
Complexity study of the shape analysis based on

CLSs

A. Navarro, F. Corbera, R. Asenjo, A. Tineo and E.L. Zapata∗

February 22, 2007

Abstract

In this paper, we focus on the complexity study of a recently pro-
posed shape analysis technique. That technique is based on a compact
representation for the shape of data structures by using Coexistent Links
Sets -CLSs- for nodes in a graph. In this study we have found that two
parameters, named the number of graphs and the number of CLSs drive
the analysis times of the approach. Besides, we have conducted several
experimental tests which seem to indicate that, in spite of the theoreti-
cal exponential behaviour of these parameters, in practice the number of
generated graphs and specially, the number of generated CLSs are quite
manageable. In fact, the number of generated CLSs is an extremely low
fraction when compared to the theoretical estimated maximum values.
Through these experiments we have found that the analyses run in rea-
sonable times, specially for such a complex technique.

1 INTRODUCTION

In the context of optimizing compilers for heap-directed pointer-based codes,
information about how memory locations are arranged in the heap is essential
for data dependence analysis or software verification. For instance, with proper
shape and data dependence information we can reveal parallelism as well as
perform data-cache optimizations or loop transformations, optimizations which
are typically ignored by compilers when dealing with such codes.

A promising way to overcome the difficulties of analyzing the dynamic data
structures that appear in these codes has emerged with the shape analysis ap-
proaches [6], [4], [3]. However, existing shape analysis methods face a dilemma:
either they are too costly to be useful for real compilers or they are too imprecise
to be useful for real programs. In this paper, we focus on the complexity study
of a recently proposed shape analysis technique [7]. This technique is based on
a compact representation for the shape of data structures by using Coexistent

∗The authors are with the Dept. of Computer Architecture, University of
Málaga, Complejo Tecnológico, Campus de Teatinos, E-29071. Málaga, Spain.E-
mail:angeles,corbera,asenjo,tineo,ezapata@ac.uma.es

1

Links Sets -CLSs- for nodes in a graph. The interested reader can find more
details about the technique in [7].

In our study we have found that two parameters, named the number of
graphs and the number of CLSs drive the analysis times of the approach. Be-
sides, we have conducted several experimental tests which seem to indicate that,
in spite of the theoretical exponential behaviour of these parameters, in practice
the number of generated graphs and specially, the number of generated CLSs are
quite manageable. In fact, the number of generated CLSs is an extremely low
fraction when compared to the theoretical estimated maximum values. Through
these experiments we have found that the analyses run in reasonable times, spe-
cially for such complex technique.

The rest of the paper is organized as follows: Section 2 gives some details
about the main operations of our shape analysis approach. Next, in Section 3 we
identify and compute the parameters that model the complexity of our approach.
Then, in Section 4 we conduct several experiments that help us to gain insight
about the behaviour of our approach and to discuss the applicability of our
approach to real codes. Finally, in Section 5 we present our main conclusions.

2 SHAPE ANALYSIS OPERATIONS

In this section, we succinctly describe the shape analysis operations and the
compilation algorithms that implement them. We report here the algorithms,
because they will be used to compute the complexity -of each operation- in the
next section. Fig. 1 presents the phases that each graph (SGin) of the input set
of graphs undergoes when a pointer statement is processed.

I

1

II

2

II

n

II

1

2

I

n

I

in out

1

IV

2

IV
1

III

2

III

n

III

out

’

n

IV

SG

SG

......

SG

SG

SGSG

SG

SG

SG

SG

...

SG

SG

SG

...

SG

SG

SPL MAT ABS NORJOINOR

Figure 1: Phases for graph processing at a pointer statement.

In our analysis, we consider six simple pointer statements (see Table 1),
because other complex pointer statements can be transformed into several of
these simple pointer statements in a preprocessing stage. Not all phases are
required by the abstract semantic of each statement, as we see in Table 1. In
general, there are 5 different phases, each involving different transformations:

• Graph splitting (SPL). Some statements require that the access path
indicated by a pointer and selector (x->sel) leads to just one node. This
way, the next transformations are easier to perform. Each graph of the
input set of graphs, is split into as many different graphs, as different
nodes can be reached through the x->sel reference. Each of the resulting
graphs, is processed in the same way by the MAT, ABS and NOR phases.

2

Table 1: Pointer statements and operations they involve for each phase.

Statement SPL MAT ABS NOR/JOI/NOR
x = NULL - - XNull(x) norm()

x = malloc() - - XNull(x),norm(),XNew(x) -
x = y - - XNull(x),norm(),XY(x,y) -
x = y->sel split(y,sel) nm = mater(y,sel) XNull(x),norm(),XNode(x,nm) norm(),join(),norm()

x->sel = y split(x,sel) nm = mater(x,sel) XSelNodeY(x,sel,nm,y) norm(),join(),norm()

x->sel = NULL split(x,sel) nm = mater(x,sel) XSelNodeNull(x,sel,nm) norm(),join(),norm()

• Node materialization (MAT). If the access path of a statement leads to
a summary node (node that represents several actual memory locations),
then a new singular node is materialized. This node represents just the
memory location where the access occurs, thus providing precision in the
analysis.

• Abstract semantics (ABS). Each pointer statement produces a differ-
ent effect in the graph according to its meaning in the program (e.g., a
malloc statement creates a new node, a pointer linking statement estab-
lishes links between nodes, etc).

