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Abstract. The analysis of dynamic heap-based data structures is diffi-
cult due to the alias problem. Shape analysis tries to gather information
conservatively about these structures at compile time. In the context of
parallelizing compilers, information about how memory locations are ar-
ranged in the heap at runtime is essential for data dependence analysis.
With proper shape information we can reveal parallelism for heap-based
structures, which are typically ignored by compilers. Existing shape anal-
ysis approaches face a dilemma: either they are too costly to be useful for
real compilers or they are too imprecise to be useful for real programs.
In this work, we describe a new technique for shape analysis based on a
compact representation for the shape of data structures. This is done by
using Coexistent Links Sets for nodes in a graph. The technique is simple
to implement and very precise at the core level. Further precision-vs-cost
balance can be tuned with the use of extensible properties.

1 Introduction

Static knowledge of memory references in a program is a must for compilers, if
they are to provide optimizations related to parallelism in an automated basis.
Such knowledge is not easy to gather due to the existence of aliases. Arrays,
pointers and pointer-based dynamic data structures introduce aliases in pro-
grams. Parallelizing compilers have obtained a reasonable degree of success when
dealing with array aliases and stack-directed pointers. However, heap-directed
pointers and the structures they dereference are a whole different ground that
still needs significant work.

The problem of characterizing dynamically allocated memory locations in a
program can be approached in several ways. We believe that, in order to provide
accurate information for real-life programs, some sort of abstraction in the form
of a bounded graph must be performed. The kind of analysis that represents
the heap as a storage shape graph is known as shape analysis. Its main goal
is to capture the shape of memory configurations that are accessible through
heap-directed pointers in a program.
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Information about the shape of dynamic data structures is useful for paral-
lelizing compiler transformations over the input program. Maybe the most obvi-
ous application is data dependence detection, needed for instruction scheduling,
data-cache optimization, loop transformation and automatic vectorization and
parallelization. Another interesting application comes from the use of the shape
information for debugging analysis of the program. The shape abstraction can
provide information about incorrect pointer usage that can lead to mistakes
difficult to track.

We describe in this work a shape analysis algorithm based on Coexistent
Links Sets (CLSs). CLSs codify possibilities of connectivity between memory
locations in a neat and compact way. This is done by using graphs that represent
the possible states of the memory configuration at a program point. Information
is kept as a combination of possible reaching and leaving links over the memory
locations. CLSs provide a rich description of the data structure with little storage
requirements.

A shape analyzer tool conforming to the CLS description is in the works.
It is written in Java, a modern language where advanced software engineering
techniques can be used to create a simple yet extensible tool. The focus on the
development is set on simplicity and scalability, building over a solid core of
basic operations so that further functionality can be easily added afterwards.
Performance is also considered as a key aspect in the development of the tool.
In that respect, we provide straightforward mechanisms to control performance
behavior just by exchanging objects that implement certain interfaces.

The goal of this paper is to describe how our shape analysis technique achieves
graph abstractions of dynamic data structures. We think that we can provide
more precision than existing techniques while at the same time keeping the
storage and computation cost at a reasonable level. CLSs are the key instruments
for the development of this technique. The remainder of this paper is organized
as follows: Section 2 introduces the basics for our shape analysis technique;
Section 3 describes CLSs in greater detail; Section 4 explains our criteria for
summarization in graphs; Section 5 describes how the shape analyzer works by
example; Section 6 offers some insight into key aspects of the development of the
shape analyzer tool; Section 7 comments some related work; and finally Section
8 concludes with the main contributions and ideas for future work.

2 Shape analysis basics

A program dealing with dynamic data structures performs runtime allocation
of memory pieces, that we call memory locations. Those locations are accessed
through pointers and are linked together through selectors, creating recursive
data structures, such as lists or trees. A memory configuration is the memory
arrangement of the program at a given point during the its execution. Our
approach to shape analysis is based on graphs. Memory configurations arising
in the program are translated into graph abstractions.

