
A new Strategy for Shape Analysis
based on Coexistent Links Sets ∗

A. Tineoa, F. Corberaa, A. Navarroa, R. Asenjoa, and E.L. Zapataa

aDpt. of Computer Architecture, University of Málaga,
Complejo Tecnológico, Campus de Teatinos, E-29071. Málaga, Spain.
{tineo,corbera,angeles,asenjo,ezapata}@ac.uma.es

The analysis of dynamic heap-based data structures is difficult due to the alias problem.
Shape analysis tries to gather information conservatively about these structures at compile
time. In the context of parallelizing compilers, information about how memory locations are
arranged in the heap at runtime is essential for data dependence analysis. With proper shape
information we can reveal parallelism for heap-based structures, which are typically ignored
by compilers. Existing shape analysis techniques face a dilemma: either they are too costly
to be useful for real compilers or they are too imprecise to be useful for real programs. In
this work, we present a new strategy for shape analysis based on a compact representation
for the shape of data structures. This is done by using Coexistent Links Sets for nodes in
a graph. The technique is simple to implement and very precise at the core level. Further
precision-vs-cost balance can be tuned with the use of extensible properties.

1. Introduction

Static knowledge of memory references in a program is a must for compilers, if they are to
provide optimizations related to parallelism in an automated basis. Such knowledge is not easy
to gather due to the existence of aliases. Arrays, pointers and pointer-based dynamic data
structures introduce aliases in programs. Parallelizing compilers have obtained a reasonable
degree of success when dealing with array aliases and stack-directed pointers. However, heap-
directed pointers and the structures they dereference are a whole different ground that still
needs significant work.

The problem of characterizing dynamically allocated memory locations in a program can be
approached in several ways. We believe that, in order to provide accurate information for real-
life programs, some sort of abstraction in the form of a bounded graph must be performed.
The kind of analysis that represents the heap as a storage shape graph is known as shape
analysis. Its main goal is to capture the shape of memory configurations that are accessible
through heap-directed pointers in a program.

Information about the shape of dynamic data structures is useful for parallelizing com-
piler transformations over the input program. Maybe the most obvious application is data
dependence detection, needed for instruction scheduling, data-cache optimization, loop trans-
formation and automatic vectorization and parallelization. Another interesting application
comes from the use of the shape information for debugging analysis of the program. The
shape abstraction can provide information about incorrect pointer usage that can lead to
mistakes difficult to track.

We present in this work a new strategy for shape analysis based on what we call Coexistent
Links Sets (CLSs). CLSs codify possibilities of connectivity between memory locations in a

∗This work was supported in part by the Ministry of Education of Spain under contract TIC2003-06623.

neat and compact way. This is done by using graphs that represent the possible states of the
memory configuration at a program point. Information is kept as a combination of possible
reaching and leaving links over the memory locations. CLSs provide a rich description of the
data structure with little storage requirements.

The goal of this paper is to present a new technique to achieve a shape abstraction of dynamic
data structures. We think that it will provide more precision than existing techniques while
at the same time keeping the storage and computation cost at a reasonable level. CLSs are
the key instruments for the development of this technique. The remainder of this paper is
organized as follows: Section 2 introduces the basics for our shape analysis technique; Section
3 describes CLSs in greater detail; Section 4 explains our criteria for summarization in graphs;
Section 5 describes how the shape analyzer works by example; Section 6 comments some
related work; and finally Section 7 concludes with the main contributions and ideas for future
work.

2. Shape analysis basics

Our approach to shape analysis is based on graphs. A program dealing with dynamic data
structures performs allocation of memory locations and establishes links between them. We
represent memory locations in the program as nodes in graphs. Nodes can be referenced by
pointer variables through pointer links (PLs). Additionally, selector links (SLs) are used to
link nodes with other nodes.

