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1 Introduction

To formalize the description of our model, we use the simple statements and definitions shown in Fig. 1. We

only consider statements dealing with pointers as the ones shown in the figure (they are C-like imperative

statements with dynamic allocation), because other complex pointer statements can be transformed into

several of these simple pointer statements in a preprocessing stage. We assume that the types of all pointer

variables and objects are explicitly declared. Each object type has a set of pointer fields associated with it,

and the set of all these pointer fields that are defined in the program is what we call SEL.

programs: prog ∈ P , P =< STMT,PTR, TY PE,SEL >
statements: s ∈ STMT , s ::= x = NULL | x = malloc() | free(x) | x = y

| x → sel = NULL | x → sel = y | x = y → sel
pointer variables: x, y ∈ PTR
type objects: t ∈ TY PE
selectors fields: sel ∈ SEL

Figure 1: Simple statements and definitions.

2 Concrete Heap

We model the concrete domain that represents the heap stores that can arise during program execution as a

set of memory locations l ∈ L. We incorporate some instrumental functions in that concrete domain. For

instance, we define the total function T : (PTR ∪ SEL) −→ TY PE to compute the type for each pointer

or selector field as:

∀x ∈ PTR ∨ sel ∈ SEL, ∃t ∈ TY PE | T (x) = t ∨ T (sel) = t.

Initially, we define two mapping functions PMc and SMc to model the relations of pointers variables

and selector fields to memory locations. PMc and SMc are partial functions that can be defined as follows:

Pointer Map (in the concrete domain): PMc: PTR −→ L

Selector Map (in the concrete domain): SMc: L × SEL −→ (L ∪ null)

• PMc maps a pointer variable x to the location l pointed to by x:

∀x ∈ PTR, ∃l ∈ L | PMc(x) = l.

Usually, we use the tuple plc =< x, n >, which we name concrete pointer link, to represent this

binary relation. The set of all pointer links is named PLc.
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• SMc models points to relations between locations l1 and l2, through selector fields sel:

∀l1 ∈ L s.t. T (l1) = t ∧ ∀sel ∈ SF(t), ∃l2 ∈ (L ∪ null) | SMc(l1, sel) = l2.

We use a tuple slc =< l1, sel, l2 >, which we name concrete selector link to represent this relation.

The set of all concrete selector links is called SLc.

Our concrete heap is modeled as a directed multi-graph. The domain for a graph is the set MC ⊂

P(L) × P(PLc) × P(SLc)∗. Each graph of our concrete domain is what we call a memory configuration

mci ∈ MC and it is represented as a tuple mci =< Li, PLci, SLci > with Li ⊂ L, PLci ⊂ PLc

and SLci ⊂ SLc. At a given program statement s, we can represent our concrete heap as: MCs =

{mci ∀path from entry to s}

3 Abstract Heap

Our abstract domain is based on a heap graph model. Each node may represent a set of concrete memory

locations, whereas each edge may represent a pointer variable or a set of selectors with the same field name.

The abstract domain for the nodes, N = P(PTR) ∪ {null} (which includes a special node named

null) indicates that the nodes are distinguishable through the set of pointer variables which point to them.

Now we define three mapping functions LM, PMa, SMa to model the relationship between memory

locations and nodes in the concrete and abstract domain, as well as the connections of pointers variables

and selector fields to nodes in the abstract heap. The mapping functions LM and PMa are total functions,

while SMa is a multivalued function. They can be defined as follows:

Location Map : LM: L −→ N

Pointer Map (in the abstract domain) : PMa: PTR −→ N

Selector Map (in the abstract domain): SMa: N × SEL −→ N

• LM assigns a node n to a concrete memory location l:

∀l ∈ L, ∃n ∈ N | LM(l) = n.

• PMa maps a pointer variable x which points to a location l in the concrete domain, to a node n in

the abstract domain:

∀PMc(x) = l ⊂ MC , ∃n ∈ N s.t. LM(l) = n | PMa(x) = n.

∗In this paper we will use the notation P(A) to represent the power set of a set A.
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Usually, we use the tuple pl =< x, n >, which we name pointer link, to represent this binary relation.

The set of all pointer links is named now PL.

• SMa models points to relations between locations li and lj through selector field sel in the concrete

domain, as relations between nodes n1 and n2:

∀SMc(li, sel) = lj ⊂ MC , ∃n1 ∈ (N − null) ∧ ∃n2 ∈ N s.t. LM(li) = n1 ∧ LM(lj) =

n2 | SMa(n1, sel) = n2.

Again, we use a tuple sl =< n1, sel, n2 >, which now we name selector link to represent this relation.

The set of all selector links is called SL.

The novelty of our approach is that we keep the information about connectivity and aliasing in a node-

oriented fashion. For it, we build new instrumentation domains, that when added to the nodes in the abstract

heap will improve the accuracy of the connectivity and aliasing information.

Selector Links with attributes.

We define a set of attributes, ATT = {i, o, c, s}, where each element att ∈ ATT codifies information

about the direction and nature of a selector link when it is related to a node. Intuitively, att = i stands

for an input link, att = o for an output link, att = c for a cyclic link, and att = s for a shared

one. They will be defined more formally later on. From the set ATT we define a new domain

ATTSL = P(ATT ), where each element of this new domain attsl ∈ ATTSL represents a possible

combination of attributes that describe the characteristics of a selector link when it is associated to a

node. The join operation in the ATTSL domain, 	, will be defined in Section 4.

In particular, from the set of all selector links, SL and from ATTSL we define the domain SLatt =

SL × ATTSL. An element slatt in this domain, which we call a selector link with attributes, is

represented as a tuple slatt =< sl, attsl >, where sl ∈ SL and attsl ∈ ATTSL.

Coexistent Links Set.

The key feature of our model is to be able to maintain the connectivity and aliasing information

that can coexist in an abstract node, even when the node represents different memory locations with

different connection patterns. This is achieved through the Coexistent Links Set abstraction. The

domain of our Coexistent Links Set abstraction CLSa = (CLM) is defined in terms of a mapping

function CLM as follows:
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Coexistent Links Map : CLM: N −→ P(PL) × P(SLatt)

CLM is a multivalued function which maps for a node n, one or more components, each one called

a coexistent links set, clsn: ∀n ∈ N , CLM(n) = {clsn}. A coexistent links set, clsn, codified an

aliasing and connectivity pattern for that node, and it is defined as follows:

clsn = {PLn, SLn}

where:

PLn = {pl ∈ PL s.t. pl =< x, n >}

SLn = {slatt ∈ SLatt s.t. slatt =<< n1, sel, n2 >, attsl >, being (n1 = n ∨ n2 = n)}

Regarding the attributes codified at attsl, they are obtained from the concrete domain, in particu-

lar from L and the concrete selector links set SLc. These attributes have meaning when they are

interpreted in a clsn context (i.e. associated with a node), as we expose next.

Let clsn = {PLn, SLn} be. For each slatt =<< n1, sel, n2 >, attsl >∈ SLn we can find one or

more of the following cases:

If l1 
= l2 and ∃slc1(l1, sel, l) ∧ ∃slc2(l2, sel, l) s.t. (LM(l1) = LM(l2) = n1 ∧ LM(l) =

n2 = n) =⇒ s ∈ attsl

else

If l1 
= l2 and ∃slc =< l1, sel, l2 > s.t. (LM(l1) = n1 ∧ LM(l2) = n2 = n) =⇒ i ∈

attsl.

If l1 
= l2 and ∃slc =< l1, sel, l2 > s.t. (LM(l1) = n1 = n ∧ LM(l2) = n2) =⇒ o ∈

attsl.

If l1 = l2 = l and ∃slc =< l, sel, l > s.t. (LM(l) = n1 = n2 = n) =⇒ c ∈ attsl.

The set of all the clsn associated to a node n is called CLSn, and it codifies all the possible patterns

of aliasing and connectivity that can coexist in a given node n. In addition, for all the nodes n defined

in our abstract heap, we can create the set CLS = {CLSn,∀n ∈ N}.

Shape Graph
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Our abstract heap is modeled as a directed multi-graph. The domain for an abstract graph is the set

SG ⊂ P(N) × P(CLS). Each element of this domain, sgi ∈ SG is what we call a shape graph,

which we represent as a tuple sgi =< N i, CLSi >, with N i ⊂ N and CLSi = {CLSn, ∀n ∈

N i} ⊂ CLS.

We restrict this abstract domain by defining a normal form of the shape graphs. We will need the

auxiliary functions Compatible Node() and Path(), that are described in Fig. 2. We say that a

shape graph sgi =< N i, CLSi > is in normal form if:

1. It has not compatible nodes: �n1, n2 ∈ N i s.t. Compatible Node(n1, n2, CLSn1, CLSn2) =

TRUE

2. It has not unreachable nodes: ∀n1 ∈ N i,∃pl1 =< x, n1 >⊂ CLSn1∨(∃n2 ∈ N i s.t. ∃pl2 =<

x, n2 >⊂ CLSn2 ∧ Path(n2, n1, CLSi) = TRUE)

3. A pointer variable unambiguously points to one node: ∀n1, n2 ∈ N i s.t. n1 
= n2, If ∃pl1 =<

x, n1 >⊂ CLSn1 =⇒ �pl2 =< x, n2 >⊂ CLSn2

4. The selector links of connected nodes, are coherent: ∀n1, n2 ∈ N i s.t. n1 
= n2, If ∃slatt =<<

n1, selk, n2 >, attsl >⊂ CLSn1 =⇒ ∃slatt =<< n1, selk, n2 >, attsl′ >⊂ CLSn2

Compatible Node()
Input: n1, n2, CLSn1, CLSn2 # two nodes and their CLS’s
Output: TRUE/FALSE

If (∀pl1 =< x, n1 >⊂ CLSn1, ∃pl2 =< x, n2 >⊂ CLSn2∧
∀pl2 =< y, n2 >⊂ CLSn2, ∃pl1 =< y, n1 >⊂ CLSn1 ),

return(TRUE)
else

return(FALSE)
end

Path()
Input: n1, n2, CLS # two nodes and a CLS set
Output: TRUE/FALSE

If (∃slatti =< n1, sel0, na >, attsli >⊂ CLSn1,
slattj =< na, sel1, nb >, attslj >⊂ CLSna, . . .
. . ., slattk =< nk, selk, n2 >, attslk >⊂ CLSnk),

return(TRUE)
else

return(FALSE)
end

(a) (b)

Figure 2: (a) Check when two nodes are compatible; (b) Compute if exists a path between two nodes.

Reduced Set of Shape Graphs
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As we mentioned previously, our abstract heap is modeled as a multi-graph. We call reduced set of

shape graphs to the set of shape graphs that represents the state of the heap at a given program point

s: RSSGs = {sgi ∈ SG s.t. sgi is in normal form}

Again, we impose a restriction in this set of graphs, and it is that the set is in normal form. We say

that a reduced set of shape graphs, RSSGs = {sgi} is in normal form if:

1. It has not compatible shape graphs: �sg1, sg2 ∈ RSSGs s.t. Compatible SG(sg1, sg2) =

TRUE.

The auxiliary function Compatible SG(sg1, sg2) is described now in Fig. 3. The function

checks that for each node of graph sg1 pointed to by a pointer (or group of pointer variables),

there is another node of graph sg2 pointed to by the same pointer (or group of pointer variables).

The same check is done for all the nodes in graph sg2. In other words, the function checks that

all the nodes pointed to by pointer variables in graphs sg1 and sg2 are compatible. In this case,

we would say that the two graphs are compatible, and they could be joined in a new summary

graph (see function 15). Clearly, only the graphs with the same alias relationships can be joined.

The constraint that a reduced set of shape graphs RSSGs is in normal form ensures that each graph

sgi ∈ RSSGs represents a different alias configuration. This issue will become very useful when

implementing the abstract semantics of several statements.

Compatible SG()
Input: sg1 =< N1, CLS1 >, sg2 =< N2, CLS2 > # two shape graphs
Output: TRUE/FALSE

If

(
(∀ni ∈ N1 s.t. ∃pl =< x, ni >⊂ CLSni ∧ ∃nj ∈ N2 s.t. Compatible Node(ni, nj, CLSni, CLSnj) = TRUE)∧

(∀nj ∈ N2 s.t. ∃pl =< y, nj >⊂ CLSnj ∧ ∃ni ∈ N1 s.t. Compatible Node(nj , ni, CLSnj , CLSni) = TRUE)
)

,

return(TRUE)
else

return(FALSE)
end

Figure 3: Check when two shape graphs are compatible.
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4 Abstract Semantics and Operations

In this section we describe the abstract semantic associated to each statement and present the principal

algorithms used in the analysis.

4.1 Abstract Semantics

We formulate our analysis as a dataflow analysis that computes a reduced set of shape graphs at each pro-

gram point. For each statement in the program, s ∈ STMT , we define two program points: •s is the

program point before s, and s• is the program point after s. Therefore, the result of the analysis is a reduced

set of shape graphs, RSSG•s before s, and RSSGs• after that. Let pred() map statements to their pre-

decessor statements in the control flow (these can be easily computed from the syntactic structure of control

statements). Fig. 4 shows the dataflow equations.

[JOIN]: RSSG•s =
⊔RSSG

s′∈pred(s) RSSGs′•

[TRANSF]: RSSGs• = ASs(RSSG•s), where

ASs::= x=null(RSSG•s) =
⊔RSSG

sgi∈RSSG•s XNull(sgi, x)

ASs::= x=malloc()(RSSG•s) =
⊔RSSG

sgi∈RSSG•s XNew(sgi, x)

ASs::= free(x)(RSSG•s) =
⊔RSSG

sgi∈RSSG•s FreeX(sgi, x)

ASs::= x=y(RSSG•s) =
⊔RSSG

sgi∈RSSG•s XY (sgi, x, y)

ASs::= x→sel=null(RSSG•s) =
⊔RSSG

sgi∈RSSG•s XselNull(sgi, x, sel)

ASs::= x→sel=y(RSSG•s) =
⊔RSSG

sgi∈RSSG•s XselY (sgi, x, sel, y)

ASs::= x=y→sel(RSSG•s) =
⊔RSSG

sgi∈RSSG•s XY sel(sgi, x, y, sel)

Figure 4: Dataflow equations.