• Normalization (NOR). After the changes directed by the abstract se-
mantics of the statement have been applied to each graph, it is possible
that some nodes can be summarized. This phase checks for summarizable
nodes and merges them, a crucial process for bounding the graphs.

• Graph joining (JOI). All graphs representing memory configurations
with the same pointer arrangement (those that present the same pointer
alias relationships and whose nodes pointed by pointers are compatible)
are joined into a single graph. Resulting graphs must also be normalized
(NOR), before proceeding to next statement.

Each phase may involve several operations depending on the pointer state-
ment considered. Table 1 presents the operations involved for each statement,
and the phase where they occur. Table 2 describes at high level the split(),
mater(), norm() and join() functions.

From Table 1, we notice that statements that involve following a path
through a pointer and selector (i.e., x=y->sel, x->sel=y, and x->sel=NULL),
require that the input set of graphs is split, as described by the split() func-
tion (Table 2). From a descriptive point of view, this function creates separate
graphs that account for all possible memory configurations in the input set of
graphs.

Right after splitting, these statements that follow a path, require that a node
be materialized out of the node pointed to by x->sel, if it was a summary node.
The mater() function sketched in Table 2 does just that. Basically, if n2 is the
node reached through x->sel, it creates a new node nm out of n2, inheriting all

3

Table 2: Overview of the split(), mater(), norm() and join() functions.

split(x,sel) mater(x,sel)

1. Apply steps 2-7 to each graph of the
input set of graphs

2. Apply steps 3-7 to all nodes n1

pointed by x

3. Apply steps 4-7 to all nodes n2 be-
longing to a SL=<n1,sel,n2>

4. Create a copy of the graph

5. Remove CLSs(ni) containing
PL=<x,ni>, for all ni!=n1, and
remove those PLs

6. Remove CLSs(n1) containing
SL=<n1,sel,ni>, for all ni!=n2

7. Remove unused elements

8. Return all generated graphs

1. Find node n1 pointed by x and node
n2 found in SL=<n1,sel,n2>

2. Create node nm as a copy of n2, with
the same properties (if any)

3. Make nm inherit all SLs and CLSs
from n2

4. Remove SL=<n1,sel,n2> and drop
it from CLSs(n1) and CLSs(n2)

5. Add SL=<n1,sel,nm> to CLSs(n1)

and CLSs(nm)

6. Make nm a singular node and
remove unnecessarily conservative
links

7. Remove unused elements

norm() join()

1. Find compatible nodes and summa-
rize them, calculating merged val-
ues for properties (if any)

2. Remove duplicated PLs and SLs

3. Update CLSs exchanging nodes,
PLs and SLs

4. Remove duplicated CLSs

1. Find graphs whose nodes pointed
by pointers are compatible and that
present the same alias relationship

2. For those graphs, add all nodes,
PLs, SLs and CLSs, into a working
graph

its links appropriately. Then the function removes unnecessarily conservative
links and updates CLSs accordingly, so as the materialized node is a singular
node that represents just the actual memory location being accessed through
x->sel. This is crucial for achieving precision when traversing a structure.

Now, let us consider the abstract semantics phase (ABS). For the nullification
statement, x=NULL, the ABS phase only involves the XNull(x) function call,
which performs pointer nullification for x in the current graph. The XNull()

function is described in Fig. 2. Basically, this function finds all PLs of the
form PL=<x,ni>, removes those PLs from any CLS(ni) that references it, and
finally removes those PLs from the graph. In the pseudo-code illustrating the
functions, PLs, SLs and CLSs are the collections (of type PLCol, SLCol and
CLSCol respectively), which contain the corresponding elements for the current
graph.

The XNull() function is also called as the first operation in the ABS phase
for all statements that involve a write access to the location pointed by a pointer
(x), namely x=malloc(), x=y and x=y->sel. These statements may involve de-
structive updating. In order to keep the abstract semantics of these statements
simpler, they assume that the assigned pointer has been nullified. This is to

4

fun XNull(Ptr x)

PLCol PLsWithX = PLs.getPLsWithPtr(x);
foreach(PL in PLsWithX)

Node n = PL.getNode();
CLSCol CLSsWithN = CLSs.getCLSsWithNode(n);
foreach(CLS in CLSsWithN)

CLS.dropPL(PL);
PLs.remove(PL);

fun XNew(Ptr x)
Node n = new Node(x.type);

PointerLink PL = new PointerLink(x,n);
PLs.add(PL);
CoexistentLinkSet CLS = new CoexistentLinkSet(n);

CLS.addPL(PL);
foreach(sel in x.type.sels)

SelectorLink SL = new SelectorLink(n,sel,NI);
SLs.add(SL);
CLS.addSLAttr(SL,’o’);

CLSs.add(CLS);

fun XY(Ptr x, Ptr y)

PLCol PLsWithY = PLs.getPLsWithPtr(y);
foreach(PL in PLsWithY)

Node n = PL.getNode();

XNode(x,n);

fun XNode(Ptr x, Node n)
PointerLink PL = new PointerLink(x,n)

PLs.add(PL);
CLSCol CLSsWithN = CLSs.getCLSsWithNode(n);

foreach (CLS in CLSsWithN)
CLS.add(PL);

