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Foreword 

This page documents the results of some experiments conducted for our shape analyzer based on CLSs, as 
found in [1] and [2]. The rest of this document assumes you are familiar with the basics of the technique. 
See the References section for appropriate background.  



Overview of the tests 

We have considered six programs for our tests. The first four are synthetic codes representative of typical 
recursive data structures found in pointer-based codes. For the last two tests, we have designed a small 
program that computes the product of a sparse matrix by a sparse vector. Sparse structures are usually 
built with pointers to avoid wasting storage capacity with many empty values.  

Programs are preprocessed by a custom pass created over Cetus [4], an extensible Java infrastructure for 
source-to-source transformations. Basically, this pass translates a C input program into a format 
recognizable by the shape analyzer. When analysing a program, we do not need to consider all statements. 
Our technique only cares about control flow statements and pointer access statements, which is what the 
shape analyzer needs to obtain the graphs that describe the shape of memory configurations in the heap. 
In the codes shown below for the tests, we show the abridged version as analyzed by the shape analyzer. 
Therefore, the statements shown are exactly the statements analyzed.  

Since shape analysis is a conservative technique by nature, it must account for all possible flow paths in 
the program. We do not pay attention to conditions in branching statements, but consider all possibilities, 
i.e., branch taken and branch not taken. That is why branches and loops do not show the conditions in the 
code for the tests. However, when a pointer condition is known, it is valuable for discarding 
configurations rendered impossible by the condition. Force directives are used in such cases to enforce 
pointer conditions at certain points in the program. They are derived from the conditions specified at 
control flow statements. For example, when entering a while(p!=NULL) loop, we can enforce the 
analysis to consider p!=NULL inside the loop and p==NULL just outside the loop. Force directives make 
the analysis more precise and faster, because it can rule out unnecessarily conservative memory 
configurations. Force directives are added with pragma directives. There is work in progress to add a 
source-to-source translation pass based on Cetus to automatically add force directives, but at this point 
they are added by the programmer.  

In the codes below, you will also notice several nullification statements. Pointers can be nullified as long 
as they are dead, i.e., there is no use before a definition following the flow path from a point in the 
program. By nullifying pointers early, we make the analysis faster as it suffers from exponential 
complexity with respect to the number of non-null live pointer variables. There would be a prior dead 
variable nullification pass to condition the code in this manner in an automated basis, but at this point 
pointer nullification is done by the programmer.  

Next we describe each test with the code analyzed and the graph resulting from its analysis, as displayed 
by our visualization companion tool. In the graphs, CLSs for the nodes are displayed unordered, i.e., the 
order in which CLSs appear does not have to match the order in which they were calculated by the 
analyzer. Tests are run in multi-graph mode, meaning that there may be several graphs per statement 
during the analysis, to achieve precision at nodes pointed to by pointers. However, we only show the final 
graph, obtained as the joining of all available graphs resulting at the end of the analysis. No properties are 
considered for summarization.  



Test 1: singly-linked list 

Code: this test first creates a 
singly-linked list (stmts. 1-
6), then traverses it (stmts. 
11-15). Nullification 
statements and force 
directives are inserted where 
appropriate. 

Graph: it captures a singly-linked list of length greater or equal to 1 
element. N1 represents the first element in the list. From it, the nxt selector 
can lead to null for a 1-element list (with CLS(N1)={PL1,SL1o}), or 
it can lead to the second element (CLS(N1)={PL1,SL2o} for N1 and 
CLS(N2) contaning SL2i for N2). N2 is a summary node that represents 
all possible locations in the list that are not pointed to by pointers. 
CLSs(N2) describe the four possibilities of connectivity for such 
locations: {SL3o,SL2i} represents the second element in a 2-element 
list; {SL2i, SL4o} represents the second element in a list longer than 2 
elements; {SL3o,SL4i} captures the last element in a list longer than 2 
elements; finally {SL4io}={SL4i,SL4o} stands for all intermediate 
locations. 

