
Detecting Loop-Carried Dependences in

Programs with Dynamic Data Structures

Angeles Navarro ∗, Francisco Corbera, Adrian Tineo,

Rafael Asenjo and Emilio L. Zapata

Dept. of Computer Architecture, University of Malaga, Campus de Teatinos,

E-29071. Malaga, Spain.

Abstract

The problem of data dependences detection in codes based on dynamic data struc-

tures, is crucial to various compiler optimizations. The approach presented in this

paper focus on detecting data dependences induced by heap-directed pointers on

loops that access dynamic data structures. Knowledge about the shape of the data

structure accessible from a heap-directed pointer, provides critical information for

disambiguating heap accesses originating from it. The new approach is based on a

previously developed shape analysis that maintains topological information of the

connections among the different nodes (memory locations) in the data structure. As

a novelty, our approach carries out abstract interpretation of the statements being

analyzed, annotating memory locations with read/write information. This informa-

tion will be later used in a very accurate data dependence test which we describe

in this paper. We also discuss its application to several different benchmarks.

Key words: Dynamic data structures, Compiler optimizations, Data dependence

test, Shape analysis, Abstract interpretation

∗ Corresponding author. Phone: +34 952132791. Fax: +34 952132790.

Email addresses: angeles@ac.uma.es (Angeles Navarro), corbera@ac.uma.es

(Francisco Corbera), tineo@ac.uma.es (Adrian Tineo), asenjo@ac.uma.es

(Rafael Asenjo), ezapata@ac.uma.es (Emilio L. Zapata).

1 Introduction

Optimizing and parallelizing compilers rely upon accurate static disambigua-

tion of memory references, i.e. determining at compile time if two given mem-

ory references always access disjoint memory locations. This problem, known

as data dependences detection is crucial to various compiler optimizations such

as instruction scheduling, data-cache optimizations, loop transformations, au-

tomatic vectorization and parallelization. Unfortunately the presence of alias

in pointer-based codes makes memory disambiguation a non-trivial issue. An

alias arises in a program when there are two or more distinct ways to refer

to the same memory location. Program constructs that introduce aliases are

arrays, pointers and pointer-based dynamic data structures.

Over the past twenty years powerful data dependence analysis have been de-

veloped to resolve the problem of array aliases. The problem of calculating

pointer-induced aliases, called pointer analysis, has also received significant

attention over the past few years [17], [14], [3]. Pointer analysis can be divided

into two distinct subproblems: stack-directed analysis and heap-directed anal-

ysis. We focus our research in the latter, which deals with objects dynamically

allocated in the heap. An important body of work has been conducted lately

on this kind of analysis. A promising approach to deal with dynamically al-

located structures consists in explicitly abstracting the dynamic store in the

form of a bounded graph. In other words, the heap is represented as a storage

shape graph and the analysis tries to capture some shape properties of the

heap data structures. This type of analysis is called shape analysis and in this

context, our research group has developed a powerful shape analysis frame-

work [2]. Shape analysis algorithms have demonstrated high precision over

schemes that name objects based on location sites (as in [6], [10]), but have

not been sufficiently exploited and put to work in optimization algorithms,

such as the data dependence analysis which we address in the paper.

The approach presented in this paper focuses on detecting data dependences

induced by heap-directed pointers on loops that access pointer-based dynamic

2

data structures. Particularly, we are interested in the detection of the loop-

carried dependences (henceforth referred as LCDs) that may arise between the

statements in two iterations of the loop. Knowledge about the shape of the

data structure accessible from heap-directed pointers, provides critical infor-

mation for disambiguating heap accesses originating from them, in different

iterations of a loop, and hence to provide that there are not data dependences

between iterations.

Until now, the majority of LCDs detection techniques based on shape analysis

[4], [9], use as shape information a coarse characterization of the data structure

being traversed (Tree, DAG, Cycle). One advantage of this type of analysis

is that it enables faster data flow merge operations and reduces the storage

requirements for the analysis. However, it also causes a loss of accuracy in the

detection of the data dependences, specially when the data structure being

visited is not a “clean” tree, contain cycles or is modified along the traverse.

Our approach, on the contrary, is based on a shape analysis that maintains

topological information of the connections among the different nodes (mem-

ory locations) in the data structure. In fact, our representation of the data

structure provides us a more accurate description of the memory locations

reached when a statement is executed. Moreover, as we will see in the next

sections, our shape analysis is based on the abstract interpretation of the pro-

gram statements over the graphs that represent the data structure at each

program point. In other words, the new approach does not relies on a generic

characterization of the data structure shape in order to prove the presence of

data dependences. The novelty is that our approach symbolically interprets

the statements of the loop being analyzed, and let us annotate the real mem-

ory locations reached by each statement with read/write information. This

information will be later used in order to find LCDs in a very accurate data

dependence test which we describe in this paper.

We also discuss the behavior and effectiveness of our test when applied to some

sample programs. For these experiments we considered small custom-made

programs and benchmark programs. In the first category, we created sample

3

codes that traverse DAG and Cyclic data structures. In the second category, we

considered two programs that calculate the product of disperse matrices and

vectors. These structures are usually pointer-based to avoid storing the null

elements. In addition, we studied mst and em3d from the Olden suite [1] and

twolf from the SPEC CPU2000 suite [15]. In the light of these experiments, we

believe that the new approach provides more accurate results when compared

to previous techniques in the context of real applications.

Summarizing, the goal of this paper is to present the compilation algorithms

which are able to detect LCDs in loops that operate with general pointer-

based dynamic data structures, using as a key tool a powerful shape analysis

framework. For it, we organize the paper as follows: Section 2 briefly describes

the key ideas under our shape analysis framework. With this background, in

Section 3 we present the compiler techniques to automatically identify LCDs

in codes based on dynamic data structures. Next, in Section 4 we discuss

the application of the test to the custom made and benchmark programs.

In Section 5 we summarize some of the previous works in the topic of data

dependences detection in pointer-based codes. Finally, in Section 6 we conclude

with the main contributions and ideas for future work.

2 Shape Analysis Framework

The algorithms presented in this paper are designed to analyze programs with

dynamic data structures that are connected through pointers defined in lan-

guages like C. The programs, before the analysis, have to be preprocessed in

order to normalize the pointer statements. It is, each statement dealing with

pointers must contain only simple access paths. Thus, in our approach, we will

consider six simple instructions that deal with pointers:

x = NULL x = malloc x = y

x->field = NULL x->field = y x = y->field

4

where x and y are pointer variables and field is a field name of a given

data structure. More complex pointer instructions can be built upon these

simple ones and temporal variables. As a preprocessing tool, we have used

and extended the ANTLR framework [16] which allow us to automatically

normalize the C codes before the shape analysis.

Basically, our analysis is based on approximating by graphs (which we name

as Reference Shape Graphs, RSGs) all possible memory configurations that

can appear after the execution of a statement in the code. By memory config-

uration we mean a collection of dynamic structures. These structures comprise

several memory chunks, that we call memory locations, which are linked by

references. Inside these memory locations there may be several fields (data or

pointers to other memory locations). The pointer fields of the data structure

are called selectors. In Fig. 1 we can see a particular memory configuration

which corresponds with a single linked list. Each memory location in the list

comprises the val data field and the nxt selector (or pointer field). In the

same figure, we can see the corresponding RSG which capture the essential

properties of the memory configuration by a bounded size graph. In this graph,

the node n1 represent the first memory location of the list, n2 all the middle

memory locations, and n3 the last memory location of the list.

val nxtval nxtval nxt

p

list

n1 n2 n3
nxt

p

list

val nxtval nxt val nxtval nxtval nxt val nxtval nxt

Memory Configuration

Reference Shape Graph (RSG)

Fig. 1. Working example data structure and the corresponding RSG.

