
Noname manuscript No.
(will be inserted by the editor)

Strategies for Maximizing Utilization in multi-CPU &
multi-GPU Heterogeneous Architectures

Angeles Navarro · Antonio Vilches · Francisco Corbera · Rafael Asenjo

the date of receipt and acceptance should be inserted later

Abstract This paper explores the possibility of effi-

ciently executing a single application using multicores

simultaneously with multiple GPU accelerators under a

parallel task programming paradigm. In particular, we

address the challenge of extending a parallel for tem-

plate to allow its exploitation on heterogeneous archi-

tectures. Previous task frameworks that offer support

for heterogeneous systems implement a variety of static

and dynamic scheduling strategies, although the size of

the chunk of iterations assigned to each device is always

fixed. However, due to the asymmetry of the computing

resources we propose in this work a dynamic scheduling

strategy coupled with an adaptive partitioning scheme

that resizes chunks to prevent underutilization and load

unbalance of CPUs and GPUs. In this paper we also ad-

dress the problem of the underutilization of the CPU

core where a host thread operates. To solve it, we pro-

pose two different approaches: i) a collaborative host

thread strategy, in which the host thread, instead of

busy-waiting for the GPU to complete, it carries out

useful chunk processing. To implement this strategy,

we modify our partitioning scheme to provide a chunk

to the host thread each time that a GPU device gets

new work; and ii) a host thread blocking strategy com-

bined with oversubscription, that delegates on the OS

the duty of scheduling threads to available CPU cores in

order to guarantee that all cores are doing useful work.

Using two benchmarks we evaluate the overhead intro-

duced by our scheduling and partitioning algorithms,

finding that it is negligible. We also evaluate the effi-

ciency of the strategies proposed finding that allowing

oversubscription controlled by the OS can be beneficial

under certain scenarios.

Dept. of Computer Architecture, University of Malaga, Spain.
E-mail: {angeles, avilches, corbera, asenjo,}@ac.uma.es

1 Introduction

Given the recent evolution of processor design, it is ex-

pected that future generations of processors will con-

tain hundreds of cores. To increase performance per

watt ratio, the cores will certainly be non-symmetric

or heterogeneous with a few extremely powerful cores

and numerous, but simpler, cores. In the context of cur-

rent heterogeneous architectures, many HPC platforms

include nodes that have a multicore and one (or more)

decoupled or discrete GPUs. The success of these sys-

tems will rely on the ability to adapt application level

parallelism to the hardware parallelism available.

We consider the problem of efficiently executing a

single application in a heterogeneous environment by

allowing the simultaneous execution of work on the ac-

celerators and CPUs. In this context, a runtime system

needs to offer a programming model that considers het-

erogeneity both in terms of computing power and pos-

sibly a disjoint address space. Therefore, the effective

utilization of resources in GPU-accelerated systems re-

quires careful partitioning of the workload across CPU

cores and GPU accelerators. Creating an adaptive ap-

plication level work distribution mechanism that is portable

across systems with varying node configurations is chal-

lenging and is further complicated by applications that

exhibit irregularity in the granularity of parallelism across

computational tasks. In this paper we focus on the

problem of efficiently partitioning and dynamically schedul-

ing chunks of work on heterogeneous architectures com-

prised of multicores (or a multi-CPU) and multiple GPUs.

In particular, we have extended the parallel for tem-

plate of the TBB task framework [12] to allow its ex-

ploitation in heterogeneous systems. We have selected

TBB because its task scheduler implementation is the

most efficient when compared with other task scheduler

2 Angeles Navarro et al.

that represent the state-of-the-art on heterogeneous en-

vironments, as we will show in section 2. Although we

have used TBB as the runtime supporting system, our

scheduling and partitioning strategies can also be ap-

plied to any other task framework.

Previous task frameworks that offer support for het-

erogeneous systems, like StarPU [1], OmpSs [4] and

XKaapi [8] implement a variety of static and dynamic

scheduling strategies, although the size of the chunk

of iterations assigned to each device is fixed. On the

contrary, our strategies dynamically resizes chunks to

prevent underutilization and load unbalance of CPUs

and GPUs due to small or large block sizes. Our par-

titioning strategies are adaptive and take into account

the computational speed of the resources to fully utilize

all available processing units and avoid load unbalance

in the system during the application lifetime.

Another departure from those state-of-the-art het-

erogeneous frameworks is related to the use of the host

thread. In all accelerators-based architectures, the gen-

eral convention is to dedicate one thread per accelerator

(the host thread) to carry out the host-to-device, kernel

launching and device-to-host chores. Depending on the

synchronization mechanism of the accelerator’s driver,

the host thread may wait for device completion either

busy-waiting or blocking or yielding. StarPU, OmpSs

and XKaapi implicitly assume that each host thread

runs in a dedicated CPU core typically using a busy-

waiting synchronization, and that this setting will pro-

vide the best performance. This means that in a hetero-

geneous architecture with multiple GPUs, some of the

CPU cores of the multicore will be exclusively dedicated

to hosting a thread (the host thread). For applications

where CPUs outperform GPUs significantly or where

the number of GPUs is high, dedicating one or more

CPU cores to just host GPUs can be a significant waste

of resources. In this paper we study different approaches

to avoid the underutilization of the core where a host

thread operates: i) a collaborative host thread strategy,

in which that host thread, instead of busy-waiting, car-

ries out useful chunk processing; and ii) a host thread

blocking strategy combined with oversubscription, that

delegates on the OS the duty of scheduling threads to

available cores.

The contributions of the paper can be summarized

as follows:

– We extend the high level parallel for TBB tem-

plate to allow its execution in heterogeneous systems

consisting of multi-CPU & multi-GPU.

– In order to perform the partition of work in the

parallel for template, an adaptive partitioning strat-

egy derived from an analytical model that minimizes

the load unbalance in the system, is proposed: Non-

Collaborative Host Thread (NCHT).

– We address the problem of the underutilization of

the CPU core where a host thread operates, by propos-

ing two different approaches: i) collaborative host

thread strategy, in which the host thread, instead

of busy-waiting for the GPU to complete, carries

out useful chunk processing. To that end, we design

a second adaptive chunk partitioning strategy: Col-

laborative Host Thread (CHT); and ii) host thread

blocking strategy combined with oversubscription,

that delegates on the OS, the duty of scheduling

threads to available CPU cores in order to guaran-

tee that all cores are doing useful work. Let’s note

that this second approach is orthogonal to any par-

titioning strategy.

– Using regular and irregular applications, we evalu-

ate the efficiency of our partitioning strategies, as

well as the behavior of oversubscription under dif-

ferent synchronization mechanisms, finding that al-

lowing moderate oversubscription controlled by the

OS under a blocking or yielding synchronization can

improve CPU core utilization, especially when the

number of CPU cores is small and the number of

GPU devices is high.

Next, to motivate our work, we present a compar-

ative study of our basic adaptive partitioning strategy

with StarPU, as well as a first evaluation of our ap-

proaches to fully utilize the CPU core where a host

thread operates.

2 Motivation

For heterogeneous architectures, three factors are crit-

ical to achieve ideal performance: i) the computational

speed of each computing resource should be accurately

measured; ii) the assignment of chunks to the computa-

tional resources -the CPU cores and GPUs- must guar-

antee minimum load unbalance; and iii) the ideal chunk

size that is sent to each resource for a task computa-

tion should be carefully identified and adaptively tuned

during execution. The current state-of-the-art heteroge-

neous frameworks, do not consider factor iii) whereas

in our approach we consider all of them. Ideal chunk

size for GPU accelerators might be fixed to amortize

data transfers (host-to-device and device-to-host) and

to ensure that all theirs execution units are fully uti-

lized. However, the CPU chunk size is not subjected

to these constraints and it can be adaptively re-sized

to guarantee that all computational resources finish at

the same time.

