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Abstract. Current pointer analysis techniques fail to find parallelism
in heap accesses. However, some of them are still capable of obtaining
valuable information about the way dynamic memory is used in pointer-
based programs. It would be desirable to have a unified framework with
a broadened perspective that can take the best out of available tech-
niques and compensate for their weaknesses. We present an early view of
such a framework, featuring a graph-based shape analysis technique. We
describe some early experiments that obtain detailed information about
how dynamic memory arranges in the heap. Furthermore, we document
how def-use information can be used to greatly optimize shape analysis.

1 Introduction

Pointer analysis is a field of study that has drawn a great deal of attention
over the past few years. The problem of calculating pointer-induced aliases must
be solved so that compilers can safely disambiguate memory references. Static
knowledge of pointer-aliasing is key to perform optimizations related to paral-
lelism and locality. While stack-pointer and array aliases allow for successful
techniques to be applied, heap-directed pointers render such techniques ineffec-
tive. Therefore, new approaches must be taken.

We present in this work a pointer analysis framework that can accommodate
several pointer analysis techniques, both existent and new. It is designed as
an extensible framework based in Java. High-level program transformations are
favored with the use of a near-source IR obtained with Cetus [1], a parsing tool
aimed towards source-to-source translations. A key part of the framework is a
newly designed graph-based shape analysis algorithm [2], that can obtain very
detailed information about the arrangement of recursive data structures in the
heap. Section 2 introduces our shape analysis technique in the context of the
overall framework.

To better understand the shape analyzer capabilities, we have conducted
some preliminary tests with typical heap-directed structures. These tests prove
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that memory configurations are accurately captured. We even discovered that
the analysis times can be greatly reduced by driving the analysis with def-use
information. Section 3 documents our experiments with the shape analyzer.

On its own, the shape analysis is a great tool for programmer support, as it
can be used by developers to check how dynamic structures are really used in
their programs. Better still, higher-level client analysis modules can be built over
the shape analyzer. In particular, we focus in dependence analysis in the con-
text of loops that traverse dynamic recursive data structures. Such dependence
analysis is needed for automatic parallelization of pointer-based programs and
for locality exploitation, which are the final goals of our research. As a prerequi-
site for the dependence test, we need to automatically detect induction pointers.
Section 4 covers the dependence test as a client analysis and how we tackle the
automatic detection of induction pointers.

Finally, Section 5 comments some related work and Section 6 concludes with
the main contributions and ideas for future work.

2 Shape analysis within the general framework

Fig. 1 gives an overview of the general layout for our pointer analysis framework.
First, we take an input program and parse it with the Cetus tool. Cetus is a
compiler infrastructure specially aimed towards the development of compilation
passes of high-level nature. It is written in Java and its source code is publicly
available under a non-restrictive license. Cetus can parse C, C++ and soon
Java, to a unique intermediate representation or IR, where transformations can
be performed. Cetus IR is regarded to be close the source code, which is suitable
for transformations related to pointer analysis.

Within Cetus, we can design compilation passes that are required by the
pointer analysis techniques that follow. Such passes would perform precondition-
ing transformations, like expression simplification, statement reordering, etc., or
would extract information, like data types, CFG, etc., as needed by the subse-
quent analysis. The results of the analysis can then be used to perform optimiza-
tions related to parallelism or locality, modifying the original program to obtain
an optimized version.

Input

program
output

Analysis

Optimized

program
(Cetus)

Pointer Analysis Framework

Parsing and 
preprocessing analysis

Pointer

techniques

Code
transformations

IR

Fig. 1. General layout for the pointer analysis framework

Currently, we are focusing on the preprocessing and analysis phases. They
conform the pointer analysis framework. Later, we can concentrate on using
the results of the different pointer analysis techniques implemented to generate
threaded versions of the programs.



The shape analyzer tool [2] is a cornerstone of our pointer analysis frame-
work. Due to space limitations, only the main features and design principles will
be described. It provides detailed information about the arrangement of memory
locations in the heap for pointer-based programs. That information can be used
for several purposes like: (i) data dependence analysis, by determining if two
accesses may reach the same memory location; (ii) locality exploitation, by cap-
turing the way memory locations are traversed to determine when are they likely
to be contiguous in memory; and (iii) programmer support, to help detecting
incorrect pointer usage or documenting complex data structures.

