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Abstract

Parallel programming is a requirement in the multi-core
era. One of the most promising techniques to make paral-
lel programming available for the general users is the use
of parallel programming patterns. Functional pipeline par-
allelism is a pattern that is well suited for many emerging
applications, such as streaming and “Recognition, Mining
and Synthesis” (RMS) workloads. In this paper we de-
velop an analytical model for pipeline parallelism based on
queueing theory. The model is useful to both characterize
the performance and efficiency of existing implementations
and to guide the design of new pipeline algorithms.

We demonstrate the usefulness of the model by charac-
terizing and optimizing two of the PARSEC benchmarks,
ferret and dedup. We identified two issues with these
codes: load imbalance and I/O bottlenecks. We addressed
load imbalance using two techniques: i) parallel pipeline
stage collapsing; and ii) dynamic scheduling. We imple-
mented these optimizations using Pthreads and the Thread-
ing Building Blocks (TBB) libraries. We compare the per-
formance of different alternatives and we note that the
TBB implementation based on work stealing outperforms
all other variants.

1 Introduction

As multi-core processors are becoming ubiquitous, par-
allel programming is the technology that can make them
succeed or not. Research in parallel programming has fo-
cused on two main directions: (i) new parallel languages;
and (ii) parallel libraries – developing highly optimized li-
braries that encapsulate data parallelism [9] or task paral-
lelism [17]. Both approaches aim at providing higher levels
of abstraction to allow programmers to focus on algorithms
and data structures rather than the complexity of the archi-
tecture.

In this paper we shall focus on one type of task paral-
lelism, pipeline parallelism. In this model, the application
is partitioned in a sequence of filters or stages. The fil-

ters are code regions that may exhibit other kinds of par-
allelism (data- and/or task-parallelism). A number of work-
loads, including two benchmarks from the PARSEC bench-
marks suite [2], ferret and dedup, exhibit pipeline par-
allelism. Both are streaming applications: ferret imple-
ments image similarity searches and dedup compresses a
data stream by using “de-duplication”.

Pipeline parallelism is an important programming pat-
tern and we are interested in providing models, tools, and
guidance to the programmers for tuning the scalability and
the performance of codes using this pattern. Applications
parallelized using the pipeline model are very sensitive to
load balancing: for best efficiency, pipelines must avoid
bubbles, thus all stages must be processing at all times.
Thus, the programmer must either partition the work into
well balanced work items that flow through the pipeline
or use a system that dynamically shifts resources from idle
stages to the busiest pipeline stages. One such example is a
system supporting work stealing [4]. Another bottleneck of
the pipeline parallelism pattern is I/O, typically encountered
at the ends of the pipeline. In the examples we studied, at
large number of threads ferret is bounded by the input
I/O and dedup is bounded by the output I/O stage. Opti-
mizing I/O stages typically requires algorithmic knowledge
and the use of a parallel I/O library.

Given this sensitivity, we explore analytical modeling of
pipeline parallelism using queueing theory. We consider
several pipeline configurations that capture the most com-
mon patterns. Such models can be used to assist program-
mers in tuning the parameters of their pipeline implementa-
tions without resorting to large numbers of simulations. We
validate our models against measurements on a large paral-
lel system.

To summarize, this paper makes the following contribu-
tions: i) A detailed characterization of two benchmarks in
the PARSEC suite that use the pipeline parallelism model.
In our study, we identify the main issues that limit the scal-
ability of the codes and propose solutions to address them
(Section 2); ii) New analytical models for pipeline paral-
lelism based on queueing theory. The goal of the mod-
els is to help us better understand the use of resources



for different pipeline configurations (Section 3); iii) A per-
formance comparison of several implementations of these
benchmarks, including the original versions, a collapsed
pipeline version and a version using work stealing, using
Pthreads and Intel Threading Building Blocks (TBB) [17].
We demonstrate that our analytical model can capture pre-
cisely the behavior of all these variants (Section 4); iv) A
discussion of the advantages of using work stealing and the
TBB library for enhanced productivity in coding pipeline
parallel programs. We also identify several aspects that
can be improved in the TBB implementation of the pipeline
template (Section 6).

2 Background and Motivation

A number of emerging workloads, such as streaming and
RMS applications, employ pipeline parallelism as the main
programming pattern. Pipeline parallelism, a form of task-
parallelism, is a natural model for streaming applications,
because they can easily be decomposed into stages. For
example, in the PARSEC Benchmark suite [2], two of the
applications, ferret and dedup, are implemented using
the pipeline parallelism pattern. This pattern has several ad-
vantages: (i) parallelism can be exploited at multiple levels
which allows the programmer to tolerate different depen-
dence patterns; (ii) communication is deterministic, follow-
ing a producer-consumer pattern between pipeline stages.
Note that pipeline parallelism is most appropriate imple-
mentation for the intended design of these applications [2],
although if considered just in the benchmarking setup they
could be rewritten using a different, more efficient, paral-
lelism structure.

