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Abstract

Current commodity processors include several cores and hardware accelerators, such as Graphical Process-
ing Units or GPUs. These architectures pose two main challenges: i) determining how to map the application
tasks to the computational device that maximizes performance and minimizes energy consumption; and ii)
easing the programming interface so that the user productively exploits the heterogeneous architecture without
dealing with low level details.

In this paper, we consider the problem of efficiently executing streaming applications on commodity
processors composed of several cores and an on-chip GPU. Streaming applications, such as those in vision
and video analytic, consist of a pipeline of stages and are good candidates to take advantage of this type
of platforms. We also consider that characteristics of the input may change while the application is running.
Therefore, we propose a framework that adaptively finds the optimal mapping of the pipeline stages. We
describe the proposed API based on C++ templates that hide the underlying TBB implementation. The core
of the framework is an analytical model coupled with information collected at runtime used to dynamically
map each pipeline stage to the most efficient device, taking into consideration both performance and energy.
Our experimental results show that for the evaluated applications running on two different architectures, our
model always predicts the best configuration among the evaluated alternatives, and significantly reduces the
amount of information that needs to be collected at runtime. This best configuration has, on the average, 20%
higher throughput than the configuration recommended by a baseline state of the art approach, while the ratio
throughput/energy is 43% higher. We have measured improvements in throughput and throughput/energy of
up-to 82% and 204%, respectively, when the model is used to adapt to a video that changes from low to high
definition.

Index Terms
Heterogeneous CPU-GPU chips, pipeline pattern, adaptive mapping, analytical model, energy aware.

I. MOTIVATION

Recently, we have seen a significant increase in the number of commodity multicore processors that include
an on-chip GPU. Current desktops, ultrabooks, smartphones, tablets, and other embedded devices are powered
by heterogeneous chips that comprise 2 to 8 CPU cores along with an integrated GPU. Examples of these are
Intel Ivy Bridge and Haswell architectures, AMD APU, Qualcomm Snapdragon 800 and Samsung Exynos 5
Octa, to name a few. These heterogeneous chips can deliver significant speedups and low energy consumption
compared to CPU-only systems on a large range of applications. However, issues such as the development of
a suitable programming framework and runtime support for these architectures are in their infancy.

Most research in frameworks aimed at scheduling tasks on heterogeneous architectures, composed of CPU’s
and GPUs, has focussed on optimizing execution time without considering energy consumption [1], [2], [3],
[4], [5]. However, a CPU core and a GPU exhibit different performance/energy trade-offs, this is, a workload
can run faster on one device but consume less energy on the other one. Thus, in order to benefit from the
potential energy efficiency that the accelerators can provide in these heterogeneous chips, the runtime scheduler
also needs to consider the performance/energy asymmetry when making a scheduling decision [6].

In this paper, we focus on the problem of efficiently executing single streaming applications implemented
as a pipeline of stages that run on heterogeneous chips comprised of several cores and one on-chip GPU,
taking into consideration both performance and energy. Streaming applications are very common in today’s
computing systems, in particular mobile devices [7] where heterogeneous chips are the dominant platforms.
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To tackle the aforementioned problem, we study different choices such as: i) the granularity level at which the
parallelism of each stage can be exploited (coarse or medium grain), ii) the mapping of the pipeline stages to
the different computational devices and iii) the number of cores for which the application scales up. Our aim
is to find the optimal configuration that considers all the previously mentioned factors. The metric to optimize
can be throughput, energy or a tradeoff metric such as the ratio throughput/energy. We also consider that the
best configuration may change over time. This can happen because the number of operations performed by
each pipeline stage changes. There are several reasons why this can take place. For instance, YouTube, Skype
Video [8], or tele-operated robots [9] adjust the resolution of the video stream based on the bandwidth of the
network connection. Also, the computation of a pipeline stage may depend on the characteristics of the input
frame. In this situation, an off-line training may not be feasible, as the best configuration will depend on the
runtime input.

As a motivating example to demonstrate the benefits of adapting the configuration of a pipeline we introduce
ViVid1, an application that implements an object (e.g., face) detection algorithm [10] using a “sliding window
object detection” approach [11]. ViVid consists of 5 pipeline stages from which the first and the last one are
the Input and Output stages. When applications like ViVid run on a heterogeneous on-chip architecture, many
possible configurations are possible. To determine the best configuration, one needs to consider the granularity
or number of items that should be simultaneously processed on each stage, the device where each stage should
be mapped, and the number of CPU cores that minimize the execution time, or the energy consumption, or
both. As we will discuss in Section VI, we have found that when ViVid runs on an Intel Ivy Bridge platform
(also presented in Section VI), the best configuration for videos with Low Definition (LD) is different from
the best one for videos with High Definition (HD) and not adapting to a input change, can have a significant
impact in both, execution time and energy. For instance, when the video resolution changes from LD to HD,
not changing from the best configuration for LD to the new optimal for HD results in 0.55x of throughput
loss (and 1.7x of more energy used). On the other hand, if we are using the optimal configuration for HD, an
input change from HD to LD will result in a 0.76x of throughput degradation (and 1.1x of more energy used)
if we do not change to the new best configuration. These results indicate that an approach that can predict
the best configuration, out of all the possible ones, is desirable. This approach should have low overhead, so
that it can be used when an input change is detected.

In this paper, we propose an adaptive framework that can dynamically adjust the configuration of the
pipeline (granularity, mapping and number of cores). This framework is based on an analytical model that, by
collecting a small number of runtime experiments (only 8 on a quad-core), can predict the optimal pipeline
configuration. Our framework can be targeted at optimizing performance, or energy or a tradeoff metric that
considers the ratio throughput/energy. Our analytical model can provide knobs so that the user can specify a
desired throughput or power budget. For instance, if the user specifies a throughput of 33 fps for realtime video
streaming, the model can determine among the possible pipeline configurations, the one that minimizes the
energy consumption and satisfies the user constraint. Similarly, given a power budget, the model can determine
the fastest configuration. The information collected using runtime input data are used to dynamically adapt
to input changes. Since this data collection phase can add some runtime overhead, our framework provides
another knob so that the user can specify a threshold to limit the maximum overhead of this phase. We have
evaluated our model using a set of streaming applications from vision and video analytic domain that are
representative of the algorithms [12] that can benefit from the execution on these heterogeneous chips.

The contributions of this paper are the following ones:
• A taxonomy of the pipeline configurations for heterogeneous chips (section II).
• An adaptive framework that dynamically selects the best configuration while keeping the runtime overhead

below an user-defined limit (section IV).
• An analytical model that quantifies how the different implementation factors interplay. This model can be

used to predict the optimal granularity and mapping of the pipeline stages to the different computational
devices, as well as the appropriate number of threads (section V).

• An evaluation of the accuracy of our analytical model. Our results demonstrate that the model accurately
predicts, among the evaluated alternatives, the best pipeline configuration for all the applications and
architectures studied (section VI).

II. PIPELINE IMPLEMENTATION ALTERNATIVES

We use two axes to classify the different alternatives: (1) granularity level, that represents the level at
which the parallelism is exploited on the CPU; and (2) pipeline mapping, that represents where the different

1http://www.github.com/mertdikmen/vivid
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Fig. 1: Examples of the four different configurations for ViVid.

stages of the pipeline can execute. We call pipeline configuration to each possible combination of granularity
and mapping. Fig. 1 graphically depicts examples of the 4 possible configurations for the ViVid pipeline on
an Ivy Bridge-like architecture with a GPU (6 computing units) and a CPU multicore (4 CPU cores). The
figure shows the paths that traverse the in-flight items being processed. The pipeline stages are represented
as rounded rectangles, while the device (GPU or CPU) on which each stage is processed, is depicted with
the number of computing resources (small squares with the letter ’C’) that collaborate on the computation of
each item.
Granularity level: The vertical axis in Fig. 1 classifies the approaches based on the granularity level used
to exploit parallelism on the CPU. Two levels of granularity are considered: Coarse Grain (CG) and Medium
Grain (MG). If different items can be processed simultaneously on the same stage (the stage is parallel or
stateless2), CG granularity can be exploited. On the other hand, if the stage exhibits nested parallelism (which
can be exploited by using OpenCL, OpenMP or TBB parallel_for), then a single item can be processed
in parallel by several cores in the CPU, and MG granularity can be exploited. The CG granularity is shown
in Figs. 1a and 1b, where, on the CPU multicore, each item is processed by a single core (one thread). MG
granularity is shown in Figs. 1c and 1d. In this case, a single item is processed in the CPU multicore, with
each core (or thread) processing a portion of the item.

GPUs are not as flexible as the multicores regarding the granularity level of parallelism they can exploit.
They excel at exploiting SIMT (Single Instruction Multiple Threads) type of parallelism. Thus, stages mapped
onto a GPU only process a single item, with all the GPU processing units computing a portion of the item
(similar to MG granularity, but at a finer grain).

The MG granularity requires a barrier synchronization after each pipeline stage and before the next pipeline
stage can start, to guarantee that all threads have finished processing the item. Therefore, MG can hurt
performance when the load is imbalanced or there is not enough computational load per core. With MG, it is
like having two devices, GPU and CPU, that can only work on two different items at a time. Thus, there is
less pipeline parallelism when exploiting MG granularity. However, with the CG granularity, each CPU core
(or thread) can process all the pipeline stages for a given item without intermediate synchronizations, i.e. each
item traverses the pipeline at its own pace. Two drawbacks of the CG approach are that several items are
in-flight at the same time, which increases the memory pressure, and that it only applies to parallel pipeline
stages. Finally, notice that each CPU core can also exploit fine grain parallelism, due to the vector units of
the processors. This can be exploited by both, CG or MG granularities.
Pipeline mapping: The horizontal axis in Fig. 1 classifies the configurations based on whether all the stages
execute on the GPU or only a few do. The first pipeline mapping is called decoupled (DP), while the other
one is called coupled (CP).

Disregarding the Input/Output stages, DP mappings are illustrated in Figs. 1a and 1c, where we depict two

2A stage is parallel or stateless when the computation of an item on a stage does not depend on other items.
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“decoupled” paths: i) a GPU path, in which a thread (the GPU thread) offloads all stages to the GPU for
processing one input item; and ii) a CPU path, in which a group of concurrent threads (the CPU threads)
process all stages on the CPU. On the other hand, CP mappings are shown in Figs. 1b and 1d where we see
two paths that are not independent: i) a GPU-CPU path in which a thread (the GPU-CPU thread) offloads
some stages to the GPU (stage 1 in the figures) for processing one input item, while the remaining stages are
executed on the CPU; and ii) a CPU path, in which a group of concurrent threads (the CPU threads) process
all stages on the CPU multicore. The difference between the CP’s GPU-CPU thread and the DP’s GPU thread
is the following. In a CP mapping, when an item reaches the stage for which it has been decided that it will
be processed on the GPU (stage 1 for the ViVid example), we first check if the GPU is idle, and in that case
the thread becomes a GPU-CPU thread that launches the item’s kernel to the GPU and then waits for the GPU
kernel to finish. Then, the same thread also processes the item through the remaining stages (in the example,
stages 2 and 3 that are processed in the CPU). However, in DP, when an item reaches the first stage and finds
the GPU is idle, the corresponding thread becomes a GPU thread that processes the item throughout all the
stages on the GPU. Indeed, when we consider only 1 thread for the DP mapping, that thread becomes the GPU
thread and therefore all the items traverse the GPU path. This is what we call a GPU homogeneous execution.
In our example, for both CP and DP, if an item on the stage 1 finds that the GPU is already busy, then the
item is directed through the CPU path. Although DP could be seen as a particular case of CP where all the
stages happen to be mapped to the GPU, we distinguish both mappings because they have to be modelled
differently as we will see in section V.

CP mappings can be a good alternative when not all the stages are suitable for the GPU, or because it’s
not advisable to divert the GPU computing power from the stages where it is faster and/or more energy-
efficient. This approach also has the advantage that not all the stages have to be implemented for the CPU and
GPU. However, in the CP mapping, the GPU-CPU thread must orchestrate the “coupling” of the GPU and
the CPU devices and the host-to-device/device-to-host communications, which results in some data movement
and synchronization overheads. Also, note that DP mappings can be implemented only if all stages are parallel
pipeline stages (stateless). If, on the contrary, all stages are serial, heterogeneity can be exploited by mapping
some stages on the GPU and the rest on the cores, which is a particular case of the CP mapping in which all
items are directed through the GPU-CPU heterogeneous path.

