
A case study of the task-based parallel
wavefront pattern1

Antonio J. DIOS a, Angeles NAVARRO a Rafael ASENJO a Francisco CORBERA a

and Emilio L. ZAPATA a

a Dept. of Compt. Architect. Univ. of Malaga, Spain.
{antjgm, angeles, asenjo, corbera, ezapata}@ac.uma.es

Abstract. This paper analyzes the applicability of the task-programming model to
the parallelization of the wavefront pattern. Computations for this type of problem
are characterized by a data dependency pattern across a data space. This pattern can
produce a variable number of independent tasks through traversing this space. Dif-
ferent implementations of this pattern are studied based on the current state-of-the-
art threading frameworks that support tasks. For each implementation, the specific
issues are discussed from a programmer’s point of view, highlighting any advanta-
geous features in each case. In addition, several experiments are carried out, and the
factors that can limit performance in each implementation are identified. Moreover,
some optimizations that the programmer can exploit to reduce overheads (task re-
cycling, prioritization of tasks based on locality hints and tiling) are proposed and
assessed.

Keywords. Wavefront computation, Task programming model, Task recycling

1. Introduction

Wavefront is a programming pattern that appears in scientific applications such as those
based on dynamic programming [1] or sequence alignment [2]. In this type of pattern,
data elements are distributed on multidimensional grids representing a logical plane or
space [3]. The elements must be computed in order because there are dependencies
among them. One example is the 2D wavefront where computations start at a corner of a
matrix and progress across the plane following a diagonal trajectory. Each anti-diagonal
represents the number of computations or elements that could be executed in parallel
without dependencies among them.

There have been several research studies that have targeted the problem of paralleliz-
ing wavefront patterns, either on distributed memory architectures [4] or on heteroge-
neous architectures such as SIMD-enabled accelerators [5], the Cell/BE architecture [6]
or GPUs [7]. In all these studies, the authors have focused on vectorization optimizations
and on appropriate work distribution on each architecture, and thus the programmer had
to deal with several low-level programming details. The present study differs in that the
focus is on higher-level programming approaches that release the user from low-level
architectural details.

1This material is based on work supported by Spanish projects: TIN2006-01078 from the Ministerio de
Ciencia e Innovación, and P08-TIC-3500 from the Junta de Andalucía.

Recently, several parallelization frameworks that provide support for parallel tasks
rather than parallel threads [8,9,10] have become available. Task-based programming
seems more appropriate than thread-based programming when addressing the implemen-
tation of parallel wavefront problems. First, tasks are much lighter than logical threads,
so in wavefront applications with light or medium computational workload (as in our
case), tasks are a more scalable constructor. Second, task-based frameworks provide a
programming model in which developers express the source of parallelism in their ap-
plications using tasks, while the burden of explicitly scheduling these tasks is managed
by the library runtimes. Finally, the runtime task schedulers can obtain some high-level
information (provided by the user or a template) that can be used to dynamically redis-
tribute the work across the available processors, even sacrificing fairness for efficiency,
what offers improved scalability [9]. This differs from how an O.S. thread scheduler
works.

The aim of this paper is to explore the programmability and performance of dif-
ferent OpenMP 3.0 [8], Intel Threading Building Blocks (TBB) [9], Cilk [11] and Intel
Concurrent Collections (CnC) [10] implementations of a parallel task-based 2D wave-
front pattern. We begin by highlighting the main features of the different implementa-
tions from a programmer’s point of view (Sec. 2.1). Next, we conduct several experi-
ments to identify the factors that can limit the performance for the different implemen-
tations (Sec. 2.2). These experiments demonstrate two important sources of overheads:
synchronization and task creation/management. Whereas the former are inevitable, un-
less specialized synchronization hardware becomes available, the latter can be drastically
reduced in the wavefront patterns. To this end, the user can guide the task scheduler by
using the task recycling (or task passing) mechanism, in addition to prioritizing the ex-
ecution of tasks to guarantee a cache-conscious traversal of the data structure. In par-
ticular, TBB provides sufficient flexibility to efficiently implement these optimizations,
which we describe and assess in Sec. 3.

