We all a olletion of dynami strutures amemory on�guration. Thesestrutures omprise several memory hunks, that we all memory loations,whih are linked by referenes. Inside these memory loations there is roomfor data and for pointers to other memory loations. These pointers are alledseletors.Note that due to the ontrol ow of the program, a statement ould be reahedby following several paths in the ontrol ow. Eah \ontrol path" has an as-soiated memory on�guration whih is modi�ed by eah statement in thepath. Therefore, a single statement in the ode modi�es all the memory on-�gurations assoiated with all the ontrol paths reahing this statement. Eahmemory on�guration is approximated by a graph we all Referene ShapeGraph (RSG). So, taking all this into aount, we onlude that eah state-ment in the ode will have a set of RSGs assoiated with it.4.2.1 RSGs and node propertiesThe RSGs are graphs in whih nodes represent memory loations whih havesimilar referene patterns. To determine whether or not two memory loationsshould be represented by a single node, eah one is annotated with a setof properties. Now, if several memory loations share the same properties,then all of them will be represented by the same node. This way, a possiblyunlimited memory on�guration an be represented by a limited size RSG,beause the number of di�erent nodes is limited by the number of propertiesof eah node. These properties are related to the \referene pattern" usedto aess the memory loations represented by the node. Hene the name13



Referene Shape Graph. These properties are briey desribed here, but amore detailed desription an be found in [6℄:1. Type: This property states the data type of the memory loations repre-sented by a node.2. Struture: This information avoids the summarization into the same nodeof memory loations belonging to non-onneted data strutures (i.e. bothdata strutures do not share any element).3. Simple Paths (SPATH): This property avoids the summarization ofmemory loations near pointer variables. Sine data strutures are aessedand modify via pointer variables, by keeping a preise desription of the mem-ory loation near the pointer variables the ompiler will arry out a moreaurate shape analysis.4. Referene Patterns: For eah node, this property is represented by twosets: SELINset ontains the seletors whih referene the node from othernodes and SELOUTset ontains the seletors whih point from this node toothers. For example, in a doubly linked list, a node representing the last itemof the list has SELINset=fnextg and SELOUTset=fprevg, beause next is an\input" seletor reahing the node and prev is an \output" seletor leavingthe node. Only nodes with similar referene patterns an be summarized intoa single one.5. Share Information: This property an tell whether at least one of the lo-ations represented by a node is referened more than one from other memoryloations. We use two kinds of attributes for eah node: SHARED(n) statesif any of the loations represented by the node n an be referened by otherloations by di�erent seletors, and SHSEL(n, sel) points out if any of theloations represented by n an be referened more than one by following thesame seletor sel from other loations.6. Touh Information: This property is taken into aount only inside loopbodies to avoid the summarization of already visited loations with non-visitedones.7. Cyle Links: This information is introdued to inrease the auray of thedata struture representation by avoiding unneessary edges that an appearduring the RSG updating proess. The yle links of a node, n, are de�nedas the set of pairs of referenes < seli; selj > suh that when starting at noden and onseutively following seletors seli and selj, the node n is reahedagain.As we have said, all possible memory on�gurations whih may arise after theexeution of a statement are approximated by a set of RSGs. We all this set14



Redued Set of Referene Shape Graphs (RSRSG), sine not all the di�erentRSGs arising in eah statement will be kept. On the ontrary, several RSGsrelated to di�erent memory on�gurations will be fused when they representmemory loations with similar referene patterns. There are also several prop-erties related to the RSGs, and two RSGs should share these properties tobe joined. Therefore, besides the number of nodes in an RSG, the numberof di�erent RSGs assoiated with a statement are limited too. This union ofRSGs greatly redues the number of RSGs and leads to a pratiable analysis.4.2.2 Generating the RSRSGs: the symboli exeutionTo move from the \memory domain" to the \graph domain", the alulationof the RSRSGs assoiated with a statement is arried out by the symboliexeution of the program over the graphs. In this way, eah program state-ment transforms the graphs to reet the hanges in memory on�gurationsderived from statement exeution. The abstrat semanti of eah statementstates how the analysis of this statement must transform the graphs.Let us illustrate all this with an example. In Figure 6 we an see a simple odewith seven pointer statements. Our analyzer symbolially exeutes eah state-ment to build the RSRSG assoiated with them. Atually, after the exeutionof the third statement we obtain an RSRSG with a single RSG whih repre-sents three di�erent memory loations by three nodes; all of them of the sametype, with the same nxt seletor, but pointed to by di�erent pointer variables(pvars). Now, this RSRSG is modi�ed in three di�erent ways beause thereare three di�erent paths in the ontrol ow graph, eah one with a di�erentpointer statement. All these paths join in statement 7, and after the exeutionof this statement we obtain an RSRSG with two RSGs. This is beause theRSGs oming from statements 5 and 6 are ompatible and an be summarizedinto a single one.The whole symboli exeution proess an be seen by looking at Fig. 7. Foreah statement in the ode we have an input RSRSGi and the orrespond-ing output RSRSGo representing the memory on�gurations after statementexeution. During the symboli exeution of the statement all the rsgij be-longing to RSRSGi are going to be updated. The �rst step omprises graphdivision to better fous on the several memory on�gurations represented bythe RSG. Pruning removes redundant or nonexistent nodes or links that mayappear after the division operation. Then the abstrat interpretation of thestatement takes plae and usually the omplexity of the RSGs grows. In orderto ounter this e�et, the analysis arries out a ompression operation. In thisphase eah RSG is simpli�ed by the summarization of ompatible nodes, toobtain the rsg�ijk graphs. Furthermore, some of the rsg�ijk an be fused into asingle rsgok if they represent similar memory on�gurations. This operation15