A. Alternatives not considered
Some additional alternatives not considered in this classification are the following:
• Splitting an item to be simultaneously computed on the CPU and GPU. As it was demonstrated by Totoni

et al. [13], this possibility is not beneficial for our vision applications due to additional synchronization
overheads between both devices.

• Having one stage exploiting both MG and CG granularities on the CPU. For example, a quad-core can
be splited into two CPU devices with two cores each. This approach would combine CG and MG on
the same stage: two CPU devices processing two items in parallel (CG), and each item running on two
cores (MG). For that, we explored the OpenCL Device Fission function (cl_ext_device_fission)
that can divide the CPU device into several subdevices with lower core count. However, we discarded
this alternative for the following two reasons. On the first hand, we have measured 14% of overhead
(for ViVid on Ivy Bridge) if the device_fission is called to change the subdevices configuration
from one pipeline stage to the next one. Thus, this approach is beneficial only if the optimum number
of cores per device coincides for all the pipeline stages. On the second hand, the current OpenCL driver
for Windows (there is no such a driver for Linux), relies on a busy waiting mechanism where the host
thread has to wait for the kernel to finish on the corresponding subdevice. This means that for two CPU
subdevices, two additional threads doing busy-wait will occupy two CPU cores, which results in further
degradation of the execution time.

• Exploiting stages with both MG and CG granularities on the GPU. The OpenCL fission feature is currently
not able to split the GPU on Intel or AMD heterogeneous chips. Therefore, we do not consider this feature
to evaluate additional pipeline configurations.

• Hybrid mappings in which some CPU stages exploit MG and the rest CG granularity. This is left for
future work.

B. Accounting for all pipeline alternatives
Let’s assume we have nC CPU cores (4 in Fig. 1), and 1 GPU in an heterogeneous chip (current commercial

heterogeneous chips only contain a single GPU, so we overlook configurations with two or more GPUs in
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Fig. 2: All considered mappings of pipeline stages to CPU and/or GPU for ViVid.

this work). We’ve seen we have 4 pipeline configurations, DP-CG, DP-MG, CP-CG and CP-MG, but there
are two additional factors to consider: i) for CP mappings we have to find out the stages for which the GPU
is more profitable; and ii) for the CG granularity we also have to explore the optimal number of threads. For
this CG granularity the number of threads in the CPU multicore can go from 0 to nC. Additionally, since the
GPU thread in DP-CG, or the GPU-CPU thread in CP-CG, will be mainly hosting the GPU (waiting for the
GPU task to complete), the total number of threads, n, we explore goes from 1 to nC + 1. This means that
we allow oversubscription of one thread when n = nC + 1, and therefore, the GPU (or GPU-CPU) thread
eventually interferes with the other nC CPU threads. For the MG granularity, we always configure nC + 1
threads because the constructors used to exploit nested parallelism (OpenCL or TBB parallel_for) by
default use all the threads available in the multicore, nC, plus the GPU (or GPU-CPU) thread.

With all that, assuming that the pipeline consists of s parallel stages, there would be 2s possible GPU/CPU
mappings (this is illustrated in Fig. 2 for ViVid with s = 3). These mappings can be combined with nC + 1
different CG options, depending on the number of threads used and 1 MG option, i.e., nC + 2 options. Thus,
in total we have 2s · (nC + 2). That results in 48 alternatives for ViVid with s = 3 and nC = 4.

Our goal is to be able to predict the optimal pipeline configuration specifying the granularity, mapping
(identifying the stages that should be mapped on the GPU), and the optimum number of threads for a given
stream input. But first, the general framework is presented.

III. PROGRAMMING INTERFACE

In this section we introduce our pipeline library API. It provides a C++ programming environment that
facilitates the configuration of a pipeline by hiding the underlying TBB implementation and by automatically
managing the memory data transfers between devices.

The interface has four main components:
• Items: objects that traverse the pipeline carrying pointers to the data buffers.
• Pipelines: the pipeline itself is composed of s + 2 stages. We assume that it contains stages Sin, S1,
S2, .... Ss, Sout, being Sin and Sout the serial Input and Output stages. Pipelines can be configured
statically or run in an adaptive-configuration mode. This adaptive-configuration mode is the one that uses
our proposed model to dynamically compute the best configuration and to adapt to input changes.

• Stage functions: each processing stage needs to be programmed to run on CPU and/or GPU. The pipeline
uses the appropriate function for every stage.

• Buffers: n-dimensional arrays that can be used by both, the host code and the OpenCL kernels.
Fig. 3a shows all components involved in the pipeline operation. The Item is the object that traverses the

pipeline. It contains the references to the data buffers that the different processing stages of the pipeline use
as input and output. To create a new pipeline instance, the user needs to declare a new Item subclass (it must
extend from a provided Item class) that should contain the references to data buffers used by the pipeline
stages. For data buffer management, there is a DataBuffer<T> template class already defined, that hides all
the important operations like allocation, deallocation, data movements, Zero-Copy Buffer mappings, etc. The
aim of this data buffer class is to make the data accessible to the device (CPU or GPU) where the item has to
be processed. Fig. 3b shows the hardware layer with the heterogeneous devices at bottom. On top of that, the
middle layers (TBB, OpenCL, OpenMP) provide different programming models to exploit parallelism on the
heterogeneous chip. However, we partially hide the details required by these low level libraries by providing
a simpler interface based on C++ clases and templates.

The programmer can provide up to three different functions for every stage of the created pipeline: one to
implement the stage on the GPU device using OpenCL, a second one to implement the stage on a single CPU
core (CG granularity), and the third one to implement the stage on multiple CPU cores (MG granularity).
The implementations not provided (CP, MG, and/or GPU) will not be considered when searching for the best
pipeline configuration.

Let’s see the components in more detail.
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A. Item class
Fig. 4 shows a code snippet for the Item class declaration used in the ViVid pipeline. First, our pipeline

interface is made available by including the h_pipeline.h header file (line 1) . It also defines the
h_pipeline namespace which contains all the classes of the interface. As previously mentioned, before
creating the pipeline, the programmer must define an Item subclass that will traverse the pipeline (line 7). The
item class must extend from h_pipeline::Item and declare as many DataBuffers<T> members as
needed for the pipeline execution. The class constructor and destructor methods must hold the buffers creation
and deletion, respectively. Alternatively and to avoid too many operations of buffer allocation/deallocation, a
pool of buffers can be used. In that case, acquire and release methods can be invoked so that the same buffers
are reused by different items. The Input and Output stages (i.e. the first and last serial stages of the pipeline,
Sin and Sout) automatically call the constructor and destructor of the Item class, respectively. In the last part
of this section we will show an example of buffer usage (Fig. 7).

1 #include "h_pipeline.h" // Required clases defined here
2 using namespace h_pipeline; // New namespace
3
4 /*******************************************************************
5 * 1.- ITEM Class (holds the data that traverse the pipeline stages
6 ********************************************************************/
7 class ViVidItem : public h_pipeline::Item {
8 public:
9 //Buffer definitions

10 DataBuffer<float> *frame; // Input buffer
11 ...
12 DataBuffer<float> *out; // Output buffer
13
14 //Constructor definition. Allocation or buffer acquire
15 ViVidItem() {
16 //Data Buffer allocation
17 ...
18 }
19 //Destructor definition. Deallocation or buffer release
20 ˜ViVidItem() { ... }
21 };

Fig. 4: Using the Item Class.

B. Pipeline
Fig. 5 shows a pipeline definition and usage example. After declaring the ViVidItem as shown in Fig. 4,

we can create a new pipeline using that class (line 6) passing as constructors arguments the number of threads,
numThreads, that will run the pipeline in parallel. In this study we set as maximun number of threads nC+1,
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being nC the number of CPU cores (see section II-B). Notice also that the CPU (CG and MG granularity)
and the GPU functions of the three stages for the ViVid example need to be set up before the pipeline can run
(see lines 9 to 11). In case we want to run the pipeline using a static configuration, we use specific methods to
configure some aspects of the pipeline, such as the stages that should map to the GPU or the granularity (MG
or CG) that should be used in the CPU (line 14). In our example, in line 14, parameter {1,1,1} represents
the s-tuple that express the mapping of stages to the devices (we will define it next) and the last argument,
USE_MG, indicates that MG granularity will be exploited when an item is processed on the CPU.

As mentioned before, we assume that a pipeline consists of Sin, S1, S2, .... Ss, Sout stages (s+2). Sin and
Sout, the serial Input and Output stages will be always mapped to the CPU. For any other stage Si such that
1 ≤ i ≤ s, we use a s-tuple to specify all posible stage mappings to the GPU and the CPU devices: {m1,
m2, . . ., ms}. The i-th element of the tupla, mi, will specify if stage Si can be mapped to the GPU and
CPU, (mi = 1), or if it can only be mapped to the CPU (mi = 0). If mi = 1, the item that enters stage Si
will check if the GPU is available, in which case it will execute on the GPU; otherwise, it will execute on
the CPU. For instance, for the ViVid example of Fig. 2 we represent the tuples (row major order): {1,1,1},
{1,0,0}, {0,1,0}, {0,0,1}, {1,1,0}, {1,0,1}, {0,1,1}, {0,0,0}.

Once the pipeline is configured for a static configuration, it can be run (line 15) by setting the maximum
number of items that are allowed to be simultaneously in flight traversing the pipeline. Another option to run
the pipeline is to use the adaptive configuration mode (line 18) presented in section IV. Under this mode,
our framework dynamically finds the best configuration. In this case, the user has to select the optimization
criterion (THROUGHPUT, ENERGY, THROUGHPUT_ENERGY) and the maximum overhead allowed due to
the training step required when running in the adaptive mode explained in section IV.

1 /*************************************************
2 * 2.- Pipeline declaration and usage
3 *************************************************/
4 int main(int argc, char* argv[]){
5 int numThreads = nC+1; // number of threads = nC+1
6 h_pipeline::pipeline<ViVidItem> pipe(numThreads);
7
8 // Set CG, MG and GPU functions for each stage
9 pipe.add_stage(cg_f1, mg_f1, gpu_f1);

10 pipe.add_stage(cg_f2, mg_f2, gpu_f2);
11 pipe.add_stage(cg_f3, mg_f3, gpu_f3);
12
13 //Setting a static pipeline configuration: mapping ’111’ and MG
14 pipe.set_configuration({1,1,1}, h_pipeline::USE_MG);
15 pipe.run(numTokens); // maximum number of items in flight
16
17 //Dispatch of the adaptive configuration mode for the pipeline
18 //pipe.run(numTokens, ENERGY, maxoverhead);
19 }

Fig. 5: Pipeline declaration and usage.

C. Pipeline stage functions
An important part of the pipeline definition is the set up of the pipeline stage functionalities. In the interface,

the add_stage() method (Fig 5, lines 9 to 11) is used to add each one of the stages while identifying the
possible functions that may be called to process the items.

Fig. 6 shows an example of these stage functions definition. The programmer can provide three different
versions of the same function. The pipeline will use the appropriate version of the function to map the stage
to one CPU core, several CPU cores, or the GPU device. Each function receives as argument a pointer to the
item to be processed. From such item we can obtain the pointers to the input/output data buffers by using the
method get_HOST_PTR() to obtain a host pointer, or get_CL_BUFFER() to obtain an OpenCL buffer
object usable at the GPU device. In both cases, the access type to that buffer inside the function must be
indicated by the programmer (options are: BUF_READ, BUF_WRITE, BUF_READWRITE).

