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Abstract—Chapel is a parallel programming language designed
to improve the productivity and ease of use of conventional and
parallel computers. This language currently delivers suboptimal
performance when executing codes that perform global data
re-allocation operations on distributed memory architectures.
This is mainly due to data communication that is done without
aggregation (one message for each remote array element). In
this work, we analyze Chapel’s standard Block and Cyclic
distribution modules and optimize the communication routines
for array assignments by performing aggregation. Thanks to
the expressive power of Chapel, the compiler and runtime have
enough information to do communication aggregation without
user intervention. The runtime relies on the low-level GASNet
networking layer, whose versions of one-sided bulk put/get
routines that support strides are particularly useful for us.
Experimental results conducted on HECToR (a Cray XE6) and
Jaguar (Cray XK6) reveal that the implemented techniques can
lead to significant reductions in communication time.

I. INTRODUCTION

It is widely accepted that, nowadays, a serial program is a
slow program. But it is also known that the development of a
parallel algorithm requires extra work from the programmer,
which makes parallel machines difficult to use and unattrac-
tive for many traditional programmers. In order to ease the
burden on parallel developers, a number of parallel languages
(Chapel [1], X10 [2], UPC [3], Charm++ [4], Titanium [5],
etc.) have been proposed to improve programmability and
performance of current and future parallel machines.

In particular, Chapel is an emerging parallel program-
ming language that is under development and pioneered by
Cray Inc. in the context of the DARPA High Productivity
Computing Systems (HPCS), an initiative to improve the
productivity of parallel programmers. Productivity is defined
as a combination of performance, programmability, portability
and robustness. Chapel, as well as X10 [2], UPC [3] , Co-
Array Fortran [6], and Titanium [5], rely on the Partitioned
Global Address Space (PGAS) memory model, which enables
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the user to reason about locality without dealing with the
low-level data movement chores. In a distributed memory
architecture, the user must express parallelism, deal with
data distribution, synchronization and communication. Chapel
attempts to develop features that ease the burden of parallel
programming by providing abstractions for these tasks and
optimizing for common cases.

In a previous study [7] we analyzed the performance of
a Chapel version of the Parallel Cyclic Reduction algorithm,
or PARACR, for solving tridiagonal systems on distributed
memory architectures. PARACR performance was suboptimal,
mainly due to a global re-localization of data — in particular, a
Block-to-Cyclic data redistribution in which communications
were performed element-by-element due to the current Chapel
runtime implementation. If we advocate for the success of
a High Productivity Parallel Language such as Chapel, then
performance is an important issue, and the lack of aggregated
communication is a major concern that must be addressed.

This motivates the present work, in which we explore how
the compiler and runtime in Chapel can perform aggregation
of communication by utilizing low-level bulk communication,
thereby reducing communication cost. In particular, we exploit
the one-sided strided put/get communication routines of the
GASNet [8] low-level networking layer, which is the de facto
standard communication layer for PGAS languages. GASNet
is so successful mainly because: i) it is a well engineered SW
with a good interface; ii) it is highly portable, and iii) there are
tuned implementations for custom HW (like Cray’s). GASNet
provides the mechanisms needed to efficiently implement
synchronization primitives, memory allocation, collective and
scatter/gather operations, and bulk communication routines.
The latter are key in this work.

Summarizing, the paper makes the following contributions.
First, we extend the implementation of Chapel’s Block and
Cyclic distributions to perform automatic aggregation of com-
munication in certain key cases. Second, we expose the key
features of Chapel that enable such an optimization to be
carried out without user intervention. Third, we measure and
analyze the performance improvements due to aggregated
communication on several Chapel benchmarks.

The rest of the paper is organized as follows. First, we
introduce main Chapel features, and dive into the details of



Chapel’s implementation of data distribution and the under-
lying GASNet communication routines in Section II. Then,
in Section III we outline our data aggregation techniques and
discuss the language features that enabled our approach. In
Section IV we elaborate on the experimental results collected
on HECToR Cray XE6 and Jaguar XK6 for three different
benchmarks. Finally, we discuss related work and conclude.

