
A case study of the task-based parallel wavefront pattern

Antonio J.Dios, Angeles Navarro, Rafael Asenjo, Francisco Corbera and Emilio L. Zapata
Dept. of Computer Architecture

University of Malaga
Malaga, Spain

{antjgm, angeles, asenjo, corbera, ezapata}@ac.uma.es

Abstract—This paper analyzes the applicability of the task
programming model in the parallelization of the wavefront pat-
tern. Computations on this type of problem are characterized
by a data dependency pattern across a data space, which can
produce a variable number of independent tasks through the
traversal of such a space. We explore several implementations
of this pattern, based on the current state-of-the-art threading
libraries that support tasks. For each implementation, we
discuss the particularities from a programmers point of view,
highlighting the advantageous features in each case. We con-
duct several experiments to identify the factors that can limit
the performance in each implementation. Moreover, we propose
and evaluate some optimizations (task recycling, prioritization
of tasks based on locality hints and tiling) that the programmer
can exploit to reduce the overhead in some cases.

Keywords:Wavefront computation, Task programming
model, Task recycling

I. INTRODUCTION

Wavefront is a programming pattern that appears in sci-
entific applications such as those based in dynamic pro-
gramming [1] or sequence alignment [2]. In such a pattern,
data elements are distributed on multidimensional grids
representing a logical plane or space [3]. The elements
must be computed in order because they have dependencies
among them. One example is the 2D wavefront that we
shown in Fig. 1(a). Here, computations start at a corner
of the matrix and a sweep will progress across the plane
to the opposite corner following a diagonal trajectory. Each
diagonal represents the number of computations or elements
that could be executed in parallel without dependencies
among them.

Recently, there have been made available several paral-
lelization frameworks [4], [5], [6], [7] that provide support
for parallel tasks rather than parallel threads. We think
task-based programming fits better than thread-based pro-
gramming when addressing the implementation of parallel
wavefront problems. Firstly, tasks are much lighter weight
than logical threads, so in fine or medium computational
workload wavefront applications (as in our case), tasks are a
more scalable constructor. Secondly, task-based frameworks
provide a programming model in which developers express
the source of parallelism in their applications using tasks,
while the burden of explicitly scheduling these tasks is

(a) Sweep Diagonal

i

0

1

2

3

\j 0 1 2 3

0 1 1 1
1 2 2 2
1 2 2 2
1 2 2 2
(b) counter matrix

Figure 1. Typical wavefront traversal and dependencies translated into
counters

managed by the library runtimes. Lastly, the task schedulers
implemented in the library runtimes can get some high level
information (provided by the user or a template), that can
be used to dynamically redistribute the work across the
available processors, even sacrificing fairness for efficiency,
differently to how an O.S. thread scheduler works, offering
that way improved scalability [5] .

In this preliminary version of the paper we have focus
our study on the frameworks that represent the state-of-
the-art when programming using tasks: OpenMP 3.0 [4],
Intel Threading Building Blocks (TBB) [5], Cilk [8] and
Intel Concurrent Collections (CnC) [6]. The goal of this
paper is to explore the programmability and performance
of different OpenMP, Cilk, TBB, and CnC implementa-
tions of a parallel task-based 2D wavefront pattern. We
will start by highlighting the main features of the differ-
ent implementations from a programmer’s point of view
(sec. II-B). Next, we conduct several experiments to identify
the factors that can limit the performance for the different
implementations (sec. II-C). From these experiments, we
have found two important sources of overheads: synchro-
nization and task creation/management. While overheads
caused by locks or atomic operations within the runtime
libraries are inevitable, unless specialized synchronization
hardware becomes available, nevertheless task creation and
task management overheads can be drastically reduced in
our wavefront patterns, which can have a significant impact
in the performance of fine task granularity codes. To reduce

these overheads, the user can guide the task scheduler by
using the task recycling (or task passing) mechanism, as well
as by prioritizing the execution of tasks to guarantee a cache-
conscious traversal of the data structure, what might help to
improve data locality. In particular, we have found that TBB
provides enough flexibility to efficiently implement these
optimizations, which we describe and evaluate in sec. III.

II. IMPLEMENTATIONS OF A WAVEFRONT PATTERN
BASED ON TASKS

A. The problem

As a case of study of the wavefront pattern, we select a
simple 2D problem, that we show in Fig. 2. In this code,
we compute a function for each cell of a n × n 2D grid
[2]. Each cell has a data dependence with two elements
of the adjacent cells. For example, in Fig. 1(a), we see
that cell (1, 3) depends on the north (0, 3) and west (1, 2)
ones, since on each iteration of the i and j-loop, cells that
were calculated in previous iterations are needed: A[i,j]
depends on A[i-1,j] and A[i,j-1]) (Fig. 2, line 3).
Clearly, the diagonal cells are totally independent so they
can be computed in parallel.

1 for (i=1; i<n; i++)
2 for (j=1; j<n; j++)
3 A[i,j] =foo(gs, A[i,j], A[i-1,j], A[i,j-1]);

Figure 2. Code snippet for a 2D wavefront problem

In our task parallelization strategy, the basic unit of work
is the computation performed by function foo at each (i,j)
cell of the matrix. Thus, the intention is to parallelize the i
and j loops (lines 1-2 in Fig. 2). Without loss of generality,
we assume that there will be auxiliary work on each cell, and
the computational load of this work will be controlled by the
gs parameter of the foo function. That way, we can define
the granularity of the tasks and therefore, we can study the
performance of different implementations depending on the
task granularity, as well as situations with homogeneous or
heterogeneous task workloads, as we will see in section II-C.