2. Implementations of a wavefront pattern based on tasks

As a case-study of the wavefront pattern, we select a simple 2D problem in which we
compute the function A[i,j]=foo(gs, A[i,j], A[i-1,j], A[i,j-1]) for
each cell of a n × n 2D grid, A. Clearly, each cell has a data dependence with two
elements of the adjacent cells; however, the anti-diagonal cells are totally independent
and thus can be computed in parallel.

In this task parallelization strategy, the basic unit of work is the computation per-
formed by function foo at each (i,j) cell of the matrix. Without loss of generality, we
assume that there will be auxiliary work on each cell, and the computational load of this
work will be controlled by the gs parameter of the foo function. In this way the gran-
ularity of the tasks can be defined and therefore it is possible to study the performance
of different implementations depending on task granularity, as well as situations with
homogeneous or heterogeneous task workloads, as shown in section 2.2.

The pseudo-code of each task in the wavefront problem is shown in Fig. 1(a). In
Fig. 1(b), the arrows show the data dependence flow and the same dependence informa-
tion captured by a 2D matrix with counters. The value of the counters shows how many
tasks are pending. Only the tasks with the corresponding counter nullified can be dis-
patched. Generalizing, each ready task first executes the task body, Task_Body(), and

then decrements the counters of the tasks depending on it. If this decrement operation
ends with a counter equal to 0, the task is also responsible for spawning the new inde-
pendent task. It is important to note that the counters will be modified by different tasks
that are running in parallel. Thus, access to the counters must be protected in a critical
section (lines 2-6 and 7-11).

1 Task_Body(); //Task’s work
2 Critical Section {
3 counter[i+1][j]--; //Dec. South neighbour counter
4 if (counter[i+1][j]==0)
5 Spawn(i+1, j);
6 }
7 Critical Section {
8 counter[i][j+1]--; //Dec. East neighbour counter
9 if (counter[i][j+1]==0)

10 Spawn(i, j+1);
11 }

i

0

1

2

3

\j 0 1 2 3

0 1 1 1
1 2 2 2
1 2 2 2
1 2 2 2

(a) Pseudo-code for each task (b) counter matrix

Figure 1. Typical wavefront traversal with dependencies translated into counters

2.1. OpenMP, Cilk, TBB and CnC specific issues

The coding of the wavefront problem using OpenMP is quite straightforward. We
first define an Operation recursive function, in which task work is performed,
Task_Body(), and then the OpenMP directive “#pragma omp critical” is
used to access and update the dependence counters individually. Then, if the corre-
sponding counter reaches 0, a neighbour task is recursively spawned using the direc-
tive “#pragma omp task” preceding the recursive call to the Operation function.
This implementation is named OpenMP_v1.

Obviously, this implementation, based on the omp critical pragma, leads to
a coarse-grain locking approach. This would be avoided if OpenMP could support the
atomic caption operation (i.e. atomic decrement and compare); however, this is not the
case. Another way to obtain a finer-grain locking implementation in OpenMP, consists
in declaring an n× n matrix of omp_lock_t data types (**locks), and by using the
OpenMP runtime functions omp_set_lock() and omp_unset_lock() to control
access to the shared counters. This alternative implementation is named OpenMP_v2.
Clearly, this approach is less productive than the previous OpenMP_v1 version from a
programmer’s point of view, because the programmer now has to ensure that the code is
deadlock free. Another important issue in this approach is the waste of memory and time
due to the locks matrix storage and initialization.

Regarding the Cilk implementation, the language extensions provided by the Intel
Cilk Plus framework [11] were used. There are two main constructors from Cilk Plus
required by the pattern: cilk_spawn and cilk_sync. In Cilk, the cilk_spawn
keyword before a function invocation specifies that this child function can potentially
execute in parallel with the continuation of the parent (caller). The cilk_sync keyword
precludes any code following it from executing until all the previously spawned children
of the parent have run to completion. Cilk does not support atomic captures, so locks
must be used to control access to the shared counters. The coding details differ mainly
in the use of the pthreads_lock() functions (Cilk does not provide constructors for
locks), and in that cilk_sync statements are required.