1   list = malloc(); 
2   p = list; 
3   while(){ 
4       q = malloc(); 
5       p->nxt = q;    
6       p = q; 
    } 
7   Force(list != NULL) 
8   p->nxt = NULL; 
9   q = NULL; 
10  p = NULL; 
11  p = list; 
12  while(){ 
13      q = p -> nxt; 
14      p = q; 
    } 
15  Force(p = NULL) 
16  q = NULL; 
17  p = NULL; 

 

 



Test 2: doubly-linked list 

Code: this is basically the 
same as test1, but the list 
is doubly-linked. 

Graph: this graph captures a doubly-linked list. N1 is the entry element for 
the list, pointed to by the list pointer. N2 represents all possible locations 
beyond the first element. It is drawn in dotted line to indicate that locations 
represented can be reachable more than once through different selectors. This 
is certainly true in a doubly-linked list, as elements in the middle are 
referenced through the nxt selector from the previous element, and through 
the prv selector from the next element. A location cannot be reached through 
the same selector more than once, thus preventing the existence of cycles 
other than those produced by the N2.nxt-N2.prv sequence. Note that most 
shape analysis techniques have troubles capturing doubly-linked structures.  

1   list = malloc(); 
2   list->prv = NULL; 
3   p = list; 
4   while(){ 
5       q = malloc(); 
6       p->nxt = q; 
7       q->prv = p; 
8       p = q; 
    } 
9   Force(list != NULL) 
10  p->nxt = NULL; 
11  q = NULL; 
12  p = NULL; 
13  p = list; 
14  while(){ 
15      q = p -> nxt; 
16      p = q; 
    } 
17  Force(p = NULL) 
18  q = NULL; 
19  p = NULL; 

 

 



Test 3: n-ary tree 

Code: this test creates an array-based n-ary 
tree. Each location in the program contains 
a pointer array, whose elements can points 
to other locations. The tree is traversed 
during its creation, as each new leaf is 
added starting from the root. Statements 6 
and 17 indicate that the array index has 
been written, which makes the analyzer 
forget the previous value.  

Graph: this graph, as simple as it may seem, represents an 
array-based n-ary tree. This graph features multi-selectors 
(recognizable by the "[]" suffix), which are selectors that 
can point to several different locations at the same time, 
unlike regular selectors. N1 is the root for the tree. N2 is a 
summary node for the rest of elements in the tree 
(intermediate elements and the leaves). 
CLS(n1)={PL1,SL1o,SL3o} tells that the first element 
can link through the child[] multi-selector to other 
elements (represented by N2) and also have uninitialized 
links (reaching ni, meaning non-initialized). 
CLS(n2)={SL2o,SL4io}={SL2o,SL4i,SL4o} 
represents locations in the middle of the tree which are 
linked from just one intermediate element located upper in 
the tree (SL4i), and that links to other lower elements 
(SL4o) and also may have uninitialized links in its multi-
selector (SL2o). What is important here is that every 
location in the tree cannot be reached more than once by 
following the child[] multi-selector, because nodes are 
not in dotted line. Therefore children do not link back to any 
ancestor nor are they shared for different parents, so the tree 
shape is correctly captured. Note also that current shape 
analysis techniques do not support pointer arrays explicitly.  

1   root = malloc(); 
2   while(){ 
3       p = root; 
4       while(){ 
5           Force(p != NULL) 
6           i = ...; 
7           if(){ 
8               Force(p->child[i] != NULL) 
9               q = p -> child[i]; 
10              p = q; 
11              q = NULL; 
            }else{ 
            } 
        } 
12      Force(p->child[i] = NULL) 
13      x = malloc(); 
14      p->child[i] = x; 
15      x = NULL; 
    } 
16  p = NULL; 
17  i = ...; 

 

 



Test 4: binary tree 

Code: this test creates a binary tree. 
Each location in the program contains 
two selectors (lft and rgh) that can 
point to 2 children. The tree is 
traversed during its creation, as each 
new leaf is added starting from the 
root.  