We model the analysis of individual statements computing a transfer function for each one. To simplify

the formal definitions of the transfer functions we use the functions XNull(), XNew(), FreeX(), XY(),

XselNull(), XselY() and XYsel() to describe the transformations that take place in the abstract heap

when a simple statement s is interpreted (see Figures 7, 8, 9, 10, 11, 12, 13 respectively). The operator⊔RSSG represents the join operation in the RSSG domain. It is described as a function too, in Fig. 6.

Basically, the transfer functions for the x=null, x=malloc(), free(x) and x=y statements, take

each shape graph from the input set RSSG•s, transform it according to the statement semantic, and later

join all the transformed graphs to build the output set RSSGs•. On the other hand, the transfer functions
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for the x->sel=null, x->sel=y and x=y->sel statements, take each shape graph from the input

set RSSG•s, split it (following the x->sel or y->sel path) in a temporal set of graphs (generating

a intermediate RSSG1); next for each one of the temporal graphs in that intermediate set, the transfer

functions materialize an individual node (the one unambiguously pointed to by x->sel or by y->sel),

transform the graph according to the statement semantic, normalize it, summarize compatible temporal

graphs, and finally join all the resultant RSSG’s to build the output set RSSGs•. More details about the

functions and the operations that involve can be found in Section 4.2.

We present in Fig. 5 a worklist algorithm for solving the dataflow equations presented in Fig. 4. The

input of our worklist algorithm is a program P and an initial RSSGin = ∅, whereas the output is the

RSSGout resultant at the exit program point, assuming that the exit point is statement sr ∈ STMT . This

algorithm also computes the resultant RSSGs• at each program point. Lines 1-3 perform the initialization,

where the RSSG at the input of the program entry point (in our case statement se ∈ STMT ) is initialized

with RSSGin. Next, the algorithm processes the worklist using the loop defined in lines 4-12. At each

iteration, it removes, in program lexicographic order, a statement for the worklist, computes the join of the

RSSG’s from the predecessors as the statement input (pred(s)), and then it applies the corresponding

transfer function. In the case in which the resultant RSSG has changed, the algorithm adds the successors

of the statement under consideration (succ(s)) to the worklist (line 10).

4.2 Operations

As we have mentioned previously, to simplify the formal definitions of the join operators and transfer func-

tions, we have incorporated them in the paper as functions. In addition, we have incorporated other useful

instrumental functions. We describe all of them here in more detail. The bold face lines represent actions

that only take place when, in order to avoid aggressive summarizations, properties are considered in the

analysis (see Section 4.4 for details about the properties supported).
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Worklist()
Input: P =< STMT, PTR, TYPE, SEL >, RSSGin # A program and an input RSSG
Output: RSSGout # The RSSG at the exit program point

1: Create W = STMT
2: RSSG•se = RSSGin

3: ∀s ∈ STMT → RSSGs• = ∅
4: repeat
5: Remove s from W in lexicographic order
6: RSSG•s =

⊔RSSG
s′∈pred(s) RSSGs′•

7: RSSGs• = ASs(RSSG•s)
8: If (RSSGs• has changed),
9: forall s′ ∈ succ(s),

10: W = W ∪ s′

11: endfor
12: until (W = ∅)
13: RSSGout = RSSGsr•

14: return(RSSGout)
end

Figure 5: The worklist algorithm. It computes the RSSGs• at each program point.

Join RSSG() (
⊔RSSG )

Input: RSSG1, RSSG2 # two reduced sets of shape graphs
Output: RSSGk # a reduced set of shape graphs in normal form

RSSGk = ∅
Create RSSGk′

= RSSG1 ∪ RSSG2

RSSGk = SummarizeRSSG(RSSGk′
)

return(RSSGk)
end

Figure 6: The operator
⊔RSSG as the Join RSSG() function.
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XNull()
Input: sg1 =< N1, CLS1 >, x ∈ PTR # a shape graph, and a pointer variable
Output: RSSGk # a graph in a reduced set of shape graphs

Create List′[N ] = ∅; Create List′[CLS] = ∅
Find ni ∈ N1 s.t. ∃pl =< x, ni >⊂ CLSni

forall clsni = {PLni, SLni} ∈ CLSni,
Create PL′

ni = PLni − pl # Remove the corresponding pl
Create SL′

ni = SLni

Create cls′ni = {PL′
ni, SL′

ni}
List′[CLS] = List′[CLS] ∪ cls′ni

List′[N ] = List′[N ] ∪ ni

endfor
forall nj ∈ N1 s.t. nj 
= ni,

List′[CLS] = List′[CLS] ∪ CLSnj

List′[N ] = List′[N ] ∪ nj

endfor
sgk =Summarize SG(List′[N ], List′[CLS]) # Summarize compatible nodes
RSSGk = sgk

return(RSSGk)
end

Figure 7: XNull() function.

XNew()
Input: sg1 =< N1, CLS1 >, x ∈ PTR # a shape graph, and a pointer variable
Output: RSSGk # a graph in a reduced set of shape graphs

RSSG1 =XNull(sg1, x) being RSSG1 = sg2 =< N2, CLS2 >
# Create a new node np

∀prop ∈ PROP =⇒ PPMprop(np) = Update Property(s,prop)
Create Nk = N2 ∪ np

Create pl =< x, np >
Create PLnp = pl; Create SLnp = ∅
forall selj ∈ SEL

Create slatt =<< np, selj, null >, attsl = {o} >
SLnp = SLnp ∪ slatt

endfor
Create clsnp = {PLnp, SLnp}
Create CLSnp = clsnp

Create CLSk = CLS2 ∪ CLSnp

Create sgk =< Nk, CLSk >
RSSGk = sgk

return(RSSGk)
end

Figure 8: XNew() function.
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FreeX()
Input: sg1 =< N1, CLS1 >, x ∈ PTR # a shape graph, and a pointer variable
Output: RSSGk # a graph in a reduced set of shape graphs

Find ni ∈ N1 s.t. ∃pl =< x, ni >⊂ CLSni(being CLSni ⊂ CLS1)
Create N2 = N1 − ni # Remove the node
Create CLS2 = CLS1 − CLSni # Remove the corresponding CLS
forall nj ∈ N2, # Remove inconsistent sel. links from other nodes

Create CLS′
nj = CLSnj

Find {clsnj ⊂ CLSnj s.t. ∃slatt ⊂ clsnj being slatt =<< nj , sel, ni >, attsl >} ::= {clsnj s.t. cond.A},
forall clsnj = {PLnj, SLnj} s.t. cond.A

Create sl′att =<< nj , sel, null >, attsl = {o} >
Create SL′

nj = SLnj − slatt ∪ sl′att

Create PL′
nj = PLnj

Create cls′nj = {Pl′nj, SL′
nj}

CLS′
nj = CLS′

nj − clsnj ∪ cls′nj

endfor
endfor
Nk = N2 ; CLSk = ∪∀nj∈N2CLS′

nj

Create sgk =< Nk, CLSk >
RSSGk = sgk

return(RSSGk)
end

Figure 9: FreeX() function.

XY()
Input: sg1 =< N1, CLS1 >, x, y ∈ PTR # a shape graph, and two pointer variables
Output: RSSGk # a graph in a reduced set of shape graphs

RSSG1 =XNull(sg1, x) being RSSG1 = sg2 =< N2, CLS2 >
Find ni ∈ N2 s.t. ∃pl1 =< y, ni >⊂ CLSni (being CLSni ⊂ CLS2)
# Modify CLSni

Create CLS′
ni = CLSni

forall clsni = {PLni, SLni} ∈ CLSni,
Create pl′1 =< x, ni > # Update PL
Create PL′

ni = PLni ∪ pl′1
Create SL′

ni = SLni

Create cls′ni = {PL′
ni, SL′

ni}
CLS′

ni = CLS′
ni − clsni ∪ cls′ni

endfor
Create Nk = N2; Create CLSk = CLS2 − CLSni ∪ CLS′

ni

Create sgk =< Nk, CLSk >
RSSGk = sgk

return(RSSGk)
end

Figure 10: XY() function.
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XselNull()
Input: sg1 =< N1, CLS1 >, x ∈ PTR, sel ∈ SEL # a shape graph, a pointer variable and a selector field
Output: RSSGk # a reduced set of shape graphs in normal form

Create RSSGk′
= ∅

RSSG1 =Split(sg1, x, sel)
forall sgi =< N i, CLSi >∈ RSSG1,

sgj =< N j , CLSj >= Materialize Node(sgi, x, sel)
Find nk ∈ N j s.t. ∃pl1 =< x, nk >⊂ CLSnk (being CLSnk ⊂ CLSj)
# Modify CLSnk

Create CLS′
nk = CLSnk

forall clsnk = {PLnk, SLnk} ⊂ CLSnk,
If (∃slatt1 ⊂ clsnk being slatt1 =<< nk, sel, np >, attsl1 >),

Create sl′att1 =<< nk, sel, null >, attsl1′ = {o} >
Create SL′

nk = SLnk − slatt1 ∪ sl′att1

Create PL′
nk = PLnk

Create cls′nk = {PL′
nk, SL′

nk}
CLS′

nk = CLS′
nk − clsnk ∪ cls′nk

# Modify CLSnp

Create CLS′
np = CLSnp

forall clsnp = {PLnp, SLnp} ⊂ CLSnp (being CLSnp ⊂ CLSj),
If (∃slatt2 ⊂ clsnp being slatt2 =<< nk, sel, np >, attsl2 >),

Create SL′
np = SLnp − slatt2

Create PL′
np = PLnp

Create cls′np = {PL′
np, SL′

np}
CLS′

np = CLS′
np − clsnp ∪ cls′np

endfor
endfor
Create N j′ = N j

Create CLSj′ = CLSj − CLSnk ∪ CLS′
nk − CLSnp ∪ CLS′

np

Create sgj′ =< N j′ , CLSj′ >

sgj′′ =Normalize SG(sgj′)
RSSGk′

= RSSGk′ ∪ sgj′′

endfor
RSSGk =Summarize RSSG(RSSGk′

) # Summarize compatible graphs
return(RSSGk)

end

Figure 11: XselNull() function.
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XselY()
Input: sg1 =< N1, CLS1 >, x ∈ PTR, sel ∈ SEL, y ∈ PTR # a shape graph, two pointer vars and a selector field
Output: RSSGk # a reduced set of shape graphs in normal form

Create RSSGk′
= ∅

RSSG1 =Split(sg1, x, sel)
forall sgi =< N i, CLSi >∈ RSSG1,

RSSG2 =XselNull(sgi, x, sel)
forall sgj =< N j , CLSj >∈ RSSG2

Find nk ∈ N j s.t. ∃pl1 =< x, nk >⊂ CLSnk (being CLSnk ⊂ CLSj)
Find np ∈ N j s.t. (∃pl2 =< y, np >⊂ CLSnp ∧ np 
= null) (being CLSnp ⊂ CLSj)
# Modify CLSnk

Create CLS′
nk = CLSnk

forall clsnk = {PLnk, SLnk} ∈ CLSnk,
If (∃slatt1 ⊂ clsnk being slatt1 =<< nk, sel, null >, attsl >),

Create sl′att =<< nk, sel, np >, attsl′ >
If (nk = np) → attsl′ = {c}
else → attsl′ = {o}
Create SL′

nk = SLnk − slatt1 ∪ sl′att

Create PL′
nk = PLnk

Create cls′nk = {PL′
nk, SL′

nk}
CLS′

nk = CLS′
nk − clsnk ∪ cls′nk

endfor
# Modify CLSnp

Create CLS′
np = CLSnp

forall clsnp = {PLnp, SLnp} ∈ CLSnp (being np 
= nk),
Create sl′att =<< nk, sel, np >, attsl′ = {i} >
Create SL′

np = SLnp ∪ sl′att

Create PL′
np = PLnp

Create cls′np = {PL′
np, SL′

np}
CLS′

np = CLS′
np − clsnp ∪ cls′nl

endfor
Create N j′ = N j

Create CLSj′ = CLSj − CLSnk ∪ CLSnk − CLSnp ∪ CLSnp

Create sgj′ =< N j′ , CLSj′ >

RSSGk′
= RSSGk′ ∪ sgj′

endfor
endfor
RSSGk =Summarize RSSG(RSSGk′

) # Summarize compatible graphs
return(RSSGk)

end

Figure 12: XselY() function.

13



XYsel()
Input: sg1 =< N1, CLS1 >, x, y ∈ PTR, sel ∈ SEL # a shape graph, two pointer variables and a selector field
Output: RSSGk # a reduced set of shape graphs in normal form

Create RSSGk′
= ∅

RSSG1 =XNull(sg1, x) being RSSG1 = sg2 =< N2, CLS2 >
RSSG2 =Split(sg2, y, sel)
forall sgi =< N i, CLSi >∈ RSSG2,

sgj =< N j , CLSj >=Materialize Node(sgi, y, sel)
Find nk ∈ N j s.t. ∃pl1 =< y, nk >⊂ CLSnk(being CLSnk ⊂ CLSj)
If (∃slatt1 ⊂ clsnk s.t. slatt1 =<< nk, sel, np >, attsl > ∧np 
= null}),

# Modify CLSnp

Create CLS′
np = CLSnp

forall clsnp = {PLnp, SLnp} ∈ CLSnp,
Create pl′ =< x, np >; Create PL′

np = PLnp ∪ pl′np

Create SL′
np = SLnp

Create cls′np = {PL′
np, SL′

np}
CLS′

np = CLS′
np − clsnp ∪ cls′np

endfor
Create N j′ = N j ; Create CLSj′ = CLSj − CLSnp ∪ CLS′

np

else # Case np = null

Create N j′ = N i; Create CLSj′ = CLSi

Create sgj′ =< N j′ , CLSj′ >

RSSGk′
= RSSGk′ ∪ sgj′

endfor
RSSGk =Summarize RSSG(RSSGk′

) # Summarize compatible graphs
return(RSSGk)

end

Figure 13: XYsel() function.