Fig. 6 shows the definition of two functions that can be invoked on the CPU and a third one to process an
item on the GPU. First, in line 5 we have the CPU function for CG granularity, that is basically a serial code
to process an item on the CPU. For this granularity, parallelism is exploited at the task level since several
cores may be running this function at the same time for different items. Next in line 13, we have the definition
for MG granularity, were all the cores will collaborate in processing a single item. Now, data parallelism is
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1 /*******************************************
2 * 3.- Functions definition example
3 ******************************************/
4 // Example for filter 3 of ViVid
5 void cg_f3(ViVidItem *item) // Coarse grain CPU version
6 {
7 float * out, cla, his;
8 out = item->out->get_HOST_PTR(BUF_WRITE); // get buffer on host for writing
9 cla = item->cla->get_HOST_PTR(BUF_READ); // get buffer on host for reading

10 his = item->his->get_HOST_PTR(BUF_READ); // get buffer on host for reading
11 // do cpu things like out[XXX] = his[XXX] + cla[XXX];
12 }
13 void mg_f3(ViVidItem *item) // Medium grain CPU version
14 {
15 float * out, cla, his;
16 out = item->out->get_HOST_PTR(BUF_WRITE); // get buffer on host for writing
17 cla = item->cla->get_HOST_PTR(BUF_READ); // get buffer on host for reading
18 his = item->his->get_HOST_PTR(BUF_READ); // get buffer on host for reading
19
20 tbb::parallel_for( 0, aheight, 1, [&] (size_t i) {
21 // do cpu things like out[i] = his[i] + cla[i];
22 });
23
24 // #pragma omp parallel for
25 // for (size_t i=0; i<aheight; i++) {
26 // do cpu things like out[i] = his[i] + cla[i];
27 // }
28 }
29 void gpu_f3(ViVidItem *item) // GPU OpenCL version
30 {
31 cl_mem out,cla,his;
32 out = item->out->get_CL_BUFFER(BUF_WRITE); // get buffer on device for writing
33 cla = item->cla->get_CL_BUFFER(BUF_READ); // get buffer on device for reading
34 his = item->his->get_CL_BUFFER(BUF_READ); // get buffer on device for reading
35
36 // Setting kernel parameters
37 // Launching kernel
38 //...
39 }

Fig. 6: Functions for pipeline stages operations (CG, MG, GPU).

exploited, and to that end in this example we rely on tbb::parallel_for() (line 20). MG granularity
can be also exploited using OpenMP as shown in commented line 24. Finally we have the GPU code defined
in the gpu_f3 function (line 29). Note also that pipeline parallelism is exploited because concurrent items
traverse the stages of a pipeline at their own pace.

D. Buffers
As shown previously in Fig. 4, thanks to our Databuffer<T> template class, the programmer does not

need to manage memory buffers explicitly. The supplied buffer class hides all the data buffer management
and the programmer just need to ask for the references to the buffers he wants to use, indicating whether the
buffers will be read or/and written. Fig. 7 shows an example of buffer declaration and access. In line 5 a data
buffer is declared. In the next line a pointer, *frame, is declared to access the former data buffer from the
CPU.

The DataBuffer class offers a way to set up the type of access to a certain OpenCL buffer, so a method
to set it up must be used (line 9) and we can choose to use a Zero-Copy Buffer approach (line 10) or copy
data from host CPU to device (and viceversa) when required.

On the creation of the buffer (line 9) we need to indicate the kind of access that this buffer will take from
the OpenCL kernel (read or/and write). The actual allocation of the buffer (on host or device memory) will be
delayed until the first use. To use the buffer the programmer will invoke the right method: get_HOST_PTR()
to obtain a host pointer, or get_CL_BUFFER() to obtain a device memory object. In the example of Fig. 7
(line 14), the host pointer, frame, is initialized using get_HOST_PTR() with write intent. In the next line
the buffer is initialized with the appropriate data.
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1 /*************************************************
2 * 4.- BUFFER usage
3 *************************************************/
4 int main(int argc, char* argv[]){
5 DataBuffer<float> * global_frame; // data buffer
6 float *frame; // pointer to access the buffer from CPU
7
8 //Specify access mode for OpenCL kernel: BUF_READ BUF_WRITE BUF_READWRITE
9 global_frame = new DataBuffer<float>(size, BUF_READ);

10 global_frame->set_ZCB(true); //Set Zero Copy Buffer usage
11 global_frame->use_Pool(true); //Use a pool of buffers
12
13 //acquire the buffer reference to write it on the CPU
14 frame = global_frame->get_HOST_PTR(BUF_WRITE);
15 frame[XXX] = XXX; // fill the buffer on the CPU
16 //Pipeline definition and usage
17 ...
18 }

Fig. 7: Example of DataBuffer class usage.

E. Implementation details
In this section we dive into the internal details of the framework that we have implemented. First, we

describe the parallel stage class and finally we elaborate on the implementation of the pipeline class.

1 /*************************************************
2 * Parallel Stage Internal Details
3 *************************************************/
4 template <class Item_T>
5 class parallel_stage : public tbb::filter{
6 //members
7 int runOnGPU; //1 runs on GPU, 0 runs on CPU
8 bool grain; //True is MG, False is CG
9 void (*cgFunc)(Item_T*);

10 void (*mgFunc)(Item_T*);
11 void (*gpuFunc)(Item_T*);
12
13 //Constructor
14 parallel_stage(void (*cg_f)(Item_T*), void (*mg_f)(Item_T*), void (*gpu_f)(Item_T*)){
15 cgFunc=cg_f; mgFunc=mg_f; gpuFunc=gpu_f;
16 }
17 //Methods
18 void setConfiguration(int mapping, bool granularity){
19 runOnGPU = mapping; grain = granularity;
20 }
21 ...
22 void * operator()(void * item){
23 Item_T *it = (Item_T *) item;
24 if(runOnGPU && h_pipeline::isGPUidle()){
25 gpuFunc(it);
26 }else if(grain){
27 mgFunc(it);
28 }else{
29 cgFunc(it);
30 }
31 return it;
32 }
33 };

Fig. 8: Internal details of parallel_stage class.

1) Pipeline Stages: One of the key components of the pipeline<T> class is the parallel_stage
class. One object of this class is allocated for each add_stage() invocation (see Fig. 5 lines 9 to 11). This
class holds important instance variables: three of them are function pointers (see Fig. 8 lines 9-11) which
point to the functions declared in Fig. 6 (they are initialized in the class constructor at line 14). The other
two instance variables, runOnGPU and grain, are used to decide whether the stage should execute on CPU
or GPU (at runtime) and in the former case, if the MG or CG version should be used to execute the stage
on the CPU. The operator() function (line 22) is automatically invoked when an item reaches the stage.
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This functor first receives a pointer to the item that needs to be processed so it can be passed down to the
appropriate function. Then it is decided which function has to be called: if runOnGPU is true and the GPU
is idle, the item is processed on the GPU (i.e. gpuFunc is called). Otherwise, depending on the grain,
mgFunc or cgFunc will be invoked.

1 /*************************************************
2 * pipeline class inner details
3 *************************************************/
4 template <class Item_T>
5 class pipeline : public tbb::pipeline {
6 //members
7 atomic<int> gpuStatus; //0 GPU is idle, 1 GPU is busy
8 list<parallel_stage> l_stage;
9 int num_stages, nthreads;

10
11 //Constructor
12 pipeline(int numthreads){
13 //Initialize TBB scheduler and OpenCL boilerplate
14 num_stages=0; nthreads=numthreads;
15 }
16
17 //Adding Stages
18 void add_stage(void (*cg_f)(Item_T*), void (*mg_f)(Item_T*), void (*gpu_f)(Item_T*)){
19 parallel_stage<Item_T> * iStage(cg_f, mg_f, gpu_f);
20 l_stage.add(iStage, ++num_stages);
21 }
22
23 //Setting Configuration for all stages
24 void set_configuration(int mappings[], bool granularity){
25 for(int i=0; i<num_stages; i++){
26 l_stage.get(i).setConfiguration(mapping[i], granularity);
27 }
28 }
29
30 //Overloaded pipeline.run(): static configuration mode
31 void run(int tokens){
32 //Build the TBB pipeline and run it
33 }
34
35 //Overloaded pipeline.run(): adaptive configuration mode
36 void run(int tokens, const int criteria, float overhead){
37 while(/*there are more items*/){
38 //Training Phase:
39 setConfiguration({1,1,1}, USE_MG); pipe.run_training(1);
40 setConfiguration({0,0,0}, USE_MG); pipe.run_training(1);
41 setConfiguration({0,0,0}, USE_CG);
42 for(int i=1; i<=(nthreads+1);i++){
43 pipe.run_training(i);
44 }
45 computeModelAndSetBestConfiguration(criteria);
46
47 //Running Phase: It can abort if a change in throughput is detected
48 pipe.run_monitoring(tokens);
49 }
50 }
51 ...
52 };

Fig. 9: Internal details of pipeline class.

2) Pipeline class: In this section we introduce some internal details regarding the pipeline<T> class.
This class is at the top of the software stack described in Fig. 3b, so it is designed to work on top of
TBB and OpenCL libraries. Fig. 9 sketches the main implementation decisions we have considered for this
pipeline<T> class.

The pipeline class is the main component of the library, it is responsible to glue the set of stages
and schedule the items in flight to maximize the optimization criteria. In order to make this possible the
pipeline class defines a few member variables (lines 7-9). The gpuStatus variable shows the current
status of the GPU at runtime: it can be (0 = Idle and 1 = Busy). This class also defines an ordered list of
stages, (l_stage), that represents the stages of the pipeline. Additionally, there are two integer variables:
nthreads which is used to set the number of logical threads to be created and num_stages which has
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the current count of parallel stages in the list. The class constructor (line 12) initializes the TBB library with
the number of threads passed as argument. Then the constructor creates the OpenCL environment (context,
command queues, ...) and selects the GPU as the target device.

The pipeline class defines two methods (add_stage and set_configuration) to configure the
topology of the pipeline. As mentioned before, this class keeps a list of stages, where the Input and Output
stages (first and last ones) are serial. For each one of the middle stages (parallel or stateless) the func-
tion add_stage is called with three function pointers passed as arguments (CG, MG, GPU), so a new
parallel_stage instance is created and inserted in the list (line 18). The set_configuration (line 24)
method allows the user to set a specific pipeline configuration. This method receives two parameters: an array
of zeros and ones, where the i-th element specifies whether the i-th stage can use the GPU (1) or not (0).
The second parameter is an enumerated type that sets the type of CPU functor (USE_MG for Medium Grain,
MG, or USE_CG for Coarse Grain, CG) that should be used for all stages.

In order to execute the pipeline, the run method must be invoked. Notice that it is possible to invoke
two versions of the pipeline.run() method (lines 31 and 36), thus two types of modes are available:
a static configuration or an adaptive configuration mode. The former (line 31) has a static behavior. This
means that just one pipeline configuration is used during the whole execution of the pipeline. In this case, the
user is responsible to set the particular pipeline configuration by calling the function set_configuration
(i.e. pipe.set_configuration({1,1,1}, USE_MG)) (see line 14 in Fig. 5). The adaptive configu-
ration mode of the run method (line 36) takes three arguments: the maximum number of items in flight, the
optimization criteria (THROUGHPUT, ENERGY, THROUGHPUT ENERGY) and a float number between 0
and 1 that represents the allowed overhead ratio (see section IV-B).

The adaptive configuration run method has 2 phases: the training phase and the running phase (see
section IV). The training phase carries out three experiments. The first one executes one item on the GPU
through all stages (line 39). The second one executes one item on the CPU with MG granularity (line 40) on
all stages. Finally, the third experiment launches nthreads (from 1 to nthreads) executions on the CPU with
CG granularity (line 43). More details in section IV-A. Notice that the run_training method is used here.
Then we compute our analytical model (line 45) with the time and energy collected in the previous experiments
and the desired optimization criteria. This analytical model returns the best configuration that maximizes the
optimization criteria passed as argument. This model is explained with deeper details in section V.

Once the desired configuration is found, the pipeline enters in the second phase (running phase). In this
phase, the run_monitoring method (line 48) always monitors the throughput and energy. Whenever a
change (drop/rise) in throughput is detected, the pipeline checks the overhead parameter and the number of
items processed in this phase. If the ratio between the total time taken by the previous training phase and
the execution time of the current phase is less than the overhead threshold, then the current running phase
is aborted and the training phase is executed again. Otherwise the algorithm continues in the running phase
until the overhead ratio is less than the overhead. More details about the computation of the overhead in
section IV-B.