II. BACKGROUND

A. General Chapel background

Chapel is a parallel programming language that supports
generic OO programming, iterator functions, and type infer-
ence. Chapel provides global-view data structures, as well
as global-view control flow. An individual processor or node
of the target architecture is represented as a locale for the
purpose of reasoning about locality. Accesses of a task to
data are called local if the task and data are mapped to
the same locale, or remote otherwise. Typically, a shared
memory architecture is considered a single locale, while a
distributed memory multicomputer has as many locales as
multicore nodes. The user can specify the number of locales,
numLocales, on which a Chapel program will run by using
the “-nl <#>” executable command line flag. There is a built-
in array, Locales, that represents the set of locales on which
the program is running.

The key component for data parallelism in Chapel is the
concept of a domain [9], a language construct that describes
an index space. In this paper we focus on dense rectangular ar-
rays, which provide similar capabilities to arrays in Fortran90,
although Chapel also supports associative and sparse arrays.
Rectangular domains are a first-class ordered set of Cartesian
indices that can have any arbitrary rank and can be iterated
over by loops. In addition, domains are used to describe
the size and shape of arrays. Summarizing, domains specify
index sets and are used to declare, slice and resize arrays.
Dense rectangular domains can be represented compactly,
using just the bounds, stride and alignment values, per domain
dimension.

Data distributions (or domain maps) are another first-class
concept in Chapel: they can be named, manipulated and
passed through functions. In particular, Chapel offers the
dmapped keyword that allows mapping a domain’s indices
to the target architecture using the specified distribution. In
other words, a distribution is a recipe that Chapel uses to
map data (and its associated computation) to the locales
where the program executes [10]. Chapel provides a set of
commonly-used standard distributions such as Block, Cyclic,
Block-Cyclic and Replicated. Additionally, it offers support for
user-defined distributions via its DSI (Domain map Standard
Interface) [9]. These user-defined distributions are developed
directly in Chapel and can use all its features (classes, locales,
iterators, etc.), which simplifies the programmer’s work. A
domain map can be a layout if it targets a single locale, or a
distribution if it targets potentially multiple locales. A layout
determines how to store and iterate over domains and arrays,
whereas a distribution also decides how to map domain indices

1 use BlockDist;
2 config const n=500;
3 var DA = [1..n,1..n,1..n];
4 var DB = [1..2*n,1..2*n,1..2*n];
5 var Dom1 = DA dmapped Block(DA);
6 var Dom2 = DB dmapped Block(DB);
7 var A:[Dom1] real(64);
8 var B:[Dom2] real(64);

10 var D1 = [1..n by 4,1..n by 3,1..n];
11 var D2 = [1..n,1..n by 4,1..n];

13 A[D1] = B[D1]; // First assignment
14 A[D2] = B[D2]; // Second assignment

Fig. 1. Chapel code for running example

to locales. An interesting result of this organization is that
arrays declared over domains that have been distributed using a
single domain map instance, are aligned and therefore locality
can be better exploited.

In Fig. 1 we show Chapel code that will serve as a running
example. On line 3 we define DA as a n× n× n 3D domain
that is initialized to contain the set of indices (i, j, k) with
i ∈ {1, .., n} and similarly for j and k. Then, on line 5 we
declare a domain Dom1 that has the same indices as DA but
is mapped to the target architecture using Chapel’s standard
Block distribution. By default the standard distributions map
a domain’s indices to all locales, arranging the locales into
a mesh with as equal dimensions as possible. On line 7 we
declare an array A over the indices of Dom1. Its array elements
are 64-bit real numbers, mapped to the locales in the same
way as the corresponding indices of Dom1. We declare DB,
Dom2 and B in a similar way, but with twice as many indices
or elements in each dimension.

Since the array subscripts in Fig. 1 lines 13 and 14 are
domains, they result in array slices. A slice aliases those
elements of the original array whose indices are also in the
subscript domain. For n=500, the first assignment results in a
data movement (some of them local) of 125 planes of 166 ×
500 elements each. Similarly, the second assignment moves
500 planes of 125 × 500 elements.

Chapel has built-in support for data parallel computations.
The main construct for data parallelism in Chapel is the
forall loop. It iterates over the indices of a domain or the
elements of an array. For each index, the body of the loop is
executed by default on the locale where that index is located.
Additionally, some operations can be implicitly executed in
parallel. For instance, the assignments in lines 13 and 14 of
our example are over arrays (slices) and so are data-parallel
assignments, executed via implicit forall loops.

Chapel’s on clause controls where (on which locale) the
computations are carried out. For example, this code snippet
shows how each locale can create a private copy of an element
of array B, in parallel:

1 forall loc in Locales do on loc {
2 var x:real; //Private on each locale
3 x=B[1, 1, 1]; //Each locale reads B[1, 1, 1]
4 }
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Fig. 2. Illustrating the Block distribution for an array M distributed between 4 locales.