Basically, each RSG is a graph in which nodes represent memory locations

which have similar reference patterns. To determine whether or not two mem-

ory locations should be represented by a single node, each one is annotated

with a set of properties. Now, if several memory locations share the same

5

properties, then all of them will be represented (or summarized) by the same

node (n2 in our example). These properties are described in [2], but two of

them are sketched here because they are necessary in the following sections:

(i) the Share Information: it can tell whether at least one of the locations

represented by a node is referenced more than once from other memory loca-

tions. We use two kinds of attributes for each node: (1) SHARED(n) states

if any of the locations represented by the node n can be referenced by other

locations by different selectors (e.g. SHARED(n2)=FALSE in the previous

figure); (2) SHSEL(n, sel) points out if any of the locations represented by

n can be referenced more than once by following the same selector sel from

other locations. For instance, SHSEL(n2, nxt)= FALSE captures the fact that

following selector nxt you always reach a different memory location; and (ii)

the Touch Information: it is taken into account only inside loop bodies and

it helps to mark the memory locations that have been visited. This property

avoids the summarization of already visited locations with non-visited ones.

We will see how the touch information is the key tool that allows us to auto-

matically annotate the nodes of the data structure which are written and/or

read by the pointer statements inside loops.

Each statement of the code may have associated a set of RSGs, in order to

represent all the possible memory configuration at each particular program

point. In order to generate the set of RSGs associated with each statement (or

in other words, to move from the “memory domain” to the “graph domain”

in Fig. 1), an abstract interpretation of the program statements over the

graphs is carried out. Basically, each program statement transforms the graphs

to reflect the changes in memory configurations derived from the statement

execution. The abstract semantic of each statement states how the analysis

of this statement must transform the graphs [2]. The abstract interpretation is

carried out iteratively for each statement until we reach a fixed point in which

the resulting RSGs associated with the statement does not change any more.

All this can be illustrated by the example of Fig. 2, where we can see how

the statements of the code which builds a single linked list are symbolically

executed until a fixed point is reached.

6

S1: l=malloc()

S2: p=l

while()
{

S3: a=malloc();

S4: p->nxt=a;

S5: p=a;
}

Iteration 1 Iteration 2 Iteration 3 Iteration 4

l

lp

lp a

lp a

l ap

l p a

l p a

l pa

l p a

l p a

l pa

l p a

l p a

l paFixed point

Fig. 2. Building a RSG for each statement of an example code.

3 Loop-Carried Dependences Detection

As we have mentioned, we focus on detecting the presence of LCDs on loops

that traverse heap-based dynamic data structures. Two statements in a loop

induce a LCD, if a memory location accessed by one statement in a given

iteration, is accessed by the other statement in a future iteration, with one of

the accesses being a write access.

The new method tries to identify if there is any LCD in the loop following the

algorithm that we outline in Fig. 3. Let’s recall that the programs have been

normalized such that the statements dealing with pointers contain only simple

access paths. Let’s assume that statements in the loop have been labeled

(S1, S2, . . ., Si, . . .). The set of the loop body simple statements (named

SIMPLESTMT) is the input to this algorithm.

As we see in Fig. 3, the new algorithm can be divided into four steps. Let’s

review them in more detail.

3.1 Step 1: Attaching Dependence Touch directives

In the first step, the algorithm examines the simple statements of the loop

body and it annotates some of them with a new directive, the Dependence

Touch directive, DepTouch. More precisely, only a simple pointer statement,

7

fun LCDs Detection (SIMPLESTMT)

1. ∀ Si ∈ SIMPLESTMT that accesses the heap

Attach(Si, DepTouch(AccPointer,AccAttSi,AccField));

2. [DEPGROUP,ACCESSPAIRSGROUP] = Create Dependence Groups(DEPTOUCH);

3. ACCESSPAIRSGROUP = Shape Analysis(SIMPLESTMT,DEPTOUCH,

DEPGROUP,ACCESSPAIRSGROUP);

4. DEP = LCD Test(ACCESSPAIRSGROUP);

if DEP == ∅ then

return(NoLCD); /* no data dependence detected */

else

return(DEP); /* return all the detected data dependences */

endif;

end

Fig. 3. The new data dependences detection algorithm.

Si, that access the heap inside the loop, is annotated with the directive. The

directive summarizes the statement information that is relevant to the next

steps of our algorithm.

Definition 3.1 A Dependence Touch directive is defined as

DepTouch(AccPointer, AccAttrSi, AccField). It comprises three impor-

tant pieces of information regarding the access to the heap in statement Si:

i) the access pointer, AccPointer, the access attribute, AccAttrSi, and the ac-

cess field, AccField. �

Definition 3.2 The access pointer, AccPointer: is a stack declared pointer

which accesses the heap in the context of a statement. �

Definition 3.3 The access attribute, AccAttSi: identifies the type of access

of the access pointer in a Si statement. This access attribute can take one of

the values: ReadSi, WriteSi. �

Definition 3.4 The access field, AccField: is the field of the data structure

pointed to by the access pointer which is read or written in the context of a

statement. �

8

For instance, an S1: aux = p->nxt statement should be annotated with

DepTouch(p, ReadS1, nxt), whereas the S4: aux3->val = tmp statement

should be annotated with DepTouch(aux3, WriteS4, val).

3.2 Step 2: Creating Dependence and Access Pairs Groups

In this step, the algorithm creates some auxiliary structures related to the data

dependences detection: the Dependence Groups and the Access Pairs Groups.

Definition 3.5 Let g denote the name of an access field contained in any of

the Dependence Touch directives of the loop. A Dependence Group related

to this access field, DepGroupg, can be created. This Dependence Group is a

set of access attributes fulfilling two conditions: i) the access attributes belong

to Dependence Touchs in which the access field is g, being the access pointers of

the same data type, and ii) at least one of these access attributes is a WriteSi.

�

In other words, a DepGroupg annotates the type of access (read/write) of

a set of statements in the loop that access the heap through pointers of the

same data type and that may potentially lead to a LCD. A LCD could happen

if: i) the analyzed statement makes a write access (WriteSi) or ii) there are

other statements accessing the same field (g) and one of the accesses is a write

(WriteSj). We outline in Fig. 4 the function Create Dependence Groups. It

creates Dependence Groups, using as an input the set of Dependence Touch

directives, DEPTOUCH. Note that it is possible to create a Dependence Group

with just one WriteSi attribute. This Dependence Group will help us check

the output dependences for the execution of Si in different loop iterations.

The set of all the Dependence Groups is named DEPGROUP.

As we see in Fig. 4, associated with each DepGroupg, the algorithm initializes

a set called AccessPairsGroupg. This set is initially empty but during the

next step of the analysis process it could be filled with the pairs named access

pairs.