In order to asses the relevance of the dynamic re-

sizing of the chunk assigned to CPUs during computa-

tion, we conduct a first experiment in which we com-

Strategies for Maximizing Utilization in multi-CPU & multi-GPU Heterogeneous Architectures 3

pare our basic adaptive partitioning strategy that per-

forms chunk re-sizing, Non-Collaborative Host Thread,

NCHT , with StarPU fixed chunk size partitioning strat-

egy. Our NCHT strategy has been implemented on top

of the TBB task library and follows a greedy schedul-

ing policy (more details about our strategy are found

in section 4.1). Our partitioning heuristic follows this

principle when computing the optimal chunk size for a

resource that requests new work: if there are enough

remaining iterations to keep all the resources busy then

the chunk size selected is proportional to the resource’s

effective throughput; otherwise the size is computed

from a weighted guided self-scheduling formula (more

details in section 4.3.1).

The experiments were carried out in a platform de-

scribed in section 5.1. Fig. 1 shows the execution time

(y-axis) for a MxV benchmark (described in section 5.2)

in a system configuration with 8 CPUs and 0, 1, 2 and

4 GPUs (x-axis), and 8 OS threads. The first bar, NCHT,

represents our adaptive partitioning strategy. The next

bars represent the times for the StarPU fixed chunk

size partitioning strategy. This strategy has been evalu-

ated with the three best available schedulers in StarPU:

SPU greedy that uses a central task queue from which

available workers draw tasks to work on; SPU ws is based

on a work-stealing scheduler where when a worker be-

comes idle, it steals a task from the most loaded worker;

and SPU heft that takes task execution performance

model and data transfer time into account to perform

a HEFT-similar static scheduling strategy (it schedules

tasks where their termination time will be minimal) [2].

For the StarPU results, different block sizes were tested

(2,000, 200, and 20 matrix rows), obtaining similar re-

sults.

Fig. 1 Comparison of MxV execution times (secs.) for 8
threads running on 8 CPUs and (0, 1, 2, 4) GPUs.

In the only-CPU case (8,0), our strategy outper-

forms StarPU by 8%, mainly due to an internal StarPU

overhead of the tasks management. This difference in-

creases when 1, 2 and 4 GPUs are considered. Now

StarPU best implementation, SPU heft, is 25%, 32%

and 53% slower than our strategy, respectively. We ob-

serve that these increments are explained by a larger

unbalance among the computational resources, mainly

between the GPUs and CPU cores. This result justify

our selection of TBB as the underlying task framework

and the necessity of implementing adaptive chunk re-

sizing strategies.

The second challenge we address in this work is the

effective utilization of the CPU core that executes a

host thread. As mentioned before, heterogeneous frame-

works assume that the host thread is kept waiting for

GPU task completion and receipt of results. Instead of

waiting (which may result into a wasted CPU core),

we have modified the partitioning strategy in NCHT :

each time that a GPU device gets a new chunk, the host

thread also gets another chunk that will be processed in

parallel in the CPU core. While the host thread is pro-

cessing its chunk, it periodically polls if the GPU has

completed its work. We call this strategy Collaborative

Host Thread, CHT .

One alternative approach to keep the CPU core work-

ing, consists in relying on oversubscription and blocking

(or yielding) the host thread while waiting. The idea is

to have an extra CPU thread that will be dispatched

to the CPU core that would remain idle if the host

thread blocks (yield) while waiting for the GPU com-

pletion. More particularly, in CUDA, we can control

the synchronization style with cudaSetDeviceFlags().

We have studied the following flags: Spin, Y ield and

Blocking. The default is Spin that keeps the host thread

busy waiting in order to decrease latency when the de-

vice responds. StarPU uses this strategy by default. Un-

der Y ield, the host thread runs periodically and checks

for the status of the GPU execution in round-robin fash-

ion. When there is not oversubscription (other concur-

rent ready threads) it behaves like Spin, although with

some additional overhead due to more frequent con-

text switches. Finally, with Blocking the host thread

just blocks until the GPU work is done. As the Spin

synchronization wastes the CPU that runs the host

thread, we have implemented our NCHT strategy us-

ing a Blocking mechanism (although the Y ield mecha-

nism is also evaluated in section 5.5) and we have stud-

ied the effect of oversubscription under this synchro-

nization mechanism.

In Fig. 2 we represent the execution time (y-axis)

for the MxV benchmark in a system configuration with

8 CPUs, 4 GPUs and 8, 12 and 16 OS threads (x-axis).

The 8 threads experiment illustrates the scenario of no

oversubscription, while the other two stand for scenar-

ios with moderate and high oversubscription.

From the figure we see that under no oversubscrip-

tion (8 threads), the CHT strategy is the more efficient

(it is 10% faster than NCHT and 61% faster than the

4 Angeles Navarro et al.

Fig. 2 Comparison of MxV execution times (secs.) for 8, 12
and 16 threads running on 8 CPUs and 4 GPUs

best StarPU implementation, SPU heft). Under moder-

ate oversubscription (12 threads), now NCHT along with

the blocking synchronization mechanism is the more

efficient (in fact is the best: 64% faster than the best

SPU). However, strategies that uses polling (CHT) or spin

mechanisms do not improve their times, and even de-

grade, as it’s the case of SPU heft. The degradation is

even more important under high oversubscription. Un-

der these later types of synchronization mechanisms,

the context switch and cache cooling oversubscription

overheads are evident. A more detailed analysis is cov-

ered in the experimental results section. Anyway, these

results encourage the development of strategies that

fully utilize the host thread, depending on the available

synchronization mechanisms of the host thread: either

a NCHT -like strategy with moderate oversubscription

when blocking policy is available, or a CHT -like strat-

egy without oversubscription otherwise.

In the next section we first describe our proposed

programming interface based on TBB. Then, in sec-

tion 4 we elaborate on the implementation details of

the NCHT and CHT alternatives, and we present the

optimization model that supports our adaptive parti-

tioning heuristic. Experimental results are covered in

section 5, and we wrap up with related works and con-

clussions.

3 The parallel for template

The TBB template parallel for performs parallel it-

eration over a range of values. The default partitioner

of this template recursively splits the range into sub-

ranges (chunks) until a threshold size is reached. Each

chunk is then run as an independent task. Then, the

internal TBB runtime scheduler performs work steal-

ing to achieve load balance. The original template only

allows execution on CPU multicores. In this paper we

extend this template to offer hybrid execution on CPUs

and GPUs. In this section we present the template API.

Fig. 3 shows in pseudo-code how to use the extended

parallel for construct in a heterogeneous system. As

in any TBB program, the scheduler has to be initial-

ized (see line 15). In this step, the developer sets the

1 class bodyObject{
2 ...
3 public:
4 void operatorCPU () (RangeH& r) {
5 for(i=r.begin; i!=r.end; i++){ ... }
6 }
7 void operatorGPU () (RangeH& r, Stream& s){
8 hostToDevide_async(r.begin , r.end , s.device , s.

streamGPU);
9 launchKernel_async(r.begin , r.end , s.device , s.

streamGPU);
10 deviceToHost_async(r.begin , r.end , s.device , s.

streamGPU);
11 }
12 }
13

14 // Start task scheduler
15 task_scheduler_init init (nThreads);
16 ...
17 parallel_for (RangeH& itS , bodyObject (...),

PartitionerH(grainSizeGPU));

Fig. 3 Using the parallel for template

number of OS threads that the TBB runtime will cre-

ate. Once initialization is done, the developer can in-

voke the parallel for (line 17). Here, some parame-

ters have to be indicated: the iteration space (the range

itS), the body of the loop (bodyObject()), and the

PartitionerH() which refers to the method to perform

the partition of the iteration space across the computa-

tional resources. This method needs an input parameter

GrainSizeGPU which is a tuple of the form < GS1, GS2,

. . . >, where GSi is the default size of the chunk that

is assigned to the GPU device with idi.