Graph: this graph represents a binary tree. N1 represents the 
root element, pointed by the root pointer. N2 represents all 
intermediate locations in the tree and the leaves. CLSs for N2 are 
many, to correctly capture all possibilities: second-level element 
as left child of root with right and left children (9th 
CLS(N2)={SL7o,SL8o,SL5i}), intermediate-level element 
as right child of parent with right and left children (last 
CLS(N2)={SL7o,SL8io}), leaf as left child of parent (3rd 
CLS(N2)={SL7i,SL4o,SL3o}), etc.  
Again, what is important here is that no node is reached through 
SL7i and SL8i in the same CLS (both a left and right child at 
the same time), N2 is not in dotted lines (children do not link 
back to ancestors), and that no SL is shared in any CLS (for 
example, a left child for two or more parents). Thus the binary 
tree shape characteristics are accurately captured in the graph.  

1   root = malloc(); 
2   root->lft = NULL; 
3   root->rgh = NULL; 
4   while(){ 
5       p = root; 
6       while(){ 
7           Force(p != NULL) 
8           if(){ 
9               q = p -> lft; 
10              p = q; 
11              q = NULL; 
            }else{ 
12              q = p -> rgh; 
13              p = q; 
14              q = NULL; 
            } 
        } 
15      Force(p != NULL) 
16      x = malloc(); 
17      x->lft = NULL; 
18      x->rgh = NULL; 
19      if(){ 
20          Force(p->lft = NULL) 
21          p->lft = x; 
        }else{ 
22          Force(p->rgh = NULL) 
23          p->rgh = x; 
        } 
24      x = NULL; 
    } 
25  p = NULL; 

 



Test 5: Sparse matrix by sparse vector based on singly-linked lists 

Code: this test takes a real working 
program that computes the product of a 
sparse matrix by a sparse vector. The matrix 
is constructed as a list of singly-linked 
header elements of type t1, that link 
through selector nxt_t1. Each header 
element links to a list of singly-linked 
elements of type t2, that link through 
selector nxt_t2. The vectors are built as 
singly-linked lists of elements of type t2 
The analyzer is fed with the code below. 
The entry point for the analysis is statement 
83, the call to main()at statement 1. First the 
input matrix A is created (stmts. 2-31), then 
the input vector B is created (stmts. 32-47). 
Finally the output vector C is created as A 
and B are traversed (stmts. 48-82). 
Structure navigation statements that read 
and write on the same location are 
decomposed using temporal variables 
(_tmpx). For example, statements 74-76 
show how the navigation pointer for the 
header list of the matrix, auxHA, is updated 
using a temporal variable in the loop that 
computes the product (stmts. 50-76).  

Graph: this graph captures the 3 structures used in this test: 
A, the input matrix; B, the input vector; and C the output 
vector. As we use no properties all locations that are not 
directly accessed by pointer are summarized in node N4. 
The node is drawn in solid line. This means that every 
location represented by N4 links to other different location, 
i.e., there are no locations which are linked twice or more 
from other locations. Therefore, although N4 serves as 
summary nodes for all intermediate elements in the 3 
structures, CLSs(N4) assure that the structures are disjoint. 
This includes the fact that rows hanging from the header list 
in the matrix are not shared either, otherwise there would be 
a CLS(N4) with SL3is (shared incoming SL3). The main 
characteristics of the heap for this program are captured in 
the graph: 3 disjoint structures based on acyclic singly-
linked lists. 