IV. FRAMEWORK

Our framework is particularly suitable for streaming applications that may exhibit a variation in the
streaming characteristics. In these cases, we can adjust the pipeline configuration to optimize the desired
metric (throughput, or energy, or a tradeoff). Our framework is designed as a two phase engine: first, a
training phase followed by a running phase. The training phase carries out two steps: i) a measurement
collection step, where some measurements of time and energy are performed on the GPU and CPU; and ii) an
analytical evaluation step, where our model (see next section) finds the optimal pipeline configuration using
the collected measurements. Once the optimal configuration has been found, the framework enters the running
phase. In order to adapt to variations in the behavior of the applications, throughput is monitored during the
running phase, so that any significant change can return the framework to the training phase. However, the
training phase is only performed if the associated overhead is less than a threshold value provided by the user
(more details in subsection IV-B).

During the training phase, runtime items are used, so no off-line training is necessary. Also, the runs to
collect the measurements are conducted only on the CPU or on the GPU (homogeneous runs). Then, using the
proposed model, the framework can predict the behavior of all possible heterogeneous pipeline configurations
and select the best.

We assume that the s parallel stages of our streaming application are S1, S2, .., Ss and that each item will
be executed through all these stages. Additionally, we consider that both the Input and Output stages are serial
(Si, So), although this is not a pre-requisite in our model. Our model is based on a set of equations that allow
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us to estimate the throughput and energy consumption per item for all possible pipeline alternatives. Let’s
suppose that our system consists of nC CPU cores and 1 on-chip GPU. Then, our framework traverses the
2s · (nC+2) possible pipeline configurations, and for each one computes the effective throughput, λe, and the
effective energy per item, Ee. From the estimations, it selects the pipeline configuration for which the optimal
is found: highest λe or lowest Ee, depending on the metric considered. We can also use any combination of
these metrics to define a tradeoff metric and look for the configuration which obtains the optimal value.

A. Measurement Collection step
As mentioned, the equations of our model use the data recorded in the measurement collection step. In this

step, we carry out nC + 3 experiments to obtain all the values needed. Note that this number of experiments
is usually much smaller than the 2s ·(nC+2) possible alternatives, that thanks to the model we do not need to
experimentally assess. For time measurements we use the clock ticks hardware counter, while for the energy
measurements, we use the energy counters available on the Ivy Bridge and the Haswell architectures [14],
[15]. These counters measure three domains: P , C and G. P or Package means the consumption of the whole
chip, including CPU, GPU, memory hierarchy, etc. C is CPU domain and G is the GPU domain. In our
model we consider C, G and U = P − C −G. Therefore, this last component represents the Uncore energy
consumption. For other architectures, energy information can be estimated by either relying on performance
counters that can be read by using a library, such as PAPI [16], or by using a power sensor, like the INA231
power monitor integrated with the Exynos 5 on the Odroid XU3 platform [17]. Current trends point out that
energy counters will be more widely available in the near future. Anyway, even if energy information is not
accesible, our framework is still useful to minimize execution times.

The experiments and measurements we collect are always from homogeneous runs (only GPU or CPU
execution). These experiments are:
• CG experiments: we perform 1 experiment in which all stages are executed by one thread in one CPU

core. We collect time and energy per stage (see TCGk and
(
ECGCk

, ECGGk
, ECGUk

)
, k = 1 : s, in Table I). For

energy measurements we collect three components (C, G, U) as explained before. Next, we carry out nC
additional experiments in the CPU multicore: on each one, n threads (with n changing from 2 to nC+1)
process n items (each thread processes one item) throughout all the pipeline stages, i.e. homogeneous CG
executions. We collect the total time and energy per item (see TCG(n) and

(
ECGC (n), ECGG (n), ECGU

)
,

n = 2 : nC+1, Table I). Note that the case for one thread was already considered in the first experiment
described above. Actually, TCG(1) =

∑s
1 T

CG
k and ECG∗ (1) =

∑s
1E

CG
∗k , where ∗ takes the value C,

G and U. With these measurements we implicitly incorporate to the model the impact that n threads
processing n items have in the memory traffic as well as the scalability behavior in the CPU. To carry
out these nC + 1 experiments, (nC + 2) · (nC + 1)/2 items of the stream are processed.

• MG experiments: we conduct 2 additional experiments in which all stages are executed first by one thread
in the GPU, and next by nC threads in the CPU multicore, i.e. homogeneous MG execution, where nC
is the number of CPU cores. We collect time and energy per stage (see TGk and

(
EGCk

, EGGk
, EGUk

)
,

k = 1 : s, for the GPU and TMG
k and

(
EMG
Ck

, EMG
Gk

, EMG
Uk

)
, k = 1 : s, for MG on the CPU, in Table II).

Two additional items of the stream are processed to carry out these two MG experiments.

TABLE I: Measured time per item, T , and energy per item, E, for CG. Also time to collect them. Note that in
practice, TCG(1) =

∑s
1 T

CG
k , ECG∗ (1) =

∑s
1E

CG
∗k , where ∗ takes the value C, G and U, and tCG(1) = tCG,

so no additional experiment need to be conducted for 1 thread.

Parameter Device time col. Description
TCG1 , . . ., TCGs CPU

tCG
time per item (and stage) on the CG exec. (1 thread)(

ECGC1
, ECGG1

, ECGU1

)
(C,G,U) components of the energy per item (and
stage) on the CG exec. (1 thread)· · · CPU(

ECGCs
, ECGGs

, ECGUs

)
TCG(1), . . . TCG(nm) CPU

tCG(1), . . . tCG(nm)
total time per item on the CG exec. (1, 2 ... nm =
nC + 1 threads)(

ECGC (1), ECGG (1), ECGU (1)
)

(C,G,U) comp. of the total energy per item on the
CG exec. (1, 2 ... nm = nC + 1 threads)· · · CPU(

ECGC (nm), ECGG (nm), ECGU (nm)
)

Notice that the model can also be used when hyperthreading is enabled. To consider the use of hyperthread-
ing, the collecting measurement step needs to run nC ∗ 2 + 3 (instead of nC + 3) experiments.
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TABLE II: Measured time per item, T , and energy per item, E, and per stage for GPU and for MG. Also
time to collect them.

Parameter Device time col. Description
TG1 , . . ., TGs GPU

tG
time per item (and stage) on the GPU exec. (1 thread)(

EGC1
, EGG1

, EGU1

)
(C,G,U) components of the energy per item (and stage) on the GPU exec.· · · GPU(

EGCs
, EGGs

, EGUs

)
TMG
1 , . . ., TMG

s CPU
tMG time per item (and stage) on the MG exec. (nC threads)(

EMG
C1

, EMG
G1

, EMG
U1

)
(C,G,U) components of the energy per item (and stage) on the MG exec.· · · CPU(

EMG
Cs

, EMG
Gs

, EMG
Us

)

B. Controlling the overhead of the measurement collection step

The cost of the training phase is mainly due to the measurement collection step, where items are processed
inefficiently due to the homogeneous runs (only one device is used at a time) carried out during this step.
After the measurement collection step and the subsequent model instantiation, we can control the period of
time at which a new training can be performed to guarantee that the overhead due to the training is bounded.
Let’s suppose that λc is the throughput to process items in the current configuration (after performing the last
training) and that Ns = (nC + 2) · (nC + 1)/2 + 2 is the number of items processed during the measurement
collection step (see Tables I and II). We define ∆t as the overhead or time increment incurred during that
last training. It is computed as the time needed to carry out the collection step minus the time the Ns items
would have taken at the current λc throughput:

∆t =

(
tCG +

(
nC+1∑
n=2

tCG(n)

)
+ tMG + tG

)
−Ns/λc (1)

The overhead that the last training has supposed with respect to the current throughput can be computed
as,

ov =
∆t

t+ ∆t

We can keep this overhead below a threshold value, ovthl, if ∆t/(∆t+ t) < ovthl, or in other words:

t >
(1− ovthl)
ovthl

·∆t (2)

This expression gives us a lower bound for controlling the time for entering in a new training phase, t, with
a maximum allowed overhead. For example, for the ViVid application on the Ivy Bridge chip presented in
section VI, 5% of overhead is paid when the training takes place every 3.7 sec. for low resolution input
video. However, in general, the training phase leads to pipeline configuration changes that deliver a better
throughput which result in that the training overhead is amortized after processing a few items with the new
recommended pipeline configuration, as we discuss in section VI.

V. ANALYTICAL MODEL: FINDING THE OPTIMAL

We model the heterogeneous pipeline configurations as a closed network of logical queues where items
arrive following a Poisson process [18]. This is pertinent in the context of streaming applications where
item arrivals can be considered independent and inter-arrival time can be viewed as following an exponential
distribution [19]. In these closed systems, items can be viewed as circulating continuously and never leaving
the network of queues, because a new item can not enter until a previous one leaves. Fig. 10 shows our models
for the Decoupled and Coupled configurations, where we can see that an item can follow one of two alternative
paths before entering again in the system. In our models, we can find one or more queues on each path. In
particular, any sequence of consecutive stages mapped to one device (the GPU or the CPU) is represented as
a M/M/1 queue. This stands for a logical queue where a single server serves items that arrive according to
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a Poisson process and have exponentially distributed service times. Although there can be several concurrent
threads on a device processing the sequence of stages represented by the queue, we have found that assuming
one logical server on each queue still provides accuracy while keeping the equations of the model simple. In
a closed network of queues, the following expressions define the flow balance conditions [20] at equilibrium,

λe =
∑
pathj

λj (3)∑
pathj

pj = 1 (4)

pj · λe = λj (5)

These equations allow us to relate the relative throughput of each path in a configuration with the effective
throughput in that configuration. A path pathj refers to one of the two possible paths defined in section II for
each configuration: for DP configurations, it is either the GPU path or the CPU path (note the subindices for
each path (GPU, CPU) in the model in Fig. 10a); For CP configurations, it is either the GPU-CPU path or
the CPU path (note the subindices for each path (GPU-CPU, CPUB) in the model in Fig. 10b). In particular,
equation 3 establishes that given the relative throughputs of the paths in the system, λj , then the effective
throughput, λe, may be obtained as a sum (i.e. combining independent Poisson processes leads to a Poisson
process). Equation 4 states that splitting a Poisson process probabilistically leads to Poisson processes, being
pj the probability of taking pathj . Equation 5 states that, in a M/M/1 queue at equilibrium, the average flow
rate leaving the queue will also be the same as the average flow rate entering the queue.

We define two parameters for each queue Qi: the service rate, µi, or average rate at which an item is
processed, and the energy rate, −→ε i, or average energy consumed by an item in the corresponding device
(GPU or CPU) where the queue works. This parameter represents a vector with three components, one for
each energy domain: (εiC , εiG , εiU ). They can be seen as the components of the average energy consumed by
an item on a device due to the stages represented by the queue Qi, when the device is the only one working
in the system (homogeneous execution).

In any case, as the network is in equilibrium, each individual queue must be in equilibrium. This means that
the utilization of the queue’s server, ρi, is less than 100%, that is, the ratio between the relative throughput
of the corresponding path, λj , and the queue’s service rate, µi, is at most 1 [18],

ρi =
λj

µi
≤ 1 (6)
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(a) Model for DP configurations
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Fig. 10: Closed network of queues.

Regarding the energy, as each individual queue Qi is in equilibrium, we assume that the energy utilization
on the corresponding device, ρ

−→
E
i , is proportional to the probability of items serviced on the corresponding

queue, pj , or in other words,

ρ
−→
E
i = pj ≤ 1,

−→
E i = ρ

−→
E
i ·
−→ε i (7)
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This expression allows us to estimate the relative energy per item consumed by queue Qi on the cor-
responding device (GPU or CPU),

−→
E i. This parameter is also a vector that consists of three components:

(EiC , EiG , EiU ). In the case there were several logical queues mapped on a device, from Q1 to Qd, then the
relative energy per item consumed by the queues in the device is the sum of the relative energy per item for
all the queues working in the device:

∑d
i=1

−→
E i=

(∑d
i=1EiC ,

∑d
i=1EiG ,

∑d
i=1EiU

)
. These components can

be seen as the components of the energy consumed by the items that a device processes when the device is
the only one working in the system (homogeneous execution).