Figure 2: Pseudo-code for the XNull(), XNew(), XY() and XNode() functions.

ensure that x does not point anywhere before continuing with graph transfor-
mations. Then, after nullifying a pointer, some nodes could be summarized
and the norm() function must be called. In Table 2, in the description of the
norm() function, we see that so-called compatible nodes are found and merged.
Compatible nodes are those that present similar access patterns, according to
the summarization criteria applied. So far, in the previous section, we have
explained a basic mechanism to summarize nodes: those with the same pvars

set. This provokes the summarization of two kind of nodes: (i) nodes pointed to
by the same pointers, and (ii) nodes not pointed to by any pointer. If we want
to attain more precision for (ii), then we can use properties. Properties become
a valuable instrument to keep nodes apart when they represent different access
patterns and they are not directly accessed by pointers.

The abstract semantics for statement x=malloc() (Table 1) also includes
a call to the XNew() function, which is described in pseudo-code in Fig. 2.
It creates a new node n, a new PL=<x,n>, new initialized SLs of the form
SLk=<n,selk,NI> (where NI stands for non-initialized node), and a new CLS
for the new node of the form CLS(n)={PL,SL1(o),SL2(o),...}. On the other
hand, the abstract semantics for statement x=y performs a call to the XY()

function (Fig. 2 again). That function is the key to describing the behavior of
the aliasing statement. For each node ni that y points to, a new PL of the
form PL=<x,ni> is created and added to CLSs(ni), by means of the XNode()

function.
Fig. 3 presents the functions needed in the ABS phase for the statements

x->sel=y and x->sel=NULL. Both involve nullifying the SL=<n1,sel,n2> with
the nullifySL(n1,sel,n2) function call, being n1 the node reached through
x, and n2 the node reached through x->sel. This removes the SL from the SL
collection in the current graph, after dropping it from CLSs for n1 (CLSsWithN1)
and n2 (CLSsWithN2). Recall that at this point, n1 and n2 are unique. There-
fore, it is safe to recover the only element in the PL collection of PLs that con-
tain x (i.e., PLs of the form PL=<x,ni>), via PLsWithX[0], in XSelNodeNull()

5

fun XSelNodeNull(Ptr x, Sel sel, Node n2)
PLCol PLsWithX = PLs.getPLsWithPtr(x);

Node n1 = PLsWithX[0].getNode();
nullifySL(n1,sel,n2);

CLSCol CLSsWithN1 = CLSs.getCLSsWithNode(n1);
SL = new SelectorLink(n1,sel,NU);

SLs.add(SL);
foreach(CLS in CLSsWithN1)

CLS.addSL(SL,’o’)

fun nullifySL(Node n1, Sel sel, Node n2)
SelectorLink SL = SLs.getSL(n1,sel,n2);
CLSCol CLSsWithN1 = CLSs.getCLSsWithNode(n1);

foreach(CLS in CLSsWithN1)
CLS.dropSL(SL,’o’);

CLSCol CLSsWithN2 = CLSs.getCLSsWithNode(n2);
foreach(CLS in CLSsWithN2)

CLS.dropSL(SL,’i’);

SLs.remove(SL);

fun XSelNodeY(Ptr x, Sel sel, Node n2, Ptr y)
PLCol PLsWithX = PLs.getPLsWithPtr(x);

Node n1 = PLsWithX[0].getNode();
nullifySL(n1,sel,n2);
CLSCol CLSsWithN1 = CLSs.getCLSsWithNode(n1);

PLCol PLsWithY = PLs.getPLsWithPtr(y);
foreach(PL in PLsWithY)

Node n2 = PL.getNode();
SelectorLink SL = new SelectorLink(n1,sel,n2);
SLs.add(SL);

if (n1 == n2) // Cyclic-link
foreach (CLS in CLSsWithN1)

CLS.addSL(SL,’c’);
else

foreach (CLS in CLSsWithN1)
CLS.addSL(SL,’o’);

CLSCol CLSsWithN2 = CLSs.getCLSsWithNode(n2);

foreach(CLS in CLSsWithN2)
CLS.addSL(SL,’i’);

Figure 3: Pseudo-code for the XSelNodeNull(), nullifySL(), and XSelNode()

functions.

and XSelNodeY(). NU is the null node, so when calling nullifySL() from
XSelNodeNull(), the CLSs.getCLSsWithNode(n2) call will return an empty
collection and the subsequent foreach loop will have no effect. Note that in the
XSelNodeY() function, a cyclic link is created if n1==n2 (meaning that x and y

were pointing to the same memory location).
Finally, after the ABS phase (Table 1), the function norm() (Table 2) is

called when necessary. In this phase, compatible nodes, according to the basic
summarization mechanism and available properties, are summarized. Next, for
statements x=y->sel, x->sel=y and x->sel=NULL, the join() function (Ta-
ble 2) is used for joining the split graphs after the MAT, ABS and NOR phases.
This function creates several working graphs adding only the information (nodes,
PLs, SLs and CLSs) of graphs with the same pointer arrangement. Each result-
ing graph is then normalized in the next NOR phase.