Definition 3.6 An access pair is a tupla which comprises two ordered access

9

attributes which belong to the same Dependence Group. �

For instance, a DepGroupg = {ReadSi, WriteSj, WriteSk} is a Dependence

Group that contains three access attributes related to three statements in the

loop (Si, Sj and Sk) such as all of the accesses are to the same field (g). At

the end of the step 3 of the algorithm, the associated AccessPairsGroupg

could comprise the pair <ReadSi,WriteSj>. That would mean that, during

the analysis, the same field, g, of the same memory location may have been

first read by statement Si and later written by statement Sj , clearly leading to

an anti-dependence. Therefore, the order inside each access pairs is significant

for the sake of discriminating between flow, anti or output dependences. The

set of all AccessPairsGroup’s is named ACCESSPAIRSGROUP. As we see

in Fig. 4, the outputs of the Create Dependence Groups function are the

DEPGROUP set and the initial ACCESSPAIRSGROUP set.

fun Create Dependence Groups(DEPTOUCH)

DEPGROUP = ∅; ACCESSPAIRSGROUP = ∅;

∀ DepTouch(AccPointer,AccAttSi,g) ∈ DEPTOUCH

if [(AccAttSi == WriteSi) or

∃ DepTouch(AccPointer’,AccAttSj ,g) ∈ DEPTOUCH, being j 6= i /

(TYPE(AccPointer) == TYPE(AccPointer’)) and (AccAttSj == WriteSj)] then

if ∄ DepGroupg ∈ DEPGROUP then

DepGroupg = {AccAttSi}; DEPGROUP = DEPGROUP ∪ DepGroupg;

else

DepGroupg = DepGroupg ∪ {AccAttSi};

endif;

endif;

∀ DepGroupg ∈ DEPGROUP

AccessPairsGroupg = ∅ ;

ACCESSPAIRSGROUP = ACCESSPAIRSGROUP ∪ AccessPairsGroupg ;

return(DEPGROUP,ACCESSPAIRSGROUP);

Fig. 4. Create Dependence Groups function.

3.3 Step 3: Running the Shape Analysis

In this step, we run the shape analysis tool. For it, the algorithm calls the

Shape Analysis function whose inputs are the set of simple statements SIM-

10

PLESTMT, the set of Dependence Touch directives, DEPTOUCH, the set

of Dependence Groups, DEPGROUP and the initial ACCESSPAIRSGROUP

set. The output of this function is the final ACCESSPAIRSGROUP set. The

Shape Analysis function is based in our shape analysis framework, that is

described in detail in [2] and briefly introduced in Section 2. In Fig. 5 we out-

line the necessary extension to our shape analysis presented in [2] in order to

deal with the data dependence analysis, which is the main focus in this paper.

Here, we will describe the main features of the shape analysis related to the

LCD test. Let’s recall that our shape analysis is able to precisely identify, at

compile time, the memory locations that are going to be pointed to by the

pointers of the loop. Basically, the task of the shape analysis is to symboli-

cally execute each statement locating the access pointer of the statement at

the corresponding memory location (or node) and updating the graphs that

represent the possible memory configurations. At the same time, with the in-

formation provided by the DepTouch directive, the node pointed to by the

access pointer of the statement, is “touched”. This means, that the memory

location is going to be marked with the access attribute of the corresponding

DepTouch directive. In that way, we annotate in the memory location, that a

given statement has read or written in a given field comprised in the location.

fun Shape Analysis(SIMPLESTMT, DEPTOUCH, DEPGROUP, ACCESSPAIRSGROUP)

· · ·

∀ Sj ∈ SIMPLESTMT

· · ·

if DepTouch(AccPointer,AccAttSj ,AccField) attached to Sj then

AccessPairsGroupg = TOUCH Updating(TOUCHn, AccAttSj,

DepGroupg, AccessPairsGroupg);

endif;

· · ·

return(ACCESSPAIRSGROUP);

Fig. 5. Shape Analysis function extension.

But let’s see more precisely how the Shape Analysis function works. The

simple statements of the loop body are executed according to the program

control flow, and each execution takes the graphs from the previous statement

11

and modifies it (producing a new set of graphs). On the other hand, each node

n of a RSG graph has a set associated with it, named Touch Set and this set

can be modified during the execution of a statement.

Definition 3.7 Let n be a node of a RSG graph. The Touch Set associ-

ated with it, TOUCHn, is a set that contains the access attributes from the

DepTouch directives of the statements that have touched the node. �

Let’s see how the “touch of a node” takes place. When a statement Sj , belong-

ing to the analyzed loop, is symbolically executed the access pointer of the

statement, AccPointer, will be made to point to a node, n. In our analysis, a

node pointed to by a pointer always represents a single memory location. That

node n has associated its corresponding TOUCHn set. If the statement Sj is

annotated with a DepTouch directive then that directive is also interpreted by

the analyzer leading to the updating of the TOUCHn set.

This TOUCH set updating process can be formalized as follows. Let be

DepTouch(AccPointer,AccAttSj,AccField) the Dependence Touch direc-

tive attached to sentence Sj. Let’s assume that AccAttSj belongs to a Depen-

dence Group, DepGroupg. Let n be the RSG node pointed to by the access

pointer, AccPointer, in the symbolic execution of the statement Sj . Let be

{AccAttSk} the set of access attributes which belongs to the TOUCHn set,

where k represents all the statements Sk, which have previously touched the

node. TOUCHn could be an empty set. Then, when this node is going to

be touched by the above mentioned DepTouch directive, the updating process

that we show in Fig. 6 takes place.

As we note in Fig. 6, if the TOUCHn set was originally empty we just

append the new access attribute AccAttSj of the DepTouch directive. This

situation happens when the node n is visited (touched) for the first time.

However, if the TOUCH set does already contain other access attributes,

{AccAttSk}, it is because that node has been visited by other statements.

Let’s recall that the access attributes that we are using to touch the nodes

represent information about the type of access of the statements that have

12

fun TOUCH Updating(TOUCHn, AccAttSj, DepGroupg, AccessPairsGroupg)

if TOUCHn == ∅ then /* The Touch set was originally empty */

TOUCHn = {AccAttSj}; /* just append the new access attribute */

else /* The Touch set was not empty */

AccessPairsGroupg = AccessPairsGroup Updating(TOUCHn, AccAttSj,

DepGroupg, AccessPairsGroupg);

/* update the access pairs group set */

TOUCHn = TOUCHn ∪ {AccAttSj}; /* append the new access attribute */

endif;

return(AccessPairsGroupg);

fun AccessPairsGroup Updating(TOUCHn, AccAttSj, DepGroupg, AccessPairsGroupg)

∀ AccAttSk ∈ TOUCHn

if AccAttSk ∈ DepGroupg then /* AccAttSk and AccAttSj ∈ DepGroupg */

AccessPairsGroupg = AccessPairsGroupg ∪ {<AccAttSk,AccAttSj>};

/* A new ordered pair is appended */

endif;

return(AccessPairsGroupg);

Fig. 6. TOUCH and AccessPairsGroup updating functions.

previously visited the node. In this case, two actions take place: first, an up-

dating of the AccessPairsGroupg associated with the DepGroupg to which

the new access attribute AccAttSj belongs, takes place; secondly, the access

attribute AccAttSj is appended to the TOUCH set of the node, TOUCHn =

TOUCHn ∪ {AccAttSj}.