In Chapel, the compiler and runtime systems handle the
appropriate communication calls when operations over remote
elements must be performed by a task. However, the current
implementation of Chapel generates a single point-to-point
communication call each time that a remote access is per-
formed. Obviously, in the case of a global re-distribution or
partial re-localization of data, aggregation of communications
served by bulk communication routines is necessary if we want
to improve performance. This is what we describe in more
detail next.

B. Data distribution details

The previous section introduced arrays, domains and do-
main maps, which are the key concepts related to data dis-
tribution and data parallelism. Now, we illustrate Chapel’s
framework for implementing domain maps with the stan-
dard Block distribution as an example. The Chapel module
BlockDist defines three global descriptor classes for (i)
the distribution or domain map, (ii) a domain, mapped using
that domain map, and (iii) an array over that domain. This
module is used in the code shown in Fig. 2, which we
assume is executed on 4 locales. The code declares the
domain map myDist, the domain myDom and the array M.
At run-time they are represented using global descriptors,
which are instances of the respective descriptor classes Block,
BlockDom and BlockArr. There are also local descriptors,
which are instances of the classes LocBlock, LocBlockDom
and LocBlockArr. They are allocated on each locale and store
the state corresponding to that locale’s subset of the problem
space or that is frequently accessed from that locale.

The Block distribution object myDist stores the global
distribution state: the boundingBox field determines the de-
composition across locales; targetLocDom is the domain
that describes the mesh of locales that will host the dis-
tributed data; the array targetLocales[] identifies the ac-
tual locales; and the array locDist[] points to the local
LocBlock descriptors. These per-locale objects store the local

distribution boundaries in their myChunk fields. Similarly,
for the distributed two-dimensional strided domain, myDom,
the global object myDom keeps the overall index set in the
field whole=[3..10 by 3, 2..10 by 2] and pointers to
the four local LocBlockDom descriptors. Each of them, in
turn, stores the local index set, myBlock, computed by in-
tersecting the global domain myDom.whole with the cor-
responding local myChunk. It is allowed to have indices
outside the boundingBox grid. For example, if myDom were
[-5..5, -2..4], it would be mapped completely to locale 0.
Finally, array M is declared over myDom and initialized with the
sequence 1.. (i.e. 1, 2, 3, 4, ...). The global array descriptor,
a BlockArr instance, identifies the element data type (64-bit
real number) and points to its global domain descriptor. The
actual elements of the array M are stored locally in each local
descriptor’s array myElems. The myElems arrays are mapped
using the default layout, DefaultRectangular, so will be
called DR arrays in this discussion. Among Chapel arrays, DR
arrays represent physical memory most directly.

C. GASNet support

For the sake of portability, Chapel relies on GASNet
[8] as the communication layer, a network-independent
and language-independent high-performance communication
interface intended for use in implementing the runtime
system for Partitioned Global Address Space languages.
The GASNet Extended API provides blocking and non-
blocking memory-to-memory transfer operations for con-
tiguous and strided bulk data. As an example, the oper-
ation gasnet_get(void *dest, gasnet_node_t node,

void *src, size_t nbytes) fetches nbytes bytes from
the address src on node node and places them at dest in
the local memory space.

In addition, GASNet provides non-blocking, split-phase
memory accesses to shared data. All such non-blocking
operations require an initiation (generally a put or get)
and a subsequent synchronization on the completion of that
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Fig. 3. A=B data transfer example

operation before the result is guaranteed. In particular, for
strided memory copy transfers, GASNet interface provides
gasnet_puts_bulk() and gasnet_gets_bulk() as well
as the corresponding non blocking (nb) counterparts. These
functions have the following arguments: i) stridelevels

is the number of different strides involved in the transfer
(see [8]); ii) a count array indicates the slice size in each
dimension (stridelevels+1 entries, where count[0] is the
number of bytes of contiguous data (chunk) in the leading
(rightmost) dimension); iii) srcaddr/dstaddr are the start-
ing addresses of the source/destination memory; and iv) the
srcstrides/dststrides arrays contain the source/destina-
tion strides in each dimension.

The strides in srcstrides and dststrides must be
monotonically increasing and must not specify overlapping
locations. We have chosen these GASNet operations because
they are general enough to allow an efficient implementation
of Chapel array slice assignments.