In this paper we assume an adaptive partitioning

strategy: although the user provides the optimal chunk

size for each GPU device in the GrainSizeGPU tuple, it

is the responsibility of the partitioner to compute the

chunk size that will be assigned to the CPU cores that

will be concurrently computing work with the GPU ac-

celerators. We plan as a future work to also include

the automatic computation of the optimal chunk size

for each GPU device, similarly as done in [3], but in

this work we focus on the cooperative work performed

by the CPU cores and how to distribute the workload

among them and the GPUs to prevent underutiliza-

tion and load imbalance between these two types of

resources.

The user is also responsible for writing the body

code that processes the chunk on the CPU core or

on the GPU stream device, as shown in lines 1-12 in

Fig. 3. Two versions of the body must be coded: i) the

version for the CPU - its operator just needs r, the

range of the chunk to execute, line 4; and ii) the ver-

sion for the GPU -its operator, as shown in line 7-,

also needs s which is a struct with the GPU device id

(s.device) and the stream id (s.stream) in the case

that such a GPU provides support to more than one

concurrent stream. In the example shown in lines 7-11,

Strategies for Maximizing Utilization in multi-CPU & multi-GPU Heterogeneous Architectures 5

the user can control one stream to concurrently perform

the asynchronous host-to-device (line 8) and device-to-

host (line 10) transfers, as well as the kernel launching

(line 9).

4 Partitioning strategies

For this extended parallel for we have implemented

an engine for greedily scheduling the work over the

computational resources. Over that engine, we propose

two adaptive partitioning strategies, NCHT and CHT ,

that are described in this section. As a key function

of these strategies, we use an heuristic that adaptively

computes the optimal chunk size for each computa-

tional resource and that will be presented later.

In more detail, our engine is designed as a two-stages

pipeline, as depicted in Fig. 4. At the bottom of Fig. 4

we can see the iteration space with the chunks that

have already been assigned (in yellow and orange) and

the range r with the remaining iterations that have not

been assigned yet (in white). As mentioned, our pipeline

consists in two filters: Filter1, which performs the selec-

tion of the computational resource where the work will

be scheduled as well as the chunk partition, and Filter2,

which processes the chunk on the corresponding compu-

tational resource. This pipeline engine is implemented

on top of the TBB pipeline template [12].

One important feature of a pipeline in TBB is the

concept of token: a token represents a task that has

been spawned for each input item and that is going

to traverse all the pipeline filters. The left-hand side

of Fig. 4 represents the tokens available to the sched-

uler. Other implementation detail is that we have used

CUDA to spawn the task work on the GPUs. Once a

task (with its corresponding chunk) is selected to be

executed in a GPU, this GPU task ensures the consis-

tency of its input data on the GPU device thanks to the

host-to-device transfer operation. Then the GPU task

launches the kernel, and finally the GPU task performs

the device-to-host transfer operation. All these opera-

tions are performed asynchronously. Our work also sup-

ports the CUDA streams feature that allows the con-

currency between data transfers and kernel launches.

Thus, the number of tokens that we consider in our

system is the number of GPU streams plus the number

of CPU cores.

Using the pipeline engine just described, next we

provide the details of the two adaptive partitioning

strategies that we propose.

4.1 Non-Collaborative Host Thread

Our first partitioning strategy, called Non-Collaborative

Host Thread (NCHT), is represented in Fig. 4. In this

strategy chunks are assigned either to an idle GPU

stream or to an idle CPU core. In case of assigning a

chunk to the GPU stream, the corresponding CPU core

will only be responsible for communicating the data and

launching the kernel, as is usual in related works [1,4,

8].

ntokens

tokentokentoken
Filter 1
C chnk

CPUFilter 2
chnk

Filter 1
chunk

CPUFilter 2

Filter 1
chnk

CPUFilter 2
chnk

Kernel
chunk

GPU

chnk chunk chnk r
Iteration Space

chunkCPU

chunkGPU

time

C

G G

C C

C_token
G_token

Fig. 4 Two stages pipeline engine implementing the NCHT
strategy

In this strategy, Filter1 (see Fig. 5(a)) firstly ac-

quires an idle GPU stream and then it checks if the

device id is not null (lines 8-9). In that case, a G token

is created and initialized with information regarding the

stream id of the GPU and the range of the GPU chunk

taken (lines 10-12). If there is no idle GPU stream or

the device id is null, then a CPU must be idle; thus, a

C token is created and is initialized with the range of

the CPU chunk that the partitioner is going to extract

from the range of the remaining iterations (lines 14-15).

Next, Filter2 (see Fig. 5(b)) processes the chunk in

the corresponding computational resource defined by

the type of token that arrives, that can be either a

G token (line 10) or a C token (line 18). In both cases,

the time required for the computation of the corre-

sponding chunk is recorded (lines 9-13 and lines 17-19).

In the case of a GPU computation, the time recorded1

is used to update the effective throughput on the cor-

responding GPU device and then to compute factor f

(line 14). This factor represents the computational speed

of the GPU device relative to a core. This computa-

tional speed is defined as the ratio of the time per iter-

ation on the GPU device vs. the time per iteration in

a CPU core. The factor f will be required for the par-

titioning function to adaptively adjust the size of the

next chunk assigned to a core. In the case of a CPU

computation, the time recorded is used to update the

effective throughput on a CPU (line 20). Finally, in the

case of a GPU computation, after the completion of the

work and the calculation of factor f , the GPU stream

is released (line 15).

1 Let’s note that for a GPU, the computation time as well
as the transfer times are registered here.

6 Angeles Navarro et al.

1 class GetWorkFilter:public tbb:: filter{
2 RangeH r;
3 PartitionerH ph;
4 public:
5 GetWorkFilter(Range _r , PartitionerH _pH):r(_r),

pH(_pH){};
6

7 void* operator ()(void*) {
8 myStreamGPU=acquire_StreamGPU ();
9 if (myStreamGPU != NULL && myStreamGPU.device !=

NULL){
10 myToken = new G_token ();
11 myToken.streamGPU=myStreamGPU;
12 myToken.chunkGPU=pH.get_GPU_range(r,myStreamGPU

.device);}
13 if (myStreamGPU == NULL || myStreamGPU.device ==

NULL) {
14 myToken = new C_token ();
15 myToken.chunkCPU=pH.get_CPU_range(r);}
16 return (void*) myToken;
17 }
18 }

1 class ProcessWorkFilter:public tbb:: filter{
2 BodyObject bO;
3 PartitionerH pH;
4 public:
5 ProcessWorkFilter(BodyObject _bO , PartitionerH _pH):bO

(_bO),pH(_pH){};
6

7 void* operator ()(void* myToken) {
8 if (myToken.type == G) {
9 t1=record_time ();

10 bO.operatorGPU(myToken.chunkGPU , myToken.streamGPU);
11 completion=new_event(myToken.streamGPU);
12 waits(completion);
13 t2=record_time ();
14 pH.set_factor_GPU(t2 -t1, myToken);
15 release_StreamGPU(myToken.streamGPU); }
16 else {
17 t1=record_time ();
18 bO.operatorCPU(myToken.chunkCPU);
19 t2=record_time ();
20 pH.set_factor_CPU(t2 -t1, myToken);}
21 return NULL;
22 }
23 }

(a) Filter1 (b) Filter2

Fig. 5 Implementation of the filters for the NCHT partitioning strategy

Let us recall that for the GPU devices we exploit the

concurrent nature of the device-memory transfers (host-

to-device and device-to-host) and the kernel launches

through the use of asynchronous call functions (see Fig. 3).

