
Wavefront template implementation based on the task programming model

Antonio J.Dios, Rafael Asenjo, Angeles Navarro, Francisco Corbera and Emilio L. Zapata
Dept. of Computer Architecture

University of Malaga
Malaga, Spain

{antjgm, asenjo, angeles, corbera, ezapata}@ac.uma.es

Abstract—A particular characteristic of the parallel wave-
front pattern is the multi-dimensional streaming nature of the
computations that must obey a dependence pattern. Modern
task based programming libraries like TBB (Threading Building
Blocks) provide interesting features to improve the scalability
of this kind of codes but at a cost of leaving some low level
task management details to the programmer. We discuss such
low level task management issues and incorporate them into a
high level TBB based template that we present in this paper.
The goal of the template is to improve the programmer’s
productivity to allow a non expert user to easily code complex
wavefront problems without worrying about task creation,
synchronization or scheduling mechanisms. In our template,
the user only has to specify a definition file with the wavefront
dependence pattern and the function that each task has to
execute. In addition, we describe our experience with the
TBB based template when coding four complex real wavefront
problems, finding that the programming effort of the user is
reduced from 25% to 50% at a cost of increasing the overhead
below 5% when compared with manual TBB implementations
of the same problem.

I. INTRODUCTION

Wavefront is a programming pattern that appears in
important scientific applications such as those based in
dynamic programming [1] or sequence alignment [2]. In
this paradigm, data elements or cells are distributed on
multidimensional grids representing a logical plane or space.
Although these elements have to be computed in a given
order due to dependencies among them, there is also plenty
of parallelism to exploit. One interesting feature of this type
of problems is that computations can produce a variable
number of independent tasks when the data space is tra-
versed.

In a previous research [3] we have explored the applica-
bility of the task programming model in the parallelization
of the wavefront pattern. We have found that this pattern
fits well with the task programming paradigm for a number
of reasons: i) The current state-of-the-art task based libraries
(OpenMP 3.0 [4], TBB [5], CnC [6]) provide a programming
model in which developers express the source of parallelism
using tasks, leaving the burden of explicitly scheduling these
tasks to the library runtime, offering this way a more produc-
tive programming environment; ii) Tasks are much lighter
weight than threads, which allow a more scalable parallel

implementation of real wavefront problems (the workload
of a cell use to be small -some floating point operations-);
iii) The task schedulers of those library runtimes are based
on the work-stealing scheduling algorithm, that leads to
better load balancing than an OS thread scheduler, offering
that way improved scalability [5]. In our research, we have
evaluated the functionalities that each task library provides
to the user when programming the wavefront pattern, and we
have concluded that TBB offers some advantageous features
that allow more scalable and efficient implementations of
our pattern, namely the atomic capture of shared variables
to control synchronization and the task passing (or task
recycling) mechanism which is essential to reduce the task
creation and scheduling overheads.

However, for non expert parallel programmers, it may
be difficult to implement a parallel wavefront algorithm
in TBB taking care of task creation, synchronization and
task recycling activities. To alleviate these difficulties, we
propose a high level template in which the programmer
only has to provide the dependence pattern and the actual
task computation. The proposed template is built on top of
TBB, in a similar style to other TBB templates, like the
“parallel for” or “pipeline” ones. These templates main goal
is to help programmers to parallelize the algorithm by using
very high level constructors, so that an user who is not
an expert in a parallel language is able to easily exploit a
parallel architecture without worrying about platform details
or low level task management mechanisms.

So the main focus of this paper is to describe the wave-
front template, its use and programmability advantages, as
well as to present the specific TBB features that we have
exploited in its internal design (Section II). In addition, we
have conducted several experiments with real and complex
wavefront problems (including an H.264 video decoder)
to evaluate the abstraction penalty due to the use of the
template, its performance and its “programmability” (Sec-
tion V). Finally we present some related work (Section VI)
and conclusions (Section VII).

II. WAVEFRONT TEMPLATE

In order to illustrate a basic wavefront code implementa-
tion using TBB and how to rewrite it to take advantage of the

proposed wavefront template, we will first consider a simple
2D wavefront problem. It is a classic problem consisting in
calculating a function, foo, for each cell of a n × n 2D
grid [2], as we can see in the sequential code presented in
Fig. 1. In that code, on each iteration of the i and j-loop, cells
that were calculated in previous iterations are needed: A[i,j]
depends on A[i-1,j] and A[i,j-1] (line 3). For that reason,
although the data grid, A, is defined as n× n, the iteration
space is [1:n-1, 1:n-1], since the first row and column
of A are just initial values. The gs parameter of the foo
function is used to tune the workload associate to each cell,
such that we can analyze the performance for fine, medium
and coarse grain tasks, as we will see in section V.

1 for (i=1; i<n; i++)
2 for (j=1; j<n; j++)
3 A[i,j] = foo(gs, A[i,j], A[i-1,j], A[i,j-1]);

Figure 1. Code snippet for a 2D wavefront problem

That way, each cell has a data dependence with two of
the adjacent cells. For example, in Fig. 2(a), we see that
cell (2, 3) depends on the north (1, 3), and west (2, 2)
ones. Clearly, the cells in each anti-diagonal are totally
independent so they can be computed in parallel. To exploit
this parallelism (loops “i” and “j”) a task will carry out the
computations corresponding to each cell inside the iteration
space (or task space from now on), and independent task
will be executed in parallel.

i

0

1

2

3

\j 0 1 2 3

(a) Sweep Diagonal

i

0

1

2

3

\j 0 1 2 3

0 1 1
1 2 2
1 2 2

Task spaceData space

(b) counters matrix

Figure 2. Typical wavefront traversal and dependencies translated into
counters

In Fig. 2(b), the arrows in the task space show the data
dependence flow for this wavefront problem. For example,
after the execution of the upper left task (1, 1), which
does not depend on any other task, two new tasks can
be dispatched (the south (2, 1) and east (1, 2) ones). This
dependence information can be captured by a 2D matrix
with counters, like the one we show in Fig. 2(b). Note that,
although the counter matrix has the same index domain
as the data grid, tasks are assigned only to cells in the
task space (region [1:n-1,1:n-1]), so the counters need to
be initialized only for these coordinates. The value of the
counters points out to how many tasks you have to wait

for. That way, only a task with the corresponding counter
nullified can be dispatched. Generalizing, each ready task
first executes the task body and then, it will decrement the
counters of the tasks depending on it. If this decrement
operation ends up with a counter equal to 0, the task is also
responsible of spawning the new independent task. In Fig. 3
we can see the code snippet for implementing this idea using
the TBB library, as we describe in the next subsection.