if (cond1)

if (cond2)

3. z = malloc();
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Fig. 7. Shemati desription of the symboli exeution of a statement.greatly redues the number of RSGs in the resulting RSRSG.The abstrat interpretation is arried out iteratively for eah statement un-til we reah a �xed point in whih the resulting set of rsgoj assoiated withthe statement does not hange any more. This way, for eah statement thatmodi�es dynami strutures, we have to de�ne the abstrat semantis whihdesribe how these statements modify the rsgij. We onsider six simple in-strutions that deal with pointers: x = NULL, x = mallo, x = y, x! sel =NULL, x ! sel = y, and x = y ! sel. More omplex pointer instrutionsan be built upon these simple ones and temporal variables. Due to spaeonstraints we annot formally desribe the abstrat semantis of eah one ofthese statements. However, we intuitively present the modi�ations involvedin an RSG after the statement symboli exeution:� The x = NULL statement leads to elimination of the referenes from thepointer variable (pvar) x to any memory loation. Therefore we have toremove these referenes from the RSG.� The x = mallo statement simply initializes new memory loations repre-sented in the RSG by a node referened by x.16



� The x = y modi�es the RSG suh that all memory loations pointed to byy are now also pointed to by x. Before this statement and the previous one,we always automatially insert the x = NULL statement to ensure thatbefore assigning a new value to x, x is not pointing to any plae.� The statement x ! sel = NULL is the most omplex one, beause itbreak links between nodes. This leads to many hanges in the properties ofthe nodes. In order to obtain an aurate output RSG before removing thex ! sel link we divide the RSG into several rsgj. This division is arriedout by taking into aount that eah rsgj should have a single destination(node) for the x ! sel link. In this way we an better fous on the severalmemory on�gurations represented by the RSG regarding this x! sel link.Eah rsgj is pruned after the division to remove redundant or inexistentnodes or links whih have been onservatively inherited from the parentRSG. We also inrease the auray of the method by materializing fromthe node the memory loation whih is the real target of the x ! sel link.After this, this link an be safely removed.All these proesses an be better illustrated by a simple example. InFig. 8 (a) we see an RSG representing a doubly linked list of two or moreelements. Atually, n1 represents the �rst element in the list, n2 the middleelements, and n3 the last one. Let us suppose that this RSGs is an inputrsgi to the x! nxt = NULL statement where x is pointing to the memoryloation represented by node n1. As we said, the �rst step in the abstratinterpretation of this statement is the division operation. Figure 8 (b) showsthe resulting rsg01 and rsg02 after the division. Note that in eah one of thesegraphs there is a single destination for x ! nxt. In Fig. 8 () we show theresult of the pruning proess in whih the ompiler removes nodes and linkswhih do not ful�ll the graphs' properties. In fat, rsg001 represents a list ofthree or more elements and rsg002 is learly a list of just two items. Now,before removing the x! nxt link in both graphs, the ompiler has to fousmore on one of the RSGs. More preisely, in rsg001, we have to materializefrom node n2 the node n4 whih represents the single list item referenedby x ! nxt, as we an see in Fig. 8 (d). Finally, we see in Fig. 8 (e) howwe safely remove the link x ! nxt in both graphs to obtain the �nal rsg1and rsg2.� The x ! sel = y statement implies the exeution of the same proedurejust desribed for the x! sel = NULL statement (RSG division, pruning,and node materialization) followed by the generation of a link by seletorsel from the nodes pointed to by x to the nodes pointed to by y.� Finally, the statement x = y ! sel leads to the inlusion of a new referenefrom the x pvar to all the memory loations pointed to by y ! sel. Now,the RSG division, pruning, and node materialization are arried out for they ! sel link. In this way, we will point with x to the exat memory loationspointed to by y ! sel and to no other.
17
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typedef strut str f...strut str1 *sel;strut str2 *sel1[256℄;strut str **sel2;gx=(str *)mallo(sizeof(strut str));x->sel2=(str **)mallo(n*sizeof(str*));
256 n