Based on these operations we have implemented two new
Chapel primitives, chpl_comm_gets and chpl_comm_puts,
that have the same arguments and essentially convert Chapel
DR arrays to the C arrays that match the GASNet interface.

As an example, Fig. 3 shows the communication involved in
the Chapel assignment A[1..8 by 2, 1..3 by 2, 2..4]

= B[1..4, 1..4 by 3, 2..4], where A and B are DR
arrays. In that example, dstaddr should point to element
A[1,1,2] and srcaddr to B[1,1,2], while the value of the
other arguments involved in the bulk function call are indicated
in the figure. In Chapel, the assignment is valid if the number
of elements per dimension for both specified domains is the
same.

III. DATA AGGREGATION IMPLEMENTATION

In this work, we focused on reducing the number of data
transfers for assignments between Block-distributed arrays and
between a Block-distributed array and a Cyclic-distributed ar-
ray. Taking advantage of Chapel’s OOP facilities, we provided
specialized implementions of assignment by overloading the
= function.

Since a Block-distributed, or BD, array is implemented via
local DR arrays, we first implemented bulk communication
for assignment between two DR arrays. On top of that, we
implemented the assignment between a DR array and a BD
array, and then the assignment between two BD arrays. We
illustrate this organization in Fig. 4 with four locales.

Fig. 4(a) shows the assignment A[D1]=B[D2] where A and
B are DR arrays, A allocated on locale 0 and B on locale 1.
Here the runtime needs to compute the arguments for and
execute just one call to chpl_comm_gets (if the statement is
executed on locale 0) or chpl_comm_puts (if the statement
is executed on locale 1), as described in subsection II-C.

If B is a BD array, its elements are stored in several
DR arrays, the myElems fields of B’s local LocBlockArr

descriptors. If A is a DR array, A[D1]=B[D2] translates
into several DR=DR operations. For example, in Fig. 4(b),
B[D2] is spread over 4 locales, whereas A is still stored on
locale 0. Here, we divide A[D1] into four regions, A[D10]
through A[D13], such that A[D1i] is the destination of those
elements of B[D2] that are stored on locale i, with i ∈
0..3. Then we execute four DR=DR assignments in parallel:
A[D1i]=B.locArr[i].myElems[src], i ∈ 0..3. For each i,
src represents the slice of B.locArr[i].myElems that cor-
responds to B[D2] on locale i. The puts or gets bulk function
for the assignment on locale 0 implements it internally with a
memcpy.

Finally, if A and B are both Block-distributed arrays, we split
the problem into several DR=BD cases, since the destination
BD array is just a set of DR ones. In Fig. 4(c), the array A

is stored in four local DR arrays. Therefore the assignment
A[D1]=B[D2] translates into:

1 forall i in 0..3 do
2 on A.locArr[i] do //co-locate with locArr[i]
3 A.locArr[i].myElems[dest] = B[src] //DR=BD

where src and dest are the source and destination do-
main slices that indicate which portions of the arrays
are to be assigned on each locale. In this example
A.locArr[0].myElems needs 4 regions from B, which
are stored on four locales. A.locArr[1].myElems only
needs information from locales 1 and 3. The assignment to
A.locArr[3].myElems turns out to be a memcpy in this
example.

We optimize data movement upon assignments from Block-
distributed to Cyclic-distributed and from Cyclic-distributed
to Block-distributed arrays in a similar manner, converting
them to calls to chpl_comm_gets/puts. All these data
redistributions are special cases of copying one n-dimensional
rectangular prism region to another with a different shape,
as described in section II-C. For example, for a Block
to Cyclic redistribution, each source locale determines the
chunk of data to be sent to each destination locale. For
each chunk and for each destination locale, the source locale
calls chpl_comm_puts with the appropriate arguments. In
general, this leads to all-to-all communication. The Cyclic-
to-Block case is similar, with the destination locales invoking
chpl_comm_gets instead.
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1 config const n=500;
2 var D1 = [1..n,1..n];
3 var D2 = [1..2*n,1..2*n];
4 var A: [D1] dmapped Block(D1) real;
5 var B: [D2] dmapped Block(D2) real;

7 var DA = [101..200 by 2, 51..200 by 3];
8 var DB = [201..700 by 10, 301..600 by 6];
9 A[DA] = B[DB];