A. TBB implementation

The matrix of counters, Fig. 2(b), has been
implemented using the atomic type provided
by TBB (atomic<int>**counters). TBB
supports atomic captures, so that the expression
“if(--counters[i][j]==0) action()” is safe
and just one task will execute the “action()”. In
Fig. 3 we sketch the TBB code for the basic 2D wavefront
example. In the main routine, we see the counters matrix
initialization (lines 40–46), the initialization of the TBB
scheduler (line 47) and the spawn of the [1, 1] task (line
48), which initially is the only one with the dependence
counter equal to 0.

Following the TBB task based programming rules, we
have to derive a class from the TBB task class, as we have
done with class Operation in lines 1–7. Then, we have
to override the virtual method Operation::execute()
which does the actual task computation (lines 9–33). In this
method, there are three key phases: i) computing the cell by
calling foo(gs,A[i][j],A[i-1][j],A[i][j-1])
(line 11); ii) decrementing and checking the neighbors
counters (lines 14 and 18); and iii) spawning a new task
or recycling the current one for the ready-to-run neighbors
tasks (lines 22, 25, and 29).

We have taken advantage of the task recycling (or task
passing) feature provided in TBB in order to reduce the
number of spawns and scheduling overheads. The idea is that
we set the flag recycle_into_east (line 15) if there is
a ready to dispatch task to the left of the executing task.
Otherwise, we set the flag recycle_into_south (line
20) if the south task is ready to dispatch. Later, according to
these flags, we recycle the current task into the east (line 25)
or south tasks (line 29). Note that, since in this example the
data structure is stored by rows, if both, east and south, task
are ready, the cache can be better exploited by recycling into
the east task. That way, the same thread/core executing the
current task is going to take care of the task traversing the
neighbor data, so we make the most of the spatial locality.
So in that case we recycle into the east task and spawn a
new south task that would be executed later.

We performed some preliminary experiments to charac-
terize the TBB runtime overheads in a basic 2D wavefront
implementation in which only the spawn() function is
invoked to create the ready tasks, without exploiting the
task recycling mechanism. We found that the spawn()

1 Class Operation: public TBB::task
2 {
3 int i, j;
4 public:
5 Operation(int i_ , int j_) : i(i_), j(j_) {}
6 task * execute();
7 };
8

9 TBB::task * Operation::execute()
10 { //Task’s work
11 A[i][j] = foo(gs,A[i][j],A[i-1][j],A[i][j-1]);
12

13 if (j<n-1){ // There is east neighbor
14 if (--counters[i][j+1]==0)
15 recycle_into_east = true;
16 }
17 if (i<n-1){ // There is south neighbor
18 if (--counters[i+1][j]==0)
19 if (!recycle_into_east){
20 recycle_into_south = true;
21 else
22 spawn(i+1,j));
23 }
24 if (recycle_into_east){
25 recycle_as_child_of();
26 j = j+1;
27 return this;
28 }else if(recycle_into_south){
29 recycle_as_child_of();
30 i=i+1;
31 return this;
32 }else
33 return NULL; //No ready neighbor
34 }
35

36 int main()
37 {
38 atomic<int>**counters;
39
40 for(i=1; i<n; i++)
41 for (j=1;j<n;j++){
42 if (i == 1) counters[i][j] = 1;
43 else if (j == 1) counters[i][j] = 1;
44 else counters[i][j] = 2;
45 }
46 counters[1][1] = 0;
47 task_scheduler_init init();
48 spawn_root_and_wait (Operation(1,1));
49
50 }

Figure 3. Coding details for an optimized and manually implemented
wavefront algorithm using TBB

method, and some of the TBB task management meth-
ods (get_task() and allocate()) can become an
important source of overhead when the number of cores
increases and the granularity of a task is not sufficiently
large. For instance, for task granularities of around 100
floating point operations, the above mentioned methods can
suppose more than 35% of the execution time in 8 cores.
When exploiting the task recycling technique, the basic 2D
wavefront pattern has the opportunity of avoiding one call
to spawn() by returning a pointer to the next task, thus
the current task recycles into the new one. That way we
achieve two goals: reducing the number of calls to spawn()

(and allocate()) as well as saving the time for getting
new tasks from the local queue (reducing the number of
calls to get_task). Using this mechanism, we reduced
the overheads of the mentioned methods by an order of
magnitude, in fact they dropped by 3.5% of the execution
time in 8 cores for our basic 2D code. When adding the
cache concious functionality that prioritizes the recycling
of the east ready task over the south ready task (that we
incorporated in our optimized manual TBB version as we
saw in Fig. 3) we improved the speedup of our basic 2D
code in 45% (8 cores). In this case we observed a significant
reduction of the L1D cache miss ratio.

In the next subsection we present an alternative imple-
mentation of the same code that take advantage of the high-
level template we propose, in which the programmer does
not have to deal with such low level details.

B. The Wavefront Template

The goal of the template is to minimize the time and
effort the programmer will need to invest in the development
of a wavefront algorithm. In order to do that, the template
requires from the programmer the minimum amount of
information to automatically generate a code performing
similarly to the one shown in Fig. 3:
• A definition file with the wavefront dependence pattern

that defines data and task domains as well as the
dependences among tasks and the counter matrix values
(see Fig. 4).

• The function that has to execute each task (see Exe-
cuteTask method in Fig. 5).

1 //Section 1: Data grid
2 [0:n-1,0:n-1]
3 //Section 2: Task grid
4 [1:n-1, 1:n-1]
5 //Section 3: Indices
6 <i, j>
7 //Section 4: Dependency vectors
8 [1:n-2 , 1:n-2] -> (0,1); (1, 0)
9 [n-1, 1:n-2] -> (0, 1)

10 [1:n-2 , n-1] -> (1, 0)
11 //Section 5 (Optional): counter values
12 [1,1] = 0
13 [1, 2:n-1] = 1
14 [2:n-1 , 1] = 1
15 [2:n-1, 2:n-1] = 2

Figure 4. Definition file for the basic 2D wavefront algorithm

In Fig. 4 we can see the definition file for the running
wavefront example. This file has five sections, although
the last one can be omitted. Sections 1, 2, 4 and 5 use
domains or regions to specify the index space in which some
computations are valid. A region is a rectangular index set of
arbitrary rank and stride. In particular, we use F90-Matlab
notation to define a dimension of a region: it is a 3-tuple
sequence of the form l:h:s, where l and h represent the low

and high bound of the sequence and s is the stride. A d-
dimensional region is defined as a d-ary sequence of tuplas
of the form [l1 : h1 : s1, . . . ld : hd : sd]. When the stride in a
sequence is 1, it can be omited from the corresponding tupla.
A degenerate dimension (one with just a single index) can
be declared by specifying the index value (e.g. [1, 1 : n−1]).
When the dimension is indicated with “:”, it represents
the whole rank of the corresponding dimension in the data
domain.