However, the effective energy consumed by the GPU and CPU when both devices are working in the system
(heterogeneous execution), is not the sum of the relative energies of the queues on each device. Let’s define
the effective energy per item consumed in the system, Ee, as,

Ee = min

(
TDP

λe
, EeC + EeG + EeU

)
(8)

where TDP is the power budget of the chip, λe the effective throughput, and EeC +EeG +EeU the effective
energy consumed when the TDP is not reached. For the heterogeneous chips studied, we have found that
in case the TDP is not reached, then each component of the effective energy is given by the dominant
component of the relative energy computed for each device. This is what we call the energy balance condition.
Let’s suppose that the relative energy per item for all the queues in the GPU device is given by

−→
EGPU =

(EGPUC
, EGPUG

, EGPUU
), and the relative energy per item for all the queues in the CPU device is given by−→

ECPU = (ECPUC
, ECPUG

, ECPUU
). The rationale for the energy balance condition is that the C-component

of the effective energy is typically dominated by the C-component of the relative energy of the CPU device,
ECPUC

, while the C-component of the GPU device, EGPUC
is just a “residual” or standby consumption when

the CPU is idle. Remember that this C-component of the relative energy of the GPU device is obtained with
homogeneous runs (runs on the GPU where the CPU is idle) during the measurement collection step. On
an heterogeneous run, however, the CPU is not idle, and so the standby consumption measured during the
homogeneous run is already included in the C-component of the relative energy of the CPU, ECPUC

, and
does not need to be included again. A similar argument can be made for the G-component of the effective
energy. With respect to the U-component, we have observed that the effective energy consumed is determined
by the device (CPU or GPU) that processes a higher load.

Next, Sections V-A and V-B explain how we model Decoupled and Coupled configurations, respectively,
and how we incorporate the granularity to the models.

A. Model for Decoupled configurations

These configurations are shown in Figs. 1a and 1c (DP-CG and DP-MG, respectively). Fig. 10a depicts our
model for them. As explained in section II, in these configurations there is a GPU path in which a thread
processes an item through all stages in the GPU, and also there is a CPU path in which n concurrent threads
process other item/s through all the stages in the CPU device.

The GPU device is modeled with QGPU which is the M/M/1 queue that services all the stages for the items
that go through the GPU path. This queue is characterized with two parameters: µGPU , the service rate of
the GPU server, and −→ε GPU , the energy rate consumed by the queue in the GPU device. These parameters
are computed from the time and energy measurements taken in the collection step, as we show in Table III.
For both parameters we consider the time and the energy per item of all the stages Sk that are mapped to the
GPU (k from 1 to s, see Table II).

The CPU device is modeled with QCPU which is the M/M*/1 queue that services all the stages for the
items that go through the CPU path. The * stands for the different instantiations of the queue, depending on
the granularity exploited. For the CG granularity, the queue is characterized with two parameters: µCGCPU (n),
the service rate of the CPU server under CG granularity, and −→ε CGCPU (n), the energy rate consumed by the
queue in the CPU device under CG granularity. Note that under the CG granularity the CPU device can run
from 0 to nC concurrent threads. The n = 0 case represents in fact the GPU homogeneous execution, while
the n = nC represents the maximun number of threads in the CPU path. Therefore, for the CG granularity,
both the service rate and the energy rate are computed for each possible number of threads. Table III shows



16

how these parameters are computed, where we see that time and energy are taken from the measurements in
Table I. Regarding the MG granularity, the queue is defined by µMG

CPU and −→ε MG
CPU . In Table III we show these

parameters, where we notice that time and energy are taken from the measurements in Table II.

TABLE III: Parameters of the DP-* configurations. * stands for CG or MG. s is the number of stages.

Parameter Device / Gr. Value Description
µGPU GPU 1

s∑
k=1

TG
k

service rate for the stages mapped to the GPU

−→ε GPU GPU
(

s∑
k=1

EGCk
,
s∑

k=1

EGGk
,
s∑

k=1

EGUk

)
energy rate consumed by the stages mapped to the
GPU

λGPU GPU µGPU relative throughput of the GPU path
−→
EGPU GPU pGPU · −→ε GPU relative energy per item consumed by QGPU
µCGCPU (n) CPU / CG 1

TCG(n)
, n = 0 : nC service rate for the stages mapped to the CPU under

CG granularity and n threads
−→ε CGCPU (n) CPU / CG

(
ECGC (n), ECGG (n), ECGU (n)

)
, n = 0 : nC energy rate consumed by the stages mapped to the

CPU under CG and n threads
µMG
CPU CPU / MG 1

s∑
k=1

TMG
k

service rate for the stages mapped to the CPU under
MG granularity

−→ε MG
CPU CPU / MG

(
s∑

k=1

EMG
Ck

,
s∑

k=1

EMG
Gk

,
s∑

k=1

EMG
Uk

)
energy rate consumed by the stages mapped to the
CPU under MG granularity

λ∗CPU CPU / * µ∗CPU relative throughput of the CPU path
−→
E ∗CPU CPU / * p∗CPU · −→ε ∗CPU relative energy per item consumed by QCPU
λe GPU + CPU λGPU + λ∗CPU effective throughput of the system
Ee GPU + CPU min

(
TDP
λe

, EeC + EeG + EeU

)
effective energy per item consumed in the system. See
eq. 9

Since our queues are in equilibrium, and we assume maximum utilization of the servers on each queue,
by applying equation 6 we get ρGPU = 1 and ρ∗CPU = 1. From this assumption, we find that the relative
throughput for each path is given by the corresponding queue’s service rate, that is, λGPU = µGPU and
λ∗CPU = µ∗CPU . Also, the flow balance conditions at equilibrium (equations 3-5) allow us to compute the
effective throughput of the system, λe = λGPU + λ∗CPU , and the probability that an item goes through the
GPU path, pGPU = λGPU/λe, or the probability that it goes through the CPU path, p∗CPU = λ∗CPU/λe.

On the other hand, by applying equation 7 we get that the energy utilization of each queue on the
corresponding device is proportional to the probability of items serviced on the queue, or in other words,
ρ
−→
E
GPU = pGPU and ρ

−→
E ∗

CPU = p∗CPU . This assumption allows us to estimate the relative energy per item
consumed by QGPU in the GPU device,

−→
EGPU = pGPU · −→ε GPU and by QCPU in the CPU device,−→

E ∗CPU = p∗CPU ·
−→ε ∗CPU (for CG or MG granularities), respectively.

The effective energy per item consumed in the system, Ee, can be computed as the minimum of TDP/λe
and the sum of three components, as defined in equation 8. If the TDP is not reached, then each component can
be computed by the energy balance condition that establishes that each component of the effective energy is
given by the dominant component of the relative energy computed for each device. In particular, this condition
in the DP-* configurations means,

(EeC , EeG , EeU ) = max
(−→
EGPU ,

−→
E ∗CPU

)
=

=
(
max(EGPUC

, E∗CPUC
),max(EGPUG

, E∗CPUG
),max(EGPUU

, E∗CPUU
)
)

(9)

B. Model for Coupled configurations

These configurations are shown in Figs. 1b and 1d (CP-CG and CP-MG, respectively). Fig. 10b depicts our
model for them. In these configurations there is a GPU-CPU path in which a thread processes a item through
some stages in the GPU and other stages in a CPU core, and there can also be a CPU path in which other
concurrent threads process items through all the stages in the remaining CPU cores. To model the service
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provided by a sequence of stages mapped to each device on each path, we use a logical queue. Thus, in
the GPU-CPU path we can find at least a QGPU which is the M/M/1 queue that represents the sequence
of consecutive stages that service an item in the GPU device, and at least a QCPUA which is a M/M*/1
queue that represents the rest of stages that service the item in the CPU device (* stands for the granularity
studied). For simplicity, in the figure we have represented the case in which the item is first processed by
some consecutive stages in the GPU, and later by the rest of stages in the CPU. In case of a mapping where
the item is first processed by consecutive stages mapped to the CPU, then to the GPU, then to the CPU, and
so on, the model would include more logical queues in the GPU-CPU path: first a QCPUA, followed by a
QGPU , then another QCPUA, and so on.

Each QGPU queue is characterized with two parameters: µGPU , the service rate due to the consecutive stages
mapped to the GPU server, and −→ε GPU , the energy rate consumed by those stages in the GPU device. These
parameters are computed as we show in Table IV. For both parameters we just consider the time and the energy
per item of the corresponding consecutive stages Sk that are mapped to the GPU (Sk ∈ QGPU ). Also, each
QCPUA queue is characterized with two parameters, depending on the granularity. For the CG granularity,
the parameters are: µCGCPUA, the service rate due to the consecutive stages mapped to the CPU under CG
granularity, and −→ε CGCPUA, the energy rate consumed by those stages in the CPU device under CG granularity.
Table IV shows how these parameters are computed, where time and energy come from measurements in
Table I. Regarding the MG granularity, the QCPUA queue is defined by µMG

CPUA and −→ε MG
CPUA. In Table IV

we show these parameters, where we notice that time and energy are taken from measurements in Table II.
On the other hand, the stages mapped to the CPU in the CPU path, are modeled with QCPUB which is

a M/M*/1 queue. Again, * stands for the different instantiations of the queue, depending on the granularity.
For the CG granularity, the queue is characterized with: µCGCPUB(n), the service rate of the CPU under CG
granularity, and −→ε CGCPUB(n), the energy rate consumed by the server in the CPU device under CG granularity.
With CG, the CPU can run from 0 to nC concurrent threads, in addition to the coupled GPU-CPU thread
that serves the GPU-CPU path. Therefore, for CG, the service rate is computed taking into account this
additional coupled thread and we model it assuming that the coupled thread is interfering with the threads
that are working concurrently on the CPU. We model this interference by subtracting to the service rate of
n + 1 concurrent threads running in the CPU (because the CPU consists of QCPUA and QCPUB), a virtual
service rate of 1 thread that is executing in the GPU-CPU path (QCPUA, the coupled thread). The energy
rate is computed for the n concurrent threads working on the queue. In any case, for CG, both the service
rate and the energy rate are computed for each number of threads. Table IV shows how these parameters are
computed, where time and energy come from measurements in Table I. Regarding the MG granularity, the
queue is defined by µMG

CPUB and −→ε MG
CPUB . Under this granularity, all the CPU threads will be serving the

QCPUA. Therefore, we assume that QCPUB will have a very low probability of serving new items, and so,
µMG
CPUB = 0 and −→ε MG

CPUB = 0.
In this configuration, we assume optimistic utilization of servers on each queue. By applying equation 6

we get ρGPU ≤ 1, ρ∗CPUA ≤ 1 and ρ∗CPUB ≤ 1. From these expressions we find that a solution for the
relative throughput for each path is given by, λGPU−CPU = min(µGPU , µ

∗
CPUA) and λ∗CPUB = µ∗CPUB . In

general, if there were more logical queues in the GPU-CPU path, then a solution for λGPU−CPU could be
the minimum of the corresponding service rates in the path. Again, the flow balance conditions at equilibrium
(equations 3-5) lead to computing the effective throughput of the system as λe = λGPU−CPU + λ∗CPUB , and
the probability that an item goes through the GPU-CPU path as pGPU−CPU = λGPU−CPU/λe, or through
the CPU path as p∗CPUB = λ∗CPUB/λe.

Similar to the DP-* configurations, we assume that the energy utilization of each queue on each device is
proportional to the probability of items serviced on the corresponding queue, as defined in equation 7. This
means ρ

−→
E
GPU = pGPU−CPU , ρ

−→
E ∗

CPUA = pGPU−CPU and ρ
−→
E ∗

CPUB = p∗CPUB . These expressions allow us to
estimate the relative energy per item consumed on the GPU device,

−→
EGPU = pGPU−CPU ·−→ε GPU and on the

CPU device,
−→
E ∗CPUA +

−→
E ∗CPUB =pGPU−CPU · −→ε ∗CPUA + p∗CPUB ·

−→ε ∗CPUB (for CG or MG granularities),
respectively. As we see, in the CP-* configurations we estimate the relative energy per item consumed in
the CPU from the activity in QCPUA and in QCPUB . In general, if there were more logical queues in the
GPU-CPU path, then all the resultant

−→
EGPU for the different QGPU should be added to estimate the relative
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TABLE IV: Parameters of the CP-* configurations.* stands for CG or MG granularities.

