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Abstract
In the new multicore architecture arena, the problem of

improving the performance of a code is more in the soft-
ware side than in the hardware one. However, optimizing
irregular dynamic data structure based codes for such ar-
chitectures is not easy, either by hand or compiler assisted.
Regarding this last approach, shape analysis is a static tech-
nique that achieves abstraction of dynamic memory and can
help to disambiguate, quite accurately, memory references
in programs that create and traverse recursive data struc-
tures. This kind of analysis has promising applicability for
accurate data dependence tests in loops or recursive func-
tions that traverse dynamic data structures. However, sup-
port for interprocedural programs in shape analysis is still
a challenge, especially in the presence of recursive func-
tions. In this work we present a novel fully context-sensitive
interprocedural shape analysis algorithm that supports re-
cursion and can be used to uncover parallelism. Our ap-
proach is based on three key ideas: i) intraprocedural sup-
port based on “Coexistent Links Sets” to precisely describe
the memory configurations during the abstract interpreta-
tion of the C code; ii) interprocedural support based on
“Recursive Flow Links” to trace the state of pointers in
previous calls; and iii) annotations of the read/written heap
locations during the program analysis. We present prelim-
inary experiments that reveal that our technique compares
favorably with related work, and obtains precise memory
abstractions in a variety of recursive programs that create
and manipulate dynamic data structures. We have also im-
plemented a data dependence test over our interprocedural
shape analysis. With this test we have obtained promis-
ing results, automatically detecting parallelism in three C
codes, which have been successfully parallelized.
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CT-2003-506079), with the support of the European Community - Re-
search Infrastructure Action under the FP6 “Structuring the European Re-
search Area” Programme.

1. Motivation

The problem we want to solve is the automatic paral-
lelization of codes based on heap-stored dynamic/recursive
data structures. This is a very tough and still unsolved prob-
lem. Finding its solution would have a big impact since
dynamic data structures are widely used in many irregu-
lar codes and multiprocessor/multicore/multithread archi-
tectures are very common nowadays.

A basic step in the automatic parallelization process is
the detection of parallel loops or parallel function calls us-
ing a data dependence test. When dealing with codes based
on dynamic data structures, the data dependence test needs
information about the properties of the data structures tra-
versed in the loops or in function bodies. This leads us to
shape analysis techniques which are able to capture, at com-
pile time, dynamically allocated data structures, i.e., those
allocated at runtime and accessed through heap-directed
pointers. Actually, we have implemented a loop-carried
data dependence test [15] based on a previously developed
shape analysis algorithm [4]. The main idea in this test is
to carry out the abstract interpretation of the statements of
the analyzed loop, abstracting the accessed heap locations
with nodes of shape graphs and annotating these nodes with
read/write information.

Let us illustrate the main idea behind our dependence
test. The code in fig. 1 creates a singly-linked list and then
traverses it, writing in a list-element the data field of the pre-
vious one. Our test symbolically executes the code abstract-
ing the data structures by shape graphs, sg. In the example,
sg1 is the abstraction of the list created at statement S1.
Using abstract interpretation, the abstract semantics of each
statement updates the sg of the previous statement. Since
there is a potential loop-carried data dependence, LCD, be-
tween S3 and S4, the abstract semantics of these statements
will annotate which memory locations are read and/or writ-
ten. In this example, in sg5 at the second symbolic exe-
cution of statement S2, we detect that a given location has
been written in an iteration and read in the next one. Thus,



a RAW LCD is detected. More details can be found in [15].

Figure 1. Data dependence test simple exam-
ple.

Such a test requires a precise description of the heap
locations and its interconnection topology to successfully
detect parallel loops. Till now, the most accurate way of
characterizing dynamic data structures consider shape ab-
stractions expressed as graphs to model the heap. For this
reason, we adopted this approach developing a store-based
shape analysis based on “Reference Shape Graphs”, RSG
[4] to be the kernel of our test.

This RSG shape analysis improved previous works, such
as [16] or [18], in terms of precision and analysis time.
However it had a main drawback: the lack of interprocedu-
ral support forced us to do inlining and to manually trans-
late recursive calls into loops. Interprocedural support in
shape analysis is a challenge, especially in the presence of
recursive functions. Some recent works ([6], [13], [1], [8]
and [17]) have faced this issue, albeit they are targeted to-
wards program verification, where the goal of the analy-
sis is to infer a shape invariant of a data structure, and to
prove it is preserved at the end of any possible run of a func-
tion/program. On the contrary, our goal is to capture tempo-
ral relationships between memory accesses, using this infor-
mation for dependence analysis and subsequent automatic
parallelization. The present work builds upon previous ex-
perience to provide a brand new shape analysis technique
with support for recursion, but directed towards the devel-
opment of a data dependence test.

In order to improve the precision and performance of
the shape analysis and because our previous RSG approach
could not be easily extended to deal with interprocedural
support, first, the base intraprocedural shape analysis tech-
nique has been completely redesigned: based on the key
new idea of coexistent links sets, we explicitly encode the
possible links that relate a heap element to its neighbors
(section 2). Then, we have extended upon the base design
to add interprocedural support to the analysis (section 3).
The key point is that we have extracted the information
provided by the Activation Record Stack (ARS), which ex-
plicitly holds the information of interprocedural nature dur-

ing a program execution, in a way that is easily abstracted
and manipulated in the shape graph domain. The strategy
to achieve this involves 2 main aspects. Firstly, the shape
graph representation is augmented with a new kind of link,
the recursive flow links. They are used to leave a trace so
that the state of pointers in the context for previous calls
can be recovered. Secondly, we define some context change
rules that dictate how the shape abstractions are transformed
when entering to a function or returning to a call site. All
this means that we can still use our base (intraprocedural)
shape analysis with minor extensions to also deal with re-
cursive codes. All our algorithms have been implemented
in Java and integrated into the Cetus compiler infrastructure
[11].