First we study the behavior of ferret and dedup
benchmarks, on a HP9000 Superdome SMP with 64 dual-
core Itanium2, running at 1.6GHz, with 380GB of main
memory. Each core has the following cache hierarchy:
16KB L1I + 16KB L1D, 1MB L2I + 256KB L2D and an
unified 9MB L3. The I/O consists of 14 SCSI buses to a
40TB RAID 5. The operating system is Linux SLES 10 SP2
2.6.16 kernel. We used the Intel icc 10.1 compiler. The base
implementation uses the Pthreads library. In the following
discussion, we use c to denote the number of threads used
per parallel stage, and nThreads for the total number of
threads in the application.
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Figure 1. ferret pipeline configuration

2.1 Similarity search: ferret

The ferret application included in the PARSEC suite
is an instantiation of the Ferret toolkit configured for im-
age similarity search [2]. As shown in Fig. 1, ferret is
decomposed into six pipeline stages. The input and output
are serial stages, that read a set of images to be analyzed
against a database of images, and output the list of names
of similar images, respectively. The four parallel middle
stages are configured with a c-size thread pool each. Ob-
ject data is passed between stages using software queues,
configured for 20 entries (default Queue size). We ran our
experiments using the largest input set (native), compris-
ing of 59,695 images. The sequential execution time for
this input is 437s. The maximum speed-up of the parallel
version is 11.38 (66 threads) and maximum efficiency of
27% (34 threads). Fig. 2 shows the execution time break-
down of useful work (dark-gray) and idle time (light-gray)
for each stage Si. These results clearly point to the fifth
stage (rank) as an implementation bottleneck. As the num-
ber of threads is increased, the performance of the parallel
stages scales. However, for c between 8 and 16, the serial
I/O input stage becomes the bottleneck.
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Figure 2. ferret: Execution time (seconds) breakdown
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Figure 3. dedup pipeline configuration.

2.2 Data compression: dedup

The dedup kernel implements data stream compression
using the “de-duplication” method. The kernel is decom-
posed in five pipelines stages (see Fig. 3). The first and
last stages are sequential and handle I/O. The intermediate



stages are parallel. The largest inputs set available in PAR-
SEC for the dedup benchmark, native, is an ISO file of
672MB. We choose not to preload the input file, to achieve
real streaming. The sequential code runs for 89.37s.

The two main differences in the dedup pipeline
compared to ferret, are: i) one stage that gen-
erates work (more output items than input items) –
FindAllAnchors; and ii) stage bypassing – not all
stages process all items, e.g. Compress. There are ad-
ditional implementation artifacts, such as a limit on the
number of threads that share a queue in order to avoid
contention, and additional queues between stages to buffer
items. For dedup, the maximum speed-up is close to 5 for
14 threads. Fig. 4 shows that there is a high load imbalance
between the stages, and the I/O bottleneck is reached on the
output stage for c = 4.
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Figure 4. dedup: Execution time (in sec.) breakdown.

2.3 Scalability in Pipeline Parallelism

The scalability of both applications studied is gated by
load imbalance between stages for small number of threads
and by the I/O stages for large number of threads. We dis-
cuss solutions to address the load imbalance in this section,
and address I/O in Section 4.2.

Load imbalance is a result of different amounts of work
per item in each stage. When a programmer fixes the num-
ber of threads per stage arbitrarily (it is a common practice
to use the same number of threads for all stages), the stage
with largest amounts of work per item becomes a bottle-
neck. To address load imbalance, we explore two orthog-
onal approaches: 1) collapsing all the parallel stages into
one; 2) using dynamic scheduling to share the load among
the different stages. Collapsing pipeline stages is applica-
ble only if all the intermediate stages are parallel. Both
ferret and dedup satisfy this condition, but this solu-
tion may not be generally applicable. Dynamic scheduling
is a more general solution. There are two ways in which
dynamic scheduling can be implemented:

• Oversubscription – the application creates more
threads than available processors and relies on the OS
scheduling policies to keep all the processors busy.

In our example, setting the number of threads c to
the number of available cores creates 3-4 times more
threads. In this case, the number of threads per stage is
still fixed (statically) and there are different overheads
introduced by time slicing: context switching, cache
pollution, and lock preemption [17]. Section 4.1 dis-
cusses this approach.

• Work stealing – achieves load balancing by keeping
one active thread per core and assigning several work
units to each thread [3]. When a thread completes its
assigned work, it queries the other threads for addi-
tional work.

The Thread Building Blocks (TBB [17]) library par-
allel pipeline template provides support for work steal-
ing [6]. We re-implemented ferret and dedup using
TBB to quantify the performance of the work stealing par-
allel pipeline. We introduce next some of the abstractions
used in this implementation. In TBB, programmers express
concurrency in terms of tasks. Tasks are lighter weight
than threads, thus allowing fast work switching. In the
TBB pipeline template, the C++ classes pipeline and
filter represent the pipeline container and its stages, re-
spectively. A token in TBB represents an item that tra-
verses all pipeline stages. A new token is created for
each input item. The parameter ntokens to the method
pipeline.run specifies the maximum number of tokens
in flight and it is used to manage resource contention by
throttling the arrival rate of items in the pipeline.