The algorithm for updating the AccessPairsGroupg is shown in Fig. 6. We had

defined the DepGroupg (def. 3.5) to track the accesses (to the same field g) of

a set of statements that may potentially lead to a LCD. In fact, the associated

AccessPairsGroupg is updated when a LCD appears. In the algorithm of

Fig. 6, we check all the access attributes of the statements that have touched

previously the node n. If there is any access attribute, AccAttSk which belongs

to the same DepGroupg that AccAttSj (the current statement which is being

executed), then a new access pair is appended to the AccessPairsGroupg. The

new pair is an ordered pair <AccAttSk, AccAttSj> which indicates that the

memory location represented by node n has been first accessed by statement

Sk and later by statement Sj , being Sk and Sj two statements associated with

13

the same Dependence group, therefore a conflict may occur. Note that in the

implementation of an AccessPairsGroupg there will be no redundancies in

the sense that a given access pair can not be stored twice in the group.

3.4 Step 4: Checking the data dependences

In the last step, the new LCD Test function will check each one of the previ-

ously generated AccessPairsGroupg, which belong to the ACCESSPAIRS-

GROUP set. The input of this function is precisely the ACCESSPAIRS-

GROUP set generated in the previous step, and the output is the set DEP,

which contains all the LCDs detected in all the Access Pairs Groups. The

function is detailed in the code of Fig. 7.

Definition 3.8 The set of LCDs detected in an Access Pairs Group,

AccessPairsGroupg, is named as Depg. It can be an empty set or it can con-

tain any combination of the following data dependence types: FlowDep (i.e.

Flow dependence), AntiDep (i.e. Anti-dependence), OutDep (i.e. Output de-

pendence). �

Theorem 3.1 Let AccessPairsGroupg be the Access Pairs Group associated

with the Dependence Group DepGroupg. If, after the shape analysis (step 3),

AccessPairsGroupg is empty, then the statements associated with DepGroupg

do not provoke any LCD. �

Proof. The shape analysis iteratively executes the loop body statements in or-

der, and it finishes when a fixed point is reached. That means that all the nodes

that the loop body statements visit, have been touched with the corresponding

access attribute and the graphs as well as the TOUCH/ACCESSPAIRSGROUPS

sets do not change any more. If an Access Pairs Group, AccessPairsGroupg,

is empty that is because the statements associated with the corresponding

Dependence Group, DepGroupg, have not visited the same node (or memory

location) during the loop execution, therefore we can safely determine that

those statements will not carry out any LCD. �

14

On the other hand, if after the shape analysis, an AccessPairsGroupg is not

empty, then depending on the pairs comprised by the AccessPairsGroupg, we

can raise some of the data dependence patterns provided by Lemma 3.1.

Lemma 3.1 Let <AccAttSi,AccAttSj> be an access pair belonging to a non

empty Access Pairs Group, AccessPairsGroupg. A data dependence is re-

ported in the following cases:

• AccAttSi == WriteSi and AccAttSj == ReadSj → a Flow dependence

(FlowDep) between statements Si and Sj has been detected.

• AccAttSi == ReadSi and AccAttSj == WriteSj → an Anti-dependence

(AntiDep) between statements Si and Sj has been detected.

• AccAttSi == WriteSi and AccAttSj == Writej → an Output dependence

(OutDep) between statements Si and Sj has been detected.

An special case happens when the access pair <AccAttSi,AccAttSi>, being

AccAttSi == WriteSi, belongs to the AccessPairsGroupg. In this case, an

Output dependence (OutDep) between statement Si and itself is detected. �

Proof. From the proof of Theorem 3.1, we know that if an Access Pairs Group,

AccessPairsGroupg, is not empty at the end of the shape analysis, is be-

cause the statements associated with the corresponding Dependence Group,

DepGroupg, have visited the same field (g) in at least one node (or mem-

ory location) during the loop execution. In other words, a data dependence

could happen. From the AccessPairsGroup updating function, we see that

the components in an access pairs tupla are inserted in an ordered fashion.

Therefore this order can be used to accurately discriminate between flow, anti

or output dependences. �

The LCD Test function checks all the data dependence patterns considered

in Lemma 3.1, for all the access pairs contained in an AccessPairsGroupg,

as we see in Fig. 7. This process generates the set Depg which contains the

LCDs detected in that Access Pairs Group. We note that this checking must

be performed for all the Access Pairs Groups. All the Depg sets generated are

15

merged into the set DEP, which represents all the LCDs detected in the loop.

Precisely that is the output of function LCD Test.

fun LCD Test(ACCESSPAIRSGROUP)

DEP = ∅ ;

∀ AccessPairsGroupg ∈ ACCESSPAIRSGROUP

Depg = ∅;

∀ access pair ∈ AccessPairsGroupg

case (<AccAttSi,AccAttSj>) of

(<WriteSi,ReadSj>) → Depg = Depg ∪ FlowDep; /* Flow dep. between Si and Sj */

(<ReadSi,WriteSj>) → Depg = Depg ∪ AntiDep; /* Anti dep. between Si and Sj */

(<WriteSi,WriteSj>) → Depg = Depg ∪ OutDep; /* Output dep. between Si and Sj */

endcase;

case (<AccAttSi,AccAttSi>) of

(<WriteSi,WriteSi>) → Depg = Depg ∪ OutDep; /* Output dep. between Si and Si */

endcase;

DEP = DEP ∪ Depg ;

return(DEP); /* return the detected data dependences */

Fig. 7. LCD test function.

When the LCD Test function returns, the algorithm in Fig. 3 just has to ver-

ify the content of the DEP set. If DEP is empty, that means that none of

the dependence patterns is found for any Dependence Group, therefore the

algorithm informs that the loop does not contain LCD dependences (NoLCD)

due to heap-based pointers. In any other case, the set of all LCD dependences

detected in the loop (which is DEP) is returned.

3.5 An example

Let’s illustrate via a simple example how the approach works. Fig. 8(a) rep-

resents a loop that traverses the data structure of Fig. 1. This is, this loop is

going to be executed after the building of the linked list data structure due to

the code of Fig. 2. In the loop, the statement tmp = p->val reads a memory

location that has been written by p->nxt->val = tmp in a previous iteration,

so there is a LCD between both statements.

16

p = list;

while (p->nxt != NULL)

{

tmp = p->val;

p->nxt->val = tmp;

p = p->nxt;

}

p = list;

while (p -> nxt != NULL)

{

S1: tmp = p->val; DepTouch(p, ReadS1, val);

S2: aux = p->nxt; DepTouch(p, ReadS2, nxt);

S3: aux->val = tmp; DepTouch(aux, WriteS3, val);

S4: p = p->nxt; DepTouch(p, ReadS4, nxt);

}

(a) (b)

Fig. 8. (a) Loop traversal of a dynamic data structure; (b) Instrumented code used

to feed our shape analyzer.

In order to automatically detect this LCD, we use an ANTLR-based prepro-

cessing tool that atomizes the complex pointer expressions into several simple

pointer statements which are labeled, as we can see in Fig. 8(b). For instance,

the statement p->nxt->val = tmp; has been decomposed into two simple

statements: S2 and S3. After this step, the SIMPLESTMT set will comprise

four simple statements.

Next, by applying the first step of the algorithm to find LCDs, the DepTouch

directive is attached to each simple statement in the loop that accesses the

heap, as we can also appreciate in Fig. 8(b). For example, the statement

S2: aux = p->nxt has been annotated with the DepTouch(p, ReadS2, nxt),

stating that the access pointer is p, the access attribute is ReadS2 (which

means that the S2 statement makes a read access to the heap) and finally,

that the read access field is nxt. This first step of the new method have been

also implemented with the help of ANTLR.