Next, we introduce the elements that make up our shape graphs. They are
depicted in a hierarchical view in fig. 1. At the lower level we have: pointers, used



as access points to the structures; nodes, used to represent memory locations;
and selectors, used to join nodes. Combining these base elements together, we
can create pointer links(PLs), which are links between pointers and nodes, and
selector links (SLs), which are links between nodes through a selector. Finally,
PLs and SLs can be combined together to form Coexistent Links Sets (CLSs),
that describe combinations of links that may exist simultaneously over a node.
CLSs will described in greater detail in Section 3.

nptr sel

n1ptr n1 n2
sel

n1 n2
sel

ptr

PL=<ptr,n1>

Pointer Links (PLs)

SL=<n1,sel,n2>

Selector Links (SLs)

Pointers Nodes Selectors

CLS(n1)={PL,SL}={<ptr,n1>,<n1,sel,n2>}
CLS(n2)={SL}={<n1,sel,n2>}

Coexistent Links Sets (CLSs)

Fig. 1. Hierarchical view of shape graph elements. Elements from a lower level combine
to form elements in the upper level.

During the course of a program execution, memory configurations change
over time. Unfortunately, the number of memory configurations that a program
can produce is usually infinite. In general, the size and shape of dynamic data
structures are undecidable at compile time. Since shape analysis is conservative
in nature, we must provide means to gather all possibilities of memory configu-
rations in a compressed form.

We capture memory configurations arising in the program as finite, bounded
shape graphs. In our approach, there is a single graph associated to every state-
ment in the program, which represents all possible memory configuration states
that may reach the statement at runtime. To achieve this, we can summon nodes
that can actually represent several memory locations that are similar. We call
this kind of nodes, summary nodes and the process of merging similar nodes,
summarization. Very often, however, some of those locations are accessed later in
the program and become so-called singular locations, which are somehow differ-
ent (see Section 4) to every other location in the structure. It would be desirable
to provide a mechanism to invert the summarization process, i.e., we would like
to be able to focus over a singular node extracted out of a summary node. This
can be achieved with the materialization operation. Depending on the case, we
will be able to recover the information as we had it or instead, a conservative
and less precise node will be materialized.



The shape analyzer works as an iterative data-flow analysis algorithm, by
symbolically executing the statements in the source program, a process called
abstract interpretation. For example, pointer statements receive an input graph
(SGin) and modify it to produce an output graph (SGout). The rules for such
transformation are determined by the statement abstract semantics.

Our technique cares only about statements that involve operations through
pointers (pointer statements) and control flow decisions (loop and branch state-
ments). Fig. 2 sketches out how the analysis operates in the presence of these
kind of statements in a general, descriptive way.
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Fig. 2. Analysis operation in presence of (a) pointer statements, (b) loop statements
and (c) branch statements.

In order to simplify the analysis, pointer statements are normalized to simple
pointer statements, i.e., those that contain only simple access paths, or 1-level
indirection. The simple pointer statements are (in C syntax):

ptr=NULL; ptr=malloc(...); ptr1=ptr2;

ptr1->sel=ptr2; ptr1=ptr2->sel; ptr->sel=NULL;

At loop bodies the analysis must iterate over the statements of the loop until
the graphs for each statement change no more, i.e., until the analysis achieves
a fixed-point. This way we ensure that the graph for each statement holds all
possible memory configurations at that point of the program at runtime. When a
fixed-point is reached for all statements in the program, the analysis terminates.

At join points in the CFG, such as loops and branching statements, incom-
patible or mutually exclusive memory configurations occur. An operation to join
graphs, (graph union) while conservatively keeping all possibilities is needed. For
instance, fig. 3(b) shows the two possible memory configurations (MC1 and MC2)
at the end of the program in fig. 3(a). In the next section we will see how these
two MCs can be represented in one graph.

To sum up, our shape analysis is an iterative data-flow analysis technique
that represents memory locations in a program as nodes in a graph, where we
can perform three basic operations: node summarization, node materialization
and graph union.



anchor=malloc();
p=anchor;
q=malloc();
p->next=q;
p=q;
q=malloc();
if(cond){
p->down=q;

}else{
p->next=q;

}

Program

anchor

next

p q

next

MC2

anchor

next

down

p

q

MC1

(a) (b.1) (b.2)

Fig. 3. There are two memory configurations for program (a), namely (b.1) and (b.2).

3 Coexistent Links Set (CLS)

Coexistent Links Sets (CLSs) are the key elements in our shape analysis tech-
nique. They capture the possible shapes of data structures by keeping combi-
nations of links that may exist simultaneously over nodes in the graph. Let us
consider an example to introduce the concept of CLS. Fig. 4 shows the graph
that would represent the memory configurations shown in fig. 3. Let us assume
at this point that we need three nodes (n1, n2 and n3) for this graph. In Section
4 we describe in detail why this is so.