1.1. Contributions

In this paper, we contribute with a newly designed, fully
context-sensitive interprocedural shape analysis technique
that supports recursion. We have implemented a prototype
of our technique and we have run some experiments (sec-
tion 4). We have compared the results and performance of
our algorithm with those of a landmark related work [17]
(section 5 discusses this and other related works). Besides,
we have implemented a data dependence test based on this
new shape analysis and the preliminary experiments with
this test are encouraging. The main parallel loops automat-
ically detected by our data dependence test have been man-
ually parallelized obtaining good speed-ups. This is, the
preliminary results show that our algorithm correctly and
accurately captures dynamic data structures, that the data
dependence test is able to identify the parallel loops that tra-
verse these data structures, and that the parallel execution of
these loops reports good speed-ups.

2. Intraprocedural shape analysis

Our approach to shape analysis is based on construct-
ing bounded shape graphs, that capture the way data struc-
tures are arranged in the heap. The analysis works by sym-
bolically executing statements in the analyzed program, a
process called abstract interpretation, until a fixed-point
is reached. Termination of the analysis is guaranteed by
the existence of summarization mechanisms. These mech-
anisms are responsible for bounding the abstractions and
preventing them from changing endlessly.

Shape graphs are updated according to the abstract se-
mantics of each statement, which describes the effect of the
statement over a graph. The result of our analysis is the set
of shape graphs that describe the state of the heap for every
statement and by following any possible flow path in the
program. These results are always conservative, meaning
that a super-set for all possible shape graphs that represent



the program heap, is constructed. All this can be illustrated
by the example of fig. 2, where we can see how the state-
ments of the code which builds a single linked list are sym-
bolically executed until a fixed point is reached. Next, we
describe the main characteristics of our shape abstractions.

Figure 2. Building a RSG for each statement
of an example code.

2.1. The base shape abstractions. Coexis-
tent Links Sets (CLS)

The heap information present at runtime belongs to the
concrete domain and is described as memory configura-
tions, mc. That information is abstracted for its analysis
in the abstract domain, in the form of shape graphs, sg.

A memory configuration is described with several sets of
elements. First we have the set of memory locations l ∈ L,
i.e., the pieces of memory dynamically allocated in the pro-
gram. Concrete pointer links, plc = 〈x, l〉 ∈ PLc are the
links that are established between pointers, x ∈ PTR, and
memory locations, l, while concrete selector links, slc =
〈l1, sel, l2〉 ∈ SLc, establish a path from different mem-
ory locations, l1 and l2, through pointer fields, also called
selectors (sel ∈ SEL). The upper side of fig. 3 shows a
singly-linked list of 4 elements in the concrete domain.

Figure 3. A singly-linked list in both domains.

A shape graph, sg, is defined analogously to a memory
configuration. In this case, however, the base element is
a node, n, which represents one or several memory loca-
tions. The set of all the nodes, N , includes an special NULL
node. In a shape graph, the number of nodes is bounded by

the summarization policy. The simplest summarization pol-
icy states that locations that are not pointed to by pointers
are abstracted by a single summary node. For instance, in
fig. 2, Iteration 3, we can see that the abstract interpreta-
tion of statement S6 leads to the summarization of the two
middle nodes of the graph resulting from S5. The PL and
SL sets are now the abstract pointer links set and abstract
selector links set respectively, with the same information of
PLc and SLc but changing locations, l, for nodes, n. Fi-
nally, we include the set of pointer links and selector links
that enter or leave a memory location represented by a cer-
tain node. We call this set, the coexistent links set for node
n, clsn, as it expresses the links that may exist simultane-
ously over a memory location contained in n.

All this will be better understood by having a look at
the abstract representation of the singly-linked list in fig. 3.
It shows the shape graph abstraction, sg1, for the memory
configuration, mc1. Node n1 abstracts memory location l1,
which is pointed to by pointer l. Memory locations l2, l3
and l4 are not pointed to by pointers and thus may be sum-
marized by a single node, n2. Selector links in the graph
domain are updated to match their nodes and therefore may
also summarize actual selector links in the concrete domain.
Despite this reduction in the number of matching elements,
the shape graph sg1 contains, within the coexistent links
sets, all the information present in the memory configura-
tion, mc1 (although, as a result of being a conservative ab-
straction, sg1 represents a list of 4 or more list elements).
Note that there may be more than one coexistent links set
clsn for a node n ∈ N (e.g., cls1n2, cls2n2 and cls3n2).
Since a node can represent several memory locations, its co-
existent links sets must contain all the possibilities of links
existing in those memory locations. In this example, cls1n2

indicates the links for a node that is reached through sl1
(the ’i’ indicates that sl1 is an incoming link for the loca-
tion represented by n2). From there, you can reach another
node by following the sl2 selector (the ’o’ indicates it is
an outgoing link), i.e., cls1n2 is capturing the links for the
l2 location in the concrete domain. Likewise, cls2n2 indi-
cates that n2 can also be reached through sl2 (incoming),
and leave to another location through sl2 (outgoing), which

Figure 4. Shared and cyclic in node n3.



corresponds to the links for l3. Finally, cls3n2 is indicating
the links for l4.

As we have seen in this previous example, the expres-
siveness of the selector links is improved thanks to the set
of attributes, ATT = {i, o, c, s}. Each element att ∈ ATT
codifies information about the direction and nature of a se-
lector link when it is related to a node. Intuitively, att = i
stands for an input link, att = o for an output link, att = c
for a cyclic link, and att = s for a shared one. From the
set ATT we define a new domain ATTSL = P(ATT ),
where each element of this new domain attsl ∈ ATTSL
represents a possible combination of attributes that describe
the characteristics of a selector link when it is associated to
a node. Besides, from ATTSL and the set of all selector
links, SL, we define the domain SLatt = SL × ATTSL.
An element slatt in this domain, which we call a selec-
tor link with attributes, is represented as a tuple slatt =
〈sl, attsl〉, being sl ∈ SL and attsl ∈ ATTSL. For exam-
ple, in fig. 3, sl2io = 〈〈n2, nxt, n2〉, {i, o}〉.