The linear pipeline in ferret maps directly to the TBB
pipeline template. On the other hand, dedup, with its
item producing and bypassing stages, can not be directly
mapped. Therefore, we selected a combined Pthreads and
TBB implementation. To work around the TBB constraint
that the number of tokens entering/leaving the stage is con-
stant, we created a separate queue for the output stage
and assigned a dedicated pthread to handle the output. To
handle the bypassing limitation of the Compress stage
as well as the equal number of tokens limitation of the
FindAllAnchors stage, we collapsed them into one par-
allel TBB pipeline filter.

3 Analytical Model of a Parallel Pipeline

In this section we develop a series of analytical mod-
els, based on queueing theory, for several parallel pipeline
templates, starting from the studied benchmark implemen-
tations presented before. We model the Pthreads versions
of ferret and dedup as a closed and open queueing sys-
tem, respectively, and we discuss the effects of collapsing
stages on the model. We propose a new queueing system to
model the TBB implementations that support work-stealing.
Our analytical models serve as a system configuration tool



to determine pipeline queue sizes, the optimal number of
stages, optimal number of tokens in the system, and the op-
timal number of parallel threads to achieve high efficiency
and scalability. Manually setting these parameters typically
requires a multitude of runs in different configurations to
understand all the trade-offs and interactions between them.
Due to space constraints we just sketch the description of
our models. The interested reader can find more details
in [14].

We use the concept of logical queue to explicitly repre-
sent: i) the buffer where pending items are waiting to be
processed, and ii) the servers (or threads) that process the
items. In some cases (e.g., closed systems), the queueing
system also includes a representation of the population that
can ask for a service. Some parameters, such as service
time Tser and inter-arrival time Tarr, are obtained from the
sequential codes.

λe =

(
min(λi) Pthreads (Cases 1 & 2)PnpT h

i=1 λi TBB (Case 3)
(1)

Time =
1

λe

· nit (2)

Eqs. 1 and 2 are the main metrics computed for our mod-
els. λe is the effective throughput of the whole pipeline: it
depends on the throughput λi of each internal queue, and it
is particular to the modeled template. Time – the estimated
execution time, is our primary performance metric, and it is
computed using Little’s law, based on the effective through-
put λe and the total number of processed items nit. We use
measurements on the HP9000 Superdome machine config-
uration described above to verify that the analytical models
correctly predict the execution time.

3.1 Case 1. Parallel pipeline closed sys-
tem

In the original PARSEC implementations (using
Pthreads), each stage Si in the parallel pipeline consists of
an input queue buffer Qi and a pool of dedicated working
threads ci. We model this pipeline as a network of sin-
gle logical queues [1]. The Pthreads implementations of
ferret have queue buffers with limited capacity, causing
items to stall in the pipeline stages, as shown in Fig. 2(b).
Therefore we model it as a closed system: items can be
viewed as circulating continuously and never leaving the
network of queues because a new item can not enter until
a previous one leaves. Fig. 5(a) shows a graphical repre-
sentation of a closed system, depicting all the stages in the
pipeline. In this model, we assume that there is a finite-
calling population of K items.

In steady state, each stage Si behaves like a
M/M/ci/N/K queue system. This represents a logical
queue with exponential inter-arrival and service time distri-

butions, ci servers (the working threads), system sizeN (ap-
proximately the queue buffer size, N = Queue size) and
job population K = N items [16]. Fig. 5(b) shows the ab-
stract view of one stage. For each stage Si, the mean service
time, Tseri

, is the time to process an item on that particu-
lar stage in the sequential execution. The mean inter-arrival
time is the same for all stages: Tarr, and it is determined by
the longest stage in the pipeline, i.e. Tarr = max(Tseri

).
In the closed model, Eq. 3, represents another statement of
Little’s law: it computes the internal throughput for each
stage, λi, based on i) the number of items processed on the
stage per unit time, where Pn(i) is the probability that there
are n items in the stage Si; and ii) the time Tarr (see [1]).

λi =
NX

n=0

(N − n) ·
Pn(i)

Tarr

(3)
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Figure 5. (a) Closed system; (b) Closed system stage.

To apply this model to ferret, we start with the 6
stages Pthreads pipeline (see Fig. 1). We model one thread
per each serial stage, S1 and S6: c1 = c6 = 1. For
the parallel stages Si,i=2:5, the number of threads assigned
to each stage is ci = npTh/npstages, where npTh and
npstages represent, the number of parallel threads, and the
number of parallel pipeline stages, respectively. In this ver-
sion, npstages = 4. Using Eq. 3, we compute the inter-
nal throughput λi for each stage. The effective throughput
for the whole pipeline, λst6e , and the execution time for a
run Timest6, are computed using Eq. 1-Case 1 and Eq. 2,
where nit is the number of items to be processed.

Next we analyze the Pthreads implementation that col-
lapses the parallel stages. There are 3 stages: S1′ , S2′

(which represents the collapsing of the parallel stages) and
S3′ . Here, c1′ = c3′ = 1, whereas c2′ = npTh is the
number of parallel threads in the collapsed stage, because
now npstages = 1. Using Eq. 3 we compute the internal
throughput for each stage, then the effective throughput for
the whole pipeline, λst3e (Eq. 1-Case 1), and the running
time for the implementation Timest3 using Eq. 2.