Next we move on to the second step in which we point out that statements

S1 and S3 in the code example meet the requirements to be associated with

a Dependence Group: both of them access the same access field (val) with

pointers of the same type (p and aux), being S3 a write access. We will define

this Dependence Group as DepGroupval={ReadS1, WriteS3}. Besides, the

17

associated AccessPairsGroupval set will be, at this point, empty. Therefore,

after this step, DEPGROUP = {DepGroupval} and ACCESSPAIRSGROUP

= {AccessPairsGroupval}.

Let’s see now how step 3 of the algorithm proceeds. As we have mentioned,

Fig. 1 represents the only RSG graph of the RSGs set at the loop entry

point. Remember that our analyzer is going to symbolically execute each of

the statements of the loop iteratively until a fixed point is reached. This is,

all the RSG graphs in the RSGs set associated with the statements will be

updated at each symbolic execution and the loop analysis will finish when all

the graphs in the RSGs do not change any more.

n1 n2 n3
nxt

p

list

n1 n2 n3
nxt

p

list

WriteS3

n2 n3
nxt

n1

p

list
ReadS1,
ReadS2

n4

aux

n2 n3
nxt

n1

p

list

ReadS1
ReadS2

n4

aux

WriteS3

n2 n3
nxt

n1
p

list

ReadS1
ReadS2
ReadS4

n4

aux

FIRST
ITERATION

S1: tmp = p->val;

S3: aux->val = tmp;

S4: p = p->nxt;

S2: aux = p->nxt; ReadS1

S1: tmp = p->val;

WriteS3
ReadS1

n2 n3
nxt

n1
p

list

ReadS1
ReadS2
ReadS4

n4

aux

SECOND
ITERATION

Fig. 9. Initial RSG at the loop entry and the resultant RSG graphs when executing

S1, S2, S3 and S4 in the first loop iteration, and when S1 is executed in the second

loop iteration. We illustrate the TOUCHn1 and TOUCHn4 sets.

Now, in the first loop iteration, the statements S1, S2, S3 and S4 are executed

by the shape analyzer. The resultant RSG graphs when these statements are

symbolically executed, taking into account the attached DepTouch directives,

are shown in Fig. 9. Executing S1 will produce that the node pointed to by

p (n1) is touched by ReadS1. When executing S2, aux = p->nxt will produce

the materialization of a new node (the node n4), and the node pointed to

by p will be touched by ReadS2. Next, the execution of S3 will touch with a

18

WriteS3 attribute, the node pointed to by aux (n4). Finally, the execution of

S4 will touch with a ReadS4 attribute the node n1, and then p will point to

node n4.

In the second loop iteration, when executing S1 over the RSG graph that

results from the previous symbolic execution of S4, we find that the nodes

pointed to by p (now node n4) is touched by ReadS1. When touching this

node, the TOUCH Updating function detects that the node has been previously

touched because TOUCHn4 ={WriteS3}. Since the set is not empty, the func-

tion will call to the AccessPairsGroup Updating function. Now, this function

will check each access attribute in the TOUCHn4 set, and it will look for a

Dependence Group for such access attribute. In the example, WriteS3 is in the

DepGroupval. In this case, since the new access attribute that is going to touch

the node (ReadS1) belongs to the same Dependence Group, a new access pair

is appended to the AccessPairsGroupval= {<WriteS3, ReadS1>}. This fact

is indicating that the same memory location (in this case the field val in node

n4) has been reached by a write access from statement S3, followed by a read

access from statement S1.

The shape analyzer follows, iteratively, the symbolic execution of statements

in the loop until a fixed point is reached. The resultant RSG graph is shown

in Fig. 10. We also get at the end of the analysis that AccessPairsGroupval=

{<WriteS3, ReadS1>}.

n1
p

list

ReadS1
ReadS2
ReadS4

WriteS3

n2 n3
nxt

n4

aux

n5

WriteS3
ReadS1
ReadS2
ReadS4

Fig. 10. Resultant RSG when the fixed point is reached. We represent the TOUCHn1,

TOUCHn4 and TOUCHn5 sets.

The algorithm applies now the fourth step: the LCD test function (Fig. 7)

is called. Initially the DEP set is defined as empty, and then the access pair

comprised in the AccessPairsGroupval is checked. The function finds that

Depval=FlowDep. Now, DEP = Depval = FlowDep. Therefore the LCDs de-

tection function, return only a flow dependence, because the only access pair

19

group, AccessPairsGroupval in the ACCESSPAIRSGROUP set, contains a

<WriteS3, ReadS1> pair. As we see, our LCDs detection algorithm accurately

captures the LCD that appears in the loop.

4 Experimental results

4.1 Some preliminary results

We have successfully tested our LCDs detection algorithm against some sample

codes: (a) a code with a traversal of a DAG data structure; (b) a code with

cyclic access in a Cyclic data structure; and (c) a code with conditional cyclic

access in a Cyclic data structure. The analysis took less than 1 second for

these programs altogether. The reader can found the details in [13]. The goal

of these preliminary experiments was to prove the accuracy of our method

in the detection of data dependences in codes that traverse (and/or create)

complex data structures. Precisely, they are the type of codes where previous

research projects could not accurately detect the data dependences. We will

discuss this issue in more detail in Section 5.

4.2 Results in real codes

After having applied the new LCDs detection algorithm to the sample codes

with successful results, now we put our analysis to work with more realistic

codes. For this purpose we have considered several cases of study: i) sparse

matrix by sparse vector product (matrix-vector); ii) sparse matrix by sparse

matrix product (matrix-matrix); iii) mst code from the Olden suite [1]; iv)

em3d from the Olden suite too, and v) twolf code from the SPEC CPU2000

suite [15]. The first two codes are custom-made programs that represent the

kernel of typical real world applications which deal with dynamic data struc-

tures and they are available through our website 1 .

1 http://www.ac.uma.es/∼asenjo/research/codes.html

20

When analyzing the codes looking for LCDs, we do not consider a whole-

program approach due to the complexity and number of graphs that our shape

analysis approach may generate. Instead we focus our attention on certain

loops that carry a significant amount of execution time. For the custom-made

programs, i.e., the sparse matrix-vector and matrix-matrix product codes,

we chose the outer loop from the respective nesting that compute the prod-

uct. But for mst, em3d and twolf profiling information was considered. For

instance, in the twolf code, the main loop of function new dbox, which rep-

resents around the 38% of execution time was studied. In this code, from

profiling again, we find that another 8% of the execution time is spent in the

function add penal, which we analyze too. In the mst code, a loop of the

AddEdges function, which spends more than 85% of the execution time is se-

lected. And, finally in the em3d code, again through profiling, we select the

most computationally expensive loop.

Once we select a loop to study, the program is preprocessed before the anal-

ysis can be performed. During this process we go through the code finding

the statements needed to create the data structures that are going to be tra-

versed/modified in the loop of interest. In this preprocess, function calls are

inlined, due to the lack of interprocedural support within our framework at

this point. This is not a big issue because we are focusing on no more than

a handful of function calls, since only the needed code for structure creation

and traversal of study is analyzed. Once we have the proper code isolated,

we run it through our ANTLR-based preprocessing tool that performs state-

ments decomposition, nullifies ”dead” pointers, asserts pointer values when

known, add the DepTouch directives to the loop statements that may lead to

LCDs and creates the calls to the shape analysis tool. Let’s recall that the new

LCDs detection test is directly embedded into the shape analysis process, so

it should not be considered a later pass but an extension of the shape analysis

itself. The test returns the access pairs that have been created during abstract

interpretation of the statements in the instrumented program, and their cor-

responding dependence pattern (FlowDep, AntiDep or OutDep). In the case

that no dependence is found, then the test returns NoDep.