We present a different example in fig. 4 in order to illus-
trate the expressiveness of attributes shared, s, and cyclic,
c. In that figure, locations l2 and l3 are summarized in the
node n2. Concrete slc1 and slc2 translate to sl1 and sl2
respectively since they follow different selectors (nxt and
prv). Note that sl1 and sl2 are in different cls’s so they can
not coexist, which precisely captures the fact that following
nxt or prv from n1 leads to different locations. However,
slc3 and slc4 (both using nxt) are mapped into sl3. That
way, sl3s in cls1n3 points out that you can point to a loca-
tion represented by node n3 from more than one different
locations represented in node n2 by following the same se-
lector (nxt). On the other hand, sl4c in cls1n3 expresses
that the location l4 represented in n3 is pointing to itself.
Please, note the difference with sl2io in cls2n2 in fig. 3,
which indicates that one location represented in node n2 is
pointing to a different location represented in the same node.

The key feature of our model is the ability to maintain
the connectivity and aliasing information that can coexist
in an abstract node, even when the node represents differ-
ent memory locations with different connection patterns.
This is achieved through the coexistent links set abstrac-
tion. A coexistent links set, clsn, codifies a possible alias-
ing and connectivity pattern for a node n, and it is defined as
clsn = {PLn, SLn}, where PLn is a set of pointer links
pointing to n, and SLn = {slatt ∈ SLatt s.t. slatt =
〈〈n1, sel, n2〉, attsl〉, being (n1 = n ∨ n2 = n)}, is a set
of sl’s with attributes that contain n. The set of all the clsn

associated to a node n is called CLSn. In addition, for all
the nodes n defined in our abstract heap, we can create the
set CLS = {CLSn, ∀n ∈ N}.

2.2. Shape Graphs (SG)

Our abstract heap is modeled as a directed multi-graph.
The domain for an abstract graph is the set SG ⊂ P(N) ×
P(CLS). Each element of this domain, sgi ∈ SG is what
we call a shape graph, which we represent as a tuple sgi =
〈N i, CLSi〉, with N i ⊂ N and CLSi = {CLSn, ∀n ∈
N i} ⊂ CLS.

We restrict this abstract domain by defining a normal
form of the shape graphs. We will need two auxiliary func-
tions: (i) Cmpt N() which returns TRUE if two nodes can
be summarized into a single one (they are compatible); and
(ii) Path(ni, nj, CLSk) which returns TRUE if there is
a path between node ni and nj using the selector links in
CLSk. We say that a shape graph sgi = 〈N i, CLSi〉 is in
normal form if:

1. It has no compatible nodes: �n1, n2 ∈ N i s.t.
Cmpt N(n1, n2, CLSn1, CLSn2) = TRUE

2. It has no unreachable nodes: (∀n1 ∈ N i, ∃pl1 =
〈x, n1〉 ⊂ CLSn1) ∨ (∃n2 ∈ N i s.t. ∃pl2 =
〈x, n2〉 ⊂ CLSn2 ∧ path(n2, n1, CLSi) = TRUE)

3. A pointer variable unambiguously points to one node:
∀n1, n2 ∈ N i s.t. n1 
= n2, If ∃pl1 = 〈x, n1〉 ⊂
CLSn1 =⇒ �pl2 = 〈x, n2〉 ⊂ CLSn2

4. The selector links of connected nodes, are coher-
ent: ∀n1, n2 ∈ N i s.t. n1 
= n2, If ∃slatt =
〈〈n1, selk, n2〉, attsl〉 ⊂ CLSn1 =⇒ ∃slatt =
〈〈n1, selk, n2〉, attsl′〉 ⊂ CLSn2

Regarding the Cmpt N() function, the basic compati-
bility criterion states that two nodes can be summarized if
they are pointed to by the same set of pointers. This includes
that nodes not pointed to by pointers (PLn = ∅) are com-
patible. This criterion can be extended by adding parametric
properties to the nodes and compatibility of properties func-
tions. For instance, the data dependence test is based on the
“DepTouch” property which annotates the nodes with in-
formation about the statements that have read and/or written
the locations abstracted in these nodes. Nodes with differ-
ent DepTouch information will not be summarized. See [5]
for more details.

2.3. Reduced Set of Shape Graphs (RSSG)

As we mentioned previously, our abstract heap is mod-
eled as a multigraph. We call reduced set of shape graphs
to the set of shape graphs that represents the state of the
heap at a given program statement s: RSSGs = {sgi ∈
SG s.t. sgi is in normal form}



Again, we impose a restriction in this set of graphs,
and it is that the set is in normal form. We say that a re-
duced set of shape graphs, RSSGs = {sgi} is in normal
form if it has no compatible shape graphs: �sg1, sg2 ∈
RSSGs s.t. Cmpt SG(sg1, sg2) = TRUE. The aux-
iliary function Cmpt SG(sg1, sg2) is formally described in
[5], but for the purpose of this paper, it will suffice to state
that two sg’s are compatible if both sg’s have the same alias
relationship between pointers and the nodes pointed to by
pointers in both sg’s are compatible. In that case, these two
compatible sg’s are joined into a single one which captures
the memory configuration represented by the two original
sg’s. For example, in fig. 5, the symbolic execution of each
statement translates in a RSSG capturing the heap after the
execution of each one of them. The firsts RSSG’s have
just one sg, but at the join point of the CFG we have 3 pos-
sible memory configurations represented by sg4, sg5 and
sg6. Since, sg4 and sg5 are compatible, we can join them
and after the abstract interpretation of statement 7 we ob-
tain sg7. Please note that unlike flow-sensitive points-to
analysis, this sg7 accurately describes both memory con-
figurations thanks to the cls’s (not shown for simplicity in
the figure). However, sg6 is not compatible and after state-
ment 7 gives sg8. Both sg7 and sg8 are in the RSSG7 set.
The operator

⊔SG represents the join operation in the SG
domain.