Fig. 6(a) compares the analytical times obtained for
Timest6 and Timest3 for different number of parallel
threads (the npTh parameter) and for N = Queue size =
20 (default value in the original implementation). We also
represent the measured times for the two Pthreads imple-
mentations of ferret.

We observe that the analytical times accurately predict
the measured times. In Section 3.4 we discuss how to use
the model to predict queues sizes and the optimum num-
ber of threads to achieve good scalability. As shown by
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Fig. 6(a) the model predicts that the 3 stages implementa-
tion outperforms the 6 stages one: it always reaches smaller
running times for the same number of parallel threads and
scales better (until the I/O bottleneck). The measurements
confirm the prediction, and the analytical model allows us
to explain this effect: for all the cases, and before reaching
the I/O bottleneck, λst6e < λst3e due to the load imbalance
in the service times in the 6 stages code.

3.2 Case 2. Parallel pipeline open system

Another type of pipeline is the open system: the items
flow among stages with different internal throughputs.
Fig. 7 shows a view of this model. Assuming exponential
inter-arrival and service times, each stage Si of this pipeline
behaves like a M/M/ci queue system. This is the model
typically found in the literature for pipelines [15, 13]. The
Pthreads PARSEC implementation of dedup matches this
model. The code has logical queues per stage, but these
are sized to 1 million entries, providing the system with es-
sentially infinite capacity (N = ∞). Indeed, we did not
observe any stalling in the pipeline.
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Figure 7. Model of a parallel pipeline open system.

In an open network, the inter-arrival time, Tarri , is dif-
ferent for each stage Si. We compute it by composing the
throughput from the stages in the network that reach Si.
Eq. (4) gives us the internal throughput for each stage. It de-
pends on the inter-arrival time for the corresponding stage.

λi =
1

Tarri

(4)

Now, we analyze the original dedup Pthreads version
with 5 stages. Again, one thread is assigned to each se-
rial stage, i.e. c1 = c5 = 1, whereas for the parallel
stages Si,i=2:4, the number of threads per stage is ci =
npTh/npstages. In this case, npstages = 3. The effective
throughput for the whole pipeline λst5e , is determined by the
slower stage as Eq. 1-Case 2 indicates, and the execution

time for the run Timest5, is computed by Eq. 2. We also
model the 3 stages Pthreads version, in which we collapse
the parallel stages. We assign one thread to each of the serial
S1′ and S3′ stages, and c2′ = npTh parallel threads to the
collapsed stage S2′ , because npstages = 1. We compute
the internal throughput for each stage, the effective through-
put for the whole pipeline λst3e (by Eq. 1-Case 2), and the
running time Timest3 (by Eq. 2).

In Fig. 6(b) we compare the analytical Timest5 and
Timest3 times vs. the measured times for the two Pthreads
implementations of dedup, for different number of parallel
threads. In this case, the analytical times represent an opti-
mistic lower bound of the pipeline behavior. One particular
issue, non captured in the model, is the non-deterministic
behavior of this code: the size of the output file may be
larger as the number of threads increases. This is the main
cause of the divergence between the analytical and mea-
sured times for both Pthreads implementations, especially
when the number of parallel threads is greater than 12.

We find similar results as in the ferret case: the scal-
ability behavior of each Pthreads version is different, in
fact the 3 stages version scales faster; for this reason the
I/O bottleneck appears sooner in the collapsed version. As
in ferret, the load imbalance of service times explains
why the 3 stages version always outperforms the original 5
stages code.

3.3 Case 3. Model for work stealing

Deriving an analytical model for the parallel pipeline
paradigm which incorporates work stealing is difficult be-
cause stealing hinges on temporary imbalances among the
working threads, making the application of steady state
modeling techniques non-trivial. The analytical model will
give hints about how the parameters and resources interact.

We model the TBB implementation as a set of loosely
coupled systems working in parallel, rather than a network
of logical queues, because there is a logical queue of tasks
per each thread, as opposed to the Pthreads implementa-
tions with a logical queue per pipeline stage. Each thread
is the server of its local queue, where the items (the tasks)
to be processed arrive. All other remote threads in the sys-
tem can steal work from the local queues. Each time that
a task is processed by one thread, a slot becomes available
in its local queue and a new task can enter in the system.
So, each thread can be viewed as a queue in a closed model:
each thread can be modeled as a M/M/c/N/K queue sys-
tem, where the population that can call for a service is finite
and equal to the queue capacity, i.e. K = N items (see
Fig. 8(a)).