CLS1(n1)={PL1,SL1(o)}

CLS1(n2)={PL2,SL1(i),SL2(o)}

CLS2(n2)={PL2,SL1(i),SL3(o)}
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CLS2(n3)={PL3,SL3(i)}

PL1=<archor,n1>

PL2=<p,n2>

PL3=<q,n3>

SL1=<n1,next,n2>

SL2=<n2,next,n3>

SL3=<n2,down,n3>

n2
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n1 n3

p
anchor

q

PL1

PL2
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SL1 SL2
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Fig. 4. Shape graph for example of fig. 3. CLSs describe the shape abstraction.

CLSs allow us to express possibilities of connectivity between nodes, i.e., they
describe the links that may reach and leave a node in the memory configura-
tion abstraction. In the example of fig. 4, CLS1(n1) is telling us that n1 sup-
ports PL1=<anchor,n1> and SL1=<n1,next,n2>. No other combination of links
is possible for this node: n1 can only be reached through the pointer anchor
and connects undoubtedly to n2 through its next selector. For n2, there are two
possibilities. In any of them, PL2=<p,n2> reaches the node (i.e., p points to n2
in any case) and the node is reached from n1 through selector next (SL1). How-
ever, n2 can follow to n3 through the next selector or through the down selector,
yielding two possibilities of connectivity for this node: CLS1(n2) and CLS2(n2).
CLSs for n3 work in a similar way: n3 always supports PL3=<q,n3> and can be
reached from n2 by following either SL2 or SL3.

SLs are stand-alone entities in the graph. They represent links between nodes
through selectors. However, when used in the context of a CLS, they are com-
plemented with attributes to correctly describe the memory configurations oc-



curring in the program. In particular, we consider two different attributes for
SLs in CLSs: the one-way attribute and the share attribute.

The one-way attribute gives information about the origin and destination
of a SL for the current node in a given CLS. It takes one of three values: 1)
incoming (i), when the SL is a reaching link for the current node; 2) outgoing
(o), when the SL is a leaving link for the current node; 3) and cyclic (c), when
the SL is at the same time a reaching and leaving link, so it is a cyclic link.

The share attribute indicates when a node is reachable more than once
through the same SL for a given CLS. It can take one of two values: true or
false, i.e. a SL is either shared or not for a node in a given CLS. In our notation,
a SL is not shared unless labelled with (s).

4 Summarization criteria

In the previous example we asked the reader to assume that three nodes were
needed for the shape abstraction representation. We now explain the summariza-
tion criteria for our shape analysis technique. This criteria determines to a great
extent the behavior and precision of the analysis. First, we define a basic, fixed
mechanism about what nodes should be kept separate and what nodes could
be merged; second, we add configurable properties to fine-tune summarization
decisions.

The basic criterion for summarizing nodes dictates that nodes that are pointed
by the same (possibly empty) set of pointers are merged together [9], i.e., if P(n1)
= P(n2) then n2 merges into n1, where P(n) indicates the set of pointers over
node n. Nodes that are pointed by pointers always remain singular nodes, i.e.
they represent only one memory location for a given memory configuration. On
the contrary, nodes that are not pointed by pointers will be merged (according
to this basic criterion) into a unique summary node, that may be representing
more than one actual memory location. This basic idea allows us to achieve pre-
cision on the entry points to the data structures, where it is more likely to be
needed. This is the criterion applied in fig. 4.

However, merging all locations that are not directly accessed by pointers in
a single node can be very imprecise as soon as the data structures are a little
complex, and this is certainly the case for real programs. Node properties can be
used to prevent too much summarization in such cases. A compatibility function
must be defined for every property. If two nodes are compatible with respect
to all available properties and conform to the basic criterion (share the same
pointers), then they will be merged. Otherwise they will be kept separate. This
way there could be several summary nodes, while in the case of using only the
basic criterion, there would be just one summary node for the whole graph.