Figure 5. Reduced Set of Shape Graphs in
statement 7.

2.4. Abstract Semantics

We formulate our analysis as a dataflow analysis that
computes a reduced set of shape graphs at each program
point. For each statement in the program, s ∈ STMT ,
we define two program points: •s is the program point be-
fore s, and s• is the program point after s. Therefore, the
result of the analysis for that statement is a reduced set of
shape graphs, RSSG•s before s, and RSSGs• after that.

Let pred() map statements to their predecessor statements
in the control flow. Fig. 6 shows the dataflow equations.

[JOIN]: RSSG•s =
FRSSG

s′∈pred(s) RSSGs′•

[TRANSF]: RSSGs• = ASs(RSSG•s), where

ASs::= x=null(RSSG•s) =
FRSSG

sgi∈RSSG•s XNull(sgi, x)

ASs::= x=malloc()(RSSG•s) =
FRSSG

sgi∈RSSG•s XNew(sgi, x)

ASs::= free(x)(RSSG•s) =
FRSSG

sgi∈RSSG•s XFree(sgi, x)

ASs::= x=y(RSSG•s) =
FRSSG

sgi∈RSSG•s XY (sgi, x, y)

ASs::= x→sel=null(RSSG•s) =
FRSSG

sgi∈RSSG•s XselNull(sgi, x, sel)

ASs::= x→sel=y(RSSG•s) =
FRSSG

sgi∈RSSG•s XselY (sgi, x, sel, y)

ASs::= x=y→sel(RSSG•s) =
FRSSG

sgi∈RSSG•s XY sel(sgi, x, y, sel)

Figure 6. Dataflow equations.

Worklist()
Input: P = 〈STMT, PTR, SEL〉, RSSGin

Output: RSSGout

1: Create W = STMT
2: RSSG•se = RSSGin

3: ∀s ∈ STMT → RSSGs• = ∅
4: repeat
5: Remove s from W in lexicographic order
6: RSSG•s =

FRSSG
s′∈pred(s) RSSGs′•

7: RSSGs• = ASs(RSSG•s)
8: If (RSSGs• has changed),
9: forall s′ ∈ succ(s),

10: W = W ∪ s′

11: endfor
12: until (W = ∅)
13: RSSGout = RSSGsr•

14: return(RSSGout)

Figure 7. Intraprocedural worklist algorithm.

We model the analysis of individual statements comput-
ing a transfer function for each one. To simplify the formal
definitions of the transfer functions we use the functions
XNull(), XNew(), XFree(), XY(), XselNull(), XselY()
and XYsel() to describe the transformations that take place
in the abstract heap when a simple statement s is inter-
preted. The operator

⊔RSSG represents the join operation
in the RSSG domain.

Basically, the transfer functions for the x=null,
x=malloc(), free(x) and x=y statements, take each
shape graph from the input set RSSG•s, transform it ac-
cording to the statement semantics, and later join all the
transformed graphs to build the output set RSSGs•. An
example of such behavior can be seen for statement 7 in
fig. 5, where the input shape graph set for the statement is
formed by two graphs: sg6 and the joining of compatible



graphs sg4 and sg5. Both graphs are transformed accord-
ing to the abstract semantics of XNew(), producing sg7
and sg8. These graphs are not compatible according to the
Cmpt SG() function, hence both form RSSG7•.

On the other hand, the transfer functions for the
x->sel=null, x->sel=y and x=y->sel statements,
involve more steps because intermediate graphs can be gen-
erated by following the x->sel or y->sel path. Con-
sider the example shown in fig. 8. The input shape graph
set is made of a single graph, sg1 within RSSG•s, which
represents a singly-linked list of one or more elements (sl’s
and cls’s are shown in the figure). This graph is first split
by y->nxt. Since there are two possible ways to follow
from n1 (the node pointed by y) through selector nxt, two
graphs are generated: sgA (1-element list) and sgB (2 or
more element list). In the next step, a new node is material-
ized to focus the part of the list where the access is taking
place. This operation only makes sense for sgB, producing
sgD. Then follow the transformations corresponding to the
abstract semantics of the current operation, in this example,
the x=y->nxt statement, which invokes the XYSel()
function (as shown in fig. 6). At the last step, all graphs
are normalized and compatible graphs are joined forming
the output shape graph set, RSSGs•. For this case, sgE
and sgF are not compatible, and cannot be joined together.
Please, see [5] for a detailed description of all these abstract
semantic functions. Finally, note that pointer arithmetic is
not currently supported.

Figure 8. Steps for x=y->sel statement.

We present in fig. 7 a worklist algorithm for solving the
dataflow equations presented in fig. 6. The input of our

worklist algorithm is a program P and an initial RSSGin =
∅, whereas the output is the RSSGout resultant at the return
program point, assuming that the return point is statement
sr ∈ STMT . This algorithm also computes the resultant
RSSGs• at each program point. Lines 1-3 perform the ini-
tialization, where the RSSG at the input of the program en-
try point (in our case statement se ∈ STMT ) is initialized
with RSSGin. Next, the algorithm processes the worklist
using the loop defined in lines 4-12. At each iteration, it
removes, in program lexicographic order, a statement from
the worklist, computes the join of the RSSG’s from the
predecessors as the statement input, and then it applies the
corresponding transfer function. If the resultant RSSG has
changed, the algorithm adds the successors of the statement
under consideration (succ(s)) to the worklist (line 10).

2.5. Pseudostatements

We can instrument the analysis providing some use-
ful information from the code. This information is an-
notated in the source code, by a preprocessing step, in
the form of pseudostatements, and later they are abstractly
interpreted as normal statements. Currently we support
three type of pseudostatements: Force, DepTouch and
DepUntouch.