Fig. 5. Chapel code to illustrate the mapping functions

A. Subregion computation

As we have seen in the previous section, during the array
slice assignment, different subregions of the slice have to be
computed, as D1i and src subregions. In order to do that
in the case of the assignment A[DA]=B[DB], we first need a
correspondence or mapping from destination domain, DA, to
the source domain, DB. This is formally described as follows.
Let:
DA=[la1..ha1 by sa1, ...,lan..han by san]

DB=[lb1..hb1 by sb1, ...,lbn..hbn by sbn]

where n is the number of dimensions (rank) of the do-
mains DA and DB. A vector with all the strides, sai, can
be obtained by A._value.dom.whole.stride and simi-
larly for B. Let [a1, a2,...,an] and [b1, b2,...,bn]

be some coordinates of the domains A and B respec-
tively. We define the bijective function m:DB→DA so that
(a1,a2,...,an) = m(b1,b2,...,bn) where:

ai = lai + sai × (bi − lbi)/sbi, i ∈ 1..n

The corresponding inverse function m−1:DA→DB, results in
(b1,b2,...,bn) = m−1(a1,a2,...,an) where:

bi = lbi + sbi × (ai − lai)/sai, i ∈ 1..n

In order to illustrate how these mapping functions, m and
m−1, are used, let’s rely on a 2D simplified version of the
running example that we can see in Fig. 5. If this code is
executed on four locales, Fig. 6 illustrates the distribution and
subregions that have to be moved, were we can see that A[DA]
happens to be on locale 0 while B[DB] is distributed between
the 4 locales.

When the assignment A[DA]=B[DB] is executed, two new
alias arrays are created, A’=A[DA] and B’=B[DB]. Now, for
this DR=BD case, as we said, we have to execute this loop:
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Fig. 6. Illustrating the assignment A[DA]=B[DB] of Fig. 5 when using 4
locales.

1 forall i in 0..3 do
2 on A’ do //co-locate with A’
3 A’[Di] = B’.locArr[i].myElems //DR=DR

So the problem to solve now is the computation of subre-
gions Di, i ∈ 0..3. This is done using the mapping function
m. For example, for i=0, the subdomain of B stored on
locale 0 is given by B’.dom.locDoms[0].myBlock = [201..491
by 10, 301..499 by 6]. We then obtain D0 using function
m to calculate the corresponding ending coordinates of the
destination region, [lxa1..hxa1 by 2, lxa2..hxa2 by 3]:

lxa1 = 101 + 2× (201− 201)/10 = 101
hxa1 = 101 + 2× (491− 201)/10 = 159
lxa2 = 51 + 3× (301− 301)/6 = 51
hxa2 = 51 + 3× (499− 301)/6 = 150

So we get D0=[101..159 by 2, 51..150 by 3]. And similarly,
• D1= [101..159 by 2, 153..198 by 3]

= M(201..491 by 10, 505..595 by 6)
• D2= [161..199 by 2, 51..150 by 3]

= M(501..691 by 10, 301..499 by 6)
• D3= [161..199 by 2, 153..198 by 3]

= M(501..691 by 10, 505..595 by 6)
where M converts the low and high bounds of its range
arguments using the function m.

As we said, if A and B are both Block-distributed arrays,
we split the problem into several DR=BD cases as we showed
in Fig. 4(c), but now we need the m−1 function. So, if



the assignment operation is A[DA]=B[DB], two new aliases
are created as before: A’=A[DA] and B’=B[DB], and the
following code has to be executed:

1 forall i in 0..3 do
2 on A’.locArr[i] do //co-locate with locArr[i]
3 A’.locArr[i].myElems = B’[Di] //DR=BD

so we have to find subregions Di, i ∈ 0..3. But now we use
m−1 function in order to compute the Di subdomain of B that
correspond to each A’.dom.locDoms[i].myBlock local domain.
For example, for the previous example but with DA=[101..400
by 2, 51..350 by 3] and DB=[201..500 by 2, 151..450 by 3]
and 4 locales, we get A’.dom.locDoms[0].myBlock=[101..250
by 2, 51..250 by 3] and D0=[201..350 by 2, 150..350 by 3].
Similarly for D1 and so on.

For further implementation details the reader is referred to
the source code, which is available at:

https://chapel.svn.sourceforge.net/svnroot/chapel/branches/
collaborations/bulkComms/modules/
{dist/BlockDist.chpl,internal/DefaultRectangular.chpl}

See in particular the functions doiBulkTransferStride in
each file.