With respect to the TBB implementation, the atomic template class provided
is a construct of interest. Thus, the matrix of counters can be declared by using
atomic<int>**counter. For example, the expression “if(--counter==0)
action()” is safe and just one task will execute the “action()”. Compared to locks,
atomic operations are faster and do not suffer from deadlock and convoying; this is dis-
tinguishing feature that OpenMP or Cilk does not currently support. This implementation
is named TBB_v1.

There is also a higher-level programming approach to code wavefront codes in
TBB [9]. The idea is to use the TBB parallel_do_feeder class template. Basically,
this class implements a work-list algorithm in such a way that new tasks can be added dy-
namically to the work-list by invoking the parallel_do_feeder::add()method.
Thus, the spawn() invocations would be replaced by feeder.add() invocations.
This implementation is called TBB_v2.

Finally, CnC [10] also provides a runtime library based on TBB and so it can also
be considered a task programming framework. CnC provides three types of static col-
lections: i) the computation steps which are the high-level operations. In this case these
are the Operation collection; ii) the data items collections; and iii) the control tags
collections that prescribe the steps. In this case they are the ElementTag collection.
In CnC, the collections are connected via data and control dependencies that specify the
program’s ordering constraints. The basic difference with the TBB code is that instead
of explicit calls to spawn(), we have to generate the control tags for the ready-to-run
neighbours invoking the ElementTag.put() CnC method. This new implementation
is named CnC to.

2.2. Experimental assessment

Next, we present several experiments that assess the performance of the previously de-
scribed implementations (OpenMP_v1, OpenMP_v2, Cilk, TBB_v1, TBB_v2 and CnC).
Specifically, the library versions are Intel Open_MP 3.0, Cilk Plus, TBB 3.0 and CnC
0.4. For all the experiments, a multicore machine with 2 quad-cores Intel(R) Xeon(R)
CPU X5355 at 2.66GHz, SUSE LINUX 10.1 was used. The codes were compiled with
icc 11.1 -O3. Each code was executed 5 times and the average execution time of the
runs was computed to obtain the execution times. Next, the speedups were calculated in
relation to the sequential code time.

In the first case-study, we fixed the task workload to a constant grain size in all the
cells. Therefore, the workload will be evenly balanced among the threads (except for the
initial and final computations). To do this, the gs parameter of the foo function was
set to a constant value. This parameter sets the number of floating point operations per
task. In our experiments three task granularities were assessed: i) the fine granularity
case (which corresponds to approximately 200 floating point operations); ii) the medium
granularity case (around 2,000 FLOP); and iii) the coarse granularity case (i.e. 20,000
FLOP). These granularities were selected in accordance with our observation of real
wavefront codes [12]. The speedups for each case are shown in Figs. 2(a), (b), and (c),
respectively. For all the cases, the matrix size was 1,000 × 1,000. Note that aborted
executions sometimes occurred for the Cilk version. In fact, it was impossible to run the
Cilk version for a matrix size of 1,500 × 1,500 elements (or for larger matrix sizes).
This is due to limitations on the number of nested tasks that supports the current runtime
implementation of Cilk Plus.

(a) Fine grain task (b) Medium grain task (c) Coarse grain task

Figure 2. Speedup results for constant task granularities. The x-axes represent the number of cores

In the fine- and medium-grain cases, the TBB versions outperformed all the other
implementations, except in the fine-grain case with 8 cores, where Cilk scaled better
(although recall that the Cilk version was sometimes unable to run to completion). On
the other hand, in the coarse granularity case (c) all the implementations exhibited sim-
ilar behaviour. Both TBB_v1 and TBB_v2 presented similar speedups, although in the
fine-granularity case (a) TBB_v1 exhibited slightly better results from 1 to 6 cores. The
OpenMP_v1 provided the poorest performance. In contrast, the OpenMP_v2 implemen-
tation based on locks scaled better. On the other hand, the performance of the CnC im-
plementation was between those of the TBB and OpenMP implementations.