B. Task-based approach

In Fig. 1(b), the arrows show the data dependence flow for
our wavefront problem. For example, after the execution of
the upper left task (0, 0), which does not depend on any other
task, two new tasks can be dispatched (the one below (1, 0)
and the one to the right (0, 1)). This dependence information
can be captured by a 2D matrix with counters, like the one
we show in Fig. 1(b). The value of the counters points out
to how many tasks you have to wait for. Only the tasks with
the corresponding counter nullified can be dispatched.

Generalizing, each ready task first executes the task body
and then it decrements the counters of the tasks depending
on it. If this decrement operation ends up with a counter
equal to 0, the task is also responsible of spawning the

new independent task. The pseudo code of this procedure is
shown in Fig. 3. The Task_Body() function corresponds
to the work that each task has to perform. It is important
to note that the counters will be modified by different tasks
that are running in parallel. Thus, the access to the counters
must be protected in a critical section (lines 2–6 and 7-11).
Inside each critical section, we decrement the counter and
spawn the dependent task (lines 5 and 10) if the counter
reaches a 0 value. In this particular 2D problem, each task
decrements and checks two counters (lines 4 and 9).

1 Task_Body(); //Task’s work
2 Critical Section {
3 counter[i+1][j]--; //Dec. south neighbor counter
4 if (counter[i+1][j]==0)
5 Spawn();
6 }
7 Critical Section {
8 counter[i][j+1]--; //Dec. east neighbor counter
9 if (counter[i][j+1]==0)

10 Spawn();
11 }

Figure 3. Pseudo code for each task

As we mentioned in the introduction, we want to ex-
plore the possibilities that the current state-of-the-art task
parallelization frameworks (OpenMP, Cilk, TBB and CnC)
provide us to express this pattern. First, we will focus in the
particular coding details regarding the different implementa-
tions of this problem focusing in the distinguish features for
each case. Next, we will discuss the performance results.

1) OpenMP particularities: The coding of our wavefront
problem using OpenMP is quite straightforward, as we
see in Fig. 4. Here, we have defined the Operation
recursive function, in which firstly we take care of the
task work (line 6), and next we use the OpenMP directive
“#pragma omp critical” (lines 8 and 15) to deal with
the access and the update of the dependence counters in
mutual exclusion. Then, if the corresponding counter reaches
a 0 value, we recursively spawn a neighbor task using
the directive“#pragma omp task” (lines 12 and 19).
Please note that the two previously mentioned “unnamed”
critical sections are considered to have the same unspecified
name so they are mutually exclusive [4]. We have named
OpenMP v1 to this implementation.

Obviously, this implementation based on the omp
critical pragma leads to a coarse grain locking ap-
proach. This would be avoided if OpenMP could support the
atomic caption operation, i.e. the atomic modification and
comparison of a variable. Although there is an atomic di-
rective in OpenMP, it has a lot of constraints, and constructs
like:
#pragma omp atomic
if(--counter==0) action();

#pragma omp atomic
ready=--counter;
if(ready==0) action();

are NOT valid (actually they result in compilation er-
rors). Another way to get a finer grain locking imple-

1 void Operation(int i, int j)
2 {
3 int gs;
4 bool ready;
5

6 A[i][j] = foo(gs, A[i][j], A[i-1][j], A[i][j-1]);
7 if (j<n-1) {
8 #pragma omp critical{
9 --counter[i][j+1];

10 ready = counter[i][j+1]==0;}
11 if (ready){
12 #pragma omp task
13 Operation(i,j+1);}}
14 if (i<n-1){
15 #pragma omp critical{
16 --counter[i+1][j];
17 ready = counter[i+1][j]==0;}
18 if (ready){
19 #pragma omp task
20 Operation(i+1,j);}}
21 }

Figure 4. Coding details for the OpenMP implementation based on the
critical pragma (OpenMP v1 version)

mentation in OpenMP, consists in declaring an n × n
matrix of omp_lock_t data types (**locks), and by
using the OpenMP runtime functions omp_set_lock()
and omp_unset_lock() to control the access and
decrement of the shared counters. For instance, the omp
critical directive of lines 8–10 in Fig. 4, could be
replaced by the omp_set_lock(&locks[i][j+1])
and omp_unset_lock(&locks[i][j+1]) calls. We
named OpenMP v2 to this alternative implementation. Ob-
viously, this approach is more complex (or less productive
from a programmer’s point of view) than the previous
OpenMP v1 version, because the programmer now has to
ensure that the code is deadlock free or does not suffer from
blocking. Other important limitations in this approach are
the wastage of memory due to the locks matrix, as well as
some time overhead due to the initialization of locks.