Our shape analyzer works as an iterative data-flow algorithm. It is flow-
sensitive, context-sensitive and field-sensitive, although it lacks proper interpro-
cedural support at the current state (we plan to add complete interprocedural
support in the near future) and thus functions bodies must be inlined. The algo-
rithm works by performing abstract interpretation over the pointer statements
in the program until a fixed-point is reached. As result of the analysis, shape
graphs are generated. Such graphs capture memory configurations arising in the
heap in a conservative way. Fig. 2 shows an outline of the algorithm operation
in the presence of (a) loops and (b) pointer statements, such as ptr = ptr2 or
ptr = ptr2->sel.

(a) Loop statement class

fun run(ShapeGraph sg)
ShapeGraph oldSummary = EMPTYGRAPH;
ShapeGraph newSummary = sg.copy();
while(newSummary != oldSummary)

Statement nextStmt = StatementList.next();
while(nextStmt != NULL)

sg = nextStmt.run(sg);
nextStmt = StatementList.next();

oldSummary = newSummary;
newSummary.join(sg);

return newSummary;
//Return overall effect of loop

(b) Pointer statement class

fun run(ShapeGraph sg)
ShapeGraphSet sgs = sg.splitBySel();
//Breaks into possible graphs
foreach(sg in sgs)

sg.materializeNode();
//Focus over currently accessed node
sg.abstractSemantics();
//Apply semantics of pointer statement
sg.normalize();
//Summarize compatible nodes

foreach(sg in sgs)
sgOut.join(sg);

return sgOut;

Fig. 2. Outline of shape analysis algorithm regarding loops and pointer statements.

Shape graphs are formed by nodes, links and CLSs (Coexistent Links Sets),
which codify possibilities of connectivity between memory locations in the pro-
gram. Graphs change according to the abstract semantics of the pointer state-
ments present in the program. Fig. 3 sketches how graph change when analysing
the first five statements in the creation of a singly-linked list. Dynamically allo-
cated memory pieces are represented by nodes, and joined together with links.
The last graph is also accompanied by its CLSs description, showing the combi-
nation of links that are possible for each node.

At compile time, the size and connectivity of recursive data structures is
usually unknown. However, our representation of such structures must be finite,
i.e., we must provide mechanisms to capture all possible memory configurations
arising in the program in a finite number of bounded-size graphs. Graphs are
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Fig. 3. Graphs are modified according to the abstract semantics of each statement.

assured to be bounded by the summarization process: whenever nodes are re-
garded as similar enough, they are merged in to a so-called summary nodes.
Similarity is determined by pointer alias relationships and adjustable properties.
In fact, properties are a key instrument to fine-tune summarization decisions
and therefore control how precisely graphs capture the features of the memory
configuration.

Summarizing implies loosing information in favor of a bounded representa-
tion. We provide as well a dual operation to focus over previously summarized
nodes: materialization. This operation can regain precision where pointer ac-
cesses are occurring because it performs strong update [3] [4], discarding un-
necessary links in most situations. However, highly connected and summarized
graphs can make impossible for the materialization operation to recover exactly
the intended links, leaving some conservative ones.

Our analysis computes all possible memory configurations for every state-
ment in the program. At any point during the analysis, there can be several
graphs per statement to reflect all possible memory configurations that can
reach the statement from different control flow paths. Different graphs repre-
sent mutually exclusive pointer arrangements over memory. Since the number of
stack-declared pointer variables is fixed and known at compile time, the num-
ber of graphs per statement is limited by the different and mutually exclusive
combinations of pointer over nodes and their properties.

The shape analyzer tool has been written in Java, taking in all new features
of the latest Java 1.5 release. A big effort has been spent in making this tool
as robust as it can be, so the object-oriented approach seemed a natural choice.
Developing in such a manner facilitates writing extensions and performing main-
tenance tasks. Besides, a Java design makes it easier to blend with the extended
version of Cetus that serves as front-end for the pointer analysis framework.