Parameter Device / Gr. Value Description
µGPU GPU 1∑

Sk∈QGPU

TG
k

service rate of stages mapped to QGPU in the GPU-
CPU path

−→ε GPU GPU

( ∑
Sk∈QGPU

EGCk
,

∑
Sk∈QGPU

EGGk
,

∑
Sk∈QGPU

EGUk

)
energy rate consumed by stages mapped to QGPU in
the GPU-CPU path

µCGCPUA CPU / CG 1∑
Sk∈QCPUA

TCG
k

service rate of stages mapped to QCPUA in the GPU-
CPU path under CG granularity

−→ε CGCPUA CPU / CG

( ∑
Sk∈QCPUA

ECGCk
,

∑
Sk∈QCPUA

ECGGk
,

∑
Sk∈QCPUA

ECGUk

)
energy rate consumed by stages mapped to QCPUA
in the GPU-CPU path under CG

µMG
CPUA CPU / MG 1∑

Sk∈QCPUA

TMG
k

service rate of stages mapped to QCPUA in the GPU-
CPU path under MG granularity

−→ε MG
CPUA CPU / MG

( ∑
Sk∈QCPUA

EMG
Ck

,
∑

Sk∈QCPUA

EMG
Gk

,
∑

Sk∈QCPUA

EMG
Uk

)
energy rate consumed by stages mapped to QCPUA
in the GPU-CPU path under MG

λ∗GPU−CPU GPU-CPU / * min(µGPU , µ∗CPUA) relative throughput of the GPU-CPU path
−→
EGPU GPU pGPU−CPU · −→ε GPU relative energy per item consumed by stages mapped

to the QGPU in the GPU-CPU path
−→
E ∗CPUA CPU / * pGPU−CPU · −→ε ∗CPUA relative energy per item consumed by stages mapped

to QCPUA in the GPU-CPU path
µCGCPUB(n) CPU / CG 1

TCG(n+1)
− 1

TCG(1)
, n = 0 : nC service rate for the stages mapped to QCPUB in the

CPU path under CG and n threads
−→ε CGCPUB(n) CPU / CG

(
ECGC (n), ECGG (n), ECGU (n)

)
, n = 0 : nC energy rate consumed by the stages mapped in CPU

path under CG and n threads
µMG
CPUB CPU / MG 0 service rate for the stages mapped to QCPUB in the

CPU path under MG granularity
−→ε MG
CPUB CPU / MG 0 energy per item rate consumed by the stages mapped

in the CPU path under MG granularity
λ∗CPUB CPU / * µ∗CPUB relative throughput of the CPU path
−→
E ∗CPUB CPU / * p∗CPUB · −→ε ∗CPUB relative energy per item consumed by the stages

mapped in the CPU path
λe GPU + CPU λGPU−CPU + λ∗CPUB effective throughput of the system
Ee GPU + CPU min

(
TDP
λe

, EeC + EeG + EeU

)
effective energy per item consumed in the system. See
eq. 10

energy per item consumed in the GPU device. Similarly, the
−→
ECPUA terms should be added to estimate the

relative energy per item consumed in the CPU in that path. Thus, as in DP-* configurations, the effective
energy consumed in the system, Ee, can be computed as the minimum of TDP/λe and the sum of three
components (see eq. 8). If the TDP is not reached, then following the energy balance condition we get for
CP-* configurations that,

(EeC , EeG , EeU ) = max
(−→
EGPU ,

−→
E ∗CPUA +

−→
E ∗CPUB

)
=

=
(
max(EGPUC

, E∗CPUAC
+ E∗CPUBC

),max(EGPUG
, E∗CPUAG

+ E∗CPUBG
),max(EGPUU

, E∗CPUAU
+ E∗CPUBU

)
)

(10)

C. Model extensions

Notice that in our throughput and energy estimations, the transfer time and energy between GPU and CPU
devices have not been explicitly stated for the sake of readability. However, they can be easily incorporated
into our models: the measurement collection step can collect the host-to-device and device-to-host time and
energy for each stage mapped to the GPU during the GPU homogeneous run3. Then, the service rate of each
QGPU queue, µGPU , would need to add the host-to-device time of the first stage and the device-to-host time
of the last consecutive stage mapped to the corresponding QGPU . Similarly, the energy rate of the queue

3If Zero-Copy-Buffer approach is used then this information can not be measured easily, but in this case time and energy due to
communication operations can be disregarded.
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−→ε GPU , would also consider the energy consumed during the transfers on those stages. In the integrated GPUs
that we use in our experiments and for our benchmarks, the transfer times are negligible and can be ignored
without affecting the accuracy of the model. For discrete GPUs, we expect transfer times to have a higher
impact, though.

Our model can also be extended to include the alternatives not considered in section II-A. For instance, the
splitting of an item on each stage would be modelled with a GPU-CPU path, where each stage i would be
represented by a QCPUi and a QGPUi queue, and the service rates of the corresponding queues should be the
time to process the portion of the item in the corresponding device and stage (similarly for the energy rate).
The model for the alternative in which one stage can have items exploiting both MG and CG granularities in
the CPU multicore can be modelled as two independent paths, with a CPU queue on each one: one path with
a QCPUA queue should consider in its service rate the time to compute the item on the stage under one type
of granularity (for example the MG granularity) and the other path with a QCPUB queue should consider the
time to compute the item on the stage under the other type of granularity (the CG granularity in the example).
Similar considerations should be taken for computing the energy rate on each queue. For this alternative, the
GPU could be incorporated as a QGPU queue to one of the paths in the case of a Coupled Configuration (the
GPU-CPU path as shown in Figure 10b), or in the case of a Decoupled Configuration the GPU would be
incorporated to one independent path with a QGPU queue (the GPU path as shown in Figure 10a). The model
for the alternative in with some stages exploit MG while others exploit CG granularity would be similar to the
ones studied in this paper, but in these cases the service rates of the QCPU queues should consider the time
to process the item under MG or CG granularities in the corresponding stages (similarly for the energy rate).
In any case, due to the constraints commented in section II-A we do not explore these alternatives further.

In the next section, we study the accuracy of our models in two different heterogenous chips by using a
set of real applications as well as the benefits of adapting to changes in the input stream.

VI. EXPERIMENTAL RESULTS

In this section we present our experimental results. Section VI-A discusses our evaluation methodology;
Section VI-B shows the benefit of the analytical model by comparing its performance with a state-of the
art baseline approach as well as a study of the overhead due to the training phase and the profit due to the
adaptive nature of our framework; Section VI-C discusses our experimental results in detail and compares the
throughput and energy predicted by the model with the values measured.

A. Evaluation methodology

Two Intel Quad-Core processors have been used in our experiments: a Core i5-3450, 3.1GHz, 77W TDP
based on the Ivy Bridge architecture, and a Core i7-4770, 3.4GHz, 84W TDP based on the Haswell one. Both
processors feature Advance Vector Extensions (AVX) and have an on-chip GPU, the HD-2500 and HD-4600,
respectively. Although the Core i7 supports hyperthreading, we found that hyperthreading was not beneficial
for our applications, maybe because our benchmarks implementations use the AVX vector units and they fully
utilize the computational resources. Thus, only one thread per core was considered for all experiments, and so
the upper value for n is 5 threads (4 cores plus 1 GPU). We rely on Intel Performance Counter Monitor (PCM)
tool [15] to access the HW counters (energy, clock ticks, L2 and L3 misses, etc). Intel TBB 4.1 provides the
core template to implement the pipeline [21]. Inside each pipeline stage, we use Intel OpenCL SDK 3.0 for
the stages that can be executed on the GPU, or AVX intrinsics for the computations conducted on the cores.
For the MG results, we implemented nested parallelism on each stage either using TBB parallel_for or
OpenCL (it depends on the benchmark, as we will note for each code in the next sections). All versions have
been compiled using Intel C++ Compiler 14.0 with -O3 optimization flag. We measured time and energy in
10 executions of the applications and compute the average. The reported metrics are throughput, λ, energy per
item, E, and as a tradeoff metric, throughput/energy, λ/E. Therefore, λ is the number of frames per second,
fps, E stands for the Joules per frame, and λ/E is the fps/Joule.

We validate our framework on Ivy Bridge and Haswell heterogeneous chips using four real applications:
ViVid [10], with Low Definition (LD) videos (600×416 pixels) and High Definition (HD) videos (1920×1080
pixels), SRAD [1], Tracking [22] and Scene Recognition [23]. For all the benchmarks and the heterogeneous
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TABLE V: Comparison of alternatives. For both λ and λ/E the higher the better.

Homogenous Results Heterog. Results
Bench. Architect. Metric CPU MG CPU CG GPU Baseline Best Improv. Best conf.

ViVid LD
Ivy Bridge λ (fps) 40 62 10 51 65 27% CP-CG (5)

λ/E (fps/J) 46 83 8 66 92 40% CP-CG (5)
Haswell λ (fps) 59 47 22 80 91 13% CP-MG

λ/E (fps/J) 61 43 24 116 134 15% CP-MG

ViVid HD
Ivy Bridge λ (fps) 3.7 3.1 1.1 5.6 5.9 5% CP-MG

λ/E (fps/J) 0.3 0.2 0.1 0.6 0.7 15% CP-MG
Haswell λ (fps) 5.4 2.8 2.7 6.5 7.2 10% CP-MG

λ/E (fps/J) 0.5 0.1 0.3 0.78 0.9 12% CP-MG

SRAD
Ivy Bridge λ (fps) 82 62 72 114 132 16% DP-MG

λ/E (fps/J) 212 100 362 403 523 30% DP-MG
Haswell λ (fps) 95 64 93 147 170 15% DP-MG

λ/E (fps/J) 182 79 673 499 673 34% DP-CG (1)

Tracking
Ivy Bridge λ(fps) 6.2 10 6.8 13 16 23% CP-CG (4)

λ/E (fps/J) 1.3 3.2 2.8 4.0 6.7 67% CP-CG (4)
Haswell λ (fps) 6.3 11 9.2 13 19 46% DP-CG (5)

λ/E (fps/J) 1.1 2.8 4.0 3.7 8.4 127% DP-CG (5)

chips evaluated, the transfer times between GPU and CPU are negligible. Thus, we did not use them in our
model equations.

B. Baseline comparison and impact of adaptation

To assess the benefit of using our framework, we compare the pipeline configuration that our model predicts
as best with the baseline configuration recommended by a previous work [13] that recommends a configuration
based on the intuition that pipeline stages should be mapped to the device where they run more efficiently.
This work also recommends exploiting parallelism using an approach similar to software pipelining where
two frames are computed at the same time, one on the GPU and another one on the CPU. Therefore only
MG granularity is exploited on the CPU cores by this baseline approach.

Table V shows the throughput in terms of frames per second, fps, and throughput/energy, fps/Joule, for
homogenous runs, where only the CPU (with MG and CG granularities) or only the GPU is used: “CPU MG”,
“CPU CG” and “GPU”; and for two heterogenous executions, where CPU and GPU are used: “Baseline” that
identifies the results of the aforementioned baseline configuration [13], and “Best” which correspond to the
best configuration found by our framework. For both performance metrics, fps and fps/Joule, the higher the
value, the better. The “Improv.” column shows the percentage of improvement of “Best” with respect to
“Baseline” (computed as (Best-Baseline)/Baseline). The last column shows the best pipeline configuration and
the optimum number of threads, between parenthesis, for the CG cases.