Each task carries on the work from the input filter to the
output filter through the intermediate stages of the pipeline.
The service time TserT BB

, depends on the whole processing



of an item. The inter-arrival time TarrT BB
, also depends on

the processing of one item, i.e. TarrT BB
= TserT BB

. The
number of servers per queue is initially c = 1 (1 thread).
The total system capacity is finite and is given by the num-
ber of tasks that can exist simultaneously in the system:
ntokens (a parameter of the TBB pipeline template that
is described in 2.3). Initially we assume that the logical
queues for all the threads have equal capacity and that the
items are evenly distributed, i.e. N = ntokens/npTh, be-
ing npTh the number of parallel threads. Thus, N repre-
sents the number of tasks (or tokens) per thread.

The concept of work stealing is similar to that of load
sharing. An analytical model of load sharing for a dis-
tributed closed system was proposed in [19]. It uses a three
steps framework to model the load sharing. We can exploit
their observations for our model as follows: the effect of
load sharing (work stealing) on the performance of a queue
based distributed system, is similar to that of adding more
working resources to each queue. Using this observation,
the model for work stealing can be derived following a three
step framework that we sketch next.
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Figure 8. Model for work stealing: (a) Step 1: A local
queue; (b) Step 2: Stealing of items; (c) Effect of the steal-
ing in the local queue.

Step 1. Each thread is a M/M/c/N/K (closed) local
queue, with K = N (see Fig. 8(a)). Initially c = 1.
From this step and this model, we get λj (the internal
throughput for the j-th thread) and pj (the probability
that the j-th thread is busy [19]).

Step 2. The stealing of tasks from other threads can be
modeled as a M/M/nj/nj remote queue. In other
words, the stealing is modeled as an open queue sys-
tem, where pj · λj represents the offered load (see
Fig. 8(b)) for the stealing of tasks and nj is the remote
available capacity to perform the stolen work. That nj
(the capacity of the remote queue) is determined by
Eq. 6. In this equation, the parameter ρk is the utiliza-
tion factor in the k-th thread, and can be computed by
Eq. 5. In any queueing theory model, ρk represents the
probability that the k-th server (a thread, in this case)
is busy. Therefore, (1 − ρk) · ck represents the idle
working capacity in the k-th thread, i.e. quantifies the
number of tasks that can be stolen by that thread.

ρk = λk ·
Tserk

ck

(5)

nj = nidlej =
X

k=1:npT h
j 6=k

(1− ρk) · ck (6)

Next, we derive v which is the average number of ac-
tive services in the M/M/nj/nj remote queue that
represents the average number of effectively stolen
tasks.

Step 3. When we incorporate work stealing in our model,
each thread is now modeled as a closed M/M/c +
v/N/N queue, i.e. each thread behaves as if a (virtual)
working capacity of v additional threads are added, as
shown in Fig. 8(c). Now, we re-compute the internal
throughput λ′j (see Eq. 3), taking into account these
new working capacity.

We compute the effective throughput of the whole sys-
tem λTBBe , by aggregating λ′j from all the threads, as indi-
cated by Eq. 1-Case 3.

As we saw, the serial stages eventually become a bottle-
neck. Therefore, we add Eq. 7 as a new constraint to model
this behavior:

λ
T BB
e =

1

max(Tin, Tout)
, If max(Tin, Tout) >

1PnpT h
j=1 λ′j

(7)

where Tin and Tout are the times to process a item in the
input and output filters, respectively. Finally, the execution
time TimeTBB , is computed by Eq. 2.

In Fig. 9 we compare the analytical TimeTBB (named
“DS-Analytical”) vs. the measured times for the TBB
ferret implementation on different numbers of threads.
The TBB ferret code has 6 pipeline filters. We compare
the times for different values of ntokens: 20 and 6×npTh.
Recall that the ntokens variable controls the number of
tasks that exists concurrently at any given point, represent-
ing the total system capacity.

For comparison, we also include the times obtained
for an ideal centralized system based on a global
M/M/npTh/ntokens/ntokens logical queue, which we
name “Ideal”. This is a boundary case that represents a cen-
tralized queue system with the same aggregate number of
threads and task capacity that our queue distributed imple-
mentation in TBB. This centralized system represents the
optimal case in queueing theory [19], and serve as a base-
line to measure the optimality of the work stealing imple-
mentation.
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Figure 9. Analytical vs. measured times (sec.) for TBB
and different no. of npTh.



The analytical times accurately predict the measured
times, which give us a proof of their validity. One impor-
tant result is that the selection of ntokens is a trade-off pa-
rameter that has impact on the execution time, especially
for a large number of threads when the ntokens is small.
This indicates an underutilized system where there are no
load balancing opportunities. For large number of tokens,
the TBB implementation behaves optimally. The analytical
model provides some insight: when ntokens is sufficiently
large, the work stealing in TBB emulates a global queue that
is able to feed all the threads. An additional advantage of
the TBB implementation is that the distributed solution with
one queue per thread avoids the contention that a global sin-
gle queue would exhibit. However there is a trade-off in
selecting the value of ntokens: while large values improve
thread utilization by exposing work-stealing opportunities,
they also may incur additional overheads due to task man-
agement, synchronization and contention. These can poten-
tially eliminate the benefits of the dynamic scheduling [6].
In Section 3.4 we demonstrate how to use the model to com-
pute the optimal ntokens to get the whole pipeline system
behaves optimally.