A preprocessing pass extracts semantic information from
test conditions in if and while program flow statements,
when these test conditions involve pointers variables. Then,
Force pseudostatements (also called assume statements)
are introduced to communicate that information to the anal-
ysis. On the branch where the tested expression is null,
e.g. z==null, the force’s transfer function filters out the
graphs in which a pointer link of the form pl =< z, ni >
exists, i.e. the variable z points to a node. Statement 16 in
fig. 9 is an example of such a statement. On the contrary,
on the branch where the tested expression is not null, e.g.
z!=null, then the transfer function filters out the graphs
in which a pointer link of the form pl =< z, ni > does
not exist, i.e. the variable z does not point to a node. An
example for this Force is statement 12 in fig. 9. In this
way, we allow the analysis to filter out unrealistic memory
configurations.

The DepTouch pseudostatement lets us annotate the
node pointed to by a pointer x, with an identifier, whereas
the DepUntouch pseudostatement removes that identifier
from any node of the graph. This kind of annotations is
useful for dependence analysis. DepTouch pseudostate-
ments are inserted by our preprocessing pass, just after the
statements that perform read or write accesses to data or se-
lector fields that potentially may provoke loop carried data
dependencies (LCDs). Each DepTouch codifies a state-
ment and its type of access (read(R)/write(W)). When it is
abstractly interpreted, then the corresponding node is an-



notated with that information. Later, the data dependence
test checks if a node has been actually written and read by
statements that could produce LCDs, and in that case a data
dependence (and the type of dependence - RAW, WAR or
WAW) can be reported. In the example of fig. 1, statement
S3 produces the annotation of the node pointed by p with
the RS3 tag, whereas S4 annotates with WS4 (DepTouch
pseudostatements are not shown for simplicity in the code).
That information is then used to detect a RAW LCD.

3. Extensions for interprocedural analysis

struct node{
int data;
struct node *nxt;

} *r;
1: struct node *create list(int size){ ... }
9: struct node *rev(struct node *x){

struct node *y, *z;
10: z=x->nxt;
11: if(z!=NULL){
12: #pragma SAP.force(z!=NULL)
13: y=rev(z);
14: x->nxt=NULL;
15: z->nxt = x;

}else{
16: #pragma SAP.force(z==NULL)
17: y=x;

}
18: return y;

}
19:int main(int argc, char *argv[]){

struct node *l;
20: int size = size from args(argv);
21: l = create list(size);
22: r = rev(l);
23: return 1;

}

Figure 9. Example program.

An interprocedural shape analysis technique must also
be able to deal with function calls and return sites. The main
challenge is encountered in the presence of recursive func-
tions, where heap abstractions need to maintain the state of
pointer formal parameters and local pointers in a sequence
of recursive calls. At runtime, the Activation Record Stack
(ARS) provides explicit information about the state of vari-
ables for every call. In our approach, we abstract the in-
formation of the ARS by using (i) a new kind of link over
the base shape graph representation, and (ii) some context
change rules that dictate how the graphs and these new links
are modified at function calls or return sites.

From now on, we will use a simple example to illus-
trate the main features of our interprocedural shape analysis

strategy. Fig. 9 shows the abridged C code for reverse, a
program that creates a singly-linked list and then reverses it
with a recursive function, rev(). Let us assume now that
the memory configuration for the 4-element list of fig. 3 is
used as input for the rev() function. The list is then tra-
versed in a sequence of recursive calls. The memory con-
figuration that results at the 4th invocation of the rev()
function (line 9) is shown in fig. 10(a), where the Activa-
tion Record Stack (ARS) has been included to maintain the
pointer links for x in previous calls of rev(). The infor-
mation within the ARS is required when we go back to the
return site of an enclosing call, so that we know the desti-
nation of the corresponding pointer formal parameters and
local pointers.

Figure 10. A 4-element list after the 4th
invocation to rev(): (a) with ARS, (b)
with recursive flow links, and (c) its shape
graph.

3.1. Recursive flow links

We introduce a new element to extend the base shape
graph abstraction, as described so far, to include the infor-
mation that we need from the ARS. This is done with two
kinds of recursive flow links: recursive flow pointer links
(rfpl) and recursive flow selector links (rfsl). They are
defined very similarly to regular pointer links and selector
links, only based on recursive flow pointers (rfptr) and
recursive flow selectors (rfsel) respectively. Recursive
flow pointers and recursive flow selectors are introduced for
every pointer variable that needs to be traced along the in-



terprocedural control flow (in the worst case, all the pointer
formal parameters and local pointers). By convention, they
are named after the pointer variables that they trace, with
the subscript rfptr or rfsel, respectively.

Recursive flow links do not represent actual links exist-
ing in the program data structure but rather trace the po-
sitioning of pointer formal parameters and local pointers
along the recursive, interprocedural control flow. A re-
cursive flow pointer link points to the same memory loca-
tion/node where the traced pointer was pointing to in the
immediately previous call in a stack of recursive calls, while
a recursive flow selector link points to the locations/nodes
beyond the immediately previous activation record.

Fig. 10(b) shows the memory configuration from (a),
exchanging the ARS for the needed recursive flow links,
which are shown in dashed lines. In the rfplc and rfslc, the
last “c” stands for “concrete”. The location/node denoted
by • is representing the NULL location for the recursive flow
path. Following the trace through a recursive flow selector
link with • as destination would not correspond to any acti-
vation record in the succession of recursive calls, and there-
fore would not render any realistic memory configuration.
Fig. 10(c) shows the abstraction, in the abstract domain, of
the memory configuration in (b). Here memory locations
l1 and l2 are summarized by n1. The selector links are up-
dated accordingly as shown in the figure.