Fig. 4 is a simplified view of how elements interact within the pointer analy-
sis framework: first, the input program is parsed by Cetus, this way we achieve
an IR where we can easily operate; second, our specific preprocessing pass is
run over Cetus IR to translate the program to the format required by the shape
analyzer; third, the shape analyzer outputs the graphs for the program, which
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Fig. 4. Different modules working together within the pointer analysis framework.

can be viewed in the companion visualization tool. Finally, client analysis tech-
niques can be added to produce output results based on shape information, like
parallelizable loops, possible bugs, etc. These techniques can drive the analysis
to make it more effective as we will see later.

3 Experimental results

We present now some early experimental results regarding the shape analyzer.
For these tests we have considered six programs. The first four are typical kernels
of applications that deal with recursive data structures. For the last two tests, we
consider the product of a sparse matrix by a sparse vector, first based on singly-
linked lists, then based on doubly-linked lists. Sparse structures are usually built
with pointers to avoid wasting storage capacity with many empty values. Table
1 describes the structures tested and displays some metrics for the analysis
performed.

The first column identifies each test, while the second column holds the num-
ber of analyzed statements. All available pointer and flow statements are con-
sidered. The tests that consider linked lists (singly-linked and doubly-linked)
first create the lists, then traverse them. The tests working with trees (n-ary
and binary) perform structure traversing during the trees creation, as each new
element is added as a leave starting from the root. The sparse matrix is created
as a header list (rows), whose elements point to other lists (columns), while the
sparse vectors are created as lists. In the fifth test, the structures are based in
simply-linked lists (s), while on the sixth test, they are based on doubly-linked
lists (d). Regarding the product algorithm, first the input matrix and vector are
created, then the output vector is built as the matrix and input vector are tra-
versed. The output for each test is a graph that captures the structures created
and traversed. The complete codes and resulting graphs are available through
our website1.

1 http://www.ac.uma.es/∼asenjo/research/codes.html



Data structure # stmts Time # graphs Nodes, links & CLSs per graph

Singly-linked list 17 0.47 sec 62 2.51 (4) / 3.64 (7) / 4.75 (13)

Doubly-linked list 19 0.52 sec 74 2.59 (4) / 6.90 (13) / 4.55 (13)

N-ary tree 17 0.62 sec 372 2.61 (4) / 6.39 (12) / 9.38 (22)

Binary tree 25 2.02 sec 435 2.73 (4) / 10.58 (20) / 23.84 (65)

Matrix-vector(s) 83 1.14 min 2477 7.56 (12) / 26.10 (40) / 29.34 (50)

Matrix-vector(d) 97 1.55 min 2931 7.60 (12) / 30.95 (48) / 30.37 (50)
Table 1. Structures tested in the shape analyzer, number of analyzed statements, time
spent on the analysis, total number of generated graphs, and nodes, links and CLSs
per graph, in average (and maximum) values.

The third column shows times for the tests. Only the time for the actual
shape analysis is shown (no parsing or preprocessing), as measured in a Pentium
IV 2.4 GHz with 1 GB RAM. We think that times are very reasonable for such a
detailed analysis. Within the first four examples of synthetic codes, the highest
time is that of the binary tree analysis, probably due to its more complex CFG.
It should be noted that more possible flow paths make the analysis more costly,
as it has to consider all possibilities conservatively. On the other hand, the first
three examples run in less than a second. The matrix by vector product takes
longer, clocking at more than 1 minute, which is only reasonable considering
there are quite some more statements to analyze than in previous tests.

The fourth column indicates the total number of graphs generated for each
test. This metric gives an idea about the internal cost of analyzing different
structures and traversals. The numbers range from a few dozens to a few thou-
sands. Next columns show the total number of nodes, links and CLSs per graph,
as average values with the maximum in brackets. The number of nodes per graph
is essentially constant in the first four tests, as it depends mostly on the number
of simultaneously live pointers, which is usually one for the structure handle
and two for navigating it. The matrix by vector test has three times more nodes
because there are three different structures, instead of one. The number of links
depends on the amount of different links that each element has. Typically each
element in a recursive data structure does not have more than two links.