The first section of the definition file, line 2, points out the
domain of the data grid while the second, line 4, indicates
the domain of the task space. Then in line 6, we associate
the i variable to the first dimension of the task space and
j to the second one. These variables are not needed in this
particular definition file, but they can be used to parametrize
the dependence and counter information for more complex
cases, as we will see later. The fourth section, lines 8 –
10, represents the dependence information. It is specified
by a region in the LHS and a list of dependence vectors
separated by “;” in the RHS. For example, line 8 captures
the horizontal and vertical dependences of Fig. 2(b): in the
region [1:n-2,1:n-2] the vectors (0,1) and (1,0)
apply. In line 9 only the horizontal dependence applies to the
last row; and in line 10 only the vertical dependence applies
to the last column. Please, note that regions can not overlap
and that a dependence vector represents relative directions
or displacement from each cell in the corresponding region.
Moreover, the programmer can provide locality hints when
there is a list of vectors, like in line 8, because the order
is significant: vectors defined first have higher priority. This
is, as in the manual TBB implementation, in case that there
are more than one ready to dispatch tasks, our template will
choose to recycle the current one into the one pointed to
by the higher priority vector. Therefore, if data is stored by
rows, it is better to order the vectors as in Fig. 4 to prioritize
the horizontal traversal of the data.

From the dependence information it is possible to auto-
matically initialize the counter matrix (see Fig. 2(b)), but as
we will see later, in some cases we can produce a faster
initialization code if a definition for the counter values is
provided as we do in the last section of the definition file
(lines 12–15). As in the previous section, the left hand side
identifies a region, but now, the right hand side, contains the
value for each entry in that region (instead of a dependence
vector).

With this dependence file, a code generator is able to
produce a “wavefront.h” header file, comprising all the
clases and methods to easily implement the wavefront code.
So, the programer should invoque the code generator and
include the resulting header file in his main module, as we
see in Fig. 5, line 1.

In the main function, the programer should just call to
wavefront_init() and wavefront->run() (lines
12 and 13). Basically, the first function calls the TBB initial-

1 #include "wavefront.h"
2

3 void Operation::ExecuteTask()
4 {
5 int i = GetFirst();
6 int j = GetSecond();
7 A[i][j]=foo(gs, A[i][j], A[i-1][j], A[i][j-1]));
8 }
9

10 int main(){
11
12 wavefront_init(); // Initialize TBB and vars
13 wavefront->run(); // execute the wavefront code
14
15 }

Figure 5. Task computation and main function

ization routine, initializes some template variables, allocates
a new wavefront object and initializes the matrix of counters.
Then, the run() method, defined in the wavefront.h,
is invoked so that all the initial tasks are dispatched (those
with the counter equal to zero).

Besides, in the main module, the programmer needs
to override the Operation::ExecuteTask() method
with the corresponding operation that has to be carried
out for each cell. Depending on the cell a given task is
processing, GetFirst() (line 5) and GetSecond (line
6) template functions can be used to identify the cell
coordinates, which are usually necessary to carry out the
computation (line 7). This method will be further explained
in section III.

C. Using the template

To further illustrate the use of the template we briefly
show here how it should be used to implement four real
wavefront problems. These are the Checkerboard [1], Fi-
nancial [7], Floyd [8] and H.264 algorithms [9]. A short
description of each algorithms follows.

The Checkerboard code simulates a board with m × n
squares, where a cost function c(i, j) returns the cost asso-
ciated with square (i, j) (being i the row and j the column).
The goal of the code is to find the shortest path (a path is
the sum of the costs of the visited squares) to get to the last
rank, assuming the checker can move only diagonally left
forward, diagonally right forward, or straight forward. To
compute the solution, we define the function q(i, j), eq. 1,
as the minimum cost to reach square (i, j):

q(i, j) =

8<: ∞ j < 0 or j > n− 1
c(i, j) i = 0
f(i, j) otherwise

(1)

where function c(i, j) returns the cost associated with cells
[i, j] and f(i, j) is computed as:

f(i, j) = min(q(i− 1, j − 1), q(i− 1, j), q(i− 1, j + 1)) + c(i, j)

The Financial problem assumes that given m functions
f1, f2, ..., fm (each one represents a financial interest func-
tion of a bank i) and a positive integer n (the budget), we
want to maximize the function f1(x1)+f2(x2)+...+fm(xm)
with the restriction x1 + x2 + x3 + ... + xm = n where
fi(0) = 0(i = 1, ..,m). Thus the goal, is to maximize
the total financial interest of investing n euros in different
banks. The xi values represent the quantity of n to invest in
the bank i. Now, to solve the problem we define a m × n
matrix I where we keep partial values. The value I(i, j)
is computed by eq. 2, getting the solution to the problem
in I(m − 1, n − 1). Here, we will identify a task with the
computation of I(i, j):

I(i, j) =

(
f1(j) if i = 1
max
0≤t≤j

{I(i− 1, j − t) + fi(t)} otherwise (2)

The Floyd’s algorithm [8] uses the dynamic programming
method to solve the all-pairs shortest-path problem on a
dense graph. The method makes efficient use of an adjacency
matrix D(i, j) to solve the problem. The new values of that
matrix are computed by eq. 3.

Dk(i, j) = min
k≥1
{Dk−1(i, j), Dk−1(i, k) + Dk−1(k, j)} (3)

Finally, we have also implement the H.264 decoder. H.264
or AVC (Advanced Video Coding) is a standard for video
compression. In H.264, a video sequence have multiples
video pictures called frames. A frame has several slices,
which are self contained partitions of a frame that contain
some number of MacroBlocks (MBs). MBs are blocks of
16×16 pixels and are the basics unit for coding a decoding.
MBs in a frame are usually processed in scan order, which
means starting from the top left corner of the frame and
moving to the right, row after row. However, processing MBs
in a diagonal wavefront manner satisfies all the dependencies
and at the same time allows to exploit parallelism between
MBs. In [9] a 2D wavefront version of the H.264 decoder
is implemented using Pthreads. In particular, we focus on
the tf_decode_mb_control_distributed function
where the MBs are processed following the wavefront
pattern. With this implementation as a starting point we
have recoded this H.264 procedure taking advantage of our
wavefront template.

In Fig. 6 we show the dependence pattern, counter matrix
and corresponding definition file for these four algorithms.
Although these definition files are self-explanatory if thor-
oughly analyzed together with the provided dependence
pattern, we will pay attention to some remarkable details.
For instance, in the Financial problem, although the data
grid is m × n, tasks will be dispatched only for the subre-
gion [1:m-1,1:n-1] (all the cells but those in the first
row and column). Also, dependence vectors are described

with [1:m-2,1:n-1]->(1,0:n-j-1), which means
two things:
• The vectors are associated to cells with coordinates
(i,j) that belong to the described region: i has to
be in the range [1:m-2] and j in [1:n-1], and

• For each one of the cells in the described region,
there are n − j dependent cells, identified by vectors
(1,0:n-j-1). So, for example, for cell [2,1], the
dependent cells are those in the next row (row 2 + 1),
and in columns within the range 1+(0 : n− 1− 1), so
the dependent cells are (3,1), (3,2) and (3,3), if n = 4.