B. Discussion: enabling language features

One of Chapel’s most notable design decisions was to allow
domain maps to be implemented in Chapel itself. An example
of that, the Block distribution, was shown in subsection II-B.
This makes Chapel’s OOP and productivity features available
to the domain map implementor, alleviating the burden of
such complex work. In addition, users interested in perfor-
mance tuning have access to the details of the distribution
implementation and can implement further optimizations. Data
aggregation in this work is an example.

The cornerstone features that most contributed to easing
our task are the global and per-locale data structures that
describe the domains of distributed arrays, the underlying
support for bulk strided communication in GASNet, and the
OOP implementation of domain maps that enables modular
construction of our new data transfer methods. Most other
PGAS languages do not provide these features; for example,
UPC relies on manually called collective routines to reduce
communication overhead. On the other hand, X10, which
supports domains (called regions) and OO-implemented data
distributions, can benefit from the techniques presented in this
paper.

IV. EXPERIMENTAL RESULTS

Several experiments have been conducted on two Cray
supercomputers: HECToR and Jaguar. HECToR is a Cray
XE6, Opteron 6276 16C 2.30 GHz with a Cray Gemini
interconnection network. This machine is composed of 704
compute blades, each blade contains four compute nodes
(locales), each one with two 16-core AMD Opteron 2.3 GHz
Interlagos processors. Jaguar is a Cray XK6 that is comprised
of 18,688 nodes, each node containing a 16 core AMD
Opteron 6274 2.2 GHz processors with Gemini 3D torus
interconnect. Jaguar is positioned number 6 (peak capacity of

over 2.6 Pflop/s) and HECToR number 32 (over 800 Tflop/s)
in the latest top500.org list (Jun. 2012).

In both machines, Chapel has been compiled in order
to take advantage of the Gemini conduit available in the
underlying GASNet library, but experiments with the de-
fault MPI conduit were also conducted in order to com-
pare them, and also because the Gemini conduit is still a
beta version. We set variables GASNET_VIS_AMPIPE=1 and
GASNET_VIS_REMOTECONTIG=1, in order to enable respec-
tively, packing of most non-contiguous puts/gets and RDMA
optimization of locally non-contiguous but remotely contigu-
ous transfers. All Chapel codes where compiled with the
--fast flag to enable all compiler optimizations.

A. Running example array assignment

First, we compared the Block distributed array assignment
when using the default array copy implementation available
in the latest release of Chapel (version 1.5) and then relying
on the aggregation communication support described in the
previous section. We measured the assignment time for the
two 3D array assignments of lines 13 and 14 shown in the
code snippet of Fig. 1. We will refer to them as the D1 and
D2 assignments.

In Fig. 7(a) and (b) we compare the times in seconds for
D1 and D2 when n=500, for 2 to 16 locales, using GASNet
MPI and Gemini conduits, with and without aggregation of
communication, on HECToR and Jaguar. Fig. 7(c) compares
the times with aggregation between the MPI and Gemini
conduits on HECToR and Jaguar.

In general, times are higher for the D2 assignment because a
greater number of elements are involved. With the MPI conduit
(Figs. 7(a)), we can see that on HECtoR the aggregation
reduces the times by more than three orders of magnitude,
whereas on Jaguar the impact is much smaller (around a
30% improvement in some cases). This suggests a better
tuned configuration of MPI on Jaguar. On the other hand,
the Gemini conduit (Figs. 7(b)) shows a different behaviour:
both on HECToR and Jaguar, aggregation reduces the time
considerably, but now the impact of aggregation is more
significant on Jaguar (more than two orders of magnitude)
than on HECToR (less than 10x).

Another interesting result is that the Gemini conduit exhibits
a better scalability behavior, surprisingly very good on both
machines when no aggregation is performed. This is due in
part to the reduction of the number of injected messages per
locale when the number of locales increases. That number
of injected messages may be a serial bottleneck on a small
number of locales.

Figs. 7(c) allows us to focus on the performance of our
aggregated implementation, where only one bulk message is
injected per locale. We find smaller times on Jaguar (both
for MPI and Gemini) than on HECToR, possibly because
latencies of one-sided bulk communications on Jaguar are
smaller. We also see that Gemini times are always smaller than
MPI ones on each machine, especially when the number of
locales increases. We think this is due to better communication
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Fig. 7. Time in seconds for array assignmet A=B on different numbers of locales, without/with aggregation (woA/wA) under: a) MPI conduit, b) Gemini
conduit and c) MPI-Gemini comparison.

scheduling by the one-sided bulk functions in the Gemini
conduit.