Another important result is that the analytical times ob-
tained for the TBB ferret code, do not depend on the
number of pipeline stages (as opposed to the Pthreads im-
plementation). In other words, from the TBB model point
of view, selecting the appropriate number of stages in the
parallel pipeline is not an issue. This result will be cor-
roborated later in the experimental section, where we mea-
sure and compare the execution times for some other paral-
lel TBB-pipeline implementations of ferret in which we
choose different number of stages.

We also analyzed the TBB pipeline port of the dedup.
The results and conclusions are similar to the ferret case.

3.4 Sizing the System

In this section we use the analytical model to determine:
i) the optimum values for the capacity of the closed model,
N (Queue size in Pthreads and ntokens in TBB) that
minimizes the storage requirements and overheads of each
implementation; and ii) the optimum number of threads,
coptimal that achieves the maximum effective throughput.

In the closed models, the system capacity N
(Queue size in Pthreads and ntokens per thread in
TBB), is optimized using Eq. 3: as N increases, the inter-
nal throughput increases until it reaches an upper bound.
Ideally, assuming a high utilization ρi ≈ 1, from Eq. 5,
we determine the upper bound λupperi

for the internal
throughputs as:

λupperi
≈

ci

Tseri

(8)

The other factor that limits the effective throughput is
the critical serial stage, that is, the serial stage with longer
service time. This stage ends up being the I/O bottleneck of
our implementations. Let λmax be the throughput due to the
critical serial stage. Let Tin and Tout be the service times to
process an item in the serial input and output stages. From
Eq. 5, assuming ρi ≈ 1, and as the serial stages have ci = 1
thread, we can find an optimistic upper bound for λmax,

λmax = min

„
1

Tin

,
1

Tout

«
(9)

Therefore, an upper bound of the effective throughput is
λeu = min(λe, λmax):

λeu =

(
min(min(λupperi

), λmax) Pthreads (Case 1)

min(
P

(λupperi
), λmax) TBB (Case 3)

(10)

Once computed λeu, we can use Eqs. 3, 1-Case 1,
and 1-Case 3, to find the value of Noptimal which verifies
λe(Noptimal) = λeu. For the Pthreads implementation of
the ferret code, Noptimal is around 21 items per queue
in the 6 stages case, and 24 items per queue in the 3 stages
one. Thus, the queue buffers will consume a total storage
requirement of Noptimal × (npstages + 1) items. In the
TBB implementations, the Noptimal value for ferret is
around 5 tokens per thread and around 3 tokens per thread
for dedup. We deduce that the optimal total capacity is
ntokens = 5 × npTh and ntokens = 3 × npTh, respec-
tively, which represent the storage requirements for these
implementations.

The implementations will scale with the number of
threads, until the effective throughput reaches λmax, i.e.
until they reach the I/O bottleneck. Another interesting ap-
plication of the model is, given a certain system capacity, to
find the optimal number of threads coptimal for which the
effective throughput reaches λmax. From Eqs. 3, 1-Case
1, and 1-Case 3, we compute the value of coptimal which
verifies λe(coptimal) = λmax. For the ferret Pthreads
implementations with N = 20, we find coptimal = 15 par-
allel threads for the collapsed 3 stages implementation, and
coptimal = 12 threads per parallel stage for the 6 stages
code, which give us a total of 12 × 4 = 48 parallel threads
for this last code. In the ferret TBB implementation we
have found that for N = 5, coptimal = 15 parallel threads,
while for TBB dedup with N = 3, coptimal = 5 parallel
threads.

For the open pipeline system (Case 2), i.e. the Pthreads
dedup codes, the upper bound of the internal throughput is
given by Eqs. 5 and 4: λupperi

≈ ci/Tarri
. In this case, the

I/O bottleneck will be found when λe = min(λupperi
) =

λmax.



6 stages Pthreads non-oversubscribed 6 stages Pthreads oversubscribed
# PE/Th Time Sp. Eff.(%) # PE/Th Time Sp. Eff. (%)

6/6 370.6 1.2 19.7% 1/6 438.4 1.0 99.7%
10/10 186.6 2.3 23.4% 2/10 220.8 1.9 98.9%
18/18 94.8 4.6 25.6% 4/18 111.8 3.9 97.7%
34/34 47.9 9.1 26.8% 8/34 69.2 6.3 78.9%
66/66 38.4 11.3 17.2% 16/66 48.8 8.9 55.9%

Table 1. Non-oversubscribed vs. oversubscribed compar-
ison for the 6 stages Pthreads ferret code.

4 Evaluation

In this section, we shall focus on the measured perfor-
mance of the different optimized implementations as dis-
cussed in Section 2.3. Since we have already proved that
collapsing parallel stages of a pipeline is profitable, we ad-
dress here the other proposed solutions. We use the same
methodology and target platform that we described in sec-
tion 2 for our experiments.

4.1 Static scheduling vs. work stealing

As discussed before, the first bottleneck for scalability is
load imbalance. To tackle this issue, we propose two solu-
tions: oversubscription and dynamic scheduling.