1   main(){ 
2       auxH = NULL; 
3       while(){ 
4           newH = malloc(); 
5           if(){ 
6               Force(auxH != NULL) 
7               auxH->nxt_t1 = newH; 
            }else{ 
8               Force(auxH = NULL) 
9               A = newH; 
            } 
10          auxH = newH; 
11          auxE = NULL; 
12          while(){ 
13              if(){ 
14                  newE = malloc(); 
15                  if(){ 
16                      Force(auxE!=NULL) 
17                      auxE->nxt_t2=newE; 
                    }else{ 
18                      Force(auxE=NULL) 
19                      anchor = newE; 
                    } 
20                  auxE = newE; 
                }else{ 
                } 
            } 
21          auxE = NULL; 
22          if(){ 
23              Force(newE != NULL) 
24              newE->nxt_t2 = NULL; 
            }else{ 
25              Force(newE = NULL) 
            } 
26          newE = NULL; 
27          auxH->elem_list = anchor; 
28          anchor = NULL; 
        } 
29      newH->nxt_t1 = NULL; 
30      newH = NULL; 
31      auxH = NULL; 
32      B = NULL; 
33      lastE = NULL; 
34      while(){ 

 



35          if(){ 
36              newE = malloc(); 
37              if(){ 
38                  Force(B = NULL) 
39                  B = newE; 
                }else{ 
40                  Force(B != NULL) 
41                  lastE->nxt_t2 = newE; 
                } 
42              lastE = newE; 
43              newE = NULL; 
            }else{ 
            } 
        } 
44      lastE->nxt_t2 = NULL; 
45      lastE = NULL; 
46      auxHA = A; 
47      auxHC = NULL; 
48      C = NULL; 
49      lastE = NULL; 
50      while(){ 
51          Force(auxHA != NULL) 
52          auxEB = B; 
53          while(){ 
54              Force(auxEB != NULL) 
55              auxEA = auxHA->elem_list; 
56              while(){ 
57                  _tmp1 = auxEA->nxt_t2; 
58                  auxEA = _tmp1; 
59                  _tmp1 = NULL; 
                } 
60              auxEA = NULL; 
61              _tmp2 = auxEB -> nxt_t2; 
62              auxEB = _tmp2; 
63              _tmp2 = NULL; 
            } 
64          auxEB = NULL; 
65          if(){ 
66              newE = malloc(); 
67              if(){ 
68                  Force(C = NULL) 
69                  C = newE; 
                }else{ 
70                  Force(C != NULL) 
71                  lastE->nxt_t2 = newE; 
                } 
72              lastE = newE; 
73              newE = NULL; 
            }else{ 
            } 
74          _tmp3 = auxHA -> nxt_t1; 
75          auxHA = _tmp3; 
76          _tmp3 = NULL; 
        } 
77      if(){ 
78          Force(lastE != NULL) 
79          lastE->nxt_t2 = NULL; 
        }else{ 
80          Force(lastE = NULL) 
        } 
81      lastE = NULL; 
82      auxHA = NULL; 
    } 
83  main(); 

 

 



Test 6: Sparse matrix by sparse vector based on doubly-linked lists 

Code: this test is basically the same as test 5, but all 
lists are doubly-linked. You will also notice some 
special statements (stmts. 68, 69, 74 and 90) related to 
the touch property. This statements are used to draw 
information about how the structures are traversed. 
However, all presented tests are run without properties, 
as stated above. Therefore touch statements are ignored 
in this test.  

Graph: this graph is the double-linked 
counterpart for that of test 5. Here, locations 
represented by N4 can be reachable more than 
once, therefore the node is drawn in dotted line. 
Let us check the structures characteristics by 
observing available CLSs for N4. The 4th 
CLS(N4)={SL4io,SL5io}, tells that 
structures of type t2 are based on doubly-linked 
lists, while the 9th 
CLS(N4)={SL11io,SL12io,SL9o}, tells 
that structures of type t1 are also based on 
doubly-linked lists. There are no shared SLs in 
any CLS, so elements are not reached twice from 
the same selector. In particular, hanging lists 
from the header list in A, are not shared through 
the elem_list selector. To sum up, this graph 
represents 3 disjoint heap structures based on 
doubly-linked lists that contain no cycles other 
than the nxt-prv cycle inherent to doubly-
linked lists.  