The size of dynamic data structures is undecidable at compile time. Therefore, we must
provide some mechanism to sum up the possible memory configurations in a finite, bounded
shape graph. To achieve this, we can summon nodes that can actually represent several memory
locations that are similar. We call this kind of nodes, summary nodes and the process of
merging similar nodes, summarization. Very often, however, some of those locations are
accessed later in the program and become so-called singular locations, which are somewhat
different to other locations in the structure. It would be desirable to provide a mechanism to
invert the summarization process, i.e., we would like to be able to focus over a singular node
extracted out of a summary node. This can be achieved with the materialization operation.
Depending on the case, we will be able to recover the information as we had it or instead, a
conservative and less precise node will be materialized.

In our approach, there is a single graph associated to every statement in the program, which
represents the possible memory configuration states at that point in the program. The shape
analyzer works as an iterative data-flow analysis, by symbolically executing the statements in
the source program, a process called abstract interpretation. For example, pointer statements
receive an input graph (SGin) and modify it to produce an output graph (SGout). The rules
for such transformation are determined by the statement abstract semantics.

Our technique only cares about statements that involve operations through pointers (pointer
statements) and control flow decisions (loop and branch statements). Fig. 1 sketches out how
the analysis operates in the presence of these kind of statements in a general, descriptive way.

In order to simplify the analysis, pointer statements are normalized to simple pointer state-
ments, i.e., those that contain only simple access paths, or 1-level indirection. The simple
pointer statements are (in C syntax):

ptr=NULL; ptr=malloc(...); ptr1=ptr2;
ptr1->sel=ptr2; ptr1=ptr2->sel; ptr->sel=NULL;

SG in

SG branch

SG 2

SG n SG m

SG end_branch =SG n U SG m

SG end_branch

SG branch=SG in

Ptr. Stmt. n

Ptr. Stmt. 1
SG 1

...

Ptr. Stmt. m

Ptr. Stmt. 2

...

SG branch

Branch statement

End of branch
 statement

SG loop =SG in

SG in

SG loop

SG loop U SG n

 = SG loop ?

Ptr. Stmt. 2

Ptr. Stmt. 1

Y
N

Ptr. Stmt. n

...

Ptr. Stmt. n+1

Loop statement

Loop body

SG loop

SG n

SG 1

SG 2

Abstract semantics of pointer
statement x applied to input shape

graph to produce output shape graph
(may include materialization)

SG ’
out

Normalization process
(summarization is applied

where necessary)

SGout =SG x

Pointer Statement

SG in =SG x−1

(a) (b) (c)

Figure 1. Analysis operation in presence of (a) pointer statements, (b) loop statements and
(c) branch statements.

At loop bodies the analysis must iterate over the statements of the loop until the graphs
for each statement change no more, i.e., until the analysis achieves a fixed-point. This way we
ensure that the graph for each statement holds all possible memory configurations at that point
of the program at runtime. When a fixed-point is reached for all statements in the program,
the analysis terminates. Termination of the algorithm is assured by the summarization process
that automatically occurs whenever nodes are similar. The graphs cannot grow out of control
and eventually the graphs will be bounded and stationary.

At join points in the CFG, such as loops and branching statements, incompatible memory
configurations occur. An operation to join graphs, (graph union) while conservatively keeping
all possibilities is needed. For instance, fig. 2(b) shows the two possible memory configurations
(MC1 and MC2) at the end of the program in fig. 2(a). In the next section we will see how these
two MCs can be represented in one graph.

anchor=malloc();
p=anchor;
q=malloc();
p->next=q;
p=q;
q=malloc();
if(cond){
p->down=q;

}else{
p->next=q;

}

Program

anchor

next

p q

next

MC2

anchor

next

down

p

q

MC1

(a) (b.1) (b.2)

Figure 2. There are two memory configurations for program (a), namely (b.1) and (b.2).

3. Coexistent Links Set (CLS)

Our main contribution to shape analysis in this paper is the introduction of Coexistent Links
Sets (CLSs). To better help us describe what a CLS is, let us consider an example. Fig. 3
shows the graph that would represent the memory configurations shown in fig. 2.

Let us assume at this point that we need three nodes (n1, n2 and n3) for the graph that
captures MC1 and MC2 from fig. 2. In Section 4 we describe in detail why this is so. We could
expose a hierarchical view of the graph: the base elements are nodes, pointers and selectors;
pointers and nodes can be combined to create pointer links (PLs); nodes and selectors can be
combined to create selector links (SLs); finally pointer links and selector links can be combined
to create coexistent links sets (CLSs).