Summarize RSSG()
Input: RSSG1 # a reduced set of shape graphs
Output: RSSGk # a reduced set of shape graphs in normal form

RSSGk = ∅
forall sgi ∈ RSSG1

If (∃sgj ∈ RSSGk s.t. Compatible SG(sgi, sgj) = TRUE),
RSSGk = RSSGk − sgi ∪ Join SG(sgi, sgj)

else
RSSGk = RSSGk ∪ sgi

endfor
return(RSSGk)

end

Figure 14: Summarize RSSG() function.
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Join SG()
Input: sg1 =< N1, CLS1 >, sg2 =< N2, CLS2 > # two shape graphs
Output: sgk =< Nk, CLSk > # a normalized shape graph

Nk = ∅; CLSk = ∅
# Compute N 1  N2

forall ni ∈ N1,
If (∃nj ∈ N2 s.t. Compatible Node(ni, nj, CLSni, CLSnj) = TRUE),

# Create a summary node ns

∀prop ∈ PROP =⇒ PPMprop(ns) = Join Property(ni,nj,prop)
Nk = Nk ∪ ns

MAP (ni) = MAP (nj) = ns

else
Nk = Nk ∪ ni

MAP (ni) = ni

endfor
forall nj ∈ N2,

If (�ni ∈ N1 s.t. Compatible Node(nj , ni, CLSnj , CLSni) = TRUE),
Nk = Nk ∪ nj

MAP (nj) = nj

endfor
# Compute CLS1  CLS2

∀nr ∈ Nk → Create CLS′
nr = ∅

forall ni ∈ N1 ∨ N2,
nr = MAP (ni)
forall clsni = {PLni, SLni} ∈ CLSni,

Create PL′
nr = SL′

nr = ∅
∀pl =< x, ni >∈ PLni =⇒ Create pl′ =< x, nr >; PL′

nr = PL′
nr ∪ pl′

∀slatt =<< na, sel, nb >, attsl >∈ SLni =⇒
Create sl′att =< MAP (na), sel, MAP (nb) >, attsl >; SL′

nr = SL′
nr ∪ sl′att

Create cls′nr = {PL′
nr, SL′

nr}
CLS′

nr = CLS′
nr ∪ cls′nr

endfor
endfor
CLSk =

⋃
∀n∈Nk CLS′

n

return(sgk =< Nk, CLSk >)
end

Figure 15: The Join SG() function.
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Summarize SG()
Input: List1[N ], List1[CLS] # A list of nodes and a list of CLS’s
Output: sgk =< Nk, CLSk > # a normalized shape graph

Nk = ∅; CLSk = ∅
forall ni ∈ List1[N ], # being CLSni ∧ CLSnj ∈ List1[CLS]

If (∃nj ∈ Nk s.t. Compatible Node(ni, nj, CLSni, CLSnj) = TRUE),
MAP (ni) = nj

else
Nk = Nk ∪ ni

MAP (ni) = ni

endfor
∀nr ∈ Nk → Create CLS′

nr = ∅
forall ni ∈ List1[N ],

nr = MAP (ni)
forall clsni = {PLni, SLni} ∈ List1[CLS],

Create PL′
nr = SL′

nr = ∅
∀pl =< x, ni >∈ PLni =⇒ Create pl′ =< x, nr >; PL′

nr = PL′
nr ∪ pl′

∀slatt1 =<< na, sel, nb >, attsl1 >∈ SLni =⇒ # Compute attsl1 	 attsl2
If (∃slatt2 =<< nc, sel, nd >, attsl2 >∈ SLni

being MAP (na) = MAP (nc) ∧ MAP (nb) = MAP (nd)),
If (i ∈ attsl1 ∧ i ∈ attsl2) → attsl′ = attsl1 ∪ attsl2 − i + s
If (i ∈ (attsl1 ∨ attsl2) ∧ s ∈ (attsl1 ∨ atts2)) → attsl′ = attsl1 ∪ attsl2 − i
else → attsl′ = attsl1 ∪ attsl2
Create sl′att =< MAP (na), sel, MAP (nb) >, attsl′ >; SL′

nr = SL′
nr ∪ sl′att

else
Create sl′att =< MAP (na), sel, MAP (nb) >, attsl1 >; SL′

nr = SL′
nr ∪ sl′att

Create cls′nr = {PL′
nr, SL′

nr}
CLS′

nr = CLS′
nr

∪ cls′nr

endfor
endfor
CLSk =

⋃
∀n∈Nk CLS′

n

return(sgk =< Nk, CLSk >)
end

Figure 16: Summarize SG() function.
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Split SG()
Input: sg1 =< N1, CLS1 >, p ∈ PTR # a shape graph, and a pointer variable
Output: RSSGk # a set of shape graphs

RSSGk = ∅
Find ni ∈ N1 s.t. ∃pl =< p, ni >⊂ CLSni

# Split a graph for each clsni ∈ CLSni

forall clsni ∈ CLSni,
Create CLSk′

= CLS1 − CLSni ∪ clsni

Create Nk′
= N1

Create sgk′
=< Nk′

, CLSk′
>

RSSGk = RSSGk
⋃
Normalize SG(sgk′

)
endfor
If ∀ni ∈ N1, �pl =< p, ni >⊂ CLSni,

RSSGk = sg1

return(RSSGk)
end

Figure 17: Split SG() function.

17



Normalize SG()
Input: sg1 =< N1, CLS1 > # a shape graph
Output: sgk =< Nk, CLSk > # a normalized shape graph

Create Nk′
0 = N1

Create CLSk′
0 = CLS1

Create sgk′
0 = sg1

repeat # Iterate until N k′
i and CLSk′

i do not change anymore
Find Nu = {nu ∈ Nk′

i s.t. Unreachable(nu, sgk′
i ) = TRUE}

Find Ne = {ne ∈ Nk′
i s.t. CLSne = ∅}

# Remove unreachable and empty nodes
Nk′

i+1 = Nk′
i − Nu − Ne

# cls’s from/to unreachable and empty nodes
Find {clsnb s.t. ∃slatt ⊂ clsnb being slatt =<< nf , sel, ng >, attsl >,

with (nf ∈ Nu ∪ Ne) ∨ (ng ∈ Nu ∪ Ne)}
# cls’s with incoherent selector links
Find {clsnc s.t. ∃slatt1 ⊂ clsnc being slatt1 =<< nc, sel, nm >, attsl1 > ∧

∧�slatt2 ⊂ clsnm being slatt2 =<< nc, sel, nm >, attsl2 >}
Find {clsnd s.t. ∃slatt3 ⊂ clsnd being slatt3 =<< nm, sel, nd >, attsl3 > ∧

∧�slatt4 ⊂ clsnm being slatt4 =<< nm, sel, nd >, attsl4 >}
CLSk′

i+1 = CLSk′
i −

⋃
∀nu∈Nu

CLSnu −
⋃

∀ne∈Ne
CLSne−

−{clsnb} − {clsnc} − {clsnd}
sgk′

i+1 =< Nk′
i+1, CLSk′

i+1 >

until
(
Nk′

i+1 = Nk′
i ∧ CLSk′

i+1 = CLSk′
i

)
# Fixed point condition

Nk = Nk′
i+1, CLSk = CSLk′

i+1, sgk = sgk′
i+1

return(sgk)
end

Figure 18: Normalize SG() function.
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Materialize Node()
Input: sg1 =< N1, CLS1 >, p ∈ PTR, sel ∈ SEL # a shape graph, a pointer variable and a selector field
Output: sgk =< Nk, CLSk > # a shape graph

Find ni ∈ N1 s.t. ∃pl =< p, ni >⊂ CLSni

Find nj ∈ N1 s.t. ∃slatt1 =<< ni, sel, nj >, attsl1 >⊂ CLSni

# Create a new node nm

∀prop ∈ PROP =⇒ PPMprop(nm) = PPMprop(nj)
Create Nk′

= N1 ∪ nm

∀n ∈ Nk′
=⇒ Create CLS′

n = ∅
Find {clsnj ⊂ CLSnj s.t. ∃slatt2 ⊂ clsnj being slatt2 =<< ni, sel, nj >, attsl2 >} ::= {clsnj s.t. cond. A}
forall clsnj = {PLnj, SLnj} s.t. cond. A, # Create CLS ′

nm

Create PL′
nm = SL′

nm = ∅
∀pl =< x, nj >∈ PLnj =⇒ Create pl′ =< x, nm >; PL′

nm = PL′
nm ∪ pl′

∀slatt =<< na, f ield, nb >, attsl >∈ SLnj =⇒
If (attsl = {c}) → Create sl′att =< nm, f ield, nm >, attsl >; SL′

nm = SL′
nm ∪ sl′att

If (attsl = {o}) → Create sl′att =< nm, f ield, nb >, attsl >; SL′
nm = SL′

nm ∪ sl′att

If (attsl = {i} ∨ {s}) → Create sl′att =< na, f ield, nm >, attsl >; SL′
nm = SL′

nm ∪ sl′att

else → # cases {i, o}, {s, o}, {i, c}, {s, c}
Create sl′att1 =< na, f ield, nm >, attsl − (o/c) >;
Create sl′att2 =< nm, f ield, nb >, attsl − (i/s) >;
SL′

nm = SL′
nm ∪ sl′att1 ∪ sl′att2

Create cls′nm = {PL′
nm, SL′

nm}
CLS′

nm = CLS′
nm ∪ cls′nm

endfor
Create CLS′

nj = CLSnj − {clsnj s.t. cond. A} # Create CLS ′
nj

forall clsnj = {PLnj, SLnj} ∈ CLSnj s.t. ¬cond. A,
If (∃slatt6 ⊂ clsnj being slatt6 =<< nj , f ield, nj >, attsl6 >::= clsnj s.t. cond. E)
Create T 1 = T 2 = T 2′ = T 3 = ∅
∀slatt ⊂ clsnj s.t. ¬cond. E =⇒ T 1 = T 1 ∪ slatt

∀slatt6 ⊂ clsnj s.t. cond. E =⇒
If (attsl6 
= {c}),

If (c ∈ attsl6),
T 2 = T 2∪ << nj, f ield, nj >, attsl6 − c
T 3 = T 3∪ << nj, f ield, nj >, attsl6 − (i/s)

else
If ({i/s, o} ⊂ attsl6),

T 2 = T 2∪ << nj, f ield, nj >, attsl6− (i/s) > ∪ << nj , f ield, nj >, attsl6 − o >
else T 2 = T 2∪ << nj , f ield, nj >, attsl6 >

∀slatt ∈ T 2 being slatt =<< nj , f ield, nj >, attsl >=⇒
If ((i/s) ∈ attsl) → Create sl′att =<< nm, f ield, nj >, attsl >
else → Create sl′att =<< nj , f ield, nm >, attsl >
T 2′ = T 2′ ∪ sl′att

Create PL′
nj = PLnj; SL′

nj = T 1 ∪ T 3
for P = (00...0) : (11..1), # P is a binary vector of cardinal(T2) size

SL′
nj = SL′

nj ∪ {P · T 2 + ¬P · T 2′}
Create cls′nj = {PL′

nj, SL′
nj}

CLS′
nj = CLS′

nj ∪ cls′nj

endfor
endfor
...

Figure 19: Materialize Node() function (1).
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Materialize Node() cont.

...
forall nk ∈ N1 s.t. nk 
= nj , # Create CLS ′

nk being nk 
= nj

forall clsnk = {PLnk, SLnk} ∈ CLSnk,
If (∃slatt3 ⊂ clsnk being slatt3 =<< nk, f ield, nj >, attsl3 >::= clsnk s.t. cond. B),

Create sl′att3 =<< nk, f ield, nm >, attsl3 >;
If (∃slatt4 ⊂ clsnk being slatt4 =<< nj , f ield, nk >, attsl4 > ∧ s 
∈ attsl4 ::= clsnk s.t. cond. C),

Create sl′att4 =<< nm, f ield, nk >, attsl4 >;
If (∃slatt5 ⊂ clsnk being slatt5 =<< nj , f ield, nk >, attsl5 > ∧ s ∈ attsl5 ::= clsnk s.t. cond. D),

Create sl′att5 =<< nm, f ield, nk >, attsl5 − s + i >;
Create T 1 = T 2 = T 2′ = T 3 = ∅
∀slatt ⊂ clsnk s.t. (¬cond. B ∧ ¬cond. C ∧ ¬cond. D) =⇒ T 1 = T 1 ∪ slatt

∀(slatt3 ∨ slatt4) ⊂ clsnk s.t. (cond. B ∨ cond. C) =⇒ T 2 = T 2 ∪ slatt3 ∪ slatt4; T 2′ = T 2′ ∪ sl′att3 ∪ sl′att4

∀slatt5 ⊂ clsnk s.t. cond. D =⇒ T 3 = T 3 ∪ slatt5 ∪ sl′att5

Create PL′
nk = PLnk; SL′

nk = T 1 ∪ T 3
for P = (00...0) : (11..1), # P is a binary vector of cardinal(T2) size

SL′
nk = SL′

nk ∪ {P · T 2 + ¬P · T 2′}
Create cls′nk = {PL′

nk, SL′
nk}

CLS′
nk = CLS′

nk ∪ cls′nk

endfor
endfor

endfor
CLSk′

=
⋃

∀n∈Nk′ CLS′
n

sgk′
=< Nk′

, CLSk′
>

sgk = Normalize SG(sgk′
)

return(sgk)
end

Figure 20: Materialize Node() function (and 2).
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4.3 Proof of Correctness

The next theorem provides correctness and termination guarantee for the worklist algorithm proposed in

Fig. 5.

Lemma 4.1 Given two RSSG’s: RSSG1 and RSSG2, such that RSSG1 ⊆ RSSG2. The transfer func-

tions are monotonic if ∀s,ASs(RSSG1) ⊆ ASs(RSSG2).

Proof:

�

Theorem 4.1 (Worklist Correctness). If transfer functions ensure that any pair of compatible nodes are

summarized as well as that any pair of compatible graphs are summarized too, then the worklist algorithm

from Fig. 5 yields the least fixed point of the system of dataflow equations from Fig. 4.