2) Cilk particularities: We have also incorporated Cilk
into our study, due to the position of that framework as
one of the primary instances of modern task-based par-
allelism. In particular we have used the language exten-
sions provided by the intel Cilk Plus framework [8]. There
are two main constructors from Cilk Plus, that we need
in our pattern: cilk_spawn and cilk_sync. In Cilk,
the cilk_spawn keyword before a function invocation
specifies that this child function can potentially execute in
parallel with the continuation of the parent (caller). The
cilk_sync keyword precludes any code after it from
executing until all previously spawned children of the parent
have completed. Cilk does not support atomic captures, so
to control the access and decrement of the shared counters
we have to use locks.

The coding details of our 2D wavefront problem in Cilk
Plus are shown in Fig. 5, where we see that this imple-
mentation is close to the OpenMP version based on locks.
It differs mainly in the use of the pthreads_lock()
functions (Cilk does not provide constructors for locks),

and the cilk_sync statement (line 24). This statement
is required because the cilk_spawn constructor does not
wait on all the spawned tasks, a implicit feature provided
in OpenMP (or TBB) by the omp task (or spawn())
constructor.

1 void Operation(int i,int j)
2 {
3 int gs;
4 bool ready_e, ready_s;
5

6 A[i][j] = foo(gs, A[i][j] + A[i-1][j] + A[i][j-1]));
7 if (j<m-1){
8 pthread_mutex_lock(&locks[i][j+1]);
9 counter[i][j+1]--;

10 ready_e = (counter[i][j+1]==0);
11 pthread_mutex_unlock(&locks[i][j+1]);}
12 if (ready_e)
13 cilk_spawn Operation(i, j+1);
14

15 if (i<m-1){
16 pthread_mutex_lock(&locks[i+1][j]);
17 counter[i+1][j]--;
18 ready_s = (counter[i+1][j]==0);
19 pthread_mutex_unlock(&locks[i+1][j]);}
20 if (ready_s)
21 cilk_spawn Operation(i, j+1);
22

23 if (ready_e || ready_s)
24 cilk_sync;
25 }

Figure 5. Coding details for the Cilk implementation (Cilk version)

3) TBB particularities: One interesting construct
provided by TBB is the atomic template class.
So we can declare the matrix of counters using
atomic<int>**counter. There are several methods
available for an atomic declared variable. For instance, the
operation --counter[i][j], atomically decrements
and returns the new value of counter[i][j]. The
expression “if(--counter==0) action()” is safe
and just one task will execute the “action()”. Compared
with locks, atomic operations are faster and do not suffer
from deadlock and convoying, what adds a distinguish
feature that OpenMP or Cilk does not support at the
moment. The code snippet for a task implementation of
our problem using TBB and the atomic feature is shown in
Fig. 6, where the atomic operations are in lines 12 and 15.
We name TBB v1 to this implementation.

Contrary to the simpler OpenMP approach that defines
tasks using directives, in TBB we have to declare a class
and to define an execute method for our tasks. For instance,
in lines 1–7 of Fig. 6, we declare the Operation class
that inherits from the TBB task class. Then, in lines 8–17
we define the method execute() which does the actual
task computation. Now, as we see in lines 13 and 16, the
spawn of ready-to-run neighbors tasks is performed directly
by invoking the spawn() function.

There is a higher level programming approach to code
wavefront codes in TBB [5]. The idea is to use the TBB
parallel_do_feeder class template. This class essen-
tially implements a work-list algorithm, in such a way that

1 Class Operation: public TBB::task
2 {
3 int i, j, gs;
4 public:
5 Operation(int i_ , int j_) : i(i_), j(j_) {}
6 task * execute();
7 };
8 TBB::task * Operation::execute()
9 {

10 A[i][j] = foo(gs, A[i][j] , A[i-1][j] , A[i][j-1]);
11 if (i<n-1) //There is south neighbor
12 if (--counter[i+1][j]==0)
13 spawn(..... Operation(i+1,j));
14 if (j<n-1) //There is east neighbor
15 if (--counter[i][j+1]==0)
16 spawn(..... Operation(i,j+1));
17 }

Figure 6. Coding details for the TBB implementation based on atomic
operations (TBB v1 version)

new tasks can be added dynamically to the work-list by
invoking the parallel_do_feeder::add() method.
For instance, the spawn() invocations in lines 13 and 16 of
Fig. 6 would be replaced by feeder.add() invocations.
Each one of these calls will implicitly spawn a new task to
execute. We call TBB v2 to this implementation.

4) CnC particularities: Although CnC represents a
framework oriented to improve the programmer productivity
through the support and combination of parallel patterns [6],
it also provides a runtime library based on TBB and the task
programming model. This approach allows to increase the
level of abstraction when coding a parallel code, because
the user just focus on expressing semantic constraints when
programming, and do not have to worried about expressing
the parallelism or handling concurrent data structures. Thus
we think of interest to study an implementation of our
wavefront problem using CnC. We will name CnC to this
new implementation, for which some coding details are
shown in Fig. 7.

CnC provides three types of static collections: i) the
computation steps which are the high-level operations, in our
case the Operation collection, for which the execute()
method is defined in lines 8–22; ii) the data items collec-
tions; and iii) the control tags collections that prescribe the
steps, in our case the ElementTag collection, declared at
line 2. In CnC, the collections are connected via data and
control dependencies that specify the program’s ordering
constraints: in our example the control constrains are defined
in lines 5 and 7. Regarding the execute() method, we
see that precisely follows the scheme of Fig. 3, being the
basic difference with the TBB code of Fig. 6 that instead
of explicit calls to spawn(), we have to generate the
control tags for the ready-to-run neighbors invoking the
c.ElementTag.put() method (see lines 17 and 20).