21

Next, Table 1 lists the codes being analyzed along with a short description of

them, as well as a short presentation of the data structures traversed/created

in each one of the selected loops, the number of statements resulting after

all the preprocessing (No. St column), the number of DepTouch’s considered

for each loop (No. DT column) and finally the dependences detected (Dep

column) after applying the new LCDs detection test. Also, Fig. 11 depicts the

main data structures traversed/created in the loops of study.

H H H

E

E

E

.
.
.

E

E

E

.
.
.

E

E

E

.
.
.

E

E

E

.
.
.

V...M

H

HE

HE

HE HE

VV Vnext

G

...

HE* HE* ... HE*

graph

(a) (b)

...

...e_table

h_table

T T T T

TTTT

... ...

termptr

carraynetarray

tearray

D* D*D* C* C* C*

C C

TI TI

TE TE

TE

D D D

N N N

N N

N

...N* N* N*

C

(c) (d)

Fig. 11. Main data structures: (a) matrix-vector; (b) mst ; (c) em3d; (d) twolf.

22

Program Description Data Structures No. St No. DT Dep

matrix-vector sparse matrix vector

product

matrix: double-linked list of

header elements (one by row)

each of whom points to an-

other double-linked list; vec-

tors (both input and output):

double-linked lists of non-zero

elements. The output vector is

created during the product

120 6 NoDep

matrix-matrix sparse matrix matrix

product

input matrices: as explained

above; the output matrix is

created inside the loop

146 3 NoDep

mst (AddEdges) Construction of mini-

mum spanning trees

An array of vertexes, each of

them points to a hash node and

each hash node points to an ar-

ray of pointers of hash entries

62 3 FlowDep,

AntiDep,

OutDep

em3d Models the propaga-

tion of electromagnetic

waves

Two lists of nodes: one for the

electrical field and another for

the magnetic field; Each node

links to the following element

in the list; Besides, each node

is linked to the values of some

nodes from the other list

75 3 AntiDep*

twolf

(new dbox)

It determines the

placement and global

connections of groups

of transistors for

the production of

microchips

Three interconnected struc-

tures: two are array of pointers

whose elements point to single-

linked lists of nodes

154 2 FlowDep,

AntiDep,

OutDep

twolf

(add penal)

It is responsible for up-

dating the values of

penalties in the data

structure

A matrix of nodes accessed by

following a couple of pointer

arrays

49 9 FlowDep*,

AntiDep*

Table 1

Benchmarks characteristics. The * means distance 0 dependences (No LCD).

23

In all the cases, the new data dependence detection algorithm found, accu-

rately, the dependences which may rise in the loops. But after close exami-

nation, we discover that some of the access pairs that build our method and

that are identified in the LCD test function (see Fig. 7) as a flow, anti or out-

put dependence, are not LCDs, properly speaking. Such access pairs represent

data dependence with distance 0 [12], i.e. dependences that arise between two

statements of the loop in the current iteration. In other words, the distance 0

dependences are not loop carried data dependences and they should not pre-

vent the loop from being parallelized as well as another loop transformations

that avoid reordering such statements in the body. Thus, it could be inter-

esting detecting when they appear. In fact, there are three cases of distance

0 dependences in the benchmarks, and they are marked with a * in Table 1:

the access pair which produce an anti dependence in the em3d loop and the

access pairs that generate the flow and the anti dependences in the twolf

(add penal) function.

Our algorithm can easily be extended to mark the access pairs that present

a distance 0 dependence. For it, the shape analysis tool must maintain a

symbolic counter for each loop that surrounds the loop body statements being

analyzed. Each counter is incremented each time that the analysis reach the

header of the corresponding loop. In the TOUCH Updating function, each time

that an access attribute is appended to the appropriate TOUCH set, it will be

annotated with the corresponding iteration vector [12]. That vector contains

one entry for each counter of the loops surrounding the statement, and it

denotes the symbolic iteration instance at which the access attribute of the

statement touches the node. Next, when the AccessPairsGroup Updating

function detects that a new access pair appears, it computes the distance

vector [12] from the iteration vectors of the two access attributes comprised

in the pair and it appends this information to the pair. When a 0 appears in

a k-th component of a distance vector, then it means that, for such a pair, a

distance 0 dependence appears in the k-th loop that surround the loop body

statements, therefore that dependence is not a LCD in the k-th loop.

24

Once the accuracy of the new LCDs detection algorithm, in the context of

real codes, have been tested, we are interested in studying the behavior of

the compilation algorithms. For it, we conducted two set of experiments for

each code: in the first set, we run our LCDs detection algorithm based in

shape analysis and we obtained the data dependence information previously

reported. In addition, we collected more information that is summarized in

Table 2. As we were interested in measuring how much complexity was added

in the analysis due to the LCDs detection algorithm, we conducted a second

set of experiments. In this set of experiments, we carried out only the shape

analysis, i.e. without the LCDs detection. Table 3 refers to the gathered data

for this second experiment. For each program we can find the analysis time for

the experiments (including the underlying shape analysis necessary to build

the structures) in the Time 2 column. Follows the number of symbolic itera-

tions carried out by the shape analyzer to reach a fixed point in the No. It.

column. No. Graphs shows the number of RSG graphs created in the course

of the analysis, including temporal graphs that may appear during a statement

execution. Finally, the Graphs/Stmt. column indicates the average number

of graphs generated by each analyzed statement.

Although not showed in the tables, we collected too, for both sets of experi-

ments, the size of the log files, which give us an indication of the memory used

to store the generated graphs. We found that the size of such log files ranges

from 250 KBytes to 2.1 MBytes, that we think is quite reasonable. Next, we

discuss the results from both experiments in more detail.

2 These times were obtained in a Pentium IV 2.8GHz with 1 GBytes main memory.

Similar times were obtained with a 512 Mbytes main memory configuration, which

seems to indicate that the analyses are not a memory bound processes.

25

4.3 Discussion of the results

From Table 2 we see that the analysis times for the LCDs detection range

from seconds to several minutes. Basically, these differences depend on the

complexity of the data structures and the traversal. For instance, the time

for the code twolf (add penal) is the smallest because the data structure

traversed in the loop of study, is the smallest one, and in addition, its con-

nections are very simple. Therefore the number of graphs generated during

the analysis and the no. of iterations to reach the fixed point are the lowest

ones, respectively. However it is the loop where more DepTouch directives are

appended. On the other hand, the time for the code twolf (new dbox) is

significantly higher, as well as the no. of iterations and graphs, because now

the traversed structure is much more complex. Another loop that traverses

a very complex structure is the one selected in the em3d code, but although

the no. of iterations to reach the fixed point is high, surprisingly the num-

ber of generated RSGs is modest. The worst time corresponds to the loop in

the matrix-matrix code, and, as it could be expected, the no. of iterations

to reach the fixed point and the number of graphs generated are the highest

ones.