1    main(){ 
2       auxH = NULL; 
3       while(){ 
4            newH = malloc(); 
5            if(){ 
6                Force(auxH != NULL) 
7                newH->prv_t1 = auxH; 
8                auxH->nxt_t1 = newH; 
            }else{ 
9                Force(auxH = NULL) 
10                A = newH; 
            } 
11          auxH = newH; 
12          auxE = NULL; 
13          while(){ 
14              if(){ 
15                  newE = malloc(); 
16                  if(){ 
17                      Force(auxH->elem_list=NULL) 
18                      auxH->elem_list = newE; 
                    }else{ 
                    } 
19                  if(){ 
20                      Force(auxE != NULL) 
21                      newE->prv_t2 = auxE; 
22                      auxE->nxt_t2 = newE; 
                    }else{ 
23                      Force(auxE = NULL) 
24                      auxH->elem_list = newE; 
                    } 
25                  auxE = newE; 
                }else{ 
                } 
            } 
26          auxE = NULL; 
27          if(){ 
28              Force(newE != NULL) 
29              newE->nxt_t2 = NULL; 
            }else{ 
30              Force(newE = NULL) 
            } 
31           newE = NULL; 
        } 
32      newH->nxt_t1 = NULL; 
33      newH = NULL; 
34      auxH = NULL; 
35      B = NULL; 
36      lastE = NULL; 
37      while(){ 
38          if(){ 
39              newE = malloc(); 
40              if(){ 
41                  Force(B = NULL) 

 



42                  B = newE; 
43                  newE->prv_t2 = NULL; 
                }else{ 
44                  Force(B != NULL) 
45                  lastE->nxt_t2 = newE; 
46                  newE->prv_t2 = lastE; 
                } 
47              lastE = newE; 
48              newE = NULL; 
            }else{ 
            } 
        } 
49      lastE->nxt_t2 = NULL; 
50      lastE = NULL; 
51      auxHA = A; 
52      auxHC = NULL; 
53      C = NULL; 
54      lastE = NULL; 
55      while(){ 
56          Force(auxHA != NULL) 
57          auxEB = B; 
58          while(){ 
59              Force(auxEB != NULL) 
60              auxEA = auxHA -> elem_list; 
61              while(){ 
62                  Force(auxEA != NULL) 
63                   _tmp1 = auxEA -> nxt_t2; 
64                   auxEA = _tmp1; 
65                   _tmp1 = NULL; 
                } 
66              if(){ 
67                  Force(auxEA != NULL) 
                }else{ 
                } 
68              Touch(auxEA, Read68) 
69              Touch(auxEB, Read69) 
70              auxEA = NULL; 
71              _tmp2 = auxEB -> nxt_t2; 
72              auxEB = _tmp2; 
73              _tmp2 = NULL; 
            } 
74          UnTouch(Read69) 
75          auxEB = NULL; 
76          if(){ 
77              newE = malloc(); 
78              if(){ 
79                  Force(C = NULL) 
80                  C = newE; 
81                  newE->prv_t2 = NULL; 
                }else{ 
82                  Force(C != NULL) 
83                  lastE->nxt_t2 = newE; 
84                  newE->prv_t2 = lastE; 
                } 
85              lastE = newE; 
86              newE = NULL; 
            }else{ 
            } 
87          _tmp3 = auxHA -> nxt_t1; 
88          auxHA = _tmp3; 
89          _tmp3 = NULL; 
        } 
90      UnTouch(Read68) 
91      if(){ 
92          Force(lastE != NULL) 
93          lastE->nxt_t2 = NULL; 
        }else{ 
94          Force(lastE = NULL) 
        } 
95      lastE = NULL; 
96      auxHA = NULL; 
    } 
97  main(); 

 

 



Results 

 

Table I. Structures tested in the shape analyzer, number of analyzed statements, time spent on the 
analysis, total number of generated graphs, and nodes, links and CLSs per graph, in average (and 
maximum) values. 