C. Experimental evaluation

Next, we conduct several experiments to evaluate the
performance of the previously described implementations

1 // Declarations. Tag collection to control execution
2 < par ElementTag >
3 // Step prescription: for each ElementTag instance
4 // we control an step exec.
5 <ElementTag>:: (Operation)
6 // Step execution: a step may produce a new ElementTag
7 (Compute) -> <ElementTag>
8 int Operation::execute(const par & t, wave & c) const
9 {

10 int i = t.first;
11 int j = t.second;
12 int gs;
13

14 A[i][j] = foo(gs, A[i][j] + A[i-1][j] + A[i][j-1]);
15 if (i < n-1)
16 if (--counter[i+1][j] == 0)
17 c.ElementTag.put(par(i+1,j));
18 if (j < n-1)
19 if (--counter[i][j+1] == 0)
20 c.ElementTag.put(par(i, j+1));
21 return CnC::CNC_Success;
22 }

Figure 7. Coding details for the CnC implementation (CnC version)

(OpenMP v1, OpenMP v2, Cilk, TBB v1, TBB v2 and
CnC). In particular, the library versions are Intel Open MP
v. 3.0, Cilk Plus, TBB v. 3.0 and CnC v. 0.4. For all the
experiments, we have used a multicore machine with 2
quad-cores Intel(R) Xeon(R) CPU X5355 at 2.66GHz, SUSE
LINUX 10.1. The codes were compiled with icc 11.1 -O3.
We executed each code 5 times and computed the average
execution time of the runs to get the execution times. Then,
we computed the speedups, that are calculated with respect
to the sequential code time.

We evaluate two different scenarios: in the first case of
study, we fixed the workload of each task to a constant
size (subsec. II-C1), whereas in the second case we allowed
variable task workload sizes (subsec. II-C2). Our goal is
to evaluate the effect of different task granularities in both
cases of study, and to find where the sources of overhead
are in each implementation.

1) Constant task granularity: In this case of study, we
fixed the task workload to a constant grain size in all the
cells. For it, we set to a constant value the gs parameter
of the foo function (line 3 in Fig. 2). That parameter
sets the number of floating point operations per task. In
our experiments we evaluate three task granularities: i)
fine granularity case (which approximately corresponds to
200 floating point operations); ii) medium granularity case
(around 2,000 floating point operations); and iii) coarse
granularity case (i.e. 20,000 floating point operations). The
speedups for each case are shown in Figs. 8(a), (b), and (c)
respectively. For all the cases, the matrix size was 1,000
× 1,000. We should remark that sometimes we got aborted
executions for the Cilk version. In fact, it was impossible
to run the Cilk version for a matrix size of 1,500 ×
1,500 elements (or for larger matrix sizes). This is due to
limitations on the number of nested tasks that supports the
current runtime implementation of Cilk Plus. It is expected
that in future releases, the number of possible nested tasks

(a) Fine grain task (b) Medium grain task (c) Coarse grain task

Figure 8. Speedup results for constant task granularities. The x-axes represent the number of cores

increases, what will solve this problem. For the rest of the
versions, we performed the same experiments with other
matrix sizes without problems, and we obtained similar
results. Let’s note that in this experiment, except for the
initial and last computations, eventually the workload will
be evenly balanced among the threads.

One general first conclusion that we get is that task grain
size heavily affects scalability, specially in the fine and
medium grain cases. Moreover, the scalability results for the
fine granularity case (a) are disappointing. In the fine and
medium cases, the TBB versions outperform all the other
implementations, except in the fine grain case with 8 cores,
where Cilk tends to scale better (although let’s not forget that
this latter version was unable to run to completion in some
executions). On the other hand, in the coarse granularity case
(c) all the implementations exhibit a similar behavior. Both
TBB v1 based on explicit spawns and TBB v2 based on
the parallel_do_feeder() template, present similar
speedups, although in the fine granularity case (a) TBB v1
exhibits better results from 1 to 6 cores. The OpenMP v1
implementation based on the critical pragma, is the one with
the poorest performance. On the contrary, the OpenMP v2
implementation based on locks, although also exhibits bad
results in the fine task granularity case (a) for small num-
ber of cores, it keeps scaling when the number of cores
increases. On the other hand, the CnC implementation keeps
between the TBB and the OpenMP ones.

In order to understand where the sources of overhead for
each implementation are, we decided to profile our codes
by employing the call-graph activity of Vtune [9]. This tool
works by analyzing the entry and exit points of all user and
library functions. The call-graph activity provides important
information about all the functions analyzed: self time,
waiting time, number of calls, etc. We focus our discussion
in the results of the versions that ran to completion, in
particular in the fine granularity case (a). These results are
shown in Figs. 9 and 10.