3.2. Context change rules

We now consider a program to include the set of func-
tions, F , declared in that program, and we extend the
type of analyzable statements to include the call() and
return() of these functions. Function pointers are not
supported. An important detail is that we distinguish be-
tween non-recursive and recursive call sites and between
recursive and non-recursive return points. We formulate a
context sensitive interprocedural analysis, because we dis-
tinguish between different calling context of the same pro-
cedure. The analysis at procedure calls must account for the
assignment of actuals to formals and for the change of anal-
ysis domain between the caller and the callee. For it, shape
graphs are transformed into the appropriate context while
flowing in and out of functions by the context change rules,
namely the call-to-start (CTS) rule, and the return-to-call
(RTC) rule.

The call-to-start rule determines how the recursive flow
links in the shape graphs are transformed from a function
call to the context inside the function. On the other hand, the
return-to-call rule transforms the heap abstraction returned
by a function to the appropriate context at the calling site.
Each of these rules has a recursive (CTSr and RTCr) and
non-recursive (CTSnr and RTCnr) version. Due to space
constraints, only a brief description for the CTSr and RTCr

rules will be covered here (see [5] for more details). CTSr

finds the node ni pointed to by each formal or local pointer
x, and the node nj pointed to by the same pointer in the pre-
vious pending call (xrfptr). Then it creates the new recursive
flow pointers and links for the current context, accordingly
updating the cls’s. In additions, all actual parameters are
mapped into the corresponding formal ones. RTCr works
by assigning local pointers to the nodes where they were
pointing to in the previous context. For that, the matching
of returned pointer and assigned pointer at call site, as well
as the matching between formals and actuals, are used. The
rest of local pointers are reassigned according to the exist-
ing recursive flow links.

Figure 11. Example of the (a)CTSr and (b)RTCr

rules.

These context change rules are better understood by ex-
ample. Fig. 11(a) shows how the CTSr rule acts upon shape
graph sg2St12, the abstraction of a 4-element singly-linked
list that reaches the third call to rev(), by taking the if
branch in the code of fig. 9. The result of applying the CTSr

rule is named sg3St9. Null assigned or uninitialized point-
ers are not shown. Links are only displayed graphically,
and coexistent links sets are left out, to simplify the presen-
tation. Note that the location pointed to by z in sg2St12

is now pointed to by x in sg3St9. The xrfptr pointer is up-
dated to point to n2, node pointed to by x in the previous
context, and the recursive flow selector from n2 to n1 in
sg3St9 leaves the trace to the node pointed to by xrfptr in the
previous context. Local pointer y is not defined before the
recursive call so no tracing is necessary.

Fig. 11(b) shows how the RTCr works on sg2St18, the
graph resulting from the third call to rev(). The result
is sg3St13, which exchanges actual parameter z for its
matching formal parameter x. Pointer y is assigned over
itself, so it causes no change. Pointer x is reassigned to the
node pointed to by xrfptr, which is updated by following its
recursive flow selector link.

An interesting fact about the use of coexistent links sets
in our abstraction can also be observed in fig. 11(b): n3
is pointed from n2 and n4, both links coexisting in its cls
(shown for sg2St18). We say n3 is shared, because it can



be directly reached from more than one node. This is high-
lighted graphically by shading the oval depicting the node.
The cls information allows to know that, not only can n3
be accessed by following two different paths, but we now
exactly what paths. This sharing pattern is then undone as
the list continues to be reversed, preserving the listness of
the structure at the end of the analysis.

The context change rules require that the program is pre-
processed so that pointer formal parameters are not modi-
fied inside the procedure. This restriction makes the formu-
lation simpler and does not involve any loss of generality,
as it is always possible to rewrite a function to comply with
this condition by using additional local pointer variables,
whenever pointer parameters are passed by value. When
pointer parameters are passed by reference, they are treated
just like global pointers. The technique also assumes there
is only one return point in the function, at the end of its
body. Again, this involves no loss in generality as any func-
tion are easily rewritten to comply with this condition by
our preprocessing compiler pass.

3.3. Reuse of function summaries

The technique described so far is enhanced by using a
tabulation algorithm (see [5]) that records function sum-
maries for reuse under equivalent calling contexts. Every
time a non-recursive call statement is encountered the shape
graphs in the current shape graph set are split according to
the reachability of actual parameters in the call and global
pointers. This way, for each incoming shape graph we ob-
tain two graphs: (i) the reachable graph, which abstracts the
part of the heap accessible through the function call actual
parameters and global pointers, by following any pointer-
chasing path from them; and (ii) the unreachable graph,
which abstracts the part of the heap that is not accessible in-
side the function called, or equivalently, the part of the heap
accessible through the rest of pointers in the program. This
splitting process is performed within the tabulation algo-
rithm, which checks if any of the incoming reachable graphs
has been previously analyzed. If it has, then the previously
obtained output is returned. Otherwise, it is analyzed and
the input-output pair is stored for future reuse. In any case,
the unreachable part of the graph is finally joined with the
resulting shape graphs to yield the total effect of the func-
tion call.

The tabulation algorithm in conjunction with the reach-
ability splitting mechanism allow to reuse the computed ef-
fects for functions in the case of graphs whose reachable
elements match a previously analyzed graph. However,
not all input shape graphs can be split. Whenever a shape
graph represents memory locations that are found both in
the reachable and non-reachable graphs, then the graph can-
not be safely split, because it could not be reconstructed by

a simple join graph operation. This is similar to the con-
cept of cutpoint presented in [17], but somewhat more re-
strictive. In the case of such a cutpoint, the analysis must
proceed with the whole shape graph and will be less likely
to reuse function summaries.

4. Experimental results

We have implemented the algorithms presented in this
paper within our optimizing-compiler framework [3]. We
focus on the analysis of C sequential programs. All the
needed preprocessing passes are performed with custom-
made passes built upon Cetus [11], a versatile source-to-
source compiler framework.

Figure 12. Graphical User Interface for Shape
Analysis.