. . . . . .
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sel sel1 sel2
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str2

str

str

Fig. 9. Example of data struture ontaining arrays of pointersanalyzer. However, sel1 and sel2 represent arrays of seletors. The di�erenebetween sel1 and sel2 is that we know the size of the sel1 array at ompiletime, but the size of sel2 is de�ned at run time. In any ase, we now want todeal with both types of arrays of seletors, whih now have to be modi�ed bystatements like \x!sel1[i℄=..." or \x!sel2[i℄=...".Sine sel1 and sel2 are not single seletors, we have alled them multiseletors.In order to take into aount multiseletors in our method we have introduedin our analyzer the following proedure: sine our method is already able todeal with single seletors our goal is now to inlude a previous step in thesymboli exeution proess to fous on one of the seletors inluded in a par-tiular multiseletor. In other words, a statement like \x!sel1[i℄=..." is goingto update a single seletor (a partiular seletor inluded in the multisele-tor sel1), but before applying the symboli exeution, our analizer start byidentifying the partiular sel1[i℄ whih is going to be updated, to subsequentlyproeed with the abstrat interpretation.4.3 Experimental resultsOur RSRSG analyzer has been written in C and an be fed with an inputode to generate the RSRSG assoiated with eah statement of the ode. Theodes have to be preproessed in a �rst step to just keep the statements dealingwith pointers. We have implemented the analyzer to arry out a progressiveanalysis whih starts with fewer onstraints to summarize nodes, but, whenneessary, these onstraints are inreased to reah a better approximation ofthe data struture used in the ode. More preisely, the analysis omprisesthree levels: L1, L2, and L3, from less to more omplexity as we explain in [6℄.With this tool we have analyzed several odes: an arti�ial ode that we all\working example", the sparse Matrix by vetor multipliation, the sparseMatrix by Matrix multipliation, the Sparse LU fatorization, and the Barnes-Hut ode. These �ve odes have two implementations, one in whih arrays ofpointers are implemented by doubly linked lists and the other in whih arrays19



Working Ex. S.Mat-Ve S.Mat-Mat S.LU Barnes-HutLevel L1 / L2 / L3 L1 / L2 / L3 L1 / L2 / L3 L1 / L2 / L3 L1 / L2 / L3Codes without arrays of pointersTime 0'03"/0'05"/0'06" 0'01"/0'02"/0'03" 0'20"/0'38"/1'00" 7'50"/-/- 5'56"/0'34"/2'06"MBytes 2.11/2.78/3.02 1.37/1.85/2.17 8.13/11.45/12.68 99.46/-/- 37.82/8.82/8.94Lines 213 104 156 164 216Codes inluding arrays of pointersTime 0'05"/0'07"/0'08" 0'01"/0'01"/0'01" 0'04"/0'06"/0'06" 1'08"/1'12"/- 23'08/25'27"/0'21"MBytes 1.77/2.29/2.50 0.92/1.03/1.2 1.19/1.31/1.49 3.96/4.18/- 40.14/42.86/3.06Lines 144 87 103 143 177Table 2Time and spae required to proess several odes with di�erent number of ode linesof pointers are keep.The �rst four odes were suessfully analyzed in the �rst level of the analyzer,L1. However, for the Barnes-Hut program the highest auray of the RSRSGswas obtained in the last level, L3. All these odes where proessed by ouranalyzer in a Pentium 4 1.6 GHz with 128 MB main memory. The time andmemory required by the analyzer are summarized in Table 2. In this table wealso show the number of ode lines after the preproessing of the original Codes. The partiular aspets of these odes are desribed next.(1) Working example's RSRSG. This ode generates, traverses, and mod-i�es the data struture presented in Figure 10 (a). A ompat represen-tation of the resulting RSRSG for the last statement of the ode anbe seen in Figure 10 (b). The data struture is a doubly linked list ofpointers to trees (header list). Besides this, the leaves of the trees havepointers to doubly linked lists. All the trees pointed to by the headerlist are independent and do not share any element. In the same way, thelists pointed to by the leaves of the same tree or di�erent trees are alsoindependent.This data struture is built by a C ode that also traverses the ele-ments of the header list with two pointers and eventually an permutetwo trees. From the properties assoiated with the nodes in the RSRSGrepresented in Figure 10 (b) we an infer the atual properties of the realdata struture: the trees and lists do not share elements and thereforethey an be traversed in parallel. More preisely: (i) The analyzer su-essfully detets the doubly linked list whih is ayli by seletors nxt orprv and whose elements point to binary trees; (ii) Two di�erent items ofthe header list annot point to the same tree; (iii) Di�erent trees do notshare items; (iv) The same happens for the doubly linked list pointed toby the tree leaves: all the lists are independent, there are no two leavespointing to the same list, and these lists are ayli by seletors nxt orprv. 20
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RSRSG TVLA (se.)Code Lines Time Memory Single Multiplereate 9 Inluded in all 0.51 0.40dellall 7 0.07s 133KB 0.42 0.44delete 14 0.25s 179KB 2.73 5.18fumble 10 0.09s 146KB 1.40 1.47getlast+rot 11 0.14s 163KB .78+.62 1.47+.88insert 17 0.16s 197KB 2.86 2.77merge 26 1.15s 387KB 8.25 12.01reverse 10 0.15s 159KB 1.21 1.46swap 8 0.09s 152KB 0.7 0.61bublesort 32 2.52s 389KB 186.60 out of sp.Table 3Comparing RSRSG with TVLAin [21℄ they keep all the graphs (multiple struture approah) or just one(single struture approah). We think that this may explain why their Three-Valued-Logi Analyzer (TVLA) runs out of memory for simple odes suh asthe singly linked list bubble sort using the multiple struture approah [14℄.Besides, they reognize that their TVLA engine is only useful to analyze smallprograms and report experimental results for small, singly linked list opera-tions (insert, reverse, sort, et.), as we an see in Table 3. However, they havenot published experimental results suessfully dealing with real odes basedon the ombination of omplex data strutures suh as doubly linked listspointing to trees or to other lists, et. In this Table 3 we also ompare theirJava-written TVLA running on a Pentium II-400MHz with our C-written an-alyzer on a Pentium III-500MHz.5 ConlusionsThis paper addresses the problem of automati parallelization of irregularand dynami appliations. From our work on this problem we may derive twomain onlusions. First, a omplete and powerful data analysis is fundamental.This analysis must inlude, at least, two important tasks: Analysis of the dataorganization, and analysis of the memory referenes. In irregular odes, dataorganization analysis is not diÆult as typially data is arranged as arrays.However, memory referenes are dynami and data dependant. In dynamiodes, however, both analysis are very omplex. In this line, we have developedshape analysis tehniques to apture properties of omplex pointer-based datastrutures.The seond onlusion is that we onsider a promising way to obtain an e�e-tive parallelization to design ad-ho tehniques for spei� omplex omputa-23