Finally, CLSs are the elements where most of the complexity reside: they
describe how nodes and links can combine to create all possible memory con-
figurations arising in the program. The highest maximum is for the binary tree
among all tests, but the maximum average is attained in the matrix by vector
program based on doubly-linked lists.

To sum up, we can say that the shape analyzer can effectively analyze com-
mon data structures for pointer-based codes. Generated graphs accurately cap-
ture heap structures. Furthermore, we think that such graphs can be obtained
in manageable times, specially for such a complex technique. Let us not forget
that we are performing fixed-point abstract interpretation of pointer and flow
statements to create and modify very detailed graphs. Despite this encouraging
results, it is clear that this is a costly technique which is not likely to succeed if



used for whole program analysis. Instead it would be better used within a client
analysis module that would focus on local analysis.

In this regard, we discovered that def-use information can be used to identify
the statements directly involved in the creation of the recursive data structures
that are traversed in the segment of code under analysis. A def-use chain estab-
lishes a relationship between the definition point where a value is created and
points where it is used. With that information we can automatically determine
what are the statements that actually define the shape of dynamic memory and
discard all other statements. With this approach we avoid to analyze irrelevant
statements that could slow down the shape analysis.

We have tried this approach on the matrix by vector examples. Let us revisit
them now, having pruned all traversal statements that are not involved in the
output vector creation. The new values for the tests are shown in table 2, where
the original values for the unprocessed versions are also displayed for reference.

Data structure # stmts Time # graphs Nodes, links & CLSs per graph

Matrix-vector(o,s) 83 1.14 min 2477 7.56 (12) / 26.10 (40) / 29.34 (50)

Matrix-vector(p,s) 66 7.52 sec 772 5.69 (10) / 19.28 (36) / 19.91 (48)

Matrix-vector(o,d) 97 1.55 min 2931 7.60 (12) / 30.95 (48) / 30.37 (50)

Matrix-vector(p,d) 77 9.22 sec 823 5.45 (10) / 21.29 (42) / 19.68 (48)

Table 2. The matrix by vector product analyzed in original (o) and pruned (p) forms,
based in singly-linked (s) or doubly-linked (d) lists.

The results prove that def-use driven shape analysis works best, as the anal-
ysis time has been reduced dramatically. Pruned tests produce the same output
graphs than their original counterparts, thus capturing memory configuration
without any loss in precision. This example motivates us to tightly integrate
shape analysis within client analysis that focus on the statements of interest.

When trying to include def-use chains generation within the framework, we
realized that their computation is easier in the SSA form of the program. This
led us to implement SSA support as a Cetus extension. The cost of providing
SSA support within the framework is not only justified by its use to drive shape
analysis. It is also a required module for other pointer analysis and optimizations
techniques. In our approach to SSA, we obtain the dominator tree in the first
place. Then a slightly modified version of Cytron’s algorithm [5] is used for
constructing the SSA form. We modified the algorithm to remove unnecessary
φ-functions that could hinder client analysis performance. We also made it more
efficient by renaming each φ-function just once, instead of twice.

4 Dependence test as a client analysis

The shape analysis algorithm is a basic element in our pointer analysis frame-
work. However, we are aware that it is not sufficient as a stand-alone analysis
technique. In order to take full advantage of its power it must be coupled with a
higher-level client analysis that can determine regions to be analyzed for a given
purpose. One of such client analysis is data dependence analysis for loops that



traverse dynamic recursive data structures. Ultimately, this kind of analysis can
determine what loops can be safely parallelized in an automated basis.

Let us focus now on a common situation. Usually, data structures are created
at the initialization phase of programs and later, they are traversed to perform
certain calculations. Often, most of the execution time of the program occurs at
such traversals, where the structure change no more, but their values do. In such
scenario, a client analysis could identify the statements that create the structure,
call the shape analyzer over those statements to obtain shape information, and
then use that information to look for data dependencies in the loops of interest.