Proof:

�

Corollary 4.1 The worklist algorithm from Fig. 5 is guaranteed to terminate.

Proof:

�

4.4 Analysis refinement: Properties

During the analysis, portions of the heap are summarized into single nodes to avoid unbounded recursive

data structures. More specifically, the summarization of nodes takes place during the Summarize SG

or the Join SG operations (see Figs. ?? and ??), being the summarization criterium to join compatible

nodes. Obviously, the node summarization operation may suppose some loss of accuracy. By default, our

analysis finds two compatible nodes when the set of pointer links associated with them (i.e., the pointer

variables pointing to a node) is the same in both nodes (see Fig. 2(a)). Let us recall that in our initial abstract

heap representation, the abstract domain for the nodes is defined as N = P(PTR) ∪ {null}, making the

nodes be distinguishabled through the set of pointer variables which point to them. One way to refine the

node summarization process in order to avoid aggressive summarizations, consists in extending the abstract

domain for the nodes, incorporating more information. For it, we define a set of properties PROP =

{type, site, touch}, where each element prop ∈ PROP will identify one property that can individually be
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incorporated to our analysis through specific compilation flags. Here, we describe the general framework

to incorporate these (or even new) properties. For each property, we start defining new instrumentation

domains:

• Ptype = TY PE is the domain for the property prop = type, and it is defined as a set that contains

the type objects declared in the program:

Ptype = {ptype s.t. ptype ∈ TY PE}

• Psite is the domain for the property prop = site and is defined as a set that contains the malloc

statements defined in the program:

Psite = {psite s.t. psite = s ∈ STMT ∧ s ::= x = malloc()}

• Let ID be the set of identifiers declared during the preprocessing pass of the analysis. These iden-

tifiers are usually defined in pragma statements or some pseudostatements (see the Touch() and

Untouch() functions in Figs. 25 and 26). Ptouch is the domain for the property prop = touch and

is defined as a set that contains a set of identifiers:

Ptouch = P(ID) = {ptouch s.t. ptouch ⊂ ID}

Now, we can extend the definition of the abstract domain for the nodes as N = (P(PTR) × Ptype ×

Psite ×Ptouch)∪{null}, thus now the nodes are distinguishabled through the set of pointer variables which

point to them and the values of the properties annotated to each node. For each property, we can define a

mapping function PPMprop(n) as follows:

Property Map : PPMprop: N −→ Pprop

where, ∀prop ∈ PROP , Pprop represents the domain for the corresponding property.

The introduction of the node properties, will affect some of the main operations of our analysis, Spe-

cially those that deal with nodes. The changes are depicted in bold face in the corresponding functions of

Section 4.2. One of the functions affected, the Compatible Node() function is rewritten in Fig. 21.

where we check that two nodes are compatible (and can be summarized) when the set of pointer links is

the same in both and when the propeties are equivalent. Precisely, this is done by the auxiliary function

Compatible Property() which checks if property prop ∈ PROP is equivalent in the two nodes n1

and n2.
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Compatible Node()
Input: n1, n2, CLSn1, CLSn2 # two nodes and their CLS’s
Output: TRUE/FALSE

If (∀pl1 =< x, n1 >⊂ CLSn1, ∃pl2 =< x, n2 >⊂ CLSn2∧
∀pl2 =< y, n2 >⊂ CLSn2, ∃pl1 =< y, n1 >⊂ CLSn1 ),

If (∀prop ∈ PROP, Compatible Property(n1,n2,prop) == TRUE),
return(TRUE)

return(FALSE)
end

Figure 21: Check when two nodes are compatible, incorporating the properties check.

Other auxiliary functions, to deal with properties are Update Property() (that initializes the value

of a property in a malloc statement) and Join Property() (that returns the value of a property in two

compatible nodes). Both functions are shown in Figs. 22 and 23, respectively.

Update Property()
Input: s ∈ STMT , prop ∈ PROP # a statement s ::= x = new(), and a property
Output: pprop ∈ Pprop # The value of the corresponding property

Case (prop)
prop == type

pprop = T (x)
break

prop == site
pprop = s
break

prop == touch
pprop = ∅
break

return(pprop)
end

Figure 22: Update Property() function.

4.5 Complexity

In this section, we will focus firstly on the computation of the main parameters which will help us to find the

complexity of our method. Let us keep in mind that we are going to compute the worst case behavior. One

of the parameters of interest, is the maximum number of shape graphs generated by our approach. After

a given program statement s•, such number of graphs are included in a RSSGs•, and it depends on the

number of ways of partitioning the live pointer variables at that point. For instance, if the set of live pointer
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Join Property()
Input: n1, n2, prop ∈ PROP # two nodes and a property
Output: pprop ∈ Pprop # The value of the corresponding property

pprop = PPMprop(n1) = PPMprop(n2)
return(pprop)

end

Figure 23: Join Property() function.

variables is {p1, p2, p3}, i.e. three live pointer variables, we could find the following shape graphs:

• One graph with one node n1 pointed to by {p1,p2,p3}.

• Three graphs with two nodes: n1 & n2, pointed to by:

– {p1,p2} & {p3}

– {p1,p3} & {p2}

– {p2,p3} & {p1}

• One graph with three nodes n1 & n2 & n3, pointed to by {p1} & {p2} & {p3}, respectively.

Therefore, we firstly have to compute the number of ways of partitioning a set of j elements (in our case,

j live pointer variables) into k blocks (in this case, nodes). Such a number is named the j-th number of Bell,

B(j), and can be computed from B(j) =
∑j

k=1 S(j, k), where S(j, k) is the Stirling number of the second

kind [?],
S(j, k) =

1
k!

·
k∑

l=0

(−1)l ·
(

k

l

)
· (k − l)j

As we are interested in computing the maximum number of shape graphs generated by our approach, we

should consider all the possibilities due to different control flow paths, because different paths can establish

different alias relationships between pointer variables and let us recall that each shape graph in a RSSG

represents a different alias configuration. For instance, a path could generate graphs with just one live

pointer variable, another path could generate graphs with two live pointer variables, etc. Assuming that nv

represents the maximum number of live pointer variables at any program point, the maximum number of

graphs generated at a point should be the sum of all the ways of partitioning j live pointer variables, from

j = 1 till j = nv, i.e.,
∑nv

j=1 B(j). In addition, we should consider the number of properties evaluated

in the shape analysis, np, as well as the range of the values for each property pj , range that we define as
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0 : rpj . In this case, each value for each property can contribute with a new graph, therefore the number

of graphs should be multiplied by
[
2

Pnp
j=1 rpj

]
. In the case that no properties are considered in the analysis,

then np = 1 and rp = 0.

Let us not forget that we are computing the maximum number of shape graphs for a RSSG at a program

point s•, i.e. for each statement. With all of this, the maximum number of graphs per statement, which

we name Ngs, could be estimated as we indicate in Eq. 1. An obvious way to compute the maximum

number of graphs generated for the analyzed code, which we will name Ng, would be obtained multiplying

Ngs by the number of statements analyzed in the program, nstmt, as we see in Eq. 2.

Ngs =
[
2

Pnp
j=1 rpj

]
·

nv∑
j=1

B(j) (1)

Ng = nstmt · Ngs = nstmt ·
[
2

Pnp
j=1 rpj

]
·

nv∑
j=1

B(j) (2)

There are other interesting parameters that give us more detailed information about how complex the

shape graphs are and that are measurable: for instance how many nodes does a graph have and how inter-

connected these nodes are. About the number of nodes, we are interested in computing an upper bound, i.e.

the maximum size of a shape graph. In other words, the maximum number of nodes per graph, which we

will name Nn. It depends on the maximum number of live pointer variables, nv, because, in a worst case,

when none of the pointers are aliased, then each one could point to a different node. Nn depends too on the

number of properties considered, np and the range of the values for each property pj , i.e. 0 : rpj , because

each value for each property can contribute as a new node. With all of this, Nn can be estimated as we show

in Eq. 3.

Nn = nv + 2
Pnp

j=1 rpj (3)

About how interconnected the nodes are, we should compute the maximum number of sl’s -selector

links- and the maximum number of cls’s -coexistent links sets-, which are precisely the parameters that

encode this information in our approach. We will name the maximum number of sl’s per node, as Nslnode

and the maximum number of sl’s per graph, as Nsl. The former depends on the maximum number of

selector or pointer fields declared in the most complex data structure, nl. It depends too on the maximum

number of nodes, to which any node can be connected through a selector link, i.e. Nn− 1. As the links that
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can coexist in a given node can be incoming from any other node, outgoing to any other node, and a link

to/from itself, then the maximum number of selector links of a given type could be 2 · Nn − 1. Therefore,

Nslnode can be computed as we see in Eq. 4. Nslnode(Nn) denotes the maximum number of selector links

when we consider that the number of nodes is Nn. The maximum number of sl’s per graph should be the

sum of all the selector links per node when we iteratively incorporate Nslnode(j) for each new node, from

j = 1 till Nn, as we see in Eq. 6.

Nslnode = Nslnode(Nn) = nl · (2 · Nn − 1) (4)

Nsl =
Nn∑
j=1

Nslnode(j) =
Nn∑
j=1

nl · (2 · j − 1) = (5)

= nl · (2 · Nn − 1) · (Nn − 1) (6)

However, the most important parameter is the maximum number of cls’s. A cls contains pointer links

and selector links with attributes. As a shape graph represents a concrete alias configuration, the number of

pointer links is fixed. The variations come from the selector links with attributes. For instance, for a node,

the maximum number of selector links with attributes depends on the combination of the maximum number

of selector links that can coexist in the node (excluding the links from/to itself, i.e. 2Nslnode−nl, see Eq. 4),

as well as the number of variations due to the attributes: it is, 5nl. Let’s see this last factor is detail: in a cls

there could be five different states representing the attributes for each selector link from/to the same node: i)

the selector link does not appear, ii) it is just incoming (attsl = {i} or attsl = {s}), iii) it is just outgoing

(attsl = {o}), iv) it is just cyclic (attsl = {c}) and v) it is a summary node with the same incoming and

outgoing link (attsl = {i, o}, attsl = {i, c}, or attsl = {s, o}, attsl = {s, c} for a shared summary node).

With all of this, we could compute the maximum number of cls’s for a node, named Nclsnode, by Eq. 7.

Clearly, the maximum number of cls’s per graph named Ncls, can be computed from Eq. 7 and Nn (the

maximum number of nodes) as we see in Eq. 8.

Nclsnode =
(
2Nslnode−nl

)
· 5nl =

(
22·nl·(Nn−1)

)
· 5nl (7)

Ncls = Nclsnode · Nn =
[(

22·nl·(Nn−1)
)
· 5nl

]
· Nn (8)

Eq. 7 is a first approximation that gives us a worst case upper bound for the estimation of the maximum

number of cls’s for a node when there is not available information about the data structures. However, such

a number can be greatly reduced when we have some information about the data structures. Till now, we
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have assumed that all the selector links can be incoming to and outgoing from a node. But, in a cls that

represents a real data structure, there is as most, a maximum number of “real” incoming selector links.

We will call nli to this important piece of information. For instance, in a singly-linked list nli = 1, in a

doubly-linked list nli = 2, or in a binary tree nli = 1. With this information we have to compute all the

cls’s that are combinations due to the selector links with attributes that are incoming in a node, multiplied

by combinations due to the selector links with attributes that can be outgoing from the node. In a node, we

know that there could be at most: a) nl · (Nn−1) selector links from other (different) nodes (cases in which

attribute is {i} or {o}), plus b) nl selector links from the same node with attribute c, plus c) nl selector links

from the same node that represent incoming and outgoing in a summary node (cases in which attributes are

{i, o} or {s, o} or {i, c} or {s, c}). Thus, there could be nl ·(Nn+1) selector links with attributes in a node.

From them, at most, only nli would appear as incoming selector links in a cls, therefore, for the computation

of the combination of the selector links with attributes that are incoming in a node we can do,

nli∑
j=1

(
nl · (Nn + 1)

j

)

¿From the nl · (Nn + 1) selector links with attributes that there could be in a node, we know that in a

cls could be from 0 till nl outgoing links. Thus, for the computation of the combination of the selector links

with attributes that are outgoing from a node we can do,

nl∑
k=0

(
nl · (Nn + 1)

k

)

In other words, a more accurate estimation for the computation of the maximum number of cls’s,

Nclsnode, is given by Eq. 9. Again, the maximum number of cls’s per graph, named Ncls, can be computed

from Eq. 9 and the maximum number of nodes, Nn, as we see in Eq. 10.

Nclsnode =
nli∑
j=1

(
nl · (Nn + 1)

j

)
·

nl∑
k=0

(
nl · (Nn + 1)

k

)
(9)

Ncls = Nclsnode · Nn (10)

For instance, working with a singly-linked lists, we know that nl = 1 and nli = 1, so applying Eq. 10

we could get O(Nn3) as the maximum number of different cls’s per graph. With a doubly linked list, where

nl = 2 and nli = 2, for Eq. 10 we could get O(Nn5), whereas for a binary tree we should get O(Nn4).
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Table 1: Parameters of our complexity study.

Parameter Definition Value

nstmt number of statements to be analyzed

nv maximum number of live pointer variables at
any program point

nl maximum number of links - or pointer fields-
declared in the data structures

nli maximum number of “real” incoming links
in the data structures

np number of properties considered in the shape
analysis

by default 1

rpj upper value in the range of the values for
property j, 0 : rpj

by default 0

Ngs maximum number of graphs per statement s Eq. 1

Ng maximum number of graphs Eq. 2

Nn maximum number of nodes per graph Eq. 3

Nslnode maximum number of sl’s per node Eq. 4

Nsl maximum number of sl’s per graph Eq. 6

Nclsnode maximum number of cls’s per node Eq. 9

Ncls maximum number of cls’s per graph Eq. 10

Nplnode maximum number of pl’s per node Eq. 11

Npl maximum number of pl’s per graph Eq. 12

Other parameter of our abstraction, that could be interesting to compute is the maximum number of

pl’s per node, and we will name it as Nplnode. It depends on the number of live pointer variables, nv, and

it can be easily computed as we can see in Eq. 11. The maximum number of pl’s per graph, named Npl,

is represented in Eq. 12. As we assume that any RSSG will be in normal form, then each pointer variable

can appear only once on each graph, therefore Npl = Nplnode.