After each request is inserted in the corresponding stream

by the user operator, Filter2 is responsible for inserting

an event to detect the completion of the operation and

waiting for it (lines 11-12 in Fig. 5(b)). The waits()

function can be implemented using either a blocking

or a yielding mechanism; both synchronization alterna-

tives are evaluated in the experimental results section.

4.2 Collaborative Host Thread

Our second partitioning strategy, called Collaborative

Host Thread (CHT) is the one represented in Fig. 6.

One distinguishing feature of this strategy is that now,

when assigning a chunk to a GPU stream, another chunk

is also assigned to the corresponding host thread. Thus,

both the CPU core that runs the host thread and the

GPU stream will collaborate in computing the work in

parallel. As mentioned in the motivation section, this

strategy aims to ensure the full utilization of the CPU

core that runs the host thread. Fig. 6 shows two struc-

tures that store the iterations: the range with the re-

maining iterations of the iteration space (the box at

the bottom), and a queue called spare workQueue that

stores sub-ranges of non-executed iterations which were

part of a chunk that was assigned to a host thread (the

hexagon at the right-hand side).

In this strategy, Filter1 (see Fig. 7(a)) after acquir-

ing an idle stream in one of the GPU devices and check-

ing that the device id is not null (lines 8-9), it creates a

new type of token, a GC token (a collaborative GPU-

ntokens

tokentokentoken
Filter 1

chnk

CPUFilter 2
C chnk

Filter 1

chunk

CPUFilter 2

Filter 1 CPUFilter 2
C

PU

Kernel
chunk

chnk chunk chnk r
Iteration Space

chnk

spare_workQueue

time

done

C

GC GC

CC

GPU

C_token

GC_token

chunkCPU

chunkGPU

Fig. 6 Two stages pipeline engine implementing the CHT
strategy

CPU token). So, our filter takes a chunk for the GPU

(line 12) and a chunk for the host thread (line 13).

In case that all GPUs are busy or that the device id

is null, then a C token is created. Let’s note that in

this strategy, a CPU chunk can come from two sources:

i) from spare workQueue (line 20, see the dark-yellow

sub-range in the hexagon in Fig. 6) or ii) if that queue

is empty, then the chunk come from the range that the

partitioner computes from the remaining iterations of

the iteration space (line 18, the white range in the bot-

tom box of Fig. 6).

Regarding Filter2 (see Fig. 7(b)), the difference arises

when processing the chunks assigned to the collabora-

tive GC token. The host thread will launch the task

with the GPU chunk on the corresponding GPU stream

(line 10). But now, before waiting for the completion

of the GPU stream, the CPU chunk assigned to host

thread is partitioned into a set of sub-ranges of size

threshold and stored in a temporal queue (line 12).

Next, a sub-range is popped from that queue and pro-

Strategies for Maximizing Utilization in multi-CPU & multi-GPU Heterogeneous Architectures 7

1 class GetWorkFilter2:public tbb:: filter{
2 RangeH r;
3 PartitionerH ph;
4 public:
5 GetWorkFilter2(Range _r, PartitionerH _pH):r(_r),

pH(_pH){};
6

7 void* operator ()(void*) {
8 myStreamGPU=acquire_StreamGPU ();
9 if (myStreamGPU != NULL && myStreamGPU.device !=

NULL) {
10 myToken = new GC_token ();
11 myToken.streamGPU=myStreamGPU;
12 myToken.chunkGPU=pH.get_GPU_range(r,myStreamGPU.

device);
13 myToken.chunkCPU=pH.get_CPU_range(r);
14 }
15 if (myStreamGPU == NULL || myStreamGPU.device ==

NULL) {
16 myToken = new C_token ();
17 if (spare_workQueue.is_empty ())
18 myToken.chunkCPU=pH.get_CPU_range(r);
19 else
20 myToken.chunkCPU=spare_workQueue.pop_chunk ();
21 }
22 return (void*) myToken;
23 }
24 }

1 class ProcessWorkFilter2:public tbb:: filter{
2 BodyObject bO;
3 PartitionerH pH;
4 public:
5 ProcessWorkFilter2(BodyObject _bO , PartitionerH _pH):bO

(_bO),pH(_pH){};
6

7 void* operator ()(void* myToken) {
8 if (myToken.type == GC) {
9 t1=record_time ();

10 bO.operatorGPU(myToken.chunkGPU , myToken.streamGPU);
11 completion=new_event(myToken.streamGPU);
12 setOfChunks=split_by(myToken.chunkCPU , threshold);
13 while (! setOfChunks.is_empty ()) {
14 otherChunk=setOfChunks ().pop_chunk ();
15 bO.operatorCPU(otherChunk);
16 if (completion.status == COMPLETE) {
17 spare_workQueue.push_chunk(compact_by(setOfChunks ,

threshold));
18 break; }
19 }
20 waits(completion);
21 t2=record_time ();
22 pH.set_factor_GPU(t2 -t1,myToken);
23 release_StreamGPU(myToken.streamGPU); }
24 else {
25 t1=record_time ();
26 bO.operatorCPU(myToken.chunkCPU);
27 t2=record_time ();
28 pH.set_factor_CPU(t2 -t1,myToken); }
29 return NULL;
30 }
31 }

(a) Filter1 (b) Filter2

Fig. 7 Implementation of the filters for the CHT partitioning strategy

cessed by the host thread in the CPU core (lines 14-

15). Then, the status of the GPU stream completion

event is polled. In the case that the GPU stream sta-

tus is COMPLETE, then the remaining sub-ranges stored

in the temporal queue are compacted and returned to

the scheduler in the spare workQueue (line 17). Oth-

erwise, in the case that the GPU stream status is not

COMPLETE yet, a new sub-range is popped from the tem-

poral queue and processed by the host thread in the

core. This process of polling and computing sub-ranges

is repeated until the GPU stream completes or the host

thread computes all the sub-ranges stored in the tem-

poral queue. As in the previous partitioning strategy,

the time required to compute a GPU or a CPU chunk

is recorded and used to compute factor f .

Before computing the chunk size for each computa-

tional resource, we consider an optimization model to

help us understand how the different resources inter-

act. The purpose of building this idealized model is to

provide insight into the key aspects of the problem of

finding the right chunk size so that we can develop an

adaptive partitioning heuristic which will work well in

practice.

4.3 Optimization model for the chunk size

We model our partitioning strategy as a simplified opti-

mization problem whose goal is to minimize the system

load unbalance subject to the constraint that the sys-

tem throughput is maximum. For this model we sim-

ply assume that the optimal chunk size of each GPU

device is known and stationary during program exe-

cution. However, the optimal chunk size for a CPU

core will be a value that our optimization problem will

look for. Specifically, the optimal chunk size of each

GPU device is given by the user as an input parameter

in the parallel for template invocation (see line 17

in Fig. 3). These sizes are specified in GrainSizeGPU,

which is a tuple of the form < GS1, GS2, . . . GSk >,

where GSi is the default size of the chunk that the par-

titioner will assign to the GPU device with idi. The

sizes depend on the kernel specified in the task body

and the particular GPU device hardware: the number

of registers, size of the memory of each type required

in the kernel, maximum number of warps, etc. Let us

assume that Ri and Rc represent the range of iterations

of a chunkGPU for GPUi and a chunkCPU for a core, re-

spectively. Every time that a chunk Ri (Rc) is executed

in the corresponding GPUi (or CPU core), its process-

ing time, Ti (Tc), is recorded to compute the effective

throughput on each GPU (CPU core) as λi (λc), by

following the next expressions:

λio =λi (1)

λi =α ·
Ri

Ti
+ (1− α) · λio (2)

8 Angeles Navarro et al.

where λio represents the previous value of the effective
throughout (initially 0), whereas eq. 2 is the exponen-

tial moving average of the current throughput sample

(Ri/Ti) and the previous measures (λio). α is a smooth-

ing constant between 0 and 1 that weights the contribu-

tion of the current measurement vs the previous ones.