The table shows that the best configuration obtained using our model significantly outperforms the baseline,
specially when energy is also considered. These data show that the intuition can result in the selection of
a suboptimal configuration, whereas the model can evaluate all configurations and select the best. Also, the
baseline only considers “CP-MG”-like mappings, whereas the model considers more alternatives. As the table
shows, in 10 out of 16 cases, the best configuration is not CP-MG. In 6 cases (all appear in ViVid) the baseline
uses the same mapping as the best (Stage 1 is mapped on the GPU). In these 6 cases, λ and λ/E of baseline
and best differ because in the baseline the stages mapped to the GPU can only run in the GPU (Stage 1 only
runs in the GPU), while in our implementation the stages mapped to the GPU can also execute on the CPU
(Stage 1 runs on both GPU and CPU). Notice that even if we only consider CP-MG mappings, the approach
we use as baseline may not find the best mapping of stages to CPU and GPU. This is the case in SRAD and
Tracking. For instance, for Tracking the best CP-MG mapping would be to map filters 1 and 3 to the GPU,
whereas the baseline approach would map filters 1 and 2 to the GPU. In addition, as the number of possible
configurations increases, relying on the intuition to find the best one becomes increasingly difficult. In this
situation, our model can reduce the number of runtime tests that are needed to determine what is the best
configuration.

The table shows that, overall, throughput improvement ranges from 5% to 46% (20% on average), whereas
the improvement in throughput/energy ranges from 12% to 127% (43% on average). Energy improvement
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ranges from 1% to 55% (18% on average). Interestingly, for ViVid on Ivy Bridge, the best pipeline configuration
depends on the resolution. CP-CG is the best configuration for LD, while CP-MG is the best for HD. Also, the
best configuration can change based on whether the metric to be optimized is λ or λ/E. For instance, SRAD on
Haswell obtains maximum throughput with a DP-MG configuration, whereas the maximum throughput/energy
is obtained using DP-CG with a single thread. We will discuss each benchmark in more detail in the next
subsection.

The previous work that we have considered as a baseline can not adapt to changes in the input stream.
We experimented with changes in the video stream feeding the ViVid application, from Low Definition to
High Definition and viceversa. For instance, on Ivy Bridge, when changing from LD to HD, a change in
the pipeline configuration from CP-CG to CP-MG results in an improvement of 81% in λ (204% in λ/E).
Also, when changing from HD to LD, reconfiguring the pipeline from CP-MG back to CP-CG results in 30%
improvement in λ (40% in λ/E). Since the training time for LD is 0.46 sec, and for HD is 6.47 sec, we can
determine that the training is amortized (from the throughput point of view) when changes from LD to HD
happen at most every 7.8 sec (∼25 HD frames) and when changes from HD to LD happen at most every
0.85sec (∼42 LD frames). Next we describe how these numbers have been computed:

1) Suppose the system is in the best configuration for LD (CP-CG with 5 threads). This configuration
delivers 65fps. If the input changes to HD, there are two options:
• Keep the same configuration (CP-CG, 5 threads). In this case, the new λ is 3.2 fps (0.31 sec/frame)

with no sampling overhead.
• Carry out the training procedure: 6.47 sec to conduct nC+3 experiments to process 17 frames

(1+2+3+4+5+1(gpu)+1(MG) frames). The average throughput during sampling is 17/6.47=2.62fps
(sub-optimal λ), but, in return, the model finds out that now the best configuration is CP-MG, that
delivers 5.9 fps (81% better), i.e. 0.17sec/frame (wrt 0.31sec/frame, 0.14 fewers seconds per frame).

To determine if the sampling was beneficial we need to find how many frames x, at 5.9fps, have to be
processed to compensate the sampling of the 17 frames at 2.62fps, given that the system was processing
frames with a throughput of 3.2 fps. By solving the equation 17/2.62 + x/5.9 = (x + 17)/3.2, it can
be found that x = 8.22 and that after processing 25.22 (17+8.22) frames, the sampling overhead has
been amortized. This corresponds to 7.8 seconds (17/2.62+8.22/5.9).

2) Similarly, suppose the system is in the best configuration for HD (CP-MG). This configuration delivers
a throughput os 5.9fps (CP-MG). If the input changes to LD, there are two options:
• Keep the same configuration (CP-MG for LD). In this case, the new λ is 50 fps (0.02 sec/frame)

with no sampling overhead.
• Carry out the training procedure: 0.46 sec to conduct nC+3 experiments to process 17 frames

(1+2+3+4+5+1(gpu)+1(MG) frames). The average throughput during sampling is 17/0.46=37fps
(sub-optimal λ), but, in return, the model finds out that now the best configuration is CP-CG with 5
threads, that delivers 65 fps (30% better), i.e. 0.015sec/frame (wrt 0.02sec/frame, 0.05 fewer seconds
per frame).

In this case, we find out that x=25.8 frames, and that after processing 42.8 (17+25.8) frames, the sampling
overhead has been amortized. This corresponds to 0.85 seconds (17/37+25.8/65).

Now, in hindsight it is possible to perform these computations because we know the time it took to perform
the sampling and that the change will provide 81% improvement from LD to HD and 30% improvement from
HD to LD. However, in a real scenario, the system will detect a throughput change and start the sampling
procedure without knowing these numbers or even being positive of the improvement that can be obtained.
Because of that, our system limits the frequency of the sampling based on the overhead the user is willing to
pay. In the worst case, after paying the sampling overhead we may end up with no configuration change and
therefore no extra improvement. In that case, eq. 2 provides the maximum frequency (1/t) at which sampling
can be carried out for a given overhead ovthl (Section IV-B).

Notice that the scene recognition benchmark was not used on this section, as only one pipeline mapping
was possible for this benchmark. Nevertheless, it is used in the following section to validate the accuracy of
the model.
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C. Discussion of the results

Figs. 11 to 15 show the results for all applications. In all of them we follow the same convention. On the
left of each figure we see the CG evaluation (lines and marks) as the number of threads changes from 1 to 5,
as shown on the x-axis. On the right of each figure we have the MG evaluation (three bars and two marks).
The homogeneous CPU measurements collected in the training phase are represented by a dashed orange
line for the CG execution (see Table I) and by a patterned orange bar for the MG execution (see Table II).
Solid lines and bars represent model estimations for heterogeneous runs and marks represent experimental
results. For CG granularities predictions we use solid lines: in light-blue for the DP-CG configuration and
in dark-brown for the CP-CG one. The square marks are the measurements obtained for both CG mappings:
solid for DP-CG and hollow for CP-CG. The solid bars represent the model prediction for MG granularities
for heterogeneous runs: in light-blue for the DP-MG configuration and in dark-brown for the CP-MG one.
The x marks are the experimental results obtained for the CP-MG configuration whereas the solid triangles
are the results for the DP-MG one. By comparing the measurements with the model estimates we can asses
the accuracy of the model.

We have experimentally assessed all the evaluated pipeline configurations (48, 384, 48, and 5 for Vivid,
SRAD, Tracking, and Scene Recognition, respectively). To facilitate readability, instead of cramming the
results of all these experiments on a single chart, amongst all the possible CP mappings, Figs. 11 to 15 only
show the configuration that achieves the highest λ/E result. As we discuss in the next sections, for all the
applications and architectures studied, the estimations of the model reasonably match the measured metrics.
For all the cases, the model needs less than 10 microseconds to instantiate the equations for all the possibilities
and determine the optimal granularity, mapping and number of threads.

1) ViVid: This application was introduced in section I. ViVid is comprised of 5 stages, being the first and
last ones the serial Input and Output, while the three middle ones are parallel. These middle stages are: i)
Stage 1 that finds the maximum response of 100 filters; ii) Stage 2 that summarizes the low level information
collected by the previous stage; and iii) Stage 3 that computes the actual detection step. In this benchmark, the
MG results were obtained exploiting nested parallelism with TBB parallel_for in the stages executed in
the multicore. Fig. 11 and Fig. 12 depict the estimated and measured Throughput (λ), Energy per item (E)
and Throughput/Energy (λ/E) for LD and HD on Ivy Bridge and Haswell, respectively. Amongst all the CP
mappings we only show the most performing one: when stage S1 is the only one mapped on the GPU (as
illustrated in Fig. 1 b) and d)), both for the CG and MG granularities.

As Figs. 11 and 12 show, our model is able to give a good estimation of λ, E and λ/E. In general, it
tends to slightly overestimate the throughput in the CP configurations, because for CP we always consider
the ideal contribution of all the threads without considering the overheads. These overheads account for the
synchronization costs of the GPU-CPU threads in the coupled GPU-CPU path, that we do not consider in
our equations. The results show that our model fits the measured throughput reasonably well, specially on
the Ivy Bridge architecture for which the estimated values are within 2% of the measured ones. On Haswell,
our overestimation of the throughput is within 9%. Regarding the energy results, we can also see that, in
general, our equations tend to slightly underestimate the energy, although deviation is always within 5% of
the measured values. The deviation is more noticeable for Haswell, where our model predicts that CP-MG is
better than DM-MG, though measures tell the contrary. Anyway, this imprecision is not significative because
the differences between CP-MG and DP-MG are small, so there is not a big penalty to be paid by this
error. In any case, the best configuration for energy optimization is DP-CG with 1 thread that our model
correctly predicts. In general, these results validate our initial assumption when deriving the simplified model
for the energy consumption, which we introduced in section V. Also, we can mention that the accuracy of
the predicted values for our other metric of interest, Throughput/Energy (λ/E), are within -5% to 10% with
respect to the measured values.

Overall, and despite these small inaccuracies, the model successfully predicted the best pipeline configuration
(granularity, mapping) as well as the appropriate number of threads, for each type of input and architecture. On
Ivy Bridge, for LD videos the optimal is found with the CP-CG configuration and 5 threads (although DP-CG
is very close), whereas for the HD input the optimal is provided by the CP-MG configuration. However, on
Haswell, the best option for LD and HD is always CP-MG.
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Fig. 11: Performance metrics for ViVid when processing LD (up) or HD (bottom) video on Ivy Bridge. Solid
lines/bars represent model predictions. Marks are the experimental results.

0,0E+00	  

2,0E-‐02	  

4,0E-‐02	  

6,0E-‐02	  

8,0E-‐02	  

1,0E-‐01	  

1,2E-‐01	  

1	   2	   3	   4	   5	  

CP
-‐M
G	  

DP
-‐M
G	  

CP
U-‐
MG

	  

Th
ro
ug
hp

ut
	  (i
te
m
s/
m
ili
se
c.
)	  

Num-‐Threads	  (CG)	  

6,0E-‐01	  

8,0E-‐01	  

1,0E+00	  

1,2E+00	  

1,4E+00	  

1	   2	   3	   4	   5	  

CP
-‐M
G	  

DP
-‐M
G	  

CP
U-‐
MG

	  

En
er
gy
/i
te
m
	  (J
ou

le
s)
	  

Num-‐Threads	  (CG)	  

CP-‐MG	  Est.	   DP-‐MG	  Est.	  
CPU	  MG	   CPU	  CG	  
CP-‐CG	  Est.	   CP-‐CG	  Mea.	  
DP-‐CG	  Est.	   DP-‐CG	  Mea.	  
CP-‐MG	  Mea.	   DP-‐MG	  Mea.	  

0,0E+00	  

2,0E-‐02	  

4,0E-‐02	  

6,0E-‐02	  

8,0E-‐02	  

1,0E-‐01	  

1,2E-‐01	  

1,4E-‐01	  

1,6E-‐01	  

1,8E-‐01	  

1	   2	   3	   4	   5	  

CP
-‐M
G	  

DP
-‐M
G	  

CP
U-‐
MG

	  

Th
ro
ug
hp

ut
	  /
	  E
ne

rg
y	  

Num-‐Threads	  (CG)	  

1,0E-‐03	  

2,0E-‐03	  

3,0E-‐03	  

4,0E-‐03	  

5,0E-‐03	  

6,0E-‐03	  

7,0E-‐03	  

8,0E-‐03	  

9,0E-‐03	  

1	   2	   3	   4	   5	  

CP
-‐M
G	  

DP
-‐M
G	  

CP
U-‐
MG

	  

Th
ro
ug
hp

ut
	  (i
te
m
s/
m
ili
se
c.
)	  

Num-‐Threads	  (CG)	  

(a) Throughput (higher the better)

6,0	  

8,0	  

10,0	  

12,0	  

14,0	  

16,0	  

1	   2	   3	   4	   5	  

CP
-‐M
G	  

DP
-‐M
G	  

CP
U-‐
MG

	  

En
er
gy
/i
te
m
	  (J
ou

le
s)
	  

Num-‐Threads	  (CG)	  

CP-‐MG	  Est.	  
DP-‐MG	  Est.	  
CPU	  MG	  
CPU	  CG	  
CP-‐CG	  Est.	  
CP-‐CG	  Mea.	  
CP-‐CG	  Est.	  
DP-‐CG	  Mea.	  
CP-‐MG	  Mea.	  
DP-‐MG	  Mea.	  