3 COMPLEXITY OF THE APPROACH

In this section, we will focus firstly on the computation of the main param-
eters which will help us to find the complexity of the method. One of these
parameters is the maximum number of graphs generated by our approach. At
a given program point, such number of graphs depends on the number of ways
of partitioning the live pointer variables at that point. For instance, if the set
of live pointer variables is {p1, p2, p3}, i.e. three live pointer variables, we
could find the following graphs:

• One graph with one node n1 pointed to by {p1,p2,p3}.

• Three graphs with two nodes: n1
⋃

n2, pointed to by:

– {p1,p2}
⋃

{p3}

6

– {p1,p3}
⋃

{p2}

– {p2,p3}
⋃

{p1}

• One graph with three nodes n1
⋃

n2
⋃

n3, pointed to by {p1}
⋃

{p2}
⋃

{p3}, respectively.

Therefore, we firstly have to compute the number of ways of partitioning
a set of j elements (in our case, j live pointer variables) into k blocks (in this
case, nodes). Such a number is named the j-th number of Bell, B(j), and can

be computed from B(j) =
∑j

k=1 S(j, k), where S(j, k) is the Stirling number of
the second kind [2],

S(j, k) =
1

k!
·

k
∑

l=0

(−1)l ·

(

k

l

)

· (k − l)j

As we are interested in computing the maximum number of graphs generated
by our approach, we should consider all the possibilities due to different control
flow paths: for instance, a path could generate graphs with just one pointer
variable, another path could generate graphs with two pointer variables, etc.
Assuming that nv represents the maximum number of live pointer variables at
any program point, the maximum number of graphs generated at a point should
be the sum of all the ways of partitioning j live pointer variables, from j = 1
till j = nv, i.e.,

∑nv

j=1 B(j). In addition, we should consider the number of
properties evaluated in the shape analysis, np, as well as the range of the values
for each property pj , range that we define as 0 : rpj . In this case, each value
for each property can contribute with a new graph, therefore the number of
graphs should be multiplied by

[

2
Pnp

j=1
rpj

]

. In the case that no properties are
considered in the analysis, then np = 1 and rp = 0.

Let’s not forget that we are computing the maximum number of graphs for
a program point, i.e. for a statement. With all of this, the maximum number
of graphs per statement, which we name NGstmt, could be estimated as
we indicate in Eq. 1. An obvious way to compute the maximum number of
graphs generated for the analyzed code, which we will name NG, would be
obtained multiplying NGstmt by the number of statements, nstmt, as we see in
Eq. 2.

NGstmt =
[

2
Pnp

j=1
rpj

]

·

nv
∑

j=1

B(j) (1)

NG = nstmt · NGstmt = nstmt ·
[

2
Pnp

j=1
rpj

]

·

nv
∑

j=1

B(j) (2)

There are other interesting parameters that give us more detailed informa-
tion about how complex the graphs are and that are measurable: for instance
how many nodes does a graph have and how interconnected these nodes are.
About the number of nodes, we are interested in computing an upper bound,
i.e. the maximum size of a graph. In other words, the maximum number

7

of nodes per graph, which we will name NN . It depends on the maximum
number of live pointer variables, nv, because, in a worst case, when none of
the pointers are aliased, then each one could point to a different node. NN

depends too on the number of properties considered, np and the range of the
values for each property pj, i.e. 0 : rpj , because each value for each property
can contribute as a new node. With all of this, NN can be estimated as we
show in Eq. 3.

NN = nv + 2
Pnp

j=1
rpj (3)

About how interconnected the nodes are, we should compute the maximum
number os SLs -Selector Links- and the maximum number of CLSs -Coexistent
Links Sets-, which are precisely the parameters that encode this information in
our approach. We will name the maximum number of SLs per node, as
NSLnode and the maximum number of SLs per graph, as NSL. The former
depends on the maximum number of links or pointer fields declared in the most
complex data structure, nl. It depends too on the maximum number of nodes,
to which any node can be connected through a selector link, i.e. NN − 1. As
the links that can coexist in a given node can be incoming from any other node,
outgoing to any other node, and a link to/from itself, then the maximum number
of selector links of a given type could be 2 ·NN −1. Therefore, NSLnode can be
computed as we see in Eq. 4. NSLnode(NN) denotes the maximum number of
selector links when we consider that the number of nodes is NN . The maximum
number of SLs per graph should be the sum of all the selector links per node
when we iteratively incorporate NSLnode(j)) for each new node, from j = 1 till
NN , as we see in Eq. 6.

NSLnode = NSLnode(NN) = nl · (2 · NN − 1) (4)

NSL =

NN
∑

j=1

NSLnode(j) =

NN
∑

j=1

nl · (2 · j − 1) = (5)

= nl · (2 · NN − 1) · (NN − 1) (6)

However, the most important parameter is the maximum number of CLSs.
For a node, the maximum number of CLSs depends on the combination of
the maximum number of selector links that can coexist in the node (excluding
the links from/to itself, i.e. 2NSLnode−nl, see Eq. 4), as well as the number of
variations that can occur for the selector links that are from/to itself, it is, 5nl.
The reason of this last parameter is that in a CLS there could be five different
states for each selector link from/to the same node: i) it does not appear, ii) it
is just incoming, iii) it is just outgoing, iv) it is incoming and outgoing (io, for
a summary node), v) it is cyclic (c, for a summary node). Therefore, we could
compute the maximum number of CLSs for a node, named NCLSnode, by
Eq. 7. Clearly, the maximum number of CLSs per graph named NCLS,
can be computed from Eq. 7 and NN (the maximum number of nodes) as we
see in Eq. 8.