The optimal value for this parameter and its impact

on our partitioning strategy are issues discussed in the

experimental section. Let us note that for the compu-

tation of λc we replace Ri and Ti for Rc and Tc, respec-

tively, in eq. 2. Once the effective throughput of GPUi,

λi, is computed, then the computational speed of such

a device is calculated as

fi =
λi

λc
(3)

where λc represents the current effective throughput

in a CPU core. On the other hand, when a CPU core

execution is invoked, the effective throughput in a CPU

core, λc, is computed (by using eqs. 1 and 2). As we can

see fi represents how faster is GPUi w.r.t. a core.

Let us assume that T represents the optimal time

span during which the parallel for can be executed

in the heterogeneous system. In addition, Ni denotes

the number of chunks that GPUi is going to execute,

whereas Nc is the number of chunks per each CPU core.

Then, N =
∑

iNi +
∑

nCoresNc is the total number

of chunks. Let us also assume that Ti (or Tc) repre-

sents the average time that resource i needs to execute

chunks of size Ri (or Rc). Our objective is then to min-

imize the load unbalance in the system. Obviously, the

load unbalance due to resource i can be modeled as

Ni · Ti − T (or Nc · Tc − T). Consequently, the load un-

balance due to all resources in the system is the sum

of the load unbalance due to each resource. This is the

objective function that we want to minimize, as shown

in eq. 4. Furthermore, the constraint shown in eq. 5

limits the maximum throughput that can be achieved,

λmax =
∑

i λi +
∑

nCores λc, while the last constraint

represented by eq. 6 ensures the positivity of the vari-

ables.

Minimize
(∑

iNi · Ti − T
)

+
(∑

nCoresNc · Tc − T
)

(4)

such that
(∑

i
Ni
N
· Ri
Ti

)
+
(∑

nCores
Nc
N
· Rc
Tc

)
= λmax (5)

and ∀i Ti > 0, Tc > 0 (6)

This problem has a linear objective function and a

non-linear constraint. To solve it, we make a change

of variables. Let ρi = 1/Ti and ρc = 1/Tc. Then the

problem becomes

Minimize
(∑

i
Ni
ρi
− T

)
+
(∑

nCores
Nc
ρc
− T

)
(7)

such that
∑
i
Ni
N
·Ri · ρi +

∑
nCores

Nc
N
·Rc · ρc = λmax (8)

and ∀i ρi > 0, ρc > 0 (9)

The objective function is non-linear, but convex and

separable in its variables. The constraint is now linear.

This type of constraint is typically called a resource

allocation constraint. The transformation thus yields a

continuous convex separable resource allocation problem

and the optimal solution occurs when the derivatives of

each of the objective function summands ((Ni/ρi)− T
and (Nc/ρc)−T) are equal (see [6]). In other words, we

have
−N1

ρ21
=
−N2

ρ22
= . . . =

−Nc
ρ2c

(10)

Changing the variables again, simplifying, and taking

the square roots we have,√
N1 · T1 =

√
N2 · T2 = . . . =

√
Nc · Tc (11)

If we assume that, ideally, the load unbalance in the

system is 0, then Ni · Ti = T (Nc · Tc = T). Thus,

using this assumption for eq. 11 we obtain the following

expression

T1 = T2 = . . . = Tc (12)

As Ti = Ri/λi and Tc = Rc/λc, eq. 12 can be expressed

as,
R1

λ1
=
R2

λ2
= . . . =

Rc

λc
(13)

This expression gives us the key to achieving an opti-

mal strategy for minimizing the load unbalance in the

system: each time that a chunk is partitioned to be as-

signed to a resource, its size should be selected such that

it is proportional to the resource’s effective throughput.

However, the CPU cores are the only resources that

can keep their throughput constant independently of

the chunk size assigned to them. In contrast, the GPUs

quickly degrade their throughput when chunks of gran-

ularity different to the device’s optimal size are assigned

to them [3]. Therefore, we have decided to implement

a greedy partitioning algorithm based on the following

key observations:

While there are sufficient remaining iterations, the

chunk size assigned to a GPUi, Ri, should be its optimal

GSi, whereas the chunk size assigned to a CPU core

should verify eq. 13, that is,

Rc

λc
=
Ri

λi
, ∀i = 1 : k (14)

Using the computational speed definition, fi, given by

eq. 3, we obtain as our optimal goal,

Rc =
Ri

fi
, ∀i = 1 : k (15)

Next, we discuss the details of how we implement

this result in our framework.

Strategies for Maximizing Utilization in multi-CPU & multi-GPU Heterogeneous Architectures 9

4.3.1 Partitioning heuristic

This heuristic aims to adapt automatically the chunk

size of CPUs and GPUs along the computation us-

ing the strategy explained in the previous section. The

get GPU range() partitioning function is shown in Fig. 8.

This function is responsible for partitioning the chunks

for the GPU devices.

get GPU range()

// Input: r (the input range)
// myStreamGPU.device (the id of GPUi)
// Output: Ri (the new chunk for the GPUi device)
// r (the remaining iterations)

1. If first range[i] then
2. Ri = GSi;
3. first range[i]= false;
4. else

5. If
(GSi
fi

< r−GSi
(
∑

j 6=i fj)+nCores

)
then

6. Ri = GSi;
7. else
8. Ri = 0;
9. fi = 0;
10. myStreamGPU.device=NULL;
11. nCores = max(nCores+ 1, nThreads);
12. endif
13. endif
14. r = r −Ri;
15. return(Ri)

Fig. 8 Pseudo-code for the get GPU range() function

For the first invocation of function get GPU range(),

first range[i] is true, so the function returns the

range of iterations Ri for GPUi, as shown in line 2
in Fig. 8. After the initial execution of a chunk on

each computational resource, and the computation of

λi and fi for each GPU device, the next time that

get GPU range() is invoked, a new range of iterations

Ri for GPUi is calculated by following the procedure

shown in lines 5-12 in Fig. 8. Specifically, line 5 checks

whether there are a sufficient number of remaining it-

erations. The condition in that line is equivalent to the

next equation (just replace fi by λi/λc),

GSi

λi
<

r −GSi
(
∑
j 6=i λj) + nCores · λc

(16)

Here, we check whether the expected time for the

execution of the new chunk of size GSi (the optimal size

for GPUi) in GPUi is smaller than the expected exe-

cution time of the remaining iterations (r−GSi) when

they are executed among all the other computational

resources (including all the CPU cores and excluding

GPUi). We estimate these times using the aggregated

effective throughput of all computational resources ex-

cluding GPUi ((
∑

j 6=i λj)+nCores·λc). In case that the

expected time for the execution of that chunk in GPUi

is smaller than r−GSi, we guarantee that such a GPU

device will not be loaded when the other computational

resources have finished. In this situation, we assign the

optimal chunk size to the device, Ri = GSi (line 6). If

the condition does not hold, then this is because there

is an insufficient number of remaining iterations to keep

all the resources busy. In this situation, it is better to

not assign a new range to GPUi because then this de-

vice would create load unbalance. Thus the chunk size

is set to 02 (line 8). In addition, the device is disabled

as a computational resource in the system, by making

fi = 0 (line 9) and nullifying the device id (line 10).