Properties are configurable, in the sense that they can be turned on and off at
will, depending on the requirements of the analysis. We could define here a large
set of properties that could be used with our technique but instead we will just
describe the touch property [2], which is a key instrument for data dependence
analysis. While CLSs on their own capture spatial or topological information,
the touch property is used to capture temporal information. Fig. 5 shows how



the touch property would affect node summarization in the case of a typical
list traversal: the p pointer is used to traverse the structure and some accesses
occur in every iteration of the traversing loop. At a point during the traversal,
elements already visited have been accessed or touched in a certain way (n1(t),
n2(t) and n3(t)), while the elements that are yet to be visited (n4) are not
accessed or untouched.

SL4

n1(t) n2(t)
SL3PL1 SL1

p

n3(t)

PL2SL2

list n4SL5

SL6

SL7

Fig. 5. The touch property applied to a typical list traversal.

The touch property is annotated in nodes to avoid merging visited nodes
with unvisited ones. This way n2(t) and n4 do not merge even though they are
pointed by the same set of pointers (the empty set). From a data dependence
analysis point of view, it is of key importance to be able to discriminate be-
tween accessed and not accessed locations in the course of loop traversals. Other
properties can be effortlessly added, to include information about data type,
structure connection, allocation site, etc.

5 Shape analysis operations

In this section we illustrate how the shape analyzer works by example. First, we
analyze a program that creates a single-linked list. This is a very simple case
of a dynamic data structure creation but will suffice to explain the basics of
abstract interpretation, node summarization, graph union and fixed-point test in
the context of our analysis.

In fig. 6 we present the program used to create the list and the first steps of
the analysis. Input graph is empty. Every statement appears next to the graph
it produces as output, which in turn serves as input to the following statement.
The abstract semantics of the statement determines how it modifies the graphs.
A high-level overview of every pointer statement abstract semantics is shown in
table 1.

Element creation statement S1: list=malloc() produces node n1 and the
corresponding PLs, SLs and CLSs. Notice that the analysis can track uninitial-
ized selectors. This is useful for code correctness checking. Control flow state-
ments, like S3, work differently. They do not enforce changes in graphs but
control the statements that carry on the analysis. When entering a loop for the
first time, input graph is passed unmodified to the body loop, as sketched in
fig. 2. In following iterations, S3 will control the termination condition through
the fixed-point test.

The example continues entering the loop and statement S4 creates a new
element. Changes with respect to previous graph appear in bold. Graphs for
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S4: q=malloc();

S2: p=list;

S9: p=NULL;

S8: q=NULL;

S7: p−>nxt=NULL;

}

S6:    p=q;

S5:    p−>nxt=q;

S4:    q=malloc();

S3: while(cond) {

S2: p=list;

S1: list=malloc();

Fig. 6. Single-linked list creation program and first steps of abstract interpretation.

statements inside a loop are labelled with a superscript showing the number of
the symbolic iteration.

Let us now consider an interesting situation that appears later in the analysis.
Upon interpreting S5 for the third time (third iteration), we obtain the shape
graph shown in fig. 7 (a). At this point the list can be two (n6 and n3), three
(n1, n4 and n3) or four elements (n1, n2, n4 and n3) long. Two nodes exist for
the first element of the list to account for incompatible memory configurations.

Statement S6: p=q is a pointer alias statement, whose abstract semantics is
described in table 1. As a previous step, this statement forces the execution of
S6prev: p=NULL, a pointer nullification statement. Steps 1 and 2 for S6prev (from
table 1 again) have been applied in fig. 7(b). We find that nodes n1-n6 and n2-n4
now meet the summarization basic criterion, i.e., they are pointed by the same
(possibly empty) set of pointers (P(n1)=P(n6)={list}, P(n2)=P(n4)={∅}), so
they must be merged (we do not consider properties for summarization in this
example). This process is carried out by the normalization function, described
in table 2. The graph is also cleaned from duplicated PLs, SLs and CLSs. The
result is shown in fig. 7(c). Finally, the process triggered by S6 ends by pointing
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Fig. 7. Node summarization. (a) Input graph, (b) nullification, (c) normalization, and
(d) pointer aliasing.

p to the node pointed by q, as shown in fig. 7(d). A new PL (PL2) is added and
CLSs(n3) are updated accordingly.

Node summarization solves the issue of bounding the graphs. Additionally,
the graph union operation is used to reconcile different graphs that reach a join
point in the CFG. A typical case is the head of a loop, where the graph coming
from the last statement in the loop merges with the graph from the previous



iteration. The graph union operation is described in table 2. It adds all the
information of both graphs into a working graph. This graph is then normalized,
so that compatible nodes are summarized and redundancies are removed. The
result is a graph that conservatively captures all possibilities for the memory
configurations until that point in the analysis.