The next subsections evaluate our implementation on two
numerical codes, FFT and PARACR (a tridiagonal solver). We
focus on the Gemini conduit, since it has proven to outperform
the MPI one.

B. The radix-4 FFT algorithm

Our evaluation used a Chapel implementation of the FFT
algorithm that is part of the HPC Challenge (HPCC) bench-
mark suite [11]. It uses radix-4 butterflies and is divided into
two main phases, the first one using a Block distribution
and the second one a Cyclic distribution. When run on 4k

locales, this guarantees that butterfly-patterned accesses are
completely local. Communication occurs only between phases,
when copying the vector from Block to Cyclic (BtoC) and
from Cyclic to Block (CtoB).

Table 8 shows the times in seconds of the FFT code on
HECToR and Jaguar, for 1 to 16 locales, when vector size
is n = 220 and the Gemini conduit is used. We indicate
the total execution time (“T. total”), and the BtoC and CtoB
redistribution times. Again, we compare the cases of no
aggregation vs. aggregation of communications. The column
“Comm. Imp.” lists the ratio of the total redistribution time
(BtoC plus CtoB) between the two cases, showing a significant
improvement in the aggregated version. In the single-locale
case we see the impact of reducing the number of calls to
memcpy.

From the table we see that BtoC is usually faster than
CtoB, especially in the non-aggregated case. This is because
in our setup, BtoC and CtoB execute on #cores pthreads per
locale. The current implementation of the second phase of the
FFT has a nesting of two forall loops that creates (#cores)2

pthreads after BtoC but before CtoB. CtoB is assigned to an

arbitrary #cores-subset of them, which tend to be mapped
to, and compete for, a subset of cores while others idle. In
any case, the aggregation of communications has a significant
impact on both machines. On Jaguar in particular we see a 80×
improvement. In the aggregated case, for both BtoC and CtoB,
we benefit from the low-level RDMA optimization enabled by
GASNET_VIS_REMOTECONTIG=1: locally non-contiguous
data that arrive from/are sent to a remote contiguous memory
region are packed more efficiently.

C. The PARACR algorithm

Parallel Cyclic Reduction (called PARACR in [12]) is a well
known algorithm for solving tridiagonal systems of equations.
It proceeds in two phases: Substitution and Solution. For a
problem of size n, the Substitution phase consists of O(log n)
steps and at each step O(n) butterflies are computed.

In a previous study [7] we analyzed the performance of
a Chapel PARACR implementation and observed that re-
distributing data from Block to Cyclic (BtoC) at a certain
intermediate step improves performance. This is because the
Block distribution favors data locality during early steps, while
the Cyclic distribution takes advantage of locality at later steps.
Now we can carry out the BtoC redistribution taking advantage
of aggregated communications.

Fig. 8 shows the times of the BtoC redistribution in the
PARACR code on Jaguar under the Gemini conduit for 1
to 16 locales. Note that in this code four arrays —each
one of size n = 220— have to be redistributed. Therefore,
the time for the redistribution when there is no aggregation
is around 4 times higher than for FFT (where only one
array is redistributed). Aggregation again brings a significant
speedup, from two to three orders of magnitude. As in the
other experiments under the Gemini conduit, the aggregated
communications case shows a slight increase in time when the



FFT on HECToR, Gemini conduit, n=220

Without aggregation With aggregation
Loc T. Total T. BtoC T. CtoB T. Total T. BtoC T. CtoB Comm. Imp.
1 355.485 0.850 6.6653 351.180 0.0109 0.0099 361.31
4 82.162 0.944 5.4038 75.937 0.3032 1.3381 4.63
16 71.963 2.143 5.1227 65.476 0.2454 0.4146 11.00

FFT on Jaguar, Gemini conduit, n=220

Without aggregation With aggregation
Loc T. Total T. BtoC T. CtoB T. Total T. BtoC T. CtoB Comm. Imp.
1 371.52 0.0175 0.0761 375.07 0.00495 0.03987 2.09
4 224.92 3.1547 4.6204 222.66 0.01095 0.08519 80.88
16 131.93 1.3238 1.5435 123.28 0.03310 0.05919 31.07
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Fig. 8. a) times in seconds for FFT on HECToR and Jaguar; b) Jaguar times in seconds for BtoC redistribution in PARACR.

number of locales increases, due to the fact that the number
of bulk messages per locale is O(#locales). However, in the
non-aggregated case the time tends to decrease. Indeed, the
total number of point-to-point messages equals the number of
array elements n, so the number of messages per locale is
O(n/#locales).