Program Time (sec.) Space (MB)
1-Singly-linked list 0.06 1.9
2-Doubly-linked list 0.08 1.9
3-N-ary tree 0.14 1.9
4-Binary tree 0.52 1.9
5-Matrix-vector(s) 0.33 1.9
6-Matrix-vector(d) 0.39 1.9
7-Matrix-Matrix(s) 3.51 4.9
8-Matrix-Matrix(d) 4.09 4.9
9-em3d 22.98 4.9

Figure 13. Analysis time and required mem-
ory for the analysis of some pointer based
programs. Programs marked with (s) have
their structures based on singly-linked lists,
while those marked with (d) are based on
doubly-linked lists. The testing platform is a
3GHz Pentium 4 with 1GB RAM.

We have also implemented a GUI to enable a friendly
use of our shape analyzer tool. In fig. 12 we can see one of



the available windows in which the “Graphs” tab is selected.
In that tab we have got the analyzed code with each state-
ment annotated with information regarding the number of
times that statement have been symbolically executed and
the number of sg’s associated with it. We also provide the
links to each graph and information about the parents and
children of each one of them, as well as the graphical view
of the graphs and its cls’s. There is also a “SAP code” tab
(SAP stands for Shape Analyzer Preprocessing). This tab
is very useful to compare the original C code and the pre-
processed version resulting from the Cetus compiler pass
(as we said, this preprocessing takes care of the insertion of
force statements and other transformations and simplifica-
tion that have to be performed to optimize the shape analy-
sis).

We have conducted three kind of experiments. In a first
place, fig. 13 shows a group of programs based on dynamic
data structures. These programs were analyzed as a test
for the ability of the technique to capture several types of
dynamic data structures. These structures include singly-
linked lists, doubly-linked lists, binary trees, n-ary trees,
and sparse matrices or sparse vectors built based on singly-
or doubly-linked lists. The codes in fig. 13 do not include
recursive functions. Programs 1 to 4 in fig. 13 create and
traverse their corresponding data structures. Programs 5 to
8 in the same figure, implement the product of sparse ma-
trix by sparse vector, or the product of two sparse matrices.
Program 9 is the em3d from the Olden suit [2]. All the
structures tested were captured accurately.

The second kind of experiment focuses on the analysis
of some basic recursive algorithms based on singly-linked
lists or binary trees. The motivation for these tests is two-
fold: (i) to test the mechanism for recursive analysis, and (ii)
to compare results and performance with significant related
work. In particular, we have considered the codes tested in
[17], forming a small library of recursive algorithms that op-
erate on singly-linked lists (create list, find element, insert
element, delete element, append element, reverse list, splice
list) and binary trees (create tree, insert element, find ele-
ment, find tree height, splice left subtree, rotate tree). Both
[17] and our method are able to determine that structure
is preserved after the call to the recursive functions. This
means that for the list tests, if the function is called with an
acyclic singly-linked list, then the output is also an acyclic
singly-linked list, i.e., no cycles have been introduced in the
list. For the tree tests, if the input is an unshared binary tree
(no child has 2 parents), then that shape is preserved at the
output. The analysis times for all the codes, in a Pentium
M 1.6 GHz with 224 MB, are less than 1 sec. for the list
codes and less than 32 sec. for the tree codes. The memory
consumed fits in a block of 1.9 MB for all the list tests. For
the tree tests it never goes above 4 MB. Published time and
memory requirements in [17] are much larger in a similar

platform (Pentium M 1.5GHz, 1GB): regarding their times,
they range from 9.3 to 46 sec. for the list codes and from
14.3 to 105 sec. for the tree codes. More details about these
experiments can be found in [5].

To further test our technique regarding recursive anal-
ysis, we considered power (nested linked lists) and
treeadd (binary tree) from the Olden suite. We were able
to accurately capture the structures recursively created and
traversed in these benchmaks, in 8 sec/13 MB and 70 sec/11
MB respectively in a 3Ghz Pentium 4 with 1GB RAM.

4.1. Data dependence test and parallel ex-
ecution results

Finally, we have also conducted some preliminary exper-
iments of our data dependence test [15], now built on top of
our new interprocedural shape analysis algorithm. Using
the node property “DepTouch” and symbolically executing
the loops of a code, we can annotate which memory loca-
tions are read or written and detect loop-carried data de-
pendences (LCD). This test have been applied to the sparse
matrix-vector, the sparse matrix-matrix and em3d codes of
figure 13. The matrix codes were based on doubly-linked
lists to store the sparse matrices and vectors.

Program # stmts. A. Time Space Speed-Up
MxV(d) 107 2:08 19.1 7.57
MxM(d) 143 9:26 7.02 7.72
em3d 224 0:34 5.16 2.02

Table 1. Analysis time (min:sec) and required
memory (MB) for the data dependence test
and speed-up results. The data dependence
test was conducted in a 3GHz Pentium 4 with
1GB RAM. The parallel codes are executed in
8 UltraSparc III 900MHz.

The test successfully reports no data dependences and
that the outer loops of the two sparse codes and the
compute nodes() routine of the em3d can be safely par-
allelized. Regarding the analysis time, this test needs 2 min.
8 sec. for the matrix-vector and 9 min. 26 sec. for the
matrix-matrix. Clearly, keeping track of the accessed loca-
tions has a big impact in the analysis time. However, the
data dependence times we previously reported using our
old RSG shape analysis [15] were 1 min. 47 sec. for the
matrix-vector and 94 min. for the matrix-matrix in the same
Pentium 4. More experiments have to be carried out, and
there are several issues to consider regarding the compari-
son of both implementations (for instance the RSG version
was implemented in C and the new one based on CLSs has
been done in Java). However, we can anticipate that for
simpler codes like the matrix-vector one, the new underly-
ing shape analysis does not improve the previous one, but



for more complex codes like the matrix-matrix (with four
nested loops and several conditional branches inside them)
we have observed that the CLS are able to capture the com-
plexity of the analyzed memory configurations in a more
compact way, reducing the analysis time by one order of
magnitude. Besides, we have to stress that our new shape
analysis is now ready to support an interprocedural data de-
pendence test.