Nplnode = nv (11)

Npl = Nplnode = nv (12)

Table 1 summarizes the main parameters used in our complexity study, as well as their definitions and

their values.

Now, our goal is to estimate the worst theoretical performance of our shape analysis framework. Roughly,

the cost of analyzing a pointer statement will depend on the cost of the corresponding transfer function, and
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more concretely it will depend on the operations that the transfer function invokes. We would like to start

summarizing the dominant costs for the main operations that our transfer functions call. These costs can

safely be deduced from the algorithms presented in Section 4.2. For the estimation of these dominant costs,

we assume a worst case scenario: each shape graph contains the maximum number of nodes (Nn), the

maximum number of sl’s (Nsl) and the maximum number of cls’s (Ncls). Let’s see then the costs for the

main operations:

• The Summarize SG() operation (see Fig. 16) has a computational cost given by O(Nn + Nn ·

Nclsnode), due to the fist and second forall, respectively . We can easily deduce, that the dominant

cost for this operation can be estimated as O(Nn · Nclsnode = O(Ncls).

• The Normalize SG() operation (see Fig. 18) depends basically on two findings: i) find unreachable

nodes, which has a cost of O(Nn · log(Nn)) and ii) find cls’s with incoherent selector links, which

has a cost of O(Ncls · log(Ncls)). In other words, the computational cost is dominated by O(Nn ·

log(Nn) + Ncls · log(Ncls)). As we know from Eqs. 3 and 10, Ncls >> Nn, therefore, the cost of

this operation is dominated by O(Ncls · log(Ncls)).

• The Split SG() operation (see Fig. 17) depends on finding a node and then creating a new graph

for each cls of that node. When creating the new graphs, the Normalize SG() function is called.

Clearly, it presents a cost given by O(Nn+Nclsnode·(Ncls·log(Ncls))). Simplifying, The dominant

cost of this operation can be expressed as O(Nclsnode · (Ncls · log(Ncls)))

• The Materialize Node() operation (see Figs. 19 and 20) has a cost of O(2 ·Nn+2 ·Nclsnode)

for the two first nodes finding and the creation of the cls’s of the new materialized node (the Create

CLS′
nm forall). Next, the Create CLS′

nj forall has a cost given by O(Nclsnode·Nslnode), whereas

the Create CLS′
nk forall presents a cost given by O(Nn ·Nclsnode ·Nslnode). Finally, a call to the

Normalize SG() function will have a cost of O(Ncls · log(Ncls)). In summary, the cost of the

materialization is given by O(2·Nn+2·Nnclsnode +Nclsnode ·Nslnode+Nn·Nclsnode ·Nslnode+

Ncls · log(Ncls)). As Nn · Nclsnode = Ncls, and from Eqs. 4 and 10 we deduce that Nslnode <

log(Ncls), we can approximate the dominant cost for this operation as O(Ncls · log(Ncls)).

Now that we know the dominant costs of the main operations, we could estimate the costs for the

transfer functions. However, we should remark here that the functions presented in Section 4.2 which

describe in a simplistic way the transfer functions, are in fact different from our real implementations. In
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other words, the dominant cost of each transfer function depends on the algorithm implemented. We present

here a short indication of these costs. For the estimation of these dominant costs, we have assumed again

a worst case scenario: the maximum number of shape graphs included in a RSSG•s is Ngs (see Eq. 1).

In the computation of the dominant costs of our real implementations of the transfer functions we have

included the operator
⊔RSSG which roughly has a cost given by O(Ngs). For instance, the statements

x=null, x=new and x=y call to the Summarize SG() operation. In our implementation, the cost for

these statements is given by O(Ngs · Ncls). However, the statements x->sel=null, x->sel=y and

x=y->sel call to the Split SG(), Materialize Node() and Normalize SG() operations and,

roughly, they present a cost given by O(Ngs · Ncls · log(Ncls)). Clearly, the complexity is dominated by

the transfer function of these last statements, so our method has a complexity of O(Ngs ·Ncls · log(Ncls)).

The fixed point requires that the transfer functions be applied until the graphs in RSSGs• do not change

any more. However, we have considered the maximum number of possible graphs, nodes, sl’s and cls’s so

the complexity to reach the fixed point is included in the previous discussion.

Summarizing, we find that the complexity of our approach depends on the upper bounds of Ngs and

Ncls. From Eq. 10 we know that Ncls has a polynomial behaviour: O(Nn3) for a singly linked list,

O(Nn5) for a doubly linked list ... Ignoring the properties, from Eq. 3 we know that Nn = nv + 1.

Therefore, roughly we can approximate an upper bound for the Ncls parameter as O((nv)k), where k is a

constant that depends on the maximum number of links in the structures analyzed, and nv is the maximum

number of live pointer variables. On the other hand, from Eq. 1 which represent the theoretical maximum

value for Ngs, again ignoring the properties, we can notice that depends on the sum of the numbers of Bell,∑nv
j=1 B(j) < nv · B(nv). From [], we know that the asymptotic limit of numbers of Bell is,

B(nv) <
1√
(nv)

· (λ(nv))nv+1/2 · eλ(nv)−nv−1

being λ(nv) = nv
W (nv) , with W (nv) as the Lambert W-function. That limit, very roughly is much lower than

nvnv, so we can approximate un upper bound of Ngs as O(nv · nvnv). In other words, taking into account

the upper bounds for Ncls and the Ngs parameters, our approach would have a exponential behaviour given

by O(nvnv+k), as a worst case. However, we think that the important issues are: is the worst case reached

in practice, and how often? We will address these questions in the experimental section.
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4.6 Pseudostatements

We can instrument the analysis providing some useful information from the code. This information is an-

notated in the source code, by a preprocessing step, in the form of pseudostatements, and later they are ab-

stractly interpreted as normal statements. Currently we support three type of pseudostatements: force(),

touch() and untouch().

The transfer function of the force() pseudostatement is described as a function Force() in Fig. 24.

This kind of pseudostatement extracts semantic information from test conditions in if and while program

flow statements, when these test conditions involve pointers variables. On the branch where the tested

expression is null, e.g. x==null or x->sel==null, the force’s transfer function filters out the graphs in

which a pointer link of the form PL =< x, ni > exists, i.e. the variable x points to a node, for the first case,

or removes the graphs for which the path x->sel points to a node, for the second case. On the contrary,

on the branch where the tested expression is not null, e.g. x!=null or x->sel!=null, then the transfer

function filters out the graphs in which a pointer link of the form PL =< x, ni > does not exist, i.e. the

variable x does not point to a node, or removes the graphs for which the path x->sel does not point to a

node, respectively. In this way, we allow the analysis to filter out unrealistic memory configurations.

The transfer function of the touch() pseudostatement is described as a function Touch() in Fig. 25,

whereas the transfer function of the untouch() psedostatement is described as a function Untouch() in

Fig. 26. The touch() pseudostatement let us annotate the node pointed to by a pointer x, with an identifier

(touchid ∈ ID in our function), whereas the untouch() pseudostatement removes that identifier from

any node of the graph. This kind of annotations is useful when performing some client analysis, for instance

a dependence test. In this case, touch() pseudostatements are inserted by our client analysis, just after the

statements that perform read or write accesses to data or selector fields that potentially may provoke loop

carried data dependencies (LCDs). On each pseudostatement touchid codifies the statement id. and the type

of access (read/write) performed by the previous statement. When the touch() is abstractly interpreted,

then the corresponding node is annotated with that information. Later, the data dependence test checks if

a node has been actually written and read by statements that could produce LCDs, and in that case a data

dependence (and the type of dependence - RAW, WAR or WAW) is reported.
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Force()
Input: sg1 =< N1, CLS1 >, test condition # a shape graph, and a test condition
Output: sgk =< Nk, CLSk > # a shape graph

Case (test condition)
test condition == (x==null)

If (∃ni ∈ N1 s.t. ∃pl =< x, ni >⊂ CLSni),
sgk = ∅

else
sgk = sg1

break
test condition = (x!=null)

If (∃ni ∈ N1 s.t. ∃pl =< x, ni >⊂ CLSni),
sgk = sg1

else
sgk = ∅

break
test condition = (x->sel==null)

Find ni ∈ N1 s.t. ∃pl =< x, ni >⊂ CLSni

Create CLS′
ni = ∅

forall clsni ∈ CLSni,
If (∃slatt =<< ni, sel, nj >, attsl > s.t. nj = null,

CLS′
ni = CLS′

ni ∪ clsni

endfor
Create CLSk′

= CLS1 − CLSni ∪ CLS′
ni; Create Nk′

= N1

sgk′
=< Nk′

, CLSk′
>

sgk =Normalize SG(sgk′
)

break
test condition = (x->sel!=null)

Find ni ∈ N1 s.t. ∃pl =< x, ni >⊂ CLSni

Create CLS′
ni = ∅

forall clsni ∈ CLSni,
If (∃slatt =<< ni, sel, nj >, attsl > s.t. nj 
= null,

CLS′
ni = CLS′

ni ∪ clsni

endfor
Create CLSk′

= CLS1 − CLSni ∪ CLS′
ni; Create Nk′

= N1

sgk′
=< Nk′

, CLSk′
>

sgk =Normalize SG(sgk′
)

break
return(sgk)

end

Figure 24: Force() function.
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Touch()
Input: sg1 =< N1, CLS1 >, x ∈ PTR, touchid # a shape graph, a pointer and a identifier
Output: sgk =< Nk, CLSk > # a shape graph

Find ni ∈ N1 s.t. ∃pl =< x, ni >⊂ CLSni

PPMtouch(ni) = PPMtouch(ni) ∪ touchid

Create Nk = N1; Create CLSk = CLS1

Create sgk =< Nk, CLSk >
return(sgk)

end

Figure 25: Touch() function.

Untouch()
Input: sg1 =< N1, CLS1 >, touchid # a shape graph and a identifier
Output: sgk =< Nk, CLSk > # a shape graph

Create List′[N ] = ∅; Create List′[CLS] = ∅
forall ni ∈ N1,
PPMtocuh(ni) = PPMtocuh(ni) − touchid

List′[N ] = List′[N ] ∪ ni

List′[CLS] = List′[CLS] ∪ CLSni

endfor
sgk =Summarize SG(List′[N ], List′[CLS])
return(sgk)

end

Figure 26: Untouch() function.
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5 Interprocedural Analysis

Now, we extend the definition of a program to include the set of functions, FUN , declared in that program,

and we extend the type of analyzable statements to include the call() and return() of these functions

(see Fig. 27). An important detail is that we distinguish between non-recursive an recursive call sites and

recursive and non-recursive return points, respectively. Precisely, the set of call statements defined in non-

recursive call sites is called Scall nrec, whereas the set of call statements defined in recursive call sites is

called Scall rec. On the other hand, the set of return statements defined at functions return point is called

Sreturn.

programs: prog ∈ P , P =< FUN,STMT,PTR, TY PE,SEL >

functions: fun ∈ FUN , FUN =< FUNfun, STMTfun, PTR, TY PE,SEL >

statements: s ∈ STMT , s ::= x = NULL | x = malloc() | free(x) | x = y

| x → sel = NULL | x → sel = y | x = y → sel

| x = call() | return(y)
FUNfun ⊂ FUN , being foo ∈ FUNfun a callee of fun.

STMTfun ⊂ STMT , being s ∈ STMTfun a stmt. in the body of fun.

Figure 27: Extensions for interprocedural support.

We formulate a context sensitive interprocedural analysis, because we distinguish between different

calling context of the same procedure. The analysis at procedure calls must account for the assignment of

actual parameters to formal ones and for the change of analysis domain between the caller and the callee.

For it, we need to define new instrumentation mapping functions:

Local Pointers Map : LPM: FUN −→ PTR

Actual to Formal Pointers Map: AFPM: (Scall nrec ∪ Scall rec) × FUN −→ PTR × PTRfun

Returned to Assigned Pointer Map: RAPM: (Scall nrec ∪ Scall rec) × FUN −→ (PTRfun × PTR) ∪ ∅

• LPM is a multivalued function that maps for a function fun ∈ FUN , the set of local pointers

associated with it, i.e. the formal pointers and local pointer variables declared within the body of the

function:

∀fun ∈ FUN , LPM(fun) = {lptr ∈ PTR, being lptr a pointer var. declared in the definition or

the body of fun}.
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Usually, we name PTRfun to that set of formal and local pointer variables associated with function

fun. On the other hand, we will name GLB to the set of global pointers, GLB ⊂ PTR.

• AFPM is a multivalued partial function that maps for a call statement s (being s a non-recursive or

a recursive call, i.e. s ∈ Scall nrec ∪ Scall rec) and the function fun ∈ FUN called by s, the set of

the corresponding actual pointer parameter (aptr) vs. formal pointer parameter (fptr) pairs:

∀s ∈ (Scall nrec ∪ Scall rec), being fun ∈ FUN called by s, AFPM(s, fun) = {< aptr, fptr >,

where aptr ∈ PTR an actual parameter in statement s, and fptr ∈ PTRfun a formal parameter in

fun}.

Sometimes, we just need the set of actual pointer parameters (aptr) for a call statement s. We will

name APTRs to that set. It can easily be deduced from AFPM(s, fun).

• RAPM is a partial map that computes, for a call statement s (being s a non-recursive or a recursive

call, i.e. s ∈ Scall nrec∪Scall rec)and the function fun ∈ FUN called by s, the corresponding pointer

returned at the exit point (retptr) vs. the pointer assigned at the call site (assptr):

∀s ∈ (Scall nrec∪Scall rec), being fun ∈ FUN called by s, RAPM(s, fun) =< retptr, assptr >,

where retptr ∈ PTRfun the pointer returned at the exit point of fun ∧ assptr ∈ PTR the pointer

assigned at statement s. In the case that the function does not return a pointer, then this function gives

∅.