8

NCLSnode =
(

2NSLnode−nl
)

· 5nl =
(

22·nl·(NN−1)
)

· 5nl (7)

NCLS = NCLSnode · NN =
[(

22·nl·(NN−1)
)

· 5nl
]

· NN (8)

Eq. 7 is a first approximation that gives us a worst case upper bound for
the estimation of the maximum number of CLSs for a node when there is not
available information about the data structures. However, such a number can
be greatly reduced when we have some information about the data structures.
Till now, we have assumed that all the selector links can be incoming to and
outgoing from a node. But, in a CLS that represents a real data structure, there
is as most, a maximum number of “real” incoming selector links. We will call
nli to this important piece of information. For instance, in a singly-linked list
nli = 1, in a doubly-linked list nli = 2, or in a binary tree nli = 1. With this
information we have to compute all the CLSs that are combinations due to the
selector links that are incoming in a node, multiplied by combinations due to
the selector links that can be outgoing from the node. In a node, we know that
there could be at most: a) nl · (NN − 1) selector links from other (different)
nodes, plus b) nl selector links from the same node with attribute io (incoming
and outgoing in a summary node), plus c) nl selector links from the same node
with attribute c (cyclic in a summary node). Thus, there could be nl · (NN +1)
selector links in a node. From them, at most, only nli would appear as incoming
selector links in a CLS, therefore, for the computation of the combination of the
selector links that are incoming in a node we can do,

nli
∑

j=1

(

nl · (NN + 1)
j

)

From the nl · (NN +1) selector links that there could be in a node, we know
that in a CSL could be from 0 till nl outgoing links. Thus, for the computation
of the combination of the selector links that are outgoing from a node we can
do,

nl
∑

k=0

(

nl · (NN + 1)
k

)

In other words, a more feasible estimation for the computation of the max-
imum number of CLSs, NCLSnode, is given by Eq. 9. Again, the maximum
number of CLSs per graph, named NCLS, can be computed from Eq. 9 and
the maximum number of nodes, NN , as we see in Eq. 10.

NCLSnode =
nli
∑

j=1

(

nl · (NN + 1)
j

)

·
nl

∑

k=0

(

nl · (NN + 1)
k

)

(9)

NCLS = NCLSnode · NN (10)

9

Table 3: Parameters of our complexity study.

Parameter Definition Value

nstmt number of statements to be analyzed

nv maximum number of live pointer variables
at any program point

nl maximum number of links - or pointer
fields- declared in the data structures

nli maximum number of “real” incoming links
in the data structures

np number of properties considered in the
shape analysis

by default 1

rpj upper value in the range of the values for
property j, 0 : rpj

by default 0

NGstmt maximum number of graphs per statement Eq. 1

NG maximum number of graphs Eq. 2

NN maximum number of nodes per graph Eq. 3

NSLnode maximum number of SLs per node Eq. 4

NSL maximum number of SLs per graph Eq. 6

NCLSnode maximum number of CLSs per node Eq. 9

NCLS maximum number of CLSs per graph Eq. 10

NPLnode maximum number of PLs per node Eq. 11

NPL maximum number of PLs per graph Eq. 12

For instance, working with a singly-linked lists, we know that nl = 1 and
nli = 1, so applying Eq. 10 we could get O(NN3) as the maximum number
of different CLSs per graph. With a doubly linked list, where nl = 2 and
nli = 2, for Eq. 10 we could get O(NN5), whereas for a binary tree we should
get O(NN4).

Other parameter of our abstraction, that could be interesting to compute is
the maximum number of PLs per node, and we will name it as NPLnode.
It depends on the number of live pointer variables, nv, and it can be easily
computed as we can see in Eq. 11. The maximum number of PLs per
graph, named NPL, is represented in Eq. 12. It is clearly the same, because
each pointer variable can appear only once on each graph.

NPLnode = nv (11)

NPL = NSLnode = nv (12)

Table 3 summarizes the main parameters used in our complexity study, as
well as their definitions and their values.

Now, our goal is to estimate the worst theoretical performance of our shape
analysis framework. Roughly, from Table 1 we see that the cost of analyzing a
pointer statement will depend on the cost of the shape analysis operations that
the statement invokes. We can start taking a look at the Table 2 and Figures 2

10

and 3, and estimating the dominant cost for each operation. For the estimation
of these dominant costs, we assume a worst case scenario: the maximum number
of graphs (i.e. NG) are present at the input program point where our shape
analyzer is going to perform the most costly abstract interpretation for the
pointer statement. Let’s see the cost for each operation:

• The graph splitting operation (SPL) calls to the split() function which
requires O(NG · NN · NCLSnode), due to steps (1), (3) and steps (5,6),
as we see in the code of Fig. 2.

• The node materialization operation (MAT) calls to the mater() function,
and when inspecting the code of Fig. 2 we see that this function requires
O(NG · (NSLnode + 3 ·NCLSnode)), due to steps (1) and steps (4,6). As
we know from Eqs. 4 and 9, NCLSnode >> NSLnode, therefore the cost
of this function is dominated by O(NG · NCLSnode).