Then we need to decide wether to enter the loop again or exit it. This is
determined by the fixed-point test. If the result of the last iteration, SG

(i)
loop,

contains the same information than the previous iteration, SG
(i−1)
loop , then we

have reached a fixed-point. In that case, we can leave the loop because we have
conservatively registered all possible memory configurations that originate from
it. Otherwise, we must keep iterating until the information of the graphs at
the head of the loop are equivalent. This state is ensured by the existence of
summarization. The graphs cannot grow endlessly nor can we enter a deadlock
situation.

Node summarization and graph union are necessary for the analysis to work.
However, they only provide ways to merge information. Conversely, the materi-
alization operation separates information, which is the key to achieve precision
in shape analysis, as shown in the following example. Fig. 8(a) depicts a memory
configuration for three single-linked lists: lists x and y share memory locations
from the second element onwards, while the z list is independent. The shape
graph that matches this configuration appears in fig. 8(b). It represents all mem-
ory locations that are not directly accessed by stack pointers in a summary node
(n4). CLSs for n4 are also shown. They indicate possibilities of connectivity of
n4 with the rest of the nodes in the graph.
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CLS1(n4)={SL1(i),SL2(i),SL4(o)}

CLS2(n4)={SL3(i),SL4(o)}

CLS3(n4)={SL4(i),SL4(o)}

CLS4(n4)={SL4(i),SL5(o)}

[...]

CLS1(n4)={SL1(i),SL2(i),SL4(o)}

CLS2(n4)={SL6(i),SL4(o)}

CLS3(n4)={SL4(i),SL4(o)}

CLS4(n4)={SL4(i),SL5(o)}

CLS1(n5)={PL4,SL3(i),SL6(o)}

Materialization
operation

1MC

x ...

y

z ...

x ...

y

z ...

(a) (b)

Fig. 8. (a) Memory configuration of shared and non-shared lists; (b) Materialization
example.

In particular, CLS1(n4) is telling that, when n4 is reached from n1, it is
undoubtedly reached from n2 as well, but not from n3. On the other hand,
CLS2(n4) is telling that when n4 is reached from n3, it is not reached from
n1 or n2. Therefore, CLSs are accurately capturing the memory configuration



considered for this example. More importantly, since we have all the information
about possible connections of links over n4, we are able to materialize a new
node (n5) with the structure traversing statement p=z->nxt, whose abstract
semantics is described in table 1. This new node is free of links from n1 and n2.
No other shape analysis that we know of would be able to discard those false
links in the materialized node, given such a high level of compression for the
summary node. This is achieved with very little storage requirements.

ptr = malloc(...); Element creation
statement.

1. Create new node n1

2. Create PL=<ptr,n1>

3. Create SLs from n1 to the non ini-
tialized node (NI): SL1=<n1,sel1,NI>,
SL2=<n1,sel2,NI>, ...

4. Create CLS(n1)={PL,SL1,SL2,...}

ptr = NULL; Pointer nullification state-
ment.

1. Remove every PL=<ptr,ni>, where ni

is any node
2. Update CLSs(ni) dropping removed

PLs
3. Normalize graph∗

ptr1->sel = ptr2; Element linking state-
ment.

1. Split graph by ptr1->sel∗ and apply
steps 2-6 to all resulting graphs

2. Materialize new node nm by
ptr1->sel∗

3. Remove SL=<n1,sel,nm>, where n1 is
the node pointed by ptr1, and update
CLSs(n1) and CLSs(nm) accordingly

4. Add SL=<n1,sel,n2>, for all nodes n2

pointed by ptr2

5. Update CLSs(n1) and CLSs(n2) adding
new SLs

6. Normalize graph∗

7. Join resulting graphs∗

ptr->sel = NULL; Selector nullification
statement.

1. Split graph by ptr->sel∗ and apply
steps 2-5 to all resulting graphs

2. Materialize new node nm by ptr->sel∗

3. Remove SL=<n1,sel,nm>, where n1 is
the node pointed by ptr and update
CLSs(n1) and CLSs(nm) accordingly

4. Add SL=<n1,sel,NULL> and update
CLSs(n1) accordingly

5. Normalize graph∗

6. Join resulting graphs∗

ptr1 = ptr2->sel; Structure traversing
statement.