As we said, from that dependence vector it is pos-
sible to generate the counter matrix, but with an extra
initialization time because, for each cell, a loop has to
increment the counter of each dependent cell. On the other
hand, if the programmer provides the counter information
([2:m-1,1:n-1]=j) a single traverse of the matrix will
initialize each counter to the column index value, which is
actually the number of arrows reaching each cell (see Fig. 6).

In the case of the Floyd algorithm, the sequential algo-
rithm has a k-i-j triple nested loop in which D(i,j) is written
in the inner loop body. For the wavefront approach we
have removed the “j” dimension from the task space, so
each task has to compute the D(i, :) row for each k and i
iterations, as we show in Fig. 7. That way, the indices in the
task region has been defined as (k,i). In that region, the
subregion [0:m-2,k+1] identifies the cells in the super-
diagonal due to these cells i=k+1 for k=0:m-2. Besides,
the subregion [0:m-2,!(k+1)] represents all the other
cells (removing those in the last row), due to in these cases
i!=k+1. Note that for this last region, the dependence
vector (1,0) applies, since Dk−1(i, :) has to be ready in
order to compute Dk(i, :) according to eq. 3. In addition,
vectors (1,-i:m-i-1) associated to the superdiagonal
cells, capture the fact that, as indicated in eq. 3, Dk−1(k, :)
is needed for all the i iterations of the iteration k. For
example, if k=1, D0(1, :) is read in all the i iterations.
Also note that, as in the Floyd’s serial implementation, the
wavfront algorithm can also be computed in place with a two
dimensional D array due to Dk values can safely overwrite
Dk−1 ones.

1 void Operation::ExecuteTask()
2 {
3 int k = GetFirst();
4 int i = GetSecond();
5 for (int j=0; j<m; j++)
6 D[i][j] = Min(D[i][j], D[i][k]+D[k][j]));
7 }

Figure 7. Task body for the Floyd program.

Finally, to recode the original Pthread H.264 implemen-
tation using our wavefront template was not a big problem.
The definition file presented in Fig. 6 capture the dependence

a) Checkerboard

//Data grid
[0:m-1,0:n-1]
//Task grid
[1:m-1,:]
//Indices
<i,j>
//Dependence vectors
[1:m-2,1:n-2]->(1,-1);(1,0);(1,1)
[1:m-2,0]->(1,-1);(1,0)
[1:m-2,n-1]->(1,0);(1,1)
//Counter values
[1,:]=0
[2:m-1,0]=2
[2:m-1,n-1]=2
[2:m-1,1:n-2]=3

//Data grid
[0:m-1,0:m-1]
//Task grid
[:,:]
//Indices
<k,i>
//Dependence vectors
[0:m-2,k+1]->(1,-i:m-i-1)
[0:m-2,!(k+1)]->(1,0)
//Counter values
[0,:]=0
[1:m-1,k]=1
[1:m-1,!(k)]=2

//Data grid
[0:m-1,0:n-1]
//Task grid
[1:m-1,1:n-1]
//Indices
<i,j>
//Dependence vectors
[1:m-2,1:n-1]->(1,0:n-j-1)
//Counter values
[1,1:n-1]=0
[2:m-1,1:n-1]=j

//Data grid
[0:h-1,0:w-1]
//Task grid
[:,:]
//Indices
<i,j>
//Dependence vectors
[0:h-2,1:w-2]->(0,1);(1,-1)
[0:h-1,0]->(0,1)
[0:h-2,w-1]->(1,-1)
[h-1,1:w-2]->(0,1)
//Counter values
[0,0]=0
[0,1:w-2]=1
[0:h-1,w-1]=1
[1:h-1,0:w-2]=2

j
i

1

3

\ 0 1 3

2

0

2

3 3 22

0 0 00

3 3 22 1 2 3

1 2 3

0 0 0

i

1

3

\ 0 1 3

2

0

2j

2 2 1

2 2 1

2 2 1

1 1 1

2

2

2

0
i

1

3

\ 0 1 3

2

0

2j

2 2 1

2 1 2

1 2 2

0 0 0

2

2

2

0
k

1

3

\ 0 1 3

2

0

2i

b) Financial c) Floyd d) H.264

Figure 6. Dependence pattern, counters matrix and definition files for four wavefront algorithms

patter described in [9] and [10]. A data grid of h × w
macroblocks, MBs, is defined, and a task takes care of
each MB. Task dependences are described just with vectors
(0,1) and (1,-1). Note that, although de (1,0) and (1,1)
dependences also exist, these vectors are not really needed
since they are implicit in the sequence (0,1)–(1,-1).

The original wavefront code in [9] is a Pthread code with
a master thread and a pool of worker threads that wait for
work on a task queue. The master thread is responsible for
handling the initialization and finalization operations. The
dependencies of each MB are expressed by a dependence
table. Each time that the dependencies for a MB are satisfied
a new task is inserted in the task queue. Synchronization
among threads and the accesses to the task pool were imple-
mented using semaphores. However, in our implementation,
besides the already discussed definition file, we only need
to specify the task body, as shown in Fig. 8. This highly
simplify the task of porting the code to TBB, since thanks to
the template, we are released of many responsibilities: taking
care of pthread/task creation, managing the task queue,
synchronizing tasks, to name a few of the them.

The H.264 task body of Fig. 8 uses a privatized work
space (local_WS) per thread. This means that, although
there may be thousand of tasks, in TBB these tasks will be
carried out by the running threads, so the maximum number
of simultaneous running tasks is equal to the number of

threads. Since this number of threads is much smaller (in
TBB it is usually equal to the number of cores to avoid
oversubscription overheads), using a privatized work space
per thread instead of per task is much more efficient. Thus,
the function Get_Local_Workspace (line 4 in Fig. 8)
identifies the thread in wich the task is running and the
corresponding local work space. Then, some information
of the current MB, identified by the GetFirst() and
GetSecond() template methods, is copied to the local
work space (line 7) and later decoded (line 8).

1 void Operation::ExecuteTask()
2 {
3 H264mb * curr_MB, * local_WS;
4 local_WS = Get_Local_WorkSpace();
5 curr_MB = Get_Curr_MB(GetFirst(),GetSecond());
6 // decode current MB
7 copy_MB_to_WS(local_WS, curr_MB);
8 decode_MB(local_WS);
9 }

Figure 8. ExecuteTask() method for the H.264 template implemen-
tation

III. IMPLEMENTATION DETAILS

The template has been implemented taking into ac-
count that it should support 2D and 3D wavefront

problems. In this scenario and without loss of gen-
erality, all tasks are internally identified with an in-
teger, ID, starting at 0. The functions GetFirst(),
GetSecond() and GetThird() can be used from
a given task to convert its ID in the corresponding
task coordinates (typically needed to access the data
space). There are also functions GetFirstFromID(ID),
GetSecondFromID(ID) and GetThirdFromID(ID),
that are used internally if coordinates of task ID are
needed. The inverse functions CoordinateToID(i,j)
and CoordinateToID(i,j,k) are also available.