Now, we need to include the new interprocedural dataflow equations that we show in Fig. 28 to augment

the intraprocedural Eqs. from Fig. 4. Basically, we present two different equations for the ENTRY/EXIT

dataflow transfers from the caller to the callee and from the callee to the caller. We distinguish between

non-recursive and recursive calls and returns. In these new equations, we assume that fun is the function

called by s, sefun the entry point at fun and srfun the return point of fun. Equations [ENTRYnrec] and

[ENTRYrec] perform the transfer from the caller to the callee in the case of a non-recursive or a recursive

call, respectively; Equations [EXITnrec] and [EXITrec] transfer the analysis back to the caller.

To simplify the formal definitions of the ENTRY/EXIT transfer functions, we use the functions CTSnrec(),

CTSrec(), RTCnrec(), RTCrec() (see Figs. ??) to describe the transformations that take place in our abstract

heap when the analysis flow from the caller to the callee and from the callee to the caller. But fist, let’s see

how to augment our abstract heap to incorporate the recursive flow links.
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[ENTRYnrec]: RSSG•sefun = INs∈Scall nrec
(RSSG•s), where

INs∈Scall nrec
(RSSG•s) =

⊔RSSG
sgi∈RSSG•s CTSnrec(sgi, PTRfun,AFPM(s, fun))

[ENTRYrec]: RSSG•sefun = INs∈Scall rec
(RSSG•s), where

INs∈Scall rec
(RSSG•s) =

⊔RSSG
sgi∈RSSG•s CTSrec(sgi, PTRfun,AFPM(s, fun))

[EXITnrec]: RSSGs• = OUTs∈Scall nrec
(RSSG•srfun), where

OUTs∈Scall nrec
(RSSG•srfun) =

⊔RSSG
sgi∈RSSG

•srfun RTCnrec(sgi, PTRfun,AFPM(s, fun),RAPM(s, fun))

[EXITrec]: RSSGs• = OUTs∈Scall rec
(RSSG•srfun), where

OUTs∈Scall rec
(RSSG•srfun) =

⊔RSSG
sgi∈RSSG

•srfun RTCrec(sgi, PTRfun,AFPM(s, fun),RAPM(s, fun))

Figure 28: Dataflow equations for interprocedural support.

5.1 Recursive Flow Links

To provide interprocedural support, especially for the case of recursive functions, we need that our heap

abstraction maintains the state of formal pointer parameters and local pointers (from now on, the pointers

in PTRfun) in a sequence of recursive calls until the fixed point is reached. During program execution, at

runtime, the Activation Record Stack (ARS) provides explicit information about the state of these variables

for every call. We chose to abstract that information in our concrete domain, by augmenting the PLc and SLc

sets respectively with new sets that contains the so named concrete recursive flow links. These recursive flow

links will let us easily to trace the path of formal and local pointers in a sequence of recursive calls. For it,

we include two new partial functions, RFPMc and RFSMc that trace the locations to where each formal

and local pointer of a function call, was pointing to in the previous pending calls in a stack of recursive calls.

They are defined as follows:

Rec. Flow Pointer Map (in the concrete domain): RFPMc: PTRfun −→ L

Rec. Flow Selector Map (in the concrete domain): RFSMc: L × PTRfun −→ (L ∪ null)

• RFPMc maps a formal or local pointer variable x ∈ PTRfun to the location l pointed to by x in

the immediately previous pending call (previous context):

∀x ∈ PTRfun, ∃l ∈ L | PRFMc(x) = l s.t. PMc(x) = l in the immediately previous pending

call.

Usually, we use the tuple rfplc =< xrfptr, l >, which we name concrete recursive flow pointer link,

to represent this binary relation. The set of all concrete recursive flow pointer links is named RFPLc.

• RFSMc models the path (between locations l1 and l2) tracked for a formal or local pointer x ∈

PTRfun through two consecutive previous pending calls. Let’s assume that we name pct to a pending
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call and pct−1 to the consecutive previous to that call:

∀l2 ∈ L s.t. PMc(x) = l2 in a previous pending call pct, ∃l1 ∈ (L ∪ null) s.t. PMc(x) = l1 in

the consecutive previous to that pending call pct−1, | RFSMc(l2, x) = l1.

We use a tuple rfslc =< l2, xrfsel, l1 >, which we name concrete recursive flow selector link, to

represent this relation. The set of all concrete recursive flow selector links is called RFSLc.

The domain for a graph in our concrete heap is the set MC ⊂ P(L) ×P(PLc ∪RFPLc)×P(SLc ∪

RFSLc). Each graph or memory configuration of our concrete domain mci ∈ MC , is now represented as

a tuple mci =< Li, PLci ∪ RFPLci, SLc ∪ RFSLci > with Li ⊂ L, PLci ⊂ PLc, SLci ⊂ SLc and

the new sets RFPLci ⊂ RFPLc and RFSLci ⊂ RFSLc.

Similarly, to model the information provided by the ARS in our abstract domain, we extend the PL and

SL sets respectively. Now, we include two new partial functions, RFPMa and RFSMa which model, on

each function call, a trace of the nodes where each formal and local pointer was pointing to in the previous

pending calls in a stack of recursive calls. They are defined as follows:

Rec. Flow Pointer Map (in the abstract domain): RFPMa: PTRfun −→ N

Rec. Flow Selector Map (in the abstract domain): RFSMa: N × PTRfun −→ N

• RFPMa maps a formal or local pointer variable x ∈ PTRfun to the node n pointed to by x in the

inmediately previous pending call (previous context):

∀x ∈ PTRfun, ∃n ∈ n | RFPMa(x) = n s.t. PMa(x) = n in the immediately previous

pending call.

Usually, we use the tuple rfpl =< xrfptr, n >, which we name recursive flow pointer link, to

represent this binary relation. The set of all recursive flow pointer links is named RFPL.

• RFSMa models the path (between nodes n1 and n2) tracked for a formal or local pointer x ∈

PTRfun through two or more consecutive previous pending calls. Let’s assume that we name pct to

a pending call and pct−1 to the consecutive previous to that call:

∀n2 ∈ N s.t. PMa(x) = n2 in a previous pending call pct, ∃n1 ∈ N s.t. PMa(x) = n1 in the

consecutive previous to that pending call pct−1, | RFSMa(n2, x) = n1.

We use a tuple rfsl =< n2, xrfsel, n1 >, which we name recursive flow selector link, to represent

this relation. The set of all recursive flow selector links is called RFSL. We should note that in the
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case that n2 = n1 in the rfsl, , then more than two consecutive pending calls are represented by this

relation: in this case, all the pending calls for which PMa(x) = n1 = n2 are represented by just one

recursive flow selector link.

It must be clear that xrfptr and xrfsel are symbolic names to represent the state of variable x (where it

points to) in previous pending calls.

We extend the sets, PL ∪ RFPL and SL ∪ RFSL to augment the domain of the selector links with

attributes: SLatt = (SL ∪ RFSL) × ATTSL, and the Coexistent Links Set abstraction: CLM: N −→

P(PL ∪ RFPL) × P(SLatt). In other words, now a coexistent links set for anode n, clsn, is defined as

follows:

clsn = {PLn, SLn}

where:

PLn = {pl ∈ PL s.t. pl =< x, n >} ∪ {rfpl ∈ RFPL s.t. rfpl =< xrfptr, n >}

SLn = {slatt ∈ SLatt s.t. slatt =<< n1, sel, n2 >, attsl > ∨

∨ slatt =<< n1, xrfsel, n2 >, attsl >, being (n1 = n ∨ n2 = n)}

Obviously, the domain for an abstract graph is the set SG ⊂ P(N) × P(CLS), and each element of

this domain, a shape graph sgi ∈ SG, is a tuple sgi =< N i, CLSi >, as previously defined.

We present in Fig. 29 the extended worklist algorithm for solving the dataflow equations presented

in Fig. 4 and Fig. 28. The input of our worklist algorithm is a program P with functions, or a function

FUN with its corresponding functions, and an input RSSGin. The initial RSSGin = ∅. The output of

the algorithm is the RSSGout resultant at the exit program or function point. Without loss of generality

we assume that there is only one return point on each function. We could mention that the algorithm also

computes the resultant RSSGs• at each program point. Our code processes the worklist using the main loop

defined in lines 4-30. We can see that the algorithm is sensitive to the type of statement being processed

(line 7). If s ∈ Scall nrec, i.e., it is a non-recursive call (lines 8-12) then the algorithm propagates the

resultant RSSG, after the [ENTRYnrec] transformation to the entry point of the caller (sefun, line 10), and

later, a new instance of the worklist algorithm is invoked to process the statements of the body of the called

function (line 11). On the other hand, if s ∈ Scall rec, i.e., it is a recursive call (lines 13-17), then the

algorithm propagates again the resultant RSSG, after the [ENTRYrec] transformation to the entry point of
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the caller (sefun, line 15), and next a different worklist algorithm, Worklist rec, shown in Fig. 30, is

invoked to process the statements of the body of the recursive function (line 16). In the case that s ∈ Sreturn

(lines 18-22), then the algorithm propagates the resultant RSSG, after the [EXITnrec] transformation to the

exit point of the callee, obtaining RSSGout (line 20). If s is not a call or a return statement (lines 23-25),

then just the corresponding transfer function is applied (line 24). Once the statement is processed, if the

resultant RSSGs• has changed, then the algorithm adds the successors of the statement under consideration

(succ(s)) to the worklist (lines 26-29). The Worklist rec algorithm (Fig. 30) processes the non-

recursive call statements (lines 8-12) and the statements which are not a call or a return (lines 22-24) in

similar way. Only in the case that statement s is a recursive call (lines 13-16) or a return (a recursive

return, in fact, lines 17-21), then it propagates the resultant output graphs RSSGs• (after the [IN/OUT]

transformation) to the entry points of the callee function (line 15) or the return point of the caller sites (line

20), respectively.

39



Worklist()
Input: P =< FUN, STMT, PTR, TYPE, SEL > | # A program or a non-recursive fun and an input RSSG

FUN =< FUNfun, STMTfun, PTR, TY PE, SEL >, RSSGin

Output: RSSGout # The RSSG at the exit program point

1: Create W = STMT
2: RSSG•se = RSSGin

3: ∀s ∈ STMT → RSSGs• = ∅
4: repeat
5: Remove s from W in lexicographic order
6: RSSG•s =

⊔RSSG
s′∈pred(s) RSSGs′•

7: Case (s),
8: s ∈ Scall nrec

9: Let fun ∈ FUN , called by s
10: RSSG•sefun = INs∈Scall nrec

(RSSG•s)
11: RSSGs• =Worklist(< FUNfun, STMTfun, PTR, TY PE, SEL >, RSSG•sefun)
12: break
13: s ∈ Scall rec

14: Let fun ∈ FUN , called by s
15: RSSG•sefun = INs∈Scall rec

(RSSG•s)
16: RSSGs• =Worklist rec(< FUNfun, STMTfun, PTR, TY PE, SEL >, RSSG•sefun)
17: break
18: s ∈ Sreturn

19: Let s′ ∈ Scall nrec

20: RSSGout = RSSGs• = OUTs′∈Scall nrec
(RSSG•s)

21: succ(s) = ∅
22: break
23: default
24: RSSGs• = ASs(RSSG•s)
25: break
26: If (RSSGs• has changed),
27: forall s′ ∈ succ(s),
28: W = W ∪ s′

29: endfor
30: until (W = ∅)
31: return(RSSGout)

end

Figure 29: The extended worklist algorithm for interprocedural support. It computes the RSSGs• at each
program point.
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Worklist rec()
Input: FUN =< FUNfun, STMTfun, PTR, TY PE, SEL >, RSSGin # A rec. fun ∈ FUN and an input RSSG
Output: RSSGout # The RSSG at the exit program point

1: Create W = STMTfun

2: RSSG•sefun = RSSGin

3: ∀s ∈ STMTfun → RSSGs• = ∅
4: repeat
5: Remove s from W in lexicographic order
6: RSSG•s =

⊔RSSG
s′∈pred(s) RSSGs′•

7: Case (s),
8: s ∈ Scall nrec

9: Let foo ∈ FUNfun, called by s
10: RSSG•sefoo = INs∈Scall nrec

(RSSG•s)
11: RSSGs• =Worklist(< FUNfoo, STMTfoo, PTR, TY PE, SEL >, RSSG•sefoo)
12: break
13: s ∈ Scall rec

14: RSSG•sefun = INs∈Scall rec
(RSSG•s)

15: succ(s) = sefun

16: break
17: s ∈ Sreturn

18: Let {s′ ∈ Scall rec ⊂ STMTfun} # the recursive call sites at fun
19: RSSGout = RSSGs• =

⊔
s′∈Scall rec

OUTs′(RSSG•s)
20: succ(s) = {succ(s′) ∀s′ ∈ Scall rec ⊂ STMTfun}
21: break
22: default
23: RSSGs• = ASs(RSSG•s)
24: break
25: If (RSSGs• has changed),
26: forall s′ ∈ succ(s),
27: W = W ∪ s′

28: endfor
29: until (W = ∅)
30: return(RSSGout)

end

Figure 30: The Worklist rec algorithm for recursive support. It computes the RSSGs• at each state-
ment function point.
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CTSnrec()
Input: sg1 =< N1, CLS1 >, PTRfun, AFPM(s, fun) # a shape graph, formal and local pointers for fun

# and the set of pairs < aptr, fptr > of the corresponding call site
Output: RSSGk # a reduced set of shape graphs

RSSG2 = sg1

forall x ∈ APTRs # APTRs is the set of actual pointers in the call stmt. s
Find the pair < aptr, fptr >∈ AFPM(s, fun) s.t. x = aptr