CLS1(n1)={PL1,SL1(o)}

CLS1(n2)={PL2,SL1(i),SL2(o)}

CLS2(n2)={PL2,SL1(i),SL3(o)}

CLS1(n3)={PL3,SL2(i)}

CLS2(n3)={PL3,SL3(i)}

PL1=<archor,n1>

PL2=<p,n2>

PL3=<q,n3>

SL1=<n1,next,n2>

SL2=<n2,next,n3>

SL3=<n2,down,n3>

n2
next next

down

n1 n3

p
anchor

q

PL1

PL2
PL3

SL1 SL2

SL3

Shape Graph (SG)

Figure 3. Shape graph for example of fig. 2. CLSs describe the shape abstraction.

CLSs allow us to express possibilities of connectivity between nodes, i.e., they describe the
links that may reach and leave a node in the memory configuration abstraction. In the example
of fig. 3, CLS1(n1) is telling us that n1 supports PL1=<anchor,n1> and SL1=<n1,next,n2>.
No other combination of links is possible for this node: n1 can only be reached through the
pointer anchor and connects undoubtedly to n2 through its next selector. For n2, there are
two possibilities. In any of them, PL2=<p,n2> reaches the node (i.e., p points to n2 in any
case) and the node is reached from n1 through selector next (SL1). However, n2 can follow
to n3 through the next selector or through the down selector, yielding two possibilities of
connectivity for this node: CLS1(n2) and CLS2(n2). CLSs for n3 work in a similar way: n3

always supports PL3=<q,n3> and can be reached from n2 by following either SL2 or SL3.
SLs are stand-alone entities in the graph. They represent links between nodes through

selectors. However, when used in the context of a CLS, they are complemented with attributes
to correctly describe the memory configurations occurring in the program. In particular,
we consider two different attributes for SLs in CLSs: the one-way attribute and the share
attribute.

The one-way attribute gives information about the origin and destination of a SL for the
current node in a given CLS. It takes one of three values: 1) incoming (i), when the SL is
a reaching link for the current node; 2) outgoing (o), when the SL is a leaving link for the
current node; 3) and cyclic (c), when the SL is at the same time a reaching and leaving link,
so it is a cyclic link, like those of self-referenced memory locations.

The share attribute indicates when a node is reachable more than once through the same
SL for a given CLS. It can take one of two values: true or false, i.e., a SL is either shared or
not for a node in a given CLS. In our notation, a SL is not shared unless labelled with (s).

The one-way attribute is really only necessary for self-SLs (selector links of the form
<ni,sel,ni>). For non-self-SLs, the origin and destination are implied in the CLSs that
make use of such SLs. However, from a formulation point of view, it is simpler to considerate
this attribute for all SLs used in CLSs. The share attribute is necessary in every case to allow
for better materialization.

4. Summarization criteria

In the previous example we asked the reader to assume that three nodes were needed for the
shape abstraction representation. We now explain the summarization criteria for our shape
analysis technique. This criteria determines to a great extent the behavior and precision of
the analysis. First, we define a basic, fixed mechanism about what nodes should be kept
separate and what nodes could be merged; second, we add configurable properties to fine-tune
summarization decisions.

The basic criterion for summarizing nodes dictates that nodes that are pointed by the same
(possibly empty) set of pointers are merged together, i.e., if P(n1)=P(n2) then n2 merges into
n1. Nodes that are pointed by pointers always remain singular nodes, i.e., they represent only

one memory location for a given memory configuration. On the contrary, nodes that are not
pointed by pointers will be merged (according to this basic criterion) into a unique summary
node, that may be representing more than one actual memory location. This basic idea allows
us to achieve precision on the entry points to the data structures, where it is more likely to
be needed. This is the criterion applied in fig. 3.