The internal machinery of the wavefront template is
based on the Wave class, the TaskWave template class
and the Operation class, derived from the latter and
that can be used by the user. This Operation class
has three public methods: ExecuteTask() that has to
be overridden, as we have seen in figures 5, 7 and 8;
GetCounter(ID) and GetDependency(o). The last
two are automatically generated from the definition file
and included in the wavefront.h, although they may be
later modified if the programer realizes that they can be
optimized somehow. In the wavefront.h it is also created
the wavefront_init() function, which initializes some
variables (data grid dimensions, task space frontiers, etc) and
initializes a Wave<Operation> *wavefront object.
In the constructor of this object the matrix of counters
is allocated and all the counters are initialized inside a
parallel loop that traverse all the tasks IDs. In each iteration
of this parallel loop, the automatically generated method
GetCounter(ID) is called. The GetCounter method
generated from the 2D wavefront definition file (Fig. 4), is
shown in Fig. 9. As we can see in this figure, the method
just return a counter value depending on the coordinates of
the corresponding task ID. At the time we are initializing
the counter matrix, we also collect in a list the IDs of all
the tasks with that counter equal to 0.

1 int Operation::GetCounter(int ID){
2 int i= GetFirstFromID(ID);
3 int j= GetSecondFromID(ID);
4 int counter = 0;
5 if((i==1) && (j==1))
6 counter= 0;
7 if((i==1) && (j>=2 && j<=m-1))
8 counter= 1;
9 if((i>=2 && i<=m-1) && (j==1))

10 counter= 1;
11 if((i>=2 && i<=m-1) && (j>=2 && j<=m-1))
12 counter= 2;
13 return counter;
14 }

Figure 9. GetCounter(ID) method generated from the basic 2D
wavefront definition file

Once overridden the ExecuteTask() method and
called the wavefrom_init() one, we can call the run()
method of the just created wavefront object, as we saw

in Fig. 5. This run() methods only spawn the ready
to dispatch tasks which are in the list we gathered dur-
ing the initialization. Each running task first executes the
ExecuteTask() method and then the internally defined
launch one. This launch method is the one that identifies
all the dependent tasks, decrement their counters and spawn
or recycle into them if they are ready. This process iterates
until all the counters are nullified so there are no more tasks
to spawn.

The identification of the dependen tasks is carried
out by iteratively calling the GetDependency(o++)
method. In Fig. 10 we show the automatically generated
GetDependency(o) method for the 2D wavefront ex-
ample. As we see, this method first identify the (i,j)
coordinates of the calling task. Then, depending on the
region in which this task is located, the corresponding
vectors specified in the definition file will apply one by
one. For example, in the basic 2D wavefront we defined
three regions (see Fig. 4) and in the first region there are
two vectors. Now, assuming a task is in the first region, each
time this task calls the function GetDependency(o++), a
dependence vector is applied: (0,1) the first time (o==1) and
(1,0) the second one (o==2). For each vector, the resulting
task coordinates are checked to validate if they are inside
the task space and in that case the ID of the resulting task
is returned. Otherwise, INVALID_POSITION is returned
pointing out that the task is in one of the task space frontiers
and that there are no more tasks in that vector direction.
When there is no more vectors to follow in the region,
NO_MORE_DEPENDENCIES is returned, so the launch()
method realizes that all dependent task have been considered
and dispatched when ready.

1 int Operation::GetDependency(int o){
2 int IDdepTask = NO_MORE_DEPENDENCIES;
3 int i, j, i1, j1;
4 i = getFirst();
5 j = getSecond();
6 if (Region1(i,j)){
7 if (o==1){
8 i1 = i + 0; j1 = j + 1;
9 bool ok = CheckTaskCoordinates(i1,j1);

10 if (!ok) IDdepTask = INVALID_POSITION;
11 else IDdepTask = CoordinateToID(i1,j1);
12 }
13 if (o==2){
14 i1 = i + 1; j1 = j + 0;
15 bool ok = CheckTaskCoordinates(i1,j1);
16 if (!ok) IDdepTask = INVALID_POSITION;
17 else IDdepTask = CoordinateToID(i1,j1);
18 } }
19 else if (Region2(i,j){....}
20 else if (Region3(i,j){....}
21 return IDdepTask;
22 }

Figure 10. GetDependency() method generated from the basic 2D
wavefront definition file

Now, in Fig. 11 we show the kernel of the tem-

plate machinery that is implemented in the launch
method. Note that this method is called by a task just
after executing the task body, ExecuteTask(). So the
lunch() method has to decrement the counters of all
the dependent tasks and dispatch them if they are ready.
In line 5 we first take the ID of the first dependent
task, IDdepTask, from the getDependency() method.
Then, the while loop of line 6 will be visiting all the depen-
dent tasks till NO_MORE_DEPENDENCIES is returned from
getDependency(). For each one of these dependent
tasks, first in line 7 we check if the ID of the dependent task
is valid (IDdepTask>=0, due to INVALID_POSITION
is a negative number) and in that cases we decrement the
counter value of the task and check if it has been nullified.
In that case, if we have not decided to recycle into a previous
ready task (line 8), we spawn a new one, or otherwise (line
10) we annotate that we are going to recycle the current task
into the new one. Note, that a task is going to recycle into the
first ready to dispatch dependent task, so the order in which
GetDependency() returns the task is relevant. This is,
the dispatching mechanism is biased towards recycling into
the first tasks returned by GetDependency and spawning
the other ones for later execution. Therefore, dependent tasks
that can better exploit the data in the cache of the current
task should be returned first by GetDependency() and
this can be achieved by adequately ordering the dependency
vectors in the definition file.

Finally, in line 18, in case that the current task is going
to recycle into a new one, we update the ID of the task by
the one in which is going to be converted.

1 template<class TaskWave> int Wave<TaskWave>::
launch(task *t1){

2 TaskWave * t = (TaskWave*) t1;
3 int IDRecycledTask = -1;
4 int o=1;
5 int IDdepTask= t->getDependency(o++);
6 while(IDdepTask>=0 || (IDdepTask==INVALID_POSITION

)){
7 if ((IDdepTask>0) &&(--counters[IDdepTask]==0)){
8 if (IDRecycledTask>=0){
9 t->spawn(*new(this->allocate(t))

TaskWave(this,IDdepTask));
10 }else{ // no recycled task yet
11 t->recycle_as_child_of(*t->parent());
12 IDRecycledTask = IDdepTask;
13 }
14 }
15 IDdepTask = t->getDependency(o++);
16 }
17 if (IDRecycledTask>0)
18 t->ID = IDRecycledTask;
19 return IDRecycledTask;
20 }

Figure 11. The launch() method checks the counters and spawns or recicles
into new tasks.