RSSG3 =
⊔RSSG

∀sg′∈RSSG2 XY (sg′, fptr, aptr) # fptr = aptr

If (aptr 
∈ GLB),
RSSG4 =

⊔RSSG
∀sg′′∈RSSG3 XNull(sg′′, aptr) # aptr = null

else → RSSG4 = RSSG3

RSSG2 = RSSG4

endfor
If (∃s′ ∈ STMfun s.t. s′ ∈ Scall rec), # The case when fun will include a recursive call site

forall x ∈ PTRfun s.t. x 
= assptr,
forall sgi =< N i, CLSi >∈ RSSG2,

forall nj ∈ N i, # Initialize xrfsel for all nodes in all graphs
Create sl′att =<< nj , xrfsel, null >, attsl′ = {o}
∀clsnj = {PLnj, SLnj} ∈ CLSnj (being CLSnj ⊂ CLSi) =⇒ SLnj = SLnj ∪ sl′att

endfor
endfor

endfor
RSSGk = RSSG2

return(RSSGk)
end

Figure 31: The CTSnrec() function.
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CTSrec()
Input: sg1 =< N1, CLS1 >, PTRfun, AFPM(s, fun) # a shape graph, formal and local pointers for fun

# and the set of pairs < aptr, fptr > of the corresponding call site
Output: RSSGk # a reduced set of shape graphs

RSSG2 = sg1

forall x ∈ PTRfun s.t. (x 
∈ APTRs ∧ x 
= assptr), # APTRs is the set of actual pointers in the call stmt. s

RSSG3 =
⊔RSSG

∀sg′∈RSSG2 XSelY (sg′, x, xrfsel, xrfptr) # x− > xrfsel = xrfptr

RSSG4 =
⊔RSSG

∀sg′′∈RSSG3 XY (sg′′, x, xrfptr, x) # xrfptr = x

RSSG5 =
⊔RSSG

∀sg′′′∈RSSG4 XNull(sg′′′, x) # x = null

endfor
forall x ∈ APTRs

Find the pair < aptr, fptr >∈ AFPM(s, fun) s.t. x = aptr

RSSG3 =
⊔RSSG

∀sg′∈RSSG2 XY (sg′, fptr, aptr) # fptr = aptr

If (aptr 
∈ GLB),
RSSG4 =

⊔RSSG
∀sg′′∈RSSG3 XNull(sg′′, aptr) # aptr = null

else → RSSG4 = RSSG3

RSSG2 = RSSG4

endfor
RSSGk = RSSG2

return(RSSGk)
end

Figure 32: The CTSrec() function.
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RTCnrec()
Input: sg1 =< N1, CLS1 >, PTRfun, AFPM(s, fun), RAPM(s, fun)

# a shape graph, formal and local pointers for fun
# the set of pairs < aptr, fptr > of the corresponding call site
# and the corresponding < retprt, assptr > pair

Output: RSSGk # a reduced set of shape graphs

RSSG1 = XY (sg1, assptr, retptr) # assptr = retptr
RSSG2 = RSSG1

forall x ∈ APTRs # APTRs is the set of actual pointers in the call stmt. s
Find the pair < aptr, fptr >∈ AFPM(s, fun) s.t. x = aptr

RSSG3 =
⊔RSSG

∀sg′∈RSSG2 XY (sg′, aptr, fptr) # aptr = fptr

RSSG2 = RSSG3

endfor
forall x ∈ PTRfun,

RSSG3 =
⊔RSSG

∀sg′′∈RSSG2 XNull(sg′′, x) # x = null

RSSG4 =
⊔RSSG

∀sg′′′∈RSSG3 XNull(sg′′′, xrfptr) # xrfptr = null

RSSG5 = ∅
forall sgi =< N i, CLSi >∈ RSSG4,

forall nj ∈ N i, # Remove xrfsel for all nodes in all graphs
forall clsnj = {PLnj, SLnj} ∈ CLSnj (being CLSnj ⊂ CLSi),

Find slatt1 ⊂ clsnj being slatt1 =<< nk, xrfsel, np >, attsl1 >
SLnj = SLnj − slatt1

endfor
endfor
sgi′ =Normalize SG(sgi)
RSSG5 = RSSG5 ∪ sgi′

endfor
RSSG2 = RSSG5

endfor
RSSGk = RSSG2

return(RSSGk)
end

Figure 33: The RTCnrec() function.
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RTCrec()
Input: sg1 =< N1, CLS1 >, PTRfun, AFPM(s, fun), RAPM(s, fun)

# a shape graph, formal and local pointers for fun
# the set of pairs < aptr, fptr > of the corresponding call site
# and the corresponding < retprt, assptr > pair

Output: RSSGk # a reduced set of shape graphs

RSSG1 = XY (sg1, assptr, retptr) # assptr = retptr
RSSG2 = RSSG1

forall x ∈ APTRs # APTRs is the set of actual pointers in the call stmt. s
Find the pair < aptr, fptr >∈ AFPM(s, fun) s.t. x = aptr

RSSG3 =
⊔RSSG

∀sg′∈RSSG2 XY (sg′, aptr, fptr) # aptr = fptr

RSSG2 = RSSG3

endfor
forall x ∈ PTRfun s.t. (x 
∈ APTRs ∧ x 
= assptr),

RSSG4 =
⊔RSSG

∀sg′′∈RSSG2 XY (sg′′, x, xrfptr) # x = xrfptr

RSSG5 =
⊔RSSG

∀sg′′′∈RSSG4 XY Sel(sg′′′, xrfptr, x, xrfsel) # xrfptr = x− > xrfsel

RSSG6 =
⊔RSSG

∀sg′′′′∈RSSG5 XSelNull(sg′′′′, x, xrfsel) # x− > xrfsel = null

RSSG2 = RSSG6

endfor
RSSGk = RSSG2

return(RSSGk)
end

Figure 34: The RTCrec() function.
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Overview of the tests 

We have considered six programs for our tests. The first four are synthetic codes representative of typical 
recursive data structures found in pointer-based codes. For the last two tests, we have designed a small 
program that computes the product of a sparse matrix by a sparse vector. Sparse structures are usually 
built with pointers to avoid wasting storage capacity with many empty values.  

Programs are preprocessed by a custom pass created over Cetus [4], an extensible Java infrastructure for 
source-to-source transformations. Basically, this pass translates a C input program into a format 
recognizable by the shape analyzer. When analysing a program, we do not need to consider all statements. 
Our technique only cares about control flow statements and pointer access statements, which is what the 
shape analyzer needs to obtain the graphs that describe the shape of memory configurations in the heap. 
In the codes shown below for the tests, we show the abridged version as analyzed by the shape analyzer. 
Therefore, the statements shown are exactly the statements analyzed.  

Since shape analysis is a conservative technique by nature, it must account for all possible flow paths in 
the program. We do not pay attention to conditions in branching statements, but consider all possibilities, 
i.e., branch taken and branch not taken. That is why branches and loops do not show the conditions in the 
code for the tests. However, when a pointer condition is known, it is valuable for discarding 
configurations rendered impossible by the condition. Force directives are used in such cases to enforce 
pointer conditions at certain points in the program. They are derived from the conditions specified at 
control flow statements. For example, when entering a while(p!=NULL) loop, we can enforce the 
analysis to consider p!=NULL inside the loop and p==NULL just outside the loop. Force directives make 
the analysis more precise and faster, because it can rule out unnecessarily conservative memory 
configurations. Force directives are added with pragma directives. There is work in progress to add a 
source-to-source translation pass based on Cetus to automatically add force directives, but at this point 
they are added by the programmer.  

In the codes below, you will also notice several nullification statements. Pointers can be nullified as long 
as they are dead, i.e., there is no use before a definition following the flow path from a point in the 
program. By nullifying pointers early, we make the analysis faster as it suffers from exponential 
complexity with respect to the number of non-null live pointer variables. There would be a prior dead 
variable nullification pass to condition the code in this manner in an automated basis, but at this point 
pointer nullification is done by the programmer.  

Next we describe each test with the code analyzed and the graph resulting from its analysis, as displayed 
by our visualization companion tool. In the graphs, CLSs for the nodes are displayed unordered, i.e., the 
order in which CLSs appear does not have to match the order in which they were calculated by the 
analyzer. Tests are run in multi-graph mode, meaning that there may be several graphs per statement 
during the analysis, to achieve precision at nodes pointed to by pointers. However, we only show the final 
graph, obtained as the joining of all available graphs resulting at the end of the analysis. No properties are 
considered for summarization.  



Test 1: singly-linked list 

Code: this test first creates a 
singly-linked list (stmts. 1-
6), then traverses it (stmts. 
11-15). Nullification 
statements and force 
directives are inserted where 
appropriate. 

Graph: it captures a singly-linked list of length greater or equal to 1 
element. N1 represents the first element in the list. From it, the nxt selector 
can lead to null for a 1-element list (with CLS(N1)={PL1,SL1o}), or 
it can lead to the second element (CLS(N1)={PL1,SL2o} for N1 and 
CLS(N2) contaning SL2i for N2). N2 is a summary node that represents 
all possible locations in the list that are not pointed to by pointers. 
CLSs(N2) describe the four possibilities of connectivity for such 
locations: {SL3o,SL2i} represents the second element in a 2-element 
list; {SL2i, SL4o} represents the second element in a list longer than 2 
elements; {SL3o,SL4i} captures the last element in a list longer than 2 
elements; finally {SL4io}={SL4i,SL4o} stands for all intermediate 
locations. 

1   list = malloc(); 
2   p = list; 
3   while(){ 
4       q = malloc(); 
5       p->nxt = q;    
6       p = q; 
    } 
7   Force(list != NULL) 
8   p->nxt = NULL; 
9   q = NULL; 
10  p = NULL; 
11  p = list; 
12  while(){ 
13      q = p -> nxt; 
14      p = q; 
    } 
15  Force(p = NULL) 
16  q = NULL; 
17  p = NULL; 

 

 



Test 2: doubly-linked list 

Code: this is basically the 
same as test1, but the list 
is doubly-linked. 

Graph: this graph captures a doubly-linked list. N1 is the entry element for 
the list, pointed to by the list pointer. N2 represents all possible locations 
beyond the first element. It is drawn in dotted line to indicate that locations 
represented can be reachable more than once through different selectors. This 
is certainly true in a doubly-linked list, as elements in the middle are 
referenced through the nxt selector from the previous element, and through 
the prv selector from the next element. A location cannot be reached through 
the same selector more than once, thus preventing the existence of cycles 
other than those produced by the N2.nxt-N2.prv sequence. Note that most 
shape analysis techniques have troubles capturing doubly-linked structures.  

1   list = malloc(); 
2   list->prv = NULL; 
3   p = list; 
4   while(){ 
5       q = malloc(); 
6       p->nxt = q; 
7       q->prv = p; 
8       p = q; 
    } 
9   Force(list != NULL) 
10  p->nxt = NULL; 
11  q = NULL; 
12  p = NULL; 
13  p = list; 
14  while(){ 
15      q = p -> nxt; 
16      p = q; 
    } 
17  Force(p = NULL) 
18  q = NULL; 
19  p = NULL; 

 

 



Test 3: n-ary tree 

Code: this test creates an array-based n-ary 
tree. Each location in the program contains 
a pointer array, whose elements can points 
to other locations. The tree is traversed 
during its creation, as each new leaf is 
added starting from the root. Statements 6 
and 17 indicate that the array index has 
been written, which makes the analyzer 
forget the previous value.  

Graph: this graph, as simple as it may seem, represents an 
array-based n-ary tree. This graph features multi-selectors 
(recognizable by the "[]" suffix), which are selectors that 
can point to several different locations at the same time, 
unlike regular selectors. N1 is the root for the tree. N2 is a 
summary node for the rest of elements in the tree 
(intermediate elements and the leaves). 
CLS(n1)={PL1,SL1o,SL3o} tells that the first element 
can link through the child[] multi-selector to other 
elements (represented by N2) and also have uninitialized 
links (reaching ni, meaning non-initialized). 
CLS(n2)={SL2o,SL4io}={SL2o,SL4i,SL4o} 
represents locations in the middle of the tree which are 
linked from just one intermediate element located upper in 
the tree (SL4i), and that links to other lower elements 
(SL4o) and also may have uninitialized links in its multi-
selector (SL2o). What is important here is that every 
location in the tree cannot be reached more than once by 
following the child[] multi-selector, because nodes are 
not in dotted line. Therefore children do not link back to any 
ancestor nor are they shared for different parents, so the tree 
shape is correctly captured. Note also that current shape 
analysis techniques do not support pointer arrays explicitly.  

1   root = malloc(); 
2   while(){ 
3       p = root; 
4       while(){ 
5           Force(p != NULL) 
6           i = ...; 
7           if(){ 
8               Force(p->child[i] != NULL) 
9               q = p -> child[i]; 
10              p = q; 
11              q = NULL; 
            }else{ 
            } 
        } 
12      Force(p->child[i] = NULL) 
13      x = malloc(); 
14      p->child[i] = x; 
15      x = NULL; 
    } 
16  p = NULL; 
17  i = ...; 

 

 



Test 4: binary tree 

Code: this test creates a binary tree. 
Each location in the program contains 
two selectors (lft and rgh) that can 
point to 2 children. The tree is 
traversed during its creation, as each 
new leaf is added starting from the 
root.  

Graph: this graph represents a binary tree. N1 represents the 
root element, pointed by the root pointer. N2 represents all 
intermediate locations in the tree and the leaves. CLSs for N2 are 
many, to correctly capture all possibilities: second-level element 
as left child of root with right and left children (9th 
CLS(N2)={SL7o,SL8o,SL5i}), intermediate-level element 
as right child of parent with right and left children (last 
CLS(N2)={SL7o,SL8io}), leaf as left child of parent (3rd 
CLS(N2)={SL7i,SL4o,SL3o}), etc.  
Again, what is important here is that no node is reached through 
SL7i and SL8i in the same CLS (both a left and right child at 
the same time), N2 is not in dotted lines (children do not link 
back to ancestors), and that no SL is shared in any CLS (for 
example, a left child for two or more parents). Thus the binary 
tree shape characteristics are accurately captured in the graph.  