However, merging all locations that are not directly accessed by pointers in a single node
can be very imprecise as soon as the data structures are a little complex, and this is certainly
the case for real programs. Node properties can be used to prevent too much summarization
in such cases. A compatibility function must be defined for every property. If two nodes are
compatible with respect to all available properties and conform to the basic criterion (share
the same pointers), then they will be merged. Otherwise they will be kept separate. This
way there could be several summary nodes, while in the case of using only the basic criterion,
there would be just one summary node for the whole graph.

Properties are configurable, in the sense that they can be turned on and off at will, de-
pending on the requirements of the analysis. It is clear to see that keeping a lot of properties
will yield bigger graphs, with more nodes, and this will have an impact in the analysis cost.
On the other hand, properties are absolutely needed to carry precision for analysis of complex
structures.

We could define here a large set of properties that could be used with our technique but
instead we will just describe the touch property, which is a key instrument for data dependence
analysis. While CLSs on their own capture spatial or topological information, the touch prop-
erty is used to capture temporal information. During a typical structure traversal, locations
are accessed for reading or writing. From a data dependence analysis point of view, it is of key
importance to be able to discriminate, in the course of the traversal, between accessed (we say
touched) locations in a structure and locations that have not been yet accessed (untouched).
The touch property is annotated in nodes to avoid merging visited nodes with unvisited ones.
Other properties can be effortlessly added, to add information about data type, structure
connection, allocation site, etc., similarly to [2].

5. Shape analysis operations

In this section we illustrate how the shape analyzer works by example. First, we analyze a
program that creates a single-linked list. It should be noted that the purpose of this section is
not to explain in full detail how the analysis operates in each step during abstract interpretation
of the source program, but rather focus on certain key aspects that are needed to understand
the process.

In fig. 4(a) we present the program used to create the list. In fig. 4(b.1) and 4(b.2) we present
the first steps of the algorithm. Input graph is empty. Abstract interpretation of statement S1
produces the creation of node n1 and the corresponding PLs, SLs and CLSs. Notice that the
analysis can track uninitialized selectors. This is useful for code correctness checking. Upon
entering a loop for the first time (S3 in this example), input graph is preserved. Then, in
S4, a new element is created and PLs, SLs and CLSs are updated accordingly. Changes with
respect to previous graph appear in bold. Graphs for statements inside a loop are labelled
with a superscript showing the number of the symbolic iteration.

Let us now consider an interesting situation that appears later in the analysis. Upon inter-
preting S5 for the third time (third iteration), we obtain the shape graph shown in fig. 5 (a).
At this point the list can be two (n6 and n3), three (n1, n4 and n3) or four elements (n1, n2,

S1: list=malloc();
S2: p=list;
S3: while(cond) {
S4: q=malloc();
S5: p−>nxt=q;
S6: p=q;

}
S7: p−>nxt=NULL;
S8: q=NULL;
S9: p=NULL;

n1list

S1: list=malloc();
S1SG

PL1=<list,n1>

SL1=<n1,nxt,NI>

CLS1(n1)={PL1,SL1(o)}

n1list

S2SG

PL1=<list,n1>

PL2=<p,n1>

SL1=<n1,nxt,NI>

CLS1(n1)={PL1,PL2,SL1(o)}

p

(1)

(1)

(1)

(1)

S4

S3

S5

S6

SG

SG

SG

SG

PL1
SL1

PL1
SL1

PL2

NI. Not Initialized

n1list n2
p

q

SL1 SL2PL1

PL2

PL3

CLS1(n1)={PL1,PL2,SL1(o)}

CLS1(n2)={PL3,SL2(o)}

PL1=<list,n1>
PL2=<p,n1>
PL3=<q,n2>
SL1=<n1,nxt,NI>
SL2=<n2,nxt,NI>

n1list

S5: p−>nxt=q;

CLS1(n1)={PL1,PL2,SL1(o)}
CLS1(n2) ={PL3, SL1(i),SL2(o)}

n2
p

q

PL1=<list,n1>
PL2=<p,n1>
PL3=<q,n2>
SL1 =<n1,nxt,n2 >
SL2=<n2,nxt,NI>

SL1 SL2PL1

PL2

PL3=

n1list n2

p

q

SL2PL1

PL2

PL3

SL1

S6: p=q;