That explained, if the programmer does not like to start
from the definition file or it is difficult to express the

wavefront dependences with the provided syntax, it is always
possible to write the GetDependency and GetCounter
methods from scratch.

In the next section we describe the BNF notation of the
definition file grammar, and the code generator that translate
a definition file into the corresponding wavefront.h
header file.

IV. DEFINITION FILE SYNTAX

In Fig. 12 we see the BNF for the definition file syntax.
The first rule in line 1 points out that the description file has
a “Data Grid” line, a “Task Grid” one, an “Index” line, one
or more “Dependency vectors” and zero or more “Counter
values” definitions.

1 <Configurator> :: = <Datagrid> \n <TaskGrid> \n <
Index> \n +(<Dependencies> \n) *(<Counters> \n
)

2 <Datagrid> :: = <Region>
3 <TaskGrid> :: = <Region>
4 <Region> ::= [<Vector>, <Vector>]
5 <Vector> ::= <exp> | <exp> : <exp>|<exp> : <exp>

: <exp> | :
6 <Index> ::= < +<Letter> , +<Letter> >
7 <Dependencies> ::= <Pair> | <Vector_dep> | <

RegionesDep>
8 <exp> ::=+<Digit>|+<Letter>|+<exp> <sign> <exp>
9 <Pair> ::= (<exp>, <exp>)

10 <Vector_dep> ::= (<Vector>,<exp>) | (<exp>,<Vector
>)

11 <RegionDep> ::= <Region> -> <Dep>
12 <Dep> ::= <Dep>; <Dep>;| <Pair>;<Vector_dep>
13 <Counters> ::=<Region> =<exp>
14 <Letter> ::=a|b..|y|z
15 <Digit> ::= 0|1..|8|9
16 <Sign> ::= *|+|-|/|%

Figure 12. Syntaxis of the definition file for 2D wavefronts in BNF

V. EXPERIMENTAL RESULTS

We conduct two main set of experiments, the first one to
validate the efficiency of our template implementation and
the second one to evaluate the template programmability.
We have used as benchmarks the basic 2D, Checkerboard,
Financial, Floyd and H.264 previously described codes.

A. Template Overhead

For these experiments, we have used a multicore machine
with 8 cores, where each core is an Intel(R) Xeon(R) CPU
X5355 at 2.66GHz, being SUSE LINUX 10.1 the Operating
system in the target platform. The codes were compiled with
icc 11.1 -O3. We executed each code 5 times and computed
the average execution time of the runs to get the execution
times. Then, we computed the speedups, that are calculated
with respect to the sequential code time.

In a first experiment, we analyzed in detail the behav-
ior of the template for our basic 2D wavefront running
example. In particular, the goal of this experiment was to
evaluate the scalability of our template for different task

granularities. In Fig. 13 we can see the speedups for two
implementations of the 2D code and three task granularities:
i) TBB-Fine, TBB-Medium and TBB-Coarse represent
the speedups for the manual TBB implementation (see
Fig. 3) that was used as baseline; ii) Template-Fine,
Template-Medium and Template-Coarse represent
the speedups for our TBB Template implementation (details
are shown in Fig. 5. In the experiments, the granularity of a
task is controled by the gs parameter of the foo function
(line 3 in Fig. 1). That parameter set the number of floating
point operations per task: Fine granularity represents 200
FLOP, Medium 2,000 FLOP and Coarse 20,000 FLOP. In
all the cases, the matrix data has 10,000 × 10,000 cells.
From the results of Fig. 13, we clearly see that the greater
the granularity, the better the scalability of the codes (both
manual and Template versions). Besides, we can see that
the differences of performance in both implementations are
small. Similar results were obtained for other matrix data
sizes.

Speedups of TBB manual vs. Template in 2D code

Figure 13. Speedup for the basic 2D wavefront codes for different task
granularities (200, 2,000 and 20,000 floating point operations). The x-axis
represents the number of cores

Fig. 14 represents now the overhead due to the Template
for our 2D code and the different granularities. The overhead
is computed as the ratio between the difference of times of
the template and manual version vs. the time of the manual
version. In other words, the increasing of time regarding
the optimized manual version. As we can see in the figure,
the overhead is not significant for the coarse, even the
medium granularity cases (less than 2%). However, in the
fine granularity case, the overhead due to the Template may
increment the execution times from 6% to 9%. More in
detail, in Fig. 15 we show the contribution to this overhead,
due to the different stages of our template (see Fig. 5): the
initialization (wavefront_init method, line 12) and the
computation (wavefront_run method, line 13) stages.
Clearly, the computation stage represents the main source of
overhead on any granularity case. This overhead is mainly
due to the method call costs on that stage.

In the next experiment, we focus in the Checkerboard,

Overhead of Template in 2D code

Figure 14. Overhead of the Template for the basic 2D wavefront code for
different task granularities (Fine=200, Medium=2,000 and Coarse=20,000
Floating Point Operations). The x-axis represents the number of cores

Financial and Floyd codes. We selected a data matrix of
1,500 × 1,500 cells for Checkerboard, 300 × 300 elements
for Financial and 5,000 × 5,000 elements for Floyd. In
the Fig. 16 we show the speedups for two implementations
of each code: TBB XXX represents the speedups for the
manual TBB implementations whereas Template XXX
represent the speedups for the Template versions. Now,
from these results we see again that the differences of both
implementations are small, although the TBB versions tend
to scale better. Again similar results were obtained for other
matrix input sizes.

We could mention that in all these real problems we
found fine to medium grain size tasks (around 100-1,000
FLOP), with load unbalance among the tasks in the Financial
and H.264 cases. As pointed in the basic 2D wavefront
experiment, the finer the granularity of a task, the poorer
the performance of the code. In particular, the Checkerboard
corresponds to the case of finer granularity task, what
explains the lower scalability. The reason for the poor
performance in problems with fine grain was found in the
next experiment. We used Vtune (the performance analyzer
of Intel [12]) to analyze which functions of the TBB manual
version of the problems consumed more time. We got that
the degradation of performance in problems with fine grain
size (Checkerboard) was because the overhead introduces
by the TBB functions spawn (this method is invoked each
time a new task is spawned), allocate (it selects the best
memory allocation mechanism available) and get_task
(this method is called after completing the execution of a
previous task). In fact, these methods accounted for more
than 6% of the total execution time. In problems with
medium or big grain size (Floyd code) the overhead of those
functions was smaller and it was far lower than 1% of the
total execution time.