1   root = malloc(); 
2   root->lft = NULL; 
3   root->rgh = NULL; 
4   while(){ 
5       p = root; 
6       while(){ 
7           Force(p != NULL) 
8           if(){ 
9               q = p -> lft; 
10              p = q; 
11              q = NULL; 
            }else{ 
12              q = p -> rgh; 
13              p = q; 
14              q = NULL; 
            } 
        } 
15      Force(p != NULL) 
16      x = malloc(); 
17      x->lft = NULL; 
18      x->rgh = NULL; 
19      if(){ 
20          Force(p->lft = NULL) 
21          p->lft = x; 
        }else{ 
22          Force(p->rgh = NULL) 
23          p->rgh = x; 
        } 
24      x = NULL; 
    } 
25  p = NULL; 

 



Test 5: Sparse matrix by sparse vector based on singly-linked lists 

Code: this test takes a real working 
program that computes the product of a 
sparse matrix by a sparse vector. The matrix 
is constructed as a list of singly-linked 
header elements of type t1, that link 
through selector nxt_t1. Each header 
element links to a list of singly-linked 
elements of type t2, that link through 
selector nxt_t2. The vectors are built as 
singly-linked lists of elements of type t2 
The analyzer is fed with the code below. 
The entry point for the analysis is statement 
83, the call to main()at statement 1. First the 
input matrix A is created (stmts. 2-31), then 
the input vector B is created (stmts. 32-47). 
Finally the output vector C is created as A 
and B are traversed (stmts. 48-82). 
Structure navigation statements that read 
and write on the same location are 
decomposed using temporal variables 
(_tmpx). For example, statements 74-76 
show how the navigation pointer for the 
header list of the matrix, auxHA, is updated 
using a temporal variable in the loop that 
computes the product (stmts. 50-76).  

Graph: this graph captures the 3 structures used in this test: 
A, the input matrix; B, the input vector; and C the output 
vector. As we use no properties all locations that are not 
directly accessed by pointer are summarized in node N4. 
The node is drawn in solid line. This means that every 
location represented by N4 links to other different location, 
i.e., there are no locations which are linked twice or more 
from other locations. Therefore, although N4 serves as 
summary nodes for all intermediate elements in the 3 
structures, CLSs(N4) assure that the structures are disjoint. 
This includes the fact that rows hanging from the header list 
in the matrix are not shared either, otherwise there would be 
a CLS(N4) with SL3is (shared incoming SL3). The main 
characteristics of the heap for this program are captured in 
the graph: 3 disjoint structures based on acyclic singly-
linked lists. 

1   main(){ 
2       auxH = NULL; 
3       while(){ 
4           newH = malloc(); 
5           if(){ 
6               Force(auxH != NULL) 
7               auxH->nxt_t1 = newH; 
            }else{ 
8               Force(auxH = NULL) 
9               A = newH; 
            } 
10          auxH = newH; 
11          auxE = NULL; 
12          while(){ 
13              if(){ 
14                  newE = malloc(); 
15                  if(){ 
16                      Force(auxE!=NULL) 
17                      auxE->nxt_t2=newE; 
                    }else{ 
18                      Force(auxE=NULL) 
19                      anchor = newE; 
                    } 
20                  auxE = newE; 
                }else{ 
                } 
            } 
21          auxE = NULL; 
22          if(){ 
23              Force(newE != NULL) 
24              newE->nxt_t2 = NULL; 
            }else{ 
25              Force(newE = NULL) 
            } 
26          newE = NULL; 
27          auxH->elem_list = anchor; 
28          anchor = NULL; 
        } 
29      newH->nxt_t1 = NULL; 
30      newH = NULL; 
31      auxH = NULL; 
32      B = NULL; 
33      lastE = NULL; 
34      while(){ 

 



35          if(){ 
36              newE = malloc(); 
37              if(){ 
38                  Force(B = NULL) 
39                  B = newE; 
                }else{ 
40                  Force(B != NULL) 
41                  lastE->nxt_t2 = newE; 
                } 
42              lastE = newE; 
43              newE = NULL; 
            }else{ 
            } 
        } 
44      lastE->nxt_t2 = NULL; 
45      lastE = NULL; 
46      auxHA = A; 
47      auxHC = NULL; 
48      C = NULL; 
49      lastE = NULL; 
50      while(){ 
51          Force(auxHA != NULL) 
52          auxEB = B; 
53          while(){ 
54              Force(auxEB != NULL) 
55              auxEA = auxHA->elem_list; 
56              while(){ 
57                  _tmp1 = auxEA->nxt_t2; 
58                  auxEA = _tmp1; 
59                  _tmp1 = NULL; 
                } 
60              auxEA = NULL; 
61              _tmp2 = auxEB -> nxt_t2; 
62              auxEB = _tmp2; 
63              _tmp2 = NULL; 
            } 
64          auxEB = NULL; 
65          if(){ 
66              newE = malloc(); 
67              if(){ 
68                  Force(C = NULL) 
69                  C = newE; 
                }else{ 
70                  Force(C != NULL) 
71                  lastE->nxt_t2 = newE; 
                } 
72              lastE = newE; 
73              newE = NULL; 
            }else{ 
            } 
74          _tmp3 = auxHA -> nxt_t1; 
75          auxHA = _tmp3; 
76          _tmp3 = NULL; 
        } 
77      if(){ 
78          Force(lastE != NULL) 
79          lastE->nxt_t2 = NULL; 
        }else{ 
80          Force(lastE = NULL) 
        } 
81      lastE = NULL; 
82      auxHA = NULL; 
    } 
83  main(); 

 

 



Test 6: Sparse matrix by sparse vector based on doubly-linked lists 

Code: this test is basically the same as test 5, but all 
lists are doubly-linked. You will also notice some 
special statements (stmts. 68, 69, 74 and 90) related to 
the touch property. This statements are used to draw 
information about how the structures are traversed. 
However, all presented tests are run without properties, 
as stated above. Therefore touch statements are ignored 
in this test.  

Graph: this graph is the double-linked 
counterpart for that of test 5. Here, locations 
represented by N4 can be reachable more than 
once, therefore the node is drawn in dotted line. 
Let us check the structures characteristics by 
observing available CLSs for N4. The 4th 
CLS(N4)={SL4io,SL5io}, tells that 
structures of type t2 are based on doubly-linked 
lists, while the 9th 
CLS(N4)={SL11io,SL12io,SL9o}, tells 
that structures of type t1 are also based on 
doubly-linked lists. There are no shared SLs in 
any CLS, so elements are not reached twice from 
the same selector. In particular, hanging lists 
from the header list in A, are not shared through 
the elem_list selector. To sum up, this graph 
represents 3 disjoint heap structures based on 
doubly-linked lists that contain no cycles other 
than the nxt-prv cycle inherent to doubly-
linked lists.  

1    main(){ 
2       auxH = NULL; 
3       while(){ 
4            newH = malloc(); 
5            if(){ 
6                Force(auxH != NULL) 
7                newH->prv_t1 = auxH; 
8                auxH->nxt_t1 = newH; 
            }else{ 
9                Force(auxH = NULL) 
10                A = newH; 
            } 
11          auxH = newH; 
12          auxE = NULL; 
13          while(){ 
14              if(){ 
15                  newE = malloc(); 
16                  if(){ 
17                      Force(auxH->elem_list=NULL) 
18                      auxH->elem_list = newE; 
                    }else{ 
                    } 
19                  if(){ 
20                      Force(auxE != NULL) 
21                      newE->prv_t2 = auxE; 
22                      auxE->nxt_t2 = newE; 
                    }else{ 
23                      Force(auxE = NULL) 
24                      auxH->elem_list = newE; 
                    } 
25                  auxE = newE; 
                }else{ 
                } 
            } 
26          auxE = NULL; 
27          if(){ 
28              Force(newE != NULL) 
29              newE->nxt_t2 = NULL; 
            }else{ 
30              Force(newE = NULL) 
            } 
31           newE = NULL; 
        } 
32      newH->nxt_t1 = NULL; 
33      newH = NULL; 
34      auxH = NULL; 
35      B = NULL; 
36      lastE = NULL; 
37      while(){ 
38          if(){ 
39              newE = malloc(); 
40              if(){ 
41                  Force(B = NULL) 

 



42                  B = newE; 
43                  newE->prv_t2 = NULL; 
                }else{ 
44                  Force(B != NULL) 
45                  lastE->nxt_t2 = newE; 
46                  newE->prv_t2 = lastE; 
                } 
47              lastE = newE; 
48              newE = NULL; 
            }else{ 
            } 
        } 
49      lastE->nxt_t2 = NULL; 
50      lastE = NULL; 
51      auxHA = A; 
52      auxHC = NULL; 
53      C = NULL; 
54      lastE = NULL; 
55      while(){ 
56          Force(auxHA != NULL) 
57          auxEB = B; 
58          while(){ 
59              Force(auxEB != NULL) 
60              auxEA = auxHA -> elem_list; 
61              while(){ 
62                  Force(auxEA != NULL) 
63                   _tmp1 = auxEA -> nxt_t2; 
64                   auxEA = _tmp1; 
65                   _tmp1 = NULL; 
                } 
66              if(){ 
67                  Force(auxEA != NULL) 
                }else{ 
                } 
68              Touch(auxEA, Read68) 
69              Touch(auxEB, Read69) 
70              auxEA = NULL; 
71              _tmp2 = auxEB -> nxt_t2; 
72              auxEB = _tmp2; 
73              _tmp2 = NULL; 
            } 
74          UnTouch(Read69) 
75          auxEB = NULL; 
76          if(){ 
77              newE = malloc(); 
78              if(){ 
79                  Force(C = NULL) 
80                  C = newE; 
81                  newE->prv_t2 = NULL; 
                }else{ 
82                  Force(C != NULL) 
83                  lastE->nxt_t2 = newE; 
84                  newE->prv_t2 = lastE; 
                } 
85              lastE = newE; 
86              newE = NULL; 
            }else{ 
            } 
87          _tmp3 = auxHA -> nxt_t1; 
88          auxHA = _tmp3; 
89          _tmp3 = NULL; 
        } 
90      UnTouch(Read68) 
91      if(){ 
92          Force(lastE != NULL) 
93          lastE->nxt_t2 = NULL; 
        }else{ 
94          Force(lastE = NULL) 
        } 
95      lastE = NULL; 
96      auxHA = NULL; 
    } 
97  main(); 

 

 



Results 

 

Table I. Structures tested in the shape analyzer, number of analyzed statements, time spent on the 
analysis, total number of generated graphs, and nodes, links and CLSs per graph, in average (and 
maximum) values. 

Table I describes the structures tested and displays some metrics for the analysis performed. The first 
column identifies each test, while the second column holds the number of analyzed statements. The third 
column shows times for the tests. Only the time for the actual shape analysis is shown (no parsing or 
preprocessing), as measured in a Pentium IV 2.4 GHz with 1 GB RAM, with the time() command in a 
Fedora Core 3 Linux OS. We think that times are very reasonable for such a detailed analysis. Within the 
first four examples of synthetic codes, the highest time is that of the binary tree analysis, probably due to 
its more complex CFG. It should be noted that more possible flow paths make the analysis more costly, as 
it has to consider all possibilities conservatively. On the other hand, the first three examples run in less 
than a second. The matrix by vector product takes longer, clocking at more than 1 minute, which is only 
reasonable considering there are quite some more statements to analyze than in previous tests.  

The fourth column indicates the total number of graphs generated for each test. The numbers range from a 
few dozens to a few thousands, accounting for higher number of analyzed statements and/or higher 
complexity of the structure. Memory use is quite reasonable, staying below 17 MB in the worst case 
(matrix-vector(d)). This is very encouraging considering the big penalty in memory use found in 
related work. Also remember that all tests are run in multi-graph mode, meaning that several graphs can 
be used per statement in order to correctly capture memory configurations arising in the program. 
Therefore these runnings represent the most costly analysis case for our tool.  

Next columns show the total number of nodes, links and CLSs per graph, as average values with the 
maximum in brackets. The number of nodes per graph is essentially constant in the first four tests, as it 
depends mostly on the number of simultaneously live pointers, which is usually one for the structure 
handle and two for navigating it. The matrix by vector test has three times more nodes because there are 
three different structures, instead of one. The number of links depends on the amount of different links 
that each element has. Typically each element in a recursive data structure does not have more than two 
links. Finally, CLSs are the elements where most of the complexity reside: they describe how nodes and 
links can combine to create all possible memory configurations arising in the program. The highest 
maximum is for the binary tree among all tests, but the maximum average is attained in the matrix by 
vector program based on doubly-linked lists.  

To sum up, we can say that the shape analyzer can effectively analyze common data structures for 
pointer-based codes. Generated graphs accurately capture heap structures. Furthermore, we think that 
such graphs can be obtained in manageable times, specially for such a complex technique. Let us not 
forget that we are performing fixed-point abstract interpretation of pointer and flow statements to create 
and modify very detailed graphs.  

Despite this encouraging results, it is clear that this is a costly technique which is not likely to succeed if 
used for whole program analysis. Instead it would be better used within a client analysis module that 
would focus on local analysis. 

In this regard, we discovered that def-use information can be used to identify the statements directly 
involved in the creation of recursive data structures. A def-use chain establishes a relationship between 
the definition point where a value is created and points where it is used. With that information we can 
automatically determine what are the statements that actually define the shape of dynamic memory and 



discard all other statements. The shape analysis only needs to analyze these statements to build the graph 
that represents the data structure in the program. With this approach we avoid to analyze irrelevant 
statements that slow down the shape analysis.  

We have tried this approach on the matrix by vector examples. Let us revisit them now, having pruned all 
traversal statements that are not involved in the output vector creation (stmts. 51-64 and 74-76 for test 5, 
and stmts. 59-75 and 87-89 for test 6). The new values for the tests are shown in table II, where the 
original values for the unprocessed versions are also displayed for reference.  

 

Table II. The matrix by vector product analyzed in original (o) and pruned (p) forms, based in singly-linked 
(s) or doubly-linked (d) lists. 

The results prove that def-use driven shape analysis works much better, as the analysis time has been 
reduced dramatically. Pruned tests produce the same output graphs than their original counterparts, thus 
capturing memory configuration without any loss in precision. This example motivates us to tightly 
integrate shape analysis within client analysis that focus on the statements of interest.  

In this sense, we have already started work toward using the shape analyzer as a base tool for a pointer 
analysis framework [1], that combines several pointer analysis techniques, existent and new, for 
optimizations related to parallelism and locality. This way, shape information could be used by client 
analysis modules to derive information about safely parallelizable loops, possible bugs, etc. Next figure 
gives an overview of such a framework.  
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