(b) Energy per item (lower the better)

0,0E+00	  

2,0E-‐04	  

4,0E-‐04	  

6,0E-‐04	  

8,0E-‐04	  

1,0E-‐03	  

1	   2	   3	   4	   5	  

CP
-‐M
G	  

DP
-‐M
G	  

CP
U-‐
MG

	  

Th
ro
ug
hp

ut
	  /
	  E
ne

rg
y	  

Num-‐Threads	  (CG)	  

(c) Thr./energy (higher the better)

Fig. 12: Performance metrics for ViVid when processing LD (up) or HD (bottom) video on Haswell.

The figures also show an important result: a configuration with a higher throughput can consume more
energy than a lower throughput one. This can be observed on Haswell, in Figs. 12a and 12b, for the HD input
and the CP-CG configuration, for which the highest throughput is obtained with n = 5 threads. However, the
energy consumption is also higher for that number of threads. In fact, for this configuration the optimal λ/E
for HD is found for n = 3, solution that our model correctly predicts as we see in Fig. 12c.

2) SRAD: The SRAD (Speckle Reducing Anisotropic Diffusion) benchmark is part of the Rodinia bench-
mark suite [1]. This benchmark implements a diffusion method for ultrasonic and radar imaging applications
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Fig. 13: λ, E and λ/E for SRAD on Ivy Bridge (up) and Haswell (bottom).

based on partial differential equations (PDEs) [24]. SRAD has 8 pipeline stages: serial Input, image extraction,
preparation, reduction, statistics, computation 1 and computation 2, image compression and serial Output. In
our experiments we ran these stages over a stream of images (200). Each stage can implement a CG or MG
granularity (in this benchmark, the MG granularity was exploited using OpenCL in the stages executed in
the multicore) so there are 26 · (4 + 2) = 384 pipeline alternatives. However, just instantiating our model
equations for all these possibilities we can find out the best configuration on each architecture. Figure 13
shows all metrics for Ivy Bridge and Haswell. From all the CP mappings we only show the most efficient
one, that happens to be when the GPU is mapped on all but the second stage, for both the CP-CG and CP-MG
configurations, in both machines.

Results in Fig. 13 show that for SRAD our model also provides a reasonable estimation of the throughput
and energy on each pipeline alternative. For this application, our equations tend to overestimate the throughput
of the DP configurations, especially for the DP-MG configuration, where 7% of deviation over the measured
throughput was found. Also, as pointed out for ViVid, a slight underestimation of the energy consumption was
registered, in this case always below 8%. These inaccuracies are the reason of the 16% of overestimation for
λ/E in the DP-MG configuration. All in all, our model correctly predicts that the optimal configuration for
Ivy Bridge is DP-MG, whereas for Haswell is DP-CG with n = 1 if we optimize λ/E. Notice, that DP-CG
with n = 1 implies that the only thread is the GPU one, which corresponds to an homogeneous execution on
the GPU. This is another example of a case in which the highest throughput did not result in the lowest energy.
For instance, here we find the maximum λ with DP-CG for n = 5 (see Fig. 13a for Haswell). However, since
the minimum energy consumption is found for n = 1 (Figure 13b), the optimal λ/E is also for DP-CG n = 1
(Fig. 13c for Haswell). Our model correctly captures this fact.

3) Tracking: Tracking calculates the movement of a set of features over the image-flow of a video stream.
The implementation is based on the Kanade Lucas Tomasi (KLT) [22] algorithm of the San Diego Visual
Benchmark Suite [12]. This implementation comprises three phases: image processing, feature extraction
and feature tracking. The pipeline of this application has 5-stages: the first and fifth ones are Input and
Output, whereas the middle ones are parallel and can be mapped on both CPU and GPU. Each parallel stage
can implement a CG or MG granularity. In this benchmark, the MG granularity was exploited using TBB
parallel_for in the stage executed on the multicore. So there are 23 · (4 + 2) = 48 pipeline alternatives.
Again, from all the CP mappings we only show the most efficient one: stages 1 and 3 on the GPU for both
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Fig. 14: λ, E and λ/E for Tracking on Ivy Bridge (up) and Haswell (bottom).

the CP-CG and CP-MG configurations for Ivy Bridge and Haswell. In the experiments for tracking, we have
used a video stream with 200 frames (1080x1920).

Fig. 14 shows the computed and estimated λ, E and λ/E on Ivy Bridge and Haswell. The model’s deviation
for both platforms is always below 5%, 7% and 11% of measured throughput, energy and throughput/energy,
respectively. Again, the model predictions are accurate enough to guess that the appropriate configuration is
CP-CG with 4 threads with the GPU used on stages 1 and 3 for Ivy Bridge and DP-CG with 5 threads for
Haswell.

4) Scene Recognition: This application performs generic visual categorization, ie., it identifies the object
content of natural images while generalizing across variations inherent to the object class (view, imaging,
lighting, occlusion, etc). This code is based in the algorithm proposed in [23]. The code is implemented as
a 4-stages pipeline. The first and last stages take care of the sequential Input, and Output. The two middle
stages are parallel. The input to this code are 200 images of 256×256 pixels from a database containing
images from 8 different classes (forest, street, coast, etc). In this benchmark, only the CP-CG configuration
is feasible. DP mapping is not an option because the branchy nature of the second parallel stage makes it not
suitable for the GPU. Besides, MG granularity does not scale. The first parallel stage can execute on both the
CPU and GPU. However, this stage just represents the 18% of the pipeline execution (on both architectures).
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Fig. 15: λ/E for Scene Recognition (higher the better).

Fig. 15 shows the computed and estimated λ/E for the CP-CG configuration when executing the application
with 1 to 5 threads on Ivy Bridge and Haswell. Our model accurately predicts the measured values. The
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higher difference between predicted and measured values is found in Haswell with 4 threads. In this case, λ
is understimated 7% whereas the energy is overestimated 5.5% which turns into 11% of underestimation for
λ/E. We can note that the improvement of the CP-CG execution with respect to the homogeneous multicore
is small, as we are just affecting the 18% of the application, being the improvement factors (the ratio of the
stage’s throughput/energy on the CPU vs the GPU) also small. Anyway, one interesting finding is that the
Ivy Bridge CP version reaches the point of diminishing returns with 4 threads (although the throughput is
slightly higher with 5 threads, the energy is also higher). On Haswell, the optimal solution is for n = 5, and
our model finds it.

D. Lessons learned

One relevant result of our model is that it helps us to identify the appropriate granularity for each problem.
In the quest of choosing the right granularity for each problem, we have found one important piece of
experimental evidence that helps us to understand how the granularities affect performance: the throughput
and energy values reported by the multicore homogeneous execution for the two type of granularities (in the
figures, the dashed orange line for the CG execution –CPU-CG – and the patterned orange bar for the MG
execution–CPU-MG–) are key to predict when one type of granularity will perform better than the other. For
instance, for ViVid on Ivy Bridge-LD (see Fig. 11), the CPU-MG throughput (and energy) is outperformed
by the CPU-CG one when n > 3. However, on ViVid for Ivy Bridge-HD, the CPU-MG throughput (and
energy) outperforms the CPU-CG for any n. Therefore, configurations that exploit CG granularity seem more
suitable for LD, while configurations exploiting MG will be the ones for HD, as finally the heterogeneous
executions prove. This is also valid for all the other benchmarks and architectures, as we can also see in
Table V by comparing the “CPU MG” and “CPU CG” columns of the homogeneous results: if λ or λ/E is
larger for “CPU MG” than for “CPU CG”, then the recommended granularity for the best configuration (see
“Best conf.” column in that table) is MG, and viceversa.

In addition to granularity, the mappings also play an important role. DP mappings work well if the GPU
thread obtains better values for the metric of interest in all the stages of the pipeline than a CPU thread for CG
granularities (or better efficiencies in all stages than nC threads for MG granularities). If this is not the case,
then CP can potentially exploit better the heterogeneity of the system, as long as the CP mapping ensures that
the pipeline stages are mapped to the device where they execute most efficiently.

Other interesting result is that higher throughput does not always imply a lower energy consumption. This
is most noticeable in the CG plots of previous figures, mainly for SRAD and ViVid HD. For example, in
Fig. 13, the CG configurations for SRAD have the highest throughput for 4-5 threads, whereas the minimum
energy consumption is achieved for one thread.

As summary, we have discussed some of the main trade-offs that affect throughput and energy in the DP
and CP mappings under different granularities, and how our reasonable simple model is able to correctly
predict all these trade-offs.

VII. RELATED WORKS

One approach for coding streaming applications is to use a programming language with support for streams,
as for example StreamIt [25]. But currently these approaches do not provide support for heterogenous CPU-
GPU executions. By using both CPU cores and GPUs, simultaneous computation on heterogenous platforms
delivers higher performance than CPU-only or GPU-only executions [26]. However, programming frameworks
that provide support for computing in heterogeneous architecture such as Qilin [2], OmpSs [3], XKaapi [4] or
StarPU [5] just consider performance when deciding task distribution among CPU cores and GPU accelerators.
The difference between these related works and ours is that they focus on data parallel patterns, while we
center on streaming applications.The work by Totoni et al. [13] is perhaps the closest to ours. In this paper,
we propose several other pipeline configurations they do not consider. In Section VI-B we have used their
approach as a baseline and compared with the configuration that our model finds to be the best.

Research on power and energy aware heterogeneous computing started to draw attention several years ago.
Most works try to model power or energy specifically for the GPU: some works analytically model GPU power
with architecture level instructions [27], [28], or hardware performance events [29], [30]. However, they model
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the execution of applications in a GPU or a cluster of GPUs, without considering the simultaneous execution
on the CPU multicores, which is central in our approach. Those works try to model the power consumption of
specific GPU micro-architecture components (such as global memory accesses, texture cache accesses, bank
conflicts, etc.) to identify the power bottlenecks in a kernel and suggest power aware optimization strategies.
We are concerned in how the different computational resources (CPU cores and GPUs) interact when working
in parallel and how to dynamically select energy and performance aware mapping configurations in streaming
applications.

There have been other research efforts, such as [31], [32], that have tried to define analytical models
to optimize the scheduling of pipeline applications, considering energy and throughput as an objetive or
a constraint of the problem. However, these works focus on optimizing the concurrent execution of multi-
programed workloads that consist of independent pipeline applications, whereas we are interested in optimizing
single streaming execution. In addition, they model energy as a sum of system level components (processor,
network, disk, ...) where the energy consumed on each component is the product of the execution time in
that component and the dynamic power in the component (measured or estimated using microbenchmarks and
supposed constant for the benchmarks evaluated). Our approach, on the other hand, uses the accurate hardware
energy counters available on the architectures we study, that allow us to measure at runtime the consumption
on the CPU, GPU and Uncore components of the system. In contrast with previous static approaches, we use
this information to guide the scheduler at runtime to find the optimal granularity, mapping and number of
threads that optimize the throughput or the energy (or a trade-off metric) of our application.

VIII. CONCLUSIONS

To the best of our knowledge, this is the first work proposing an analytical model that can be used to
efficiently map the different stages of a pipeline application onto an heterogeneous chip (integrated CPU-GPU
processor). The model can use throughput, energy, or a tradeoff such as throughput/energy to predict the best
pipeline setting. The model was validated with four applications, finding that the accuracy of our estimations
are within 2% to 16%, that suffices to find out the optimal pipeline configuration.

We have also compared the best configuration predicted by the model with a state of the art approach. Our
results show that the configurations selected by the model produce, on the average, 20% higher λ and 43%
higher λ/E. We have measured improvements in λ and λ/E of up-to 82% and 204%, respectively, when
the model is used to adapt to an input video that changes its resolution. Our framework guarantees that the
runtime overhead due to the training required to adapt to a changing input is always kept below a user-defined
limit.
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