For the OpenMP results shown in Fig. 9, task ac-
counts for the contribution of the omp_task() and
omp_task_alloc() internal functions which are asso-
ciated to the omp task directive, critical accounts
for the omp_critical() and omp_end_critical()

OpenMP v1 code OpenMP v2 code

Figure 9. The most time consuming library functions in OpenMP
implementations for the fine granularity case (a). The y-axes present the
ratio between the self time of each function and the total execution time
for 1, 2, 4, 6 and 8 cores

internal functions that are associated to the omp
critical directive in the OpenMP v1 code (see Fig. 4),
whereas lock accounts for the omp_set_lock() and
omp_unset_lock() functions, that are directly invoked
by the user in the OpenMP v2 code to control the access to
the shared counters. From these results we see that the over-
head of the task creation in OpenMP is important (around
30% of the execution time). However, the main source of
inefficiency is due to the critical and lock functions. In
the figures for the OpenMP v1 and OpenMP v2 codes,
we have shadowed in the upper side of the critical
and lock bars, the contribution due to the waiting time
in the corresponding functions. Precisely, this waiting time
represents the contention among the threads to get a lock.
In particular, the contention to capture the global lock used
by the internal functions of critical in the OpenMP v1 code
is the main contributing factor of overhead. This contention
significantly increases with the number of cores, and the
resulting waiting time it accounts for near the 60% of the
execution time on 8 cores. This explains (added to the task
creation overhead) the poor scalability results that we saw
for the OpenMP v1 code in Fig. 8-case (a). Regarding the
waiting time due to the explicit omp_lock() calls in the
OpenMP v2 code, we see again that there is contention,
although to a lesser extent. For instance, the waiting time is
around 20% on 8 cores. Although with the approach of ex-
plicit management of locks, the overhead due to contention
is now much smaller than the overhead measured for the
critical section implementation, still we see that this waiting
time increases with the number of cores.

From the TBB results shown in Fig. 10, we see that

TBB v1 code TBB v2 code CnC code

Figure 10. The most time consuming library functions in TBB and CnC implementations for the fine granularity case (a). The y-axes present the ratio
between the self time of each function and the total execution time for 1, 2, 4, 6 and 8 cores

the functions that more time consume are: spawn() (this
method is invoked each time a new task is spawned),
allocate() (it selects the best memory allocation
mechanism available each time a task is created) and
get_task() (this method is called by the internal sched-
uler after completing the execution of a task). The overheads
due to these functions, are very similar in the TBB v1 and
TBB v2 implementations. However in TBB v2 there is an
additional internal function, self() (that is invoked by the
parallel_do_feeder() template) whose contribution
is noticeable, what explains the slight difference in perfor-
mance that we saw in Fig. 8-case (a) for the TBB codes.
In any case, we should remark that the main source of
overhead is due to the spawn() method, and that it grows
when the number of cores increases. This is more noticeable
in the TBB v1 code, where spawn() may consume near
the 28% of the execution time for 8 cores. For other task
granularities, we also noticed that spawn() is the most
contributing factor to the overhead, and that similarly its
contribution increases with the number of cores.

From the CnC results in Fig. 10, we see that the more time
consuming functions are prepare(), schedule(),
step_instance(), scallable_malloc() and
get_priority(). All of them are internal helper
functions called by the c.ElementTag.put() method
(see Fig. 7), invoked in our program by the user to add
a new tag in order to prescribe the computational steps.
The most time contributing functions are prepare()
and schedule() which account for more than a 50%
of execution time, what explain the mediocre performance
we saw in Fig. 8-case (a) for the CnC code. Interestingly,
around the 50% of the time of schedule() is due to
TBB overhead (spawn(), allocate(), ...). Therefore,
the rest of overhead is due to the abstraction penalty
introduced by the helper functions. We also noticed that the
overhead due to the helper functions tends to decrease for
coarser task granularities, what explain the better scalability
we observed for the medium and coarse granularity cases
in the CnC codes.

2) Variable grain size: In the next case of study, we
changed the task workload on each cell, to a variable grain
size. For it, we assigned variable values to the gs parameter

of the foo function (line 3 in Fig. 2). Now, in this scenario,
it could be some load imbalance among the threads, so
we would like to study how this new factor affects the
performance of our implementations, as well as to identify
where the sources of overhead are.

We evaluated three grain ranges: i) a variable fine gran-
ularity case, for which gs=[200..800] FLOP; ii) a vari-
able medium granularity case for which gs=[800..2, 000]
FLOP; and iii) a variable coarse granularity case (now
gs=[2, 000..20, 000] FLOP). The speedups for these cases
are shown in Fig.11(a), (b) and (c) respectively. Again, for
all the cases the matrix input size was 1,000 × 1,000. Similar
results were obtained for other matrix sizes. As mentioned
before, sometimes we got aborted executions for the Cilk
version.

From the results in Fig. 11, we see that, in spite of the
variable task granularity, the behavior of each implemen-
tation is consistent with the behavior for the constant task
granularity. In any case, again the task grain size is the main
factor that affects scalability. In fact, the results that we
obtain for the variable fine granularity case (a) are better
to what we obtained for the constant fine granularity case
(Fig. 8(a)). The reason is that now, the average workload
of a task is coarser than in the constant case, therefore the
overheads will have less weight.