V. RELATED WORK

There have been several efforts over years to improve
productivity of large-scale parallel programming. A significant
effort has been devoted to provide highly efficient libraries
that run over MPI, such as ScaLAPACK [13], or PBLAS[14]
or PETSc[15]. Although these approaches hide the data dis-
tribution and communication operations from the user, their
applicability is limited to the numerical kernels that they
support. By contrast, many language initiatives like ZPL [16],
UPC [3], Co-Array Fortran [6], X10 [2], Chapel [1] and
Titanium [5] have provided high-level constructs to express
data parallelism easily, striving for better programmability
and generality while achieving performance. Among them,
the Partitioned Global Address Space (PGAS) languages offer
programmers a shared address space model that simplifies
programming while exposing data/thread locality to enhance
scalability. Chapel and UPC support the concept of global view
arrays, which means that an array is declared and operated
upon as if it were a single logical array even though it is
distributed among multiple distributed-memory nodes. On the
contrary, arrays in Co-Array Fortran and Titanium are not
globally viewed since users work with distributed arrays as
local-per nodes arrays. One distinguishing feature of Chapel
is that, in addition to supporting multidimensional standard
Block and Cyclic distributions, it also provides a general
framework for defining user-defined distributions.

PGAS languages are designed around a data-centric mem-
ory model in which the remote accesses are performed through
one-sided (put/get) communication libraries (typically GAS-
Net). One open question is how these languages will manage
global data re-localization operations to improve performance.
Generally, this is performed by using collective communi-
cation operations. For instance, one proposed extension to
UPC [17] incorporates a new interface to express two types of
collectives: one-to-many (e.g. broadcast) and many-to-many
(e.g. exchange). The user has to specify the blocks of data

involved in the source and destination arrays and let the
underlying runtime system handle the problem of mapping
data blocks to tasks and packing/unpacking of data. Another
proposed extension to collectives in Co-Array Fortran [18]
advocates expressing collective communication using co-array
section notation and get semantics. However, Co-Array Fortran
shared arrays are limited to Block distributions, which reduces
their applicability. Our approach in Chapel is to hide the
details of communication management from the user. When
a data re-localization operation is to be performed, we rely
on the runtime to identify which tasks participate, to infer
what type of bulk operation should be performed, to gather the
appropriate information about how to pack the data, and to call
the corresponding one-sided stride communication GASNet
routine.

In the context of PGAS languages, recent studies addressed
the interaction of the communication layer with the scheduling
layer [19]. Other studies focused on communication/computa-
tion overlap using one-sided communication routines provided
by PGAS [20] as well as compilation techniques to coalesce
remote accesses into a single one [21]. We consider these
studies complementary to our work.

Recent work in X10 focussed on compiler optimizations and
transformations to reduce communication overheads [22]. In
particular, they combined scalar replacement with transforma-
tions such as loop distribution, scalar expansion, loop tiling
and loop splitting, to reduce the size of the communication
buffer and to avoid redundant communication data. These
redundant data are related to the reference handles for the
objects that are dispatched to remote locales, or whole arrays
that are sent to remote locales when a reference to any
element of such an array is performed on a remote locale.
However, they did not address bulk communications to handle
the problem of global data re-localization operations, which is
the topic of this paper.

VI. CONCLUSIONS

Chapel is an emerging parallel programming language
designed to facilitate programming of current –and future–
generation parallel systems. However, one important issue is
how the language can provide application scalability while
ensuring programmer productivity. In this context, our pa-
per explores how the compiler and runtime systems can



perform aggregation of communications when global data
re-localization operations are carried out. We studied two
standard Chapel distributions, Block and Cyclic, and optimized
their implementations to reduce communication costs. We took
advantage of GASNet one-sided bulk communication routines
and delegated to the runtime the burden of identifying what
regions of data need to be moved to which locales. Then the
minimum number of communication invocations is performed.
Our experimental results show that a significant reduction in
communication times is achieved, especially when GASNet’s
default MPI conduit is used. In the future we plan to improve
the scheduling of bulk communications to ensure that our re-
localization operations scale to a large number of locales.
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