To identify the sources of overhead for each implementation, we decided to profile
our codes by employing the call-graph activity of Vtune [13]. Here, we focus our discus-
sion on the results of the version that ran to completion with the worst performance: the
fine-granularity case (a). It was observed that the overhead of task creation in OpenMP is
high (around 30% of the execution time). However, the main source of inefficiency is due
to the critical and lock functions. In particular, the main contributing factor of overhead
in the OpenMP_v1 code is the contention due to acquiring the global lock used by the
internal functions in the critical directive. This contention significantly increases with the
number of cores, so the resulting waiting time accounts for nearly 60% of the total time
on 8 cores. In addition to the task creation overhead, this explains the poor scalability
results shown for the OpenMP_v1 code in Fig. 2-case (a). Compared to this, the waiting
time due to the explicit omp_lock() calls in the OpenMP_v2 code is around 20% on
8 cores. According to the TBB profiling results, we observed that the functions that con-
sume more time are as follows: spawn(), allocate() and get_task() (that ob-
tains the next task to dispatch). The overheads due to these functions are very similar in
the TBB_v1 and TBB_v2 implementations. However, in TBB_v2 there is an additional
internal function, self() (that is invoked by the parallel_do_feeder() tem-
plate) whose contribution is notable; this explains the slight difference in performance
shown in Fig. 2-case (a) for the TBB codes. In any case, we saw that the main source of
overhead is due to the spawn() method, and that it increases when the number of cores
increases. This is more noticeable in the TBB_v1 code, where spawn() may consume
nearly 28% of the execution time for 8 cores. According to the CnC profiling results, the
most time-consuming functions are prepare() and schedule() (helper functions
called by the ElementTag.put() method, see [14]), which account for more than
50% of execution time. This explains the poor performance shown in Fig. 2-case (a) for
the CnC code. The overhead due to the helper functions tends to decrease for coarser
task granularities, which explains the superior scalability observed for the medium- and
coarse-granularity cases.

As an additional case-study, we changed the task workload on each cell to a variable
grain size. Variable values were assigned to the gs parameter of the foo function. There

could be some load imbalance among the threads in this scenario. However, we observed
that the variable workload was not a factor that affected performance, because load im-
balance is successfully managed by the libraries task-schedulers. In particular, Cilk, TBB
(CnC) and the Intel OpenMP runtimes manage task scheduling through the work-stealing
strategy, which in these experiments has proved to be an effective mechanism for load-
balancing in the wavefront pattern. Particular attention was paid to the overheads due to
the work stealing functions and it was found that they always represented less than 1%
of execution time.

3. Further Optimizations

The sources of inefficiency due to the lack of atomic capture in the OpenMP 3.0 frame-
work could be overcome by directly using compare-and-swap (CAS) instructions. This
alternative OpenMP implementation (named OpenMP_v1.2) was also assessed. The re-
sults for the constant fine-task granularity case (200 FLOP) show that synchronization
based on the CAS instructions mechanism significantly reduces the contention problem
in the OpenMP codes, making the OpenMP optimized version the best one on 6 and 8
cores. For the medium-grain case, the TBB_v1 code shows slightly better performance
than the optimized OpenMP code, whereas for the coarse-grain case, both OpenMP_v1.2
and TBB_v1 codes behave similarly. In any case, these results demonstrate that atomic
capture is an important feature that should be available as a high-level construct. In fact,
this atomic capture facility will be implemented in the next version of OpenMP (v. 3.1).