1. Apply ptr1 = NULL;

2. Split graph by ptr2->sel∗. Apply
steps 2-6 to all resulting graphs

3. Materialize new node nm by
ptr2->sel∗

4. Add PL=<ptr1,nm>

5. Update CLSs(nm) to include new PL
6. Normalize graph∗

7. Join resulting graphs∗

ptr1 = ptr2; Pointer alias statement.

1. Apply ptr1 = NULL;

2. For every PL=<ptr2,ni> (where ni is
any node), create PL=<ptr1,ni>

3. Update CLSs(ni) adding new PLs

Table 1. Overview of abstract semantics for pointer statements. Refer to table 2 for
description of functions marked with ∗.



Normalize graph. Summarize compatible
nodes and remove redundant information.

1. Find compatible nodes and merge
them, calculating merged values for
properties

2. Remove duplicated PLs and SLs
3. Update CLSs exchanging nodes, PLs

and SLs
4. Remove duplicated CLSs

Join graphs. Add information from input
graphs SG1 and SG into the working graph
SG3.

1. Add all PLs from SG1 and SG2 to SG3

2. Add all SLs from SG1 and SG2 to SG3

3. Add all CLSs from SG1 and SG2 to SG3

4. Normalize SG3 and return it to calling
function

Split graph by ptr->sel. Split a graph
into several graphs so that each of them
points to just one node by following
ptr->sel.

1. Apply steps 2-6 to all nodes n1 pointed
by ptr

2. Apply steps 3-6 to all nodes n2 belong-
ing to a SL=<n1,sel,n2>

3. Create a copy of the input graph
4. Remove CLSs(n1) containing

PL=<ptr2,n1>, where ptr2!=ptr1

5. Remove CLSs(n1) and CLSs(n2) con-
taining SL=<n1,sel,n3>, where n3!=n2

6. Remove unused elements
7. Return all generated graphs

Materialize by ptr->sel. Creates a new
node nm out of the summary node reached
through ptr->sel.

1. Find node n1 pointed by ptr and node
n2 found in SL=<n1,sel,n2>

2. Create node nm as a copy of n2, with
the same properties (if any)

3. Make nm inherit all PLs, SLs and CLSs
from n2

4. Remove SL=<n1,sel,n2> and drop it
from CLSs(n1) and CLSs(n2)

5. Add SL=<n1,sel,nm> to CLSs(n1) and
CLSs(nm)

6. Make nm a singular node (only repre-
sents one memory location)

7. Remove unused SLs and CLSs until
graph is consistent

Table 2. Overview of basic functions for the shape analyzer.

6 Tool design

At the time of writing this paper, we are finishing the first working version of the
shape analyzer. Still much work is needed in order to make it a full application.
Ultimately, this tool will be able to take any pointer-based C program as input
and produce the shape graphs that capture memory configurations that occur
at runtime.

We believe the technique described in this article is fairly simple, at least for
a graph-based shape analysis technique. The development of the tool revolves
around a core that includes all the basic graph operations and abstract semantics
of statements. Part of this core functionality is roughly described in tables 1 and
2. The core is basically completed at 3000 lines of Java code.

Java is the language of choice for our implementation of the CLS-based shape
analyzer. The object oriented approach seems tailored for the development of
the tool. Development in Java is easy, due to the existence of powerful and useful
GUI’s, debugging aids, the Java foundation classes, javadoc, etc. We are actively
using all new advantages of Java 1.5 for the development of the tool, such as



generics or the for-each loop. Our intention is to produce a tight, clear and well-
organized code that can be easily extended from the core for the development
of future client applications, such as data dependence tests. Java provides the
means for this kind of development.

The use of standard Java classes is a big help for the development of the tool.
However, one could argue that the object abstraction penalty could eventually
degradate the performance of the shape analyzer. It is in the philosophy of
this technique to be able to adjust to real world applications, so bigger and
more complex codes can be analyzed. In order to mitigate possible performance
degradations caused by the use of standard Java classes, the whole tool has been
built relying on abstract collections for the elements of the graphs (nodes, PLs,
SLs, CLSs, properties,...). This way we can use familiar collection classes such as
ArrayList or HashMap, but if we need to, we can easily switch to other custom-
made classes that offer the same interface but better performance for certain key
operations.