Also, the number of computational CPU cores is in-

creased (line 11) to indicate that one additional thread

(the one that has found myStreamGPU.device=NULL)

will just perform CPU work from now on.

get CPU range()

// Input: r (the input range)
// Output: Rc (the new chunk for the CPU core)
// r (the remaining iterations)

1. If first rangeCPU then

2. Rc = maxi(GSi)
nCores

;
3. first rangeCPU= false;
4. else

5. Rc = min
(
max∀fi 6=0

(GSi
fi

)
, r
(
∑

i fi)+nCores

)
;

6. If (Rc < threshold) then
7. Rc = min(threshold, r);
8. endif
9. endif
10. r = r −Rc;
11. return(Rc)

Fig. 9 Pseudo-code for the get CPU range() function

Function get CPU range() that is responsible for

partitioning chunks for the CPU cores, is shown in Fig. 9.

The first call to this function returns the range Rc to

each CPU core as indicated in line 2. After the initial

execution of a chunk on a CPU core and the compu-

tation of λc, the next time that get CPU range() is

invoked, a new range of iterations Rc is calculated by

following the procedure shown in lines 5-8 in Fig. 9.

Line 5 now selects the value of Rc depending on two

options:

(1) max∀fi 6=0(GSi/fi), and

2 When making the GPU chunk size equal to 0, the second
filter of our engine will not execute operator GPU().

10 Angeles Navarro et al.

(2) r/((
∑

i fi) + nCores).

GSi/fi represents the optimal number of iterations that

a CPU core must perform to consume the same time as

GPUi if the device is active (i.e. fi 6= 0), as we estab-

lished in eq. 14. In our case, we choose to synchronize

a CPU core with the GPU for which the GSi/fi value

is the largest. This is done to minimize the number of

times that the partitioning function must be invoked

when computing the CPU chunk, and therefore to min-

imize its associated overhead. The term r/((
∑

i fi) +

nCores) represents the number of iterations (from the

remaining ones) that a CPU core should execute when

considering the computational speed of all the active

devices in the system. In other words, it represents the

number of iterations that a CPU core should execute

when seeking a weighted guided self-scheduling load bal-

ancing strategy [13]. When the number of remaining it-

erations, r, is sufficiently high, or in other words, there

are a sufficient number of remaining iterations, then

our strategy will choose the optimal value given by op-

tion (1). Eventually, when r is getting low and there

is an insufficient number of remaining iterations, then

our strategy will choose option (2) (weighted guided

self-scheduling).

A threshold value is used in line 6, to guarantee a

minimum profitable chunk size. This value will depend

on the work per iteration and the overhead of our par-

titioner.

5 Experimental Results

In this section we conduct a series of experiments to

evaluate issues such as the overhead of our framework,

the efficiency of the two partitioning strategies pro-

posed, and to what extent their performance is less than

optimal. We also explore whether or not it is possible

to improve performance by allowing oversubscription

and by selecting the appropriate synchronization mech-

anism.

5.1 Experimental setup

We conduct our experiments on a multi-CPU with a

quad-socket eight-cores Intel(R) Xeon(R) X7550 2GHz

(32 cores). Four decoupled GPU devices are connected:

GPU1 and GPU2 are GeForce GTX 480 while GPU3

and GPU4 are part of a Tesla S2050. This allowed us

to study the scalability of the proposed strategies under

different heterogeneous configurations. We refer to the

configurations as (no. of CPU cores, no. of GPUs). For

instance, for 1 socket (8 cores) and 1, 2 and 4 GPUs we

get the configurations (8,1), (8,2) and (8,4). The codes

were compiled with icc 11.1, TBB 4.1 and CUDA 4.2.

In our experiments we considered just one stream

per GPU device. Therefore, every time that a G token

(or GC token) was selected by Filter1 in our pipelined

engine (see section 4), then the corresponding thread

would serve as a host thread of the GPU device. In

other words, depending on the number of GPUs, there

could be at most 1, 2 or 4 threads working as host

threads.

5.2 Benchmarks

We use a kernel similar to MxV (although with more op-

erations inside the loop nesting) and the Barnes-Hut

benchmark for our experiments. The MxV is an example

of a regular data parallel application. An input matrix

of 800,000 x 2,000 elements was considered for the MxV

benchmark. For this input, the benchmark can be con-

sidered a fine-grained application (it takes less than 1

ms to process one row -or iteration of the outer loop- on

a CPU core). Also, for this problem, the computational

speed of the GPUs was within the range 7 ≤ fi ≤ 8

(where i represents one of the 4 GPU devices id).

For the Barnes-Hut benchmark, we adapted the

code proposed by Kulkarni et. al [7], which is part of

the Lonestart Benchmarks suite. This code is repre-

sentative of an irregular application. An input set of

100,000 bodies was simulated in our experiments. For

this input, the problem could be considered a coarse-

grained application (it takes a few seconds to process a

body/iteration in a CPU core). For this problem, the

computational speed of the GPUs was within the range

3 ≤ fi ≤ 4 (again i represents one of the 4 GPU devices

id).

5.3 Characterization of the parallel for template

For all the experiments conducted in this section the

number of OS threads considered (the nthreads pa-

rameter in the initialization of the task scheduler) was

equal to the number of CPU cores tested on each ma-

chine configuration: 8, 16 and 32.

In our first set of experiments we measured the ef-

fect that factor α (used to compute the exponential

moving average of the throughput) has on performance.

We studied the execution times obtained for both parti-

tioning strategies, NCHT and CHT , when parameter

α varies from 0.1 to 0.9, A low α value means that

the current throughput sample has less weight than the

historic throughput value when computing the new av-

erage, whereas a high α value means the opposite. For

both MxV and Barnes-Hut codes, we found that in the

case of the NCHT partitioning strategy, the value cho-

sen for parameter α has no effect on performance for

Strategies for Maximizing Utilization in multi-CPU & multi-GPU Heterogeneous Architectures 11

any machine configuration. In contrast, in the CHT

strategy a low value of α clearly degrades performance,

specially when the number of CPU cores is high. In

general, a value of α = 0.5 produces the best perfor-

mance for all machine configurations (higher values of

α tend to give similar execution times). Therefore, a

value of α = 0.5 was selected for the remaining exper-

iments. For this value of α, our partitioning heuristic

quickly converge to the optimal core chunk size (after

3-4 partitions).

We also measured the overhead introduced by our

engine, finding that for the MxV benchmark it was be-

tween 0,001% (8 cores) and 0,01% (32 cores). For the

coarse-grained Barnes-Hut benchmark it was even smaller.

This allowed us to set threshold = 1 for all our experi-

ments.

5.4 Efficiency of the partitioning strategies

In this set of experiments we focus on discussing and

comparing the performance of NCHT and CHT . As

previously, the number of OS threads was equal to the

number of CPU cores. We start by measuring the im-

provement achieved by the NCHT and CHT when

including the GPU devices on different socket config-

urations (first we consider a multicore of 8 CPUs, then

other of 16 CPUs and finally a multicore of 32 CPUs).

In this study, we compute the ratio between the execu-

tion time of each benchmark in one multicore configura-

tion (T (nCores)) and the time when adding 1, 2 and 4

GPUs (T (nCores+nGPUs)). This ratio is named GPU

improvement ratio and it is shown in Fig. 10 for both

partitioning strategies. Obviously this ratio represents

the speedup that each partitioning strategy achieves

when we incorporate 1, 2 and 4 GPUs to a multicore.

We also show the ideal improvement ratios, which are

computed as GIR = (
∑

i fi + nCores)/nCores. These

ideal ratios represent the maximum computational speed

of the heterogeneous system vs the speed of a multicore,

or in other words, the maximum speedup we can achieve

when we incorporate the acceleration of the GPU de-

vices to the multicore. The ideal ratios are depicted as

green stars in the figure.

Fig. 10 shows that the CHT strategy always out-

performs NCHT , obviously due to a better use of the

CPU core where the host thread runs. The results show

us that the GPU improvement ratio is more significant

when the number of CPU cores is small, for both codes.