Program Time No. It. No. Graphs Graphs/Stmt.

matrix-vector 1 min 47 sec 315 170450 1420.4

matrix-matrix 1 h 34 min 814 1421076 9733.4

mst 0.7 sec 70 3314 53.5

em3d 3.7 sec 508 12908 172.1

twolf (new dbox) 5 min 54 sec 149 112803 732.5

twolf (add penal) 0.1 sec 12 363 7.4

Table 2

Time and other measures for the codes when running the dependence test based on

shape analysis.

In general, the number of iterations to reach the fixed point seems related

26

to the control flow complexity of the loop being analyzed. For instance, the

matrix-matrix is a 4-level loop nesting, whereas the matrix-vector and

em3d are 3-level and 2-level loop nesting, respectively. However, the most de-

termining factor in the analysis times seems to be the number of generated

graphs. In this case, the outstanding case is the matrix-matrix code, for

which 1,421,076 graphs are generated. But not only the no. of graphs is the

key to explain high analysis times. For instance, the no. of graphs gener-

ated in the twolf (new dbox) analysis is smaller than in the matrix-vector

code, but the times are higher. What happens is that the graphs in the twolf

(new dbox) loop are more complex: the nodes are more interconnected with

each other, and in addition, each node has to maintain more information.

The results shown in Table 3 give us a glimpse of the analysis times, as well

as the number of symbolic iterations to reach a fixed point and the number of

RSG graphs created in the course of the analysis, when the LCDs detection

algorithm is not enabled. As we mentioned before, these results are purely due

to the underlying shape analysis framework, and are relevant because decouple

the dependence detection algorithm from the shape analysis. From the table

we see that the analysis times for the shape analysis range from seconds to

some minutes. In general, the analysis times are smaller when compared to

the analysis times with the dependence detection algorithm enabled. Now,

again, the most determining factor in the shape analysis times seems to be

the higher number of generated graphs. In this case, the matrix-matrix and

twolf (new dbox) codes are the ones which higher number of graphs and the

worst times.

In general, the number of generated graphs is much smaller when the depen-

dence detection algorithm is disabled, because now we have removed the Dep-

Touch directives from the code, which means that nodes will not be touched

with the read/write attributes, in other words, the probability of summa-

rization of nodes increases, and as a consequence a lesser number of possi-

ble configurations should be generated. But in two particular cases, twolf

(new dbox) and mst the number of generated graphs when the dependence

27

detection algorithm is disabled/enabled are similar (in fact, in the mst code,

the number of graphs is slightly higher in the disabled dependence detec-

tion version). As a consequence, the analysis times, on these codes, when the

dependence detection algorithm is disabled/enabled, are similar too. These

results seem to indicate that in simple loops (i.e., those with a low level of

nesting) that traverse/create simple data structures (mst case) or even sim-

ple loops which traverse complex and heavily interconnected data structures

(twolf (new dbox) case), the data dependence detection algorithm does not

provoke a significant increment in the analysis times. However, loops that tra-

verse/create complex data structures in the context of a deep loop nesting,

are heavily affected when the LCDs dependence detection algorithm is en-

abled. This is the case of the matrix-vector and the matrix-matrix loops,

where we see a significant increment in the number of generated graphs in the

enabled dependence detection versions.

Program Time No. It. No. Graphs Graphs/Stmt.

matrix-vector 9.1 sec 225 30488 254

matrix-matrix 12 min 24.6 sec 588 409026 2801.5

mst 0.7 sec 57 3326 53.6

em3d 2.5 sec 438 8067 107.6

twolf new dbox) 5 min 13 sec 146 102535 665.8

twolf (add penal) 0.03 sec 10 151 3.1

Table 3

Time and other measures for the codes when running only the shape analysis (i.e.,

without dependence detection).

As we see, the main limitation of the current algorithm presented in this paper

is related, mainly, to the underlying shape analysis. This limitation is, as in the

case of most existing shape abstractions, that the number of possible graphs

generated by our analysis, has an exponential worst-case complexity. However,

in the analyzed codes, except in the matrix-matrix product, we have found

that the number and size of the graphs is reasonably bounded. Currently,

28

we are working in a new shape analysis abstraction in which the number of

generated graphs will be greatly reduced, because instead of a set of RSG

graphs per statement, we will maintain only one graph per statement. The

key of the new shape abstraction should be to represent the same information

but in a more compact way. However, the new RSG could be more complex

than the RSGs obtained through the techniques presented in this paper. A

careful research will be conducted in this topic to investigate the impact of

the new shape analysis abstraction in the data dependence detection accuracy

and analysis times.

Overall, we consider that the results are quite encouraging. They suggest that

our techniques based on shape analysis can provide very accurate data de-

pendence information in the context of real codes which traverse and create

generic and complex heap-based data structures at reasonable analysis times.

In short, the results have been promising, but at this stage, we think that

this kind of analysis is suitable for analyzing only selected parts of the code,

for instance the computationally most expensive loops, as we have done in

these experiments. One key aspect of the new method is that can analyze

loops where creation and modification of data structures takes place (as in the

matrix-vector, matrix-matrix and mst codes). In addition, our approach

conveniently distinguishes between flow, anti and output dependences, which

is basic for doing data-cache optimizations. Let’s note that all these aspects

are left out in every other approach we know. Let’s see this issue next.

5 Related work

Some of the previous works on data dependences detection on dynamic data

structures based codes, combine dependence analysis techniques with pointer

analysis [5], [6], [11], [7], [4], [8]. Horwitz et al. [6] developed an algorithm

to determine dependences by detecting interferences in reaching stores. Larus

and Hilfinger [11] propose to identify access conflicts on alias graphs using

path expressions to name locations. Hendren and Nicolau [5] use path matri-

29

ces to record connection information among pointers and present a technique

to recognize interferences between computations for programs with acyclic

structures. The focus of these techniques is on identifying dependences at the

function-call level and they do not consider the detection in the loop context,

which is the focus in our approach.

More recently, some authors [4], [8], [9] have proposed data dependences detec-

tion algorithms based on shape analysis in the context of loops that traverse

dynamic data structures, and these approaches are more related to our work.

For instance, Ghiya and Hendren [4] proposed a test for identifying LCDs

that relies on the shape of the data structure being traversed (Tree, DAG or

Cycle), as well as on the computation of the access paths for the pointers in

the statements being analyzed. In short, their approach identifies dependences

in programs with Tree-like data structure or loops that traverse DAG/Cycle

structures that have been asserted by the programmer as acyclic and where

the access paths do not contain pointer fields. Note that the manual assertion

of loops traversing DAG or cyclic data structures is a must in order to en-

able any automatic detection of LCDs. Another limitation of this approach is

that data structures must remain static during the data traversal inside the

analyzed loops. For instance, this approach could not handle the loops that

we have studied in the matrix-vector, matrix-matrix, mst, em3d or twolf

(new dbox) codes.

In order to solve some of the previous limitations, Hwang and Saltz proposed

a new technique to identify LCDs in programs that traverse cyclic data struc-

tures [8], [9]. This approach automatically identifies acyclic traversal patterns

even in cyclic (Cycle) structures. For this purpose, the compilation algorithm

isolates the traversal patterns from the overall data structure, and next, it de-

duces the shape of these traversal patterns (Tree, DAG or Cycle). Once they

have extracted the traversal-pattern shape information, dependence analysis is

applied to detect LCDs. Summarizing, their technique identifies LCDs in pro-

grams that navigate cyclic data structures in a “clean” tree-like traverse. On

the other hand, their analysis can overestimate the shape of the traverse when

30

the data structure is modified along the traverse or it has been built inserting

nodes between existing ones. In these situations, the shape algorithm detect

DAG or Cycle traversal patterns, in which case dependence is reported. An-

other limitation of this approach is that can not accurately distinguish among

flow, anti and output dependences.