An interesting feature about properties is that they do not belong to the
core of the method. The shape analyzer can work without properties, using just
the basic criterion for summarization decisions. This is an advantage for the
development of the shape analyzer tool, because we can focus on basic graph
operations providing just general support for properties. At the same time, it
allows for easy inclusion of new properties at a later stage. This is specially useful
because at this point we might not be fully aware of requirements for specific
programs in terms of shape graph abstractions. The analysis of new codes will
surely suggest new properties. The design of the shape analyzer allows for the
straightforward inclusion of properties over the core functionality.

In the description of the technique, we have stated that there is only one
graph per statement. From an storage point of view, we can shrink even more: we
can keep just one graph flowing for the whole program, except for loop statements
that need to keep the latest result for fixed-point comparisons. Conversely, we
can easily adjust the tool to keep all graphs generated, so we can easily freeze
memory configurations at points of interest. This is useful for general program
analysis, as a learning or debugging tool for example.

A side issue to consider is the front-end needed to translate input C programs
into the internal representation needed by the shape analyzer. In this process, we
filter the program to keep only pointer and control flow statements and simplify
complex pointer expresions, among other tasks. For this purpose, we use and
extend Cetus [7], [6]. Cetus is a compiler infrastructure specially aimed towards
the development of compilation passes of high-level nature. It can parse C and
C++ input programs, and soon Java will be supported as well. It is written
in Java and its source code is publicly available under a non-restrictive license.
Creating our own translation pass over Cetus, we can translate input C programs
into our intermediate representation in an automated basis, which brings us
closer to the final goal of automatically analyze pointer based applications.



7 Related work

In the past decades pointer analysis has attracted a great deal of attention. A
lot of studies have focused on stack-pointer analysis while others, more related
to our work, have focused on heap-pointer analysis. Both fields require different
techniques of analysis. In the context of heap analysis, some authors have pro-
posed approaches that are based on encoding access-paths in path matrices [3]
or limited path expressions [5]. Such approaches do not consider a graph repre-
sentation of the heap. Other authors ( [4], [1], [8], [9] ) have considered shape
abstraction expressed as graphs, just like us.

Some early shape analysis techniques started with coarse characterization of
the shape of the data structures as a matching process with pre-defined shapes,
namely tree, DAG (direct acyclic graph) or cycle, like in [3]. In the case of cyclic
structures nearly all precision is lost. However, Hwang et al. [5] have achieved
some success applying his shape analysis abstraction to dependence detection in
programs with cyclic structures traversed in an acyclic fashion.

Sagiv et al. [9] present a graph-based shape analysis framework that sets the
foundations for our approach to the shape analysis problem. Their use of abstract
interpretation/abstract semantics, along with materialization, were taken in as
the basics for the development of our first shape analysis framework [2]. Corbera
et. al augmented the analysis precision by adding several graphs per statement
and introducing the concept of properties in nodes to be able to have separate
summary graphs. Later, a powerful loop-carried dependence test was developed
over this framework to provide good results for real-life programs that deal with
complex pointer-based structures [10]. We propose now a new shape analysis
technique based on CLSs, with one graph per statement, that aims to surpass
previous works.

8 Conclusions and future work

In this paper we have described a technique for the static analysis of dynamically
allocated data structures in pointer-based programs, like those easily found in
C or C++. This technique is based on the key concept of Coexistent Links Sets,
that codify in a neat and compact way possibilities of connectivity between
memory locations.

A working implementation of the shape analyzer is nearly completed with
focus on simplicity and scalability. The sempiternal trade-off between precision
and cost, that is so decisive in shape analysis, can be fine-tuned with the help of
configurable and extensible properties. Underlying data structures can be easily
exchanged if performance bottlenecks appear.

In the near future, we plan to analyze some benchmark programs to provide
experimental results for the shape analyzer. Soon after that, we plan to use
this tool as the base for some client analysis, such as data dependence detection.
Further down the road, we expect to tackle the issue of automatic parallelization
of pointer-based programs, by using information from client analysis for thread
creation modules. This way we will have completed an automatic end-to-end



pointer analysis framework with parallel code generation for programs that rely
heavily on dynamic data structures.
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