In addition, the cost of task creation and task management methods can be significant
if task granularity is not sufficiently coarse. The programmer can reduce these costs by
using the explicit task passing (or task recycling) mechanism [9], which is available in
TBB. In the wavefront pattern, each task has the opportunity to spawn two new tasks
(east and south neighbours). One of them can be prevented from spawning by returning
a pointer to the next task and instead of spawning the new task, the current task recycles
into the new one. Two aims are achieved: the number of calls to spawn() is reduced
and time is saved for obtaining new tasks from the local queue (reducing the number of
calls to get_task()). In OpenMP or Cilk codes, this recycling mechanism could in
some way be emulated by recursively calling the task body of a ready-to-dispatch new
task, thus avoiding spawning. However, note that this emulation strategy could exhaust
the stack when the number of nested tasks is too large, a problem that the TBB recycling
mechanism avoids.

In addition, by recycling, we provide the scheduler with hints on how to prioritize
the execution of tasks to guarantee a cache-conscious traversal of the data structure. The
main idea is to set two flags when there is a ready-to-dispatch task to the east or south
of the executing task. Subsequently, according to these flags, we recycle the current task
into the east or south tasks. Since in this example the data structure is stored by rows,
note that if the east and south tasks are both ready, the data cache can be better exploited
by recycling into the east task. Thus, the same thread/core executing the current task will
manage the task traversing the neighbour data, and thus we take full advantage of the
spatial locality. In this case, we recycle into the east task and spawn a new south task
that would be subsequently executed. In any case, the number of spawns in this version
is reduced from n × n − 2n (the number of spawns in TBB_v1 and TBB_v2) to n − 2
(approximately the size of a column).

In order to fully assess the impact of each mechanism (recycling and locality), the
performance of two versions were studied: TBB_v3, a version that prioritizes the south
task instead of the east task. Its aim is to isolate the advantages of recycling (without
exploiting cache); and TBB_v4, the version that implements both recycling and locality.
Fig. 3(a) shows the speedups for the TBB_v1 (shown here as baseline), TBB_v3 and
TBB_v4 implementations for the case of constant fine-task granularity (gs=200 FLOP).
It is clear that TBB_v4 is the best solution. In fact, when speedups were measured for
other fine-grain sizes it was found that the finer the granularity, the better the improve-
ment. Furthermore, it is of interest that a great deal of the improvement is due to the recy-
cling optimization, as indicated by the TBB_v3 enhancement over the TBB_v1 version.

(a) Speedups. Num. of cores in the x-axis (b) Overhead in TBB_v3 and TBB_v4

Figure 3. Results of the optimized versions of TBB in the constant fine- task granularity case

To go deeper into the comparison of these versions and better understand the sources
of improvement, the call-graph activity of Vtune is used again to collect information on
the most time-consuming functions in the optimized implementations. Fig. 3(b) shows
the ratio of time consumed by the task creation and management functions (spawn(),
allocate(), and get_task()) relative to the total execution time. The profiling
times for these functions are the same for TBB_v3 and TBB_v4. The figure shows that
the percentage of time wasted by these functions is less than 6% of execution time. In
fact, for each internal function there is a reduction of around one order of magnitude
in the recycling versions when compared to the TBB_v1 version. On the other hand,
thanks to the Vtune event-based sampling tool, we obtained the L1D and L2 miss ratios
for the TBB_v3 and TBB_v4 implementations, and for the fine-granularity case again.
The measurements confirm that cache miss ratios are much higher in TBB_v3 than in
TBB_v4.

As described above, the performance of the wavefront algorithms consistently de-
creases as the task workload grain becomes finer. To counteract this trend, the tiling tech-
nique is a well-known solution to obtain coarser grain size and it can also be applied to
wavefront problems. By tiling we achieve two goals: to reduce the number of tasks (and
therefore, the number of spawns); and to save some overhead in wavefront bookkeeping
(memory space and the initialization time of the counter/dependence matrix, which is
now smaller due to it requiring a counter per block-tile, and not one per matrix element).
Another possibility could be to select rectangular tiles (instead of square tiles) to take
better advantage of cache. A rectangular tile with more columns than rows could lead
to a smaller number of cache misses if prefetching strategies are available in the cache
architecture.