Again, we used the Vtune call-graph activity to profile
the most time consuming functions for each implementation
that ran to completion, getting similar results to those
discussed in the previous subsection. We could mention
that the momentary load imbalance is not a factor affecting
the performance, because it is successfully managed by the
task-schedulers implemented in the libraries. In particular,
Cilk, TBB (CnC) and the Intel OpenMP runtimes manage
task scheduling through the work-stealing strategy, that has
proved to be an effective mechanism for balancing the
load in our wavefront codes. In particular, we studied the
overheads due to the work stealing functions, finding that
they always represented less than a 1% of execution time.

(a) Fine grain task range (b) Medium grain task range (c) Coarse grain task range

Figure 11. Speedup results for variable task granularities. The x-axes represent the number of cores

III. FURTHER OPTIMIZATIONS

A. Atomic Capture

One way to overcome the source of inefficiency due to the
lack of atomic capture in the OpenMP 3.0 framework, could
be by directly using compare-and-swap (CAS) instructions.
We show in Fig. 12 a new OpenMP version based on this
optimization, where function CompareAtomic() (lines 3-
6) is now responsible of performing the atomic accesses to
the counters matrix (lines 11 and 17).

We evaluate this new OpenMP version (named
OpenMP v1.2) following the same methodology explained
in the previous section. The results for the constant fine
task granularity case (200 FLOP) are shown in Fig. 13,
where we keep the OpenMP v1 and OpenMP v2 (OpenMP
versions based on critical and locks, respectively), as well as
the TBB v1 (TBB version with the atomic template class)
for comparison. As we can see, clearly the synchronization
based on CAS instructions mechanism significantly reduces
the contention problem in the OpenMP codes, making the
OpenMP optimized version the best one in 6 and 8 cores.
For the medium grain size, the TBB v1 code exhibits
slightly better performance than the optimized OpenMP
one, whereas for the coarse grain size, both OpenMP v1.2
and TBB v1 codes behave similarly.

We used the Vtune event-based sampling tool for col-
lecting the Locked Operations Impact ratio [9] in order
to measure the percentage of cycles spent by locks (or
atomic) operations on each code. We found that, in the fine
grain case, the contention due to atomic operations arose
to near the 30% of the CPU cycles for 6 and 8 cores
in the TBB v1 code, whereas in the OpenMP v1.2 code
that impact ratio was around 20%, what explains the better
performance in the OpenMP optimized code. However, in
the medium grain case, the ratio was always below 5% for
the TBB v1 version, whereas it was higher than 6% for
the OpenMP v1.2 one, explaining the slight differences in
scalability. In the coarse grain case, the ratios were negligible
for both versions. In any case, these results demonstrate us
that the atomic capture is an important feature that should
be available as a high level construct. In fact, this atomic
capture facility will be implemented in the next version of
OpenMP (v. 3.1).

1 void Operation(int i,int j)
2 {
3 int CompareAtomic(int i, int j){
4 int x = __sync_sub_and_fetch((volatile int *)&

counter[i][j], 1);
5 return x==0;
6 }
7 int gs;
8

9 A[i][j] = foo(gs, A[i][j] + A[i-1][j] + A[i][j-1]));
10 if (j<m-1) {
11 if (CompareAtomic(i,j+1)) {
12 #pragma omp task {
13 Operation(i,j+1);}
14 }
15 }
16 if (i<m-1) {
17 if (CompareAtomic(i,j+1)) {
18 #pragma omp task {
19 Operation(i+1,j);}
20 }
21 }
22 }

Figure 12. Coding details for the OpenMP implementation based on CAS
instructions (OpenMP v1.2 version)

Figure 13. Results of the optimized version of OpenMP based on CAS
operations (OpenMP v1.2), for the constant fine task granularity case

B. Guiding the scheduler

While it might be difficult to reduce synchronization over-
heads caused by the atomic operations within the OpenMP
or TBB runtime library, unless specialized synchronization
hardware becomes available, nevertheless the results of the
previous section have shown us that library developers of
both OpenMP and TBB should try to reduce the other
sources of overhead: the cost of task creation and task
management methods, which is significant if task granularity
is not sufficiently coarse.

One way the programmer can go to reduce the cost of task

creation and task management consist in the use of explicit
task passing (or task recycling) mechanism [5], which is
available in TBB. In our wavefront pattern, each task has
the opportunity to spawn two new tasks (east and south
neighbors). We can avoid the spawn of one of them by
returning a pointer to the next task, so instead of spawning
a new task, the current task recycles into the new one. This
way, we achieve two goals: reducing the number of calls
to spawn(), as well as to save the time for geting new
tasks from the local queue (reducing the number of calls
to get_task()). In OpenMP or Cilk codes, this recycling
mechanism could be somehow emulated by recursively call-
ing the task body of a ready to dispatch new task, avoiding
the spawning. However, note this emulation strategy could
exhaust the stack when the number of nested tasks is too
large, a problem that the TBB recycling mechanism avoid.
In addition, when recycling we can provide hints to the
scheduler about how to prioritize the execution of tasks to
guarantee a cache-conscious traversal of the data structure,
what might help to improve data locality.