• The normalization operation (NORM) calls to the norm() function. From
the code of Fig. 2 we see that this function requires O(NG·(NN ·log(NN)+
NCLS +NCLS · log(NCLS))), due to steps (1), (3) and (4). In steps (1)
and (4) a merge sort algorithm has been implemented to find compatible
nodes and to remove the duplicated CLSs. Therefore, the computational
cost in this function is dominated by O(NG · (NN · log(NN) + NCLS ·
log(NCLS))). As we know from Eqs. 3 and 10, NCLS >> NN , there-
fore, the cost of this operation is O(NG · NCLS · log(NCLS)).

• The graph joining operation (JOI) calls to the join() function. From
the code of Fig. 2 we see that this function requires in step (1) O(NG ·
log(NG) · NPL · log(NPL)), because we have to find compatible nodes
with the same pointer links (PLs) in all the input graphs.

• The abstract semantic operation (ABS) calls to several functions, depend-
ing on the statement being analyzed. From the Fig. 2 we find that the cost
of the XNull() function is dominated by O(NG · NCLSnode), the cost of
the XNew() is dominated by O(NG · nl), the cost of the XY() function is
dominated by O(NG · NCLSnode) and the cost of the XNode() function
is dominated by O(NG · NCLSnode). From the Fig. 3 we guess that the
cost of the XSelNodeNull(), nullifySL() and XSelNodeY() functions
are dominated by O(NG · NCLSnode). Summarizing, the worst case has
a complexity of O(NG · NCLSnode).

From Table 2 we notice that the abstract interpretation of a statement
could require the sequence of operations SPL+MAT+ABS+NOR+JOI+NOR,
in other words, the complexity of that analysis could be O(NG·NN ·NCLSnode+
NG ·NCLSnode +NG ·NCLSnode +NG ·NCLS · log(NCLS)+NG · log(NG) ·
NPL · log(NPL)+ NG ·NCLS · log(NCLS)). Clearly, the complexity is dom-
inated by the NORM operation, so our method has a complexity of O(NG ·
NCLS · log(NCLS)).

11

The fixed point requires that these operations be done until none can be
applied any more. However, we have considered the maximum number of pos-
sible graphs, nodes, SLs and CLSs so the complexity to reach the fixed point is
included in the previous discussion.

From the previous discussion, we find that the complexity of our approach
depends on the number of NG and NCLS. From Eqs. 2 and 10 which represent
the theoretical maximum values for NG and NCLS, we can notice that our
approach would have an exponential behaviour as a worst case. However, we
think that the issues are: is the worst case reached in practice, and how often?
We will address these questions in the next section.

4 EXPERIMENTAL RESULTS

We think that if we want to demonstrate the real applicability of the shape
analysis techniques, in particular, the applicability of our approach, then rep-
resentative benchmarks that use complex data structures should be analyzed.
We report here our experiences with such codes.

We have created a Java implementation of our shape analyzer and we have
used it to conduct several experiments. The shape analyzer is coupled with a
front-end module based on Cetus [5], a compiler infrastructure for source-to-
source translation. Cetus is used to parse the input program to an IR that
can be easily manipulated. We have designed a custom pass over Cetus IR to
translate input program to the format needed by the shape analyzer.

4.1 RESULTS WITH BENCHMARKS THAT MANAGE

COMPLEX DATA STRUCTURES

We have considered five complete programs. The first three are codes represen-
tative of typical recursive data structures found in heap-directed pointer-based
codes. The tests that consider linked lists (singly-linked and doubly-linked) first
create the lists, then traverse them. The test working with trees (a binary tree)
perform structure traversing during the tree creation. For the last two tests,
we have selected the sparse matrix-vector product. Sparse structures are usu-
ally built with linked list pointing to another linked lists. In the 4th test, the
structures are based in simply-linked lists (s), while on the 5th test, they are
based on doubly-linked lists (d). In these two tests, first the input matrix and
vector are created, then the output vector is built as the matrix and input vector
are traversed. Table 4 shows the structures tested and displays some detailed
metrics for the analysis performed. The last two rows of the table present the
results for the matrix-vector product codes for which all traversal statements
that are not involved in the output vector creation have been pruned (p). The
output for each test is a set of graphs, for which we have checked that they
accurately capture the structures created and traversed on the corresponding
code. The complete codes and resulting graphs are available through our web-

12

Table 4: Structures tested in the shape analyzer, number of analyzed state-
ments, time (sec.) spent on the analysis, total number of generated graphs, and
measured number of nodes, selector links and CLSs per graph, in average (and
maximum) values.

Code # Data structure # stmts Time NG NN, NSL & NCLS

1 Singly-linked list 17 0.61 66 2.42 (4) / 3.54 (7) / 4.65 (13)

2 Doubly-linked list 19 0.65 76 2.55 (4) / 6.85 (8) / 4.56 (13)

3 Binary tree 25 1.25 439 2.72 (4) / 10.52 (20) / 23.71 (65)

4 Matrix-vector(s) 83 6.45 2639 5.64 (9) / 23.57 (39) / 28.63 (68)

5 Matrix-vector(d) 97 6.70 2719 5.64 (9) / 27.89 (51) / 28.33 (68)

6 Matrix-vector(s,p) 66 1.04 590 4.22 (6) / 16.32 (24) / 15.55 (30)

7 Matrix-vector(d,p) 77 1.09 666 4.33 (6) / 18.86 (29) / 15.70 (30)

site1. We should mention that no properties were considered in any of the tests
performed, so np = 1 and rp = 0.