Now, Fig. 17 represents now the overhead due to the
Template for our Checkerboard, Financial and Floyd codes.
Again, the overhead is computed as the ratio between the

Fine Medium Coarse

Figure 15. Contributions to the template overhead: the initialization stage and the computation stage. The x-axes represent the number of cores

Speedups of TBB manual vs. Template in real problems codes

Figure 16. Speedup for Checkerboard, Floyd and Financial codes for the
manual and Template implementations. The x-axis represents the number
of cores

difference of times of the template and manual version vs.
the time of the optimized manual version. As we can see in
the figure, the overhead of the Template is small, ranging
from 5% in the Financial code, to less than 0.5% in the
Floyd code. In detail, Fig. 18 illustrates the contributions
to the overhead, due to the initialization and computation
stages of our template in these codes. Now, the initialization
overhead has a very low impact specially for the Checker-
board and Financial codes, because the matrix data for these
experiments, and therefore the counters matrices are quite
small.

Overhead of Template in real code

Figure 17. Overhead of the Template for the Checkerboard, Financial and
Floyd codes. The x-axis represents the number of cores

Summarizing, these experiments have shown us that our
Template implementation is quite efficient for a variety of
wavefront codes. The abstraction penalty of our Template
due to the higher level problem management supposes
an increasing of the execution times, ranging for 8% of
increment for codes with fine grain tasks, to less than 1%
of increment of time for codes with a coarse grain tasks.
We think these are quite small contributions, provided the
Template improves the programmer productivity. This issue
will be discussed in Section V-B.

In order to evaluate our template with even a more
complex and large problem, we conduct a new experiment
where we compare two parallel implementations of the
H.264 decoder benchmark: the original Pthreads implemen-
tation [9] against the version based in our TBB Template.
Both H.264 implementations were run in four eight-core
Intel(R) Xeon(R) CPU X7550 2.00GHz (32 cores) running
SUSE 11.1. The codes were compiled with g++ 4.1. We
executed each code version 5 times and computed the
average execution time of the runs to get the execution
times. In particular, we measured the running times of
the MBs decoding section (without CABAC). We executed
each code version for different frame resolutions of the
same video. The goal was now to evaluate the impact of
different problem input sizes on the scalability of each
version. In Fig. 19 we see the times (in ms.) for the two
versions, in the low resolution (352 × 288 pixels=396 MBs),
medium resolution (704 × 576 pixels= 1,584 MBs), and
high resolution (1,280 × 720 pixels= 3,600 MBs) input
video data.

From the results, we see that the overhead incurred due
to our template is negligible. Besides, our TBB template
implementation has a better scalability behavior for any
video resolution. Although for low core counts (1, 2 cores)
both implementations have similar times, we see that for
higher core counts (12, 16, 32 cores), the performance of
the Pthreads implementation tends to degrade faster than
our TBB template implementation, specially for the medium
and high resolution cases. In these cases, the overhead due
to contention on the global Pthreads task queue is one of the
reasons of the degradation in the Pthreads implementation,
a problem that does not arise in the distributed task queue

Checkerboard Financial Floyd

Figure 18. Contributions to the template overhead: the initialization stage and the computation stage in our real problems codes. The x-axes represent
the number of cores

model of TBB. Anyway, the lack of scalability, specially
for the low and medium resolution cases, is explained by
the insuficient workload to keep busy all the cores.

B. Template Programmability

In this section we discuss our findings regarding our
second experimental goal: to evaluate the template Pro-
grammability. In other words, how productive from a pro-
grammer point of view, is to use our Template to code
complex wavefront codes. It is difficult to measure the
ease of programming. We follow the methodology proposed
in [13], where the authors suggest three quantitative metrics
to measure the easy of programming of a code. These
metrics are: the SLOC (Source Lines Of Code), the CC
(Cyclomatic Complexity) and the PE (Programming effort).

When computing the SLOC, comments and empty lines
are excluded. This metric is perhaps the more dependent
on the user programming style than the other two metrics.
In general, we can assume that higher values for this metric
can originate more error prone and difficult to maintain code.
Regarding the CC, the authors in [14] define this metric as
the number of predicates plus one. In a well structured pro-
gram, higher values for this parameter uses to mean a more
complex code. Respecting the PE parameter, it is defined
in [15] as a function of the number of unique operands,
unique operators, total operands and total operators found in
a code. The operands correspond to constants and identifiers,
while the symbols or combinations of symbols that affect
the value of operands constitute the operators. This metric
can be representative of the programming effort required to
implement an algorithm. So, a higher value of PE means that
it is more difficult for a programmer to code the algorithm.

Fig. 20 shows the results of the Programmability metrics
for our real wavefront programs: Checkerboard, Financial,
Floyd and H.264. We compare the metrics on two implemen-
tations of each code: the manual TBB version (see Fig. 3)
for the Checkerboard, Financial and Floyd codes or the
original Pthreads implementation for the H.264 (see [9]),
vs. the version using our Template. The SLOC, CC and
PE values are normalized with respect to the corresponding
values of the manual implementations. For all the codes,
the metrics corresponding to our Template versions, have

always smaller values. For instance, the SLOC, the CC and
the PE for the Template codes are typically about 50% below
of the corresponding manual TBB implementations, except
in the H.264 case, where the PE metric for our Template
implementation is about 25% below of the Pthreads version.
In any case, these results seem to indicate that we gain some
easy of programming when using our Template.

In summary, the experimental evaluation performed in this
section has show us that the proposed TBB based Template
for the wavefront pattern, suppose a productive tool with a
low overhead cost, when coding complex applications.

VI. RELATED WORKS

There have been several research works that have targeted
the problem of parallelizing wavefront problems. In [16] the
authors propose the concept of region-based programming
and describe its benefits for expressing high level array com-
putations in the context of the parallel language ZPL, being
the wavefront pattern a particular case of array computation.
Although the definition of the regions in that work is similar
to the one we propose in this paper, we differ in the goal:
the authors in [16] used the information provided by the
regions to identify the communication patterns of the array
computations in a distributed memory architecture, whereas
in our work we just want to simplify the programmer effort
when expressing the data dependence information of the
problem.

Other authors have addressed the implementation of par-
allel wavefront problems on heterogeneous architectures
such as SIMD-enabled accelerators [17], or the Cell/BE
architecture [18]. In these works, the authors have focused
on vectorization optimizations and on studying the appro-
priate work distribution on each architecture, forcing the
programmer to deal with several low level programming
details. We depart from these works in that we rather focus
on higher level programming approaches that release the
user from the low level architectural details.