In [2], the authors recommend a configuration in which
the number of logical threads per parallel pipeline stage c,
is set to the total number of available cores. Our target plat-
form, the HP Superdome, has a total 128 cores which will
result in a total of 514 and 386 threads for the ferret
and dedup pipelines, respectively. Since we reach the se-
rial I/O bottleneck imposed by the input and output stages
at about 16 threads, such a configuration is not practical.
Therefore we chose to achieve oversubscription using a
parametrized number of cores and binding processes (and
all their threads) to cores using the taskset UNIX com-
mand. To achieve high utilization, our Pthreads implemen-
tation relies on the OS scheduling policy to assign ready
threads to the hardware threads, while the TBB implemen-
tation relies on the library-level tasks.

Table 1 shows the execution time (Time), speed-up (Sp.)
relative to the baseline sequential time, and efficiency (Eff.)
for the non-oversubscribed and the oversubscribed 6 stages
Pthreads versions. The oversubscribed version clearly out-
performs the non-oversubscribed version, given that the
same number of cores (PE) can run a much higher number
of threads (Th) by better utilizing the hardware resources.

The second optimization is dynamic scheduling using
work stealing. We coded ferret and dedup using the
pipeline template from the TBB library. We have used
the ntokens values determined previously by our analytical
model. For ferret, we implemented two TBB versions:
6 stages and 3 stages, both with ntokens = 5× npTh. Ta-
ble 2 shows the execution time, speed-up and efficiency for
these two versions. As predicted by the analytical model,

6 stages TBB 3 stages TBB
# PE Time Spdup Eff.(%) Time Spdup Eff.(%)

1 437.65 1.00 99.85 442.88 0.99 98.67
2 221.13 1.98 98.81 223.5 1.96 97,76
4 112.59 3.88 97.03 113.58 3.85 96.19
8 58.5 7.47 93.38 59.56 7.34 91.71

16 35.87 12.18 76.14 36.98 11.82 73.86
32 33.14 13.19 41.21 33.42 13.08 40.86
64 35.66 12.25 19.15 36.44 11.99 18.74

Table 2. 6 stages vs. 3 stages comparison for ferret-
TBB. Time is in seconds.

the number of stages in the TBB pipeline implementation
does not affect the execution time. The load imbalance is-
sue of the original 6 stages pipeline is essentially removed
by dynamic scheduling, and the two versions have similar
behavior profiles across all threads configurations.

In Fig. 10 we compare the performance of the TBB im-
plementation using work stealing with the Pthreads version
using oversubscription. Again, the measurements are in ac-
cordance with the analytical model prediction: the TBB ver-
sion is faster when the number of cores is larger than 8 since
there are more opportunities for task stealing. The largest
improvement for the 6 stages version is for 16 and 32 cores
where the TBB version is 37% faster. For the 3 stages ver-
sion, the largest difference is for 16 cores where the TBB
version is 42% faster. These improvements degrade when
approaching the input bottleneck.
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Figure 10. Oversubscribed Pthreads versus TBB: (a) 6
stages ferret; (b) 3 stages dedup.

For the dedup kernel, we implemented only a 3 stages
TBB pipeline version due to the restrictions in the TBB tem-
plate explained in Section 2.2, and ntokens = 3 × npTh.
Fig. 10(b) compares the 3 stages oversubscribed Pthreads
and the 3 stages TBB implementations. The TBB version
shows up to 63% of improvement (8 cores). As we ap-
proach to the output bottleneck, which happens for more
than 8 cores, the advantages of dynamic scheduling start to
diminish.

We also quantified the overhead of the TBB pipeline
template using the Intel VTune 9.1 profiler. Contrary to
what it was reported in [6] for the TBB parallel for
template, the overhead introduced by the TBB scheduler is
very small for the pipeline template and the contribution of
the steal task function (the main function that imple-
ments work stealing) is negligible and less than 0.05% of
execution time in all the cases. While a naive measurement
will assign a significant part of the execution time to the



TBB library, our measurements indicate that the serial bot-
tleneck on the input stage causes the other stages to wait in
the TBB scheduling loop.

4.2 I/O Optimization

It is quite common that the stages at the ends of the
pipeline become a bottleneck. Both the input and the out-
put stages may be gated by either the serial requirements to
read or write data from/to the I/O stream, or simply by the
I/O bandwidth of the machine. We measured both causes
on our benchmarks when we removed the load imbalance
in the pipeline.

While the ferret benchmark input stage is serialized
in the original 6 stages implementation (i.e. the load Stage
serially scans the input directory to find new images), there
is no dependence between different images, therefore this
stage can be parallelized. One optimization scenario is to
divide the first stage into two stages, a serial one that scans
the input directory and enqueues all the image names in an
intermediate queue, and a second parallel stage that extracts
names from the queue and reads the images. We imple-
mented this optimization in a 4 stages Pthreads ferret
version: two input stages as described above, all processing
stages collapsed into one stage, and an output stage. Our
goal is to find the maximum number of threads that can
read the image files in parallel. Fig. 11(a) shows the total
execution time when running ferret with one thread for
Stage 1, t threads for the parallel input Stage 2, 64 threads
for the working Stage 3 (ensuring that way that total execu-
tion times are practically bounded by the input time), and
one thread for the output stage. By increasing the number
of dedicated input threads to 4 in the second stage, we see
a 2x performance improvement. As the number of threads
increases above 4, threads start contending on the I/O band-
width of the machine. Although other parallel input solu-
tions are possible, we have chosen to keep the streaming
philosophy of the original ferret code in which the first
stage of the pipeline is serial.
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Figure 11. (a) Total execution time in 4 stages ferret;
and (b) Improvement of 4 stages ferret TBB.