The first column of Table 4 identifies each test, the second column the main
data structure created/traversed in the corresponding test, while the third col-
umn holds the number of analyzed statements. The fourth column shows times
for the tests, as measured in a Pentium IV 2.4 GHz with 1 GB RAM, with
the time() command. The fifth column indicates the total number of graphs
generated for each test. In the next column, we show the measured number of
nodes, selector links and CLSs per graph, as average values with the measured
maximum in brackets.

An interesting finding at this point was to compare, for the tested codes,
the behaviour of the analysis times (given by the fourth column in the table) vs
the complexity of our method given by expression O(NG ·NCLS · log(NCLS)),
expression which was deduced in the previous section. For the computation
of the complexity value for each code, we used the maximum measured values
given in Table 4 for NG and NCLS. Fig. 4 represents the normalized values for
the analysis times (which range from 0.61 sec. to 6.7 sec) and those complexity
values (which range from 2.2· 103 to 7.8· 105). As we see from the figure, the
expression for the complexity can approximate the behaviour of our method
and it could be used as a rough estimation of how well is going to perform our
approach for different codes.

Anyway, let’s see in more detail the parameters which are in the complexity
expression, and that control the analysis times of our method. Within the tests
codes we see that the number of measured graphs range from a few dozens to
a few thousands. For instance, we see that the matrix by vector products (4th
and 5th codes) achieve the highest no. of graphs, and take longest, clocking at
more than 6 seconds. That’s basically due to their bigger number of live pointer
variables (nv), most of those are associated with the navigation of different loops
in deep nestings. Precisely, nv is the parameter which control the theoretical
maximum number of graphs given by Eq. 2. For instance, in the loop that
carries out the product in the 5th code (a three level loop nesting), there are

1http://www.ac.uma.es/∼asenjo/research/codes.html

13

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Normalized analysis times vs. complexity

Codes

time
complex.

Figure 4: Normalized analysis times (dotted line) vs complexity (solid line).

9 live pointer variables. So, applying Eq. 2, that could suppose a generation
of NG=2.56 · 106 graphs, as a worst case. Instead of that, the real number of
generated graphs is 2.7 · 103 (three order of magnitude less). Therefore in this
case, our theoretical estimation of NG is a very conservative upper bound. In
order to see how accurate our theoretical worst case estimation of NG is, we
can compare the measured # graphs given by Table 4 against the worst case
estimation of NG given by Eq. 2 for all the codes. Fig. 5 represents the fraction
(expressed in %) of measured vs. worst case estimated NG for our codes, where
we see that the measured values range from less than 0.15% for the 4th-5th
codes to the 77% for the 3rd code. So depending on the code, specially in codes
with a high level of control flow nesting, our worst case estimation of NG could
be less accurate. But in these cases, the measured real no. of graphs is just a
small fraction of the theoretical worst case estimation.

In any case, the most determining factor in the complexity expression, and
therefore in the analysis times, seems to be the number of CLSs (NCLS). They
describe how nodes and links can combine to create all possible memory con-
figurations arising in the program. Eq. 10 computes the maximum theoretical
worst case, and again, we get the highest value for the 5th code. In fact, the
number of worst case estimated NCLS ranges from 180 for the 1st code, to 20.2
· 106 for the mentioned 5th code. Again, we could compare the measured #
CLSs per graph given by Table 4 against the theoretical wost case estimation of
NCLS given by Eq. 10. Fig. 6 represents the fraction (expressed in %) of mea-
sured vs. worst case estimated NCLS for our codes. All the fractional values
are lower than 10%. Clearly, the measured no. of CLSs is very low compared
to the theoretical worst case, and our measurements seems to indicate that, in
real codes, this parameter does not have the exponential behaviour which we
had estimated.

In fact, we computed the complexity values for the complexity expression

14

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100
Measured vs. worst case estimated NG

Codes

%
 o

f e
st

im
at

ed
 v

al
ue

s

Figure 5: Fraction of measured vs. worst case estimated NG.

1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

10
Measured vs. worst case estimated NCLS

Codes

%
 o

f e
st

im
at

ed
 v

al
ue

s

Figure 6: Fraction of measured vs. worst case estimated NCLS.

using two set of parameters: in the first one, the measured values of NG and
NCLS given in Table 4; in the second one, the wost case estimated values of
NG and NCLS given by Eqs. 2 and 10. Fig. 7 represents now the fraction
(expressed in %) of the obtained measured vs. worst case estimated values of
the complexity, for the codes. In all the cases, the fraction of measured values
is under the 5% of the estimated ones. In fact, for the more complex codes
(the matrix-vector products), the obtained measured values of the complexity
are under the 0.01% of estimated ones. Although our estimation seems to be
very conservative, the important point is that our experiments with real codes
confirm that our method never reach the worst case, and that in practice, even
for the more complex codes, only a very small subset of possibly graphs and

15

CLSs is generated.

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Measured vs. worst case estimated complexity

Codes

%
 o

f e
st

im
at

ed
 v

al
ue

s

Figure 7: Fraction of measured vs. worst case estimated complexity values.