In both cases, when increasing the number of CPU

cores, the relative benefit of CHT decreases. Another

interesting finding is that when the number of CPU

cores is fixed, the relative benefit of CHT is boosted

when the number of GPUs increases. For instance, for

the Barnes-Hut benchmark, the CHT strategy enhances

the NCHT performance of the (8,1), (8,2) and (8,4)

configurations by 4%, 8% and 14%, respectively. Clearly,

more GPUs means more host threads that can take ad-

vantage of their respective CPU cores in CHT .

Based on the results shown in Fig. 10, we can also

explore another interesting question: how far is our par-

titioning heuristic from the ideal case? For it, we com-

pare the GPU improvement ratio with the ideal GIR.

From the figures we notice that ratios for NCHT and

CHT are 5%-20% and 2%-11% below the ideal ratio,

respectively. These ranges are valid for both MxV and

Barnes-Hut. The maximum deviation from the ideal

value is for the configuration with the highest number of

GPUs and lowest number of CPU cores: (8,1). The loss

of efficiency in the NCHT strategy is because the CPU

core that runs a host thread is underutilized. This is al-

leviated in part by the CHT strategy, which attempts

that the host thread uses the CPU core by collabora-

tively executing sub-ranges of work while the GPU is

computing the chunk assigned. However, in this case,

there is still some loss of performance due to the la-

tency in the synchronization mechanism that we study

next.

5.5 Effect of oversubscription and synchronization

mechanisms

In this section we discuss the effect of oversubscrip-

tion as well as the different synchronization mechanisms

available using CUDA on our partitioning strategies.

Oversubscription may improve core utilization, es-

pecially in the case of the NCHT strategy, but it can

also produce more overhead due to higher process con-

text switch. Also, increasing the number of threads has

the potential to increase the duration of synchroniza-

tion operations due to hardware contention. CUDA con-

trols how the host thread interacts with the OS sched-

uler when waiting for results from the GPU device by

calling the cudaSetDeviceFlags() function. As explained

in section 2, we are not interested in the busy waiting

mechanism (Spin) because it wastes the host thread

without performing any productive computation. For

this reason, we have studied the BlockingSync (from

now Blocking) and Y ield flags.

Figs. 11 and 12 present the execution time for all the

codes when they are executed on a 8 CPU cores socket

and with 1, 2 and 4 GPUs. The ideal time is also rep-

resented: it is estimated as T (nCores = 8)/((
∑

i fi +

nCores)/nCores), where T (nCores = 8) is the time

of each application in the 8 CPU cores socket without

GPUs. The x-axis represents the number of threads and

the y-axis the time in seconds. In each figure, the first

12 Angeles Navarro et al.

0,00	

1,00	

2,00	

3,00	

4,00	

8	 8	 8	 16	 16	 16	 32	 32	 32	

1	 2	 4	 1	 2	 4	 1	 2	 4	

MxV:	 GPU	 improvement	 ra3o	

NCHT	

CHT	

Ideal	

0,00	

1,00	

2,00	

3,00	

8	 8	 8	 16	 16	 16	 32	 32	 32	

1	 2	 4	 1	 2	 4	 1	 2	 4	

Barnes-‐Hut:	 GPU	 improvement	 ra5o	

NCHT	

CHT	

Ideal	

(a) MxV (b) Barness-Hut

Fig. 10 Ratio of the NCHT and CHT times in a multicore vs the times in a heterogeneous configuration. Note that 1 is the
performance in the multicore (only CPUs). The x-axis represents the number of CPU cores (8,16,32) and number of GPUs
(1,2,4) on each heterogeneous configuration

(a) (8,1) configuration (b) (8,2) configuration (c) (8,4) configuration

Fig. 11 Execution time (in seconds) for different numbers of threads in the MxV code. The left-most group of bars represents
the case of no oversubscription

group of bars always present the 8-threads case, i.e. no

oversubscription. The next group of bars present the

time for a moderate oversubscription scenario, i.e., 8

threads plus one additional thread per GPU device (i.e.

9, 10 or 12 threads confined in 8 cores). Finally, the last

group of bars presents the time for a high oversubscrip-

tion scenario, i.e., 8 threads plus two additional threads

per GPU device (i.e. 10, 12 or 16 threads confined in 8

cores).

For the MxV and Barnes-Hut codes, NCHT B and NCHT Y

represent the times for the NCHT strategy in which

the Blocking and Y ield mechanisms are evaluated. By

setting the Y ield flag, the system call sched yield is

invoked when reaching the synchronization function.

Current Linux distributions allow two different behav-

iors for this system call. The default behavior (referred

to as CFS) does not preempt the calling thread until

its quantum expires, whereas in the Posix conforming

implementation (referred to as POX) the caller imme-

diately relinquishes the CPU. In addition, CHT B rep-

resents the times for the collaborative CHT strategy3

3 Let’s recall that a polling mechanism is used in the CHT
strategy when the host thread checks the completion of the
GPU work, although eventually also a waits() call is per-
formed, and this is the function affected by the synchroniza-
tion flag.

in which the Blocking scheme is assessed. In this CHT

strategy, worst times were obtained when a Y ield mech-

anism was used.

As shown in Figs. 11 and 12, when there is no over-

subscription, CHT B presents the best performance when

compared with any NCHT version. Also in this scenario
of no oversubscription, the Y ield mechanism performs

worse than the Blocking one under the NCHT strat-

egy. This difference is more evident in the (8, 4) config-

uration (see Figs. 11(c) and 12(c)). We discovered that

the reason for this performance difference is the Turbo-

Boost feature of the Xeon X7550 processor. This fea-

ture enables boosting the frequency of heavily-loaded

cores when other cores are idle in the same package.

Fig. 13 shows the average frequency obtained for the

MxV and Barnes-Hut codes for the NCHT strategy and

the Blocking and the Y ield (default CFS) mechanisms.

Clearly, on average, the cores are running at a higher

frequency when the Blocking strategy is used.

Interesting results are obtained when we study the

performance of our two partitioning strategies under

oversubscription. For instance, the performance of the

CHT strategy degrades always for any machine con-

figuration when moderate or high oversubscription is

allowed in the system. The conclusion in this case is

that oversubscription does not improve core utilization,

Strategies for Maximizing Utilization in multi-CPU & multi-GPU Heterogeneous Architectures 13

(a) (8,1) configuration (b) (8,2) configuration (c) (8,4) configuration

Fig. 12 Execution time (in seconds) for different numbers of threads in the Barnes-Hut code. The left-most group of bars
represents the case of no oversubscription

2,05	

2,1	

2,15	

2,2	

2,25	

2,3	

8	 8	 8	

1	 2	 4	

MxV:	 Average	 Frequency	 (TurboBoost)	
NCHT_B	

NCHT_Y_CFS	

2,05	

2,1	

2,15	

2,2	

2,25	

2,3	

8	 8	 8	

1	 2	 4	

B-‐H:	 Average	 Frequency	 (TurboBoost)	

NCHT_B	

NCHT_Y_CFS	

(a) MxV (b) Barnes-Hut

Fig. 13 Average frequency (GHz) that the Turbostat command reported for our benchmarks. No oversubscription case: 8
threads on (8,1), (8, 2) and (8,4) configurations

and in fact context switch and cache cooling overheads

degrade the times. On the other hand, although the

non-collaborative strategy,NCHT , shows worse behav-

ior in the case of no oversubscription, it improves its

performance when oversubscription is enabled, and for

both Blocking and Y ield mechanisms. The improve-

ment of NCHT with oversubscription is more signifi-

cant when the number of GPUs increases. This is due

to the fact that core utilization is improved by allowing

extra threads with CPU chunks to execute additional

work in the CPU core that is waiting for the completion

of the GPU work computation. We also notice from the

figures that the POX implementation performs slightly

better than CFS for Y ield, but in any case, again the

Blocking mechanism outperforms the Y ield one.