In Fig. 14 we see a code snippet with the opti-
mized TBB implementation. In line 5, we set the flag
recycle_into_east if there is a ready to dispatch task
to the east of the executing task. Otherwise, we set the flag
recycle_into_south, in line 11, if the south task is
ready to dispatch. Later, according to these flags, we recycle
the current task into the east, line 16, or south tasks, line 20.
Note that, since in this example the data structure is stored
by rows, if both east and south tasks are ready, the data
cache can be better exploited by recycling into the east task.
That way, the same thread/core executing the current task is
going to take care of the task traversing the neighbor data,
so we make the most of the spatial locality. So in that case,
we recycle into the east task and spawn a new south task that
would be executed later. In any case, the number of spawns
in this version is reduced from n× n− 2n (the number of
spawns in TBB v1 and TBB v2) to n − 2 (approximately
the size of a column).

In order to properly evaluate the impact of each mech-
anism (recycling and locality), we have studied the perfor-
mance of two versions: TBB v3, a version that prioritizes
the south task instead of the east one. Its goal is to iso-
late the advantages of recycling (without exploiting cache);
And TBB v4, the version that implements the algorithm
described in Fig 14 (recycling and locality). In Fig. 15(a)
we can see the speedups for the TBB v1 (shown here as
a baseline), TBB v3 and TBB v4 implementations for the
case of constant fine task granularity (gs=200 FLOP).

It is clear that TBB v4 is the best solution. In fact, we
measured speedups for other fine grain sizes finding that the
finer the granularity, the better the improvement. Besides,
it is interesting to see that a great deal of the improvement
contribution is due to the recycling optimization, pointed out
by the TBB v3 enhancement over the TBB v1 version.

1 Task_Body(); // Task’s work
2 if (j<n-1){ // There is east neighbor
3 {
4 if (--counters[i][j+1]==0)
5 recycle_into_east = true;
6 }
7 if (i<n-1){ // There is south neighbor
8 {
9 if (--counters[i+1][j]==0)

10 if (!recycle_into_east){
11 recycle_into_south = true;
12 else
13 spawn(i+1,j));
14 }
15 if (recycle_into_east){ //Recycle this into east
16 recycle_as_child_of();
17 j = j+1;
18 return this;
19 }else if(recycle_into_south){ //Recycle this into south
20 recycle_as_child_of();
21 i=i+1;
22 return this;
23 }else
24 return NULL; // There is no neighbor task ready

Figure 14. Coding details for the optimized TBB implementation:
recycling and locality (TBB v4 version)

(a) Speedups. The x-axis represents
the number of cores

(b) Ratio for library functions in
TBB v3 and TBB v4

Figure 15. Results of the optimized versions of TBB in the constant fine
task granularity case

To go deeper into the comparison of these versions and
better understand the sources of improvement, we have used
again the call-graph activity of Vtune to collect information
of the most time consuming functions in the optimized
implementations. In Fig. 15(b) we show the ratio of time
consumed by the task creation and management functions
(spawn(), allocate(), and get_task) relative to the
total execution time. The profiling times for these functions
are the same for TBB v3 and TBB v4. In that figure we
see that the percentage of time wasted by these functions
is less than 6% of execution time. In fact we see that, for
each internal function there is a reduction of around one
order of magnitude in the recycling versions when compared
with the TBB v1 version (see Fig. 10). For instance, one of
the reasons of this reduction is that the number of calls to
spawn() in TBB v1 is 998,000 (clearly one call per matrix
element, but for the last column and row), while this number
is of 998 calls in TBB v3 and TBB v4.

On the other hand, thanks to the Vtune event-based
sampling tool, we have collected the L1D and L2 miss
ratios for our TBB v3 and TBB v4 implementations, and
for the fine granularity case again. The ratios are shown
in Fig. 16, that confirms that cache performance is much

worse in TBB v3 than in TBB v4. We have measured the
miss ratios with other granularities, and we have noticed that
improvement of the cache-conscious version is larger when
we move from coarse grain to fine grain and is slightly better
appreciated in L1D than in L2.

L1D miss ratio L2 miss ratio

Figure 16. L1D and L2 miss ratio for TBB v3 and TBB v4 for the fine
granularity case in 1, 2, 4, 6 and 8 cores

C. Tiling: increasing the granularity

As we have seen, the performance of the wavefront
algorithms consistently decreases as the task workload grain
gets finer. The tiling technique is a well known solution to
get coarser grain size and can also be applied to wavefront
problems. The idea is to assign an equal number of adjacent
columns and rows to each processor (square tiles). This
technique achieves two goals: to reduce the number of tasks
(and therefore, the number of spawns); and to save some
overhead of the wavefront bookkeeping (the memory space
and the initialization time of the counter/dependence matrix,
which is now smaller due to it needs a counter per block -
tile, not per matrix element). Another possibility could be to
select rectangular tiles (instead of square tiles) to better take
advantage of cache. A rectangular tile with more columns
than rows could lead to a smaller number of cache misses if
prefetching strategies are available in the cache architecture.

We implemented square tiling in the TBB v4 version, and
measured the speedups for different block sizes (BS) in the
fine grain case. We have left the evaluation of rectangular
tiles for a future work. In our experiment, we found an
increment of speedup for 8 cores of around a 9% when
BS = 10, which was the optimal block size. For larger
block sizes, speedups start to diminish again, because the
degree of parallelism is lower when we increase the size
of the block while keeping a constant problem input size
(the matrix size). Basically, if we have a larger block size,
there are less independent blocks to process concurrently.
We confirmed this result using profiling information about
the number of calls to the sched_yield() TBB internal
function, which is called by the scheduler when there is not
enough parallel work, finding an important increment in the
number of calls when BS is higher than 10.