CLS1(n1) ={PL1,SL1(o)} drops PL2

CLS1(n2) ={PL2,PL3,SL1(i),SL2(o)}

PL1=<list,n1>

PL2 =<p,n2 >

PL3=<q,n2>

SL1=<n1,nxt,n2>

SL2=<n2,nxt,NI>

(a) (b.1) (b.2)

S4: q=malloc();

S2: p=list;

Figure 4. (a) Single-linked list creation program; (b.1) and (b.2) First steps of abstract
interpretation

n4 and n3) long. Two nodes exist for the first element of the list to account for incompatible
configurations.

After applying the abstract semantics of S6 in fig. 5(b), we find that nodes n1-n6 and n2-n4

now meet the summarization basic criterion, i.e., they are pointed by the same (possibly
empty) set of pointers (P(n1)=P(n6)={list}, P(n2)=P(n4)={∅}), so they must be merged.
For this example we do not consider properties for summarization. The process is completed
in fig. 5(c), where the shape graph has been normalized to conform to the selected rules of
summarization. The normalization process involves five steps: 1) find nodes that meet the
current summarization criteria (n1-n6 and n2-n4); 2) substitute all references of the nodes to
be merged by one of them in the lists of PLs and SLs (substitute n6 for n1 in PL7 and SL7
and substitute n4 for n2 in SL2, SL3 and SL4); 3) delete repeated PLs and SLs (eliminate PL7
that equals PL1 and SL3 that equals SL1); 4) update nodes, PLs, and SLs in the list of CLSs
accordingly (substitute n6 for n1, n4 for n2, PL7 for PL1 and SL3 for SL1) and 5) eliminate
duplicates in CLSs (CLS2(n1) that equals CLS1(n1)) and rename to avoid numbering gaps
(CLS3(n1) becomes CLS2(n1)).

S5: p−>nxt=q;

(3)
S5SG

n6list
p

PL7

PL8
SL7

SL3

n1list n2
SL2PL1 SL1

p

n4 SL4

PL2

PL1=<list,n1>

PL2=<p,n4>

PL3=<q,n3>

PL7=<list,n6>

PL8=<p,n6>

SL1=<n1,nxt,n2>

SL2=<n2,nxt,n4>

SL3=<n1,nxt,n4>

SL4 =<n4,nxt,n3 >

SL5=<n3,nxt,NI>

SL7 =<n6,nxt,n3 >

CLS1(n1)={PL1,SL1(o)}

CLS1(n2)={SL1(i),SL2(o)}

CLS1(n3) ={PL3,SL5(o), SL7(i)}

CLS2(n3)={PL3,SL4(i),SL5(o)}

CLS1(n4)={PL2,SL3(i),SL4(o)}

CLS2(n4)={PL2,SL2(i),SL4(o)}

CLS1(n6)={PL7,PL8,SL7(o)}

n3

PL3

q

SL5

S6: p=q;

(3)
S6
’SG

PL1=<list,n1>

PL2 =<p, n3 >

PL3=<q,n3>

PL7=<list,n6>

SL1=<n1,nxt,n2>

SL2=<n2,nxt,n4>

SL3=<n1,nxt,n4>

SL4=<n4,nxt,n3>

SL5=<n3,nxt,NI>

SL7=<n6,nxt,n3>

CLS1(n1)={PL1,SL1(o)}

CLS2(n1)={PL1,SL3(o)}
CLS2(n1)={PL1,SL3(o)}

CLS1(n2)={SL1(i),SL2(o)}

CLS1(n3) ={ PL2 ,PL3,SL5(o),SL7(i)}

CLS2(n3) ={ PL2,PL3,SL4(i),SL5(o)}

CLS1(n4) ={SL3(i),SL4(o)} drops PL2

CLS2(n4) ={SL2(i),SL4(o)} drops PL2

CLS1(n6) ={PL7,SL7(o)} drops PL8

n6list
PL7

SL7

SL3

n1list n2
SL2PL1 SL1

p

n4 SL4

PL2

n3

PL3

q

SL5

S6: p=q;