In fact, the dependence detection can also be performed with the help of the
shape analyzer, by marking or touching traversed nodes with accessing informa-
tion. More precisely, nodes in the graph can be marked as having been read or
written. This is achieved by using the touch property in the context of a loop-
carried dependence test, similarly to [6]. As a prerequisite of such dependence
analysis, induction pointers must be identified for loops that traverse recursive
data structures.

Induction pointers, also called navigator pointers, are used in loops to tra-
verse recursive structures, establishing their traversal pattern. That pattern,
along with the shape of the structure, allows to detect dependencies between ac-
cesses. Of course, induction pointers already introduce an inherent dependence
between different iterations of a loop, something known as the pointer-chasing
problem. However, there are techniques to overcome it, provided that no other
dependencies exist. In the next example, p is the induction pointer.

while (p!= NULL){

p -> x = p -> y * 5;

p = p -> next;

}

Being able to automatically detect induction pointers is a must for our com-
piler analysis framework, because they are needed to identify loops that traverse
recursive data structures, and thus are candidate for parallelization in our ap-
proach. We have chosen Hwang and Saltz’s method [7] for identifying induction
pointers in a program, based on the calculation of def-use chains of statements
that construct and traverse recursive data structures. As commented above, we
have already added def-use chains generation support within our framework, so
including this method comes as a straightforward addition.

5 Related work

In the past few years pointer analysis has attracted a great deal of attention. A
lot of studies have focused on stack-pointer analysis, like [8] and [9], while others,
more related to our work, have focused on heap-pointer analysis, like [10] and
[11]. Both fields require different techniques of analysis. Unfortunately, heap-
pointer techniques have failed to achieve aggressive optimizations. We think this
is partly caused by techniques being isolated from other complementary pointer
analysis techniques.



We are particularly fond of the work by Sagiv et al. [4], [12]. Their use
of abstract interpretation/abstract semantics, along with materialization, have
been adapted for the development of our framework. It is worth noting though,
that their analysis is much more costly, meaning they can only analyze simple
operations over singly-linked lists. Otherwise, analysis times and memory use
become prohibitive. Also, their technique is only able to correctly analyze simple
structures because they lack the support to handle structures like doubly-linked
lists or heterogeneous trees. In our approach we have strived and achieved to
obtain suitable graph abstractions for this kind of data structures. Besides, we
think the analysis run at manageable times for such a complex technique. Finally,
it should be noted that our technique is able to analyze structures based in
pointer arrays, which is unheard of for a shape analysis technique, as far as we
know.

We have been inspired for this work by existing research compiler frameworks:
Polaris [13], which permitted the development of some noteworthy optimizations
in array-based Fortran programs; ORC [14], which covers the whole compilation
process and targets Itanium processors; SUIF [15], used by many researchers to
implement their compiler techniques; or Soot [16], that features different modules
for bytecode optimizations in Java programs. Polaris and SUIF ended their life
cycle, ORC and Soot seem to concentrate on low level optimizations, and none
of them focuses primarily on pointer analysis. Our plan is not to outdo these
long established frameworks, but to swerve in a more specific direction where
there is still plenty of room for optimizations related to parallelism and locality.

6 Conclusions and future work

As main contribution, we have introduced how a detailed shape analysis tech-
nique can be a valuable tool within a pointer analysis framework. Such a frame-
work can combine different techniques towards better exploitation of parallelism.
We have presented some early experiments that prove that shape analysis can be
greatly improved when combined with information derived from other pointer
analysis techniques, namely def-use chains.

We have also added support for the SSA form and def-use chains in Cetus.
This support is useful in three ways: first, it helps to identify the statements
that must be analyzed for correct shape analysis; second, it allows for automatic
induction pointer recognition in the context of pointer-chasing loops, a key in-
strument for finding parallelism in recursive data structures; third, it allows for
easy implementation of many pointer techniques that require SSA and/or def-use
chains, enhancing the possibilities of the framework.

Only an early view of the pointer analysis framework has been presented.
Still much work is needed to implement more pointer analysis techniques and
make them work together towards finding unexploited parallelism in pointer-
based programs. Also, we plan to conduct more experiments with benchmarks
programs to fully test the capabilities of the techniques implemented.
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