In summary, we can see that the overall best per-

formance for the MxV and Barnes-Hut codes is achieved

with the non-collaborative NCHT strategy that uses a

Blocking synchronization mechanism and in moderate

oversubscription scenario. In fact, in this case, the time

of NCHT is slightly less than 1% above the ideal for

MxV and around 3%-5% above the ideal for Barnes-Hut.

6 Related Work

Current attempts to provide programming support for

heterogeneous systems such as CUDA 5 [10], OpenCL [14]

and OpenACC [5] consider the portability of code across

CPUs and GPUs, but do not provide support for simul-

taneously executing a parallel construct (for, reduce, ...)

on the CPU and the GPU. The problem of accelerating

applications on heterogeneous architectures based on

coupled and/or discrete GPUs by using the aggregate

processing power of the multicore CPU and the multiple

GPUs has received some attention lately [9,15,11,1,8,

4,3]. The Qiling system [9] has developed an adaptable

scheme for mapping the computation between the CPU

and GPU by using extensive offline training. However,
in our approach, the runtime performs dynamic work

distribution using online information (the availability

of resources and their effective throughput). Vuduc et

al. [15] propose a “wildly asynchronous” implementa-

tion that can reduce or even eliminate the synchroniza-

tion bottleneck between iterations, although for the het-

erogeneous implementations they did not obtain speedups

on their platforms. StarPU [1] and XKaapi [8] offer a

runtime for scheduling a DAG of tasks on heteroge-

neous architectures, providing a programming model

that presents an API to select the scheduling policy.

In our work, the programming model is based on the

use of higher-level templates. OmpSs [4] is a program-

ming tool that provides a set of OpenMP-like pragmas

and a runtime system to schedule tasks while preserv-

ing dependencies. Although they present performance

results for multi-GPU systems, collaborative work from

the multicores is not considered, which is a relevant is-

sue in our work. One distinguishing feature of our re-

14 Angeles Navarro et al.

search when compared to the above mentioned frame-

works is that we explore dynamic block resizing to pre-

vent load unbalance of CPUs and GPUs due to small

or large block sizes. Other distintive issue in our work

is that we study the efficiency of non-collaborative and

collaborative host thread strategies combined with the

possibility of using oversubscription to improve cores

utilization.

To our knowledge, this is the first work where it

has been studied the behavior of a task-based runtime

working under a competitive environment that allows

oversubscription in a heterogeneous architecture. Our

results indicate that oversubscription provides an or-

thogonal mechanism to increase performance in a het-

erogeneous multi-CPU & multi-GPU system for the

benchmarks studied.

7 Conclusions

We have explored the possibility of extending a high-

level parallel for template that works under the par-

allel task programming paradigm to enable the effec-

tive utilization of accelerators (GPU devices) working

in parallel with multicore systems in heterogeneous ar-

chitectures. The extension of the template is based on

a two-stages pipeline engine that is responsible for dy-

namically scheduling and partitioning the chunks into

the computational resources. Under this engine, we have

proposed two adaptive partitioning strategies, NCHT

and CHT , that resize chunks to prevent underutiliza-

tion and load imbalance of CPUs and GPUs due to

small or large block sizes. Our partitioning heuristic is

based in an analytical model that takes into consid-
eration the effective throughput of the computational

resources. CHT also tackles the problem of effectively

utilizing the CPU core where a host thread operates,

by allowing that the host thread gets one chunk to pro-

cess in parallel each time that launches work on a GPU

device. Using a regular and an irregular benchmark, we

have evaluated the overhead introduced by our engine

in a heterogeneous platform, finding that is negligible

(less than 0.01%). We have also evaluated the behav-

ior and efficiency of both partitioning strategies, finding

that a collaborative host thread strategy implemented

at the application level (CHT) can be outperformed

by a non collaborative host thread (NCHT) strategy

combined with a blocking synchronization mechanism,

when moderate oversubscription controlled by the OS

is allowed. Our results encourage the development of

strategies that fully utilize the host thread, depend-

ing on the available synchronization mechanisms of the

host thread: either a NCHT -like strategy with moder-

ate oversubscription when blocking policy is available,

or a CHT -like strategy without oversubscription oth-

erwise.

References

1. C. Augonnet, J. Clet-Ortega, S. Thibault, and
R. Namyst. Data-aware task scheduling on multi-
accelerator based platforms. In Parallel and Distributed

Systems (ICPADS), 2010 IEEE 16th International Confer-
ence on, pages 291–298, Dec. 2010.

2. C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacre-
nier. Starpu: A unified platform for task scheduling
on heterogeneous multicore architectures. Concurrency

and Computation: Practice and Experience, (23):187–198,
February 2011.

3. Mehmet E. Belviranli, Laxmi N. Bhuyan, and Rajiv
Gupta. A dynamic self-scheduling scheme for heteroge-
neous multiprocessor architectures. ACM Trans. Archit.
Code Optim., 9(4):57:1–57:20, January 2013.

4. J. Bueno, J. Planas, A. Duran, R.M. Badia, X. Martorell,
E. Ayguade, and J. Labarta. Productive programming of
GPU clusters with OmpSs. In Parallel Distributed Process-

ing Symposium (IPDPS), IEEE 26th Intl., pages 557–568,
May 2012.

5. Alistair Hart. The OpenACC programming model. Tech-
nical report, Cray Exascale Research Initiative Europe,
2012.

6. T. Ibaraki and H. Katoh. Resource Allocation Problems:

Algorithmic Approaches. MIT Press, Cambridge, Mass.,
1988.

7. M. Kulkarni, M. Burtscher, C. Cascaval, and K. Pingali.
Lonestar: A suite of parallel irregular programs. In IEEE
International Symposium on Performance Analysis of Sys-

tems and Software (ISPASS’09), 2009.
8. J.V.F. Lima, T. Gautier, N. Maillard, and V. Danjean.

Exploiting concurrent GPU operations for efficient work
stealing on multi-GPUs. In Computer Architecture and
High Perf. Comp. (SBAC-PAD), IEEE 24th Intl. Symp. on,
Oct. 2012.

9. C-K. Luk, S. Hong, and H. Kim. Qilin: Exploiting par-
allelism on heterogeneous multiprocessors with adaptive
mapping. In Microarchitecture, 2009. MICRO-42. 42nd

IEEE/ACM Intl. Symp. on, pages 45–55, Dec. 2009.
10. NVidia. CUDA Toolkit 5.0 Performance Report,

Jan. 2013. https://developer.nvidia.com/nvidia-gpu-
programming-guide.

11. V.T. Ravi and G. Agrawal. A dynamic scheduling frame-
work for emerging heterogeneous systems. In High Per-

formance Computing (HiPC), 2011 18th International Con-
ference on, pages 1–10, Dec. 2011.

12. James Reinders. Intel Threading Building Blocks: Multi-
core parallelism for C++ programming. O’Reilly, 2007.

13. David C. Rudolph and Constantine D. Polychronopoulos.
An efficient message-passing scheduler based on guided
self scheduling. In 3rd Intl. Conf. on Supercomputing, ICS
’89, pages 50–61, New York, NY, USA, 1989. ACM.

14. S.A. Russel. Levering GPGPU and OpenCL technologies
for natural user interaces. Technical report, You i Labs
inc., 2012.

15. S. Venkatasubramanian and R. W. Vuduc. Tuned and
wildly asynchronous stencil kernels for hybrid CPU/GPU
systems. In 23rd International Conference on Supercomput-

ing (ICS’09), pages 244–255, Jun. 2009.