(3)
S6

(a)

SG

(b) (c)

SL7

n1list n2
SL4PL1 SL1

p

n3

PL2

PL1=<list,n1>

PL2=<p,n3>

PL3=<q,n3>

PL7 =<list, n1 >=PL1

SL1=<n1,nxt,n2>

=<n2,nxt,SL2 n2>

=<n1,nxt,SL3 n2 >=SL1

=<SL4 n2 ,nxt,n3>

SL5=<n3,nxt,NI>

SL7 =< n1 ,nxt,n3>

CLS1(n1)={PL1, SL1(o)}

CLS2(n1) ={PL1, SL1(o) }=CLS1(n1)

CLS3(n1) ={ PL1 ,SL7(o)} −> CLS2(n1)

CLS1(n2)={SL1(i),SL2(o)}

CLS2(n2) ={ SL1(i) ,SL4(o)}

CLS3(n2) ={SL2(i),SL4(o)}

CLS1(n3)={PL2,PL3,SL5(o),SL7(i)}

CLS2(n3)={PL2,PL3,SL4(i),SL5(o)}

PL3

q

SL5

SL2

Figure 5. Node summarization operation. (a) Input, (b) working and (c) normalized graphs

Node summarization solves the issue of bounding the graphs. Additionally, the graph union
operation is used to reconcile different graphs that reach a join point in the CFG. A typical
case is the head of a loop, where the graph coming from the last statement in the loop merges
with the graph from the previous iteration. Graph union is performed by adding all the
information of both graphs into a working graph. This graph is then normalized as described
in the summarization operation, so that redundancies are removed. The result is a graph
that conservatively captures all possibilities for the memory configurations at that point in
the analysis.

Then we need to decide wether to enter the loop again or exit it. This is determined by the
fixed-point test. If the result of the last iteration, SG

(i)
loop, contains the same information than

the previous iteration, SG
(i−1)
loop , then we have reached a fixed-point. In that case, we can leave

the loop because we have conservatively registered all possible memory configurations that
originate from it. Otherwise, we must keep iterating until the information of the graphs at
the head of the loop are equivalent. This state is ensured by the existence of summarization.
The graphs cannot grow endlessly nor can we enter a deadlock situation.

n1x

n4

PL1

SL1

n2

SL4

n3

y PL2

z PL3

SL2

SL3

p=z−>nxt;

SL5

n1x

n4

PL1
SL1

n2

SL4

n3

y PL2

z PL3

SL2

SL3

SL5

1SG 2SG

n5
SL6

p PL4

[...]

CLS1(n4)={SL1(i),SL2(i),SL4(o)}

CLS2(n4)={SL3(i),SL4(o)}

CLS3(n4)={SL4(i),SL4(o)}

CLS4(n4)={SL4(i),SL5(o)}

[...]

CLS1(n4)={SL1(i),SL2(i),SL4(o)}

CLS2(n4)={SL6(i),SL4(o)}

CLS3(n4)={SL4(i),SL4(o)}

CLS4(n4)={SL4(i),SL5(o)}

CLS1(n5)={PL4,SL3(i),SL6(o)}

Materialization
operation

1MC

x ...

y

z ...

x ...

y

z ...

(a) (b)

Figure 6. (a) Memory configuration of shared and non-shared lists; (b) Materialization ex.

Node summarization and graph union are necessary for the analysis to work. However, they
only provide ways to merge information. Conversely, the materialization operation separates
information, which is the key to achieve precision in shape analysis, as shown in the following
example. Fig. 6(a) depicts a memory configuration for three single-linked lists: lists x and y

share memory locations from the second element onwards, while the z list is independent. The
shape graph that matches this configuration appears in fig. 6(b). It represents all memory
locations that are not directly accessed by stack pointers in a summary node (n4). CLSs
for n4 are also shown. They indicate possibilities of connectivity of n4 with the rest of the
nodes in the graph. In particular, CLS1(n4) is telling that, when n4 is reached from n1, it
is undoubtedly reached from n2 as well, but not from n3. On the other hand, CLS2(n4) is
telling that when n4 is reached from n3, it is not reached from n1 or n2. Therefore, CLSs are
accurately capturing the memory configuration considered for this example. More importantly,
since we have all the information about possible connections of links over n4, we are able to
materialize a new node (n5) by traversing the z list (p=z->nxt), free of links from n1 and
n2. No other shape analysis that we know of would be able to discard those false links in
the materialized node, given such a high level of compression for the summary node. This is
achieved with very little storage requirements.