Now that we have automatically identified the parallel
loops of these codes, the next step is to generate the parallel
code. As a first approach we have just manually inserted
an “omp parallel for” before the parallel loops, identifying
the private variables. Sparse codes were tested with matri-
ces of 10000×10000 and 20% density. In the em3d, we
execute the parallel version of compute nodes() with
1024 E nodes and 1024 H nodes and a degree of the bipar-
tite graph of 50. The low speed-up of 2 on 8 processors
is due to the lack of enough workload in each iteration of
the compute nodes() routine. Other authors report bet-
ter speed-up but relying in iterating 500 or more times this
routine [9].

5. Related work

Recently, there have been many interesting works in
the shape analysis field. A important body of them use
separation logic [6], [13], [1], [8] to describe the shape
of data structures through recursively defined predicates.
Some of these works rely on pre-defined recursive pred-
icates [6], [13], whereas [1], [8] resort to inductive syn-
thesis to infer recursive shape invariants. [1] is suitable
for list-processing programs limiting the class of analyzable
programs, whereas [8] can handle more general data struc-
tures, specially data types with tree-like backbone. Both of
them are interprocedural. All these works are concerned in
finding predicates that encode spatial relationships between
heap locations, and typically are targeted towards program
verification. Our work, on the contrary is concerned with
finding the temporal relationships that may impose the data
dependences that arise in the section of a program candidate
to be parallelized (a loop or a function call, in our study).
We believe that the kind of analysis that is suitable for ver-
ification is not easily adaptable towards dependence detec-
tion. Verification is mainly concerned with proving code
correctness and obtaining structure invariants and therefore
cannot make any assumptions about the program. In our
approach, we assume code correctness, and we are not so
much concerned with the structure invariants than actual ac-
cess relationships, which determine dependencies.

Other approaches in shape analysis such as [18], [17],
or [10] use the 3-valued logic analyzer (TVLA) paramet-
ric framework. TVLA can be used to instantiate differ-
ent shape analyzers based on a collection of instrumenta-
tion predicates to accurately describe the structures. These

predicates must be provided by the user, although in [12]
machine learning is applied to automatically find recursive
predicates. These works are concerned with codifying spa-
tial shape invariant information, suitable for program veri-
fication client analyses, but as we have mentioned before,
our study is on the contrary concerned with finding tempo-
ral data dependences. It must be stressed that although our
work shares ideas with the TVLA framework (such as sum-
marization, materialization, or abstract interpretation), we
provide a new, unrelated shape analysis technique.

Regarding expressiveness, some of these works can pro-
vide more information about the data structures than our
approach. For example, [17] recognizes that a sorting func-
tion returns a permutation of elements in the input, and [10]
is able to find out that reversing a list twice yields the same
list. Again, we think that kind of information is tailored for
verification clients and is not so important for data depen-
dence detection.

More related to our problem, i.e., finding data depen-
dences in recursive/dynamic data structures using a shape
analysis technique are the works [7], [9] and [14]. For in-
stance, [7] proposed a test for identifying data dependences,
test that relies on the identification of the shape of the over-
all data structure being traversed (among the pre-defined
Tree, DAG or Cycle shapes), as well as on the computa-
tion of the access paths for the pointers in the statements
being analyzed. The technique presented in [9] deduces the
shape of the traversal patterns (among the pre-defined Tree,
DAG or Cycle shapes) over the shape of overall data struc-
ture. Once they have extracted the traversal-pattern shape
information, dependence analysis is applied to detect de-
pendences. The main drawback in these works is that they
are not useful in programs that perform destructive updates
in the loops under test. The work in [14] goes a step fur-
ther, and similarly to our approach, they make use of the
notions of abstract interpretation and refinement, which al-
lows the analyses to give support to destructive updates.
However, in [14] the interprocedural support is very sim-
plistic, and they do not support recursive functions, which
is a major contribution in our work. Besides, they target
only Java codes entirely based on manually-tuned collec-
tion libraries. Although they make use of the results of their
analysis for parallelization, this is done entirely by the pro-
grammer, whereas we provide the means for automatic de-
tection of loop-carried dependencies.

We differ from previous related works in that our tech-
nique let us annotate the memory locations reached by each
heap-directed pointer, with read/write information. This
feature let us capture quite accurately, the temporal rela-
tionship between the statements that visit the locations of
the program heap. Our algorithm is flow sensitive, con-
text sensitive and supports recursion, which lets us analyze
quite accurately loops and functions that traverse and cre-



ate generic heap-based recursive/dynamic data structures in
programs that perform destructive updates.

6. Conclusions and future work

We have presented in this work an interprocedural shape
analysis technique and its application to the automatic par-
allelization of dynamic data structure based codes. The core
intraprocedural analysis is based on the concept of coexis-
tent links sets, which provide a compact way to represent
possible connections of heap elements. This core technique
is then extended with two key ideas: (i) a new kind of link
(recursive flow links) that leaves a trace in our graph rep-
resentation across recursive calls, so that we can recover
pointer state when returning to enclosing calls; and (ii)
a couple of context change rules (call-to-start and return-
to-call) that describe how the heap representation is trans-
formed when performing function calls or returning to a call
site.

Also, we have conducted some preliminary experiments
that show that the technique provides accurate results and
outperforms significantly some previous approaches to the
problem of interprocedural shape analysis. Besides, we
have automatically detected the parallel loops of three
codes, which once parallelized exhibit good speed-ups.
Next, we plan to conduct more experiments over bigger
benchmark programs and to put to work our shape analy-
sis to perform an accurate interprocedural data dependence
test in order to exploit not only loop-level parallelism but
also function level parallelism.
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