We also implemented a 4 stages TBB implementation of
ferret, splitting the first stage in a similar manner. As
opposed to the 4 stages Pthreads implementation where the
number of threads can be set by the user, in the TBB imple-
mentation with work stealing the number of task working
in each pipeline stage is dynamic. As shown in Fig. 11(b),

the TBB pipeline outperforms the Pthreads pipeline by up
to 69%, again showing the advantage of dynamic load bal-
ancing.

For dedup the bottleneck is in the output stage, but
since it is writing a compressed stream in a single file, it
can not be parallelized without significantly changing the
original algorithm. A possibility we have not yet explored
would be to allow multiple threads to write different output
streams and combine these into a single file in a reduction
stage. However, since this is compressed data, the combin-
ing algorithm is non-trivial and it is outside of the scope of
this paper.

5 Related Work

The emergence of new workloads that are streaming data
has brought attention to the parallel pipeline programming
paradigm, since these workloads can be parallelized natu-
rally using this model. The work of Raman et al. [15] ex-
ploits a technique called Parallel-Stage Decoupled Software
Pipelining (PS-DSP). This technique identifies the pipeline
stages (with small programmer interventions), as well as
partitions the threads between the parallel stages. Thies et
al. propose in [20] a set of simple annotations to let the pro-
grammer mark the pipeline stages and use dynamic analysis
to track the data communications between stages. In these
works, the selection of threads for the stages is static. Both
approaches suffer from load imbalance, thus degrading the
scalability of the applications. Other approaches for cod-
ing streaming applications is to use programming language
with support for streams. Examples include: StreamC [8],
Brook [5], and StreamIt [18]. The main target of this
kind of languages are stream processors [7], or graphics
processors [5], although there have been some works that
have studied the mapping to general purpose multiproces-
sors [10]. In all the cases, a static scheduling of threads per
stage of the pipeline is always implemented, and degrada-
tion of the speedups due to runtime load imbalance is gen-
erally reported.

Liao et al. [13] propose a model to study the performance
of a parallel pipeline system. They model only the open par-
allel pipeline, and although the collapsing of parallel stages
is considered, strategies for solving the load balancing prob-
lem are not studied. The model of the parallel pipeline
closed system, as well as the analytical model for work
stealing in the context of the parallel pipeline paradigm are
two important contributions of our paper.

An important body of work, based on dynamic schedul-
ing, has been developed for solving the problem of load im-
balance, especially in the context of irregular applications.
For instance, load balancing schemes using tasks queues on
shared-memory architectures are described in [11] and [12].
Languages such as Cilk [3], and X10 [21] have proposed



efficient implementations of dynamic scheduling based on
work stealing [4]. In these studies, the parallel pipeline
paradigm has not been considered – a distinguishing fea-
ture of our work.

6 Conclusions

In this paper we studied the pipeline parallelism pro-
gramming pattern. We identified two workloads that exhibit
pipeline parallelism in the PARSEC benchmark suite and
characterized their behavior on a large scale SMP machine.
We identified two issues that limit scalability: load imbal-
ance and I/O bottlenecks. We developed a queueing model
for the behavior of pipeline parallelism that can be used to
understand and tune the behavior of applications using this
programming patterns. We propose two techniques to ad-
dress load imbalance in the pipeline programming model,
namely, parallel stage collapsing and dynamic scheduling
based on work stealing. We implemented these techniques
and evaluated them both by applying our pipeline paral-
lelism model and by running on a real system. We observe
that the model faithfully captures the measured behavior.

For our implementation of dynamic scheduling we used
the TBB library, which provides a pipeline template and
supports work stealing. There are a number of advantages
of using a library that supports work stealing: i) Program-
mer can code their algorithms without worrying about the
number of stages, load balancing between stages or the
number of threads allocated to each stage; ii) When selected
the appropriate number of tokens, the TBB behaves near op-
timally as we have demonstrated with our analytical model;
and iii) The TBB library overheads for the pipeline tem-
plate are negligible for the number of cores we have used in
our experiments (up to 64). We have also identified limita-
tions in the TBB pipeline template, in particular the ability
of specifying non-linear pipelines or specifying stages that
produce a different number of outputs. Finally, regarding
the I/O bottleneck we explored the possibility of improv-
ing the performances by allowing parallel I/O. We point out
that once load balancing is resolved, feeding and clearing
the pipeline becomes the next bottleneck and will become a
cornerstone to achieve scalability on multi-core systems for
RMS and streaming applications.
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