6. Related work

In the past decades pointer analysis has attracted a great deal of attention. A lot of studies
have focused on stack-pointer analysis while others, more related to our work, have focused
on heap-pointer analysis. Both fields require different techniques of analysis. In the context
of heap analysis, some authors have proposed approaches that are based on encoding access-
paths in path matrices [3] or limited path expressions [5]. Such approaches do not consider
a graph representation of the heap. Other authors ([4], [1], [6], [7]) have considered shape
abstraction expressed as graphs, just like us.

Some early shape analysis techniques started with coarse characterization of the shape of
the data structures as a matching process with pre-defined shapes, namely tree, DAG (direct
acyclic graph) or cycle, like in [3]. In the case of cyclic structures nearly all precision is lost.
However, Hwang et al. [5] have achieved some success applying his shape analysis abstraction
to dependence detection in programs with cyclic structures traversed in an acyclic fashion.

Sagiv et al. [7] present a graph-based shape analysis framework that sets the foundations
for our approach to the shape analysis problem. Their use of abstract interpretation/abstract
semantics, along with materialization, were taken in as the basics for the development of our
first shape analysis framework [2]. Corbera et. al augmented the analysis precision by adding
several graphs per statement and introducing the concept of properties in nodes to be able to
have separate summary graphs. Later, a powerful loop-carried dependence test was developed
over this framework to provide good results for real-life programs that deal with complex
pointer-based structures [8]. We propose now a new shape analysis technique based on CLSs,
with one graph per statement, that aims to surpass previous works.

7. Conclusions and future work

In this paper we have presented a new strategy for the static analysis of dynamically allo-
cated data structures in pointer-based programs, like those easily found in C or C++. We
have presented the key concept of Coexistent Links Sets, that codify in a neat and compact
way possibilities of connectivity between memory locations. The sempiternal trade-off be-
tween precision and cost, that is so decisive in shape analysis, can be fine-tuned with the
help of configurable and extensible properties. We are currently working in a compiler frame-
work that conforms to the CLS description, in order to provide experimental results that can
demonstrate the advantages of our approach.

References

[1] D. Chase, M. Wegman, and F. Zadek. Analysis of pointers and structures. In SIGPLAN
Conference on Programming Languages Design and Implementation, pages 296–310, 1990.

[2] F. Corbera, R. Asenjo, and E.L. Zapata. A framework to capture dynamic data structures in
pointer-based codes. Transactions on Parallel and Distributed System, 15(2):151–166, 2004.

[3] Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a DAG, or a cyclic graph? A shape analysis
for heap-directed pointers in C. In Conference Record of the 23rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, St. Petersburg, Florida, January 1996.

[4] S. Horwitz, P. Pfeiffer, and T. Reps. Dependence analysis for pointer variables. ACM SIGPLAN
Notices, 1989.

[5] Y. S. Hwang and J. Saltz. Identifying parallelism in programs with cyclic graphs. Journal of
Parallel and Distributed Computing, 63(3):337–355, 2003.

[6] J. Plevyak, A. Chien, and V. Karamcheti. Analysis of dynamic structures for efficient parallel
execution. In Int’l Workshop on Languages and Compilers for Parallel Computing (LCPC’93),
1993.

[7] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages with de-
structive updating. ACM Transactions on Programming Languages and Systems, 20(1):1–50,
January 1998.

[8] A. Tineo, F. Corbera, A. Navarro, R. Asenjo, and E.L. Zapata. A novel approach for detect-
ing heap-based loop-carried dependences. In The 2005 International Conference on Parallel
Processing (ICCP’05), June 2005.