IV. RELATED WORKS

There have been several research works that have targeted
the problem of parallelizing wavefront problems, well on
distributed memory architectures [10], or on heterogeneous

architectures such as SIMD-enabled accelerators [11], or the
Cell/BE architecture [12]. In all these works, the authors
have focused on vectorization optimizations and on study-
ing the appropriate work distribution on each architecture,
forcing the programmer to deal with several low level
programming details. We depart from these works in that
we rather focus on higher level programming approaches
that release the user from the low level architectural details.

Precisely, to free the user from dealing with those low
level details, there has been substantial effort invested in
characterizing parallel patterns. Patterns may also go by
the name “algorithm skeleton”[13], being the wavefront
one of these patterns [2]. In this research line, there have
been a recent proposal [14] in which the authors propose
a “wavefront” abstraction for multicore clusters. We differ
from this work in that they address specific regular wavefront
problems, where the granularity of a computation is very
coarse (one cell needs around 117 sec. in a 1Ghz CPU).
They use threads and rely on the O.S. scheduler to process
the work. On the contrary, our study focus on much more
fine task granularity regular and irregular problems, as well
as in the study of the programming support and evaluation of
the performance that frameworks based on task-schedulers
provide.

V. CONCLUSIONS

Through our study of different task-based implementa-
tions of a wavefront pattern, we have found that TBB
provides some distinguishing features that allow the more
efficient implementations. Features such as the atomic cap-
ture, and the task recycling mechanism, coupled with pri-
oritization of task to exploit data locality, are demonstrated
to lead to important performance improvements, specially
when the granularity of the task is fine. We believe they
should be available as user level constructors (as TBB does)
to allow high level optimizations guided by the programmer.

In any case, these optimizations could be wrapped in a
higher level template to facilitate the coding of wavefront
codes to less experienced users. As a future work, we plan to
implement a wavefront template for the TBB library (as the
parallel_do or the pipeline ones) that encapsulates
the mentioned optimizations and allow to the developer to
express the wavefront dependencies and the data locality
hints without worrying about atomic counters or task recy-
cling functionalities.

REFERENCES

[1] V. U. Dasgupta Sanjoy, Papadimitriou Christos, Algorithms.
McGraw-Hill Higher Education, 2007.

[2] J. Anvik, S. MacDonald, D. Szafron, J. Schaeffer, S. Brom-
ling, and K. Tan, “Generating parallel programs from the
wavefront design pattern,” Parallel and Distributed Process-
ing Symposium, International, vol. 2, p. 0104, 2002.

[3] Wavefront Pattern, University of Illinois at Urbana-
Champaign. College of Engineering Department
of Computer Science. [Online]. Available:
http://www.cs.uiuc.edu/homes/snir/PPP/patterns/wavefront.pdf

[4] B. Chapman, G. Jost, and R. van der Pas, Using OpenMP:
Portable Shared Memory Parallel Programming. The MIT
Press, 2007.

[5] J. Reinders, Intel Threading Building Blocks. O‘Reilly, 2007.
[Online]. Available: http://www.threadingbuildingblocks.org/

[6] Intel Concurrent Collections for C/C++, Intel Corp. [On-
line]. Available: http://software.intel.com/en-us/articles/intel-
concurrent-collections-for-cc

[7] P. Kambadur, A. Gupta, A. Ghoting, H. Avron, and A. Lums-
daine, “Pfunc: Modern task parallelism for modern high
performance computing,” in SC’09: Conference on High
Performance Computing, Networking, Storage and Analysis.
New York, USA: ACM, 2009, pp. 1–11.

[8] Intel Cilk++ SDK, Intel Corp. [Online]. Available:
http://software.intel.com/en-us/articles/intel-cilk

[9] J. Reinders, VTune Performance Analyzer Essentials. Intel
Press, 2005.

[10] E. C. Lewis and L. Snyder, “Pipelining wavefront compu-
tations: Experiences and performance,” in HIPS’99: IEEE
International Workshop on High-Level Parallel Programming
Models and Supportive Environments, 1999.

[11] O. Storaasli and D. Strenski, “Exploring accelerating science
applications with FPGAs,” in Proc. of the Reconfigurable
Systems Summer Institute, July 2007.

[12] A. M. Aji, W.-c. Feng, F. Blagojevic, and D. S. Nikolopoulos,
“Cell-swat: modeling and scheduling wavefront computations
on the cell broadband engine,” in CF ’08: Conference on
Computing Frontiers. New York, NY, USA: ACM, 2008,
pp. 13–22.

[13] J. Falcou, J. Srot, T. Chateau, and J. Laprest, “Quaff: Effi-
cient C++ design for parallel skeletons,” Parallel Computing,
vol. 32, no. 7–8, pp. 604–615, 2006.

[14] L. Yi, C. Moretti, S. Emrich, K. Judd, and D. Thain, “Har-
nessing parallelism in multicore clusters with the all-pairs
and wavefront abstractions,” in HPDC ’09: ACM Interna-
tional symposium on High performance distributed comput-
ing. New York, NY, USA: ACM, 2009, pp. 1–10.