Precisely, to free the user from dealing with those low
level details, there has been substantial effort invested in
characterizing parallel patterns. Patterns may also go by
the name “algorithm skeleton”[19], being the wavefront
one of these patterns [2]. In this research line, there have

Low Resolution: 352 × 288 Medium Resolution: 704 × 576 High Resolution: 1280 × 720

Figure 19. Time in seconds for the Pthreads and the TBB Template versions of H.264 and different frame resolutions. The x-axes represent the number
of cores

Checkerboard Financial Floyd H.264

Figure 20. Program-ability metrics for the Checkerboard, Financial, Floyd and H.264 codes, comparing the manual (TBB) and Template implementations

been a recent proposal [20] in which the authors propose
a “wavefront” abstraction for multicore clusters. We differ
from this work in that they address specific regular wavefront
problems, where the granularity of a computation is very
coarse (one cell needs around 117 sec. in a 1Ghz CPU).
They use Pthreads and rely on the O.S. scheduler to process
the work. On the contrary, our study focus on much more
fine task granularity workload, both in regular and irregular
problems.

A distinguish feature of our work from all the previous
related work, is that we propose a wavefront Template in
the context of a modern task programming-based library.
We identify the low level features of the task programming
model needed in the wavefront pattern, and through a high
level Template we hide them from the programmer.

VII. CONCLUSIONS

The parallel wavefront pattern is an interesting paradigm
for which the task based TBB library has no template.
Precisely in this paper we propose a TBB based template
for this pattern that helps the programmer by hiding the
low level task management mechanisms such as: i) the task
synchronization through the use of the atomic capture; ii)
the task recycling or spawning when a new computation
has to be performed; and iii) the task priorization that
can exploit the spatial locality. When using our template,
the programmer only has to specify a configuration file
with the dependence pattern information, and the function
that each task has to perform (the ExecuteTask method).
Using four complex benchmarks we have found that the
abstraction penalty due to the template only supposes at
most a 5% of additional overhead when compared to a
manual TBB implementation of the same code. Even in the

case of the H.264 code, the TBB-based template version
outperforms the original Pthreads manual version, although
in this case thanks to the work-stealing scheduler of the
TBB library runtime. Additionaly, we have evaluated the
programmability of our template in our four complex codes,
using three quantitative metrics that characterize the effort of
programming, finding that the template based codes reduce
the effort programming metrics from 25% to 50% when
compared to the manual versions. Therefore, for the eval-
uated codes, we conclude that our template is a productive
tool with a low overhead cost.

REFERENCES

[1] V. U. Dasgupta Sanjoy, Papadimitriou Christos, Algorithms.
McGraw-Hill Higher Education, 2007.

[2] J. Anvik, S. MacDonald, D. Szafron, J. Schaeffer, S. Brom-
ling, and K. Tan, “Generating parallel programs from the
wavefront design pattern,” Parallel and Distributed Process-
ing Symposium, International, vol. 2, p. 0104, 2002.

[3] A. J. Dios, R. Asenjo, A. Navarro, F. Corbera, and E. L.
Zapata, “Evaluation of the task programming model in the
parallelization of wavefront problems,” High Performance
Computing and Communications, 10th IEEE International
Conference on, vol. 0, pp. 257–264, 2010.

[4] E. Ayguade, N. Copty, A. Duran, J. Hoeflinger,
Y. Lin, F. Massaioli, X. Teruel, P. Unnikrishnan,
and G. Zhang, “The design of openmp tasks,”
IEEE Transactions on Parallel and Distributed Systems,
vol. 20, no. 3, pp. 404–418, 2009. [Online]. Available:
http://dx.doi.org/10.1109/TPDS.2008.105

[5] J. Reinders, Intel Threading Building Blocks (Scien-
tific and Engineering Computation). O‘Reilly, 2007,
http://www.threadingbuildingblocks.org/.

[6] “Intel concurrent collections for c/c++,”
http://software.intel.com/en-us/articles/intel-concurrent-
collections-for-cc.

[7] G. Brassard and P. Bratley, Fundamentals of algorithmics.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1996.

[8] R. W. Floyd, “Algorithm 97: Shortest path,” Commun.
ACM, vol. 5, pp. 345–, June 1962. [Online]. Available:
http://doi.acm.org/10.1145/367766.368168

[9] M. A. Mesa, A. Ramirez, A. Azevedo, C. Meenderinck,
B. Juurlink, and M. Valero, “Scalability of macroblock-level
parallelism for h.264 decoding,” Parallel and Distributed
Systems, International Conference on, vol. 0, pp. 236–243,
2009.

[10] E. B. V. D. Tol, E. G. T. Jaspers, and R. H. Gelderblom,
“Mapping of h.264 decoding on a multiprocessor architec-
ture,” 2003, pp. 707–718.

[11] A. Dios, R. Asenjo, A. Navarro, F. Corbera, and E. L.
Zapata, “Wavefront template implementations based on
the task programming model,” in Technical Report at
http://www.ac.uma.es/∼asenjo/research/, February 2011.

[12] S. E. S. Programme, “Intel(r) vtune(tm) performance an-
alyzer 8.0.2 for linux,” Mathematical Software Group
Rutherford Appleton Laboratory Chilton, Tech. Rep., 2006,
http://www.sesp.cse.clrc.ac.uk/.

[13] C. H. Gonzalez and B. B. Fraguela, “A generic algorithm
template for divide-and-conquer in multicore systems,” High
Performance Computing and Communications, 10th IEEE
International Conference on, vol. 0, pp. 79–88, 2010.

[14] T. McCabe, “A complexity measure,” Software Engineering,
IEEE Transactions on, vol. SE-2, no. 4, pp. 308 – 320, dec.
1976.

[15] M. H. Halstead, Elements of Software Science (Operating and
programming systems series). New York, NY, USA: Elsevier
Science Inc., 1977.

[16] E. C. Lewis and L. Snyder, “Pipelining wavefront com-
putations: Experiences and performance,” in In Fifth IEEE
International Workshop on High-Level Parallel Programming
Models and Supportive Environments (HIPS, 1999.

[17] O. Storaasli and D. Strenski, “Exploring accelerating science
applications with fpgas,” in Proc. of the Reconfigurable
Systems Summer Institute, July 2077.

[18] A. M. Aji, W.-c. Feng, F. Blagojevic, and D. S. Nikolopoulos,
“Cell-swat: modeling and scheduling wavefront computations
on the cell broadband engine,” in CF ’08: Proceedings of the
5th conference on Computing frontiers. New York, NY, USA:
ACM, 2008, pp. 13–22.

[19] J. Falcou, J. Srot, T. Chateau, and J. Laprest, “Quaff: Effi-
cient c++ design for parallel skeletons,” Parallel Computing,
vol. 32, no. 7–8, pp. 604–615, 2006, algorithmic Skeletons.

[20] L. Yi, C. Moretti, S. Emrich, K. Judd, and D. Thain, “Har-
nessing parallelism in multicore clusters with the all-pairs
and wavefront abstractions,” in HPDC ’09: Proceedings of
the 18th ACM international symposium on High performance
distributed computing. New York, NY, USA: ACM, 2009,
pp. 1–10.