Other interesting parameters which we have measured and that could give
us more idea about the size of the graphs is the number of nodes and number of
selector links per graph. The number of nodes depends mostly on the number
of live pointers (nv) and the properties considered (np = 1 in our tests). The
maximum theoretical worst case can be computed by Eq. 3. Fig. 8(a) represents
the fraction (expressed in %) of measured vs. worst case estimated NN for our
codes. The measured # of nodes against the estimated NN values, range from
the 80% (code # 3) to the 100% (codes # 1, 2, 6 and 7). The other measured
parameter, the number of selector links depends on the amount of different links
(or pointer fields) that the data structures have (nl), as well as the number of
nodes per graph. Eq. 6 give us the maximum theoretical worst case. Again,
Fig. 8(b) represents the fraction (expressed in %) of measured vs. worst case
estimated NSL for our codes. The measured # of selector links against the
estimated NSL values, range from the 10% (5th code) to the 35% (1st code).
For these two measured parameters, our estimations seems to be quite accurate,
but in any case, they do not seem to have such an important impact in the
analysis times of our experiments.

To sum up, we can say that our shape analyzer can effectively analyze com-
plex data structures that frequently arise in heap-directed pointer-based codes.
We have checked that generated graphs accurately capture the heap structures.
In this study, we have found that the complexity of our approach is driven by
the no. of graphs and the no. of CLSs, and we have given some expressions
to estimate the worst cases. The experimental results seem to indicate that,
in spite of the theoretical exponential behaviour of the approach, in practice
the no. of generated graphs and specially, the no. of generated CLSs are quite
manageable and we can see that the analyses run in reasonable times, specially
for such a complex technique. Despite this encouraging results, it is clear that

16

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100
Measured vs. worst case estimated NN

Codes

%
 o

f e
st

im
at

ed
 v

al
ue

s

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100
Measured vs. worst case estimated NSL

Codes

%
 o

f e
st

im
at

ed
 v

al
ue

s

(a) (b)
Figure 8: (a) Fraction of measured vs. worst case estimated NN ; (b) Fraction
of measured vs. worst case estimated NSL.

this is a costly technique which is not likely to succeed if used for whole pro-
gram analysis on bigger codes. Instead, it would be better used within a client
analysis module that would focus on a local analysis of selected parts of the
code.

In this regard, we recently discovered that def-use information can be used
to identify the statements directly involved in the creation of recursive data
structures. A def-use chain establishes a relationship between the definition
point where a value is created and points where it is used. With that information
we can automatically determine what are the statements that actually define the
shape of dynamic memory and discard all other statements. The shape analysis
only needs to analyze these statements to build the graphs that represent the
data structure in the program. With this approach we avoid analyzing irrelevant
statements that would slow down the shape analysis, as well as we eliminate
live pointer variables that could increase the no. of graphs and therefore the
complexity of the approach. We have tried this approach on the matrix by vector
examples. We removed all traversal statements that were not involved in the
output vector creation, and the resulting codes were analyzed again. The results
are shown in the last two rows of Table 4 (the 7th and 8th codes). We found that
pruned tests produce the same output graphs as their original counterparts, thus
capturing memory configuration without any loss in precision. These results
prove that def-use driven shape analysis works much better, as the no. of
graphs has been greatly decreased, and in a less extend, the no. of CLSs has
been decreased too. As a consequence, the analysis times have been reduced
importantly. These examples motivate us to tightly integrate shape analysis
within client analysis that focuses on the statements of interest. More details
of this framework can be found in [1].

5 CONCLUSIONS

In this paper we have discussed several complexity issues related with a shape
analysis approach based on Coexistent Links Sets (CLSs). We have found where

17

the complexity of our analysis resides and through several experiments we have
demonstrated that our analysis runs in manageable times when processing com-
plex data structures. However, we have understood that shape analysis works
better when combined with high level compiler passes that drive the analysis,
as for instance a def-use pass that can be used to focus the shape analysis on
the statements of interest.

References

[1] R. Castillo, A. Tineo, F. Corbera, A. Navarro, R. Asenjo, and E.L. Zapata. To-
wards a versatile pointer analysis framework. Lecture Notes in Computer Science,
4128:323–333, 2006.

[2] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics: A Founda-
tion for Computer Science, chapter 6: Stirling numbers, pages 257–267. Addison-
Wesley, 2nd edition, 1994.

[3] B. Hackett and R. Rugina. Region-based shape analysis with tracked locations. In
ACM SIGPLAN Symposium on Principles of Programming Languages (POPL’05),
pages 310–323, Long Beach, California, USA, January 2005.

[4] B. Jeannet, A. Loginov, T. Reps, and M. Sagiv. A relational approach to interprod-
edural shape analysis. In 11th International Static Analysis Symposium, Verona,
Italy, August 2004.

[5] Sang-Ik Lee, Troy A. Johnson, and Rudolf Eigenmann. Cetus - an extensible com-
piler infrastructure for source-to-source transformation. In The 16th International
Workshop on Languages and Compilers for Parallel Computing (LCPC ’03), pages
539–553, College Station, Texas, USA, October 2003.

[6] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
ACM Transactions on Programming Languages and Systems, 2002.

[7] A. Tineo, F. Corbera, A. Navarro, R. Asenjo, and E.L. Zapata. A new strategy
for shape analysis based on Coexistent Link Sets. In Parallel Computing 2005
(ParCo’05), September 2005.

18