We differ from previous works in that our technique let us annotate the mem-

ory locations reached by each heap-directed pointer with read/write infor-

mation. This feature let us analyze quite accurately loops that traverse and

create generic heap-based dynamic data structures. The new algorithm is able

to identify accurately the dependences that appears even in loops that navi-

gate (and create) cyclic structures in traversals that contain cycles, as we have

mentioned in Section 4.1. Besides we can successfully discriminate among flow,

anti and output dependences. In addition, we have put to work our techniques

with real life programs achieving encouraging results, as we have discussed in

Sections 4.2 and 4.3.

6 Conclusion and Future Work

We have presented a compilation technique that is able to identify LCDs in

programs which work with general pointer-based dynamic data structures.

We base our algorithms in a powerful shape analysis framework that let us

analyze quite accurately loops that traverse and create heap-based dynamic

data structures. The new algorithm is able to precisely identify dependences

even in loops that navigate (and create) cyclic structures in traversals that

contain cycles. Our main contribution is that we have designed a LCD test

that let us extend the scope of applicability to any program that handle any

kind of dynamic data structure. Moreover, our dependence test let us discern

accurately the type of dependence: flow, anti, output.

We have an implementation of th compilation algorithms and we have con-

ducted several tests that prove it can be useful for real-life programs. However,

31

more work is necessary in order to fully integrate the preprocessing tool for

the analysis and provide it with meaningful ways of discarding dispensable in-

formation to achieve faster analysis. In addition, although our shape analysis

is quite accurate, it still presents some scalability problems when analyzing

large programs, which we have overcome focusing our analysis in the most

computational expensive loops. In order to address this issue, another line

of research consists in developing a general framework which let us conduct

demand driven and incremental analysis. These type of analysis would allow

us to incorporate the shape analysis (and the dependence detection as well as

other optimizations) only to selected parts of the code, to which the relevant

shape information have been propagated. As we mentioned before, reducing

the number of generated graphs during the analysis is another important topic

in our future research. To address it, we are currently working on new shape

analysis abstractions which let us compact the information and therefore to

reduce the number of generated graphs while they still maintain the same

accuracy.

Acknowledgment

This work was supported in part by the Ministry of Education of Spain under

contract TIC2003-06623.

References

[1] Martin C. Carlisle and Anne Rogers. Software caching and computation

migration in olden. In ACM Symposium on Principles and Practice of Parallel

Programming (PPoPP), July 1995.

[2] F. Corbera, R. Asenjo, and E.L. Zapata. A framework to capture dynamic data

structures in pointer-based codes. Transactions on Parallel and Distributed

32

System, 15(2):151–166, 2004.

[3] R. Ghiya and L. J. Hendren. Putting pointer analysis to work. In Proc. 25th

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, pages 121–133, San Diego, California, January 1998.

[4] R. Ghiya, L. J. Hendren, and Y. Zhu. Detecting parallelism in c programs with

recursive data strucutures. In Proc. 1998 International Conference on Compiler

Construction, pages 159–173, March 1998.

[5] L. J. Hendren and A. Nicolau. Parallelizing programs with recursive data

structures. IEEE Transactions on Parallel and Distributed Systems, 1:35–47,

January 1990.

[6] S. Hortwitz, P. Pfeiffer, and T. Repps. Dependence analysis for pointer

variables. In Proc. ACM SIGPLAN’89 Conference on Programming Language

Design and Implementation), pages 28–40, July 1989.

[7] J. Hummel, L. J. Hendren, and A. Nicolau. A general data dependence

test for dynamic, pointer-based data structures. In Proc. ACM SIGPLAN’94

Conference on Programming Language Design and Implementation), pages 218–

229, June 1994.

[8] Y. S. Hwang and J. Saltz. Identifying parallelism in programs with cyclic graphs.

In Proc. 2000 International Conference on Parallel Processing, pages 201–208,

Toronto, Canada, August 2000.

[9] Y. S. Hwang and J. Saltz. Identifying parallelism in programs with cyclic graphs.

Journal of Parallel and Distributed Computing, 63(3):337–355, 2003.

[10] N.D. Jones and S.S. Muchnick. Program flow analysis: theory and applications.

Flow analysis and optimization of LISP-like structures, chapter 4, pages 102–

131. Prentice-Hall, 1981.

33

[11] J. R. Larus and P. N. Hilfinger. Detecting conflicts between structure accesses.

In Proc. ACM SIGPLAN’88 Conference on Programming Language Design and

Implementation), pages 21–34, July 1988.

[12] Steven S. Muchnick. Advanced Compiler Design Implementation. Morgan

Kaufmann, San Francisco, California, 1997.

[13] A. Navarro, F. Corbera, R. Asenjo, A. Tineo, O. Plata, and E.L. Zapata. A new

dependence test based on shape analysis for pointer-based codes. In The 17th

International Workshop on Languages and Compilers for Parallel Computing

(LCPC ’04), West Lafayette, IN, USA, September 2004.

[14] M. Shapiro and S. Horwitz. Fast and accurate flow-insensitive points-to analysis.

In Proc. 24th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, pages 1–14, Paris, France, January 1997.

[15] Standard Performance Evaluation Corporation (SPEC). SPEC CPU2000 V1.2

Documentation, 2000. http://www.spec.org/cpu2000/docs/.

[16] T.J.Parr and R.W. Quong. ANTLR: A predicated-LL(k) parser generator.

Journal of Software Practice and Experience, 25(7):789–810, July 1995.

[17] R. P. Wilson and M. S. Lam. Efficient context-sensitive pointer analysis for C

programs. In Proc. ACM SIGPLAN’95 Conference on Programming Language

Design and Implementation, pages 1–12, La Jolla, California, June 1995.

34

List of Tables

Table 1 Benchmarks characteristics. The * means distance 0 dependences (No LCD).

Table 2 Time and other measures for the codes when running the dependence test based

on shape analysis.

Table 3 Time and other measures for the codes when running only the shape analysis

(i.e., without dependence detection).

List of Figures

Fig. 1. Working example data structure and the corresponding RSG.

Fig. 2. Building a RSG for each statement of an example code.

Fig. 3. The new data dependences detection algorithm.

Fig. 4. Create Dependence Groups function.

Fig. 5. Shape Analysis function extension.

Fig. 6. TOUCH and AccessPairsGroup updating functions.

Fig. 7. LCD test function.

Fig. 8. (a) Loop traversal of a dynamic data structure; (b) Instrumented code used to

feed our shape analyzer.

Fig. 9. Initial RSG at the loop entry and the resultant RSG graphs when executing S1,

S2, S3 and S4 in the first loop iteration, and when S1 is executed in the second

loop iteration. We illustrate the TOUCHn1 and TOUCHn4 sets.

Fig. 10. Resultant RSG when the fixed point is reached. We represent the TOUCHn1,

TOUCHn4 and TOUCHn5 sets.

Fig. 11. Main data structures: (a) matrix-vector; (b) mst ; (c) em3d; (d) twolf.

35