tional strutures. For instane, we disussed an eÆient solution for irregularredutions. In a similar way, one the data organization of a pointer-based odehas been identi�ed, it is possible to develop eÆient automati tehniques totraverse and update these data strutures (trees, linked-lists, ...) in parallel.Referenes[1℄ W. Blume, R. Doallo, R. Eigenmann, et al. Parallel programming with Polaris.IEEE Computer, 29(12):78{82, 1996.[2℄ W. Blume and R. Eigenmann. The range test: A dependene test for symboli,non-linear expressions. ACM Int'l Conf. on Superomputing (ICS'94), pp. 528{537, 1994.[3℄ T.M. Chilimbi. EÆient representations and abstrations for quantifying andexploiting data referene loality. ACM SIGPLAN Conf. on ProgrammingLanguages Design and Implementation (PLDI'01), pp. 191{202, 2001.[4℄ T.M. Chilimbi, M.D. Hill and J.R. Larus. Cahe-onsious struture layout.ACM SIGPLAN Conf. on Programming Languages Design and Implementation(PLDI'99), pp. 1{12, 1999.[5℄ F. Corbera, R. Asenjo, and E.L. Zapata. New shape analysis for automatiparallelization of C odes. ACM Int'l Conf. on Superomputing (ICS'99), pp.220{227, 1999.[6℄ F. Corbera, R. Asenjo, and E.L. Zapata. Aurate shape analysis for reursivedata strutures. Int'l. Workshop on Languages and Compilers for ParallelComputing (LCPC'2000), pp. 1{15, 2000.[7℄ M. Das. Uni�ation-based pointer analysis with diretional assignments. ACMSIGPLAN Noties, 35(5):35{46, 2000.[8℄ R. Ghiya. Putting Pointer Analysis to Work. PhD thesis, Shool of Comp. Si.,MGill Univ., Montreal, 1998.[9℄ A. Gibbons Algorithmi Graph Theory. Cambridge University Press, 1999.[10℄ E. Guti�errez, O. Plata and E.L. Zapata. A ompiler method for the parallelexeution of irregular redutions in salable shared memory multiproessors.ACM Int'l. Conf. on Superomputing (ICS'2000), pp. 78{87, 2000.[11℄ E. Guti�errez, O. Plata and E.L. Zapata. Improving Parallel Irregular RedutionsUsing Partial Array Expansion. IEEE/ACM Int'l. Conf. for High PerformaneComputing and Communiations (SC'2001), 2001.[12℄ H. Han and C-W. Tseng. EÆient ompiler and run-time support for parallelirregular redutions. Parallel Computing, 2000. 26(13{14):1861{1887.24
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