Table I describes the structures tested and displays some metrics for the analysis performed. The first 
column identifies each test, while the second column holds the number of analyzed statements. The third 
column shows times for the tests. Only the time for the actual shape analysis is shown (no parsing or 
preprocessing), as measured in a Pentium IV 2.4 GHz with 1 GB RAM, with the time() command in a 
Fedora Core 3 Linux OS. We think that times are very reasonable for such a detailed analysis. Within the 
first four examples of synthetic codes, the highest time is that of the binary tree analysis, probably due to 
its more complex CFG. It should be noted that more possible flow paths make the analysis more costly, as 
it has to consider all possibilities conservatively. On the other hand, the first three examples run in less 
than a second. The matrix by vector product takes longer, clocking at more than 1 minute, which is only 
reasonable considering there are quite some more statements to analyze than in previous tests.  

The fourth column indicates the total number of graphs generated for each test. The numbers range from a 
few dozens to a few thousands, accounting for higher number of analyzed statements and/or higher 
complexity of the structure. Memory use is quite reasonable, staying below 17 MB in the worst case 
(matrix-vector(d)). This is very encouraging considering the big penalty in memory use found in 
related work. Also remember that all tests are run in multi-graph mode, meaning that several graphs can 
be used per statement in order to correctly capture memory configurations arising in the program. 
Therefore these runnings represent the most costly analysis case for our tool.  

Next columns show the total number of nodes, links and CLSs per graph, as average values with the 
maximum in brackets. The number of nodes per graph is essentially constant in the first four tests, as it 
depends mostly on the number of simultaneously live pointers, which is usually one for the structure 
handle and two for navigating it. The matrix by vector test has three times more nodes because there are 
three different structures, instead of one. The number of links depends on the amount of different links 
that each element has. Typically each element in a recursive data structure does not have more than two 
links. Finally, CLSs are the elements where most of the complexity reside: they describe how nodes and 
links can combine to create all possible memory configurations arising in the program. The highest 
maximum is for the binary tree among all tests, but the maximum average is attained in the matrix by 
vector program based on doubly-linked lists.  

To sum up, we can say that the shape analyzer can effectively analyze common data structures for 
pointer-based codes. Generated graphs accurately capture heap structures. Furthermore, we think that 
such graphs can be obtained in manageable times, specially for such a complex technique. Let us not 
forget that we are performing fixed-point abstract interpretation of pointer and flow statements to create 
and modify very detailed graphs.  

Despite this encouraging results, it is clear that this is a costly technique which is not likely to succeed if 
used for whole program analysis. Instead it would be better used within a client analysis module that 
would focus on local analysis. 

In this regard, we discovered that def-use information can be used to identify the statements directly 
involved in the creation of recursive data structures. A def-use chain establishes a relationship between 
the definition point where a value is created and points where it is used. With that information we can 
automatically determine what are the statements that actually define the shape of dynamic memory and 



discard all other statements. The shape analysis only needs to analyze these statements to build the graph 
that represents the data structure in the program. With this approach we avoid to analyze irrelevant 
statements that slow down the shape analysis.  

We have tried this approach on the matrix by vector examples. Let us revisit them now, having pruned all 
traversal statements that are not involved in the output vector creation (stmts. 51-64 and 74-76 for test 5, 
and stmts. 59-75 and 87-89 for test 6). The new values for the tests are shown in table II, where the 
original values for the unprocessed versions are also displayed for reference.  

 

Table II. The matrix by vector product analyzed in original (o) and pruned (p) forms, based in singly-linked 
(s) or doubly-linked (d) lists. 

The results prove that def-use driven shape analysis works much better, as the analysis time has been 
reduced dramatically. Pruned tests produce the same output graphs than their original counterparts, thus 
capturing memory configuration without any loss in precision. This example motivates us to tightly 
integrate shape analysis within client analysis that focus on the statements of interest.  

In this sense, we have already started work toward using the shape analyzer as a base tool for a pointer 
analysis framework [1], that combines several pointer analysis techniques, existent and new, for 
optimizations related to parallelism and locality. This way, shape information could be used by client 
analysis modules to derive information about safely parallelizable loops, possible bugs, etc. Next figure 
gives an overview of such a framework.  
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