We implemented square tiling in the TBB_v4 version and measured the speedups for
different block sizes (BS) in the fine-grain case. The assessment of rectangular tiles has

been left to future studies. In this experiment, an increment in speedup for 8 cores was
found of around 9% when BS = 10, which was the optimal block size. For larger block
sizes, speedups start to decrease again, because the degree of parallelism is lower when
we increase the size of the block while keeping the problem size constant (the matrix
size). The interested reader may wish to refer to [14], where the different versions, code
snippets, experimental results and graphs are presented and discussed in more detail.

4. Conclusions

Assessment of the different task-based implementations of a wavefront pattern shows
that TBB provides some distinguishing features that allow more efficient implementa-
tions, particularly for the fine-grain case. This is frequently found in real wavefront prob-
lems and is more challenging. Features such as atomic capture and the task recycling
mechanism, coupled with prioritizing tasks to exploit data locality, have been shown
strongly improve performance, especially when the granularity of the task is fine. We
believe they should be available as user-level constructors (as TBB does) to allow high-
level optimizations guided by the programmer.

In any case, these optimizations could be wrapped in a higher-level template to
help less experienced users code wavefront codes. Future work includes implementing
a wavefront template for the TBB library (such as parallel_do or pipeline) that
encapsulates the mentioned optimizations and allows the developer to express the wave-
front dependencies and the data locality hints without having to take into account atomic
counters or task recycling functionalities.

References

[1] V. U. Dasgupta Sanjoy, Papadimitriou Christos, Algorithms. McGraw-Hill Higher Education, 2007.
[2] J. Anvik, S. MacDonald, D. Szafron, J. Schaeffer, S. Bromling, and K. Tan, “Generating parallel pro-

grams from the wavefront design pattern,” Parallel and Distr. Processing Symp., vol. 2, p. 0104, 2002.
[3] Wavefront Pattern, University of Illinois at Urbana-Champaign. College of Engineering Department of

Computer Science. [Online]. Available: http://www.cs.uiuc.edu/homes/snir/PPP/patterns/wavefront.pdf
[4] E. C. Lewis and L. Snyder, “Pipelining wavefront computations: Experiences and performance,” in

HIPS’99: Workshop on High-Level Parallel Programming Models and Supportive Environments, 1999.
[5] O. Storaasli and D. Strenski, “Exploring accelerating science applications with FPGAs,” in Proc. of the

Reconfigurable Systems Summer Institute, July 2007.
[6] A. M. Aji, W.-c. Feng, F. Blagojevic, and D. S. Nikolopoulos, “Cell-SWat: modeling and scheduling

wavefront computations on the cell broadband engine,” in CF ’08, 2008, pp. 13–22.
[7] B. Liu, G. Clapworthy, and F. Dong, “Wavefront raycasting using larger filter kernels for on-the-fly GPU

gradient reconstruction,” The Visual Computer, vol. 26, no. 6-8, pp. 1079–1089, 2010.
[8] B. Chapman, G. Jost, and R. van der Pas, Using OpenMP: Portable Shared Memory Parallel Program-

ming. The MIT Press, 2007.
[9] J. Reinders, Intel Threading Building Blocks. O‘Reilly, 2007. [Online]. Available:

http://www.threadingbuildingblocks.org/
[10] Intel Concurrent Collections for C/C++, Intel Corp. [Online]. Available: http://software.intel.com/en-

us/articles/intel-concurrent-collections-for-cc
[11] Intel Cilk++ SDK, Intel Corp. [Online]. Available: http://software.intel.com/en-us/articles/intel-cilk
[12] A. Dios, R. Asenjo, A. Navarro, F. Corbera, and E. Zapata, “High-level template for the task-based

parallel wavefront pattern,” in IEEE Intl. Conf. on High Perf. Comp. (HiPC), Bengaluru, Dec. 2011.
[13] J. Reinders, VTune Performance Analyzer Essentials. Intel Press, 2005.
[14] A. Dios, R. Asenjo, A. Navarro, F. Corbera, and E. L. Zapata, “A case study of the task-based parallel

wavefront pattern,” in Technical Report at http://www.ac.uma.es/∼asenjo/research/, June 2011.

